From: Enrico Tassi Date: Mon, 21 Jan 2008 11:21:36 +0000 (+0000) Subject: snopshot before isabellization X-Git-Tag: make_still_working~5662 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=55dc87ec418b5b8afe10164cfc61b5ad80a88e6c;p=helm.git snopshot before isabellization --- diff --git a/helm/software/matita/dama/excess.ma b/helm/software/matita/dama/excess.ma index 55f531a9b..0f236dd06 100644 --- a/helm/software/matita/dama/excess.ma +++ b/helm/software/matita/dama/excess.ma @@ -258,3 +258,10 @@ qed. definition total_order_property : ∀E:excess. Type ≝ λE:excess. ∀a,b:E. a ≰ b → b < a. + +lemma dual_exc: excess→ excess. +intro E; apply mk_excess; +[apply (exc_carr E);|apply (λx,y:E.y≰x);|apply exc_coreflexive; +|unfold cotransitive; simplify;intros;cases (exc_cotransitive E ??z e); + [right|left]assumption] +qed. diff --git a/helm/software/matita/dama/lattice.ma b/helm/software/matita/dama/lattice.ma index fcad3fdc5..1f605c257 100644 --- a/helm/software/matita/dama/lattice.ma +++ b/helm/software/matita/dama/lattice.ma @@ -14,34 +14,33 @@ include "excess.ma". -record lattice_ : Type ≝ { - l_carr: apartness; - l_meet: l_carr → l_carr → l_carr; - l_meet_refl: ∀x.l_meet x x ≈ x; - l_meet_comm: ∀x,y:l_carr. l_meet x y ≈ l_meet y x; - l_meet_assoc: ∀x,y,z:l_carr. l_meet x (l_meet y z) ≈ l_meet (l_meet x y) z; - l_strong_extm: ∀x.strong_ext ? (l_meet x) +record directed : Type ≝ { + dir_carr: apartness; + dir_op: dir_carr → dir_carr → dir_carr; + dir_op_refl: ∀x.dir_op x x ≈ x; + dir_op_comm: ∀x,y:dir_carr. dir_op x y ≈ dir_op y x; + dir_op_assoc: ∀x,y,z:dir_carr. dir_op x (dir_op y z) ≈ dir_op (dir_op x y) z; + dir_strong_extop: ∀x.strong_ext ? (dir_op x) }. -definition excl ≝ λl:lattice_.λa,b:l_carr l.ap_apart (l_carr l) a (l_meet l a b). +definition excl ≝ + λl:directed.λa,b:dir_carr l.ap_apart (dir_carr l) a (dir_op l a b). -lemma excess_of_lattice_: lattice_ → excess. -intro l; apply (mk_excess (l_carr l) (excl l)); -[ intro x; unfold; intro H; unfold in H; apply (ap_coreflexive (l_carr l) x); - apply (ap_rewr ??? (l_meet l x x) (l_meet_refl ? x)); assumption; +lemma excess_of_directed: directed → excess. +intro l; apply (mk_excess (dir_carr l) (excl l)); +[ intro x; unfold; intro H; unfold in H; apply (ap_coreflexive (dir_carr l) x); + apply (ap_rewr ??? (dir_op l x x) (dir_op_refl ? x)); assumption; | intros 3 (x y z); unfold excl; intro H; - cases (ap_cotransitive ??? (l_meet l (l_meet l x z) y) H) (H1 H2); [2: - left; apply ap_symmetric; apply (l_strong_extm ? y); - apply (ap_rewl ???? (l_meet_comm ???)); - apply (ap_rewr ???? (l_meet_comm ???)); + cases (ap_cotransitive ??? (dir_op l (dir_op l x z) y) H) (H1 H2); [2: + left; apply ap_symmetric; apply (dir_strong_extop ? y); + apply (ap_rewl ???? (dir_op_comm ???)); + apply (ap_rewr ???? (dir_op_comm ???)); assumption] - cases (ap_cotransitive ??? (l_meet l x z) H1) (H2 H3); [left; assumption] - right; apply (l_strong_extm ? x); apply (ap_rewr ???? (l_meet_assoc ????)); + cases (ap_cotransitive ??? (dir_op l x z) H1) (H2 H3); [left; assumption] + right; apply (dir_strong_extop ? x); apply (ap_rewr ???? (dir_op_assoc ????)); assumption] qed. -(* coercion cic:/matita/lattice/excess_of_lattice_.con. *) - record prelattice : Type ≝ { pl_carr:> excess; meet: pl_carr → pl_carr → pl_carr; @@ -53,8 +52,8 @@ record prelattice : Type ≝ { lem: ∀x,y.(meet x y) ≤ y }. -interpretation "Lattice meet" 'and a b = - (cic:/matita/lattice/meet.con _ a b). +interpretation "prelattice meet" 'and a b = + (cic:/matita/lattice/meet.con _ a b). lemma feq_ml: ∀ml:prelattice.∀a,b,c:ml. a ≈ b → (c ∧ a) ≈ (c ∧ b). intros (l a b c H); unfold eq in H ⊢ %; unfold Not in H ⊢ %; @@ -67,87 +66,117 @@ apply (Eq≈ ? (meet_comm ???)); apply (Eq≈ ?? (meet_comm ???)); apply feq_ml; assumption; qed. -lemma prelattice_of_lattice_: lattice_ → prelattice. -intro l_; apply (mk_prelattice (excess_of_lattice_ l_)); [apply (l_meet l_);] -unfold excess_of_lattice_; try unfold apart_of_excess; simplify; +lemma prelattice_of_directed: directed → prelattice. +intro l_; apply (mk_prelattice (excess_of_directed l_)); [apply (dir_op l_);] +unfold excess_of_directed; try unfold apart_of_excess; simplify; unfold excl; simplify; [intro x; intro H; elim H; clear H; - [apply (l_meet_refl l_ x); - lapply (Ap≫ ? (l_meet_comm ???) t) as H; clear t; - lapply (l_strong_extm l_ ??? H); apply ap_symmetric; assumption - | lapply (Ap≪ ? (l_meet_refl ?x) t) as H; clear t; - lapply (l_strong_extm l_ ??? H); apply (l_meet_refl l_ x); + [apply (dir_op_refl l_ x); + lapply (Ap≫ ? (dir_op_comm ???) t) as H; clear t; + lapply (dir_strong_extop l_ ??? H); apply ap_symmetric; assumption + | lapply (Ap≪ ? (dir_op_refl ?x) t) as H; clear t; + lapply (dir_strong_extop l_ ??? H); apply (dir_op_refl l_ x); apply ap_symmetric; assumption] |intros 3 (x y H); cases H (H1 H2); clear H; - [lapply (Ap≪ ? (l_meet_refl ? (l_meet l_ x y)) H1) as H; clear H1; - lapply (l_strong_extm l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (l_meet_comm ???) H1); apply (ap_coreflexive ?? Hletin); - |lapply (Ap≪ ? (l_meet_refl ? (l_meet l_ y x)) H2) as H; clear H2; - lapply (l_strong_extm l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (l_meet_comm ???) H1);apply (ap_coreflexive ?? Hletin);] + [lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ x y)) H1) as H; clear H1; + lapply (dir_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (dir_op_comm ???) H1); apply (ap_coreflexive ?? Hletin); + |lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ y x)) H2) as H; clear H2; + lapply (dir_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (dir_op_comm ???) H1);apply (ap_coreflexive ?? Hletin);] |intros 4 (x y z H); cases H (H1 H2); clear H; - [lapply (Ap≪ ? (l_meet_refl ? (l_meet l_ x (l_meet l_ y z))) H1) as H; clear H1; - lapply (l_strong_extm l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (eq_sym ??? (l_meet_assoc ?x y z)) H1) as H; clear H1; + [lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ x (dir_op l_ y z))) H1) as H; clear H1; + lapply (dir_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (eq_sym ??? (dir_op_assoc ?x y z)) H1) as H; clear H1; apply (ap_coreflexive ?? H); - |lapply (Ap≪ ? (l_meet_refl ? (l_meet l_ (l_meet l_ x y) z)) H2) as H; clear H2; - lapply (l_strong_extm l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (l_meet_assoc ?x y z) H1) as H; clear H1; + |lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ (dir_op l_ x y) z)) H2) as H; clear H2; + lapply (dir_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (dir_op_assoc ?x y z) H1) as H; clear H1; apply (ap_coreflexive ?? H);] |intros (x y z H); elim H (H1 H1); clear H; - lapply (Ap≪ ? (l_meet_refl ??) H1) as H; clear H1; - lapply (l_strong_extm l_ ??? H) as H1; clear H; - lapply (l_strong_extm l_ ??? H1) as H; clear H1; - cases (ap_cotransitive ??? (l_meet l_ y z) H);[left|right|right|left] try assumption; - [apply ap_symmetric;apply (Ap≪ ? (l_meet_comm ???)); - |apply (Ap≫ ? (l_meet_comm ???)); + lapply (Ap≪ ? (dir_op_refl ??) H1) as H; clear H1; + lapply (dir_strong_extop l_ ??? H) as H1; clear H; + lapply (dir_strong_extop l_ ??? H1) as H; clear H1; + cases (ap_cotransitive ??? (dir_op l_ y z) H);[left|right|right|left] try assumption; + [apply ap_symmetric;apply (Ap≪ ? (dir_op_comm ???)); + |apply (Ap≫ ? (dir_op_comm ???)); |apply ap_symmetric;] assumption; |intros 4 (x y H H1); apply H; clear H; elim H1 (H H); - lapply (Ap≪ ? (l_meet_refl ??) H) as H1; clear H; - lapply (l_strong_extm l_ ??? H1) as H; clear H1;[2: apply ap_symmetric] + lapply (Ap≪ ? (dir_op_refl ??) H) as H1; clear H; + lapply (dir_strong_extop l_ ??? H1) as H; clear H1;[2: apply ap_symmetric] assumption |intros 3 (x y H); - cut (l_meet l_ x y ≈ l_meet l_ x (l_meet l_ y y)) as H1;[2: - intro; lapply (l_strong_extm ???? a); apply (l_meet_refl l_ y); + cut (dir_op l_ x y ≈ dir_op l_ x (dir_op l_ y y)) as H1;[2: + intro; lapply (dir_strong_extop ???? a); apply (dir_op_refl l_ y); apply ap_symmetric; assumption;] - lapply (Ap≪ ? (eq_sym ??? H1) H); apply (l_meet_assoc l_ x y y); + lapply (Ap≪ ? (eq_sym ??? H1) H); apply (dir_op_assoc l_ x y y); assumption; ] qed. -record lattice : Type ≝ { - lat_carr:> prelattice; - join: lat_carr → lat_carr → lat_carr; - join_refl: ∀x.join x x ≈ x; - join_comm: ∀x,y:lat_carr. join x y ≈ join y x; - join_assoc: ∀x,y,z:lat_carr. join x (join y z) ≈ join (join x y) z; - absorbjm: ∀f,g:lat_carr. join f (meet ? f g) ≈ f; - absorbmj: ∀f,g:lat_carr. meet ? f (join f g) ≈ f; - strong_extj: ∀x.strong_ext ? (join x) +record lattice_ : Type ≝ { + latt_mcarr:> prelattice; + latt_jcarr_: prelattice; + latt_with: pl_carr latt_jcarr_ = dual_exc (pl_carr latt_mcarr) }. +lemma latt_jcarr : lattice_ → prelattice. +intro l; +apply (mk_prelattice (dual_exc l)); unfold excess_OF_lattice_; +cases (latt_with l); simplify; +[apply meet|apply meet_refl|apply meet_comm|apply meet_assoc| +apply strong_extm| apply le_to_eqm|apply lem] +qed. + +coercion cic:/matita/lattice/latt_jcarr.con. + +interpretation "Lattice meet" 'and a b = + (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_mcarr.con _) a b). + interpretation "Lattice join" 'or a b = - (cic:/matita/lattice/join.con _ a b). + (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_jcarr.con _) a b). -lemma feq_jl: ∀ml:lattice.∀a,b,c:ml. a ≈ b → (c ∨ a) ≈ (c ∨ b). -intros (l a b c H); unfold eq in H ⊢ %; unfold Not in H ⊢ %; -intro H1; apply H; clear H; apply (strong_extj ???? H1); -qed. +record lattice : Type ≝ { + latt_carr:> lattice_; + absorbjm: ∀f,g:latt_carr. (f ∨ (f ∧ g)) ≈ f; + absorbmj: ∀f,g:latt_carr. (f ∧ (f ∨ g)) ≈ f +}. -lemma feq_jr: ∀ml:lattice.∀a,b,c:ml. a ≈ b → (a ∨ c) ≈ (b ∨ c). -intros (l a b c H); apply (Eq≈ ? (join_comm ???)); apply (Eq≈ ?? (join_comm ???)); -apply (feq_jl ???? H); -qed. +notation "'meet'" non associative with precedence 50 for @{'meet}. +notation "'meet_refl'" non associative with precedence 50 for @{'meet_refl}. +notation "'meet_comm'" non associative with precedence 50 for @{'meet_comm}. +notation "'meet_assoc'" non associative with precedence 50 for @{'meet_assoc}. +notation "'strong_extm'" non associative with precedence 50 for @{'strong_extm}. +notation "'le_to_eqm'" non associative with precedence 50 for @{'le_to_eqm}. +notation "'lem'" non associative with precedence 50 for @{'lem}. +notation "'join'" non associative with precedence 50 for @{'join}. +notation "'join_refl'" non associative with precedence 50 for @{'join_refl}. +notation "'join_comm'" non associative with precedence 50 for @{'join_comm}. +notation "'join_assoc'" non associative with precedence 50 for @{'join_assoc}. +notation "'strong_extj'" non associative with precedence 50 for @{'strong_extj}. +notation "'le_to_eqj'" non associative with precedence 50 for @{'le_to_eqj}. +notation "'lej'" non associative with precedence 50 for @{'lej}. -lemma le_to_eqj: ∀ml:lattice.∀a,b:ml. a ≤ b → b ≈ (a ∨ b). -intros (l a b H); lapply (le_to_eqm ??? H) as H1; -lapply (feq_jl ??? b H1) as H2; -apply (Eq≈ ?? (join_comm ???)); -apply (Eq≈ (b∨a∧b) ? H2); clear H1 H2 H; -apply (Eq≈ (b∨(b∧a)) ? (feq_jl ???? (meet_comm ???))); -apply eq_sym; apply absorbjm; -qed. +interpretation "Lattice meet" 'meet = (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice meet_refl" 'meet_refl = (cic:/matita/lattice/meet_refl.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice meet_comm" 'meet_comm = (cic:/matita/lattice/meet_comm.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice meet_assoc" 'meet_assoc = (cic:/matita/lattice/meet_assoc.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice strong_extm" 'strong_extm = (cic:/matita/lattice/strong_extm.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice le_to_eqm" 'le_to_eqm = (cic:/matita/lattice/le_to_eqm.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice lem" 'lem = (cic:/matita/lattice/lem.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice join" 'join = (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice join_refl" 'join_refl = (cic:/matita/lattice/meet_refl.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice join_comm" 'join_comm = (cic:/matita/lattice/meet_comm.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice join_assoc" 'join_assoc = (cic:/matita/lattice/meet_assoc.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice strong_extm" 'strong_extj = (cic:/matita/lattice/strong_extm.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice le_to_eqj" 'le_to_eqj = (cic:/matita/lattice/le_to_eqm.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice lej" 'lej = (cic:/matita/lattice/lem.con (cic:/matita/lattice/latt_jcarr.con _)). + +notation "'feq_jl'" non associative with precedence 50 for @{'feq_jl}. +notation "'feq_jr'" non associative with precedence 50 for @{'feq_jr}. +interpretation "Lattice feq_jl" 'feq_jl = (cic:/matita/lattice/feq_ml.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice feq_jr" 'feq_jr = (cic:/matita/lattice/feq_mr.con (cic:/matita/lattice/latt_jcarr.con _)). +notation "'feq_ml'" non associative with precedence 50 for @{'feq_ml}. +notation "'feq_mr'" non associative with precedence 50 for @{'feq_mr}. +interpretation "Lattice feq_ml" 'feq_ml = (cic:/matita/lattice/feq_ml.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice feq_mr" 'feq_mr = (cic:/matita/lattice/feq_mr.con (cic:/matita/lattice/latt_mcarr.con _)). -lemma lej: ∀l:lattice.∀x,y:l.x ≤ (x ∨ y). -intros (l x y); -apply (Le≪ ? (absorbmj ? x y)); apply lem; -qed. \ No newline at end of file diff --git a/helm/software/matita/dama/metric_lattice.ma b/helm/software/matita/dama/metric_lattice.ma index a2d257342..968ae8f3b 100644 --- a/helm/software/matita/dama/metric_lattice.ma +++ b/helm/software/matita/dama/metric_lattice.ma @@ -21,21 +21,6 @@ record mlattice_ (R : todgroup) : Type ≝ { ml_with_: ms_carr ? ml_mspace_ = apart_of_excess (pl_carr ml_lattice) }. -(* -lemma ml_lattice: ∀R.mlattice_ R → lattice. -intros (R ml); apply (mk_lattice (apart_of_metric_space ? (ml_mspace_ ? ml))); try unfold eq; -cases (ml_with2_ ? ml); -[apply (join (ml_lattice_ ? ml));|apply (meet (ml_lattice_ ? ml)); -|apply (join_refl (ml_lattice_ R ml));| apply (meet_refl (ml_lattice_ ? ml)); -|apply (join_comm (ml_lattice_ ? ml));| apply (meet_comm (ml_lattice_ ? ml)); -|apply (join_assoc (ml_lattice_ ? ml));|apply (meet_assoc (ml_lattice_ ? ml)); -|apply (absorbjm (ml_lattice_ ? ml)); |apply (absorbmj (ml_lattice_ ? ml)); -|apply (strong_extj (ml_lattice_ ? ml));|apply (strong_extm (ml_lattice_ ? ml));] -qed. - -coercion cic:/matita/metric_lattice/ml_lattice.con. -*) - lemma ml_mspace: ∀R.mlattice_ R → metric_space R. intros (R ml); apply (mk_metric_space R (apart_of_excess ml)); unfold apartness_OF_mlattice_; @@ -47,6 +32,7 @@ qed. coercion cic:/matita/metric_lattice/ml_mspace.con. +alias symbol "plus" = "Abelian group plus". record mlattice (R : todgroup) : Type ≝ { ml_carr :> mlattice_ R; ml_prop1: ∀a,b:ml_carr. 0 < δ a b → a # b; @@ -90,6 +76,31 @@ intros (R ml x y H); apply ml_prop1; split; [apply mpositive;] apply ap_symmetric; assumption; qed. +interpretation "Lattive meet le" 'leq a b = + (cic:/matita/excess/le.con (cic:/matita/lattice/excess_OF_lattice1.con _) a b). + +interpretation "Lattive join le (aka ge)" 'geq a b = + (cic:/matita/excess/le.con (cic:/matita/lattice/excess_OF_lattice.con _) a b). + +lemma le_to_ge: ∀l:lattice.∀a,b:l.a ≤ b → b ≥ a. +intros(l a b H); apply H; +qed. + +lemma ge_to_le: ∀l:lattice.∀a,b:l.b ≥ a → a ≤ b. +intros(l a b H); apply H; +qed. + +lemma eq_to_eq:∀l:lattice.∀a,b:l. + (eq (apart_of_excess (pl_carr (latt_jcarr l))) a b) → + (eq (apart_of_excess (pl_carr (latt_mcarr l))) a b). +intros 3; unfold eq; unfold apartness_OF_lattice; +unfold apartness_OF_lattice_1; unfold latt_jcarr; simplify; +unfold dual_exc; simplify; intros 2 (H H1); apply H; +cases H1;[right|left]assumption; +qed. + +coercion cic:/matita/metric_lattice/eq_to_eq.con nocomposites. + (* 3.11 *) lemma le_mtri: ∀R.∀ml:mlattice R.∀x,y,z:ml. x ≤ y → y ≤ z → δ x z ≈ δ x y + δ y z. @@ -97,17 +108,23 @@ intros (R ml x y z Lxy Lyz); apply le_le_eq; [apply mtineq] apply (le_transitive ????? (ml_prop2 ?? (y) ??)); cut ( δx y+ δy z ≈ δ(y∨x) (y∨z)+ δ(y∧x) (y∧z)); [ apply (le_rewr ??? (δx y+ δy z)); [assumption] apply le_reflexive] -lapply (le_to_eqm ??? Lxy) as Dxm; lapply (le_to_eqm ??? Lyz) as Dym; -lapply (le_to_eqj ??? Lxy) as Dxj; lapply (le_to_eqj ??? Lyz) as Dyj; clear Lxy Lyz; +lapply (le_to_eqm ?? Lxy) as Dxm; lapply (le_to_eqm ?? Lyz) as Dym; +lapply (le_to_eqj ?? (le_to_ge ??? Lxy)) as Dxj; lapply (le_to_eqj ?? (le_to_ge ??? Lyz)) as Dyj; clear Lxy Lyz; apply (Eq≈ (δ(x∧y) y + δy z) (meq_l ????? Dxm)); apply (Eq≈ (δ(x∧y) (y∧z) + δy z) (meq_r ????? Dym)); -apply (Eq≈ (δ(x∧y) (y∧z) + δ(x∨y) z) (meq_l ????? Dxj)); -apply (Eq≈ (δ(x∧y) (y∧z) + δ(x∨y) (y∨z))); [ - apply (feq_plusl ? (δ(x∧y) (y∧z)) ?? (meq_r ??? (x∨y) ? Dyj));] +apply (Eq≈ (δ(x∧y) (y∧z) + δ(y∨x) z));[ + apply feq_plusl; apply meq_l; clear Dyj Dxm Dym; + unfold apartness_OF_mlattice1; + exact (eq_to_eq ??? Dxj);] +apply (Eq≈ (δ(x∧y) (y∧z) + δ(y∨x) (z∨y))); [ + apply (feq_plusl ? (δ(x∧y) (y∧z)) ?? (meq_r ??? (y∨x) ? Dyj));] apply (Eq≈ ? (plus_comm ???)); -apply (Eq≈ (δ(y∨x) (y∨z)+ δ(x∧y) (y∧z)) (meq_l ????? (join_comm ?x y))); +apply (Eq≈ (δ(y∨x) (y∨z)+ δ(x∧y) (y∧z)));[ + apply feq_plusr; + apply meq_r; + apply (join_comm y z);] apply feq_plusl; -apply (Eq≈ (δ(y∧x) (y∧z)) (meq_l ????? (meet_comm ?x y))); +apply (Eq≈ (δ(y∧x) (y∧z)) (meq_l ????? (meet_comm x y))); apply eq_reflexive; qed. diff --git a/helm/software/matita/dama/sandwich.ma b/helm/software/matita/dama/sandwich.ma index 037d3d7dc..47709bd24 100644 --- a/helm/software/matita/dama/sandwich.ma +++ b/helm/software/matita/dama/sandwich.ma @@ -36,11 +36,12 @@ notation "s ⇝ x" non associative with precedence 50 for @{'tends $s $x}. interpretation "tends to" 'tends s x = (cic:/matita/sequence/tends0.con _ (cic:/matita/sandwich/d2s.con _ _ s x)). - -alias symbol "and" = "constructive and". + theorem sandwich: +let ugo ≝ excess_OF_lattice1 in ∀R.∀ml:mlattice R.∀an,bn,xn:sequence ml.∀x:ml. - (∀n. (an n ≤ xn n) ∧ (xn n ≤ bn n)) → + (∀n. (le (excess_OF_lattice1 ml) (xn n) (an n)) ∧ + (le (excess_OF_lattice1 ?) (bn n) (xn n))) → True. an ⇝ x → bn ⇝ x → xn ⇝ x. intros (R ml an bn xn x H Ha Hb); unfold tends0 in Ha Hb ⊢ %; unfold d2s in Ha Hb ⊢ %; intros (e He); @@ -55,7 +56,7 @@ cases (H n3) (H7 H8); clear Lt_n1n3 Lt_n2n3 Lt_n1n2_n3 c H1 H2 H n1 n2; cut (δ (xn n3) x ≤ δ (bn n3) x + δ (an n3) x + δ (an n3) x) as main_ineq; [2: apply (le_transitive ???? (mtineq ???? (an n3))); cut ( δ(an n3) (bn n3)+- δ(xn n3) (bn n3)≈( δ(an n3) (xn n3))) as H11; [2: - lapply (le_mtri ????? H7 H8) as H9; clear H7 H8; + lapply (le_mtri ?? ??? (ge_to_le ??? H7) (ge_to_le ??? H8)) as H9; clear H7 H8; lapply (feq_plusr ? (- δ(xn n3) (bn n3)) ?? H9) as H10; clear H9; apply (Eq≈ (0 + δ(an n3) (xn n3)) ? (zero_neutral ??)); apply (Eq≈ (δ(an n3) (xn n3) + 0) ? (plus_comm ???));