From: Claudio Sacerdoti Coen Date: Thu, 3 Jul 2008 21:54:34 +0000 (+0000) Subject: More work. X-Git-Tag: make_still_working~4959 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=5733306d014277c2d4c3d5bf51cc91d7df9aebe1;p=helm.git More work. --- diff --git a/helm/software/matita/library/demo/formal_topology.ma b/helm/software/matita/library/demo/formal_topology.ma index cb720ffb4..257139aef 100644 --- a/helm/software/matita/library/demo/formal_topology.ma +++ b/helm/software/matita/library/demo/formal_topology.ma @@ -47,27 +47,20 @@ for @{ 'covers $a $b }. interpretation "covers" 'covers a U = (covers _ U a). interpretation "coversl" 'covers A U = (coversl _ U A). -axiom covers_elim: - ∀A:axiom_set.∀U: 2 \sup A.∀P:A → CProp. - ∀H1:∀a:A. a ∈ U → P a. - ∀H2:∀a:A.∀j:i ? a. C ? a j ◃ U → (∀b. b ∈ C ? a j → P b) → P a. - ∀a:A.∀p:a ◃ U.P a. -(* definition covers_elim ≝ - λA:axiom_set.λU: 2 \sup A.λP:2 \sup A. - λH1:∀a:A. a ∈ U → a ∈ P. - λH2:∀a:A.∀j:i ? a. C ? a j ◃ U → (∀b. b ∈ C ? a j → b ∈ P) → a ∈ P. - let rec aux (a:A) (p:a ◃ U) : a ∈ P ≝ - match p return λaa.λ_.aa ∈ P with + λA:axiom_set.λU: 2 \sup A.λP:A → CProp. + λH1:∀a:A. a ∈ U → P a. + λH2:∀a:A.∀j:i ? a. C ? a j ◃ U → (∀b. b ∈ C ? a j → P b) → P a. + let rec aux (a:A) (p:a ◃ U) on p : P a ≝ + match p return λaa.λ_:aa ◃ U.P aa with [ refl a q ⇒ H1 a q | infinity a j q ⇒ H2 a j q (auxl (C ? a j) q) ] - and auxl (V: 2 \sup A) (q: V ◃ U) : ∀b. b ∈ V → b ∈ P ≝ - match q return λVV.λ_.∀b. b ∈ VV → b ∈ P with + and auxl (V: 2 \sup A) (q: V ◃ U) on q : ∀b. b ∈ V → P b ≝ + match q return λVV.λ_:VV ◃ U.∀b. b ∈ VV → P b with [ iter VV f ⇒ λb.λr. aux b (f b r) ] in - aux. -*) + aux. coinductive fish (A:axiom_set) (U: 2 \sup A) : A → Prop ≝ mk_fish: ∀a:A. (a ∈ U ∧ ∀j: i ? a. ∃y: A. y ∈ C ? a j ∧ fish A U y) → fish A U a. @@ -111,4 +104,12 @@ theorem transitivity: ∀A:axiom_set.∀a:A.∀U,V. a ◃ U → U ◃ V → a [ assumption | constructor 1; assumption]] -qed. \ No newline at end of file +qed. + +theorem coreflexivity: ∀A:axiom_set.∀a:A.∀V. a ⋉ V → a ∈ V. + intros; + cases H; + cases H1; + assumption. +qed. +