From: Andrea Asperti Date: Tue, 31 Jul 2007 11:18:35 +0000 (+0000) Subject: removed generic_sigma_p since generic_iter_p is the same X-Git-Tag: make_still_working~6113 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=57ed85b4dd8f0585949c470972d0f8bd5b972428;p=helm.git removed generic_sigma_p since generic_iter_p is the same --- diff --git a/helm/software/matita/library/nat/generic_sigma_p.ma b/helm/software/matita/library/nat/generic_sigma_p.ma deleted file mode 100644 index 8ab37e999..000000000 --- a/helm/software/matita/library/nat/generic_sigma_p.ma +++ /dev/null @@ -1,1012 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -set "baseuri" "cic:/matita/nat/generic_sigma_p.ma". - -include "nat/primes.ma". -include "nat/ord.ma". - - - -(*a generic definition of summatory indexed over natural numbers: - * n:N is the advanced end in the range of the sommatory - * p: N -> bool is a predicate. if (p i) = true, then (g i) is summed, else it isn't - * A is the type of the elements of the sum. - * g:nat -> A, is the function which associates the nth element of the sum to the nth natural numbers - * baseA (of type A) is the neutral element of A for plusA operation - * plusA: A -> A -> A is the sum over elements in A. - *) -let rec sigma_p_gen (n:nat) (p: nat \to bool) (A:Type) (g: nat \to A) - (baseA: A) (plusA: A \to A \to A) \def - match n with - [ O \Rightarrow baseA - | (S k) \Rightarrow - match p k with - [true \Rightarrow (plusA (g k) (sigma_p_gen k p A g baseA plusA)) - |false \Rightarrow sigma_p_gen k p A g baseA plusA] - ]. - -theorem true_to_sigma_p_Sn_gen: -\forall n:nat. \forall p:nat \to bool. \forall A:Type. \forall g:nat \to A. -\forall baseA:A. \forall plusA: A \to A \to A. -p n = true \to sigma_p_gen (S n) p A g baseA plusA = -(plusA (g n) (sigma_p_gen n p A g baseA plusA)). -intros. -simplify. -rewrite > H. -reflexivity. -qed. - - - -theorem false_to_sigma_p_Sn_gen: -\forall n:nat. \forall p:nat \to bool. \forall A:Type. \forall g:nat \to A. -\forall baseA:A. \forall plusA: A \to A \to A. -p n = false \to sigma_p_gen (S n) p A g baseA plusA = sigma_p_gen n p A g baseA plusA. -intros. -simplify. -rewrite > H. -reflexivity. -qed. - - -theorem eq_sigma_p_gen: \forall p1,p2:nat \to bool. \forall A:Type. -\forall g1,g2: nat \to A. \forall baseA: A. -\forall plusA: A \to A \to A. \forall n:nat. -(\forall x. x < n \to p1 x = p2 x) \to -(\forall x. x < n \to g1 x = g2 x) \to -sigma_p_gen n p1 A g1 baseA plusA = sigma_p_gen n p2 A g2 baseA plusA. -intros 8. -elim n -[ reflexivity -| apply (bool_elim ? (p1 n1)) - [ intro. - rewrite > (true_to_sigma_p_Sn_gen ? ? ? ? ? ? H3). - rewrite > true_to_sigma_p_Sn_gen - [ apply eq_f2 - [ apply H2.apply le_n. - | apply H - [ intros.apply H1.apply le_S.assumption - | intros.apply H2.apply le_S.assumption - ] - ] - | rewrite < H3.apply sym_eq.apply H1.apply le_n - ] - | intro. - rewrite > (false_to_sigma_p_Sn_gen ? ? ? ? ? ? H3). - rewrite > false_to_sigma_p_Sn_gen - [ apply H - [ intros.apply H1.apply le_S.assumption - | intros.apply H2.apply le_S.assumption - ] - | rewrite < H3.apply sym_eq.apply H1.apply le_n - ] - ] -] -qed. - -theorem eq_sigma_p1_gen: \forall p1,p2:nat \to bool. \forall A:Type. -\forall g1,g2: nat \to A. \forall baseA: A. -\forall plusA: A \to A \to A.\forall n:nat. -(\forall x. x < n \to p1 x = p2 x) \to -(\forall x. x < n \to p1 x = true \to g1 x = g2 x) \to -sigma_p_gen n p1 A g1 baseA plusA = sigma_p_gen n p2 A g2 baseA plusA. -intros 8. -elim n -[ reflexivity -| apply (bool_elim ? (p1 n1)) - [ intro. - rewrite > (true_to_sigma_p_Sn_gen ? ? ? ? ? ? H3). - rewrite > true_to_sigma_p_Sn_gen - [ apply eq_f2 - [ apply H2 - [ apply le_n - | assumption - ] - | apply H - [ intros.apply H1.apply le_S.assumption - | intros.apply H2 - [ apply le_S.assumption - | assumption - ] - ] - ] - | rewrite < H3. - apply sym_eq.apply H1.apply le_n - ] - | intro. - rewrite > (false_to_sigma_p_Sn_gen ? ? ? ? ? ? H3). - rewrite > false_to_sigma_p_Sn_gen - [ apply H - [ intros.apply H1.apply le_S.assumption - | intros.apply H2 - [ apply le_S.assumption - | assumption - ] - ] - | rewrite < H3.apply sym_eq. - apply H1.apply le_n - ] - ] -] -qed. - -theorem sigma_p_false_gen: \forall A:Type. \forall g: nat \to A. \forall baseA:A. -\forall plusA: A \to A \to A. \forall n. -sigma_p_gen n (\lambda x.false) A g baseA plusA = baseA. -intros. -elim n -[ reflexivity -| simplify. - assumption -] -qed. - -theorem sigma_p_plusA_gen: \forall A:Type. \forall n,k:nat.\forall p:nat \to bool. -\forall g: nat \to A. \forall baseA:A. \forall plusA: A \to A \to A. -(symmetric A plusA) \to (\forall a:A. (plusA a baseA) = a) \to (associative A plusA) -\to -sigma_p_gen (k + n) p A g baseA plusA -= (plusA (sigma_p_gen k (\lambda x.p (x+n)) A (\lambda x.g (x+n)) baseA plusA) - (sigma_p_gen n p A g baseA plusA)). -intros. - -elim k -[ rewrite < (plus_n_O n). - simplify. - rewrite > H in \vdash (? ? ? %). - rewrite > (H1 ?). - reflexivity -| apply (bool_elim ? (p (n1+n))) - [ intro. - rewrite > (true_to_sigma_p_Sn_gen ? ? ? ? ? ? H4). - rewrite > (true_to_sigma_p_Sn_gen n1 (\lambda x.p (x+n)) ? ? ? ? H4). - rewrite > (H2 (g (n1 + n)) ? ?). - rewrite < H3. - reflexivity - | intro. - rewrite > (false_to_sigma_p_Sn_gen ? ? ? ? ? ? H4). - rewrite > (false_to_sigma_p_Sn_gen n1 (\lambda x.p (x+n)) ? ? ? ? H4). - assumption - ] -] -qed. - -theorem false_to_eq_sigma_p_gen: \forall A:Type. \forall n,m:nat.\forall p:nat \to bool. -\forall g: nat \to A. \forall baseA:A. \forall plusA: A \to A \to A. -n \le m \to (\forall i:nat. n \le i \to i < m \to p i = false) -\to sigma_p_gen m p A g baseA plusA = sigma_p_gen n p A g baseA plusA. -intros 8. -elim H -[ reflexivity -| simplify. - rewrite > H3 - [ simplify. - apply H2. - intros. - apply H3 - [ apply H4 - | apply le_S. - assumption - ] - | assumption - |apply le_n - ] -] -qed. - -theorem sigma_p2_gen : -\forall n,m:nat. -\forall p1,p2:nat \to bool. -\forall A:Type. -\forall g: nat \to nat \to A. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a) -\to -sigma_p_gen (n*m) - (\lambda x.andb (p1 (div x m)) (p2 (mod x m))) - A - (\lambda x.g (div x m) (mod x m)) - baseA - plusA = -sigma_p_gen n p1 A - (\lambda x.sigma_p_gen m p2 A (g x) baseA plusA) - baseA plusA. -intros. -elim n -[ simplify. - reflexivity -| apply (bool_elim ? (p1 n1)) - [ intro. - rewrite > (true_to_sigma_p_Sn_gen ? ? ? ? ? ? H4). - simplify in \vdash (? ? (? % ? ? ? ? ?) ?). - rewrite > sigma_p_plusA_gen - [ rewrite < H3. - apply eq_f2 - [ apply eq_sigma_p_gen - [ intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H5). - rewrite > (mod_plus_times ? ? ? H5). - rewrite > H4. - simplify. - reflexivity - | intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H5). - rewrite > (mod_plus_times ? ? ? H5). - rewrite > H4. - simplify.reflexivity. - ] - | reflexivity - ] - | assumption - | assumption - | assumption - ] - | intro. - rewrite > (false_to_sigma_p_Sn_gen ? ? ? ? ? ? H4). - simplify in \vdash (? ? (? % ? ? ? ? ?) ?). - rewrite > sigma_p_plusA_gen - [ rewrite > H3. - apply (trans_eq ? ? (plusA baseA - (sigma_p_gen n1 p1 A (\lambda x:nat.sigma_p_gen m p2 A (g x) baseA plusA) baseA plusA ))) - [ apply eq_f2 - [ rewrite > (eq_sigma_p_gen ? (\lambda x.false) A ? (\lambda x:nat.g ((x+n1*m)/m) ((x+n1*m)\mod m))) - [ apply sigma_p_false_gen - | intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H5). - rewrite > (mod_plus_times ? ? ? H5). - rewrite > H4. - simplify.reflexivity - | intros.reflexivity. - ] - | reflexivity - ] - | rewrite < H. - rewrite > H2. - reflexivity. - ] - | assumption - | assumption - | assumption - ] - ] -] -qed. - - -theorem sigma_p2_gen': -\forall n,m:nat. -\forall p1: nat \to bool. -\forall p2: nat \to nat \to bool. -\forall A:Type. -\forall g: nat \to nat \to A. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a) -\to -sigma_p_gen (n*m) - (\lambda x.andb (p1 (div x m)) (p2 (div x m)(mod x m))) - A - (\lambda x.g (div x m) (mod x m)) - baseA - plusA = -sigma_p_gen n p1 A - (\lambda x.sigma_p_gen m (p2 x) A (g x) baseA plusA) - baseA plusA. -intros. -elim n -[ simplify. - reflexivity -| apply (bool_elim ? (p1 n1)) - [ intro. - rewrite > (true_to_sigma_p_Sn_gen ? ? ? ? ? ? H4). - simplify in \vdash (? ? (? % ? ? ? ? ?) ?). - rewrite > sigma_p_plusA_gen - [ rewrite < H3. - apply eq_f2 - [ apply eq_sigma_p_gen - [ intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H5). - rewrite > (mod_plus_times ? ? ? H5). - rewrite > H4. - simplify. - reflexivity - | intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H5). - rewrite > (mod_plus_times ? ? ? H5). - rewrite > H4. - simplify.reflexivity. - ] - | reflexivity - ] - | assumption - | assumption - | assumption - ] - | intro. - rewrite > (false_to_sigma_p_Sn_gen ? ? ? ? ? ? H4). - simplify in \vdash (? ? (? % ? ? ? ? ?) ?). - rewrite > sigma_p_plusA_gen - [ rewrite > H3. - apply (trans_eq ? ? (plusA baseA - (sigma_p_gen n1 p1 A (\lambda x:nat.sigma_p_gen m (p2 x) A (g x) baseA plusA) baseA plusA ))) - [ apply eq_f2 - [ rewrite > (eq_sigma_p_gen ? (\lambda x.false) A ? (\lambda x:nat.g ((x+n1*m)/m) ((x+n1*m)\mod m))) - [ apply sigma_p_false_gen - | intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H5). - rewrite > (mod_plus_times ? ? ? H5). - rewrite > H4. - simplify.reflexivity - | intros.reflexivity. - ] - | reflexivity - ] - | rewrite < H. - rewrite > H2. - reflexivity. - ] - | assumption - | assumption - | assumption - ] - ] -] -qed. - -lemma sigma_p_gi_gen: -\forall A:Type. -\forall g: nat \to A. -\forall baseA:A. -\forall plusA: A \to A \to A. -\forall n,i:nat. -\forall p:nat \to bool. -(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a) - \to - -i < n \to p i = true \to -(sigma_p_gen n p A g baseA plusA) = -(plusA (g i) (sigma_p_gen n (\lambda x:nat. andb (p x) (notb (eqb x i))) A g baseA plusA)). -intros 5. -elim n -[ apply False_ind. - apply (not_le_Sn_O i). - assumption -| apply (bool_elim ? (p n1));intro - [ elim (le_to_or_lt_eq i n1) - [ rewrite > true_to_sigma_p_Sn_gen - [ rewrite > true_to_sigma_p_Sn_gen - [ rewrite < (H2 (g i) ? ?). - rewrite > (H1 (g i) (g n1)). - rewrite > (H2 (g n1) ? ?). - apply eq_f2 - [ reflexivity - | apply H - [ assumption - | assumption - | assumption - | assumption - | assumption - ] - ] - | rewrite > H6.simplify. - change with (notb (eqb n1 i) = notb false). - apply eq_f. - apply not_eq_to_eqb_false. - unfold Not.intro. - apply (lt_to_not_eq ? ? H7). - apply sym_eq.assumption - ] - | assumption - ] - | rewrite > true_to_sigma_p_Sn_gen - [ rewrite > H7. - apply eq_f2 - [ reflexivity - | rewrite > false_to_sigma_p_Sn_gen - [ apply eq_sigma_p_gen - [ intros. - elim (p x) - [ simplify. - change with (notb false = notb (eqb x n1)). - apply eq_f. - apply sym_eq. - apply not_eq_to_eqb_false. - apply (lt_to_not_eq ? ? H8) - | reflexivity - ] - | intros. - reflexivity - ] - | rewrite > H6. - rewrite > (eq_to_eqb_true ? ? (refl_eq ? n1)). - reflexivity - ] - ] - | assumption - ] - | apply le_S_S_to_le. - assumption - ] - | rewrite > false_to_sigma_p_Sn_gen - [ elim (le_to_or_lt_eq i n1) - [ rewrite > false_to_sigma_p_Sn_gen - [ apply H - [ assumption - | assumption - | assumption - | assumption - | assumption - ] - | rewrite > H6.reflexivity - ] - | apply False_ind. - apply not_eq_true_false. - rewrite < H5. - rewrite > H7. - assumption - | apply le_S_S_to_le. - assumption - ] - | assumption - ] - ] -] -qed. - - -theorem eq_sigma_p_gh_gen: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a) \to -\forall g: nat \to A. -\forall h,h1: nat \to nat. -\forall n,n1:nat. -\forall p1,p2:nat \to bool. -(\forall i. i < n \to p1 i = true \to p2 (h i) = true) \to -(\forall i. i < n \to p1 i = true \to h1 (h i) = i) \to -(\forall i. i < n \to p1 i = true \to h i < n1) \to -(\forall j. j < n1 \to p2 j = true \to p1 (h1 j) = true) \to -(\forall j. j < n1 \to p2 j = true \to h (h1 j) = j) \to -(\forall j. j < n1 \to p2 j = true \to h1 j < n) \to - -sigma_p_gen n p1 A (\lambda x.g(h x)) baseA plusA = -sigma_p_gen n1 (\lambda x.p2 x) A g baseA plusA. -intros 10. -elim n -[ generalize in match H8. - elim n1 - [ reflexivity - | apply (bool_elim ? (p2 n2));intro - [ apply False_ind. - apply (not_le_Sn_O (h1 n2)). - apply H10 - [ apply le_n - | assumption - ] - | rewrite > false_to_sigma_p_Sn_gen - [ apply H9. - intros. - apply H10 - [ apply le_S. - apply H12 - | assumption - ] - | assumption - ] - ] - ] -| apply (bool_elim ? (p1 n1));intro - [ rewrite > true_to_sigma_p_Sn_gen - [ rewrite > (sigma_p_gi_gen A g baseA plusA n2 (h n1)) - [ apply eq_f2 - [ reflexivity - | apply H3 - [ intros. - rewrite > H4 - [ simplify. - change with ((\not eqb (h i) (h n1))= \not false). - apply eq_f. - apply not_eq_to_eqb_false. - unfold Not. - intro. - apply (lt_to_not_eq ? ? H11). - rewrite < H5 - [ rewrite < (H5 n1) - [ apply eq_f. - assumption - | apply le_n - | assumption - ] - | apply le_S. - assumption - | assumption - ] - | apply le_S.assumption - | assumption - ] - | intros. - apply H5 - [ apply le_S. - assumption - | assumption - ] - | intros. - apply H6 - [ apply le_S.assumption - | assumption - ] - | intros. - apply H7 - [ assumption - | generalize in match H12. - elim (p2 j) - [ reflexivity - | assumption - ] - ] - | intros. - apply H8 - [ assumption - | generalize in match H12. - elim (p2 j) - [ reflexivity - | assumption - ] - ] - | intros. - elim (le_to_or_lt_eq (h1 j) n1) - [ assumption - | generalize in match H12. - elim (p2 j) - [ simplify in H13. - absurd (j = (h n1)) - [ rewrite < H13. - rewrite > H8 - [ reflexivity - | assumption - | autobatch - ] - | apply eqb_false_to_not_eq. - generalize in match H14. - elim (eqb j (h n1)) - [ apply sym_eq.assumption - | reflexivity - ] - ] - | simplify in H14. - apply False_ind. - apply not_eq_true_false. - apply sym_eq.assumption - ] - | apply le_S_S_to_le. - apply H9 - [ assumption - | generalize in match H12. - elim (p2 j) - [ reflexivity - | assumption - ] - ] - ] - ] - ] - | assumption - | assumption - | assumption - | apply H6 - [ apply le_n - | assumption - ] - | apply H4 - [ apply le_n - | assumption - ] - ] - | assumption - ] - | rewrite > false_to_sigma_p_Sn_gen - [ apply H3 - [ intros. - apply H4[apply le_S.assumption|assumption] - | intros. - apply H5[apply le_S.assumption|assumption] - | intros. - apply H6[apply le_S.assumption|assumption] - | intros. - apply H7[assumption|assumption] - | intros. - apply H8[assumption|assumption] - | intros. - elim (le_to_or_lt_eq (h1 j) n1) - [ assumption - | absurd (j = (h n1)) - [ rewrite < H13. - rewrite > H8 - [ reflexivity - | assumption - | assumption - ] - | unfold Not.intro. - apply not_eq_true_false. - rewrite < H10. - rewrite < H13. - rewrite > H7 - [ reflexivity - | assumption - | assumption - ] - ] - | apply le_S_S_to_le. - apply H9 - [ assumption - | assumption - ] - ] - ] - | assumption - ] - ] -] -qed. - - - -definition p_ord_times \def -\lambda p,m,x. - match p_ord x p with - [pair q r \Rightarrow r*m+q]. - -theorem eq_p_ord_times: \forall p,m,x. -p_ord_times p m x = (ord_rem x p)*m+(ord x p). -intros.unfold p_ord_times. unfold ord_rem. -unfold ord. -elim (p_ord x p). -reflexivity. -qed. - -theorem div_p_ord_times: -\forall p,m,x. ord x p < m \to p_ord_times p m x / m = ord_rem x p. -intros.rewrite > eq_p_ord_times. -apply div_plus_times. -assumption. -qed. - -theorem mod_p_ord_times: -\forall p,m,x. ord x p < m \to p_ord_times p m x \mod m = ord x p. -intros.rewrite > eq_p_ord_times. -apply mod_plus_times. -assumption. -qed. - -theorem sigma_p_divides_gen: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -\forall n,m,p:nat.O < n \to prime p \to Not (divides p n) \to -\forall g: nat \to A. -(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a) - -\to - -sigma_p_gen (S (n*(exp p m))) (\lambda x.divides_b x (n*(exp p m))) A g baseA plusA = -sigma_p_gen (S n) (\lambda x.divides_b x n) A - (\lambda x.sigma_p_gen (S m) (\lambda y.true) A (\lambda y.g (x*(exp p y))) baseA plusA) baseA plusA. -intros. -cut (O < p) - [rewrite < (sigma_p2_gen ? ? ? ? ? ? ? ? H3 H4 H5). - apply (trans_eq ? ? - (sigma_p_gen (S n*S m) (\lambda x:nat.divides_b (x/S m) n) A - (\lambda x:nat.g (x/S m*(p)\sup(x\mod S m))) baseA plusA) ) - [apply sym_eq. - apply (eq_sigma_p_gh_gen ? ? ? ? ? ? g ? (p_ord_times p (S m))) - [ assumption - | assumption - | assumption - |intros. - lapply (divides_b_true_to_lt_O ? ? H H7). - apply divides_to_divides_b_true - [rewrite > (times_n_O O). - apply lt_times - [assumption - |apply lt_O_exp.assumption - ] - |apply divides_times - [apply divides_b_true_to_divides.assumption - |apply (witness ? ? (p \sup (m-i \mod (S m)))). - rewrite < exp_plus_times. - apply eq_f. - rewrite > sym_plus. - apply plus_minus_m_m. - autobatch - ] - ] - |intros. - lapply (divides_b_true_to_lt_O ? ? H H7). - unfold p_ord_times. - rewrite > (p_ord_exp1 p ? (i \mod (S m)) (i/S m)) - [change with ((i/S m)*S m+i \mod S m=i). - apply sym_eq. - apply div_mod. - apply lt_O_S - |assumption - |unfold Not.intro. - apply H2. - apply (trans_divides ? (i/ S m)) - [assumption| - apply divides_b_true_to_divides;assumption] - |apply sym_times. - ] - |intros. - apply le_S_S. - apply le_times - [apply le_S_S_to_le. - change with ((i/S m) < S n). - apply (lt_times_to_lt_l m). - apply (le_to_lt_to_lt ? i) - [autobatch|assumption] - |apply le_exp - [assumption - |apply le_S_S_to_le. - apply lt_mod_m_m. - apply lt_O_S - ] - ] - |intros. - cut (ord j p < S m) - [rewrite > div_p_ord_times - [apply divides_to_divides_b_true - [apply lt_O_ord_rem - [elim H1.assumption - |apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |cut (n = ord_rem (n*(exp p m)) p) - [rewrite > Hcut2. - apply divides_to_divides_ord_rem - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord_rem. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |assumption - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |intros. - cut (ord j p < S m) - [rewrite > div_p_ord_times - [rewrite > mod_p_ord_times - [rewrite > sym_times. - apply sym_eq. - apply exp_ord - [elim H1.assumption - |apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut2. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |assumption - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |intros. - rewrite > eq_p_ord_times. - rewrite > sym_plus. - apply (lt_to_le_to_lt ? (S m +ord_rem j p*S m)) - [apply lt_plus_l. - apply le_S_S. - cut (m = ord (n*(p \sup m)) p) - [rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > sym_times. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |reflexivity - ] - ] - |change with (S (ord_rem j p)*S m \le S n*S m). - apply le_times_l. - apply le_S_S. - cut (n = ord_rem (n*(p \sup m)) p) - [rewrite > Hcut1. - apply divides_to_le - [apply lt_O_ord_rem - [elim H1.assumption - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |apply divides_to_divides_ord_rem - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - ] - |unfold ord_rem. - rewrite > sym_times. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |reflexivity - ] - ] - ] - ] - |apply eq_sigma_p_gen - - [intros. - elim (divides_b (x/S m) n);reflexivity - |intros.reflexivity - ] - ] -|elim H1.apply lt_to_le.assumption -] -qed. - -(*distributive property for sigma_p_gen*) -theorem distributive_times_plus_sigma_p_generic: \forall A:Type. -\forall plusA: A \to A \to A. \forall basePlusA: A. -\forall timesA: A \to A \to A. -\forall n:nat. \forall k:A. \forall p:nat \to bool. \forall g:nat \to A. -(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a basePlusA) = a) \to -(symmetric A timesA) \to (distributive A timesA plusA) \to -(\forall a:A. (timesA a basePlusA) = basePlusA) - - \to - -((timesA k (sigma_p_gen n p A g basePlusA plusA)) = - (sigma_p_gen n p A (\lambda i:nat.(timesA k (g i))) basePlusA plusA)). -intros. -elim n -[ simplify. - apply H5 -| cut( (p n1) = true \lor (p n1) = false) - [ elim Hcut - [ rewrite > (true_to_sigma_p_Sn_gen ? ? ? ? ? ? H7). - rewrite > (true_to_sigma_p_Sn_gen ? ? ? ? ? ? H7) in \vdash (? ? ? %). - rewrite > (H4). - rewrite > (H3 k (g n1)). - apply eq_f. - assumption - | rewrite > (false_to_sigma_p_Sn_gen ? ? ? ? ? ? H7). - rewrite > (false_to_sigma_p_Sn_gen ? ? ? ? ? ? H7) in \vdash (? ? ? %). - assumption - ] - | elim ((p n1)) - [ left. - reflexivity - | right. - reflexivity - ] - ] -] -qed. - -