From: Claudio Sacerdoti Coen Date: Sun, 18 Jan 2009 22:13:10 +0000 (+0000) Subject: universe inconsistency fixed X-Git-Tag: make_still_working~4243 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=5ab72ef7c6da38f9bc239e13f049521922987183;p=helm.git universe inconsistency fixed --- diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs_to_o-basic_topologies.ma b/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs_to_o-basic_topologies.ma index 7073900b1..bdadaf0fe 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs_to_o-basic_topologies.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs_to_o-basic_topologies.ma @@ -15,7 +15,7 @@ include "o-basic_pairs.ma". include "o-basic_topologies.ma". - +alias symbol "eq" = "setoid1 eq". (* Qui, per fare le cose per bene, ci serve la nozione di funtore categorico *) definition o_basic_topology_of_o_basic_pair: BP → BTop. diff --git a/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma index 9be9508e0..7f2710640 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma @@ -184,23 +184,26 @@ theorem SUBSETS_faithful: |*: cases Hletin1; cases x1; change in f3 with (eq1 ? x w); apply (. f3‡#); assumption;] qed. -theorem SUBSETS_full: ∀S,T.∀f.∃g. map_arrows2 ?? SUBSETS' S T g = f. +inductive exT2 (A:Type2) (P:A→CProp2) : CProp2 ≝ + ex_introT2: ∀w:A. P w → exT2 A P. + +theorem SUBSETS_full: ∀S,T.∀f. exT2 ? (λg. map_arrows2 ?? SUBSETS' S T g = f). intros; exists; [ constructor 1; constructor 1; - [ apply (λx.λy. y ∈ f (singleton S x)); + [ apply (λx:carr S.λy:carr T. y ∈ f (singleton S x)); | intros; unfold FunClass_1_OF_carr2; lapply (.= e1‡#); [4: apply mem; |6: apply Hletin;|1,2,3,5: skip] - lapply (#‡prop11 ?? f ?? (†e)); [6: apply Hletin; |*:skip ]] - | whd; split; whd; intro; simplify; unfold map_arrows2; simplify; + lapply (#‡prop11 ?? f ?? (†e)); [6: apply Hletin; |*:skip ]] + | whd; split; whd; intro; simplify; unfold map_arrows2; simplify; [ split; [ change with (∀a1.(∀x. a1 ∈ f (singleton S x) → x ∈ a) → a1 ∈ f⎻* a); | change with (∀a1.a1 ∈ f⎻* a → (∀x.a1 ∈ f (singleton S x) → x ∈ a)); ] | split; - [ change with (∀a1.(∃y. y ∈ f (singleton S a1) ∧ y ∈ a) → a1 ∈ f⎻ a); - | change with (∀a1.a1 ∈ f⎻ a → (∃y.y ∈ f (singleton S a1) ∧ y ∈ a)); ] + [ change with (∀a1.(∃y:carr T. y ∈ f (singleton S a1) ∧ y ∈ a) → a1 ∈ f⎻ a); + | change with (∀a1.a1 ∈ f⎻ a → (∃y:carr T.y ∈ f (singleton S a1) ∧ y ∈ a)); ] | split; - [ change with (∀a1.(∃x. a1 ∈ f (singleton S x) ∧ x ∈ a) → a1 ∈ f a); - | change with (∀a1.a1 ∈ f a → (∃x. a1 ∈ f (singleton S x) ∧ x ∈ a)); ] + [ change with (∀a1.(∃x:carr S. a1 ∈ f (singleton S x) ∧ x ∈ a) → a1 ∈ f a); + | change with (∀a1.a1 ∈ f a → (∃x:carr S. a1 ∈ f (singleton S x) ∧ x ∈ a)); ] | split; [ change with (∀a1.(∀y. y ∈ f (singleton S a1) → y ∈ a) → a1 ∈ f* a); | change with (∀a1.a1 ∈ f* a → (∀y. y ∈ f (singleton S a1) → y ∈ a)); ]] @@ -243,4 +246,4 @@ theorem SUBSETS_full: ∀S,T.∀f.∃g. map_arrows2 ?? SUBSETS' S T g = f. [ intros 2; change in f3 with (eq1 ? a1 a2); change with (a2 ∈ f* a); apply (. f3^-1‡#); assumption; | assumption ]]] -qed. +qed. \ No newline at end of file