From: Andrea Asperti Date: Mon, 10 Dec 2007 10:11:13 +0000 (+0000) Subject: Restructuring. X-Git-Tag: make_still_working~5715 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=5e50ef5a9b00a18778c0eb728f7fc909c0b0f729;p=helm.git Restructuring. --- diff --git a/helm/software/matita/library/nat/div_and_mod_diseq.ma b/helm/software/matita/library/nat/div_and_mod_diseq.ma index 4977df660..299897a38 100644 --- a/helm/software/matita/library/nat/div_and_mod_diseq.ma +++ b/helm/software/matita/library/nat/div_and_mod_diseq.ma @@ -183,10 +183,9 @@ apply le_times_r. assumption. qed. -theorem lt_times_to_lt_div: \forall m,n,q. O < q \to -n < m*q \to n/q < m. +theorem lt_times_to_lt_div: \forall m,n,q. n < m*q \to n/q < m. intros. -apply (lt_times_to_lt q ? ? H). +apply (lt_times_to_lt q ? ? (lt_times_to_lt_O ? ? ? H)). rewrite > sym_times. rewrite > sym_times in ⊢ (? ? %). apply (le_plus_to_le (n \mod q)). @@ -197,42 +196,38 @@ rewrite < div_mod [assumption |apply le_plus_n ] - |assumption + |apply (lt_times_to_lt_O ? ? ? H) ] qed. theorem lt_div: \forall n,m. O < m \to S O < n \to m/n < m. intros. -apply lt_times_to_lt_div - [apply lt_to_le. assumption - |rewrite > sym_times. - apply lt_m_nm;assumption - ] +apply lt_times_to_lt_div. +rewrite < sym_times. +apply lt_m_nm;assumption. qed. theorem le_div_plus_S: \forall m,n,q. O < q \to (m+n)/q \le S(m/q + n/q). intros. apply le_S_S_to_le. -apply lt_times_to_lt_div - [assumption - |change in ⊢ (? ? %) with (q + (q + (m/q+n/q)*q)). - rewrite > sym_times. - rewrite > distr_times_plus. - rewrite > sym_times. - rewrite < assoc_plus in ⊢ (? ? (? ? %)). - rewrite < assoc_plus. - rewrite > sym_plus in ⊢ (? ? (? % ?)). - rewrite > assoc_plus. - apply lt_plus - [change with (m < S(m/q)*q). - apply lt_div_S. - assumption - |rewrite > sym_times. - change with (n < S(n/q)*q). - apply lt_div_S. - assumption - ] +apply lt_times_to_lt_div. +change in ⊢ (? ? %) with (q + (q + (m/q+n/q)*q)). +rewrite > sym_times. +rewrite > distr_times_plus. +rewrite > sym_times. +rewrite < assoc_plus in ⊢ (? ? (? ? %)). +rewrite < assoc_plus. +rewrite > sym_plus in ⊢ (? ? (? % ?)). +rewrite > assoc_plus. +apply lt_plus + [change with (m < S(m/q)*q). + apply lt_div_S. + assumption + |rewrite > sym_times. + change with (n < S(n/q)*q). + apply lt_div_S. + assumption ] qed. diff --git a/helm/software/matita/library/nat/generic_iter_p.ma b/helm/software/matita/library/nat/generic_iter_p.ma index 249957f1b..f89c32f87 100644 --- a/helm/software/matita/library/nat/generic_iter_p.ma +++ b/helm/software/matita/library/nat/generic_iter_p.ma @@ -14,6 +14,7 @@ set "baseuri" "cic:/matita/nat/generic_iter_p". +include "nat/div_and_mod_diseq.ma". include "nat/primes.ma". include "nat/ord.ma". @@ -47,8 +48,6 @@ rewrite > H. reflexivity. qed. - - theorem false_to_iter_p_gen_Sn: \forall n:nat. \forall p:nat \to bool. \forall A:Type. \forall g:nat \to A. \forall baseA:A. \forall plusA: A \to A \to A. @@ -59,7 +58,6 @@ rewrite > H. reflexivity. qed. - theorem eq_iter_p_gen: \forall p1,p2:nat \to bool. \forall A:Type. \forall g1,g2: nat \to A. \forall baseA: A. \forall plusA: A \to A \to A. \forall n:nat. @@ -708,9 +706,38 @@ elim n ] qed. - -(* da spostare *) - +theorem eq_iter_p_gen_pred: +\forall A:Type. +\forall baseA: A. +\forall plusA: A \to A \to A. +\forall n,p,g. +p O = true \to +(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a) \to +iter_p_gen (S n) (\lambda i.p (pred i)) A (\lambda i.g(pred i)) baseA plusA = +plusA (iter_p_gen n p A g baseA plusA) (g O). +intros. +elim n + [rewrite > true_to_iter_p_gen_Sn + [simplify.apply H1 + |assumption + ] + |apply (bool_elim ? (p n1));intro + [rewrite > true_to_iter_p_gen_Sn + [rewrite > true_to_iter_p_gen_Sn in ⊢ (? ? ? %) + [rewrite > H2 in ⊢ (? ? ? %). + apply eq_f.assumption + |assumption + ] + |assumption + ] + |rewrite > false_to_iter_p_gen_Sn + [rewrite > false_to_iter_p_gen_Sn in ⊢ (? ? ? %);assumption + |assumption + ] + ] + ] +qed. + definition p_ord_times \def \lambda p,m,x. match p_ord x p with @@ -749,23 +776,6 @@ elim (le_to_or_lt_eq O ? (le_O_n m)) ] qed. -(* lemmino da postare *) -theorem lt_times_to_lt_div: \forall i,n,m. i < n*m \to i/m < n. -intros. -cut (O < m) - [apply (lt_times_n_to_lt m) - [assumption - |apply (le_to_lt_to_lt ? i) - [rewrite > (div_mod i m) in \vdash (? ? %). - apply le_plus_n_r. - assumption - |assumption - ] - ] - |apply (lt_times_to_lt_O ? ? ? H) - ] -qed. - theorem iter_p_gen_knm: \forall A:Type. \forall baseA: A. diff --git a/helm/software/matita/library/nat/iteration2.ma b/helm/software/matita/library/nat/iteration2.ma index ea306f455..c5236ff4a 100644 --- a/helm/software/matita/library/nat/iteration2.ma +++ b/helm/software/matita/library/nat/iteration2.ma @@ -191,6 +191,20 @@ apply (eq_iter_p_gen_gh nat O plus ? ? ? g h h1 n n1 p1 p2) ] qed. +theorem eq_sigma_p_pred: +\forall n,p,g. p O = true \to +sigma_p (S n) (\lambda i.p (pred i)) (\lambda i.g(pred i)) = +plus (sigma_p n p g) (g O). +intros. +unfold sigma_p. +apply eq_iter_p_gen_pred + [assumption + |apply symmetricIntPlus + |apply associative_plus + |intros.apply sym_eq.apply plus_n_O + ] +qed. + (* monotonicity *) theorem le_sigma_p: \forall n:nat. \forall p:nat \to bool. \forall g1,g2:nat \to nat. diff --git a/helm/software/matita/library/nat/lt_arith.ma b/helm/software/matita/library/nat/lt_arith.ma index d8422a4dd..b4c31c526 100644 --- a/helm/software/matita/library/nat/lt_arith.ma +++ b/helm/software/matita/library/nat/lt_arith.ma @@ -118,6 +118,17 @@ apply (nat_case1 a) ] qed. +lemma lt_times_to_lt_O: \forall i,n,m:nat. i < n*m \to O < m. +intros. +elim (le_to_or_lt_eq O ? (le_O_n m)) + [assumption + |apply False_ind. + rewrite < H1 in H. + rewrite < times_n_O in H. + apply (not_le_Sn_O ? H) + ] +qed. + (* times *) theorem monotonic_lt_times_r: \forall n:nat.monotonic nat lt (\lambda m.(S n)*m). diff --git a/helm/software/matita/library/nat/neper.ma b/helm/software/matita/library/nat/neper.ma index f3db405d4..4b90420c8 100644 --- a/helm/software/matita/library/nat/neper.ma +++ b/helm/software/matita/library/nat/neper.ma @@ -195,7 +195,22 @@ apply lt_sigma_p ] qed. - +theorem le_exp_Sn_n_SSSO: \forall n. (exp (S n) n) \le (S(S(S O))). +intro. +apply (trans_le ? (sigma_p (S n) (\lambda k.true) (\lambda k.(exp n n)/k!))) + [apply le_exp_sigma_p_exp + |apply (trans_le ? (sigma_p (S n) (\lambda i.true) (\lambda i.(exp n n)/(exp (S(S O)) i)))) + [apply le_sigma_p.intros. + apply le_times_to_le_div + [apply lt_O_exp. + apply lt_O_S + |apply (trans_le ? ((S(S O))\sup i* n \sup n/i!)) + [apply le_times_div_div_times. + apply lt_O_fact + |apply le_times_to_le_div2 + [apply lt_O_fact + |rewrite < sym_times. + apply le_times_r.