From: Ferruccio Guidi Date: Mon, 10 Dec 2012 20:54:24 +0000 (+0000) Subject: - lambda: - normalization theorem completed! X-Git-Tag: make_still_working~1398 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=5e8c551acfb4521d48256ae60042c07f9ee1be67;p=helm.git - lambda: - normalization theorem completed! - binary trees on pointer sequences set up to serve as labels for "st" computations - lstar: right-oriened eliminator added --- diff --git a/matita/matita/contribs/lambda/labelled_hap_computation.ma b/matita/matita/contribs/lambda/labelled_hap_computation.ma index 1fb6fcd18..6309d6b53 100644 --- a/matita/matita/contribs/lambda/labelled_hap_computation.ma +++ b/matita/matita/contribs/lambda/labelled_hap_computation.ma @@ -70,6 +70,12 @@ theorem lhap_trans: ltransitive … lhap. /2 width=3 by lstar_ltransitive/ qed-. +lemma lhap_step_dx: ∀s,M1,M. M1 ⓗ⇀*[s] M → + ∀p,M2. M ⓗ⇀[p] M2 → M1 ⓗ⇀*[s@p::◊] M2. +#s #M1 #M #HM1 #p #M2 #HM2 +@(lhap_trans … HM1) /2 width=1/ +qed-. + lemma head_lsreds_lhap: ∀s,M1,M2. M1 ⇀*[s] M2 → is_head s → M1 ⓗ⇀*[s] M2. #s #M1 #M2 #H @(lstar_ind_l ????????? H) -s -M1 // #a #s #M1 #M #HM1 #_ #IHM2 * /3 width=3/ diff --git a/matita/matita/contribs/lambda/pointer_tree.ma b/matita/matita/contribs/lambda/pointer_tree.ma new file mode 100644 index 000000000..89d2122c2 --- /dev/null +++ b/matita/matita/contribs/lambda/pointer_tree.ma @@ -0,0 +1,31 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "pointer_sequence.ma". + +(* POINTER TREE *************************************************************) + +(* Policy: pointer tree metavariables: P, Q *) +(* Note: this is a binary tree on pointer sequences *) +inductive ptree: Type[0] ≝ +| tnil : ptree +| tcons: pseq → ptree → ptree → ptree +. + +let rec size (P:ptree) on P ≝ match P with +[ tnil ⇒ 0 +| tcons s Q1 Q2 ⇒ size Q2 + size Q1 + |s| +]. + +interpretation "pointer tree size" 'card P = (size P). diff --git a/matita/matita/contribs/lambda/policy.txt b/matita/matita/contribs/lambda/policy.txt index ef8c96fce..987d9f8b1 100644 --- a/matita/matita/contribs/lambda/policy.txt +++ b/matita/matita/contribs/lambda/policy.txt @@ -4,6 +4,7 @@ A, B, C, D: term H : transient premise IH : inductive premise M, N : term +P, Q : pointer tree R : arbitrary relation T, U : arbitrary small type diff --git a/matita/matita/contribs/lambda/st_computation.ma b/matita/matita/contribs/lambda/st_computation.ma index 97b5a7211..b536bb3a3 100644 --- a/matita/matita/contribs/lambda/st_computation.ma +++ b/matita/matita/contribs/lambda/st_computation.ma @@ -32,15 +32,96 @@ notation "hvbox( M ⓢ⥤* break term 46 N )" non associative with precedence 45 for @{ 'Std $M $N }. -axiom st_refl: reflexive … st. +lemma st_inv_lref: ∀M,N. M ⓢ⥤* N → ∀j. #j = N → + ∃s. M ⓗ⇀*[s] #j. +#M #N * -M -N +[ /2 width=2/ +| #s #M #A1 #A2 #_ #_ #j #H destruct +| #s #M #B1 #B2 #A1 #A2 #_ #_ #_ #j #H destruct +] +qed-. + +lemma st_inv_abst: ∀M,N. M ⓢ⥤* N → ∀C2. 𝛌.C2 = N → + ∃∃s,C1. M ⓗ⇀*[s] 𝛌.C1 & C1 ⓢ⥤* C2. +#M #N * -M -N +[ #s #M #i #_ #C2 #H destruct +| #s #M #A1 #A2 #HM #A12 #C2 #H destruct /2 width=4/ +| #s #M #B1 #B2 #A1 #A2 #_ #_ #_ #C2 #H destruct +] +qed-. + +lemma st_inv_appl: ∀M,N. M ⓢ⥤* N → ∀D2,C2. @D2.C2 = N → + ∃∃s,D1,C1. M ⓗ⇀*[s] @D1.C1 & D1 ⓢ⥤* D2 & C1 ⓢ⥤* C2. +#M #N * -M -N +[ #s #M #i #_ #D2 #C2 #H destruct +| #s #M #A1 #A2 #_ #_ #D2 #C2 #H destruct +| #s #M #B1 #B2 #A1 #A2 #HM #HB12 #HA12 #D2 #C2 #H destruct /2 width=6/ +] +qed-. + +lemma st_refl: reflexive … st. +#M elim M -M /2 width=2/ /2 width=4/ /2 width=6/ +qed. + +lemma st_step_sn: ∀N1,N2. N1 ⓢ⥤* N2 → ∀s,M. M ⓗ⇀*[s] N1 → M ⓢ⥤* N2. +#N1 #N2 #H elim H -N1 -N2 +[ #r #N #i #HN #s #M #HMN + lapply (lhap_trans … HMN … HN) -N /2 width=2/ +| #r #N #C1 #C2 #HN #_ #IHC12 #s #M #HMN + lapply (lhap_trans … HMN … HN) -N /3 width=5/ +| #r #N #D1 #D2 #C1 #C2 #HN #_ #_ #IHD12 #IHC12 #s #M #HMN + lapply (lhap_trans … HMN … HN) -N /3 width=7/ +] +qed-. -axiom st_step_sn: ∀N1,N2. N1 ⓢ⥤* N2 → ∀s,M. M ⓗ⇀*[s] N1 → M ⓢ⥤* N2. +lemma st_step_rc: ∀s,M1,M2. M1 ⓗ⇀*[s] M2 → M1 ⓢ⥤* M2. +/3 width=4 by st_step_sn/ +qed. -axiom st_lift: liftable st. +lemma st_lift: liftable st. +#h #M1 #M2 #H elim H -M1 -M2 +[ /3 width=2/ +| #s #M #A1 #A2 #HM #_ #IHA12 #d + @st_abst [3: @(lhap_lift … HM) |1,2: skip ] -M // (**) (* auto fails here *) +| #s #M #B1 #B2 #A1 #A2 #HM #_ #_ #IHB12 #IHA12 #d + @st_appl [4: @(lhap_lift … HM) |1,2,3: skip ] -M // (**) (* auto fails here *) +] +qed. -axiom st_inv_lift: deliftable_sn st. +lemma st_inv_lift: deliftable_sn st. +#h #N1 #N2 #H elim H -N1 -N2 +[ #s #N1 #i #HN1 #d #M1 #HMN1 + elim (lhap_inv_lift … HN1 … HMN1) -N1 /3 width=3/ +| #s #N1 #C1 #C2 #HN1 #_ #IHC12 #d #M1 #HMN1 + elim (lhap_inv_lift … HN1 … HMN1) -N1 #M2 #HM12 #HM2 + elim (lift_inv_abst … HM2) -HM2 #A1 #HAC1 #HM2 destruct + elim (IHC12 ???) -IHC12 [4: // |2,3: skip ] #A2 #HA12 #HAC2 destruct (**) (* simplify line *) + @(ex2_intro … (𝛌.A2)) // /2 width=4/ +| #s #N1 #D1 #D2 #C1 #C2 #HN1 #_ #_ #IHD12 #IHC12 #d #M1 #HMN1 + elim (lhap_inv_lift … HN1 … HMN1) -N1 #M2 #HM12 #HM2 + elim (lift_inv_appl … HM2) -HM2 #B1 #A1 #HBD1 #HAC1 #HM2 destruct + elim (IHD12 ???) -IHD12 [4: // |2,3: skip ] #B2 #HB12 #HBD2 destruct (**) (* simplify line *) + elim (IHC12 ???) -IHC12 [4: // |2,3: skip ] #A2 #HA12 #HAC2 destruct (**) (* simplify line *) + @(ex2_intro … (@B2.A2)) // /2 width=6/ +] +qed-. -axiom st_dsubst: dsubstable st. +lemma st_dsubst: dsubstable st. +#N1 #N2 #HN12 #M1 #M2 #H elim H -M1 -M2 +[ #s #M #i #HM #d elim (lt_or_eq_or_gt i d) #Hid + [ lapply (lhap_dsubst … N1 … HM d) -HM + >(dsubst_vref_lt … Hid) >(dsubst_vref_lt … Hid) /2 width=2/ + | destruct >dsubst_vref_eq + @(st_step_sn (↑[0,i]N1) … s) /2 width=1/ + | lapply (lhap_dsubst … N1 … HM d) -HM + >(dsubst_vref_gt … Hid) >(dsubst_vref_gt … Hid) /2 width=2/ + ] +| #s #M #A1 #A2 #HM #_ #IHA12 #d + lapply (lhap_dsubst … N1 … HM d) -HM /2 width=4/ (**) (* auto needs some help here *) +| #s #M #B1 #B2 #A1 #A2 #HM #_ #_ #IHB12 #IHA12 #d + lapply (lhap_dsubst … N1 … HM d) -HM /2 width=6/ (**) (* auto needs some help here *) +] +qed. lemma st_inv_lsreds_is_le: ∀M,N. M ⓢ⥤* N → ∃∃r. M ⇀*[r] N & is_le r. @@ -62,3 +143,37 @@ lemma st_inv_lsreds_is_le: ∀M,N. M ⓢ⥤* N → @(ex2_intro … HM) -M -B2 -A2 >associative_append /3 width=1/ ] qed-. + +lemma st_step_dx: ∀p,M,M2. M ⇀[p] M2 → ∀M1. M1 ⓢ⥤* M → M1 ⓢ⥤* M2. +#p #M #M2 #H elim H -p -M -M2 +[ #B #A #M1 #H + elim (st_inv_appl … H ???) -H [4: // |2,3: skip ] #s #B1 #M #HM1 #HB1 #H (**) (* simplify line *) + elim (st_inv_abst … H ??) -H [3: // |2: skip ] #r #A1 #HM #HA1 (**) (* simplify line *) + @(st_step_sn … ([⬐B1]A1) … (s@(dx:::r)@(◊::◊))) /2 width=1/ -B -A + @(lhap_trans … HM1) -M1 + @(lhap_step_dx … (@B1.𝛌.A1)) // -s /2 width=1/ +| #p #A #A2 #_ #IHA2 #M1 #H + elim (st_inv_abst … H ??) -H [3: // |2: skip ] /3 width=4/ (**) (* simplify line *) +| #p #B #B2 #A #_ #IHB2 #M1 #H + elim (st_inv_appl … H ???) -H [4: // |2,3: skip ] /3 width=6/ (**) (* simplify line *) +| #p #B #A #A2 #_ #IHA2 #M1 #H + elim (st_inv_appl … H ???) -H [4: // |2,3: skip ] /3 width=6/ (**) (* simplify line *) +] +qed-. + +lemma st_lsreds: ∀s,M1,M2. M1 ⇀*[s] M2 → M1 ⓢ⥤* M2. +#s #M1 #M2 #H @(lstar_ind_r ????????? H) -s -M2 // /2 width=4 by st_step_dx/ +qed. + +theorem st_trans: transitive … st. +#M1 #M #M2 #HM1 #HM2 +elim (st_inv_lsreds_is_le … HM1) -HM1 #s1 #HM1 #_ +elim (st_inv_lsreds_is_le … HM2) -HM2 #s2 #HM2 #_ +lapply (lsreds_trans … HM1 … HM2) -M /2 width=2/ +qed-. + +theorem lsreds_standard: ∀s,M,N. M ⇀*[s] N → + ∃∃r. M ⇀*[r] N & is_le r. +#s #M #N #H +@st_inv_lsreds_is_le /2 width=2/ +qed-. diff --git a/matita/matita/lib/basics/lists/lstar.ma b/matita/matita/lib/basics/lists/lstar.ma index fa0cdb5aa..780f7759d 100644 --- a/matita/matita/lib/basics/lists/lstar.ma +++ b/matita/matita/lib/basics/lists/lstar.ma @@ -78,3 +78,48 @@ qed-. theorem lstar_ltransitive: ∀A,B,R. ltransitive … (lstar A B R). #A #B #R #l1 #b1 #b #H @(lstar_ind_l ????????? H) -l1 -b1 normalize // /3 width=3/ qed-. + +lemma lstar_app: ∀A,B,R,l,b1,b. lstar A B R l b1 b → ∀a,b2. R a b b2 → + lstar A B R (l@[a]) b1 b2. +#A #B #R #l #b1 #b #H @(lstar_ind_l ????????? H) -l -b1 /2 width=1/ +normalize /3 width=3/ +qed. + +inductive lstar_r (A:Type[0]) (B:Type[0]) (R: A→relation B): list A → relation B ≝ +| lstar_r_nil: ∀b. lstar_r A B R ([]) b b +| lstar_r_app: ∀l,b1,b. lstar_r A B R l b1 b → ∀a,b2. R a b b2 → + lstar_r A B R (l@[a]) b1 b2 +. + +lemma lstar_r_cons: ∀A,B,R,l,b,b2. lstar_r A B R l b b2 → ∀a,b1. R a b1 b → + lstar_r A B R (a::l) b1 b2. +#A #B #R #l #b #b2 #H elim H -l -b2 /2 width=3/ +#l #b1 #b #_ #a #b2 #Hb2 #IHb1 #a0 #b0 #Hb01 +@(lstar_r_app … (a0::l) … Hb2) -b2 /2 width=1/ +qed. + +lemma lstar_lstar_r: ∀A,B,R,l,b1,b2. lstar A B R l b1 b2 → lstar_r A B R l b1 b2. +#A #B #R #l #b1 #b2 #H @(lstar_ind_l ????????? H) -l -b1 // /2 width=3/ +qed. + +lemma lstar_r_inv_lstar: ∀A,B,R,l,b1,b2. lstar_r A B R l b1 b2 → lstar A B R l b1 b2. +#A #B #R #l #b1 #b2 #H elim H -l -b1 -b2 // /2 width=3/ +qed-. + +fact lstar_ind_r_aux: ∀A,B,R,b1. ∀P:relation2 (list A) B. + P ([]) b1 → + (∀a,l,b,b2. lstar … R l b1 b → R a b b2 → P l b → P (l@[a]) b2) → + ∀l,b,b2. lstar … R l b b2 → b = b1 → P l b2. +#A #B #R #b1 #P #H1 #H2 #l #b #b2 #H elim (lstar_lstar_r ?????? H) -l -b -b2 +[ #b #H destruct // +| #l #b #b0 #Hb0 #a #b2 #Hb02 #IH #H destruct /3 width=4 by lstar_r_inv_lstar/ +] +qed-. + +lemma lstar_ind_r: ∀A,B,R,b1. ∀P:relation2 (list A) B. + P ([]) b1 → + (∀a,l,b,b2. lstar … R l b1 b → R a b b2 → P l b → P (l@[a]) b2) → + ∀l,b2. lstar … R l b1 b2 → P l b2. +#A #B #R #b1 #P #H1 #H2 #l #b2 #Hb12 +@(lstar_ind_r_aux … H1 H2 … Hb12) // +qed-.