From: Ferruccio Guidi Date: Mon, 23 Feb 2015 22:21:15 +0000 (+0000) Subject: component: pr0 X-Git-Tag: make_still_working~738 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=5ff05b234ea985b91bfe6ef3e8dd54eeeb477e11;p=helm.git component: pr0 --- diff --git a/matita/matita/contribs/lambdadelta/basic_1/pr0/dec.ma b/matita/matita/contribs/lambdadelta/basic_1/pr0/dec.ma index c28504bee..96d70c708 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/pr0/dec.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/pr0/dec.ma @@ -14,13 +14,13 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/pr0/fwd.ma". +include "basic_1/pr0/props.ma". -include "Basic-1/subst0/dec.ma". +include "basic_1/subst0/dec.ma". -include "Basic-1/T/dec.ma". +include "basic_1/T/dec.ma". -include "Basic-1/T/props.ma". +include "basic_1/T/props.ma". theorem nf0_dec: \forall (t1: T).(or (\forall (t2: T).((pr0 t1 t2) \to (eq T t1 t2))) (ex2 T @@ -67,30 +67,30 @@ O) O x))).(ex_intro2 T (\lambda (t2: T).((eq T (THead (Bind Abbr) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abbr) t t0) t2)) (THead (Bind Abbr) t (lift (S O) O x)) (\lambda (H4: (eq T (THead (Bind Abbr) t t0) (THead (Bind Abbr) t (lift (S O) O x)))).(\lambda (P: Prop).(let -H5 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) -with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t2) -\Rightarrow t2])) (THead (Bind Abbr) t t0) (THead (Bind Abbr) t (lift (S O) O -x)) H4) in (let H6 \def (eq_ind T t0 (\lambda (t2: T).(subst0 O t t2 (lift (S -O) O x))) H3 (lift (S O) O x) H5) in (subst0_refl t (lift (S O) O x) O H6 -P))))) (pr0_delta t t (pr0_refl t) t0 t0 (pr0_refl t0) (lift (S O) O x) H3))) -(\lambda (H3: (eq T t0 (lift (S O) O x))).(eq_ind_r T (lift (S O) O x) -(\lambda (t2: T).(ex2 T (\lambda (t3: T).((eq T (THead (Bind Abbr) t t2) t3) -\to (\forall (P: Prop).P))) (\lambda (t3: T).(pr0 (THead (Bind Abbr) t t2) -t3)))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Bind Abbr) t (lift (S O) -O x)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind -Abbr) t (lift (S O) O x)) t2)) x (\lambda (H4: (eq T (THead (Bind Abbr) t -(lift (S O) O x)) x)).(\lambda (P: Prop).(thead_x_lift_y_y (Bind Abbr) x t (S -O) O H4 P))) (pr0_zeta Abbr not_abbr_abst x x (pr0_refl x) t)) t0 H3)) H2))) -H1)))) (let H1 \def H in (or_ind (\forall (t2: T).((pr0 t t2) \to (eq T t -t2))) (ex2 T (\lambda (t2: T).((eq T t t2) \to (\forall (P: Prop).P))) -(\lambda (t2: T).(pr0 t t2))) (or (\forall (t2: T).((pr0 (THead (Bind Abst) t -t0) t2) \to (eq T (THead (Bind Abst) t t0) t2))) (ex2 T (\lambda (t2: T).((eq -T (THead (Bind Abst) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: -T).(pr0 (THead (Bind Abst) t t0) t2)))) (\lambda (H2: ((\forall (t2: T).((pr0 -t t2) \to (eq T t t2))))).(let H3 \def H0 in (or_ind (\forall (t2: T).((pr0 -t0 t2) \to (eq T t0 t2))) (ex2 T (\lambda (t2: T).((eq T t0 t2) \to (\forall -(P: Prop).P))) (\lambda (t2: T).(pr0 t0 t2))) (or (\forall (t2: T).((pr0 -(THead (Bind Abst) t t0) t2) \to (eq T (THead (Bind Abst) t t0) t2))) (ex2 T +H5 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t0 +| (TLRef _) \Rightarrow t0 | (THead _ _ t2) \Rightarrow t2])) (THead (Bind +Abbr) t t0) (THead (Bind Abbr) t (lift (S O) O x)) H4) in (let H6 \def +(eq_ind T t0 (\lambda (t2: T).(subst0 O t t2 (lift (S O) O x))) H3 (lift (S +O) O x) H5) in (subst0_refl t (lift (S O) O x) O H6 P))))) (pr0_delta t t +(pr0_refl t) t0 t0 (pr0_refl t0) (lift (S O) O x) H3))) (\lambda (H3: (eq T +t0 (lift (S O) O x))).(eq_ind_r T (lift (S O) O x) (\lambda (t2: T).(ex2 T +(\lambda (t3: T).((eq T (THead (Bind Abbr) t t2) t3) \to (\forall (P: +Prop).P))) (\lambda (t3: T).(pr0 (THead (Bind Abbr) t t2) t3)))) (ex_intro2 T +(\lambda (t2: T).((eq T (THead (Bind Abbr) t (lift (S O) O x)) t2) \to +(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abbr) t (lift (S +O) O x)) t2)) x (\lambda (H4: (eq T (THead (Bind Abbr) t (lift (S O) O x)) +x)).(\lambda (P: Prop).(thead_x_lift_y_y (Bind Abbr) x t (S O) O H4 P))) +(pr0_zeta Abbr not_abbr_abst x x (pr0_refl x) t)) t0 H3)) H2))) H1)))) (let +H1 \def H in (or_ind (\forall (t2: T).((pr0 t t2) \to (eq T t t2))) (ex2 T +(\lambda (t2: T).((eq T t t2) \to (\forall (P: Prop).P))) (\lambda (t2: +T).(pr0 t t2))) (or (\forall (t2: T).((pr0 (THead (Bind Abst) t t0) t2) \to +(eq T (THead (Bind Abst) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead +(Bind Abst) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 +(THead (Bind Abst) t t0) t2)))) (\lambda (H2: ((\forall (t2: T).((pr0 t t2) +\to (eq T t t2))))).(let H3 \def H0 in (or_ind (\forall (t2: T).((pr0 t0 t2) +\to (eq T t0 t2))) (ex2 T (\lambda (t2: T).((eq T t0 t2) \to (\forall (P: +Prop).P))) (\lambda (t2: T).(pr0 t0 t2))) (or (\forall (t2: T).((pr0 (THead +(Bind Abst) t t0) t2) \to (eq T (THead (Bind Abst) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Abst) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2)))) (\lambda (H4: ((\forall (t2: T).((pr0 t0 t2) \to (eq T t0 t2))))).(or_introl (\forall @@ -124,30 +124,29 @@ Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Bind Abst) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2)) (THead (Bind Abst) t x) (\lambda (H7: (eq T (THead (Bind Abst) t t0) (THead (Bind Abst) t -x))).(\lambda (P: Prop).(let H8 \def (f_equal T T (\lambda (e: T).(match e in -T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _) -\Rightarrow t0 | (THead _ _ t2) \Rightarrow t2])) (THead (Bind Abst) t t0) -(THead (Bind Abst) t x) H7) in (let H9 \def (eq_ind_r T x (\lambda (t2: -T).(pr0 t0 t2)) H6 t0 H8) in (let H10 \def (eq_ind_r T x (\lambda (t2: -T).((eq T t0 t2) \to (\forall (P0: Prop).P0))) H5 t0 H8) in (H10 (refl_equal -T t0) P)))))) (pr0_comp t t (pr0_refl t) t0 x H6 (Bind Abst))))))) H4)) H3))) -(\lambda (H2: (ex2 T (\lambda (t2: T).((eq T t t2) \to (\forall (P: -Prop).P))) (\lambda (t2: T).(pr0 t t2)))).(ex2_ind T (\lambda (t2: T).((eq T -t t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2)) (or (\forall -(t2: T).((pr0 (THead (Bind Abst) t t0) t2) \to (eq T (THead (Bind Abst) t t0) -t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Abst) t t0) t2) \to -(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2)))) -(\lambda (x: T).(\lambda (H3: (((eq T t x) \to (\forall (P: -Prop).P)))).(\lambda (H4: (pr0 t x)).(or_intror (\forall (t2: T).((pr0 (THead +x))).(\lambda (P: Prop).(let H8 \def (f_equal T T (\lambda (e: T).(match e +with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t2) +\Rightarrow t2])) (THead (Bind Abst) t t0) (THead (Bind Abst) t x) H7) in +(let H9 \def (eq_ind_r T x (\lambda (t2: T).(pr0 t0 t2)) H6 t0 H8) in (let +H10 \def (eq_ind_r T x (\lambda (t2: T).((eq T t0 t2) \to (\forall (P0: +Prop).P0))) H5 t0 H8) in (H10 (refl_equal T t0) P)))))) (pr0_comp t t +(pr0_refl t) t0 x H6 (Bind Abst))))))) H4)) H3))) (\lambda (H2: (ex2 T +(\lambda (t2: T).((eq T t t2) \to (\forall (P: Prop).P))) (\lambda (t2: +T).(pr0 t t2)))).(ex2_ind T (\lambda (t2: T).((eq T t t2) \to (\forall (P: +Prop).P))) (\lambda (t2: T).(pr0 t t2)) (or (\forall (t2: T).((pr0 (THead (Bind Abst) t t0) t2) \to (eq T (THead (Bind Abst) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Abst) t t0) t2) \to (\forall (P: -Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2))) (ex_intro2 T -(\lambda (t2: T).((eq T (THead (Bind Abst) t t0) t2) \to (\forall (P: -Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2)) (THead (Bind -Abst) x t0) (\lambda (H5: (eq T (THead (Bind Abst) t t0) (THead (Bind Abst) x -t0))).(\lambda (P: Prop).(let H6 \def (f_equal T T (\lambda (e: T).(match e -in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t | (TLRef _) -\Rightarrow t | (THead _ t2 _) \Rightarrow t2])) (THead (Bind Abst) t t0) +Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2)))) (\lambda (x: +T).(\lambda (H3: (((eq T t x) \to (\forall (P: Prop).P)))).(\lambda (H4: (pr0 +t x)).(or_intror (\forall (t2: T).((pr0 (THead (Bind Abst) t t0) t2) \to (eq +T (THead (Bind Abst) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind +Abst) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead +(Bind Abst) t t0) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Bind +Abst) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead +(Bind Abst) t t0) t2)) (THead (Bind Abst) x t0) (\lambda (H5: (eq T (THead +(Bind Abst) t t0) (THead (Bind Abst) x t0))).(\lambda (P: Prop).(let H6 \def +(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t | (TLRef +_) \Rightarrow t | (THead _ t2 _) \Rightarrow t2])) (THead (Bind Abst) t t0) (THead (Bind Abst) x t0) H5) in (let H7 \def (eq_ind_r T x (\lambda (t2: T).(pr0 t t2)) H4 t H6) in (let H8 \def (eq_ind_r T x (\lambda (t2: T).((eq T t t2) \to (\forall (P0: Prop).P0))) H3 t H6) in (H8 (refl_equal T t) P)))))) @@ -202,7 +201,7 @@ T).(eq T t2 (THead (Bind Void) t3 t0))) H14 t H_y0) in (eq_ind_r T (THead H10 \def (eq_ind T t0 (\lambda (t3: T).(subst0 O t t3 (lift (S O) O x))) H3 (lift (S O) O t2) H_y) in (eq_ind_r T (lift (S O) O t2) (\lambda (t3: T).(eq T (THead (Bind Void) t t3) t2)) (subst0_gen_lift_false t2 t (lift (S O) O x) -(S O) O O (le_n O) (eq_ind_r nat (plus (S O) O) (\lambda (n: nat).(lt O n)) +(S O) O O (le_O_n O) (eq_ind_r nat (plus (S O) O) (\lambda (n: nat).(lt O n)) (le_n (plus (S O) O)) (plus O (S O)) (plus_sym O (S O))) H10 (eq T (THead (Bind Void) t (lift (S O) O t2)) t2)) t0 H_y)))) (pr0_gen_void t t0 t2 H8)))))) (\lambda (H7: (ex2 T (\lambda (t2: T).((eq T t0 t2) \to (\forall (P: @@ -220,172 +219,228 @@ Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2))) (ex_intro2 T Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2)) (THead (Bind Void) t x0) (\lambda (H10: (eq T (THead (Bind Void) t t0) (THead (Bind Void) t x0))).(\lambda (P: Prop).(let H11 \def (f_equal T T (\lambda (e: T).(match -e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _) -\Rightarrow t0 | (THead _ _ t2) \Rightarrow t2])) (THead (Bind Void) t t0) -(THead (Bind Void) t x0) H10) in (let H12 \def (eq_ind_r T x0 (\lambda (t2: -T).(pr0 t0 t2)) H9 t0 H11) in (let H13 \def (eq_ind_r T x0 (\lambda (t2: -T).((eq T t0 t2) \to (\forall (P0: Prop).P0))) H8 t0 H11) in (H13 (refl_equal -T t0) P)))))) (pr0_comp t t (pr0_refl t) t0 x0 H9 (Bind Void))))))) H7)) -H6))) (\lambda (H5: (ex2 T (\lambda (t2: T).((eq T t t2) \to (\forall (P: -Prop).P))) (\lambda (t2: T).(pr0 t t2)))).(ex2_ind T (\lambda (t2: T).((eq T -t t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2)) (or (\forall -(t2: T).((pr0 (THead (Bind Void) t t0) t2) \to (eq T (THead (Bind Void) t t0) -t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Void) t t0) t2) \to -(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2)))) -(\lambda (x0: T).(\lambda (H6: (((eq T t x0) \to (\forall (P: -Prop).P)))).(\lambda (H7: (pr0 t x0)).(or_intror (\forall (t2: T).((pr0 -(THead (Bind Void) t t0) t2) \to (eq T (THead (Bind Void) t t0) t2))) (ex2 T -(\lambda (t2: T).((eq T (THead (Bind Void) t t0) t2) \to (\forall (P: -Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2))) (ex_intro2 T +e with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t2) +\Rightarrow t2])) (THead (Bind Void) t t0) (THead (Bind Void) t x0) H10) in +(let H12 \def (eq_ind_r T x0 (\lambda (t2: T).(pr0 t0 t2)) H9 t0 H11) in (let +H13 \def (eq_ind_r T x0 (\lambda (t2: T).((eq T t0 t2) \to (\forall (P0: +Prop).P0))) H8 t0 H11) in (H13 (refl_equal T t0) P)))))) (pr0_comp t t +(pr0_refl t) t0 x0 H9 (Bind Void))))))) H7)) H6))) (\lambda (H5: (ex2 T +(\lambda (t2: T).((eq T t t2) \to (\forall (P: Prop).P))) (\lambda (t2: +T).(pr0 t t2)))).(ex2_ind T (\lambda (t2: T).((eq T t t2) \to (\forall (P: +Prop).P))) (\lambda (t2: T).(pr0 t t2)) (or (\forall (t2: T).((pr0 (THead +(Bind Void) t t0) t2) \to (eq T (THead (Bind Void) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Void) t t0) t2) \to (\forall (P: -Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2)) (THead (Bind -Void) x0 t0) (\lambda (H8: (eq T (THead (Bind Void) t t0) (THead (Bind Void) -x0 t0))).(\lambda (P: Prop).(let H9 \def (f_equal T T (\lambda (e: T).(match -e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t | (TLRef _) -\Rightarrow t | (THead _ t2 _) \Rightarrow t2])) (THead (Bind Void) t t0) -(THead (Bind Void) x0 t0) H8) in (let H10 \def (eq_ind_r T x0 (\lambda (t2: -T).(pr0 t t2)) H7 t H9) in (let H11 \def (eq_ind_r T x0 (\lambda (t2: T).((eq -T t t2) \to (\forall (P0: Prop).P0))) H6 t H9) in (H11 (refl_equal T t) -P)))))) (pr0_comp t x0 H7 t0 t0 (pr0_refl t0) (Bind Void))))))) H5)) H4))) -(\lambda (H3: (eq T t0 (lift (S O) O x))).(let H4 \def (eq_ind T t0 (\lambda -(t2: T).(or (\forall (t3: T).((pr0 t2 t3) \to (eq T t2 t3))) (ex2 T (\lambda -(t3: T).((eq T t2 t3) \to (\forall (P: Prop).P))) (\lambda (t3: T).(pr0 t2 -t3))))) H0 (lift (S O) O x) H3) in (eq_ind_r T (lift (S O) O x) (\lambda (t2: -T).(or (\forall (t3: T).((pr0 (THead (Bind Void) t t2) t3) \to (eq T (THead -(Bind Void) t t2) t3))) (ex2 T (\lambda (t3: T).((eq T (THead (Bind Void) t -t2) t3) \to (\forall (P: Prop).P))) (\lambda (t3: T).(pr0 (THead (Bind Void) -t t2) t3))))) (or_intror (\forall (t2: T).((pr0 (THead (Bind Void) t (lift (S -O) O x)) t2) \to (eq T (THead (Bind Void) t (lift (S O) O x)) t2))) (ex2 T -(\lambda (t2: T).((eq T (THead (Bind Void) t (lift (S O) O x)) t2) \to +Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2)))) (\lambda +(x0: T).(\lambda (H6: (((eq T t x0) \to (\forall (P: Prop).P)))).(\lambda +(H7: (pr0 t x0)).(or_intror (\forall (t2: T).((pr0 (THead (Bind Void) t t0) +t2) \to (eq T (THead (Bind Void) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T +(THead (Bind Void) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: +T).(pr0 (THead (Bind Void) t t0) t2))) (ex_intro2 T (\lambda (t2: T).((eq T +(THead (Bind Void) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: +T).(pr0 (THead (Bind Void) t t0) t2)) (THead (Bind Void) x0 t0) (\lambda (H8: +(eq T (THead (Bind Void) t t0) (THead (Bind Void) x0 t0))).(\lambda (P: +Prop).(let H9 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) +\Rightarrow t | (TLRef _) \Rightarrow t | (THead _ t2 _) \Rightarrow t2])) +(THead (Bind Void) t t0) (THead (Bind Void) x0 t0) H8) in (let H10 \def +(eq_ind_r T x0 (\lambda (t2: T).(pr0 t t2)) H7 t H9) in (let H11 \def +(eq_ind_r T x0 (\lambda (t2: T).((eq T t t2) \to (\forall (P0: Prop).P0))) H6 +t H9) in (H11 (refl_equal T t) P)))))) (pr0_comp t x0 H7 t0 t0 (pr0_refl t0) +(Bind Void))))))) H5)) H4))) (\lambda (H3: (eq T t0 (lift (S O) O x))).(let +H4 \def (eq_ind T t0 (\lambda (t2: T).(or (\forall (t3: T).((pr0 t2 t3) \to +(eq T t2 t3))) (ex2 T (\lambda (t3: T).((eq T t2 t3) \to (\forall (P: +Prop).P))) (\lambda (t3: T).(pr0 t2 t3))))) H0 (lift (S O) O x) H3) in +(eq_ind_r T (lift (S O) O x) (\lambda (t2: T).(or (\forall (t3: T).((pr0 +(THead (Bind Void) t t2) t3) \to (eq T (THead (Bind Void) t t2) t3))) (ex2 T +(\lambda (t3: T).((eq T (THead (Bind Void) t t2) t3) \to (\forall (P: +Prop).P))) (\lambda (t3: T).(pr0 (THead (Bind Void) t t2) t3))))) (or_intror +(\forall (t2: T).((pr0 (THead (Bind Void) t (lift (S O) O x)) t2) \to (eq T +(THead (Bind Void) t (lift (S O) O x)) t2))) (ex2 T (\lambda (t2: T).((eq T +(THead (Bind Void) t (lift (S O) O x)) t2) \to (\forall (P: Prop).P))) +(\lambda (t2: T).(pr0 (THead (Bind Void) t (lift (S O) O x)) t2))) (ex_intro2 +T (\lambda (t2: T).((eq T (THead (Bind Void) t (lift (S O) O x)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t (lift (S -O) O x)) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Bind Void) t -(lift (S O) O x)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 -(THead (Bind Void) t (lift (S O) O x)) t2)) x (\lambda (H5: (eq T (THead -(Bind Void) t (lift (S O) O x)) x)).(\lambda (P: Prop).(thead_x_lift_y_y -(Bind Void) x t (S O) O H5 P))) (pr0_zeta Void (sym_not_eq B Abst Void -not_abst_void) x x (pr0_refl x) t))) t0 H3))) H2))) H1))) b)) (\lambda (f: -F).(F_ind (\lambda (f0: F).(or (\forall (t2: T).((pr0 (THead (Flat f0) t t0) -t2) \to (eq T (THead (Flat f0) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T -(THead (Flat f0) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 -(THead (Flat f0) t t0) t2))))) (let H_x \def (binder_dec t0) in (let H1 \def -H_x in (or_ind (ex_3 B T T (\lambda (b: B).(\lambda (w: T).(\lambda (u: -T).(eq T t0 (THead (Bind b) w u)))))) (\forall (b: B).(\forall (w: -T).(\forall (u: T).((eq T t0 (THead (Bind b) w u)) \to (\forall (P: -Prop).P))))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq -T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat -Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead -(Flat Appl) t t0) t2)))) (\lambda (H2: (ex_3 B T T (\lambda (b: B).(\lambda -(w: T).(\lambda (u: T).(eq T t0 (THead (Bind b) w u))))))).(ex_3_ind B T T +O) O x)) t2)) x (\lambda (H5: (eq T (THead (Bind Void) t (lift (S O) O x)) +x)).(\lambda (P: Prop).(thead_x_lift_y_y (Bind Void) x t (S O) O H5 P))) +(pr0_zeta Void not_void_abst x x (pr0_refl x) t))) t0 H3))) H2))) H1))) b)) +(\lambda (f: F).(F_ind (\lambda (f0: F).(or (\forall (t2: T).((pr0 (THead +(Flat f0) t t0) t2) \to (eq T (THead (Flat f0) t t0) t2))) (ex2 T (\lambda +(t2: T).((eq T (THead (Flat f0) t t0) t2) \to (\forall (P: Prop).P))) +(\lambda (t2: T).(pr0 (THead (Flat f0) t t0) t2))))) (let H_x \def +(binder_dec t0) in (let H1 \def H_x in (or_ind (ex_3 B T T (\lambda (b: +B).(\lambda (w: T).(\lambda (u: T).(eq T t0 (THead (Bind b) w u)))))) +(\forall (b: B).(\forall (w: T).(\forall (u: T).((eq T t0 (THead (Bind b) w +u)) \to (\forall (P: Prop).P))))) (or (\forall (t2: T).((pr0 (THead (Flat +Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: +T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda +(t2: T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda (H2: (ex_3 B T T (\lambda (b: B).(\lambda (w: T).(\lambda (u: T).(eq T t0 (THead (Bind b) w -u))))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T -(THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat -Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead -(Flat Appl) t t0) t2)))) (\lambda (x0: B).(\lambda (x1: T).(\lambda (x2: -T).(\lambda (H3: (eq T t0 (THead (Bind x0) x1 x2))).(let H4 \def (eq_ind T t0 -(\lambda (t2: T).(or (\forall (t3: T).((pr0 t2 t3) \to (eq T t2 t3))) (ex2 T -(\lambda (t3: T).((eq T t2 t3) \to (\forall (P: Prop).P))) (\lambda (t3: -T).(pr0 t2 t3))))) H0 (THead (Bind x0) x1 x2) H3) in (eq_ind_r T (THead (Bind -x0) x1 x2) (\lambda (t2: T).(or (\forall (t3: T).((pr0 (THead (Flat Appl) t -t2) t3) \to (eq T (THead (Flat Appl) t t2) t3))) (ex2 T (\lambda (t3: T).((eq -T (THead (Flat Appl) t t2) t3) \to (\forall (P: Prop).P))) (\lambda (t3: -T).(pr0 (THead (Flat Appl) t t2) t3))))) (B_ind (\lambda (b: B).((or (\forall -(t2: T).((pr0 (THead (Bind b) x1 x2) t2) \to (eq T (THead (Bind b) x1 x2) -t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind b) x1 x2) t2) \to (\forall -(P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind b) x1 x2) t2)))) \to (or -(\forall (t2: T).((pr0 (THead (Flat Appl) t (THead (Bind b) x1 x2)) t2) \to -(eq T (THead (Flat Appl) t (THead (Bind b) x1 x2)) t2))) (ex2 T (\lambda (t2: -T).((eq T (THead (Flat Appl) t (THead (Bind b) x1 x2)) t2) \to (\forall (P: -Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead (Bind b) x1 x2)) -t2)))))) (\lambda (_: (or (\forall (t2: T).((pr0 (THead (Bind Abbr) x1 x2) -t2) \to (eq T (THead (Bind Abbr) x1 x2) t2))) (ex2 T (\lambda (t2: T).((eq T -(THead (Bind Abbr) x1 x2) t2) \to (\forall (P: Prop).P))) (\lambda (t2: -T).(pr0 (THead (Bind Abbr) x1 x2) t2))))).(or_intror (\forall (t2: T).((pr0 -(THead (Flat Appl) t (THead (Bind Abbr) x1 x2)) t2) \to (eq T (THead (Flat -Appl) t (THead (Bind Abbr) x1 x2)) t2))) (ex2 T (\lambda (t2: T).((eq T -(THead (Flat Appl) t (THead (Bind Abbr) x1 x2)) t2) \to (\forall (P: -Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead (Bind Abbr) x1 -x2)) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t (THead -(Bind Abbr) x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 -(THead (Flat Appl) t (THead (Bind Abbr) x1 x2)) t2)) (THead (Bind Abbr) x1 -(THead (Flat Appl) (lift (S O) O t) x2)) (\lambda (H6: (eq T (THead (Flat -Appl) t (THead (Bind Abbr) x1 x2)) (THead (Bind Abbr) x1 (THead (Flat Appl) -(lift (S O) O t) x2)))).(\lambda (P: Prop).(let H7 \def (eq_ind T (THead -(Flat Appl) t (THead (Bind Abbr) x1 x2)) (\lambda (ee: T).(match ee in T -return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead _ _ t2) \Rightarrow (match t2 in T return (\lambda -(_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False -| (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda (_: K).Prop) with -[(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])])) I (THead (Bind -Abbr) x1 (THead (Flat Appl) (lift (S O) O t) x2)) H6) in (False_ind P H7)))) -(pr0_upsilon Abbr not_abbr_abst t t (pr0_refl t) x1 x1 (pr0_refl x1) x2 x2 -(pr0_refl x2))))) (\lambda (_: (or (\forall (t2: T).((pr0 (THead (Bind Abst) -x1 x2) t2) \to (eq T (THead (Bind Abst) x1 x2) t2))) (ex2 T (\lambda (t2: -T).((eq T (THead (Bind Abst) x1 x2) t2) \to (\forall (P: Prop).P))) (\lambda -(t2: T).(pr0 (THead (Bind Abst) x1 x2) t2))))).(or_intror (\forall (t2: -T).((pr0 (THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2) \to (eq T (THead -(Flat Appl) t (THead (Bind Abst) x1 x2)) t2))) (ex2 T (\lambda (t2: T).((eq T -(THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2) \to (\forall (P: -Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead (Bind Abst) x1 -x2)) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t (THead -(Bind Abst) x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 -(THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2)) (THead (Bind Abbr) t x2) -(\lambda (H6: (eq T (THead (Flat Appl) t (THead (Bind Abst) x1 x2)) (THead -(Bind Abbr) t x2))).(\lambda (P: Prop).(let H7 \def (eq_ind T (THead (Flat -Appl) t (THead (Bind Abst) x1 x2)) (\lambda (ee: T).(match ee in T return -(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda -(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow -True])])) I (THead (Bind Abbr) t x2) H6) in (False_ind P H7)))) (pr0_beta x1 -t t (pr0_refl t) x2 x2 (pr0_refl x2))))) (\lambda (_: (or (\forall (t2: -T).((pr0 (THead (Bind Void) x1 x2) t2) \to (eq T (THead (Bind Void) x1 x2) -t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Void) x1 x2) t2) \to -(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) x1 x2) +u))))))).(ex_3_ind B T T (\lambda (b: B).(\lambda (w: T).(\lambda (u: T).(eq +T t0 (THead (Bind b) w u))))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t +t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq +T (THead (Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: +T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda (x0: B).(\lambda (x1: +T).(\lambda (x2: T).(\lambda (H3: (eq T t0 (THead (Bind x0) x1 x2))).(let H4 +\def (eq_ind T t0 (\lambda (t2: T).(or (\forall (t3: T).((pr0 t2 t3) \to (eq +T t2 t3))) (ex2 T (\lambda (t3: T).((eq T t2 t3) \to (\forall (P: Prop).P))) +(\lambda (t3: T).(pr0 t2 t3))))) H0 (THead (Bind x0) x1 x2) H3) in (eq_ind_r +T (THead (Bind x0) x1 x2) (\lambda (t2: T).(or (\forall (t3: T).((pr0 (THead +(Flat Appl) t t2) t3) \to (eq T (THead (Flat Appl) t t2) t3))) (ex2 T +(\lambda (t3: T).((eq T (THead (Flat Appl) t t2) t3) \to (\forall (P: +Prop).P))) (\lambda (t3: T).(pr0 (THead (Flat Appl) t t2) t3))))) (B_ind +(\lambda (b: B).((or (\forall (t2: T).((pr0 (THead (Bind b) x1 x2) t2) \to +(eq T (THead (Bind b) x1 x2) t2))) (ex2 T (\lambda (t2: T).((eq T (THead +(Bind b) x1 x2) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead +(Bind b) x1 x2) t2)))) \to (or (\forall (t2: T).((pr0 (THead (Flat Appl) t +(THead (Bind b) x1 x2)) t2) \to (eq T (THead (Flat Appl) t (THead (Bind b) x1 +x2)) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t (THead (Bind +b) x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat +Appl) t (THead (Bind b) x1 x2)) t2)))))) (\lambda (_: (or (\forall (t2: +T).((pr0 (THead (Bind Abbr) x1 x2) t2) \to (eq T (THead (Bind Abbr) x1 x2) +t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Abbr) x1 x2) t2) \to +(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abbr) x1 x2) t2))))).(or_intror (\forall (t2: T).((pr0 (THead (Flat Appl) t (THead (Bind -Void) x1 x2)) t2) \to (eq T (THead (Flat Appl) t (THead (Bind Void) x1 x2)) -t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t (THead (Bind Void) +Abbr) x1 x2)) t2) \to (eq T (THead (Flat Appl) t (THead (Bind Abbr) x1 x2)) +t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t (THead (Bind Abbr) x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat -Appl) t (THead (Bind Void) x1 x2)) t2))) (ex_intro2 T (\lambda (t2: T).((eq T -(THead (Flat Appl) t (THead (Bind Void) x1 x2)) t2) \to (\forall (P: -Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead (Bind Void) x1 -x2)) t2)) (THead (Bind Void) x1 (THead (Flat Appl) (lift (S O) O t) x2)) +Appl) t (THead (Bind Abbr) x1 x2)) t2))) (ex_intro2 T (\lambda (t2: T).((eq T +(THead (Flat Appl) t (THead (Bind Abbr) x1 x2)) t2) \to (\forall (P: +Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead (Bind Abbr) x1 +x2)) t2)) (THead (Bind Abbr) x1 (THead (Flat Appl) (lift (S O) O t) x2)) +(\lambda (H6: (eq T (THead (Flat Appl) t (THead (Bind Abbr) x1 x2)) (THead +(Bind Abbr) x1 (THead (Flat Appl) (lift (S O) O t) x2)))).(\lambda (P: +Prop).(let H7 \def (eq_ind T (THead (Flat Appl) t (THead (Bind Abbr) x1 x2)) +(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead _ _ t2) \Rightarrow (match t2 with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow +(match k0 with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])])) +I (THead (Bind Abbr) x1 (THead (Flat Appl) (lift (S O) O t) x2)) H6) in +(False_ind P H7)))) (pr0_upsilon Abbr not_abbr_abst t t (pr0_refl t) x1 x1 +(pr0_refl x1) x2 x2 (pr0_refl x2))))) (\lambda (_: (or (\forall (t2: T).((pr0 +(THead (Bind Abst) x1 x2) t2) \to (eq T (THead (Bind Abst) x1 x2) t2))) (ex2 +T (\lambda (t2: T).((eq T (THead (Bind Abst) x1 x2) t2) \to (\forall (P: +Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) x1 x2) t2))))).(or_intror +(\forall (t2: T).((pr0 (THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2) +\to (eq T (THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2))) (ex2 T +(\lambda (t2: T).((eq T (THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2) +\to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead +(Bind Abst) x1 x2)) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Flat +Appl) t (THead (Bind Abst) x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda +(t2: T).(pr0 (THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2)) (THead +(Bind Abbr) t x2) (\lambda (H6: (eq T (THead (Flat Appl) t (THead (Bind Abst) +x1 x2)) (THead (Bind Abbr) t x2))).(\lambda (P: Prop).(let H7 \def (eq_ind T +(THead (Flat Appl) t (THead (Bind Abst) x1 x2)) (\lambda (ee: T).(match ee +with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ +_) \Rightarrow (match k0 with [(Bind _) \Rightarrow False | (Flat _) +\Rightarrow True])])) I (THead (Bind Abbr) t x2) H6) in (False_ind P H7)))) +(pr0_beta x1 t t (pr0_refl t) x2 x2 (pr0_refl x2))))) (\lambda (_: (or +(\forall (t2: T).((pr0 (THead (Bind Void) x1 x2) t2) \to (eq T (THead (Bind +Void) x1 x2) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Void) x1 x2) +t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) x1 +x2) t2))))).(or_intror (\forall (t2: T).((pr0 (THead (Flat Appl) t (THead +(Bind Void) x1 x2)) t2) \to (eq T (THead (Flat Appl) t (THead (Bind Void) x1 +x2)) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t (THead (Bind +Void) x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead +(Flat Appl) t (THead (Bind Void) x1 x2)) t2))) (ex_intro2 T (\lambda (t2: +T).((eq T (THead (Flat Appl) t (THead (Bind Void) x1 x2)) t2) \to (\forall +(P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead (Bind Void) +x1 x2)) t2)) (THead (Bind Void) x1 (THead (Flat Appl) (lift (S O) O t) x2)) (\lambda (H6: (eq T (THead (Flat Appl) t (THead (Bind Void) x1 x2)) (THead (Bind Void) x1 (THead (Flat Appl) (lift (S O) O t) x2)))).(\lambda (P: Prop).(let H7 \def (eq_ind T (THead (Flat Appl) t (THead (Bind Void) x1 x2)) -(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) -\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ t2) \Rightarrow -(match t2 in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False -| (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K -return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) -\Rightarrow False])])])) I (THead (Bind Void) x1 (THead (Flat Appl) (lift (S -O) O t) x2)) H6) in (False_ind P H7)))) (pr0_upsilon Void (sym_not_eq B Abst -Void not_abst_void) t t (pr0_refl t) x1 x1 (pr0_refl x1) x2 x2 (pr0_refl -x2))))) x0 H4) t0 H3)))))) H2)) (\lambda (H2: ((\forall (b: B).(\forall (w: -T).(\forall (u: T).((eq T t0 (THead (Bind b) w u)) \to (\forall (P: -Prop).P))))))).(let H3 \def H in (or_ind (\forall (t2: T).((pr0 t t2) \to (eq -T t t2))) (ex2 T (\lambda (t2: T).((eq T t t2) \to (\forall (P: Prop).P))) -(\lambda (t2: T).(pr0 t t2))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t +(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead _ _ t2) \Rightarrow (match t2 with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow +(match k0 with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])])) +I (THead (Bind Void) x1 (THead (Flat Appl) (lift (S O) O t) x2)) H6) in +(False_ind P H7)))) (pr0_upsilon Void not_void_abst t t (pr0_refl t) x1 x1 +(pr0_refl x1) x2 x2 (pr0_refl x2))))) x0 H4) t0 H3)))))) H2)) (\lambda (H2: +((\forall (b: B).(\forall (w: T).(\forall (u: T).((eq T t0 (THead (Bind b) w +u)) \to (\forall (P: Prop).P))))))).(let H3 \def H in (or_ind (\forall (t2: +T).((pr0 t t2) \to (eq T t t2))) (ex2 T (\lambda (t2: T).((eq T t t2) \to +(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2))) (or (\forall (t2: +T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) +t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to +(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)))) +(\lambda (H4: ((\forall (t2: T).((pr0 t t2) \to (eq T t t2))))).(let H5 \def +H0 in (or_ind (\forall (t2: T).((pr0 t0 t2) \to (eq T t0 t2))) (ex2 T +(\lambda (t2: T).((eq T t0 t2) \to (\forall (P: Prop).P))) (\lambda (t2: +T).(pr0 t0 t2))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to +(eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead +(Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 +(THead (Flat Appl) t t0) t2)))) (\lambda (H6: ((\forall (t2: T).((pr0 t0 t2) +\to (eq T t0 t2))))).(or_introl (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: -T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda (H4: ((\forall (t2: T).((pr0 -t t2) \to (eq T t t2))))).(let H5 \def H0 in (or_ind (\forall (t2: T).((pr0 -t0 t2) \to (eq T t0 t2))) (ex2 T (\lambda (t2: T).((eq T t0 t2) \to (\forall -(P: Prop).P))) (\lambda (t2: T).(pr0 t0 t2))) (or (\forall (t2: T).((pr0 -(THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T -(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P: -Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda -(H6: ((\forall (t2: T).((pr0 t0 t2) \to (eq T t0 t2))))).(or_introl (\forall -(t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) -t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to -(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2))) -(\lambda (t2: T).(\lambda (H7: (pr0 (THead (Flat Appl) t t0) t2)).(or3_ind -(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 -t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 t u2))) (\lambda (_: T).(\lambda -(t3: T).(pr0 t0 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: +T).(pr0 (THead (Flat Appl) t t0) t2))) (\lambda (t2: T).(\lambda (H7: (pr0 +(THead (Flat Appl) t t0) t2)).(or3_ind (ex3_2 T T (\lambda (u2: T).(\lambda +(t3: T).(eq T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: +T).(pr0 t u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t0 t3)))) (ex4_4 T T T +T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t0 +(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: +T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_: +T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 t u2))))) (\lambda +(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) +(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: +B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(eq T t0 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: +T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T +t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2) t3))))))))) +(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: +T).(\lambda (_: T).(pr0 t u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda +(_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) +(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (t3: T).(pr0 z1 t3)))))))) (eq T (THead (Flat Appl) t t0) t2) +(\lambda (H8: (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead +(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 t u2))) (\lambda +(_: T).(\lambda (t3: T).(pr0 t0 t3))))).(ex3_2_ind T T (\lambda (u2: +T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2: +T).(\lambda (_: T).(pr0 t u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t0 +t3))) (eq T (THead (Flat Appl) t t0) t2) (\lambda (x0: T).(\lambda (x1: +T).(\lambda (H9: (eq T t2 (THead (Flat Appl) x0 x1))).(\lambda (H10: (pr0 t +x0)).(\lambda (H11: (pr0 t0 x1)).(let H_y \def (H6 x1 H11) in (let H_y0 \def +(H4 x0 H10) in (let H12 \def (eq_ind_r T x1 (\lambda (t3: T).(pr0 t0 t3)) H11 +t0 H_y) in (let H13 \def (eq_ind_r T x1 (\lambda (t3: T).(eq T t2 (THead +(Flat Appl) x0 t3))) H9 t0 H_y) in (let H14 \def (eq_ind_r T x0 (\lambda (t3: +T).(pr0 t t3)) H10 t H_y0) in (let H15 \def (eq_ind_r T x0 (\lambda (t3: +T).(eq T t2 (THead (Flat Appl) t3 t0))) H13 t H_y0) in (eq_ind_r T (THead +(Flat Appl) t t0) (\lambda (t3: T).(eq T (THead (Flat Appl) t t0) t3)) +(refl_equal T (THead (Flat Appl) t t0)) t2 H15)))))))))))) H8)) (\lambda (H8: +(ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: +T).(eq T t0 (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: +T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) +(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 t +u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: +T).(pr0 z1 t3))))))).(ex4_4_ind T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 t u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda -(_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b: +(_: T).(\lambda (t3: T).(pr0 z1 t3))))) (eq T (THead (Flat Appl) t t0) t2) +(\lambda (x0: T).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: T).(\lambda +(H9: (eq T t0 (THead (Bind Abst) x0 x1))).(\lambda (H10: (eq T t2 (THead +(Bind Abbr) x2 x3))).(\lambda (_: (pr0 t x2)).(\lambda (_: (pr0 x1 +x3)).(eq_ind_r T (THead (Bind Abbr) x2 x3) (\lambda (t3: T).(eq T (THead +(Flat Appl) t t0) t3)) (let H13 \def (eq_ind T t0 (\lambda (t3: T).(\forall +(t4: T).((pr0 t3 t4) \to (eq T t3 t4)))) H6 (THead (Bind Abst) x0 x1) H9) in +(let H14 \def (eq_ind T t0 (\lambda (t3: T).(\forall (b: B).(\forall (w: +T).(\forall (u: T).((eq T t3 (THead (Bind b) w u)) \to (\forall (P: +Prop).P)))))) H2 (THead (Bind Abst) x0 x1) H9) in (eq_ind_r T (THead (Bind +Abst) x0 x1) (\lambda (t3: T).(eq T (THead (Flat Appl) t t3) (THead (Bind +Abbr) x2 x3))) (H14 Abst x0 x1 (H13 (THead (Bind Abst) x0 x1) (pr0_refl +(THead (Bind Abst) x0 x1))) (eq T (THead (Flat Appl) t (THead (Bind Abst) x0 +x1)) (THead (Bind Abbr) x2 x3))) t0 H9))) t2 H10))))))))) H8)) (\lambda (H8: +(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: +B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(eq T t0 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: +T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T +t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2) t3))))))))) +(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: +T).(\lambda (_: T).(pr0 t u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda +(_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) +(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (t3: T).(pr0 z1 t3))))))))).(ex6_6_ind B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind @@ -396,121 +451,60 @@ T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 t u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda -(t3: T).(pr0 z1 t3)))))))) (eq T (THead (Flat Appl) t t0) t2) (\lambda (H8: -(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 -t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 t u2))) (\lambda (_: T).(\lambda -(t3: T).(pr0 t0 t3))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t3: T).(eq -T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 t -u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t0 t3))) (eq T (THead (Flat Appl) -t t0) t2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H9: (eq T t2 (THead -(Flat Appl) x0 x1))).(\lambda (H10: (pr0 t x0)).(\lambda (H11: (pr0 t0 -x1)).(let H_y \def (H6 x1 H11) in (let H_y0 \def (H4 x0 H10) in (let H12 \def -(eq_ind_r T x1 (\lambda (t3: T).(pr0 t0 t3)) H11 t0 H_y) in (let H13 \def -(eq_ind_r T x1 (\lambda (t3: T).(eq T t2 (THead (Flat Appl) x0 t3))) H9 t0 -H_y) in (let H14 \def (eq_ind_r T x0 (\lambda (t3: T).(pr0 t t3)) H10 t H_y0) -in (let H15 \def (eq_ind_r T x0 (\lambda (t3: T).(eq T t2 (THead (Flat Appl) -t3 t0))) H13 t H_y0) in (eq_ind_r T (THead (Flat Appl) t t0) (\lambda (t3: -T).(eq T (THead (Flat Appl) t t0) t3)) (refl_equal T (THead (Flat Appl) t -t0)) t2 H15)))))))))))) H8)) (\lambda (H8: (ex4_4 T T T T (\lambda (y1: -T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind -Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda -(t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: -T).(\lambda (u2: T).(\lambda (_: T).(pr0 t u2))))) (\lambda (_: T).(\lambda -(z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))).(ex4_4_ind T T T T -(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t0 -(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: -T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_: -T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 t u2))))) (\lambda -(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))) (eq -T (THead (Flat Appl) t t0) t2) (\lambda (x0: T).(\lambda (x1: T).(\lambda -(x2: T).(\lambda (x3: T).(\lambda (H9: (eq T t0 (THead (Bind Abst) x0 -x1))).(\lambda (H10: (eq T t2 (THead (Bind Abbr) x2 x3))).(\lambda (_: (pr0 t -x2)).(\lambda (_: (pr0 x1 x3)).(eq_ind_r T (THead (Bind Abbr) x2 x3) (\lambda -(t3: T).(eq T (THead (Flat Appl) t t0) t3)) (let H13 \def (eq_ind T t0 -(\lambda (t3: T).(\forall (t4: T).((pr0 t3 t4) \to (eq T t3 t4)))) H6 (THead -(Bind Abst) x0 x1) H9) in (let H14 \def (eq_ind T t0 (\lambda (t3: -T).(\forall (b: B).(\forall (w: T).(\forall (u: T).((eq T t3 (THead (Bind b) -w u)) \to (\forall (P: Prop).P)))))) H2 (THead (Bind Abst) x0 x1) H9) in -(eq_ind_r T (THead (Bind Abst) x0 x1) (\lambda (t3: T).(eq T (THead (Flat -Appl) t t3) (THead (Bind Abbr) x2 x3))) (H14 Abst x0 x1 (H13 (THead (Bind -Abst) x0 x1) (pr0_refl (THead (Bind Abst) x0 x1))) (eq T (THead (Flat Appl) t -(THead (Bind Abst) x0 x1)) (THead (Bind Abbr) x2 x3))) t0 H9))) t2 -H10))))))))) H8)) (\lambda (H8: (ex6_6 B T T T T T (\lambda (b: B).(\lambda -(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not -(eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: -T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind b) -y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: -T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind b) v2 (THead (Flat -Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda -(_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 t u2))))))) -(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda -(v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: B).(\lambda (_: -T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 -t3))))))))).(ex6_6_ind B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda -(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b -Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: -T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind b) y1 z1)))))))) -(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda -(v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind b) v2 (THead (Flat Appl) (lift -(S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: -T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 t u2))))))) (\lambda -(_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: -T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda -(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))) -(eq T (THead (Flat Appl) t t0) t2) (\lambda (x0: B).(\lambda (x1: T).(\lambda -(x2: T).(\lambda (x3: T).(\lambda (x4: T).(\lambda (x5: T).(\lambda (_: (not -(eq B x0 Abst))).(\lambda (H10: (eq T t0 (THead (Bind x0) x1 x2))).(\lambda -(H11: (eq T t2 (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) -x5)))).(\lambda (_: (pr0 t x3)).(\lambda (_: (pr0 x1 x4)).(\lambda (_: (pr0 -x2 x5)).(eq_ind_r T (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) -x5)) (\lambda (t3: T).(eq T (THead (Flat Appl) t t0) t3)) (let H15 \def -(eq_ind T t0 (\lambda (t3: T).(\forall (t4: T).((pr0 t3 t4) \to (eq T t3 -t4)))) H6 (THead (Bind x0) x1 x2) H10) in (let H16 \def (eq_ind T t0 (\lambda -(t3: T).(\forall (b: B).(\forall (w: T).(\forall (u: T).((eq T t3 (THead -(Bind b) w u)) \to (\forall (P: Prop).P)))))) H2 (THead (Bind x0) x1 x2) H10) -in (eq_ind_r T (THead (Bind x0) x1 x2) (\lambda (t3: T).(eq T (THead (Flat -Appl) t t3) (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) x5)))) -(H16 x0 x1 x2 (H15 (THead (Bind x0) x1 x2) (pr0_refl (THead (Bind x0) x1 -x2))) (eq T (THead (Flat Appl) t (THead (Bind x0) x1 x2)) (THead (Bind x0) x4 -(THead (Flat Appl) (lift (S O) O x3) x5)))) t0 H10))) t2 H11))))))))))))) -H8)) (pr0_gen_appl t t0 t2 H7)))))) (\lambda (H6: (ex2 T (\lambda (t2: -T).((eq T t0 t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t0 -t2)))).(ex2_ind T (\lambda (t2: T).((eq T t0 t2) \to (\forall (P: Prop).P))) -(\lambda (t2: T).(pr0 t0 t2)) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t -t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq -T (THead (Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: -T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda (x: T).(\lambda (H7: (((eq T -t0 x) \to (\forall (P: Prop).P)))).(\lambda (H8: (pr0 t0 x)).(or_intror -(\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat -Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) -\to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) -t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to -(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)) -(THead (Flat Appl) t x) (\lambda (H9: (eq T (THead (Flat Appl) t t0) (THead -(Flat Appl) t x))).(\lambda (P: Prop).(let H10 \def (f_equal T T (\lambda (e: -T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | -(TLRef _) \Rightarrow t0 | (THead _ _ t2) \Rightarrow t2])) (THead (Flat -Appl) t t0) (THead (Flat Appl) t x) H9) in (let H11 \def (eq_ind_r T x -(\lambda (t2: T).(pr0 t0 t2)) H8 t0 H10) in (let H12 \def (eq_ind_r T x -(\lambda (t2: T).((eq T t0 t2) \to (\forall (P0: Prop).P0))) H7 t0 H10) in -(H12 (refl_equal T t0) P)))))) (pr0_comp t t (pr0_refl t) t0 x H8 (Flat -Appl))))))) H6)) H5))) (\lambda (H4: (ex2 T (\lambda (t2: T).((eq T t t2) \to -(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2)))).(ex2_ind T (\lambda -(t2: T).((eq T t t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2)) -(or (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead -(Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t -t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) -t t0) t2)))) (\lambda (x: T).(\lambda (H5: (((eq T t x) \to (\forall (P: -Prop).P)))).(\lambda (H6: (pr0 t x)).(or_intror (\forall (t2: T).((pr0 (THead -(Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T +(t3: T).(pr0 z1 t3))))))) (eq T (THead (Flat Appl) t t0) t2) (\lambda (x0: +B).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: T).(\lambda (x4: +T).(\lambda (x5: T).(\lambda (_: (not (eq B x0 Abst))).(\lambda (H10: (eq T +t0 (THead (Bind x0) x1 x2))).(\lambda (H11: (eq T t2 (THead (Bind x0) x4 +(THead (Flat Appl) (lift (S O) O x3) x5)))).(\lambda (_: (pr0 t x3)).(\lambda +(_: (pr0 x1 x4)).(\lambda (_: (pr0 x2 x5)).(eq_ind_r T (THead (Bind x0) x4 +(THead (Flat Appl) (lift (S O) O x3) x5)) (\lambda (t3: T).(eq T (THead (Flat +Appl) t t0) t3)) (let H15 \def (eq_ind T t0 (\lambda (t3: T).(\forall (t4: +T).((pr0 t3 t4) \to (eq T t3 t4)))) H6 (THead (Bind x0) x1 x2) H10) in (let +H16 \def (eq_ind T t0 (\lambda (t3: T).(\forall (b: B).(\forall (w: +T).(\forall (u: T).((eq T t3 (THead (Bind b) w u)) \to (\forall (P: +Prop).P)))))) H2 (THead (Bind x0) x1 x2) H10) in (eq_ind_r T (THead (Bind x0) +x1 x2) (\lambda (t3: T).(eq T (THead (Flat Appl) t t3) (THead (Bind x0) x4 +(THead (Flat Appl) (lift (S O) O x3) x5)))) (H16 x0 x1 x2 (H15 (THead (Bind +x0) x1 x2) (pr0_refl (THead (Bind x0) x1 x2))) (eq T (THead (Flat Appl) t +(THead (Bind x0) x1 x2)) (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O +x3) x5)))) t0 H10))) t2 H11))))))))))))) H8)) (pr0_gen_appl t t0 t2 H7)))))) +(\lambda (H6: (ex2 T (\lambda (t2: T).((eq T t0 t2) \to (\forall (P: +Prop).P))) (\lambda (t2: T).(pr0 t0 t2)))).(ex2_ind T (\lambda (t2: T).((eq T +t0 t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t0 t2)) (or (\forall +(t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) +t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to +(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)))) +(\lambda (x: T).(\lambda (H7: (((eq T t0 x) \to (\forall (P: +Prop).P)))).(\lambda (H8: (pr0 t0 x)).(or_intror (\forall (t2: T).((pr0 +(THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)) (THead (Flat -Appl) x t0) (\lambda (H7: (eq T (THead (Flat Appl) t t0) (THead (Flat Appl) x -t0))).(\lambda (P: Prop).(let H8 \def (f_equal T T (\lambda (e: T).(match e -in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t | (TLRef _) -\Rightarrow t | (THead _ t2 _) \Rightarrow t2])) (THead (Flat Appl) t t0) +Appl) t x) (\lambda (H9: (eq T (THead (Flat Appl) t t0) (THead (Flat Appl) t +x))).(\lambda (P: Prop).(let H10 \def (f_equal T T (\lambda (e: T).(match e +with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t2) +\Rightarrow t2])) (THead (Flat Appl) t t0) (THead (Flat Appl) t x) H9) in +(let H11 \def (eq_ind_r T x (\lambda (t2: T).(pr0 t0 t2)) H8 t0 H10) in (let +H12 \def (eq_ind_r T x (\lambda (t2: T).((eq T t0 t2) \to (\forall (P0: +Prop).P0))) H7 t0 H10) in (H12 (refl_equal T t0) P)))))) (pr0_comp t t +(pr0_refl t) t0 x H8 (Flat Appl))))))) H6)) H5))) (\lambda (H4: (ex2 T +(\lambda (t2: T).((eq T t t2) \to (\forall (P: Prop).P))) (\lambda (t2: +T).(pr0 t t2)))).(ex2_ind T (\lambda (t2: T).((eq T t t2) \to (\forall (P: +Prop).P))) (\lambda (t2: T).(pr0 t t2)) (or (\forall (t2: T).((pr0 (THead +(Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T +(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P: +Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda (x: +T).(\lambda (H5: (((eq T t x) \to (\forall (P: Prop).P)))).(\lambda (H6: (pr0 +t x)).(or_intror (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq +T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat +Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead +(Flat Appl) t t0) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Flat +Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead +(Flat Appl) t t0) t2)) (THead (Flat Appl) x t0) (\lambda (H7: (eq T (THead +(Flat Appl) t t0) (THead (Flat Appl) x t0))).(\lambda (P: Prop).(let H8 \def +(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t | (TLRef +_) \Rightarrow t | (THead _ t2 _) \Rightarrow t2])) (THead (Flat Appl) t t0) (THead (Flat Appl) x t0) H7) in (let H9 \def (eq_ind_r T x (\lambda (t2: T).(pr0 t t2)) H6 t H8) in (let H10 \def (eq_ind_r T x (\lambda (t2: T).((eq T t t2) \to (\forall (P0: Prop).P0))) H5 t H8) in (H10 (refl_equal T t) @@ -523,7 +517,4 @@ Cast) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Cast) t t0) t2)) t0 (\lambda (H1: (eq T (THead (Flat Cast) t t0) t0)).(\lambda (P: Prop).(thead_x_y_y (Flat Cast) t t0 H1 P))) (pr0_tau t0 t0 (pr0_refl t0) t))) f)) k)))))) t1). -(* COMMENTS -Initial nodes: 10459 -END *) diff --git a/matita/matita/contribs/lambdadelta/basic_1/pr0/defs.ma b/matita/matita/contribs/lambdadelta/basic_1/pr0/defs.ma index 0568e070c..5f6bd58fb 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/pr0/defs.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/pr0/defs.ma @@ -14,7 +14,7 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/subst0/defs.ma". +include "basic_1/subst0/defs.ma". inductive pr0: T \to (T \to Prop) \def | pr0_refl: \forall (t: T).(pr0 t t) diff --git a/matita/matita/contribs/lambdadelta/basic_1/pr0/fwd.ma b/matita/matita/contribs/lambdadelta/basic_1/pr0/fwd.ma index 46caceab4..a9898d7ff 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/pr0/fwd.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/pr0/fwd.ma @@ -14,7 +14,42 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/pr0/props.ma". +include "basic_1/pr0/defs.ma". + +include "basic_1/subst0/fwd.ma". + +let rec pr0_ind (P: (T \to (T \to Prop))) (f: (\forall (t: T).(P t t))) (f0: +(\forall (u1: T).(\forall (u2: T).((pr0 u1 u2) \to ((P u1 u2) \to (\forall +(t1: T).(\forall (t2: T).((pr0 t1 t2) \to ((P t1 t2) \to (\forall (k: K).(P +(THead k u1 t1) (THead k u2 t2)))))))))))) (f1: (\forall (u: T).(\forall (v1: +T).(\forall (v2: T).((pr0 v1 v2) \to ((P v1 v2) \to (\forall (t1: T).(\forall +(t2: T).((pr0 t1 t2) \to ((P t1 t2) \to (P (THead (Flat Appl) v1 (THead (Bind +Abst) u t1)) (THead (Bind Abbr) v2 t2)))))))))))) (f2: (\forall (b: B).((not +(eq B b Abst)) \to (\forall (v1: T).(\forall (v2: T).((pr0 v1 v2) \to ((P v1 +v2) \to (\forall (u1: T).(\forall (u2: T).((pr0 u1 u2) \to ((P u1 u2) \to +(\forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to ((P t1 t2) \to (P (THead +(Flat Appl) v1 (THead (Bind b) u1 t1)) (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t2)))))))))))))))))) (f3: (\forall (u1: T).(\forall (u2: +T).((pr0 u1 u2) \to ((P u1 u2) \to (\forall (t1: T).(\forall (t2: T).((pr0 t1 +t2) \to ((P t1 t2) \to (\forall (w: T).((subst0 O u2 t2 w) \to (P (THead +(Bind Abbr) u1 t1) (THead (Bind Abbr) u2 w))))))))))))) (f4: (\forall (b: +B).((not (eq B b Abst)) \to (\forall (t1: T).(\forall (t2: T).((pr0 t1 t2) +\to ((P t1 t2) \to (\forall (u: T).(P (THead (Bind b) u (lift (S O) O t1)) +t2))))))))) (f5: (\forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to ((P t1 +t2) \to (\forall (u: T).(P (THead (Flat Cast) u t1) t2))))))) (t: T) (t0: T) +(p: pr0 t t0) on p: P t t0 \def match p with [(pr0_refl t1) \Rightarrow (f +t1) | (pr0_comp u1 u2 p0 t1 t2 p1 k) \Rightarrow (f0 u1 u2 p0 ((pr0_ind P f +f0 f1 f2 f3 f4 f5) u1 u2 p0) t1 t2 p1 ((pr0_ind P f f0 f1 f2 f3 f4 f5) t1 t2 +p1) k) | (pr0_beta u v1 v2 p0 t1 t2 p1) \Rightarrow (f1 u v1 v2 p0 ((pr0_ind +P f f0 f1 f2 f3 f4 f5) v1 v2 p0) t1 t2 p1 ((pr0_ind P f f0 f1 f2 f3 f4 f5) t1 +t2 p1)) | (pr0_upsilon b n v1 v2 p0 u1 u2 p1 t1 t2 p2) \Rightarrow (f2 b n v1 +v2 p0 ((pr0_ind P f f0 f1 f2 f3 f4 f5) v1 v2 p0) u1 u2 p1 ((pr0_ind P f f0 f1 +f2 f3 f4 f5) u1 u2 p1) t1 t2 p2 ((pr0_ind P f f0 f1 f2 f3 f4 f5) t1 t2 p2)) | +(pr0_delta u1 u2 p0 t1 t2 p1 w s0) \Rightarrow (f3 u1 u2 p0 ((pr0_ind P f f0 +f1 f2 f3 f4 f5) u1 u2 p0) t1 t2 p1 ((pr0_ind P f f0 f1 f2 f3 f4 f5) t1 t2 p1) +w s0) | (pr0_zeta b n t1 t2 p0 u) \Rightarrow (f4 b n t1 t2 p0 ((pr0_ind P f +f0 f1 f2 f3 f4 f5) t1 t2 p0) u) | (pr0_tau t1 t2 p0 u) \Rightarrow (f5 t1 t2 +p0 ((pr0_ind P f f0 f1 f2 f3 f4 f5) t1 t2 p0) u)]. theorem pr0_gen_sort: \forall (x: T).(\forall (n: nat).((pr0 (TSort n) x) \to (eq T x (TSort n)))) @@ -29,57 +64,51 @@ t H2)))) (\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (((eq T u1 (TSort n)) \to (eq T u2 u1)))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq T t2 t1)))).(\lambda (k: K).(\lambda (H5: (eq T (THead k u1 t1) (TSort n))).(let -H6 \def (eq_ind T (THead k u1 t1) (\lambda (ee: T).(match ee in T return -(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n) H5) in -(False_ind (eq T (THead k u2 t2) (THead k u1 t1)) H6)))))))))))) (\lambda (u: -T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda (_: -(((eq T v1 (TSort n)) \to (eq T v2 v1)))).(\lambda (t1: T).(\lambda (t2: -T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq T t2 -t1)))).(\lambda (H5: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t1)) -(TSort n))).(let H6 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u -t1)) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with -[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) -\Rightarrow True])) I (TSort n) H5) in (False_ind (eq T (THead (Bind Abbr) v2 -t2) (THead (Flat Appl) v1 (THead (Bind Abst) u t1))) H6)))))))))))) (\lambda -(b: B).(\lambda (_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2: +H6 \def (eq_ind T (THead k u1 t1) (\lambda (ee: T).(match ee with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow +True])) I (TSort n) H5) in (False_ind (eq T (THead k u2 t2) (THead k u1 t1)) +H6)))))))))))) (\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: +(pr0 v1 v2)).(\lambda (_: (((eq T v1 (TSort n)) \to (eq T v2 v1)))).(\lambda +(t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 +(TSort n)) \to (eq T t2 t1)))).(\lambda (H5: (eq T (THead (Flat Appl) v1 +(THead (Bind Abst) u t1)) (TSort n))).(let H6 \def (eq_ind T (THead (Flat +Appl) v1 (THead (Bind Abst) u t1)) (\lambda (ee: T).(match ee with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow +True])) I (TSort n) H5) in (False_ind (eq T (THead (Bind Abbr) v2 t2) (THead +(Flat Appl) v1 (THead (Bind Abst) u t1))) H6)))))))))))) (\lambda (b: +B).(\lambda (_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (((eq T v1 (TSort n)) \to (eq T v2 v1)))).(\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (((eq T u1 (TSort n)) \to (eq T u2 u1)))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq T t2 t1)))).(\lambda (H8: (eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t1)) (TSort n))).(let H9 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 -t1)) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with -[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) -\Rightarrow True])) I (TSort n) H8) in (False_ind (eq T (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t2)) (THead (Flat Appl) v1 (THead (Bind -b) u1 t1))) H9))))))))))))))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda -(_: (pr0 u1 u2)).(\lambda (_: (((eq T u1 (TSort n)) \to (eq T u2 -u1)))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda -(_: (((eq T t1 (TSort n)) \to (eq T t2 t1)))).(\lambda (w: T).(\lambda (_: -(subst0 O u2 t2 w)).(\lambda (H6: (eq T (THead (Bind Abbr) u1 t1) (TSort -n))).(let H7 \def (eq_ind T (THead (Bind Abbr) u1 t1) (\lambda (ee: T).(match -ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | -(TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n) -H6) in (False_ind (eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u1 t1)) +t1)) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n) H8) in +(False_ind (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2)) +(THead (Flat Appl) v1 (THead (Bind b) u1 t1))) H9))))))))))))))))) (\lambda +(u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (((eq T u1 +(TSort n)) \to (eq T u2 u1)))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: +(pr0 t1 t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq T t2 t1)))).(\lambda +(w: T).(\lambda (_: (subst0 O u2 t2 w)).(\lambda (H6: (eq T (THead (Bind +Abbr) u1 t1) (TSort n))).(let H7 \def (eq_ind T (THead (Bind Abbr) u1 t1) +(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n) H6) in +(False_ind (eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u1 t1)) H7))))))))))))) (\lambda (b: B).(\lambda (_: (not (eq B b Abst))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq T t2 t1)))).(\lambda (u: T).(\lambda (H4: (eq T (THead (Bind b) u (lift (S O) O t1)) (TSort n))).(let H5 \def (eq_ind T (THead (Bind -b) u (lift (S O) O t1)) (\lambda (ee: T).(match ee in T return (\lambda (_: -T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | -(THead _ _ _) \Rightarrow True])) I (TSort n) H4) in (False_ind (eq T t2 -(THead (Bind b) u (lift (S O) O t1))) H5)))))))))) (\lambda (t1: T).(\lambda -(t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq -T t2 t1)))).(\lambda (u: T).(\lambda (H3: (eq T (THead (Flat Cast) u t1) -(TSort n))).(let H4 \def (eq_ind T (THead (Flat Cast) u t1) (\lambda (ee: -T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow -False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I -(TSort n) H3) in (False_ind (eq T t2 (THead (Flat Cast) u t1)) H4)))))))) y x -H0))) H))). -(* COMMENTS -Initial nodes: 1045 -END *) +b) u (lift (S O) O t1)) (\lambda (ee: T).(match ee with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow +True])) I (TSort n) H4) in (False_ind (eq T t2 (THead (Bind b) u (lift (S O) +O t1))) H5)))))))))) (\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 +t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq T t2 t1)))).(\lambda (u: +T).(\lambda (H3: (eq T (THead (Flat Cast) u t1) (TSort n))).(let H4 \def +(eq_ind T (THead (Flat Cast) u t1) (\lambda (ee: T).(match ee with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow +True])) I (TSort n) H3) in (False_ind (eq T t2 (THead (Flat Cast) u t1)) +H4)))))))) y x H0))) H))). theorem pr0_gen_lref: \forall (x: T).(\forall (n: nat).((pr0 (TLRef n) x) \to (eq T x (TLRef n)))) @@ -94,57 +123,51 @@ t H2)))) (\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (((eq T u1 (TLRef n)) \to (eq T u2 u1)))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TLRef n)) \to (eq T t2 t1)))).(\lambda (k: K).(\lambda (H5: (eq T (THead k u1 t1) (TLRef n))).(let -H6 \def (eq_ind T (THead k u1 t1) (\lambda (ee: T).(match ee in T return -(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n) H5) in -(False_ind (eq T (THead k u2 t2) (THead k u1 t1)) H6)))))))))))) (\lambda (u: -T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda (_: -(((eq T v1 (TLRef n)) \to (eq T v2 v1)))).(\lambda (t1: T).(\lambda (t2: -T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TLRef n)) \to (eq T t2 -t1)))).(\lambda (H5: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t1)) -(TLRef n))).(let H6 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u -t1)) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with -[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) -\Rightarrow True])) I (TLRef n) H5) in (False_ind (eq T (THead (Bind Abbr) v2 -t2) (THead (Flat Appl) v1 (THead (Bind Abst) u t1))) H6)))))))))))) (\lambda -(b: B).(\lambda (_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2: +H6 \def (eq_ind T (THead k u1 t1) (\lambda (ee: T).(match ee with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow +True])) I (TLRef n) H5) in (False_ind (eq T (THead k u2 t2) (THead k u1 t1)) +H6)))))))))))) (\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: +(pr0 v1 v2)).(\lambda (_: (((eq T v1 (TLRef n)) \to (eq T v2 v1)))).(\lambda +(t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 +(TLRef n)) \to (eq T t2 t1)))).(\lambda (H5: (eq T (THead (Flat Appl) v1 +(THead (Bind Abst) u t1)) (TLRef n))).(let H6 \def (eq_ind T (THead (Flat +Appl) v1 (THead (Bind Abst) u t1)) (\lambda (ee: T).(match ee with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow +True])) I (TLRef n) H5) in (False_ind (eq T (THead (Bind Abbr) v2 t2) (THead +(Flat Appl) v1 (THead (Bind Abst) u t1))) H6)))))))))))) (\lambda (b: +B).(\lambda (_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (((eq T v1 (TLRef n)) \to (eq T v2 v1)))).(\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (((eq T u1 (TLRef n)) \to (eq T u2 u1)))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TLRef n)) \to (eq T t2 t1)))).(\lambda (H8: (eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t1)) (TLRef n))).(let H9 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 -t1)) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with -[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) -\Rightarrow True])) I (TLRef n) H8) in (False_ind (eq T (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t2)) (THead (Flat Appl) v1 (THead (Bind -b) u1 t1))) H9))))))))))))))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda -(_: (pr0 u1 u2)).(\lambda (_: (((eq T u1 (TLRef n)) \to (eq T u2 -u1)))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda -(_: (((eq T t1 (TLRef n)) \to (eq T t2 t1)))).(\lambda (w: T).(\lambda (_: -(subst0 O u2 t2 w)).(\lambda (H6: (eq T (THead (Bind Abbr) u1 t1) (TLRef -n))).(let H7 \def (eq_ind T (THead (Bind Abbr) u1 t1) (\lambda (ee: T).(match -ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | -(TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n) -H6) in (False_ind (eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u1 t1)) +t1)) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n) H8) in +(False_ind (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2)) +(THead (Flat Appl) v1 (THead (Bind b) u1 t1))) H9))))))))))))))))) (\lambda +(u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (((eq T u1 +(TLRef n)) \to (eq T u2 u1)))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: +(pr0 t1 t2)).(\lambda (_: (((eq T t1 (TLRef n)) \to (eq T t2 t1)))).(\lambda +(w: T).(\lambda (_: (subst0 O u2 t2 w)).(\lambda (H6: (eq T (THead (Bind +Abbr) u1 t1) (TLRef n))).(let H7 \def (eq_ind T (THead (Bind Abbr) u1 t1) +(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n) H6) in +(False_ind (eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u1 t1)) H7))))))))))))) (\lambda (b: B).(\lambda (_: (not (eq B b Abst))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TLRef n)) \to (eq T t2 t1)))).(\lambda (u: T).(\lambda (H4: (eq T (THead (Bind b) u (lift (S O) O t1)) (TLRef n))).(let H5 \def (eq_ind T (THead (Bind -b) u (lift (S O) O t1)) (\lambda (ee: T).(match ee in T return (\lambda (_: -T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | -(THead _ _ _) \Rightarrow True])) I (TLRef n) H4) in (False_ind (eq T t2 -(THead (Bind b) u (lift (S O) O t1))) H5)))))))))) (\lambda (t1: T).(\lambda -(t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TLRef n)) \to (eq -T t2 t1)))).(\lambda (u: T).(\lambda (H3: (eq T (THead (Flat Cast) u t1) -(TLRef n))).(let H4 \def (eq_ind T (THead (Flat Cast) u t1) (\lambda (ee: -T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow -False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I -(TLRef n) H3) in (False_ind (eq T t2 (THead (Flat Cast) u t1)) H4)))))))) y x -H0))) H))). -(* COMMENTS -Initial nodes: 1045 -END *) +b) u (lift (S O) O t1)) (\lambda (ee: T).(match ee with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow +True])) I (TLRef n) H4) in (False_ind (eq T t2 (THead (Bind b) u (lift (S O) +O t1))) H5)))))))))) (\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 +t2)).(\lambda (_: (((eq T t1 (TLRef n)) \to (eq T t2 t1)))).(\lambda (u: +T).(\lambda (H3: (eq T (THead (Flat Cast) u t1) (TLRef n))).(let H4 \def +(eq_ind T (THead (Flat Cast) u t1) (\lambda (ee: T).(match ee with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow +True])) I (TLRef n) H3) in (False_ind (eq T t2 (THead (Flat Cast) u t1)) +H4)))))))) y x H0))) H))). theorem pr0_gen_abst: \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Abst) u1 @@ -180,20 +203,19 @@ t2)).(\lambda (H4: (((eq T t0 (THead (Bind Abst) u1 t1)) \to (ex3_2 T T (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))))))).(\lambda (k: K).(\lambda (H5: (eq T (THead k u0 t0) (THead (Bind Abst) u1 t1))).(let H6 \def (f_equal T K (\lambda (e: T).(match -e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _) -\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u0 t0) (THead (Bind -Abst) u1 t1) H5) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e in T -return (\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _) -\Rightarrow u0 | (THead _ t _) \Rightarrow t])) (THead k u0 t0) (THead (Bind -Abst) u1 t1) H5) in ((let H8 \def (f_equal T T (\lambda (e: T).(match e in T -return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _) -\Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead k u0 t0) (THead (Bind -Abst) u1 t1) H5) in (\lambda (H9: (eq T u0 u1)).(\lambda (H10: (eq K k (Bind -Abst))).(eq_ind_r K (Bind Abst) (\lambda (k0: K).(ex3_2 T T (\lambda (u3: -T).(\lambda (t3: T).(eq T (THead k0 u2 t2) (THead (Bind Abst) u3 t3)))) -(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: -T).(pr0 t1 t3))))) (let H11 \def (eq_ind T t0 (\lambda (t: T).((eq T t (THead -(Bind Abst) u1 t1)) \to (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 +e with [(TSort _) \Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) +\Rightarrow k0])) (THead k u0 t0) (THead (Bind Abst) u1 t1) H5) in ((let H7 +\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u0 | +(TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t])) (THead k u0 t0) +(THead (Bind Abst) u1 t1) H5) in ((let H8 \def (f_equal T T (\lambda (e: +T).(match e with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | +(THead _ _ t) \Rightarrow t])) (THead k u0 t0) (THead (Bind Abst) u1 t1) H5) +in (\lambda (H9: (eq T u0 u1)).(\lambda (H10: (eq K k (Bind Abst))).(eq_ind_r +K (Bind Abst) (\lambda (k0: K).(ex3_2 T T (\lambda (u3: T).(\lambda (t3: +T).(eq T (THead k0 u2 t2) (THead (Bind Abst) u3 t3)))) (\lambda (u3: +T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 +t3))))) (let H11 \def (eq_ind T t0 (\lambda (t: T).((eq T t (THead (Bind +Abst) u1 t1)) \to (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))))) H4 t1 H8) in (let H12 \def (eq_ind T t0 (\lambda (t: T).(pr0 t t2)) H3 t1 H8) in (let H13 \def (eq_ind T @@ -216,31 +238,29 @@ Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))))))).(\lambda (H5: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (THead (Bind Abst) u1 t1))).(let H6 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (\lambda (ee: T).(match ee -in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef -_) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K return -(\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow -True])])) I (THead (Bind Abst) u1 t1) H5) in (False_ind (ex3_2 T T (\lambda -(u2: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) v2 t2) (THead (Bind Abst) -u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: -T).(\lambda (t3: T).(pr0 t1 t3)))) H6)))))))))))) (\lambda (b: B).(\lambda -(_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 -v1 v2)).(\lambda (_: (((eq T v1 (THead (Bind Abst) u1 t1)) \to (ex3_2 T T -(\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead (Bind Abst) u2 t2)))) -(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: -T).(pr0 t1 t2))))))).(\lambda (u0: T).(\lambda (u2: T).(\lambda (_: (pr0 u0 -u2)).(\lambda (_: (((eq T u0 (THead (Bind Abst) u1 t1)) \to (ex3_2 T T -(\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Bind Abst) u3 t2)))) -(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2: -T).(pr0 t1 t2))))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 -t2)).(\lambda (_: (((eq T t0 (THead (Bind Abst) u1 t1)) \to (ex3_2 T T -(\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) u3 t3)))) -(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: -T).(pr0 t1 t3))))))).(\lambda (H8: (eq T (THead (Flat Appl) v1 (THead (Bind -b) u0 t0)) (THead (Bind Abst) u1 t1))).(let H9 \def (eq_ind T (THead (Flat -Appl) v1 (THead (Bind b) u0 t0)) (\lambda (ee: T).(match ee in T return -(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda -(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow +with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ +_) \Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat _) +\Rightarrow True])])) I (THead (Bind Abst) u1 t1) H5) in (False_ind (ex3_2 T +T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) v2 t2) (THead +(Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda +(_: T).(\lambda (t3: T).(pr0 t1 t3)))) H6)))))))))))) (\lambda (b: +B).(\lambda (_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2: +T).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (((eq T v1 (THead (Bind Abst) u1 +t1)) \to (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead (Bind +Abst) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: +T).(\lambda (t2: T).(pr0 t1 t2))))))).(\lambda (u0: T).(\lambda (u2: +T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead (Bind Abst) u1 +t1)) \to (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Bind +Abst) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: +T).(\lambda (t2: T).(pr0 t1 t2))))))).(\lambda (t0: T).(\lambda (t2: +T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Abst) u1 +t1)) \to (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind +Abst) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: +T).(\lambda (t3: T).(pr0 t1 t3))))))).(\lambda (H8: (eq T (THead (Flat Appl) +v1 (THead (Bind b) u0 t0)) (THead (Bind Abst) u1 t1))).(let H9 \def (eq_ind T +(THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (\lambda (ee: T).(match ee with +[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) +\Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abst) u1 t1) H8) in (False_ind (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2)) (THead (Bind Abst) u3 t3)))) (\lambda (u3: T).(\lambda (_: @@ -256,70 +276,52 @@ t2)).(\lambda (_: (((eq T t0 (THead (Bind Abst) u1 t1)) \to (ex3_2 T T T).(pr0 t1 t3))))))).(\lambda (w: T).(\lambda (_: (subst0 O u2 t2 w)).(\lambda (H6: (eq T (THead (Bind Abbr) u0 t0) (THead (Bind Abst) u1 t1))).(let H7 \def (eq_ind T (THead (Bind Abbr) u0 t0) (\lambda (ee: -T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow -False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K -return (\lambda (_: K).Prop) with [(Bind b) \Rightarrow (match b in B return -(\lambda (_: B).Prop) with [Abbr \Rightarrow True | Abst \Rightarrow False | -Void \Rightarrow False]) | (Flat _) \Rightarrow False])])) I (THead (Bind -Abst) u1 t1) H6) in (False_ind (ex3_2 T T (\lambda (u3: T).(\lambda (t3: -T).(eq T (THead (Bind Abbr) u2 w) (THead (Bind Abst) u3 t3)))) (\lambda (u3: -T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 -t3)))) H7))))))))))))) (\lambda (b: B).(\lambda (H1: (not (eq B b -Abst))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda -(H3: (((eq T t0 (THead (Bind Abst) u1 t1)) \to (ex3_2 T T (\lambda (u2: -T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) u2 t3)))) (\lambda (u2: -T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 -t3))))))).(\lambda (u: T).(\lambda (H4: (eq T (THead (Bind b) u (lift (S O) O -t0)) (THead (Bind Abst) u1 t1))).(let H5 \def (f_equal T B (\lambda (e: -T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b | -(TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k in K return -(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow -b])])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abst) u1 t1) H4) in -((let H6 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: -T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t _) -\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abst) u1 -t1) H4) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e in T return -(\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f: ((nat -\to nat))) (d: nat) (t: T) on t: T \def (match t with [(TSort n) \Rightarrow -(TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with [true -\Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t3) \Rightarrow -(THead k (lref_map f d u0) (lref_map f (s k d) t3))]) in lref_map) (\lambda -(x0: nat).(plus x0 (S O))) O t0) | (TLRef _) \Rightarrow ((let rec lref_map -(f: ((nat \to nat))) (d: nat) (t: T) on t: T \def (match t with [(TSort n) -\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with -[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t3) -\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t3))]) in -lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (THead _ _ t) -\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abst) u1 -t1) H4) in (\lambda (_: (eq T u u1)).(\lambda (H9: (eq B b Abst)).(let H10 -\def (eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H1 Abst H9) in (let -H11 \def (eq_ind_r T t1 (\lambda (t: T).((eq T t0 (THead (Bind Abst) u1 t)) -\to (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) -u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: -T).(\lambda (t3: T).(pr0 t t3)))))) H3 (lift (S O) O t0) H7) in (eq_ind T -(lift (S O) O t0) (\lambda (t: T).(ex3_2 T T (\lambda (u2: T).(\lambda (t3: -T).(eq T t2 (THead (Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: -T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t t3))))) (let H12 -\def (match (H10 (refl_equal B Abst)) in False return (\lambda (_: -False).(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind +T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False +| (THead k _ _) \Rightarrow (match k with [(Bind b) \Rightarrow (match b with +[Abbr \Rightarrow True | Abst \Rightarrow False | Void \Rightarrow False]) | +(Flat _) \Rightarrow False])])) I (THead (Bind Abst) u1 t1) H6) in (False_ind +(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 w) +(THead (Bind Abst) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) +(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) H7))))))))))))) (\lambda (b: +B).(\lambda (H1: (not (eq B b Abst))).(\lambda (t0: T).(\lambda (t2: +T).(\lambda (_: (pr0 t0 t2)).(\lambda (H3: (((eq T t0 (THead (Bind Abst) u1 +t1)) \to (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: -T).(\lambda (t3: T).(pr0 (lift (S O) O t0) t3))))) with []) in H12) t1 -H7)))))) H6)) H5)))))))))) (\lambda (t0: T).(\lambda (t2: T).(\lambda (_: -(pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Abst) u1 t1)) \to (ex3_2 T -T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) u2 t3)))) -(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: -T).(pr0 t1 t3))))))).(\lambda (u: T).(\lambda (H3: (eq T (THead (Flat Cast) u -t0) (THead (Bind Abst) u1 t1))).(let H4 \def (eq_ind T (THead (Flat Cast) u -t0) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort -_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) -\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _) -\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abst) u1 -t1) H3) in (False_ind (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 +T).(\lambda (t3: T).(pr0 t1 t3))))))).(\lambda (u: T).(\lambda (H4: (eq T +(THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abst) u1 t1))).(let H5 \def +(f_equal T B (\lambda (e: T).(match e with [(TSort _) \Rightarrow b | (TLRef +_) \Rightarrow b | (THead k _ _) \Rightarrow (match k with [(Bind b0) +\Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead (Bind b) u (lift (S O) O +t0)) (THead (Bind Abst) u1 t1) H4) in ((let H6 \def (f_equal T T (\lambda (e: +T).(match e with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead +_ t _) \Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind +Abst) u1 t1) H4) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e with +[(TSort _) \Rightarrow (lref_map (\lambda (x0: nat).(plus x0 (S O))) O t0) | +(TLRef _) \Rightarrow (lref_map (\lambda (x0: nat).(plus x0 (S O))) O t0) | +(THead _ _ t) \Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead +(Bind Abst) u1 t1) H4) in (\lambda (_: (eq T u u1)).(\lambda (H9: (eq B b +Abst)).(let H10 \def (eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H1 +Abst H9) in (let H11 \def (eq_ind_r T t1 (\lambda (t: T).((eq T t0 (THead +(Bind Abst) u1 t)) \to (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) -(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) H4)))))))) y x H0))) H)))). -(* COMMENTS -Initial nodes: 2838 -END *) +(\lambda (_: T).(\lambda (t3: T).(pr0 t t3)))))) H3 (lift (S O) O t0) H7) in +(eq_ind T (lift (S O) O t0) (\lambda (t: T).(ex3_2 T T (\lambda (u2: +T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) u2 t3)))) (\lambda (u2: +T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t +t3))))) (let H12 \def (match (H10 (refl_equal B Abst)) in False with []) in +H12) t1 H7)))))) H6)) H5)))))))))) (\lambda (t0: T).(\lambda (t2: T).(\lambda +(_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Abst) u1 t1)) \to +(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) u2 +t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: +T).(\lambda (t3: T).(pr0 t1 t3))))))).(\lambda (u: T).(\lambda (H3: (eq T +(THead (Flat Cast) u t0) (THead (Bind Abst) u1 t1))).(let H4 \def (eq_ind T +(THead (Flat Cast) u t0) (\lambda (ee: T).(match ee with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow +(match k with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I +(THead (Bind Abst) u1 t1) H3) in (False_ind (ex3_2 T T (\lambda (u2: +T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) u2 t3)))) (\lambda (u2: +T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 +t3)))) H4)))))))) y x H0))) H)))). theorem pr0_gen_appl: \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Flat Appl) u1 @@ -470,42 +472,21 @@ T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))))))))).(\lambda (k: K).(\lambda (H5: (eq T (THead k u0 t0) (THead (Flat Appl) u1 t1))).(let H6 \def (f_equal T K -(\lambda (e: T).(match e in T return (\lambda (_: T).K) with [(TSort _) -\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0])) -(THead k u0 t0) (THead (Flat Appl) u1 t1) H5) in ((let H7 \def (f_equal T T -(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t])) -(THead k u0 t0) (THead (Flat Appl) u1 t1) H5) in ((let H8 \def (f_equal T T -(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t])) -(THead k u0 t0) (THead (Flat Appl) u1 t1) H5) in (\lambda (H9: (eq T u0 -u1)).(\lambda (H10: (eq K k (Flat Appl))).(eq_ind_r K (Flat Appl) (\lambda -(k0: K).(or3 (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead k0 u2 -t2) (THead (Flat Appl) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 -u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda -(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead -(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: -T).(\lambda (t3: T).(eq T (THead k0 u2 t2) (THead (Bind Abbr) u3 t3)))))) -(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 -u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: -T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: -T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B -b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: -T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) -(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda -(v2: T).(\lambda (t3: T).(eq T (THead k0 u2 t2) (THead (Bind b) v2 (THead -(Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda (_: -T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 -u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: -T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: -B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda -(t3: T).(pr0 z1 t3)))))))))) (let H11 \def (eq_ind T t0 (\lambda (t: T).((eq -T t (THead (Flat Appl) u1 t1)) \to (or3 (ex3_2 T T (\lambda (u3: T).(\lambda -(t3: T).(eq T t2 (THead (Flat Appl) u3 t3)))) (\lambda (u3: T).(\lambda (_: -T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T -T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 -(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: -T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u3 t3)))))) (\lambda (_: +(\lambda (e: T).(match e with [(TSort _) \Rightarrow k | (TLRef _) +\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u0 t0) (THead (Flat +Appl) u1 t1) H5) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e with +[(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t _) +\Rightarrow t])) (THead k u0 t0) (THead (Flat Appl) u1 t1) H5) in ((let H8 +\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t0 | +(TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead k u0 t0) +(THead (Flat Appl) u1 t1) H5) in (\lambda (H9: (eq T u0 u1)).(\lambda (H10: +(eq K k (Flat Appl))).(eq_ind_r K (Flat Appl) (\lambda (k0: K).(or3 (ex3_2 T +T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead k0 u2 t2) (THead (Flat Appl) +u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: +T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda +(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 +z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3: +T).(eq T (THead k0 u2 t2) (THead (Bind Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda @@ -513,36 +494,56 @@ T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T -t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u3) t3))))))))) -(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: -T).(\lambda (_: T).(pr0 u1 u3))))))) (\lambda (_: B).(\lambda (y1: -T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 -v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: -T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))))))) H4 t1 H8) in (let -H12 \def (eq_ind T t0 (\lambda (t: T).(pr0 t t2)) H3 t1 H8) in (let H13 \def -(eq_ind T u0 (\lambda (t: T).((eq T t (THead (Flat Appl) u1 t1)) \to (or3 -(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T u2 (THead (Flat Appl) u3 +(THead k0 u2 t2) (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u3) +t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: +T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u3))))))) (\lambda (_: B).(\lambda +(y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 +y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))))))) (let H11 \def +(eq_ind T t0 (\lambda (t: T).((eq T t (THead (Flat Appl) u1 t1)) \to (or3 +(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3: -T).(eq T u2 (THead (Bind Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_: +T).(eq T t2 (THead (Bind Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: -T).(\lambda (u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T u2 (THead (Bind +T).(\lambda (u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: -T).(\lambda (t3: T).(pr0 z1 t3))))))))))) H2 u1 H9) in (let H14 \def (eq_ind -T u0 (\lambda (t: T).(pr0 t u2)) H1 u1 H9) in (or3_intro0 (ex3_2 T T (\lambda -(u3: T).(\lambda (t3: T).(eq T (THead (Flat Appl) u2 t2) (THead (Flat Appl) -u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: +T).(\lambda (t3: T).(pr0 z1 t3))))))))))) H4 t1 H8) in (let H12 \def (eq_ind +T t0 (\lambda (t: T).(pr0 t t2)) H3 t1 H8) in (let H13 \def (eq_ind T u0 +(\lambda (t: T).((eq T t (THead (Flat Appl) u1 t1)) \to (or3 (ex3_2 T T +(\lambda (u3: T).(\lambda (t3: T).(eq T u2 (THead (Flat Appl) u3 t3)))) +(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: +T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda +(_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_: +T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3: T).(eq T u2 (THead (Bind +Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda +(_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: +T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b: +B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda +(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind +b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda +(u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T u2 (THead (Bind b) v2 (THead +(Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda (_: +T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 +u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: +B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda +(t3: T).(pr0 z1 t3))))))))))) H2 u1 H9) in (let H14 \def (eq_ind T u0 +(\lambda (t: T).(pr0 t u2)) H1 u1 H9) in (or3_intro0 (ex3_2 T T (\lambda (u3: +T).(\lambda (t3: T).(eq T (THead (Flat Appl) u2 t2) (THead (Flat Appl) u3 +t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3: @@ -606,15 +607,14 @@ T).(\lambda (_: T).(\lambda (v3: T).(\lambda (_: T).(pr0 y1 v3))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))))))))).(\lambda (H5: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (THead (Flat Appl) u1 t1))).(let H6 \def -(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with -[(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t _) -\Rightarrow t])) (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (THead (Flat -Appl) u1 t1) H5) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e in T -return (\lambda (_: T).T) with [(TSort _) \Rightarrow (THead (Bind Abst) u -t0) | (TLRef _) \Rightarrow (THead (Bind Abst) u t0) | (THead _ _ t) -\Rightarrow t])) (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (THead (Flat -Appl) u1 t1) H5) in (\lambda (H8: (eq T v1 u1)).(let H9 \def (eq_ind T v1 -(\lambda (t: T).((eq T t (THead (Flat Appl) u1 t1)) \to (or3 (ex3_2 T T +(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow v1 | (TLRef +_) \Rightarrow v1 | (THead _ t _) \Rightarrow t])) (THead (Flat Appl) v1 +(THead (Bind Abst) u t0)) (THead (Flat Appl) u1 t1) H5) in ((let H7 \def +(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow (THead +(Bind Abst) u t0) | (TLRef _) \Rightarrow (THead (Bind Abst) u t0) | (THead _ +_ t) \Rightarrow t])) (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (THead +(Flat Appl) u1 t1) H5) in (\lambda (H8: (eq T v1 u1)).(let H9 \def (eq_ind T +v1 (\lambda (t: T).((eq T t (THead (Flat Appl) u1 t1)) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T v2 (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda @@ -786,19 +786,18 @@ T).(\lambda (_: T).(\lambda (v3: T).(\lambda (_: T).(pr0 y1 v3))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))))))))).(\lambda (H8: (eq T (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead (Flat Appl) u1 t1))).(let H9 \def -(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with -[(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t _) -\Rightarrow t])) (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead (Flat -Appl) u1 t1) H8) in ((let H10 \def (f_equal T T (\lambda (e: T).(match e in T -return (\lambda (_: T).T) with [(TSort _) \Rightarrow (THead (Bind b) u0 t0) -| (TLRef _) \Rightarrow (THead (Bind b) u0 t0) | (THead _ _ t) \Rightarrow -t])) (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead (Flat Appl) u1 t1) -H8) in (\lambda (H11: (eq T v1 u1)).(let H12 \def (eq_ind T v1 (\lambda (t: -T).((eq T t (THead (Flat Appl) u1 t1)) \to (or3 (ex3_2 T T (\lambda (u3: -T).(\lambda (t3: T).(eq T v2 (THead (Flat Appl) u3 t3)))) (\lambda (u3: -T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 -t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: -T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_: +(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow v1 | (TLRef +_) \Rightarrow v1 | (THead _ t _) \Rightarrow t])) (THead (Flat Appl) v1 +(THead (Bind b) u0 t0)) (THead (Flat Appl) u1 t1) H8) in ((let H10 \def +(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow (THead +(Bind b) u0 t0) | (TLRef _) \Rightarrow (THead (Bind b) u0 t0) | (THead _ _ +t) \Rightarrow t])) (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead +(Flat Appl) u1 t1) H8) in (\lambda (H11: (eq T v1 u1)).(let H12 \def (eq_ind +T v1 (\lambda (t: T).((eq T t (THead (Flat Appl) u1 t1)) \to (or3 (ex3_2 T T +(\lambda (u3: T).(\lambda (t3: T).(eq T v2 (THead (Flat Appl) u3 t3)))) +(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: +T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda +(_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3: T).(eq T v2 (THead (Bind Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: @@ -975,78 +974,32 @@ T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) T).(\lambda (t3: T).(pr0 z1 t3)))))))))))).(\lambda (w: T).(\lambda (_: (subst0 O u2 t2 w)).(\lambda (H6: (eq T (THead (Bind Abbr) u0 t0) (THead (Flat Appl) u1 t1))).(let H7 \def (eq_ind T (THead (Bind Abbr) u0 t0) -(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) -\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow -(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow True | -(Flat _) \Rightarrow False])])) I (THead (Flat Appl) u1 t1) H6) in (False_ind -(or3 (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 -w) (THead (Flat Appl) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 -u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda -(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead -(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: -T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u3 -t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: -T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda -(t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: -T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B -b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: -T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) -(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda -(v2: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 w) (THead (Bind b) v2 -(THead (Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda (_: -T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 -u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: -T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: -B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda -(t3: T).(pr0 z1 t3))))))))) H7))))))))))))) (\lambda (b: B).(\lambda (_: (not -(eq B b Abst))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 -t2)).(\lambda (_: (((eq T t0 (THead (Flat Appl) u1 t1)) \to (or3 (ex3_2 T T -(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 t3)))) -(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: -T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda -(_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_: -T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind -Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda -(_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: -T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b0: -B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda -(_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda -(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind -b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda -(u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind b0) v2 (THead -(Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_: -T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 -u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: -T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: -B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda -(t3: T).(pr0 z1 t3)))))))))))).(\lambda (u: T).(\lambda (H4: (eq T (THead -(Bind b) u (lift (S O) O t0)) (THead (Flat Appl) u1 t1))).(let H5 \def -(eq_ind T (THead (Bind b) u (lift (S O) O t0)) (\lambda (ee: T).(match ee in -T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda -(_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow -False])])) I (THead (Flat Appl) u1 t1) H4) in (False_ind (or3 (ex3_2 T T -(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 t3)))) -(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: -T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda -(_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_: -T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind -Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda -(_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: -T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b0: -B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda -(_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda -(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind -b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda -(u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind b0) v2 (THead -(Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_: -T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 -u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: -T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: -B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda -(t3: T).(pr0 z1 t3))))))))) H5)))))))))) (\lambda (t0: T).(\lambda (t2: -T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Flat Appl) u1 -t1)) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead +(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind _) +\Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Appl) u1 +t1) H6) in (False_ind (or3 (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T +(THead (Bind Abbr) u2 w) (THead (Flat Appl) u3 t3)))) (\lambda (u3: +T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 +t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: +T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_: +T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) +u2 w) (THead (Bind Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda +(u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: +T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T +(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: +T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 +(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: +T).(\lambda (u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T (THead (Bind +Abbr) u2 w) (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u3) +t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: +T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u3))))))) (\lambda (_: B).(\lambda +(y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 +y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))))) H7))))))))))))) +(\lambda (b: B).(\lambda (_: (not (eq B b Abst))).(\lambda (t0: T).(\lambda +(t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Flat Appl) +u1 t1)) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind @@ -1054,23 +1007,66 @@ Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T -(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: -T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: +(\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 -(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: +(THead (Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind -b) v2 (THead (Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: +b0) v2 (THead (Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: -T).(\lambda (t3: T).(pr0 z1 t3)))))))))))).(\lambda (u: T).(\lambda (H3: (eq -T (THead (Flat Cast) u t0) (THead (Flat Appl) u1 t1))).(let H4 \def (eq_ind T -(THead (Flat Cast) u t0) (\lambda (ee: T).(match ee in T return (\lambda (_: -T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | -(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with -[(Bind _) \Rightarrow False | (Flat f) \Rightarrow (match f in F return -(\lambda (_: F).Prop) with [Appl \Rightarrow False | Cast \Rightarrow +T).(\lambda (t3: T).(pr0 z1 t3)))))))))))).(\lambda (u: T).(\lambda (H4: (eq +T (THead (Bind b) u (lift (S O) O t0)) (THead (Flat Appl) u1 t1))).(let H5 +\def (eq_ind T (THead (Bind b) u (lift (S O) O t0)) (\lambda (ee: T).(match +ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k +_ _) \Rightarrow (match k with [(Bind _) \Rightarrow True | (Flat _) +\Rightarrow False])])) I (THead (Flat Appl) u1 t1) H4) in (False_ind (or3 +(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 +t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: +T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda +(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 +z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: +T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: +T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda +(z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T +(\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: +T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 +(THead (Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: +T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind +b0) v2 (THead (Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: +B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda +(_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) +(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (t3: T).(pr0 z1 t3))))))))) H5)))))))))) (\lambda (t0: +T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead +(Flat Appl) u1 t1)) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq +T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 +u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda +(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead +(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: +T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_: +T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda +(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) +(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: +B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: +T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T +t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2) t3))))))))) +(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: +T).(\lambda (_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda (y1: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 +v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))))))))).(\lambda (u: +T).(\lambda (H3: (eq T (THead (Flat Cast) u t0) (THead (Flat Appl) u1 +t1))).(let H4 \def (eq_ind T (THead (Flat Cast) u t0) (\lambda (ee: T).(match +ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k +_ _) \Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat f) +\Rightarrow (match f with [Appl \Rightarrow False | Cast \Rightarrow True])])])) I (THead (Flat Appl) u1 t1) H3) in (False_ind (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: @@ -1091,9 +1087,6 @@ u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))))) H4)))))))) y x H0))) H)))). -(* COMMENTS -Initial nodes: 12299 -END *) theorem pr0_gen_cast: \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Flat Cast) u1 @@ -1133,32 +1126,31 @@ T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t2))))).(\lambda (k: K).(\lambda (H5: (eq T (THead k u0 t0) (THead (Flat Cast) u1 t1))).(let H6 \def (f_equal T K (\lambda (e: T).(match -e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _) -\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u0 t0) (THead (Flat -Cast) u1 t1) H5) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e in T -return (\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _) -\Rightarrow u0 | (THead _ t _) \Rightarrow t])) (THead k u0 t0) (THead (Flat -Cast) u1 t1) H5) in ((let H8 \def (f_equal T T (\lambda (e: T).(match e in T -return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _) -\Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead k u0 t0) (THead (Flat -Cast) u1 t1) H5) in (\lambda (H9: (eq T u0 u1)).(\lambda (H10: (eq K k (Flat -Cast))).(eq_ind_r K (Flat Cast) (\lambda (k0: K).(or (ex3_2 T T (\lambda (u3: -T).(\lambda (t3: T).(eq T (THead k0 u2 t2) (THead (Flat Cast) u3 t3)))) -(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: -T).(pr0 t1 t3)))) (pr0 t1 (THead k0 u2 t2)))) (let H11 \def (eq_ind T t0 -(\lambda (t: T).((eq T t (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T -(\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u3 t3)))) -(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: -T).(pr0 t1 t3)))) (pr0 t1 t2)))) H4 t1 H8) in (let H12 \def (eq_ind T t0 -(\lambda (t: T).(pr0 t t2)) H3 t1 H8) in (let H13 \def (eq_ind T u0 (\lambda -(t: T).((eq T t (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: -T).(\lambda (t3: T).(eq T u2 (THead (Flat Cast) u3 t3)))) (\lambda (u3: +e with [(TSort _) \Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) +\Rightarrow k0])) (THead k u0 t0) (THead (Flat Cast) u1 t1) H5) in ((let H7 +\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u0 | +(TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t])) (THead k u0 t0) +(THead (Flat Cast) u1 t1) H5) in ((let H8 \def (f_equal T T (\lambda (e: +T).(match e with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | +(THead _ _ t) \Rightarrow t])) (THead k u0 t0) (THead (Flat Cast) u1 t1) H5) +in (\lambda (H9: (eq T u0 u1)).(\lambda (H10: (eq K k (Flat Cast))).(eq_ind_r +K (Flat Cast) (\lambda (k0: K).(or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: +T).(eq T (THead k0 u2 t2) (THead (Flat Cast) u3 t3)))) (\lambda (u3: +T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 +t3)))) (pr0 t1 (THead k0 u2 t2)))) (let H11 \def (eq_ind T t0 (\lambda (t: +T).((eq T t (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: +T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 -t3)))) (pr0 t1 u2)))) H2 u1 H9) in (let H14 \def (eq_ind T u0 (\lambda (t: -T).(pr0 t u2)) H1 u1 H9) in (or_introl (ex3_2 T T (\lambda (u3: T).(\lambda -(t3: T).(eq T (THead (Flat Cast) u2 t2) (THead (Flat Cast) u3 t3)))) (\lambda -(u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 -t1 t3)))) (pr0 t1 (THead (Flat Cast) u2 t2)) (ex3_2_intro T T (\lambda (u3: +t3)))) (pr0 t1 t2)))) H4 t1 H8) in (let H12 \def (eq_ind T t0 (\lambda (t: +T).(pr0 t t2)) H3 t1 H8) in (let H13 \def (eq_ind T u0 (\lambda (t: T).((eq T +t (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda +(t3: T).(eq T u2 (THead (Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_: +T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 +u2)))) H2 u1 H9) in (let H14 \def (eq_ind T u0 (\lambda (t: T).(pr0 t u2)) H1 +u1 H9) in (or_introl (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T +(THead (Flat Cast) u2 t2) (THead (Flat Cast) u3 t3)))) (\lambda (u3: +T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 +t3)))) (pr0 t1 (THead (Flat Cast) u2 t2)) (ex3_2_intro T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Flat Cast) u2 t2) (THead (Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) u2 t2 (refl_equal T (THead (Flat Cast) u2 @@ -1173,535 +1165,88 @@ T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t2))))).(\lambda (H5: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (THead (Flat Cast) u1 t1))).(let H6 \def (eq_ind T (THead (Flat -Appl) v1 (THead (Bind Abst) u t0)) (\lambda (ee: T).(match ee in T return -(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda -(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat f) \Rightarrow (match f -in F return (\lambda (_: F).Prop) with [Appl \Rightarrow True | Cast -\Rightarrow False])])])) I (THead (Flat Cast) u1 t1) H5) in (False_ind (or -(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) v2 t2) -(THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) -(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (THead (Bind Abbr) v2 -t2))) H6)))))))))))) (\lambda (b: B).(\lambda (_: (not (eq B b -Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda -(_: (((eq T v1 (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u2: -T).(\lambda (t2: T).(eq T v2 (THead (Flat Cast) u2 t2)))) (\lambda (u2: -T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 -t2)))) (pr0 t1 v2))))).(\lambda (u0: T).(\lambda (u2: T).(\lambda (_: (pr0 u0 -u2)).(\lambda (_: (((eq T u0 (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T -(\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Flat Cast) u3 t2)))) -(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2: -T).(pr0 t1 t2)))) (pr0 t1 u2))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda -(_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Flat Cast) u1 t1)) \to (or -(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u3 -t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: -T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t2))))).(\lambda (H8: (eq T (THead -(Flat Appl) v1 (THead (Bind b) u0 t0)) (THead (Flat Cast) u1 t1))).(let H9 -\def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (\lambda (ee: -T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow -False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K -return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat f) -\Rightarrow (match f in F return (\lambda (_: F).Prop) with [Appl \Rightarrow -True | Cast \Rightarrow False])])])) I (THead (Flat Cast) u1 t1) H8) in -(False_ind (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2)) (THead (Flat Cast) u3 -t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: -T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t2)))) H9))))))))))))))))) (\lambda (u0: T).(\lambda -(u2: T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead (Flat Cast) -u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead -(Flat Cast) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda -(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 u2))))).(\lambda (t0: -T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead -(Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq -T t2 (THead (Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 -u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 -t2))))).(\lambda (w: T).(\lambda (_: (subst0 O u2 t2 w)).(\lambda (H6: (eq T -(THead (Bind Abbr) u0 t0) (THead (Flat Cast) u1 t1))).(let H7 \def (eq_ind T -(THead (Bind Abbr) u0 t0) (\lambda (ee: T).(match ee in T return (\lambda (_: -T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | -(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with -[(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat -Cast) u1 t1) H6) in (False_ind (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: -T).(eq T (THead (Bind Abbr) u2 w) (THead (Flat Cast) u3 t3)))) (\lambda (u3: -T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 -t3)))) (pr0 t1 (THead (Bind Abbr) u2 w))) H7))))))))))))) (\lambda (b: -B).(\lambda (_: (not (eq B b Abst))).(\lambda (t0: T).(\lambda (t2: -T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Flat Cast) u1 -t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead -(Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda -(_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t2))))).(\lambda (u: -T).(\lambda (H4: (eq T (THead (Bind b) u (lift (S O) O t0)) (THead (Flat -Cast) u1 t1))).(let H5 \def (eq_ind T (THead (Bind b) u (lift (S O) O t0)) -(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) +Appl) v1 (THead (Bind Abst) u t0)) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow -(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow True | -(Flat _) \Rightarrow False])])) I (THead (Flat Cast) u1 t1) H4) in (False_ind -(or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) -u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: -T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t2)) H5)))))))))) (\lambda (t0: -T).(\lambda (t2: T).(\lambda (H1: (pr0 t0 t2)).(\lambda (H2: (((eq T t0 -(THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: -T).(eq T t2 (THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: -T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 -t2))))).(\lambda (u: T).(\lambda (H3: (eq T (THead (Flat Cast) u t0) (THead -(Flat Cast) u1 t1))).(let H4 \def (f_equal T T (\lambda (e: T).(match e in T -return (\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _) -\Rightarrow u | (THead _ t _) \Rightarrow t])) (THead (Flat Cast) u t0) -(THead (Flat Cast) u1 t1) H3) in ((let H5 \def (f_equal T T (\lambda (e: -T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | -(TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead (Flat Cast) -u t0) (THead (Flat Cast) u1 t1) H3) in (\lambda (_: (eq T u u1)).(let H7 \def -(eq_ind T t0 (\lambda (t: T).((eq T t (THead (Flat Cast) u1 t1)) \to (or -(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u2 -t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: -T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t2)))) H2 t1 H5) in (let H8 \def -(eq_ind T t0 (\lambda (t: T).(pr0 t t2)) H1 t1 H5) in (or_intror (ex3_2 T T -(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u2 t3)))) -(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: -T).(pr0 t1 t3)))) (pr0 t1 t2) H8))))) H4)))))))) y x H0))) H)))). -(* COMMENTS -Initial nodes: 2911 -END *) - -theorem pr0_gen_abbr: - \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Abbr) u1 -t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead -(Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda -(u2: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y)) -(\lambda (y: T).(subst0 O u2 y t2))))))) (pr0 t1 (lift (S O) O x)))))) -\def - \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead -(Bind Abbr) u1 t1) x)).(insert_eq T (THead (Bind Abbr) u1 t1) (\lambda (t: -T).(pr0 t x)) (\lambda (_: T).(or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: -T).(eq T x (THead (Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 -u1 u2))) (\lambda (u2: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda -(y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y t2))))))) (pr0 t1 (lift (S -O) O x)))) (\lambda (y: T).(\lambda (H0: (pr0 y x)).(pr0_ind (\lambda (t: -T).(\lambda (t0: T).((eq T t (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T -(\lambda (u2: T).(\lambda (t2: T).(eq T t0 (THead (Bind Abbr) u2 t2)))) -(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2: -T).(or (pr0 t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: -T).(subst0 O u2 y0 t2))))))) (pr0 t1 (lift (S O) O t0)))))) (\lambda (t: -T).(\lambda (H1: (eq T t (THead (Bind Abbr) u1 t1))).(let H2 \def (f_equal T -T (\lambda (e: T).e) t (THead (Bind Abbr) u1 t1) H1) in (eq_ind_r T (THead -(Bind Abbr) u1 t1) (\lambda (t0: T).(or (ex3_2 T T (\lambda (u2: T).(\lambda -(t2: T).(eq T t0 (THead (Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: -T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T -(\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u2 y0 t2))))))) (pr0 -t1 (lift (S O) O t0)))) (or_introl (ex3_2 T T (\lambda (u2: T).(\lambda (t2: -T).(eq T (THead (Bind Abbr) u1 t1) (THead (Bind Abbr) u2 t2)))) (\lambda (u2: -T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2: T).(or (pr0 -t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u2 y0 -t2))))))) (pr0 t1 (lift (S O) O (THead (Bind Abbr) u1 t1))) (ex3_2_intro T T -(\lambda (u2: T).(\lambda (t2: T).(eq T (THead (Bind Abbr) u1 t1) (THead -(Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda -(u2: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) -(\lambda (y0: T).(subst0 O u2 y0 t2)))))) u1 t1 (refl_equal T (THead (Bind -Abbr) u1 t1)) (pr0_refl u1) (or_introl (pr0 t1 t1) (ex2 T (\lambda (y0: -T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u1 y0 t1))) (pr0_refl t1)))) t -H2)))) (\lambda (u0: T).(\lambda (u2: T).(\lambda (H1: (pr0 u0 u2)).(\lambda -(H2: (((eq T u0 (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: -T).(\lambda (t2: T).(eq T u2 (THead (Bind Abbr) u3 t2)))) (\lambda (u3: -T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t2: T).(or (pr0 -t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 -t2))))))) (pr0 t1 (lift (S O) O u2)))))).(\lambda (t0: T).(\lambda (t2: -T).(\lambda (H3: (pr0 t0 t2)).(\lambda (H4: (((eq T t0 (THead (Bind Abbr) u1 -t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead -(Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda -(u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) -(\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O -t2)))))).(\lambda (k: K).(\lambda (H5: (eq T (THead k u0 t0) (THead (Bind -Abbr) u1 t1))).(let H6 \def (f_equal T K (\lambda (e: T).(match e in T return -(\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _) \Rightarrow k | -(THead k0 _ _) \Rightarrow k0])) (THead k u0 t0) (THead (Bind Abbr) u1 t1) -H5) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e in T return -(\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 -| (THead _ t _) \Rightarrow t])) (THead k u0 t0) (THead (Bind Abbr) u1 t1) -H5) in ((let H8 \def (f_equal T T (\lambda (e: T).(match e in T return -(\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 -| (THead _ _ t) \Rightarrow t])) (THead k u0 t0) (THead (Bind Abbr) u1 t1) -H5) in (\lambda (H9: (eq T u0 u1)).(\lambda (H10: (eq K k (Bind -Abbr))).(eq_ind_r K (Bind Abbr) (\lambda (k0: K).(or (ex3_2 T T (\lambda (u3: -T).(\lambda (t3: T).(eq T (THead k0 u2 t2) (THead (Bind Abbr) u3 t3)))) -(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: -T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: -T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O (THead k0 u2 t2))))) (let -H11 \def (eq_ind T t0 (\lambda (t: T).((eq T t (THead (Bind Abbr) u1 t1)) \to -(or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) -u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: -T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) -(\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O t2))))) H4 -t1 H8) in (let H12 \def (eq_ind T t0 (\lambda (t: T).(pr0 t t2)) H3 t1 H8) in -(let H13 \def (eq_ind T u0 (\lambda (t: T).((eq T t (THead (Bind Abbr) u1 -t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T u2 (THead -(Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda -(u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) -(\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O u2))))) H2 -u1 H9) in (let H14 \def (eq_ind T u0 (\lambda (t: T).(pr0 t u2)) H1 u1 H9) in -(or_introl (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind -Abbr) u2 t2) (THead (Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: -T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T -(\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0 -t1 (lift (S O) O (THead (Bind Abbr) u2 t2))) (ex3_2_intro T T (\lambda (u3: -T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 t2) (THead (Bind Abbr) u3 -t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: -T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) -(\lambda (y0: T).(subst0 O u3 y0 t3)))))) u2 t2 (refl_equal T (THead (Bind -Abbr) u2 t2)) H14 (or_introl (pr0 t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) -(\lambda (y0: T).(subst0 O u2 y0 t2))) H12))))))) k H10)))) H7)) -H6)))))))))))) (\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: -(pr0 v1 v2)).(\lambda (_: (((eq T v1 (THead (Bind Abbr) u1 t1)) \to (or -(ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead (Bind Abbr) u2 -t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: -T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) -(\lambda (y0: T).(subst0 O u2 y0 t2))))))) (pr0 t1 (lift (S O) O -v2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda -(_: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u2: -T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))) (\lambda (u2: -T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t3: T).(or (pr0 -t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u2 y0 -t3))))))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (H5: (eq T (THead (Flat -Appl) v1 (THead (Bind Abst) u t0)) (THead (Bind Abbr) u1 t1))).(let H6 \def -(eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (\lambda (ee: -T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow -False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K -return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) -\Rightarrow True])])) I (THead (Bind Abbr) u1 t1) H5) in (False_ind (or -(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) v2 t2) -(THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) -(\lambda (u2: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: -T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t1 (lift (S -O) O (THead (Bind Abbr) v2 t2)))) H6)))))))))))) (\lambda (b: B).(\lambda (_: -(not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 -v2)).(\lambda (_: (((eq T v1 (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T -(\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead (Bind Abbr) u2 t2)))) -(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2: -T).(or (pr0 t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: -T).(subst0 O u2 y0 t2))))))) (pr0 t1 (lift (S O) O v2)))))).(\lambda (u0: +(match k with [(Bind _) \Rightarrow False | (Flat f) \Rightarrow (match f +with [Appl \Rightarrow True | Cast \Rightarrow False])])])) I (THead (Flat +Cast) u1 t1) H5) in (False_ind (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: +T).(eq T (THead (Bind Abbr) v2 t2) (THead (Flat Cast) u2 t3)))) (\lambda (u2: +T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 +t3)))) (pr0 t1 (THead (Bind Abbr) v2 t2))) H6)))))))))))) (\lambda (b: +B).(\lambda (_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2: +T).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (((eq T v1 (THead (Flat Cast) u1 +t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead +(Flat Cast) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda +(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 v2))))).(\lambda (u0: T).(\lambda (u2: T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead -(Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq -T u2 (THead (Bind Abbr) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 -u3))) (\lambda (u3: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y0: -T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t2))))))) (pr0 t1 (lift (S -O) O u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 -t2)).(\lambda (_: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T -(\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u3 t3)))) -(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: -T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: -T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (H8: (eq -T (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead (Bind Abbr) u1 -t1))).(let H9 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) -(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) -\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow -(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | -(Flat _) \Rightarrow True])])) I (THead (Bind Abbr) u1 t1) H8) in (False_ind -(or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t2)) (THead (Bind Abbr) u3 t3)))) -(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: -T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: -T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t2))))) H9))))))))))))))))) (\lambda (u0: -T).(\lambda (u2: T).(\lambda (H1: (pr0 u0 u2)).(\lambda (H2: (((eq T u0 -(THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: -T).(eq T u2 (THead (Bind Abbr) u3 t2)))) (\lambda (u3: T).(\lambda (_: -T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T -(\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t2))))))) (pr0 -t1 (lift (S O) O u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H3: -(pr0 t0 t2)).(\lambda (H4: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or -(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u3 -t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: -T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) -(\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O -t2)))))).(\lambda (w: T).(\lambda (H5: (subst0 O u2 t2 w)).(\lambda (H6: (eq -T (THead (Bind Abbr) u0 t0) (THead (Bind Abbr) u1 t1))).(let H7 \def (f_equal -T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t])) -(THead (Bind Abbr) u0 t0) (THead (Bind Abbr) u1 t1) H6) in ((let H8 \def -(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with -[(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t) -\Rightarrow t])) (THead (Bind Abbr) u0 t0) (THead (Bind Abbr) u1 t1) H6) in -(\lambda (H9: (eq T u0 u1)).(let H10 \def (eq_ind T t0 (\lambda (t: T).((eq T -t (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda -(t3: T).(eq T t2 (THead (Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: -T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T -(\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0 -t1 (lift (S O) O t2))))) H4 t1 H8) in (let H11 \def (eq_ind T t0 (\lambda (t: -T).(pr0 t t2)) H3 t1 H8) in (let H12 \def (eq_ind T u0 (\lambda (t: T).((eq T -t (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda -(t3: T).(eq T u2 (THead (Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: -T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T -(\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0 -t1 (lift (S O) O u2))))) H2 u1 H9) in (let H13 \def (eq_ind T u0 (\lambda (t: -T).(pr0 t u2)) H1 u1 H9) in (or_introl (ex3_2 T T (\lambda (u3: T).(\lambda -(t3: T).(eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u3 t3)))) (\lambda -(u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or -(pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O -u3 y0 t3))))))) (pr0 t1 (lift (S O) O (THead (Bind Abbr) u2 w))) (ex3_2_intro -T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 w) (THead -(Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda -(u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) -(\lambda (y0: T).(subst0 O u3 y0 t3)))))) u2 w (refl_equal T (THead (Bind -Abbr) u2 w)) H13 (or_intror (pr0 t1 w) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) -(\lambda (y0: T).(subst0 O u2 y0 w))) (ex_intro2 T (\lambda (y0: T).(pr0 t1 -y0)) (\lambda (y0: T).(subst0 O u2 y0 w)) t2 H11 H5)))))))))) H7))))))))))))) -(\lambda (b: B).(\lambda (H1: (not (eq B b Abst))).(\lambda (t0: T).(\lambda -(t2: T).(\lambda (H2: (pr0 t0 t2)).(\lambda (H3: (((eq T t0 (THead (Bind -Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 -(THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) -(\lambda (u2: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: -T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t1 (lift (S -O) O t2)))))).(\lambda (u: T).(\lambda (H4: (eq T (THead (Bind b) u (lift (S -O) O t0)) (THead (Bind Abbr) u1 t1))).(let H5 \def (f_equal T B (\lambda (e: -T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b | -(TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k in K return -(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow -b])])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abbr) u1 t1) H4) in -((let H6 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: -T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t _) -\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abbr) u1 -t1) H4) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e in T return -(\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f: ((nat -\to nat))) (d: nat) (t: T) on t: T \def (match t with [(TSort n) \Rightarrow -(TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with [true -\Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t3) \Rightarrow -(THead k (lref_map f d u0) (lref_map f (s k d) t3))]) in lref_map) (\lambda -(x0: nat).(plus x0 (S O))) O t0) | (TLRef _) \Rightarrow ((let rec lref_map -(f: ((nat \to nat))) (d: nat) (t: T) on t: T \def (match t with [(TSort n) -\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with -[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t3) -\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t3))]) in -lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (THead _ _ t) -\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abbr) u1 -t1) H4) in (\lambda (_: (eq T u u1)).(\lambda (H9: (eq B b Abbr)).(let H10 -\def (eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H1 Abbr H9) in (let -H11 \def (eq_ind_r T t1 (\lambda (t: T).((eq T t0 (THead (Bind Abbr) u1 t)) -\to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind -Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: -T).(\lambda (t3: T).(or (pr0 t t3) (ex2 T (\lambda (y0: T).(pr0 t y0)) -(\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t (lift (S O) O t2))))) H3 -(lift (S O) O t0) H7) in (eq_ind T (lift (S O) O t0) (\lambda (t: T).(or -(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 -t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: -T).(\lambda (t3: T).(or (pr0 t t3) (ex2 T (\lambda (y0: T).(pr0 t y0)) -(\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t (lift (S O) O t2)))) -(or_intror (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind -Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: -T).(\lambda (t3: T).(or (pr0 (lift (S O) O t0) t3) (ex2 T (\lambda (y0: -T).(pr0 (lift (S O) O t0) y0)) (\lambda (y0: T).(subst0 O u2 y0 t3))))))) -(pr0 (lift (S O) O t0) (lift (S O) O t2)) (pr0_lift t0 t2 H2 (S O) O)) t1 -H7)))))) H6)) H5)))))))))) (\lambda (t0: T).(\lambda (t2: T).(\lambda (_: -(pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or -(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 -t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: -T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) -(\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t1 (lift (S O) O -t2)))))).(\lambda (u: T).(\lambda (H3: (eq T (THead (Flat Cast) u t0) (THead -(Bind Abbr) u1 t1))).(let H4 \def (eq_ind T (THead (Flat Cast) u t0) (\lambda -(ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) +(Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq +T u2 (THead (Flat Cast) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 +u3))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 +u2))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda +(_: (((eq T t0 (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: +T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u3 t3)))) (\lambda (u3: +T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 +t3)))) (pr0 t1 t2))))).(\lambda (H8: (eq T (THead (Flat Appl) v1 (THead (Bind +b) u0 t0)) (THead (Flat Cast) u1 t1))).(let H9 \def (eq_ind T (THead (Flat +Appl) v1 (THead (Bind b) u0 t0)) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow -(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | -(Flat _) \Rightarrow True])])) I (THead (Bind Abbr) u1 t1) H3) in (False_ind -(or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) -u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: -T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) -(\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t1 (lift (S O) O t2))) -H4)))))))) y x H0))) H)))). -(* COMMENTS -Initial nodes: 4711 -END *) - -theorem pr0_gen_void: - \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Void) u1 -t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead -(Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda -(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O x)))))) -\def - \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead -(Bind Void) u1 t1) x)).(insert_eq T (THead (Bind Void) u1 t1) (\lambda (t: -T).(pr0 t x)) (\lambda (_: T).(or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: -T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 -u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) -O x)))) (\lambda (y: T).(\lambda (H0: (pr0 y x)).(pr0_ind (\lambda (t: -T).(\lambda (t0: T).((eq T t (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T -(\lambda (u2: T).(\lambda (t2: T).(eq T t0 (THead (Bind Void) u2 t2)))) -(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: -T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O t0)))))) (\lambda (t: T).(\lambda -(H1: (eq T t (THead (Bind Void) u1 t1))).(let H2 \def (f_equal T T (\lambda -(e: T).e) t (THead (Bind Void) u1 t1) H1) in (eq_ind_r T (THead (Bind Void) -u1 t1) (\lambda (t0: T).(or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq -T t0 (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 -u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O -t0)))) (or_introl (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T (THead -(Bind Void) u1 t1) (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: -T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 -(lift (S O) O (THead (Bind Void) u1 t1))) (ex3_2_intro T T (\lambda (u2: -T).(\lambda (t2: T).(eq T (THead (Bind Void) u1 t1) (THead (Bind Void) u2 -t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: -T).(\lambda (t2: T).(pr0 t1 t2))) u1 t1 (refl_equal T (THead (Bind Void) u1 -t1)) (pr0_refl u1) (pr0_refl t1))) t H2)))) (\lambda (u0: T).(\lambda (u2: -T).(\lambda (H1: (pr0 u0 u2)).(\lambda (H2: (((eq T u0 (THead (Bind Void) u1 -t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead -(Bind Void) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda -(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O -u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H3: (pr0 t0 -t2)).(\lambda (H4: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T -(\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u3 t3)))) -(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: -T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (k: K).(\lambda -(H5: (eq T (THead k u0 t0) (THead (Bind Void) u1 t1))).(let H6 \def (f_equal -T K (\lambda (e: T).(match e in T return (\lambda (_: T).K) with [(TSort _) -\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0])) -(THead k u0 t0) (THead (Bind Void) u1 t1) H5) in ((let H7 \def (f_equal T T -(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t])) -(THead k u0 t0) (THead (Bind Void) u1 t1) H5) in ((let H8 \def (f_equal T T -(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t])) -(THead k u0 t0) (THead (Bind Void) u1 t1) H5) in (\lambda (H9: (eq T u0 -u1)).(\lambda (H10: (eq K k (Bind Void))).(eq_ind_r K (Bind Void) (\lambda -(k0: K).(or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead k0 u2 -t2) (THead (Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 -u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O -(THead k0 u2 t2))))) (let H11 \def (eq_ind T t0 (\lambda (t: T).((eq T t -(THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: -T).(eq T t2 (THead (Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_: -T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 -(lift (S O) O t2))))) H4 t1 H8) in (let H12 \def (eq_ind T t0 (\lambda (t: -T).(pr0 t t2)) H3 t1 H8) in (let H13 \def (eq_ind T u0 (\lambda (t: T).((eq T -t (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda -(t3: T).(eq T u2 (THead (Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_: -T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 -(lift (S O) O u2))))) H2 u1 H9) in (let H14 \def (eq_ind T u0 (\lambda (t: -T).(pr0 t u2)) H1 u1 H9) in (or_introl (ex3_2 T T (\lambda (u3: T).(\lambda -(t3: T).(eq T (THead (Bind Void) u2 t2) (THead (Bind Void) u3 t3)))) (\lambda -(u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 -t1 t3)))) (pr0 t1 (lift (S O) O (THead (Bind Void) u2 t2))) (ex3_2_intro T T -(\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Void) u2 t2) (THead -(Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda -(_: T).(\lambda (t3: T).(pr0 t1 t3))) u2 t2 (refl_equal T (THead (Bind Void) -u2 t2)) H14 H12)))))) k H10)))) H7)) H6)))))))))))) (\lambda (u: T).(\lambda -(v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (((eq T v1 -(THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: -T).(eq T v2 (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: -T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 -(lift (S O) O v2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 -t2)).(\lambda (_: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T -(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u2 t3)))) -(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: -T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (H5: (eq T (THead -(Flat Appl) v1 (THead (Bind Abst) u t0)) (THead (Bind Void) u1 t1))).(let H6 -\def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (\lambda (ee: -T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow -False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K -return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) -\Rightarrow True])])) I (THead (Bind Void) u1 t1) H5) in (False_ind (or -(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) v2 t2) -(THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) -(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O (THead -(Bind Abbr) v2 t2)))) H6)))))))))))) (\lambda (b: B).(\lambda (_: (not (eq B -b Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 -v2)).(\lambda (_: (((eq T v1 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T -(\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead (Bind Void) u2 t2)))) -(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: -T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O v2)))))).(\lambda (u0: T).(\lambda -(u2: T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead (Bind Void) -u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead -(Bind Void) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda -(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O -u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda -(_: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: -T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u3 t3)))) (\lambda (u3: +(match k with [(Bind _) \Rightarrow False | (Flat f) \Rightarrow (match f +with [Appl \Rightarrow True | Cast \Rightarrow False])])])) I (THead (Flat +Cast) u1 t1) H8) in (False_ind (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: +T).(eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2)) (THead +(Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda +(_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O v2) t2)))) H9))))))))))))))))) (\lambda (u0: +T).(\lambda (u2: T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead +(Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq +T u2 (THead (Flat Cast) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 +u3))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 +u2))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda +(_: (((eq T t0 (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: +T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 -t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (H8: (eq T (THead (Flat Appl) -v1 (THead (Bind b) u0 t0)) (THead (Bind Void) u1 t1))).(let H9 \def (eq_ind T -(THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (\lambda (ee: T).(match ee in T -return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda -(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow -True])])) I (THead (Bind Void) u1 t1) H8) in (False_ind (or (ex3_2 T T -(\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t2)) (THead (Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda -(_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 -(lift (S O) O (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2))))) -H9))))))))))))))))) (\lambda (u0: T).(\lambda (u2: T).(\lambda (_: (pr0 u0 -u2)).(\lambda (_: (((eq T u0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T -(\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Bind Void) u3 t2)))) -(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2: -T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O u2)))))).(\lambda (t0: T).(\lambda -(t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Void) -u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead -(Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda -(_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O -t2)))))).(\lambda (w: T).(\lambda (_: (subst0 O u2 t2 w)).(\lambda (H6: (eq T -(THead (Bind Abbr) u0 t0) (THead (Bind Void) u1 t1))).(let H7 \def (eq_ind T -(THead (Bind Abbr) u0 t0) (\lambda (ee: T).(match ee in T return (\lambda (_: -T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | -(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with -[(Bind b) \Rightarrow (match b in B return (\lambda (_: B).Prop) with [Abbr -\Rightarrow True | Abst \Rightarrow False | Void \Rightarrow False]) | (Flat -_) \Rightarrow False])])) I (THead (Bind Void) u1 t1) H6) in (False_ind (or +t3)))) (pr0 t1 t2))))).(\lambda (w: T).(\lambda (_: (subst0 O u2 t2 +w)).(\lambda (H6: (eq T (THead (Bind Abbr) u0 t0) (THead (Flat Cast) u1 +t1))).(let H7 \def (eq_ind T (THead (Bind Abbr) u0 t0) (\lambda (ee: +T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False +| (THead k _ _) \Rightarrow (match k with [(Bind _) \Rightarrow True | (Flat +_) \Rightarrow False])])) I (THead (Flat Cast) u1 t1) H6) in (False_ind (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 w) -(THead (Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) -(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O (THead -(Bind Abbr) u2 w)))) H7))))))))))))) (\lambda (b: B).(\lambda (H1: (not (eq B -b Abst))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H2: (pr0 t0 -t2)).(\lambda (H3: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T -(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u2 t3)))) -(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: -T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (u: T).(\lambda -(H4: (eq T (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Void) u1 -t1))).(let H5 \def (f_equal T B (\lambda (e: T).(match e in T return (\lambda -(_: T).B) with [(TSort _) \Rightarrow b | (TLRef _) \Rightarrow b | (THead k -_ _) \Rightarrow (match k in K return (\lambda (_: K).B) with [(Bind b0) -\Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead (Bind b) u (lift (S O) O -t0)) (THead (Bind Void) u1 t1) H4) in ((let H6 \def (f_equal T T (\lambda (e: -T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u | -(TLRef _) \Rightarrow u | (THead _ t _) \Rightarrow t])) (THead (Bind b) u -(lift (S O) O t0)) (THead (Bind Void) u1 t1) H4) in ((let H7 \def (f_equal T -T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t: T) on t: T -\def (match t with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow -(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) -| (THead k u0 t3) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) -t3))]) in lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (TLRef _) -\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t: T) on t: T -\def (match t with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow -(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) -| (THead k u0 t3) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) -t3))]) in lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (THead _ _ t) -\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Void) u1 -t1) H4) in (\lambda (_: (eq T u u1)).(\lambda (H9: (eq B b Void)).(let H10 -\def (eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H1 Void H9) in (let -H11 \def (eq_ind_r T t1 (\lambda (t: T).((eq T t0 (THead (Bind Void) u1 t)) -\to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind -Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: -T).(\lambda (t3: T).(pr0 t t3)))) (pr0 t (lift (S O) O t2))))) H3 (lift (S O) -O t0) H7) in (eq_ind T (lift (S O) O t0) (\lambda (t: T).(or (ex3_2 T T -(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u2 t3)))) -(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: -T).(pr0 t t3)))) (pr0 t (lift (S O) O t2)))) (or_intror (ex3_2 T T (\lambda -(u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u2 t3)))) (\lambda (u2: -T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 (lift -(S O) O t0) t3)))) (pr0 (lift (S O) O t0) (lift (S O) O t2)) (pr0_lift t0 t2 -H2 (S O) O)) t1 H7)))))) H6)) H5)))))))))) (\lambda (t0: T).(\lambda (t2: -T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Void) u1 -t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead -(Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda -(_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O -t2)))))).(\lambda (u: T).(\lambda (H3: (eq T (THead (Flat Cast) u t0) (THead -(Bind Void) u1 t1))).(let H4 \def (eq_ind T (THead (Flat Cast) u t0) (\lambda -(ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) +(THead (Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) +(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (THead (Bind Abbr) u2 +w))) H7))))))))))))) (\lambda (b: B).(\lambda (_: (not (eq B b +Abst))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda +(_: (((eq T t0 (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u2: +T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u2 t3)))) (\lambda (u2: +T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 +t3)))) (pr0 t1 t2))))).(\lambda (u: T).(\lambda (H4: (eq T (THead (Bind b) u +(lift (S O) O t0)) (THead (Flat Cast) u1 t1))).(let H5 \def (eq_ind T (THead +(Bind b) u (lift (S O) O t0)) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow -(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | -(Flat _) \Rightarrow True])])) I (THead (Bind Void) u1 t1) H3) in (False_ind -(or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) -u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: -T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O t2))) H4)))))))) y x -H0))) H)))). -(* COMMENTS -Initial nodes: 3436 -END *) +(match k with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])) I +(THead (Flat Cast) u1 t1) H4) in (False_ind (or (ex3_2 T T (\lambda (u2: +T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u2 t3)))) (\lambda (u2: +T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 +t3)))) (pr0 t1 t2)) H5)))))))))) (\lambda (t0: T).(\lambda (t2: T).(\lambda +(H1: (pr0 t0 t2)).(\lambda (H2: (((eq T t0 (THead (Flat Cast) u1 t1)) \to (or +(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u2 +t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: +T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t2))))).(\lambda (u: T).(\lambda +(H3: (eq T (THead (Flat Cast) u t0) (THead (Flat Cast) u1 t1))).(let H4 \def +(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u | (TLRef +_) \Rightarrow u | (THead _ t _) \Rightarrow t])) (THead (Flat Cast) u t0) +(THead (Flat Cast) u1 t1) H3) in ((let H5 \def (f_equal T T (\lambda (e: +T).(match e with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | +(THead _ _ t) \Rightarrow t])) (THead (Flat Cast) u t0) (THead (Flat Cast) u1 +t1) H3) in (\lambda (_: (eq T u u1)).(let H7 \def (eq_ind T t0 (\lambda (t: +T).((eq T t (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u2: +T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u2 t3)))) (\lambda (u2: +T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 +t3)))) (pr0 t1 t2)))) H2 t1 H5) in (let H8 \def (eq_ind T t0 (\lambda (t: +T).(pr0 t t2)) H1 t1 H5) in (or_intror (ex3_2 T T (\lambda (u2: T).(\lambda +(t3: T).(eq T t2 (THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: +T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t2) +H8))))) H4)))))))) y x H0))) H)))). theorem pr0_gen_lift: \forall (t1: T).(\forall (x: T).(\forall (h: nat).(\forall (d: nat).((pr0 @@ -1970,49 +1515,46 @@ T u (lift h x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T (lift (S O) O t2) x2))).(\lambda (H7: (eq T (lift (S O) O t2) (lift h (S x1) x3))).(eq_ind_r T (THead (Bind b) x2 x3) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 t t4)))) (let H8 \def (eq_ind_r nat (plus (S -O) x1) (\lambda (n: nat).(eq nat (S x1) n)) (refl_equal nat (plus (S O) x1)) -(plus x1 (S O)) (plus_sym x1 (S O))) in (let H9 \def (eq_ind nat (S x1) -(\lambda (n: nat).(eq T (lift (S O) O t2) (lift h n x3))) H7 (plus x1 (S O)) -H8) in (ex2_ind T (\lambda (t4: T).(eq T x3 (lift (S O) O t4))) (\lambda (t4: -T).(eq T t2 (lift h x1 t4))) (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 -t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 x3) t4))) (\lambda (x4: -T).(\lambda (H10: (eq T x3 (lift (S O) O x4))).(\lambda (H11: (eq T t2 (lift -h x1 x4))).(eq_ind_r T (lift (S O) O x4) (\lambda (t: T).(ex2 T (\lambda (t4: -T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 t) -t4)))) (ex2_ind T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: -T).(pr0 x4 t4)) (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda -(t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O x4)) t4))) (\lambda (x5: -T).(\lambda (H_x: (eq T t3 (lift h x1 x5))).(\lambda (H12: (pr0 x4 -x5)).(eq_ind_r T (lift h x1 x5) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T -t (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O -x4)) t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (lift h x1 x5) (lift h x1 -t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O x4)) t4)) x5 -(refl_equal T (lift h x1 x5)) (pr0_zeta b H1 x4 x5 H12 x2)) t3 H_x)))) (H3 x4 -x1 H11)) x3 H10)))) (lift_gen_lift t2 x3 (S O) h O x1 (le_O_n x1) H9)))) x0 -H5)))))) (lift_gen_bind b u (lift (S O) O t2) x0 h x1 H4)))))))))))) (\lambda -(t2: T).(\lambda (t3: T).(\lambda (_: (pr0 t2 t3)).(\lambda (H2: ((\forall -(x0: T).(\forall (x1: nat).((eq T t2 (lift h x1 x0)) \to (ex2 T (\lambda (t4: -T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4)))))))).(\lambda (u: -T).(\lambda (x0: T).(\lambda (x1: nat).(\lambda (H3: (eq T (THead (Flat Cast) -u t2) (lift h x1 x0))).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z: T).(eq T -x0 (THead (Flat Cast) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T u (lift -h x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T t2 (lift h x1 z)))) (ex2 T -(\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4))) -(\lambda (x2: T).(\lambda (x3: T).(\lambda (H4: (eq T x0 (THead (Flat Cast) -x2 x3))).(\lambda (_: (eq T u (lift h x1 x2))).(\lambda (H6: (eq T t2 (lift h -x1 x3))).(eq_ind_r T (THead (Flat Cast) x2 x3) (\lambda (t: T).(ex2 T -(\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 t t4)))) -(ex2_ind T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 -x3 t4)) (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: -T).(pr0 (THead (Flat Cast) x2 x3) t4))) (\lambda (x4: T).(\lambda (H_x: (eq T -t3 (lift h x1 x4))).(\lambda (H7: (pr0 x3 x4)).(eq_ind_r T (lift h x1 x4) -(\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T t (lift h x1 t4))) (\lambda -(t4: T).(pr0 (THead (Flat Cast) x2 x3) t4)))) (ex_intro2 T (\lambda (t4: -T).(eq T (lift h x1 x4) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat -Cast) x2 x3) t4)) x4 (refl_equal T (lift h x1 x4)) (pr0_tau x3 x4 H7 x2)) t3 -H_x)))) (H2 x3 x1 H6)) x0 H4)))))) (lift_gen_flat Cast u t2 x0 h x1 -H3)))))))))) y x H0))))) H))))). -(* COMMENTS -Initial nodes: 7569 -END *) +O) x1) (\lambda (n: nat).(eq nat (S x1) n)) (le_antisym (S x1) (plus (S O) +x1) (le_n (plus (S O) x1)) (le_n (S x1))) (plus x1 (S O)) (plus_sym x1 (S +O))) in (let H9 \def (eq_ind nat (S x1) (\lambda (n: nat).(eq T (lift (S O) O +t2) (lift h n x3))) H7 (plus x1 (S O)) H8) in (ex2_ind T (\lambda (t4: T).(eq +T x3 (lift (S O) O t4))) (\lambda (t4: T).(eq T t2 (lift h x1 t4))) (ex2 T +(\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind +b) x2 x3) t4))) (\lambda (x4: T).(\lambda (H10: (eq T x3 (lift (S O) O +x4))).(\lambda (H11: (eq T t2 (lift h x1 x4))).(eq_ind_r T (lift (S O) O x4) +(\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda +(t4: T).(pr0 (THead (Bind b) x2 t) t4)))) (ex2_ind T (\lambda (t4: T).(eq T +t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x4 t4)) (ex2 T (\lambda (t4: T).(eq +T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O +x4)) t4))) (\lambda (x5: T).(\lambda (H_x: (eq T t3 (lift h x1 x5))).(\lambda +(H12: (pr0 x4 x5)).(eq_ind_r T (lift h x1 x5) (\lambda (t: T).(ex2 T (\lambda +(t4: T).(eq T t (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 +(lift (S O) O x4)) t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (lift h x1 x5) +(lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O x4)) +t4)) x5 (refl_equal T (lift h x1 x5)) (pr0_zeta b H1 x4 x5 H12 x2)) t3 +H_x)))) (H3 x4 x1 H11)) x3 H10)))) (lift_gen_lift t2 x3 (S O) h O x1 (le_O_n +x1) H9)))) x0 H5)))))) (lift_gen_bind b u (lift (S O) O t2) x0 h x1 +H4)))))))))))) (\lambda (t2: T).(\lambda (t3: T).(\lambda (_: (pr0 t2 +t3)).(\lambda (H2: ((\forall (x0: T).(\forall (x1: nat).((eq T t2 (lift h x1 +x0)) \to (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: +T).(pr0 x0 t4)))))))).(\lambda (u: T).(\lambda (x0: T).(\lambda (x1: +nat).(\lambda (H3: (eq T (THead (Flat Cast) u t2) (lift h x1 x0))).(ex3_2_ind +T T (\lambda (y0: T).(\lambda (z: T).(eq T x0 (THead (Flat Cast) y0 z)))) +(\lambda (y0: T).(\lambda (_: T).(eq T u (lift h x1 y0)))) (\lambda (_: +T).(\lambda (z: T).(eq T t2 (lift h x1 z)))) (ex2 T (\lambda (t4: T).(eq T t3 +(lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4))) (\lambda (x2: T).(\lambda +(x3: T).(\lambda (H4: (eq T x0 (THead (Flat Cast) x2 x3))).(\lambda (_: (eq T +u (lift h x1 x2))).(\lambda (H6: (eq T t2 (lift h x1 x3))).(eq_ind_r T (THead +(Flat Cast) x2 x3) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T t3 (lift h +x1 t4))) (\lambda (t4: T).(pr0 t t4)))) (ex2_ind T (\lambda (t4: T).(eq T t3 +(lift h x1 t4))) (\lambda (t4: T).(pr0 x3 t4)) (ex2 T (\lambda (t4: T).(eq T +t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat Cast) x2 x3) t4))) +(\lambda (x4: T).(\lambda (H_x: (eq T t3 (lift h x1 x4))).(\lambda (H7: (pr0 +x3 x4)).(eq_ind_r T (lift h x1 x4) (\lambda (t: T).(ex2 T (\lambda (t4: +T).(eq T t (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat Cast) x2 x3) +t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (lift h x1 x4) (lift h x1 t4))) +(\lambda (t4: T).(pr0 (THead (Flat Cast) x2 x3) t4)) x4 (refl_equal T (lift h +x1 x4)) (pr0_tau x3 x4 H7 x2)) t3 H_x)))) (H2 x3 x1 H6)) x0 H4)))))) +(lift_gen_flat Cast u t2 x0 h x1 H3)))))))))) y x H0))))) H))))). diff --git a/matita/matita/contribs/lambdadelta/basic_1/pr0/pr0.ma b/matita/matita/contribs/lambdadelta/basic_1/pr0/pr0.ma index 9a3b397fe..57f9498ce 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/pr0/pr0.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/pr0/pr0.ma @@ -14,9 +14,11 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/pr0/fwd.ma". +include "basic_1/pr0/subst0.ma". -include "Basic-1/lift/tlt.ma". +include "basic_1/lift/tlt.ma". + +include "basic_1/tlt/fwd.ma". theorem pr0_confluence__pr0_cong_upsilon_refl: \forall (b: B).((not (eq B b Abst)) \to (\forall (u0: T).(\forall (u3: @@ -37,9 +39,6 @@ t5 H1) (pr0_comp u3 u3 (pr0_refl u3) (THead (Flat Appl) (lift (S O) O v2) t5) (THead (Flat Appl) (lift (S O) O x) t5) (pr0_comp (lift (S O) O v2) (lift (S O) O x) (pr0_lift v2 x H3 (S O) O) t5 t5 (pr0_refl t5) (Flat Appl)) (Bind b))))))))))))))). -(* COMMENTS -Initial nodes: 257 -END *) theorem pr0_confluence__pr0_cong_upsilon_cong: \forall (b: B).((not (eq B b Abst)) \to (\forall (u2: T).(\forall (v2: @@ -62,9 +61,6 @@ t5)) t)) (THead (Bind b) x1 (THead (Flat Appl) (lift (S O) O x) x0)) Appl) (lift (S O) O v2) t5) (THead (Flat Appl) (lift (S O) O x) x0) (pr0_comp (lift (S O) O v2) (lift (S O) O x) (pr0_lift v2 x H1 (S O) O) t5 x0 H3 (Flat Appl)) (Bind b))))))))))))))))))). -(* COMMENTS -Initial nodes: 269 -END *) theorem pr0_confluence__pr0_cong_upsilon_delta: (not (eq B Abbr Abst)) \to (\forall (u5: T).(\forall (t2: T).(\forall (w: @@ -106,9 +102,6 @@ O v2) (lift (S O) O x) (pr0_lift v2 x H2 (S O) O) t5 x0 H4 (Flat Appl)) (THead (Flat Appl) (lift (S O) O x) x2) (subst0_snd (Flat Appl) x1 x2 x0 O H9 (lift (S O) O x))))))) H7)) (pr0_subst0 t2 x0 H3 u5 w O H0 x1 H5))))))))))))))))))). -(* COMMENTS -Initial nodes: 769 -END *) theorem pr0_confluence__pr0_cong_upsilon_zeta: \forall (b: B).((not (eq B b Abst)) \to (\forall (u0: T).(\forall (u3: @@ -131,9 +124,6 @@ t3 x1 H4 (Flat Appl)) (pr0_zeta b H (THead (Flat Appl) v2 x) (THead (Flat Appl) x0 x1) (pr0_comp v2 x0 H2 x x1 H3 (Flat Appl)) u3)) (THead (Flat Appl) (lift (S O) O v2) (lift (S O) O x)) (lift_flat Appl v2 x (S O) O)))))))))))))))). -(* COMMENTS -Initial nodes: 283 -END *) theorem pr0_confluence__pr0_cong_delta: \forall (u3: T).(\forall (t5: T).(\forall (w: T).((subst0 O u3 t5 w) \to @@ -160,9 +150,6 @@ x1)).(ex_intro2 T (\lambda (t: T).(pr0 (THead (Bind Abbr) u2 t3) t)) (\lambda (t: T).(pr0 (THead (Bind Abbr) u3 w) t)) (THead (Bind Abbr) x x1) (pr0_delta u2 x H0 t3 x0 H2 x1 H6) (pr0_comp u3 x H1 w x1 H5 (Bind Abbr)))))) H4)) (pr0_subst0 t5 x0 H3 u3 w O H x H1))))))))))))). -(* COMMENTS -Initial nodes: 409 -END *) theorem pr0_confluence__pr0_upsilon_upsilon: \forall (b: B).((not (eq B b Abst)) \to (\forall (v1: T).(\forall (v2: @@ -187,9 +174,6 @@ Appl) (lift (S O) O x0) x2) (pr0_comp (lift (S O) O v1) (lift (S O) O x0) H3 (THead (Flat Appl) (lift (S O) O v2) t2) (THead (Flat Appl) (lift (S O) O x0) x2) (pr0_comp (lift (S O) O v2) (lift (S O) O x0) (pr0_lift v2 x0 H1 (S O) O) t2 x2 H5 (Flat Appl)) (Bind b))))))))))))))))))). -(* COMMENTS -Initial nodes: 347 -END *) theorem pr0_confluence__pr0_delta_delta: \forall (u2: T).(\forall (t3: T).(\forall (w: T).((subst0 O u2 t3 w) \to @@ -259,9 +243,6 @@ w0 x1 H6 (Bind Abbr)))) (\lambda (H11: (subst0 O x x1 x2)).(ex_intro2 T (Bind Abbr)) (pr0_delta u3 x H2 w0 x1 H6 x2 H11))) (subst0_confluence_eq x0 x2 x O H10 x1 H7))))) H8)) (pr0_subst0 t3 x0 H3 u2 w O H x H1))))) H5)) (pr0_subst0 t5 x0 H4 u3 w0 O H0 x H2))))))))))))))). -(* COMMENTS -Initial nodes: 1501 -END *) theorem pr0_confluence__pr0_delta_tau: \forall (u2: T).(\forall (t3: T).(\forall (w: T).((subst0 O u2 t3 w) \to @@ -276,13 +257,10 @@ t3 w)).(\lambda (t4: T).(\lambda (H0: (pr0 (lift (S O) O t4) t3)).(\lambda (\lambda (t: T).(pr0 t2 t))) (\lambda (x: T).(\lambda (H1: (eq T t3 (lift (S O) O x))).(\lambda (_: (pr0 t4 x)).(let H3 \def (eq_ind T t3 (\lambda (t: T).(subst0 O u2 t w)) H (lift (S O) O x) H1) in (subst0_gen_lift_false x u2 w -(S O) O O (le_n O) (eq_ind_r nat (plus (S O) O) (\lambda (n: nat).(lt O n)) +(S O) O O (le_O_n O) (eq_ind_r nat (plus (S O) O) (\lambda (n: nat).(lt O n)) (le_n (plus (S O) O)) (plus O (S O)) (plus_sym O (S O))) H3 (ex2 T (\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w) t)) (\lambda (t: T).(pr0 t2 t)))))))) (pr0_gen_lift t4 t3 (S O) O H0)))))))). -(* COMMENTS -Initial nodes: 257 -END *) theorem pr0_confluence: \forall (t0: T).(\forall (t1: T).((pr0 t0 t1) \to (\forall (t2: T).((pr0 t0 @@ -294,95 +272,90 @@ t2) \to (ex2 T (\lambda (t: T).(pr0 t1 t)) (\lambda (t: T).(pr0 t2 t))))))) (v: T).((tlt v t) \to (\forall (t1: T).((pr0 v t1) \to (\forall (t2: T).((pr0 v t2) \to (ex2 T (\lambda (t3: T).(pr0 t1 t3)) (\lambda (t3: T).(pr0 t2 t3))))))))))).(\lambda (t1: T).(\lambda (H0: (pr0 t t1)).(\lambda (t2: -T).(\lambda (H1: (pr0 t t2)).(let H2 \def (match H0 in pr0 return (\lambda -(t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3 t4)).((eq T t3 t) \to ((eq T t4 -t1) \to (ex2 T (\lambda (t5: T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t2 -t5)))))))) with [(pr0_refl t3) \Rightarrow (\lambda (H2: (eq T t3 -t)).(\lambda (H3: (eq T t3 t1)).(eq_ind T t (\lambda (t4: T).((eq T t4 t1) -\to (ex2 T (\lambda (t5: T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t2 t5))))) -(\lambda (H4: (eq T t t1)).(eq_ind T t1 (\lambda (_: T).(ex2 T (\lambda (t5: -T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t2 t5)))) (let H5 \def (match H1 in pr0 -return (\lambda (t4: T).(\lambda (t5: T).(\lambda (_: (pr0 t4 t5)).((eq T t4 -t) \to ((eq T t5 t2) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: -T).(pr0 t2 t6)))))))) with [(pr0_refl t4) \Rightarrow (\lambda (H5: (eq T t4 -t)).(\lambda (H6: (eq T t4 t2)).(eq_ind T t (\lambda (t5: T).((eq T t5 t2) -\to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6))))) -(\lambda (H7: (eq T t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t6: -T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6)))) (let H8 \def (eq_ind T t -(\lambda (t5: T).(eq T t4 t5)) H5 t2 H7) in (let H9 \def (eq_ind T t (\lambda -(t5: T).(eq T t5 t1)) H4 t2 H7) in (let H10 \def (eq_ind T t (\lambda (t5: -T).(eq T t3 t5)) H2 t2 H7) in (let H11 \def (eq_ind T t (\lambda (t5: -T).(\forall (v: T).((tlt v t5) \to (\forall (t6: T).((pr0 v t6) \to (\forall -(t7: T).((pr0 v t7) \to (ex2 T (\lambda (t8: T).(pr0 t6 t8)) (\lambda (t8: -T).(pr0 t7 t8)))))))))) H t2 H7) in (let H12 \def (eq_ind T t2 (\lambda (t5: -T).(\forall (v: T).((tlt v t5) \to (\forall (t6: T).((pr0 v t6) \to (\forall -(t7: T).((pr0 v t7) \to (ex2 T (\lambda (t8: T).(pr0 t6 t8)) (\lambda (t8: -T).(pr0 t7 t8)))))))))) H11 t1 H9) in (eq_ind_r T t1 (\lambda (t5: T).(ex2 T -(\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t5 t6)))) (let H13 \def -(eq_ind T t2 (\lambda (t5: T).(eq T t3 t5)) H10 t1 H9) in (ex_intro2 T -(\lambda (t5: T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t1 t5)) t1 (pr0_refl t1) -(pr0_refl t1))) t2 H9)))))) t (sym_eq T t t2 H7))) t4 (sym_eq T t4 t H5) -H6))) | (pr0_comp u1 u2 H5 t4 t5 H6 k) \Rightarrow (\lambda (H7: (eq T (THead -k u1 t4) t)).(\lambda (H8: (eq T (THead k u2 t5) t2)).(eq_ind T (THead k u1 -t4) (\lambda (_: T).((eq T (THead k u2 t5) t2) \to ((pr0 u1 u2) \to ((pr0 t4 -t5) \to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 -t7))))))) (\lambda (H9: (eq T (THead k u2 t5) t2)).(eq_ind T (THead k u2 t5) -(\lambda (t6: T).((pr0 u1 u2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: -T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7)))))) (\lambda (H10: (pr0 u1 -u2)).(\lambda (H11: (pr0 t4 t5)).(let H12 \def (eq_ind_r T t (\lambda (t6: -T).(eq T t6 t1)) H4 (THead k u1 t4) H7) in (eq_ind T (THead k u1 t4) (\lambda -(t6: T).(ex2 T (\lambda (t7: T).(pr0 t6 t7)) (\lambda (t7: T).(pr0 (THead k -u2 t5) t7)))) (let H13 \def (eq_ind_r T t (\lambda (t6: T).(eq T t3 t6)) H2 -(THead k u1 t4) H7) in (let H14 \def (eq_ind_r T t (\lambda (t6: T).(\forall +T).(\lambda (H1: (pr0 t t2)).(let H2 \def (match H0 with [(pr0_refl t3) +\Rightarrow (\lambda (H2: (eq T t3 t)).(\lambda (H3: (eq T t3 t1)).(eq_ind T +t (\lambda (t4: T).((eq T t4 t1) \to (ex2 T (\lambda (t5: T).(pr0 t1 t5)) +(\lambda (t5: T).(pr0 t2 t5))))) (\lambda (H4: (eq T t t1)).(eq_ind T t1 +(\lambda (_: T).(ex2 T (\lambda (t5: T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t2 +t5)))) (let H5 \def (match H1 with [(pr0_refl t4) \Rightarrow (\lambda (H5: +(eq T t4 t)).(\lambda (H6: (eq T t4 t2)).(eq_ind T t (\lambda (t5: T).((eq T +t5 t2) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 +t6))))) (\lambda (H7: (eq T t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T +(\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6)))) (let H8 \def +(eq_ind T t (\lambda (t5: T).(eq T t4 t5)) H5 t2 H7) in (let H9 \def (eq_ind +T t (\lambda (t5: T).(eq T t5 t1)) H4 t2 H7) in (let H10 \def (eq_ind T t +(\lambda (t5: T).(eq T t3 t5)) H2 t2 H7) in (let H11 \def (eq_ind T t +(\lambda (t5: T).(\forall (v: T).((tlt v t5) \to (\forall (t6: T).((pr0 v t6) +\to (\forall (t7: T).((pr0 v t7) \to (ex2 T (\lambda (t8: T).(pr0 t6 t8)) +(\lambda (t8: T).(pr0 t7 t8)))))))))) H t2 H7) in (let H12 \def (eq_ind T t2 +(\lambda (t5: T).(\forall (v: T).((tlt v t5) \to (\forall (t6: T).((pr0 v t6) +\to (\forall (t7: T).((pr0 v t7) \to (ex2 T (\lambda (t8: T).(pr0 t6 t8)) +(\lambda (t8: T).(pr0 t7 t8)))))))))) H11 t1 H9) in (eq_ind_r T t1 (\lambda +(t5: T).(ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t5 t6)))) +(let H13 \def (eq_ind T t2 (\lambda (t5: T).(eq T t3 t5)) H10 t1 H9) in +(ex_intro2 T (\lambda (t5: T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t1 t5)) t1 +(pr0_refl t1) (pr0_refl t1))) t2 H9)))))) t (sym_eq T t t2 H7))) t4 (sym_eq T +t4 t H5) H6))) | (pr0_comp u1 u2 H5 t4 t5 H6 k) \Rightarrow (\lambda (H7: (eq +T (THead k u1 t4) t)).(\lambda (H8: (eq T (THead k u2 t5) t2)).(eq_ind T +(THead k u1 t4) (\lambda (_: T).((eq T (THead k u2 t5) t2) \to ((pr0 u1 u2) +\to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: +T).(pr0 t2 t7))))))) (\lambda (H9: (eq T (THead k u2 t5) t2)).(eq_ind T +(THead k u2 t5) (\lambda (t6: T).((pr0 u1 u2) \to ((pr0 t4 t5) \to (ex2 T +(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7)))))) (\lambda +(H10: (pr0 u1 u2)).(\lambda (H11: (pr0 t4 t5)).(let H12 \def (eq_ind_r T t +(\lambda (t6: T).(eq T t6 t1)) H4 (THead k u1 t4) H7) in (eq_ind T (THead k +u1 t4) (\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 t6 t7)) (\lambda (t7: +T).(pr0 (THead k u2 t5) t7)))) (let H13 \def (eq_ind_r T t (\lambda (t6: +T).(eq T t3 t6)) H2 (THead k u1 t4) H7) in (let H14 \def (eq_ind_r T t +(\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) +\to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) +(\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead k u1 t4) H7) in (ex_intro2 T +(\lambda (t6: T).(pr0 (THead k u1 t4) t6)) (\lambda (t6: T).(pr0 (THead k u2 +t5) t6)) (THead k u2 t5) (pr0_comp u1 u2 H10 t4 t5 H11 k) (pr0_refl (THead k +u2 t5))))) t1 H12)))) t2 H9)) t H7 H8 H5 H6))) | (pr0_beta u v1 v2 H5 t4 t5 +H6) \Rightarrow (\lambda (H7: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) +u t4)) t)).(\lambda (H8: (eq T (THead (Bind Abbr) v2 t5) t2)).(eq_ind T +(THead (Flat Appl) v1 (THead (Bind Abst) u t4)) (\lambda (_: T).((eq T (THead +(Bind Abbr) v2 t5) t2) \to ((pr0 v1 v2) \to ((pr0 t4 t5) \to (ex2 T (\lambda +(t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))))) (\lambda (H9: (eq T +(THead (Bind Abbr) v2 t5) t2)).(eq_ind T (THead (Bind Abbr) v2 t5) (\lambda +(t6: T).((pr0 v1 v2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: T).(pr0 t1 +t7)) (\lambda (t7: T).(pr0 t6 t7)))))) (\lambda (H10: (pr0 v1 v2)).(\lambda +(H11: (pr0 t4 t5)).(let H12 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t1)) +H4 (THead (Flat Appl) v1 (THead (Bind Abst) u t4)) H7) in (eq_ind T (THead +(Flat Appl) v1 (THead (Bind Abst) u t4)) (\lambda (t6: T).(ex2 T (\lambda +(t7: T).(pr0 t6 t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t5) t7)))) +(let H13 \def (eq_ind_r T t (\lambda (t6: T).(eq T t3 t6)) H2 (THead (Flat +Appl) v1 (THead (Bind Abst) u t4)) H7) in (let H14 \def (eq_ind_r T t +(\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) +\to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) +(\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Flat Appl) v1 (THead (Bind +Abst) u t4)) H7) in (ex_intro2 T (\lambda (t6: T).(pr0 (THead (Flat Appl) v1 +(THead (Bind Abst) u t4)) t6)) (\lambda (t6: T).(pr0 (THead (Bind Abbr) v2 +t5) t6)) (THead (Bind Abbr) v2 t5) (pr0_beta u v1 v2 H10 t4 t5 H11) (pr0_refl +(THead (Bind Abbr) v2 t5))))) t1 H12)))) t2 H9)) t H7 H8 H5 H6))) | +(pr0_upsilon b H5 v1 v2 H6 u1 u2 H7 t4 t5 H8) \Rightarrow (\lambda (H9: (eq T +(THead (Flat Appl) v1 (THead (Bind b) u1 t4)) t)).(\lambda (H10: (eq T (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t5)) t2)).(eq_ind T (THead +(Flat Appl) v1 (THead (Bind b) u1 t4)) (\lambda (_: T).((eq T (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t5)) t2) \to ((not (eq B b Abst)) \to +((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: +T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))))))) (\lambda (H11: (eq T +(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t5)) t2)).(eq_ind T +(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t5)) (\lambda (t6: +T).((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t4 t5) +\to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7)))))))) +(\lambda (H12: (not (eq B b Abst))).(\lambda (H13: (pr0 v1 v2)).(\lambda +(H14: (pr0 u1 u2)).(\lambda (H15: (pr0 t4 t5)).(let H16 \def (eq_ind_r T t +(\lambda (t6: T).(eq T t6 t1)) H4 (THead (Flat Appl) v1 (THead (Bind b) u1 +t4)) H9) in (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t4)) (\lambda +(t6: T).(ex2 T (\lambda (t7: T).(pr0 t6 t7)) (\lambda (t7: T).(pr0 (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t5)) t7)))) (let H17 \def +(eq_ind_r T t (\lambda (t6: T).(eq T t3 t6)) H2 (THead (Flat Appl) v1 (THead +(Bind b) u1 t4)) H9) in (let H18 \def (eq_ind_r T t (\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 -t8 t9)))))))))) H (THead k u1 t4) H7) in (ex_intro2 T (\lambda (t6: T).(pr0 -(THead k u1 t4) t6)) (\lambda (t6: T).(pr0 (THead k u2 t5) t6)) (THead k u2 -t5) (pr0_comp u1 u2 H10 t4 t5 H11 k) (pr0_refl (THead k u2 t5))))) t1 H12)))) -t2 H9)) t H7 H8 H5 H6))) | (pr0_beta u v1 v2 H5 t4 t5 H6) \Rightarrow -(\lambda (H7: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t4)) -t)).(\lambda (H8: (eq T (THead (Bind Abbr) v2 t5) t2)).(eq_ind T (THead (Flat -Appl) v1 (THead (Bind Abst) u t4)) (\lambda (_: T).((eq T (THead (Bind Abbr) -v2 t5) t2) \to ((pr0 v1 v2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: T).(pr0 -t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))))) (\lambda (H9: (eq T (THead (Bind -Abbr) v2 t5) t2)).(eq_ind T (THead (Bind Abbr) v2 t5) (\lambda (t6: T).((pr0 -v1 v2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda -(t7: T).(pr0 t6 t7)))))) (\lambda (H10: (pr0 v1 v2)).(\lambda (H11: (pr0 t4 -t5)).(let H12 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t1)) H4 (THead -(Flat Appl) v1 (THead (Bind Abst) u t4)) H7) in (eq_ind T (THead (Flat Appl) -v1 (THead (Bind Abst) u t4)) (\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 t6 -t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t5) t7)))) (let H13 \def -(eq_ind_r T t (\lambda (t6: T).(eq T t3 t6)) H2 (THead (Flat Appl) v1 (THead -(Bind Abst) u t4)) H7) in (let H14 \def (eq_ind_r T t (\lambda (t6: -T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall -(t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: -T).(pr0 t8 t9)))))))))) H (THead (Flat Appl) v1 (THead (Bind Abst) u t4)) H7) -in (ex_intro2 T (\lambda (t6: T).(pr0 (THead (Flat Appl) v1 (THead (Bind -Abst) u t4)) t6)) (\lambda (t6: T).(pr0 (THead (Bind Abbr) v2 t5) t6)) (THead -(Bind Abbr) v2 t5) (pr0_beta u v1 v2 H10 t4 t5 H11) (pr0_refl (THead (Bind -Abbr) v2 t5))))) t1 H12)))) t2 H9)) t H7 H8 H5 H6))) | (pr0_upsilon b H5 v1 -v2 H6 u1 u2 H7 t4 t5 H8) \Rightarrow (\lambda (H9: (eq T (THead (Flat Appl) -v1 (THead (Bind b) u1 t4)) t)).(\lambda (H10: (eq T (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t5)) t2)).(eq_ind T (THead (Flat Appl) v1 -(THead (Bind b) u1 t4)) (\lambda (_: T).((eq T (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t5)) t2) \to ((not (eq B b Abst)) \to ((pr0 v1 -v2) \to ((pr0 u1 u2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: T).(pr0 t1 -t7)) (\lambda (t7: T).(pr0 t2 t7))))))))) (\lambda (H11: (eq T (THead (Bind -b) u2 (THead (Flat Appl) (lift (S O) O v2) t5)) t2)).(eq_ind T (THead (Bind -b) u2 (THead (Flat Appl) (lift (S O) O v2) t5)) (\lambda (t6: T).((not (eq B -b Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t4 t5) \to (ex2 T -(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7)))))))) (\lambda -(H12: (not (eq B b Abst))).(\lambda (H13: (pr0 v1 v2)).(\lambda (H14: (pr0 u1 -u2)).(\lambda (H15: (pr0 t4 t5)).(let H16 \def (eq_ind_r T t (\lambda (t6: -T).(eq T t6 t1)) H4 (THead (Flat Appl) v1 (THead (Bind b) u1 t4)) H9) in -(eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t4)) (\lambda (t6: T).(ex2 -T (\lambda (t7: T).(pr0 t6 t7)) (\lambda (t7: T).(pr0 (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t5)) t7)))) (let H17 \def (eq_ind_r T t -(\lambda (t6: T).(eq T t3 t6)) H2 (THead (Flat Appl) v1 (THead (Bind b) u1 -t4)) H9) in (let H18 \def (eq_ind_r T t (\lambda (t6: T).(\forall (v: -T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v -t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8 -t9)))))))))) H (THead (Flat Appl) v1 (THead (Bind b) u1 t4)) H9) in +t8 t9)))))))))) H (THead (Flat Appl) v1 (THead (Bind b) u1 t4)) H9) in (pr0_confluence__pr0_cong_upsilon_refl b H12 u1 u2 H14 t4 t5 H15 v1 v2 v2 H13 (pr0_refl v2)))) t1 H16)))))) t2 H11)) t H9 H10 H5 H6 H7 H8))) | (pr0_delta u1 u2 H5 t4 t5 H6 w H7) \Rightarrow (\lambda (H8: (eq T (THead (Bind Abbr) u1 @@ -448,995 +421,906 @@ t3) t)).(\lambda (H5: (eq T (THead k u2 t4) t1)).(eq_ind T (THead k u1 t3) (\lambda (H6: (eq T (THead k u2 t4) t1)).(eq_ind T (THead k u2 t4) (\lambda (t5: T).((pr0 u1 u2) \to ((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t5 t6)) (\lambda (t6: T).(pr0 t2 t6)))))) (\lambda (H7: (pr0 u1 u2)).(\lambda -(H8: (pr0 t3 t4)).(let H9 \def (match H1 in pr0 return (\lambda (t5: -T).(\lambda (t6: T).(\lambda (_: (pr0 t5 t6)).((eq T t5 t) \to ((eq T t6 t2) -\to (ex2 T (\lambda (t7: T).(pr0 (THead k u2 t4) t7)) (\lambda (t7: T).(pr0 -t2 t7)))))))) with [(pr0_refl t5) \Rightarrow (\lambda (H9: (eq T t5 -t)).(\lambda (H10: (eq T t5 t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2) -\to (ex2 T (\lambda (t7: T).(pr0 (THead k u2 t4) t7)) (\lambda (t7: T).(pr0 -t2 t7))))) (\lambda (H11: (eq T t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T -(\lambda (t7: T).(pr0 (THead k u2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7)))) -(let H12 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t2)) H11 (THead k u1 -t3) H4) in (eq_ind T (THead k u1 t3) (\lambda (t6: T).(ex2 T (\lambda (t7: -T).(pr0 (THead k u2 t4) t7)) (\lambda (t7: T).(pr0 t6 t7)))) (let H13 \def -(eq_ind_r T t (\lambda (t6: T).(eq T t5 t6)) H9 (THead k u1 t3) H4) in (let -H14 \def (eq_ind_r T t (\lambda (t6: T).(\forall (v: T).((tlt v t6) \to -(\forall (t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v t8) \to (ex2 T -(\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead -k u1 t3) H4) in (ex_intro2 T (\lambda (t6: T).(pr0 (THead k u2 t4) t6)) -(\lambda (t6: T).(pr0 (THead k u1 t3) t6)) (THead k u2 t4) (pr0_refl (THead k -u2 t4)) (pr0_comp u1 u2 H7 t3 t4 H8 k)))) t2 H12)) t (sym_eq T t t2 H11))) t5 -(sym_eq T t5 t H9) H10))) | (pr0_comp u0 u3 H9 t5 t6 H10 k0) \Rightarrow -(\lambda (H11: (eq T (THead k0 u0 t5) t)).(\lambda (H12: (eq T (THead k0 u3 -t6) t2)).(eq_ind T (THead k0 u0 t5) (\lambda (_: T).((eq T (THead k0 u3 t6) -t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead -k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H13: (eq T (THead -k0 u3 t6) t2)).(eq_ind T (THead k0 u3 t6) (\lambda (t7: T).((pr0 u0 u3) \to -((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda -(t8: T).(pr0 t7 t8)))))) (\lambda (H14: (pr0 u0 u3)).(\lambda (H15: (pr0 t5 -t6)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead k u1 t3) t7)) -H4 (THead k0 u0 t5) H11) in (let H17 \def (f_equal T K (\lambda (e: T).(match -e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _) -\Rightarrow k | (THead k1 _ _) \Rightarrow k1])) (THead k u1 t3) (THead k0 u0 -t5) H16) in ((let H18 \def (f_equal T T (\lambda (e: T).(match e in T return -(\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 -| (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3) (THead k0 u0 t5) H16) in -((let H19 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: -T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ -t7) \Rightarrow t7])) (THead k u1 t3) (THead k0 u0 t5) H16) in (\lambda (H20: -(eq T u1 u0)).(\lambda (H21: (eq K k k0)).(let H22 \def (eq_ind_r T t -(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) -\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) -(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead k0 u0 t5) H11) in (eq_ind_r -K k0 (\lambda (k1: K).(ex2 T (\lambda (t7: T).(pr0 (THead k1 u2 t4) t7)) -(\lambda (t7: T).(pr0 (THead k0 u3 t6) t7)))) (let H23 \def (eq_ind T u1 -(\lambda (t7: T).(pr0 t7 u2)) H7 u0 H20) in (let H24 \def (eq_ind T t3 -(\lambda (t7: T).(pr0 t7 t4)) H8 t5 H19) in (ex2_ind T (\lambda (t7: T).(pr0 -t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead k0 -u2 t4) t7)) (\lambda (t7: T).(pr0 (THead k0 u3 t6) t7))) (\lambda (x: -T).(\lambda (H25: (pr0 t4 x)).(\lambda (H26: (pr0 t6 x)).(ex2_ind T (\lambda -(t7: T).(pr0 u2 t7)) (\lambda (t7: T).(pr0 u3 t7)) (ex2 T (\lambda (t7: -T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead k0 u3 t6) t7))) -(\lambda (x0: T).(\lambda (H27: (pr0 u2 x0)).(\lambda (H28: (pr0 u3 -x0)).(ex_intro2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: -T).(pr0 (THead k0 u3 t6) t7)) (THead k0 x0 x) (pr0_comp u2 x0 H27 t4 x H25 -k0) (pr0_comp u3 x0 H28 t6 x H26 k0))))) (H22 u0 (tlt_head_sx k0 u0 t5) u2 -H23 u3 H14))))) (H22 t5 (tlt_head_dx k0 u0 t5) t4 H24 t6 H15)))) k H21))))) -H18)) H17))))) t2 H13)) t H11 H12 H9 H10))) | (pr0_beta u v1 v2 H9 t5 t6 H10) -\Rightarrow (\lambda (H11: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u -t5)) t)).(\lambda (H12: (eq T (THead (Bind Abbr) v2 t6) t2)).(eq_ind T (THead -(Flat Appl) v1 (THead (Bind Abst) u t5)) (\lambda (_: T).((eq T (THead (Bind -Abbr) v2 t6) t2) \to ((pr0 v1 v2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: -T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda -(H13: (eq T (THead (Bind Abbr) v2 t6) t2)).(eq_ind T (THead (Bind Abbr) v2 -t6) (\lambda (t7: T).((pr0 v1 v2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: -T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (H14: -(pr0 v1 v2)).(\lambda (H15: (pr0 t5 t6)).(let H16 \def (eq_ind_r T t (\lambda -(t7: T).(eq T (THead k u1 t3) t7)) H4 (THead (Flat Appl) v1 (THead (Bind -Abst) u t5)) H11) in (let H17 \def (f_equal T K (\lambda (e: T).(match e in T -return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _) +(H8: (pr0 t3 t4)).(let H9 \def (match H1 with [(pr0_refl t5) \Rightarrow +(\lambda (H9: (eq T t5 t)).(\lambda (H10: (eq T t5 t2)).(eq_ind T t (\lambda +(t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0 (THead k u2 t4) t7)) +(\lambda (t7: T).(pr0 t2 t7))))) (\lambda (H11: (eq T t t2)).(eq_ind T t2 +(\lambda (_: T).(ex2 T (\lambda (t7: T).(pr0 (THead k u2 t4) t7)) (\lambda +(t7: T).(pr0 t2 t7)))) (let H12 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 +t2)) H11 (THead k u1 t3) H4) in (eq_ind T (THead k u1 t3) (\lambda (t6: +T).(ex2 T (\lambda (t7: T).(pr0 (THead k u2 t4) t7)) (\lambda (t7: T).(pr0 t6 +t7)))) (let H13 \def (eq_ind_r T t (\lambda (t6: T).(eq T t5 t6)) H9 (THead k +u1 t3) H4) in (let H14 \def (eq_ind_r T t (\lambda (t6: T).(\forall (v: +T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v +t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8 +t9)))))))))) H (THead k u1 t3) H4) in (ex_intro2 T (\lambda (t6: T).(pr0 +(THead k u2 t4) t6)) (\lambda (t6: T).(pr0 (THead k u1 t3) t6)) (THead k u2 +t4) (pr0_refl (THead k u2 t4)) (pr0_comp u1 u2 H7 t3 t4 H8 k)))) t2 H12)) t +(sym_eq T t t2 H11))) t5 (sym_eq T t5 t H9) H10))) | (pr0_comp u0 u3 H9 t5 t6 +H10 k0) \Rightarrow (\lambda (H11: (eq T (THead k0 u0 t5) t)).(\lambda (H12: +(eq T (THead k0 u3 t6) t2)).(eq_ind T (THead k0 u0 t5) (\lambda (_: T).((eq T +(THead k0 u3 t6) t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda +(t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda +(H13: (eq T (THead k0 u3 t6) t2)).(eq_ind T (THead k0 u3 t6) (\lambda (t7: +T).((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 +t4) t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (H14: (pr0 u0 +u3)).(\lambda (H15: (pr0 t5 t6)).(let H16 \def (eq_ind_r T t (\lambda (t7: +T).(eq T (THead k u1 t3) t7)) H4 (THead k0 u0 t5) H11) in (let H17 \def +(f_equal T K (\lambda (e: T).(match e with [(TSort _) \Rightarrow k | (TLRef +_) \Rightarrow k | (THead k1 _ _) \Rightarrow k1])) (THead k u1 t3) (THead k0 +u0 t5) H16) in ((let H18 \def (f_equal T T (\lambda (e: T).(match e with +[(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _) +\Rightarrow t7])) (THead k u1 t3) (THead k0 u0 t5) H16) in ((let H19 \def +(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 | (TLRef +_) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead +k0 u0 t5) H16) in (\lambda (H20: (eq T u1 u0)).(\lambda (H21: (eq K k +k0)).(let H22 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) +\to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T +(\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H +(THead k0 u0 t5) H11) in (eq_ind_r K k0 (\lambda (k1: K).(ex2 T (\lambda (t7: +T).(pr0 (THead k1 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead k0 u3 t6) t7)))) +(let H23 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H7 u0 H20) in (let +H24 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 t5 H19) in (ex2_ind T +(\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda +(t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead k0 u3 t6) +t7))) (\lambda (x: T).(\lambda (H25: (pr0 t4 x)).(\lambda (H26: (pr0 t6 +x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7)) (\lambda (t7: T).(pr0 u3 t7)) +(ex2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 +(THead k0 u3 t6) t7))) (\lambda (x0: T).(\lambda (H27: (pr0 u2 x0)).(\lambda +(H28: (pr0 u3 x0)).(ex_intro2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7)) +(\lambda (t7: T).(pr0 (THead k0 u3 t6) t7)) (THead k0 x0 x) (pr0_comp u2 x0 +H27 t4 x H25 k0) (pr0_comp u3 x0 H28 t6 x H26 k0))))) (H22 u0 (tlt_head_sx k0 +u0 t5) u2 H23 u3 H14))))) (H22 t5 (tlt_head_dx k0 u0 t5) t4 H24 t6 H15)))) k +H21))))) H18)) H17))))) t2 H13)) t H11 H12 H9 H10))) | (pr0_beta u v1 v2 H9 +t5 t6 H10) \Rightarrow (\lambda (H11: (eq T (THead (Flat Appl) v1 (THead +(Bind Abst) u t5)) t)).(\lambda (H12: (eq T (THead (Bind Abbr) v2 t6) +t2)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t5)) (\lambda (_: +T).((eq T (THead (Bind Abbr) v2 t6) t2) \to ((pr0 v1 v2) \to ((pr0 t5 t6) \to +(ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 +t8))))))) (\lambda (H13: (eq T (THead (Bind Abbr) v2 t6) t2)).(eq_ind T +(THead (Bind Abbr) v2 t6) (\lambda (t7: T).((pr0 v1 v2) \to ((pr0 t5 t6) \to +(ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t7 +t8)))))) (\lambda (H14: (pr0 v1 v2)).(\lambda (H15: (pr0 t5 t6)).(let H16 +\def (eq_ind_r T t (\lambda (t7: T).(eq T (THead k u1 t3) t7)) H4 (THead +(Flat Appl) v1 (THead (Bind Abst) u t5)) H11) in (let H17 \def (f_equal T K +(\lambda (e: T).(match e with [(TSort _) \Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u1 t3) (THead (Flat Appl) v1 (THead (Bind Abst) u t5)) H16) in ((let H18 \def (f_equal T T -(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) -(THead k u1 t3) (THead (Flat Appl) v1 (THead (Bind Abst) u t5)) H16) in ((let -H19 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) -with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7) -\Rightarrow t7])) (THead k u1 t3) (THead (Flat Appl) v1 (THead (Bind Abst) u -t5)) H16) in (\lambda (H20: (eq T u1 v1)).(\lambda (H21: (eq K k (Flat -Appl))).(let H22 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v -t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to -(ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 -t10)))))))))) H (THead (Flat Appl) v1 (THead (Bind Abst) u t5)) H11) in -(eq_ind_r K (Flat Appl) (\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead -k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t6) t7)))) (let -H23 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H7 v1 H20) in (let H24 -\def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 (THead (Bind Abst) u t5) -H19) in (let H25 \def (match H24 in pr0 return (\lambda (t7: T).(\lambda (t8: -T).(\lambda (_: (pr0 t7 t8)).((eq T t7 (THead (Bind Abst) u t5)) \to ((eq T -t8 t4) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) -(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9)))))))) with [(pr0_refl -t7) \Rightarrow (\lambda (H25: (eq T t7 (THead (Bind Abst) u t5))).(\lambda -(H26: (eq T t7 t4)).(eq_ind T (THead (Bind Abst) u t5) (\lambda (t8: T).((eq -T t8 t4) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) -(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))))) (\lambda (H27: (eq T -(THead (Bind Abst) u t5) t4)).(eq_ind T (THead (Bind Abst) u t5) (\lambda -(t8: T).(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t8) t9)) (\lambda -(t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9)))) (ex2_ind T (\lambda (t8: -T).(pr0 u2 t8)) (\lambda (t8: T).(pr0 v2 t8)) (ex2 T (\lambda (t8: T).(pr0 -(THead (Flat Appl) u2 (THead (Bind Abst) u t5)) t8)) (\lambda (t8: T).(pr0 -(THead (Bind Abbr) v2 t6) t8))) (\lambda (x: T).(\lambda (H28: (pr0 u2 -x)).(\lambda (H29: (pr0 v2 x)).(ex_intro2 T (\lambda (t8: T).(pr0 (THead -(Flat Appl) u2 (THead (Bind Abst) u t5)) t8)) (\lambda (t8: T).(pr0 (THead -(Bind Abbr) v2 t6) t8)) (THead (Bind Abbr) x t6) (pr0_beta u u2 x H28 t5 t6 -H15) (pr0_comp v2 x H29 t6 t6 (pr0_refl t6) (Bind Abbr)))))) (H22 v1 -(tlt_head_sx (Flat Appl) v1 (THead (Bind Abst) u t5)) u2 H23 v2 H14)) t4 -H27)) t7 (sym_eq T t7 (THead (Bind Abst) u t5) H25) H26))) | (pr0_comp u0 u3 -H25 t7 t8 H26 k0) \Rightarrow (\lambda (H27: (eq T (THead k0 u0 t7) (THead -(Bind Abst) u t5))).(\lambda (H28: (eq T (THead k0 u3 t8) t4)).((let H29 \def -(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with -[(TSort _) \Rightarrow t7 | (TLRef _) \Rightarrow t7 | (THead _ _ t9) -\Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t5) H27) in ((let H30 -\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) -with [(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t9 _) -\Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t5) H27) in ((let H31 -\def (f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K) -with [(TSort _) \Rightarrow k0 | (TLRef _) \Rightarrow k0 | (THead k1 _ _) -\Rightarrow k1])) (THead k0 u0 t7) (THead (Bind Abst) u t5) H27) in (eq_ind K -(Bind Abst) (\lambda (k1: K).((eq T u0 u) \to ((eq T t7 t5) \to ((eq T (THead -k1 u3 t8) t4) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: -T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind -Abbr) v2 t6) t9))))))))) (\lambda (H32: (eq T u0 u)).(eq_ind T u (\lambda -(t9: T).((eq T t7 t5) \to ((eq T (THead (Bind Abst) u3 t8) t4) \to ((pr0 t9 -u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 -t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t6) t10)))))))) -(\lambda (H33: (eq T t7 t5)).(eq_ind T t5 (\lambda (t9: T).((eq T (THead -(Bind Abst) u3 t8) t4) \to ((pr0 u u3) \to ((pr0 t9 t8) \to (ex2 T (\lambda +(\lambda (e: T).(match e with [(TSort _) \Rightarrow u1 | (TLRef _) +\Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3) (THead +(Flat Appl) v1 (THead (Bind Abst) u t5)) H16) in ((let H19 \def (f_equal T T +(\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 | (TLRef _) +\Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead +(Flat Appl) v1 (THead (Bind Abst) u t5)) H16) in (\lambda (H20: (eq T u1 +v1)).(\lambda (H21: (eq K k (Flat Appl))).(let H22 \def (eq_ind_r T t +(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) +\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) +(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Appl) v1 (THead (Bind +Abst) u t5)) H11) in (eq_ind_r K (Flat Appl) (\lambda (k0: K).(ex2 T (\lambda +(t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) +v2 t6) t7)))) (let H23 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H7 v1 +H20) in (let H24 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 (THead +(Bind Abst) u t5) H19) in (let H25 \def (match H24 with [(pr0_refl t7) +\Rightarrow (\lambda (H25: (eq T t7 (THead (Bind Abst) u t5))).(\lambda (H26: +(eq T t7 t4)).(eq_ind T (THead (Bind Abst) u t5) (\lambda (t8: T).((eq T t8 +t4) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda +(t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))))) (\lambda (H27: (eq T (THead +(Bind Abst) u t5) t4)).(eq_ind T (THead (Bind Abst) u t5) (\lambda (t8: +T).(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t8) t9)) (\lambda (t9: +T).(pr0 (THead (Bind Abbr) v2 t6) t9)))) (ex2_ind T (\lambda (t8: T).(pr0 u2 +t8)) (\lambda (t8: T).(pr0 v2 t8)) (ex2 T (\lambda (t8: T).(pr0 (THead (Flat +Appl) u2 (THead (Bind Abst) u t5)) t8)) (\lambda (t8: T).(pr0 (THead (Bind +Abbr) v2 t6) t8))) (\lambda (x: T).(\lambda (H28: (pr0 u2 x)).(\lambda (H29: +(pr0 v2 x)).(ex_intro2 T (\lambda (t8: T).(pr0 (THead (Flat Appl) u2 (THead +(Bind Abst) u t5)) t8)) (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t6) t8)) +(THead (Bind Abbr) x t6) (pr0_beta u u2 x H28 t5 t6 H15) (pr0_comp v2 x H29 +t6 t6 (pr0_refl t6) (Bind Abbr)))))) (H22 v1 (tlt_head_sx (Flat Appl) v1 +(THead (Bind Abst) u t5)) u2 H23 v2 H14)) t4 H27)) t7 (sym_eq T t7 (THead +(Bind Abst) u t5) H25) H26))) | (pr0_comp u0 u3 H25 t7 t8 H26 k0) \Rightarrow +(\lambda (H27: (eq T (THead k0 u0 t7) (THead (Bind Abst) u t5))).(\lambda +(H28: (eq T (THead k0 u3 t8) t4)).((let H29 \def (f_equal T T (\lambda (e: +T).(match e with [(TSort _) \Rightarrow t7 | (TLRef _) \Rightarrow t7 | +(THead _ _ t9) \Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t5) +H27) in ((let H30 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) +\Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t9 _) \Rightarrow t9])) +(THead k0 u0 t7) (THead (Bind Abst) u t5) H27) in ((let H31 \def (f_equal T K +(\lambda (e: T).(match e with [(TSort _) \Rightarrow k0 | (TLRef _) +\Rightarrow k0 | (THead k1 _ _) \Rightarrow k1])) (THead k0 u0 t7) (THead +(Bind Abst) u t5) H27) in (eq_ind K (Bind Abst) (\lambda (k1: K).((eq T u0 u) +\to ((eq T t7 t5) \to ((eq T (THead k1 u3 t8) t4) \to ((pr0 u0 u3) \to ((pr0 +t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) +(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))))))))) (\lambda (H32: +(eq T u0 u)).(eq_ind T u (\lambda (t9: T).((eq T t7 t5) \to ((eq T (THead +(Bind Abst) u3 t8) t4) \to ((pr0 t9 u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead -(Bind Abbr) v2 t6) t10))))))) (\lambda (H34: (eq T (THead (Bind Abst) u3 t8) -t4)).(eq_ind T (THead (Bind Abst) u3 t8) (\lambda (t9: T).((pr0 u u3) \to -((pr0 t5 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t9) -t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t6) t10)))))) (\lambda (_: -(pr0 u u3)).(\lambda (H36: (pr0 t5 t8)).(ex2_ind T (\lambda (t9: T).(pr0 t8 -t9)) (\lambda (t9: T).(pr0 t6 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat -Appl) u2 (THead (Bind Abst) u3 t8)) t9)) (\lambda (t9: T).(pr0 (THead (Bind -Abbr) v2 t6) t9))) (\lambda (x: T).(\lambda (H37: (pr0 t8 x)).(\lambda (H38: -(pr0 t6 x)).(ex2_ind T (\lambda (t9: T).(pr0 u2 t9)) (\lambda (t9: T).(pr0 v2 -t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u3 -t8)) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))) (\lambda (x0: -T).(\lambda (H39: (pr0 u2 x0)).(\lambda (H40: (pr0 v2 x0)).(ex_intro2 T -(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9)) -(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9)) (THead (Bind Abbr) x0 x) -(pr0_beta u3 u2 x0 H39 t8 x H37) (pr0_comp v2 x0 H40 t6 x H38 (Bind -Abbr)))))) (H22 v1 (tlt_head_sx (Flat Appl) v1 (THead (Bind Abst) u t5)) u2 -H23 v2 H14))))) (H22 t5 (tlt_trans (THead (Bind Abst) u t5) t5 (THead (Flat -Appl) v1 (THead (Bind Abst) u t5)) (tlt_head_dx (Bind Abst) u t5) -(tlt_head_dx (Flat Appl) v1 (THead (Bind Abst) u t5))) t8 H36 t6 H15)))) t4 -H34)) t7 (sym_eq T t7 t5 H33))) u0 (sym_eq T u0 u H32))) k0 (sym_eq K k0 -(Bind Abst) H31))) H30)) H29)) H28 H25 H26))) | (pr0_beta u0 v0 v3 H25 t7 t8 -H26) \Rightarrow (\lambda (H27: (eq T (THead (Flat Appl) v0 (THead (Bind -Abst) u0 t7)) (THead (Bind Abst) u t5))).(\lambda (H28: (eq T (THead (Bind -Abbr) v3 t8) t4)).((let H29 \def (eq_ind T (THead (Flat Appl) v0 (THead (Bind -Abst) u0 t7)) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with -[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) -\Rightarrow (match k0 in K return (\lambda (_: K).Prop) with [(Bind _) -\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abst) u t5) -H27) in (False_ind ((eq T (THead (Bind Abbr) v3 t8) t4) \to ((pr0 v0 v3) \to -((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) -(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9)))))) H29)) H28 H25 H26))) -| (pr0_upsilon b H25 v0 v3 H26 u0 u3 H27 t7 t8 H28) \Rightarrow (\lambda -(H29: (eq T (THead (Flat Appl) v0 (THead (Bind b) u0 t7)) (THead (Bind Abst) -u t5))).(\lambda (H30: (eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S -O) O v3) t8)) t4)).((let H31 \def (eq_ind T (THead (Flat Appl) v0 (THead -(Bind b) u0 t7)) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) -with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ -_) \Rightarrow (match k0 in K return (\lambda (_: K).Prop) with [(Bind _) -\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abst) u t5) -H29) in (False_ind ((eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O -v3) t8)) t4) \to ((not (eq B b Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) \to -((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) -(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9)))))))) H31)) H30 H25 H26 -H27 H28))) | (pr0_delta u0 u3 H25 t7 t8 H26 w H27) \Rightarrow (\lambda (H28: -(eq T (THead (Bind Abbr) u0 t7) (THead (Bind Abst) u t5))).(\lambda (H29: (eq -T (THead (Bind Abbr) u3 w) t4)).((let H30 \def (eq_ind T (THead (Bind Abbr) -u0 t7) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with -[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) -\Rightarrow (match k0 in K return (\lambda (_: K).Prop) with [(Bind b) -\Rightarrow (match b in B return (\lambda (_: B).Prop) with [Abbr \Rightarrow -True | Abst \Rightarrow False | Void \Rightarrow False]) | (Flat _) -\Rightarrow False])])) I (THead (Bind Abst) u t5) H28) in (False_ind ((eq T -(THead (Bind Abbr) u3 w) t4) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to ((subst0 O -u3 t8 w) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) -(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))))))) H30)) H29 H25 H26 -H27))) | (pr0_zeta b H25 t7 t8 H26 u0) \Rightarrow (\lambda (H27: (eq T -(THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u t5))).(\lambda -(H28: (eq T t8 t4)).((let H29 \def (f_equal T T (\lambda (e: T).(match e in T -return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f: -((nat \to nat))) (d: nat) (t9: T) on t9: T \def (match t9 with [(TSort n) -\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with -[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k0 u3 t10) -\Rightarrow (THead k0 (lref_map f d u3) (lref_map f (s k0 d) t10))]) in -lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _) \Rightarrow -((let rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T \def (match -t9 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef -(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | -(THead k0 u3 t10) \Rightarrow (THead k0 (lref_map f d u3) (lref_map f (s k0 -d) t10))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _ -t9) \Rightarrow t9])) (THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind -Abst) u t5) H27) in ((let H30 \def (f_equal T T (\lambda (e: T).(match e in T -return (\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _) -\Rightarrow u0 | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b) u0 (lift (S -O) O t7)) (THead (Bind Abst) u t5) H27) in ((let H31 \def (f_equal T B -(\lambda (e: T).(match e in T return (\lambda (_: T).B) with [(TSort _) -\Rightarrow b | (TLRef _) \Rightarrow b | (THead k0 _ _) \Rightarrow (match -k0 in K return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) -\Rightarrow b])])) (THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u -t5) H27) in (eq_ind B Abst (\lambda (b0: B).((eq T u0 u) \to ((eq T (lift (S -O) O t7) t5) \to ((eq T t8 t4) \to ((not (eq B b0 Abst)) \to ((pr0 t7 t8) \to -(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: -T).(pr0 (THead (Bind Abbr) v2 t6) t9))))))))) (\lambda (H32: (eq T u0 -u)).(eq_ind T u (\lambda (_: T).((eq T (lift (S O) O t7) t5) \to ((eq T t8 -t4) \to ((not (eq B Abst Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: -T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind -Abbr) v2 t6) t10)))))))) (\lambda (H33: (eq T (lift (S O) O t7) t5)).(eq_ind -T (lift (S O) O t7) (\lambda (_: T).((eq T t8 t4) \to ((not (eq B Abst Abst)) -\to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) +(Bind Abbr) v2 t6) t10)))))))) (\lambda (H33: (eq T t7 t5)).(eq_ind T t5 +(\lambda (t9: T).((eq T (THead (Bind Abst) u3 t8) t4) \to ((pr0 u u3) \to +((pr0 t9 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t6) t10))))))) (\lambda -(H34: (eq T t8 t4)).(eq_ind T t4 (\lambda (t9: T).((not (eq B Abst Abst)) \to -((pr0 t7 t9) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) -t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t6) t10)))))) (\lambda -(H35: (not (eq B Abst Abst))).(\lambda (_: (pr0 t7 t4)).(let H37 \def (match -(H35 (refl_equal B Abst)) in False return (\lambda (_: False).(ex2 T (\lambda -(t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead -(Bind Abbr) v2 t6) t9)))) with []) in H37))) t8 (sym_eq T t8 t4 H34))) t5 -H33)) u0 (sym_eq T u0 u H32))) b (sym_eq B b Abst H31))) H30)) H29)) H28 H25 -H26))) | (pr0_tau t7 t8 H25 u0) \Rightarrow (\lambda (H26: (eq T (THead (Flat -Cast) u0 t7) (THead (Bind Abst) u t5))).(\lambda (H27: (eq T t8 t4)).((let -H28 \def (eq_ind T (THead (Flat Cast) u0 t7) (\lambda (e: T).(match e in T -return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda -(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow -True])])) I (THead (Bind Abst) u t5) H26) in (False_ind ((eq T t8 t4) \to -((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) -(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))))) H28)) H27 H25)))]) in -(H25 (refl_equal T (THead (Bind Abst) u t5)) (refl_equal T t4))))) k H21))))) -H18)) H17))))) t2 H13)) t H11 H12 H9 H10))) | (pr0_upsilon b H9 v1 v2 H10 u0 -u3 H11 t5 t6 H12) \Rightarrow (\lambda (H13: (eq T (THead (Flat Appl) v1 -(THead (Bind b) u0 t5)) t)).(\lambda (H14: (eq T (THead (Bind b) u3 (THead -(Flat Appl) (lift (S O) O v2) t6)) t2)).(eq_ind T (THead (Flat Appl) v1 -(THead (Bind b) u0 t5)) (\lambda (_: T).((eq T (THead (Bind b) u3 (THead -(Flat Appl) (lift (S O) O v2) t6)) t2) \to ((not (eq B b Abst)) \to ((pr0 v1 -v2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead -k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))))) (\lambda (H15: (eq T -(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t2)).(eq_ind T -(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) (\lambda (t7: -T).((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) -\to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 -t7 t8)))))))) (\lambda (H16: (not (eq B b Abst))).(\lambda (H17: (pr0 v1 -v2)).(\lambda (H18: (pr0 u0 u3)).(\lambda (H19: (pr0 t5 t6)).(let H20 \def -(eq_ind_r T t (\lambda (t7: T).(eq T (THead k u1 t3) t7)) H4 (THead (Flat -Appl) v1 (THead (Bind b) u0 t5)) H13) in (let H21 \def (f_equal T K (\lambda -(e: T).(match e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k -| (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u1 t3) -(THead (Flat Appl) v1 (THead (Bind b) u0 t5)) H20) in ((let H22 \def (f_equal -T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) -(THead k u1 t3) (THead (Flat Appl) v1 (THead (Bind b) u0 t5)) H20) in ((let -H23 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) -with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7) -\Rightarrow t7])) (THead k u1 t3) (THead (Flat Appl) v1 (THead (Bind b) u0 -t5)) H20) in (\lambda (H24: (eq T u1 v1)).(\lambda (H25: (eq K k (Flat -Appl))).(let H26 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v -t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to -(ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 -t10)))))))))) H (THead (Flat Appl) v1 (THead (Bind b) u0 t5)) H13) in -(eq_ind_r K (Flat Appl) (\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead -k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) -(lift (S O) O v2) t6)) t7)))) (let H27 \def (eq_ind T u1 (\lambda (t7: -T).(pr0 t7 u2)) H7 v1 H24) in (let H28 \def (eq_ind T t3 (\lambda (t7: -T).(pr0 t7 t4)) H8 (THead (Bind b) u0 t5) H23) in (let H29 \def (match H28 in -pr0 return (\lambda (t7: T).(\lambda (t8: T).(\lambda (_: (pr0 t7 t8)).((eq T -t7 (THead (Bind b) u0 t5)) \to ((eq T t8 t4) \to (ex2 T (\lambda (t9: T).(pr0 -(THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 -(THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))))) with [(pr0_refl t7) -\Rightarrow (\lambda (H29: (eq T t7 (THead (Bind b) u0 t5))).(\lambda (H30: -(eq T t7 t4)).(eq_ind T (THead (Bind b) u0 t5) (\lambda (t8: T).((eq T t8 t4) -\to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: -T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9))))) -(\lambda (H31: (eq T (THead (Bind b) u0 t5) t4)).(eq_ind T (THead (Bind b) u0 -t5) (\lambda (t8: T).(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t8) -t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) -O v2) t6)) t9)))) (ex2_ind T (\lambda (t8: T).(pr0 u2 t8)) (\lambda (t8: -T).(pr0 v2 t8)) (ex2 T (\lambda (t8: T).(pr0 (THead (Flat Appl) u2 (THead -(Bind b) u0 t5)) t8)) (\lambda (t8: T).(pr0 (THead (Bind b) u3 (THead (Flat -Appl) (lift (S O) O v2) t6)) t8))) (\lambda (x: T).(\lambda (H32: (pr0 u2 -x)).(\lambda (H33: (pr0 v2 x)).(pr0_confluence__pr0_cong_upsilon_refl b H16 -u0 u3 H18 t5 t6 H19 u2 v2 x H32 H33)))) (H26 v1 (tlt_head_sx (Flat Appl) v1 -(THead (Bind b) u0 t5)) u2 H27 v2 H17)) t4 H31)) t7 (sym_eq T t7 (THead (Bind -b) u0 t5) H29) H30))) | (pr0_comp u4 u5 H29 t7 t8 H30 k0) \Rightarrow -(\lambda (H31: (eq T (THead k0 u4 t7) (THead (Bind b) u0 t5))).(\lambda (H32: -(eq T (THead k0 u5 t8) t4)).((let H33 \def (f_equal T T (\lambda (e: -T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t7 | -(TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) (THead k0 u4 t7) -(THead (Bind b) u0 t5) H31) in ((let H34 \def (f_equal T T (\lambda (e: -T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u4 | -(TLRef _) \Rightarrow u4 | (THead _ t9 _) \Rightarrow t9])) (THead k0 u4 t7) -(THead (Bind b) u0 t5) H31) in ((let H35 \def (f_equal T K (\lambda (e: -T).(match e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k0 | -(TLRef _) \Rightarrow k0 | (THead k1 _ _) \Rightarrow k1])) (THead k0 u4 t7) -(THead (Bind b) u0 t5) H31) in (eq_ind K (Bind b) (\lambda (k1: K).((eq T u4 -u0) \to ((eq T t7 t5) \to ((eq T (THead k1 u5 t8) t4) \to ((pr0 u4 u5) \to -((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) -(\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) -t6)) t9))))))))) (\lambda (H36: (eq T u4 u0)).(eq_ind T u0 (\lambda (t9: -T).((eq T t7 t5) \to ((eq T (THead (Bind b) u5 t8) t4) \to ((pr0 t9 u5) \to -((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) -t10)) (\lambda (t10: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S -O) O v2) t6)) t10)))))))) (\lambda (H37: (eq T t7 t5)).(eq_ind T t5 (\lambda -(t9: T).((eq T (THead (Bind b) u5 t8) t4) \to ((pr0 u0 u5) \to ((pr0 t9 t8) -\to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda -(t10: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) -t10))))))) (\lambda (H38: (eq T (THead (Bind b) u5 t8) t4)).(eq_ind T (THead -(Bind b) u5 t8) (\lambda (t9: T).((pr0 u0 u5) \to ((pr0 t5 t8) \to (ex2 T -(\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t9) t10)) (\lambda (t10: T).(pr0 -(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t10)))))) -(\lambda (H39: (pr0 u0 u5)).(\lambda (H40: (pr0 t5 t8)).(ex2_ind T (\lambda -(t9: T).(pr0 t8 t9)) (\lambda (t9: T).(pr0 t6 t9)) (ex2 T (\lambda (t9: -T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u5 t8)) t9)) (\lambda (t9: -T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9))) -(\lambda (x: T).(\lambda (H41: (pr0 t8 x)).(\lambda (H42: (pr0 t6 -x)).(ex2_ind T (\lambda (t9: T).(pr0 u5 t9)) (\lambda (t9: T).(pr0 u3 t9)) -(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u5 t8)) -t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) -O v2) t6)) t9))) (\lambda (x0: T).(\lambda (H43: (pr0 u5 x0)).(\lambda (H44: -(pr0 u3 x0)).(ex2_ind T (\lambda (t9: T).(pr0 u2 t9)) (\lambda (t9: T).(pr0 -v2 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u5 -t8)) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift -(S O) O v2) t6)) t9))) (\lambda (x1: T).(\lambda (H45: (pr0 u2 x1)).(\lambda -(H46: (pr0 v2 x1)).(pr0_confluence__pr0_cong_upsilon_cong b H16 u2 v2 x1 H45 -H46 t8 t6 x H41 H42 u5 u3 x0 H43 H44)))) (H26 v1 (tlt_head_sx (Flat Appl) v1 -(THead (Bind b) u0 t5)) u2 H27 v2 H17))))) (H26 u0 (tlt_trans (THead (Bind b) -u0 t5) u0 (THead (Flat Appl) v1 (THead (Bind b) u0 t5)) (tlt_head_sx (Bind b) -u0 t5) (tlt_head_dx (Flat Appl) v1 (THead (Bind b) u0 t5))) u5 H39 u3 -H18))))) (H26 t5 (tlt_trans (THead (Bind b) u0 t5) t5 (THead (Flat Appl) v1 -(THead (Bind b) u0 t5)) (tlt_head_dx (Bind b) u0 t5) (tlt_head_dx (Flat Appl) -v1 (THead (Bind b) u0 t5))) t8 H40 t6 H19)))) t4 H38)) t7 (sym_eq T t7 t5 -H37))) u4 (sym_eq T u4 u0 H36))) k0 (sym_eq K k0 (Bind b) H35))) H34)) H33)) -H32 H29 H30))) | (pr0_beta u v0 v3 H29 t7 t8 H30) \Rightarrow (\lambda (H31: -(eq T (THead (Flat Appl) v0 (THead (Bind Abst) u t7)) (THead (Bind b) u0 -t5))).(\lambda (H32: (eq T (THead (Bind Abbr) v3 t8) t4)).((let H33 \def -(eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u t7)) (\lambda (e: -T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow -False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in -K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) -\Rightarrow True])])) I (THead (Bind b) u0 t5) H31) in (False_ind ((eq T -(THead (Bind Abbr) v3 t8) t4) \to ((pr0 v0 v3) \to ((pr0 t7 t8) \to (ex2 T +(H34: (eq T (THead (Bind Abst) u3 t8) t4)).(eq_ind T (THead (Bind Abst) u3 +t8) (\lambda (t9: T).((pr0 u u3) \to ((pr0 t5 t8) \to (ex2 T (\lambda (t10: +T).(pr0 (THead (Flat Appl) u2 t9) t10)) (\lambda (t10: T).(pr0 (THead (Bind +Abbr) v2 t6) t10)))))) (\lambda (_: (pr0 u u3)).(\lambda (H36: (pr0 t5 +t8)).(ex2_ind T (\lambda (t9: T).(pr0 t8 t9)) (\lambda (t9: T).(pr0 t6 t9)) +(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u3 t8)) +t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))) (\lambda (x: +T).(\lambda (H37: (pr0 t8 x)).(\lambda (H38: (pr0 t6 x)).(ex2_ind T (\lambda +(t9: T).(pr0 u2 t9)) (\lambda (t9: T).(pr0 v2 t9)) (ex2 T (\lambda (t9: +T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9)) (\lambda (t9: +T).(pr0 (THead (Bind Abbr) v2 t6) t9))) (\lambda (x0: T).(\lambda (H39: (pr0 +u2 x0)).(\lambda (H40: (pr0 v2 x0)).(ex_intro2 T (\lambda (t9: T).(pr0 (THead +(Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9)) (\lambda (t9: T).(pr0 (THead +(Bind Abbr) v2 t6) t9)) (THead (Bind Abbr) x0 x) (pr0_beta u3 u2 x0 H39 t8 x +H37) (pr0_comp v2 x0 H40 t6 x H38 (Bind Abbr)))))) (H22 v1 (tlt_head_sx (Flat +Appl) v1 (THead (Bind Abst) u t5)) u2 H23 v2 H14))))) (H22 t5 (tlt_trans +(THead (Bind Abst) u t5) t5 (THead (Flat Appl) v1 (THead (Bind Abst) u t5)) +(tlt_head_dx (Bind Abst) u t5) (tlt_head_dx (Flat Appl) v1 (THead (Bind Abst) +u t5))) t8 H36 t6 H15)))) t4 H34)) t7 (sym_eq T t7 t5 H33))) u0 (sym_eq T u0 +u H32))) k0 (sym_eq K k0 (Bind Abst) H31))) H30)) H29)) H28 H25 H26))) | +(pr0_beta u0 v0 v3 H25 t7 t8 H26) \Rightarrow (\lambda (H27: (eq T (THead +(Flat Appl) v0 (THead (Bind Abst) u0 t7)) (THead (Bind Abst) u t5))).(\lambda +(H28: (eq T (THead (Bind Abbr) v3 t8) t4)).((let H29 \def (eq_ind T (THead +(Flat Appl) v0 (THead (Bind Abst) u0 t7)) (\lambda (e: T).(match e with +[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) +\Rightarrow (match k0 with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow +True])])) I (THead (Bind Abst) u t5) H27) in (False_ind ((eq T (THead (Bind +Abbr) v3 t8) t4) \to ((pr0 v0 v3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: +T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind +Abbr) v2 t6) t9)))))) H29)) H28 H25 H26))) | (pr0_upsilon b H25 v0 v3 H26 u0 +u3 H27 t7 t8 H28) \Rightarrow (\lambda (H29: (eq T (THead (Flat Appl) v0 +(THead (Bind b) u0 t7)) (THead (Bind Abst) u t5))).(\lambda (H30: (eq T +(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v3) t8)) t4)).((let H31 +\def (eq_ind T (THead (Flat Appl) v0 (THead (Bind b) u0 t7)) (\lambda (e: +T).(match e with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | +(THead k0 _ _) \Rightarrow (match k0 with [(Bind _) \Rightarrow False | (Flat +_) \Rightarrow True])])) I (THead (Bind Abst) u t5) H29) in (False_ind ((eq T +(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v3) t8)) t4) \to ((not +(eq B b Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 -(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))) H33)) -H32 H29 H30))) | (pr0_upsilon b0 H29 v0 v3 H30 u4 u5 H31 t7 t8 H32) -\Rightarrow (\lambda (H33: (eq T (THead (Flat Appl) v0 (THead (Bind b0) u4 -t7)) (THead (Bind b) u0 t5))).(\lambda (H34: (eq T (THead (Bind b0) u5 (THead -(Flat Appl) (lift (S O) O v3) t8)) t4)).((let H35 \def (eq_ind T (THead (Flat -Appl) v0 (THead (Bind b0) u4 t7)) (\lambda (e: T).(match e in T return -(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda -(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow -True])])) I (THead (Bind b) u0 t5) H33) in (False_ind ((eq T (THead (Bind b0) -u5 (THead (Flat Appl) (lift (S O) O v3) t8)) t4) \to ((not (eq B b0 Abst)) -\to ((pr0 v0 v3) \to ((pr0 u4 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: -T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) -u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))))) H35)) H34 H29 H30 H31 -H32))) | (pr0_delta u4 u5 H29 t7 t8 H30 w H31) \Rightarrow (\lambda (H32: (eq -T (THead (Bind Abbr) u4 t7) (THead (Bind b) u0 t5))).(\lambda (H33: (eq T -(THead (Bind Abbr) u5 w) t4)).((let H34 \def (f_equal T T (\lambda (e: -T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t7 | -(TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) (THead (Bind -Abbr) u4 t7) (THead (Bind b) u0 t5) H32) in ((let H35 \def (f_equal T T -(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow u4 | (TLRef _) \Rightarrow u4 | (THead _ t9 _) \Rightarrow t9])) -(THead (Bind Abbr) u4 t7) (THead (Bind b) u0 t5) H32) in ((let H36 \def -(f_equal T B (\lambda (e: T).(match e in T return (\lambda (_: T).B) with -[(TSort _) \Rightarrow Abbr | (TLRef _) \Rightarrow Abbr | (THead k0 _ _) -\Rightarrow (match k0 in K return (\lambda (_: K).B) with [(Bind b0) -\Rightarrow b0 | (Flat _) \Rightarrow Abbr])])) (THead (Bind Abbr) u4 t7) -(THead (Bind b) u0 t5) H32) in (eq_ind B Abbr (\lambda (b0: B).((eq T u4 u0) -\to ((eq T t7 t5) \to ((eq T (THead (Bind Abbr) u5 w) t4) \to ((pr0 u4 u5) -\to ((pr0 t7 t8) \to ((subst0 O u5 t8 w) \to (ex2 T (\lambda (t9: T).(pr0 -(THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b0) u3 -(THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))))))) (\lambda (H37: (eq T -u4 u0)).(eq_ind T u0 (\lambda (t9: T).((eq T t7 t5) \to ((eq T (THead (Bind -Abbr) u5 w) t4) \to ((pr0 t9 u5) \to ((pr0 t7 t8) \to ((subst0 O u5 t8 w) \to +(THead (Bind Abbr) v2 t6) t9)))))))) H31)) H30 H25 H26 H27 H28))) | +(pr0_delta u0 u3 H25 t7 t8 H26 w H27) \Rightarrow (\lambda (H28: (eq T (THead +(Bind Abbr) u0 t7) (THead (Bind Abst) u t5))).(\lambda (H29: (eq T (THead +(Bind Abbr) u3 w) t4)).((let H30 \def (eq_ind T (THead (Bind Abbr) u0 t7) +(\lambda (e: T).(match e with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 with [(Bind b) +\Rightarrow (match b with [Abbr \Rightarrow True | Abst \Rightarrow False | +Void \Rightarrow False]) | (Flat _) \Rightarrow False])])) I (THead (Bind +Abst) u t5) H28) in (False_ind ((eq T (THead (Bind Abbr) u3 w) t4) \to ((pr0 +u0 u3) \to ((pr0 t7 t8) \to ((subst0 O u3 t8 w) \to (ex2 T (\lambda (t9: +T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind +Abbr) v2 t6) t9))))))) H30)) H29 H25 H26 H27))) | (pr0_zeta b H25 t7 t8 H26 +u0) \Rightarrow (\lambda (H27: (eq T (THead (Bind b) u0 (lift (S O) O t7)) +(THead (Bind Abst) u t5))).(\lambda (H28: (eq T t8 t4)).((let H29 \def +(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow (lref_map +(\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _) \Rightarrow (lref_map +(\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _ t9) \Rightarrow t9])) +(THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u t5) H27) in ((let +H30 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u0 +| (TLRef _) \Rightarrow u0 | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b) +u0 (lift (S O) O t7)) (THead (Bind Abst) u t5) H27) in ((let H31 \def +(f_equal T B (\lambda (e: T).(match e with [(TSort _) \Rightarrow b | (TLRef +_) \Rightarrow b | (THead k0 _ _) \Rightarrow (match k0 with [(Bind b0) +\Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead (Bind b) u0 (lift (S O) O +t7)) (THead (Bind Abst) u t5) H27) in (eq_ind B Abst (\lambda (b0: B).((eq T +u0 u) \to ((eq T (lift (S O) O t7) t5) \to ((eq T t8 t4) \to ((not (eq B b0 +Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) +u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))))))))) +(\lambda (H32: (eq T u0 u)).(eq_ind T u (\lambda (_: T).((eq T (lift (S O) O +t7) t5) \to ((eq T t8 t4) \to ((not (eq B Abst Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: -T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) -t10))))))))) (\lambda (H38: (eq T t7 t5)).(eq_ind T t5 (\lambda (t9: T).((eq -T (THead (Bind Abbr) u5 w) t4) \to ((pr0 u0 u5) \to ((pr0 t9 t8) \to ((subst0 -O u5 t8 w) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) -(\lambda (t10: T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O -v2) t6)) t10)))))))) (\lambda (H39: (eq T (THead (Bind Abbr) u5 w) -t4)).(eq_ind T (THead (Bind Abbr) u5 w) (\lambda (t9: T).((pr0 u0 u5) \to -((pr0 t5 t8) \to ((subst0 O u5 t8 w) \to (ex2 T (\lambda (t10: T).(pr0 (THead -(Flat Appl) u2 t9) t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) u3 (THead -(Flat Appl) (lift (S O) O v2) t6)) t10))))))) (\lambda (H40: (pr0 u0 -u5)).(\lambda (H41: (pr0 t5 t8)).(\lambda (H42: (subst0 O u5 t8 w)).(let H43 -\def (eq_ind_r B b (\lambda (b0: B).(\forall (v: T).((tlt v (THead (Flat -Appl) v1 (THead (Bind b0) u0 t5))) \to (\forall (t9: T).((pr0 v t9) \to -(\forall (t10: T).((pr0 v t10) \to (ex2 T (\lambda (t11: T).(pr0 t9 t11)) -(\lambda (t11: T).(pr0 t10 t11)))))))))) H26 Abbr H36) in (let H44 \def -(eq_ind_r B b (\lambda (b0: B).(eq T t3 (THead (Bind b0) u0 t5))) H23 Abbr -H36) in (let H45 \def (eq_ind_r B b (\lambda (b0: B).(not (eq B b0 Abst))) -H16 Abbr H36) in (ex2_ind T (\lambda (t9: T).(pr0 t8 t9)) (\lambda (t9: -T).(pr0 t6 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead -(Bind Abbr) u5 w)) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) u3 (THead -(Flat Appl) (lift (S O) O v2) t6)) t9))) (\lambda (x: T).(\lambda (H46: (pr0 -t8 x)).(\lambda (H47: (pr0 t6 x)).(ex2_ind T (\lambda (t9: T).(pr0 u5 t9)) -(\lambda (t9: T).(pr0 u3 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) -u2 (THead (Bind Abbr) u5 w)) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) u3 -(THead (Flat Appl) (lift (S O) O v2) t6)) t9))) (\lambda (x0: T).(\lambda -(H48: (pr0 u5 x0)).(\lambda (H49: (pr0 u3 x0)).(ex2_ind T (\lambda (t9: -T).(pr0 u2 t9)) (\lambda (t9: T).(pr0 v2 t9)) (ex2 T (\lambda (t9: T).(pr0 -(THead (Flat Appl) u2 (THead (Bind Abbr) u5 w)) t9)) (\lambda (t9: T).(pr0 -(THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9))) -(\lambda (x1: T).(\lambda (H50: (pr0 u2 x1)).(\lambda (H51: (pr0 v2 -x1)).(pr0_confluence__pr0_cong_upsilon_delta H45 u5 t8 w H42 u2 v2 x1 H50 H51 -t6 x H46 H47 u3 x0 H48 H49)))) (H43 v1 (tlt_head_sx (Flat Appl) v1 (THead -(Bind Abbr) u0 t5)) u2 H27 v2 H17))))) (H43 u0 (tlt_trans (THead (Bind Abbr) -u0 t5) u0 (THead (Flat Appl) v1 (THead (Bind Abbr) u0 t5)) (tlt_head_sx (Bind -Abbr) u0 t5) (tlt_head_dx (Flat Appl) v1 (THead (Bind Abbr) u0 t5))) u5 H40 -u3 H18))))) (H43 t5 (tlt_trans (THead (Bind Abbr) u0 t5) t5 (THead (Flat -Appl) v1 (THead (Bind Abbr) u0 t5)) (tlt_head_dx (Bind Abbr) u0 t5) -(tlt_head_dx (Flat Appl) v1 (THead (Bind Abbr) u0 t5))) t8 H41 t6 H19)))))))) -t4 H39)) t7 (sym_eq T t7 t5 H38))) u4 (sym_eq T u4 u0 H37))) b H36)) H35)) -H34)) H33 H29 H30 H31))) | (pr0_zeta b0 H29 t7 t8 H30 u) \Rightarrow (\lambda -(H31: (eq T (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) u0 -t5))).(\lambda (H32: (eq T t8 t4)).((let H33 \def (f_equal T T (\lambda (e: -T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let -rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T \def (match t9 -with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match -(blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | (THead k0 -u4 t10) \Rightarrow (THead k0 (lref_map f d u4) (lref_map f (s k0 d) t10))]) -in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _) \Rightarrow -((let rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T \def (match -t9 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef -(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | -(THead k0 u4 t10) \Rightarrow (THead k0 (lref_map f d u4) (lref_map f (s k0 -d) t10))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _ -t9) \Rightarrow t9])) (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) -u0 t5) H31) in ((let H34 \def (f_equal T T (\lambda (e: T).(match e in T -return (\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _) -\Rightarrow u | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b0) u (lift (S -O) O t7)) (THead (Bind b) u0 t5) H31) in ((let H35 \def (f_equal T B (\lambda -(e: T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b0 -| (TLRef _) \Rightarrow b0 | (THead k0 _ _) \Rightarrow (match k0 in K return -(\lambda (_: K).B) with [(Bind b1) \Rightarrow b1 | (Flat _) \Rightarrow -b0])])) (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) u0 t5) H31) in -(eq_ind B b (\lambda (b1: B).((eq T u u0) \to ((eq T (lift (S O) O t7) t5) -\to ((eq T t8 t4) \to ((not (eq B b1 Abst)) \to ((pr0 t7 t8) \to (ex2 T +T).(pr0 (THead (Bind Abbr) v2 t6) t10)))))))) (\lambda (H33: (eq T (lift (S +O) O t7) t5)).(eq_ind T (lift (S O) O t7) (\lambda (_: T).((eq T t8 t4) \to +((not (eq B Abst Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 +(THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 +t6) t10))))))) (\lambda (H34: (eq T t8 t4)).(eq_ind T t4 (\lambda (t9: +T).((not (eq B Abst Abst)) \to ((pr0 t7 t9) \to (ex2 T (\lambda (t10: T).(pr0 +(THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 +t6) t10)))))) (\lambda (H35: (not (eq B Abst Abst))).(\lambda (_: (pr0 t7 +t4)).(let H37 \def (match (H35 (refl_equal B Abst)) in False with []) in +H37))) t8 (sym_eq T t8 t4 H34))) t5 H33)) u0 (sym_eq T u0 u H32))) b (sym_eq +B b Abst H31))) H30)) H29)) H28 H25 H26))) | (pr0_tau t7 t8 H25 u0) +\Rightarrow (\lambda (H26: (eq T (THead (Flat Cast) u0 t7) (THead (Bind Abst) +u t5))).(\lambda (H27: (eq T t8 t4)).((let H28 \def (eq_ind T (THead (Flat +Cast) u0 t7) (\lambda (e: T).(match e with [(TSort _) \Rightarrow False | +(TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 with +[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind +Abst) u t5) H26) in (False_ind ((eq T t8 t4) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 -(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9))))))))) -(\lambda (H36: (eq T u u0)).(eq_ind T u0 (\lambda (_: T).((eq T (lift (S O) O -t7) t5) \to ((eq T t8 t4) \to ((not (eq B b Abst)) \to ((pr0 t7 t8) \to (ex2 -T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: -T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) -t10)))))))) (\lambda (H37: (eq T (lift (S O) O t7) t5)).(eq_ind T (lift (S O) -O t7) (\lambda (_: T).((eq T t8 t4) \to ((not (eq B b Abst)) \to ((pr0 t7 t8) -\to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda -(t10: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) -t10))))))) (\lambda (H38: (eq T t8 t4)).(eq_ind T t4 (\lambda (t9: T).((not -(eq B b Abst)) \to ((pr0 t7 t9) \to (ex2 T (\lambda (t10: T).(pr0 (THead +(THead (Bind Abbr) v2 t6) t9))))) H28)) H27 H25)))]) in (H25 (refl_equal T +(THead (Bind Abst) u t5)) (refl_equal T t4))))) k H21))))) H18)) H17))))) t2 +H13)) t H11 H12 H9 H10))) | (pr0_upsilon b H9 v1 v2 H10 u0 u3 H11 t5 t6 H12) +\Rightarrow (\lambda (H13: (eq T (THead (Flat Appl) v1 (THead (Bind b) u0 +t5)) t)).(\lambda (H14: (eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S +O) O v2) t6)) t2)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u0 t5)) +(\lambda (_: T).((eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O +v2) t6)) t2) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u0 u3) \to +((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda +(t8: T).(pr0 t2 t8))))))))) (\lambda (H15: (eq T (THead (Bind b) u3 (THead +(Flat Appl) (lift (S O) O v2) t6)) t2)).(eq_ind T (THead (Bind b) u3 (THead +(Flat Appl) (lift (S O) O v2) t6)) (\lambda (t7: T).((not (eq B b Abst)) \to +((pr0 v1 v2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: +T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t7 t8)))))))) (\lambda +(H16: (not (eq B b Abst))).(\lambda (H17: (pr0 v1 v2)).(\lambda (H18: (pr0 u0 +u3)).(\lambda (H19: (pr0 t5 t6)).(let H20 \def (eq_ind_r T t (\lambda (t7: +T).(eq T (THead k u1 t3) t7)) H4 (THead (Flat Appl) v1 (THead (Bind b) u0 +t5)) H13) in (let H21 \def (f_equal T K (\lambda (e: T).(match e with [(TSort +_) \Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0])) +(THead k u1 t3) (THead (Flat Appl) v1 (THead (Bind b) u0 t5)) H20) in ((let +H22 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u1 +| (TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3) +(THead (Flat Appl) v1 (THead (Bind b) u0 t5)) H20) in ((let H23 \def (f_equal +T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 | (TLRef _) +\Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead +(Flat Appl) v1 (THead (Bind b) u0 t5)) H20) in (\lambda (H24: (eq T u1 +v1)).(\lambda (H25: (eq K k (Flat Appl))).(let H26 \def (eq_ind_r T t +(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) +\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) +(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Appl) v1 (THead (Bind +b) u0 t5)) H13) in (eq_ind_r K (Flat Appl) (\lambda (k0: K).(ex2 T (\lambda +(t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind b) u3 +(THead (Flat Appl) (lift (S O) O v2) t6)) t7)))) (let H27 \def (eq_ind T u1 +(\lambda (t7: T).(pr0 t7 u2)) H7 v1 H24) in (let H28 \def (eq_ind T t3 +(\lambda (t7: T).(pr0 t7 t4)) H8 (THead (Bind b) u0 t5) H23) in (let H29 \def +(match H28 with [(pr0_refl t7) \Rightarrow (\lambda (H29: (eq T t7 (THead +(Bind b) u0 t5))).(\lambda (H30: (eq T t7 t4)).(eq_ind T (THead (Bind b) u0 +t5) (\lambda (t8: T).((eq T t8 t4) \to (ex2 T (\lambda (t9: T).(pr0 (THead +(Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat +Appl) (lift (S O) O v2) t6)) t9))))) (\lambda (H31: (eq T (THead (Bind b) u0 +t5) t4)).(eq_ind T (THead (Bind b) u0 t5) (\lambda (t8: T).(ex2 T (\lambda +(t9: T).(pr0 (THead (Flat Appl) u2 t8) t9)) (\lambda (t9: T).(pr0 (THead +(Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))) (ex2_ind T +(\lambda (t8: T).(pr0 u2 t8)) (\lambda (t8: T).(pr0 v2 t8)) (ex2 T (\lambda +(t8: T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u0 t5)) t8)) (\lambda (t8: +T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t8))) +(\lambda (x: T).(\lambda (H32: (pr0 u2 x)).(\lambda (H33: (pr0 v2 +x)).(pr0_confluence__pr0_cong_upsilon_refl b H16 u0 u3 H18 t5 t6 H19 u2 v2 x +H32 H33)))) (H26 v1 (tlt_head_sx (Flat Appl) v1 (THead (Bind b) u0 t5)) u2 +H27 v2 H17)) t4 H31)) t7 (sym_eq T t7 (THead (Bind b) u0 t5) H29) H30))) | +(pr0_comp u4 u5 H29 t7 t8 H30 k0) \Rightarrow (\lambda (H31: (eq T (THead k0 +u4 t7) (THead (Bind b) u0 t5))).(\lambda (H32: (eq T (THead k0 u5 t8) +t4)).((let H33 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) +\Rightarrow t7 | (TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) +(THead k0 u4 t7) (THead (Bind b) u0 t5) H31) in ((let H34 \def (f_equal T T +(\lambda (e: T).(match e with [(TSort _) \Rightarrow u4 | (TLRef _) +\Rightarrow u4 | (THead _ t9 _) \Rightarrow t9])) (THead k0 u4 t7) (THead +(Bind b) u0 t5) H31) in ((let H35 \def (f_equal T K (\lambda (e: T).(match e +with [(TSort _) \Rightarrow k0 | (TLRef _) \Rightarrow k0 | (THead k1 _ _) +\Rightarrow k1])) (THead k0 u4 t7) (THead (Bind b) u0 t5) H31) in (eq_ind K +(Bind b) (\lambda (k1: K).((eq T u4 u0) \to ((eq T t7 t5) \to ((eq T (THead +k1 u5 t8) t4) \to ((pr0 u4 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: +T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) +u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9))))))))) (\lambda (H36: (eq T +u4 u0)).(eq_ind T u0 (\lambda (t9: T).((eq T t7 t5) \to ((eq T (THead (Bind +b) u5 t8) t4) \to ((pr0 t9 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: +T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind +b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t10)))))))) (\lambda (H37: +(eq T t7 t5)).(eq_ind T t5 (\lambda (t9: T).((eq T (THead (Bind b) u5 t8) t4) +\to ((pr0 u0 u5) \to ((pr0 t9 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind b) u3 (THead -(Flat Appl) (lift (S O) O v2) t6)) t10)))))) (\lambda (H39: (not (eq B b -Abst))).(\lambda (H40: (pr0 t7 t4)).(let H41 \def (eq_ind_r T t5 (\lambda -(t9: T).(\forall (v: T).((tlt v (THead (Flat Appl) v1 (THead (Bind b) u0 -t9))) \to (\forall (t10: T).((pr0 v t10) \to (\forall (t11: T).((pr0 v t11) -\to (ex2 T (\lambda (t12: T).(pr0 t10 t12)) (\lambda (t12: T).(pr0 t11 -t12)))))))))) H26 (lift (S O) O t7) H37) in (let H42 \def (eq_ind_r T t5 -(\lambda (t9: T).(eq T t3 (THead (Bind b) u0 t9))) H23 (lift (S O) O t7) H37) -in (let H43 \def (eq_ind_r T t5 (\lambda (t9: T).(pr0 t9 t6)) H19 (lift (S O) -O t7) H37) in (ex2_ind T (\lambda (t9: T).(eq T t6 (lift (S O) O t9))) -(\lambda (t9: T).(pr0 t7 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) +(Flat Appl) (lift (S O) O v2) t6)) t10))))))) (\lambda (H38: (eq T (THead +(Bind b) u5 t8) t4)).(eq_ind T (THead (Bind b) u5 t8) (\lambda (t9: T).((pr0 +u0 u5) \to ((pr0 t5 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) +u2 t9) t10)) (\lambda (t10: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) +(lift (S O) O v2) t6)) t10)))))) (\lambda (H39: (pr0 u0 u5)).(\lambda (H40: +(pr0 t5 t8)).(ex2_ind T (\lambda (t9: T).(pr0 t8 t9)) (\lambda (t9: T).(pr0 +t6 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u5 +t8)) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift +(S O) O v2) t6)) t9))) (\lambda (x: T).(\lambda (H41: (pr0 t8 x)).(\lambda +(H42: (pr0 t6 x)).(ex2_ind T (\lambda (t9: T).(pr0 u5 t9)) (\lambda (t9: +T).(pr0 u3 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead +(Bind b) u5 t8)) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat +Appl) (lift (S O) O v2) t6)) t9))) (\lambda (x0: T).(\lambda (H43: (pr0 u5 +x0)).(\lambda (H44: (pr0 u3 x0)).(ex2_ind T (\lambda (t9: T).(pr0 u2 t9)) +(\lambda (t9: T).(pr0 v2 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) +u2 (THead (Bind b) u5 t8)) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 +(THead (Flat Appl) (lift (S O) O v2) t6)) t9))) (\lambda (x1: T).(\lambda +(H45: (pr0 u2 x1)).(\lambda (H46: (pr0 v2 +x1)).(pr0_confluence__pr0_cong_upsilon_cong b H16 u2 v2 x1 H45 H46 t8 t6 x +H41 H42 u5 u3 x0 H43 H44)))) (H26 v1 (tlt_head_sx (Flat Appl) v1 (THead (Bind +b) u0 t5)) u2 H27 v2 H17))))) (H26 u0 (tlt_trans (THead (Bind b) u0 t5) u0 +(THead (Flat Appl) v1 (THead (Bind b) u0 t5)) (tlt_head_sx (Bind b) u0 t5) +(tlt_head_dx (Flat Appl) v1 (THead (Bind b) u0 t5))) u5 H39 u3 H18))))) (H26 +t5 (tlt_trans (THead (Bind b) u0 t5) t5 (THead (Flat Appl) v1 (THead (Bind b) +u0 t5)) (tlt_head_dx (Bind b) u0 t5) (tlt_head_dx (Flat Appl) v1 (THead (Bind +b) u0 t5))) t8 H40 t6 H19)))) t4 H38)) t7 (sym_eq T t7 t5 H37))) u4 (sym_eq T +u4 u0 H36))) k0 (sym_eq K k0 (Bind b) H35))) H34)) H33)) H32 H29 H30))) | +(pr0_beta u v0 v3 H29 t7 t8 H30) \Rightarrow (\lambda (H31: (eq T (THead +(Flat Appl) v0 (THead (Bind Abst) u t7)) (THead (Bind b) u0 t5))).(\lambda +(H32: (eq T (THead (Bind Abbr) v3 t8) t4)).((let H33 \def (eq_ind T (THead +(Flat Appl) v0 (THead (Bind Abst) u t7)) (\lambda (e: T).(match e with +[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) +\Rightarrow (match k0 with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow +True])])) I (THead (Bind b) u0 t5) H31) in (False_ind ((eq T (THead (Bind +Abbr) v3 t8) t4) \to ((pr0 v0 v3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: +T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) +u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))) H33)) H32 H29 H30))) | +(pr0_upsilon b0 H29 v0 v3 H30 u4 u5 H31 t7 t8 H32) \Rightarrow (\lambda (H33: +(eq T (THead (Flat Appl) v0 (THead (Bind b0) u4 t7)) (THead (Bind b) u0 +t5))).(\lambda (H34: (eq T (THead (Bind b0) u5 (THead (Flat Appl) (lift (S O) +O v3) t8)) t4)).((let H35 \def (eq_ind T (THead (Flat Appl) v0 (THead (Bind +b0) u4 t7)) (\lambda (e: T).(match e with [(TSort _) \Rightarrow False | +(TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 with +[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind +b) u0 t5) H33) in (False_ind ((eq T (THead (Bind b0) u5 (THead (Flat Appl) +(lift (S O) O v3) t8)) t4) \to ((not (eq B b0 Abst)) \to ((pr0 v0 v3) \to +((pr0 u4 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat +Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) +(lift (S O) O v2) t6)) t9)))))))) H35)) H34 H29 H30 H31 H32))) | (pr0_delta +u4 u5 H29 t7 t8 H30 w H31) \Rightarrow (\lambda (H32: (eq T (THead (Bind +Abbr) u4 t7) (THead (Bind b) u0 t5))).(\lambda (H33: (eq T (THead (Bind Abbr) +u5 w) t4)).((let H34 \def (f_equal T T (\lambda (e: T).(match e with [(TSort +_) \Rightarrow t7 | (TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow +t9])) (THead (Bind Abbr) u4 t7) (THead (Bind b) u0 t5) H32) in ((let H35 \def +(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u4 | (TLRef +_) \Rightarrow u4 | (THead _ t9 _) \Rightarrow t9])) (THead (Bind Abbr) u4 +t7) (THead (Bind b) u0 t5) H32) in ((let H36 \def (f_equal T B (\lambda (e: +T).(match e with [(TSort _) \Rightarrow Abbr | (TLRef _) \Rightarrow Abbr | +(THead k0 _ _) \Rightarrow (match k0 with [(Bind b0) \Rightarrow b0 | (Flat +_) \Rightarrow Abbr])])) (THead (Bind Abbr) u4 t7) (THead (Bind b) u0 t5) +H32) in (eq_ind B Abbr (\lambda (b0: B).((eq T u4 u0) \to ((eq T t7 t5) \to +((eq T (THead (Bind Abbr) u5 w) t4) \to ((pr0 u4 u5) \to ((pr0 t7 t8) \to +((subst0 O u5 t8 w) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 +t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b0) u3 (THead (Flat Appl) (lift +(S O) O v2) t6)) t9)))))))))) (\lambda (H37: (eq T u4 u0)).(eq_ind T u0 +(\lambda (t9: T).((eq T t7 t5) \to ((eq T (THead (Bind Abbr) u5 w) t4) \to +((pr0 t9 u5) \to ((pr0 t7 t8) \to ((subst0 O u5 t8 w) \to (ex2 T (\lambda +(t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead +(Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t10))))))))) +(\lambda (H38: (eq T t7 t5)).(eq_ind T t5 (\lambda (t9: T).((eq T (THead +(Bind Abbr) u5 w) t4) \to ((pr0 u0 u5) \to ((pr0 t9 t8) \to ((subst0 O u5 t8 +w) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda +(t10: T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) +t10)))))))) (\lambda (H39: (eq T (THead (Bind Abbr) u5 w) t4)).(eq_ind T +(THead (Bind Abbr) u5 w) (\lambda (t9: T).((pr0 u0 u5) \to ((pr0 t5 t8) \to +((subst0 O u5 t8 w) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 +t9) t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) +(lift (S O) O v2) t6)) t10))))))) (\lambda (H40: (pr0 u0 u5)).(\lambda (H41: +(pr0 t5 t8)).(\lambda (H42: (subst0 O u5 t8 w)).(let H43 \def (eq_ind_r B b +(\lambda (b0: B).(\forall (v: T).((tlt v (THead (Flat Appl) v1 (THead (Bind +b0) u0 t5))) \to (\forall (t9: T).((pr0 v t9) \to (\forall (t10: T).((pr0 v +t10) \to (ex2 T (\lambda (t11: T).(pr0 t9 t11)) (\lambda (t11: T).(pr0 t10 +t11)))))))))) H26 Abbr H36) in (let H44 \def (eq_ind_r B b (\lambda (b0: +B).(eq T t3 (THead (Bind b0) u0 t5))) H23 Abbr H36) in (let H45 \def +(eq_ind_r B b (\lambda (b0: B).(not (eq B b0 Abst))) H16 Abbr H36) in +(ex2_ind T (\lambda (t9: T).(pr0 t8 t9)) (\lambda (t9: T).(pr0 t6 t9)) (ex2 T +(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abbr) u5 w)) t9)) +(\lambda (t9: T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O +v2) t6)) t9))) (\lambda (x: T).(\lambda (H46: (pr0 t8 x)).(\lambda (H47: (pr0 +t6 x)).(ex2_ind T (\lambda (t9: T).(pr0 u5 t9)) (\lambda (t9: T).(pr0 u3 t9)) +(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abbr) u5 w)) +t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S +O) O v2) t6)) t9))) (\lambda (x0: T).(\lambda (H48: (pr0 u5 x0)).(\lambda +(H49: (pr0 u3 x0)).(ex2_ind T (\lambda (t9: T).(pr0 u2 t9)) (\lambda (t9: +T).(pr0 v2 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead +(Bind Abbr) u5 w)) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) u3 (THead +(Flat Appl) (lift (S O) O v2) t6)) t9))) (\lambda (x1: T).(\lambda (H50: (pr0 +u2 x1)).(\lambda (H51: (pr0 v2 x1)).(pr0_confluence__pr0_cong_upsilon_delta +H45 u5 t8 w H42 u2 v2 x1 H50 H51 t6 x H46 H47 u3 x0 H48 H49)))) (H43 v1 +(tlt_head_sx (Flat Appl) v1 (THead (Bind Abbr) u0 t5)) u2 H27 v2 H17))))) +(H43 u0 (tlt_trans (THead (Bind Abbr) u0 t5) u0 (THead (Flat Appl) v1 (THead +(Bind Abbr) u0 t5)) (tlt_head_sx (Bind Abbr) u0 t5) (tlt_head_dx (Flat Appl) +v1 (THead (Bind Abbr) u0 t5))) u5 H40 u3 H18))))) (H43 t5 (tlt_trans (THead +(Bind Abbr) u0 t5) t5 (THead (Flat Appl) v1 (THead (Bind Abbr) u0 t5)) +(tlt_head_dx (Bind Abbr) u0 t5) (tlt_head_dx (Flat Appl) v1 (THead (Bind +Abbr) u0 t5))) t8 H41 t6 H19)))))))) t4 H39)) t7 (sym_eq T t7 t5 H38))) u4 +(sym_eq T u4 u0 H37))) b H36)) H35)) H34)) H33 H29 H30 H31))) | (pr0_zeta b0 +H29 t7 t8 H30 u) \Rightarrow (\lambda (H31: (eq T (THead (Bind b0) u (lift (S +O) O t7)) (THead (Bind b) u0 t5))).(\lambda (H32: (eq T t8 t4)).((let H33 +\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow +(lref_map (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _) \Rightarrow +(lref_map (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _ t9) +\Rightarrow t9])) (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) u0 +t5) H31) in ((let H34 \def (f_equal T T (\lambda (e: T).(match e with [(TSort +_) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t9 _) \Rightarrow t9])) +(THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) u0 t5) H31) in ((let +H35 \def (f_equal T B (\lambda (e: T).(match e with [(TSort _) \Rightarrow b0 +| (TLRef _) \Rightarrow b0 | (THead k0 _ _) \Rightarrow (match k0 with [(Bind +b1) \Rightarrow b1 | (Flat _) \Rightarrow b0])])) (THead (Bind b0) u (lift (S +O) O t7)) (THead (Bind b) u0 t5) H31) in (eq_ind B b (\lambda (b1: B).((eq T +u u0) \to ((eq T (lift (S O) O t7) t5) \to ((eq T t8 t4) \to ((not (eq B b1 +Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift -(S O) O v2) t6)) t9))) (\lambda (x: T).(\lambda (H44: (eq T t6 (lift (S O) O -x))).(\lambda (H45: (pr0 t7 x)).(eq_ind_r T (lift (S O) O x) (\lambda (t9: -T).(ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda -(t10: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t9)) -t10)))) (ex2_ind T (\lambda (t9: T).(pr0 x t9)) (\lambda (t9: T).(pr0 t4 t9)) -(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: -T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) (lift (S O) O -x))) t9))) (\lambda (x0: T).(\lambda (H46: (pr0 x x0)).(\lambda (H47: (pr0 t4 -x0)).(ex2_ind T (\lambda (t9: T).(pr0 u2 t9)) (\lambda (t9: T).(pr0 v2 t9)) -(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: -T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) (lift (S O) O -x))) t9))) (\lambda (x1: T).(\lambda (H48: (pr0 u2 x1)).(\lambda (H49: (pr0 -v2 x1)).(pr0_confluence__pr0_cong_upsilon_zeta b H39 u0 u3 H18 u2 v2 x1 H48 -H49 x t4 x0 H46 H47)))) (H41 v1 (tlt_head_sx (Flat Appl) v1 (THead (Bind b) -u0 (lift (S O) O t7))) u2 H27 v2 H17))))) (H41 t7 (tlt_trans (THead (Bind b) -u0 (lift (S O) O t7)) t7 (THead (Flat Appl) v1 (THead (Bind b) u0 (lift (S O) -O t7))) (lift_tlt_dx (Bind b) u0 t7 (S O) O) (tlt_head_dx (Flat Appl) v1 -(THead (Bind b) u0 (lift (S O) O t7)))) x H45 t4 H40)) t6 H44)))) -(pr0_gen_lift t7 t6 (S O) O H43))))))) t8 (sym_eq T t8 t4 H38))) t5 H37)) u -(sym_eq T u u0 H36))) b0 (sym_eq B b0 b H35))) H34)) H33)) H32 H29 H30))) | -(pr0_tau t7 t8 H29 u) \Rightarrow (\lambda (H30: (eq T (THead (Flat Cast) u -t7) (THead (Bind b) u0 t5))).(\lambda (H31: (eq T t8 t4)).((let H32 \def -(eq_ind T (THead (Flat Cast) u t7) (\lambda (e: T).(match e in T return -(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda -(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow -True])])) I (THead (Bind b) u0 t5) H30) in (False_ind ((eq T t8 t4) \to ((pr0 -t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) -(\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) -t6)) t9))))) H32)) H31 H29)))]) in (H29 (refl_equal T (THead (Bind b) u0 t5)) -(refl_equal T t4))))) k H25))))) H22)) H21))))))) t2 H15)) t H13 H14 H9 H10 -H11 H12))) | (pr0_delta u0 u3 H9 t5 t6 H10 w H11) \Rightarrow (\lambda (H12: -(eq T (THead (Bind Abbr) u0 t5) t)).(\lambda (H13: (eq T (THead (Bind Abbr) -u3 w) t2)).(eq_ind T (THead (Bind Abbr) u0 t5) (\lambda (_: T).((eq T (THead -(Bind Abbr) u3 w) t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to ((subst0 O u3 t6 -w) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: -T).(pr0 t2 t8)))))))) (\lambda (H14: (eq T (THead (Bind Abbr) u3 w) -t2)).(eq_ind T (THead (Bind Abbr) u3 w) (\lambda (t7: T).((pr0 u0 u3) \to -((pr0 t5 t6) \to ((subst0 O u3 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 (THead -k u2 t4) t8)) (\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (H15: (pr0 u0 -u3)).(\lambda (H16: (pr0 t5 t6)).(\lambda (H17: (subst0 O u3 t6 w)).(let H18 -\def (eq_ind_r T t (\lambda (t7: T).(eq T (THead k u1 t3) t7)) H4 (THead -(Bind Abbr) u0 t5) H12) in (let H19 \def (f_equal T K (\lambda (e: T).(match -e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _) -\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u1 t3) (THead (Bind -Abbr) u0 t5) H18) in ((let H20 \def (f_equal T T (\lambda (e: T).(match e in -T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _) +(S O) O v2) t6)) t9))))))))) (\lambda (H36: (eq T u u0)).(eq_ind T u0 +(\lambda (_: T).((eq T (lift (S O) O t7) t5) \to ((eq T t8 t4) \to ((not (eq +B b Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat +Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind b) u3 (THead (Flat +Appl) (lift (S O) O v2) t6)) t10)))))))) (\lambda (H37: (eq T (lift (S O) O +t7) t5)).(eq_ind T (lift (S O) O t7) (\lambda (_: T).((eq T t8 t4) \to ((not +(eq B b Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead +(Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind b) u3 (THead +(Flat Appl) (lift (S O) O v2) t6)) t10))))))) (\lambda (H38: (eq T t8 +t4)).(eq_ind T t4 (\lambda (t9: T).((not (eq B b Abst)) \to ((pr0 t7 t9) \to +(ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: +T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) +t10)))))) (\lambda (H39: (not (eq B b Abst))).(\lambda (H40: (pr0 t7 +t4)).(let H41 \def (eq_ind_r T t5 (\lambda (t9: T).(\forall (v: T).((tlt v +(THead (Flat Appl) v1 (THead (Bind b) u0 t9))) \to (\forall (t10: T).((pr0 v +t10) \to (\forall (t11: T).((pr0 v t11) \to (ex2 T (\lambda (t12: T).(pr0 t10 +t12)) (\lambda (t12: T).(pr0 t11 t12)))))))))) H26 (lift (S O) O t7) H37) in +(let H42 \def (eq_ind_r T t5 (\lambda (t9: T).(eq T t3 (THead (Bind b) u0 +t9))) H23 (lift (S O) O t7) H37) in (let H43 \def (eq_ind_r T t5 (\lambda +(t9: T).(pr0 t9 t6)) H19 (lift (S O) O t7) H37) in (ex2_ind T (\lambda (t9: +T).(eq T t6 (lift (S O) O t9))) (\lambda (t9: T).(pr0 t7 t9)) (ex2 T (\lambda +(t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead +(Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9))) (\lambda (x: +T).(\lambda (H44: (eq T t6 (lift (S O) O x))).(\lambda (H45: (pr0 t7 +x)).(eq_ind_r T (lift (S O) O x) (\lambda (t9: T).(ex2 T (\lambda (t10: +T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind +b) u3 (THead (Flat Appl) (lift (S O) O v2) t9)) t10)))) (ex2_ind T (\lambda +(t9: T).(pr0 x t9)) (\lambda (t9: T).(pr0 t4 t9)) (ex2 T (\lambda (t9: +T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) +u3 (THead (Flat Appl) (lift (S O) O v2) (lift (S O) O x))) t9))) (\lambda +(x0: T).(\lambda (H46: (pr0 x x0)).(\lambda (H47: (pr0 t4 x0)).(ex2_ind T +(\lambda (t9: T).(pr0 u2 t9)) (\lambda (t9: T).(pr0 v2 t9)) (ex2 T (\lambda +(t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead +(Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) (lift (S O) O x))) t9))) +(\lambda (x1: T).(\lambda (H48: (pr0 u2 x1)).(\lambda (H49: (pr0 v2 +x1)).(pr0_confluence__pr0_cong_upsilon_zeta b H39 u0 u3 H18 u2 v2 x1 H48 H49 +x t4 x0 H46 H47)))) (H41 v1 (tlt_head_sx (Flat Appl) v1 (THead (Bind b) u0 +(lift (S O) O t7))) u2 H27 v2 H17))))) (H41 t7 (tlt_trans (THead (Bind b) u0 +(lift (S O) O t7)) t7 (THead (Flat Appl) v1 (THead (Bind b) u0 (lift (S O) O +t7))) (lift_tlt_dx (Bind b) u0 t7 (S O) O) (tlt_head_dx (Flat Appl) v1 (THead +(Bind b) u0 (lift (S O) O t7)))) x H45 t4 H40)) t6 H44)))) (pr0_gen_lift t7 +t6 (S O) O H43))))))) t8 (sym_eq T t8 t4 H38))) t5 H37)) u (sym_eq T u u0 +H36))) b0 (sym_eq B b0 b H35))) H34)) H33)) H32 H29 H30))) | (pr0_tau t7 t8 +H29 u) \Rightarrow (\lambda (H30: (eq T (THead (Flat Cast) u t7) (THead (Bind +b) u0 t5))).(\lambda (H31: (eq T t8 t4)).((let H32 \def (eq_ind T (THead +(Flat Cast) u t7) (\lambda (e: T).(match e with [(TSort _) \Rightarrow False +| (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 with +[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind +b) u0 t5) H30) in (False_ind ((eq T t8 t4) \to ((pr0 t7 t8) \to (ex2 T +(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 +(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9))))) H32)) +H31 H29)))]) in (H29 (refl_equal T (THead (Bind b) u0 t5)) (refl_equal T +t4))))) k H25))))) H22)) H21))))))) t2 H15)) t H13 H14 H9 H10 H11 H12))) | +(pr0_delta u0 u3 H9 t5 t6 H10 w H11) \Rightarrow (\lambda (H12: (eq T (THead +(Bind Abbr) u0 t5) t)).(\lambda (H13: (eq T (THead (Bind Abbr) u3 w) +t2)).(eq_ind T (THead (Bind Abbr) u0 t5) (\lambda (_: T).((eq T (THead (Bind +Abbr) u3 w) t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to ((subst0 O u3 t6 w) \to +(ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 +t8)))))))) (\lambda (H14: (eq T (THead (Bind Abbr) u3 w) t2)).(eq_ind T +(THead (Bind Abbr) u3 w) (\lambda (t7: T).((pr0 u0 u3) \to ((pr0 t5 t6) \to +((subst0 O u3 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) +(\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (H15: (pr0 u0 u3)).(\lambda (H16: +(pr0 t5 t6)).(\lambda (H17: (subst0 O u3 t6 w)).(let H18 \def (eq_ind_r T t +(\lambda (t7: T).(eq T (THead k u1 t3) t7)) H4 (THead (Bind Abbr) u0 t5) H12) +in (let H19 \def (f_equal T K (\lambda (e: T).(match e with [(TSort _) +\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0])) +(THead k u1 t3) (THead (Bind Abbr) u0 t5) H18) in ((let H20 \def (f_equal T T +(\lambda (e: T).(match e with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3) (THead (Bind Abbr) u0 t5) H18) in ((let H21 \def (f_equal T T (\lambda (e: T).(match -e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) -\Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead -(Bind Abbr) u0 t5) H18) in (\lambda (H22: (eq T u1 u0)).(\lambda (H23: (eq K -k (Bind Abbr))).(let H24 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: -T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v -t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 -t10)))))))))) H (THead (Bind Abbr) u0 t5) H12) in (eq_ind_r K (Bind Abbr) -(\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda -(t7: T).(pr0 (THead (Bind Abbr) u3 w) t7)))) (let H25 \def (eq_ind T u1 -(\lambda (t7: T).(pr0 t7 u2)) H7 u0 H22) in (let H26 \def (eq_ind T t3 -(\lambda (t7: T).(pr0 t7 t4)) H8 t5 H21) in (ex2_ind T (\lambda (t7: T).(pr0 -t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead -(Bind Abbr) u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 w) t7))) -(\lambda (x: T).(\lambda (H27: (pr0 t4 x)).(\lambda (H28: (pr0 t6 -x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7)) (\lambda (t7: T).(pr0 u3 t7)) -(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 t4) t7)) (\lambda (t7: -T).(pr0 (THead (Bind Abbr) u3 w) t7))) (\lambda (x0: T).(\lambda (H29: (pr0 -u2 x0)).(\lambda (H30: (pr0 u3 x0)).(pr0_confluence__pr0_cong_delta u3 t6 w -H17 u2 x0 H29 H30 t4 x H27 H28)))) (H24 u0 (tlt_head_sx (Bind Abbr) u0 t5) u2 -H25 u3 H15))))) (H24 t5 (tlt_head_dx (Bind Abbr) u0 t5) t4 H26 t6 H16)))) k -H23))))) H20)) H19)))))) t2 H14)) t H12 H13 H9 H10 H11))) | (pr0_zeta b H9 t5 -t6 H10 u) \Rightarrow (\lambda (H11: (eq T (THead (Bind b) u (lift (S O) O -t5)) t)).(\lambda (H12: (eq T t6 t2)).(eq_ind T (THead (Bind b) u (lift (S O) -O t5)) (\lambda (_: T).((eq T t6 t2) \to ((not (eq B b Abst)) \to ((pr0 t5 -t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: -T).(pr0 t2 t8))))))) (\lambda (H13: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: -T).((not (eq B b Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 -(THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H14: (not -(eq B b Abst))).(\lambda (H15: (pr0 t5 t2)).(let H16 \def (eq_ind_r T t -(\lambda (t7: T).(eq T (THead k u1 t3) t7)) H4 (THead (Bind b) u (lift (S O) -O t5)) H11) in (let H17 \def (f_equal T K (\lambda (e: T).(match e in T -return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _) -\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u1 t3) (THead (Bind -b) u (lift (S O) O t5)) H16) in ((let H18 \def (f_equal T T (\lambda (e: -T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | -(TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3) -(THead (Bind b) u (lift (S O) O t5)) H16) in ((let H19 \def (f_equal T T -(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) -(THead k u1 t3) (THead (Bind b) u (lift (S O) O t5)) H16) in (\lambda (H20: -(eq T u1 u)).(\lambda (H21: (eq K k (Bind b))).(let H22 \def (eq_ind_r T t -(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) -\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) -(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Bind b) u (lift (S O) O -t5)) H11) in (eq_ind_r K (Bind b) (\lambda (k0: K).(ex2 T (\lambda (t7: -T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let H23 \def -(eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H7 u H20) in (let H24 \def (eq_ind -T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 (lift (S O) O t5) H19) in (ex2_ind T -(\lambda (t7: T).(eq T t4 (lift (S O) O t7))) (\lambda (t7: T).(pr0 t5 t7)) -(ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 t4) t7)) (\lambda (t7: -T).(pr0 t2 t7))) (\lambda (x: T).(\lambda (H25: (eq T t4 (lift (S O) O -x))).(\lambda (H26: (pr0 t5 x)).(eq_ind_r T (lift (S O) O x) (\lambda (t7: -T).(ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 t7) t8)) (\lambda (t8: -T).(pr0 t2 t8)))) (ex2_ind T (\lambda (t7: T).(pr0 x t7)) (\lambda (t7: -T).(pr0 t2 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 (lift (S O) O -x)) t7)) (\lambda (t7: T).(pr0 t2 t7))) (\lambda (x0: T).(\lambda (H27: (pr0 -x x0)).(\lambda (H28: (pr0 t2 x0)).(ex_intro2 T (\lambda (t7: T).(pr0 (THead -(Bind b) u2 (lift (S O) O x)) t7)) (\lambda (t7: T).(pr0 t2 t7)) x0 (pr0_zeta -b H14 x x0 H27 u2) H28)))) (H22 t5 (lift_tlt_dx (Bind b) u t5 (S O) O) x H26 -t2 H15)) t4 H25)))) (pr0_gen_lift t5 t4 (S O) O H24)))) k H21))))) H18)) -H17))))) t6 (sym_eq T t6 t2 H13))) t H11 H12 H9 H10))) | (pr0_tau t5 t6 H9 u) -\Rightarrow (\lambda (H10: (eq T (THead (Flat Cast) u t5) t)).(\lambda (H11: -(eq T t6 t2)).(eq_ind T (THead (Flat Cast) u t5) (\lambda (_: T).((eq T t6 -t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) -(\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H12: (eq T t6 t2)).(eq_ind T t2 -(\lambda (t7: T).((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 -t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (H13: (pr0 t5 t2)).(let -H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead k u1 t3) t7)) H4 (THead -(Flat Cast) u t5) H10) in (let H15 \def (f_equal T K (\lambda (e: T).(match e -in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _) +e with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7) +\Rightarrow t7])) (THead k u1 t3) (THead (Bind Abbr) u0 t5) H18) in (\lambda +(H22: (eq T u1 u0)).(\lambda (H23: (eq K k (Bind Abbr))).(let H24 \def +(eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: +T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: +T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Bind Abbr) +u0 t5) H12) in (eq_ind_r K (Bind Abbr) (\lambda (k0: K).(ex2 T (\lambda (t7: +T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 w) +t7)))) (let H25 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H7 u0 H22) in +(let H26 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 t5 H21) in +(ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T +(\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 t4) t7)) (\lambda (t7: T).(pr0 +(THead (Bind Abbr) u3 w) t7))) (\lambda (x: T).(\lambda (H27: (pr0 t4 +x)).(\lambda (H28: (pr0 t6 x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7)) +(\lambda (t7: T).(pr0 u3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) +u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 w) t7))) (\lambda +(x0: T).(\lambda (H29: (pr0 u2 x0)).(\lambda (H30: (pr0 u3 +x0)).(pr0_confluence__pr0_cong_delta u3 t6 w H17 u2 x0 H29 H30 t4 x H27 +H28)))) (H24 u0 (tlt_head_sx (Bind Abbr) u0 t5) u2 H25 u3 H15))))) (H24 t5 +(tlt_head_dx (Bind Abbr) u0 t5) t4 H26 t6 H16)))) k H23))))) H20)) H19)))))) +t2 H14)) t H12 H13 H9 H10 H11))) | (pr0_zeta b H9 t5 t6 H10 u) \Rightarrow +(\lambda (H11: (eq T (THead (Bind b) u (lift (S O) O t5)) t)).(\lambda (H12: +(eq T t6 t2)).(eq_ind T (THead (Bind b) u (lift (S O) O t5)) (\lambda (_: +T).((eq T t6 t2) \to ((not (eq B b Abst)) \to ((pr0 t5 t6) \to (ex2 T +(\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) +(\lambda (H13: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((not (eq B b +Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) +(\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H14: (not (eq B b +Abst))).(\lambda (H15: (pr0 t5 t2)).(let H16 \def (eq_ind_r T t (\lambda (t7: +T).(eq T (THead k u1 t3) t7)) H4 (THead (Bind b) u (lift (S O) O t5)) H11) in +(let H17 \def (f_equal T K (\lambda (e: T).(match e with [(TSort _) +\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0])) +(THead k u1 t3) (THead (Bind b) u (lift (S O) O t5)) H16) in ((let H18 \def +(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u1 | (TLRef +_) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3) (THead +(Bind b) u (lift (S O) O t5)) H16) in ((let H19 \def (f_equal T T (\lambda +(e: T).(match e with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | +(THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead (Bind b) u (lift (S +O) O t5)) H16) in (\lambda (H20: (eq T u1 u)).(\lambda (H21: (eq K k (Bind +b))).(let H22 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) +\to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T +(\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H +(THead (Bind b) u (lift (S O) O t5)) H11) in (eq_ind_r K (Bind b) (\lambda +(k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: +T).(pr0 t2 t7)))) (let H23 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H7 +u H20) in (let H24 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 (lift +(S O) O t5) H19) in (ex2_ind T (\lambda (t7: T).(eq T t4 (lift (S O) O t7))) +(\lambda (t7: T).(pr0 t5 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 +t4) t7)) (\lambda (t7: T).(pr0 t2 t7))) (\lambda (x: T).(\lambda (H25: (eq T +t4 (lift (S O) O x))).(\lambda (H26: (pr0 t5 x)).(eq_ind_r T (lift (S O) O x) +(\lambda (t7: T).(ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 t7) t8)) +(\lambda (t8: T).(pr0 t2 t8)))) (ex2_ind T (\lambda (t7: T).(pr0 x t7)) +(\lambda (t7: T).(pr0 t2 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 +(lift (S O) O x)) t7)) (\lambda (t7: T).(pr0 t2 t7))) (\lambda (x0: +T).(\lambda (H27: (pr0 x x0)).(\lambda (H28: (pr0 t2 x0)).(ex_intro2 T +(\lambda (t7: T).(pr0 (THead (Bind b) u2 (lift (S O) O x)) t7)) (\lambda (t7: +T).(pr0 t2 t7)) x0 (pr0_zeta b H14 x x0 H27 u2) H28)))) (H22 t5 (lift_tlt_dx +(Bind b) u t5 (S O) O) x H26 t2 H15)) t4 H25)))) (pr0_gen_lift t5 t4 (S O) O +H24)))) k H21))))) H18)) H17))))) t6 (sym_eq T t6 t2 H13))) t H11 H12 H9 +H10))) | (pr0_tau t5 t6 H9 u) \Rightarrow (\lambda (H10: (eq T (THead (Flat +Cast) u t5) t)).(\lambda (H11: (eq T t6 t2)).(eq_ind T (THead (Flat Cast) u +t5) (\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: +T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H12: +(eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to (ex2 T (\lambda +(t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda +(H13: (pr0 t5 t2)).(let H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead +k u1 t3) t7)) H4 (THead (Flat Cast) u t5) H10) in (let H15 \def (f_equal T K +(\lambda (e: T).(match e with [(TSort _) \Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u1 t3) (THead (Flat -Cast) u t5) H14) in ((let H16 \def (f_equal T T (\lambda (e: T).(match e in T -return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _) -\Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3) (THead -(Flat Cast) u t5) H14) in ((let H17 \def (f_equal T T (\lambda (e: T).(match -e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) -\Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead -(Flat Cast) u t5) H14) in (\lambda (H18: (eq T u1 u)).(\lambda (H19: (eq K k -(Flat Cast))).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: -T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v -t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 -t10)))))))))) H (THead (Flat Cast) u t5) H10) in (eq_ind_r K (Flat Cast) -(\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda -(t7: T).(pr0 t2 t7)))) (let H21 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 -u2)) H7 u H18) in (let H22 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 -t5 H17) in (ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t2 -t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Flat Cast) u2 t4) t7)) (\lambda -(t7: T).(pr0 t2 t7))) (\lambda (x: T).(\lambda (H23: (pr0 t4 x)).(\lambda -(H24: (pr0 t2 x)).(ex_intro2 T (\lambda (t7: T).(pr0 (THead (Flat Cast) u2 -t4) t7)) (\lambda (t7: T).(pr0 t2 t7)) x (pr0_tau t4 x H23 u2) H24)))) (H20 -t5 (tlt_head_dx (Flat Cast) u t5) t4 H22 t2 H13)))) k H19))))) H16)) H15)))) -t6 (sym_eq T t6 t2 H12))) t H10 H11 H9)))]) in (H9 (refl_equal T t) -(refl_equal T t2))))) t1 H6)) t H4 H5 H2 H3))) | (pr0_beta u v1 v2 H2 t3 t4 -H3) \Rightarrow (\lambda (H4: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) -u t3)) t)).(\lambda (H5: (eq T (THead (Bind Abbr) v2 t4) t1)).(eq_ind T +Cast) u t5) H14) in ((let H16 \def (f_equal T T (\lambda (e: T).(match e with +[(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _) +\Rightarrow t7])) (THead k u1 t3) (THead (Flat Cast) u t5) H14) in ((let H17 +\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 | +(TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) +(THead (Flat Cast) u t5) H14) in (\lambda (H18: (eq T u1 u)).(\lambda (H19: +(eq K k (Flat Cast))).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(\forall +(v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: +T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: +T).(pr0 t9 t10)))))))))) H (THead (Flat Cast) u t5) H10) in (eq_ind_r K (Flat +Cast) (\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7)) +(\lambda (t7: T).(pr0 t2 t7)))) (let H21 \def (eq_ind T u1 (\lambda (t7: +T).(pr0 t7 u2)) H7 u H18) in (let H22 \def (eq_ind T t3 (\lambda (t7: T).(pr0 +t7 t4)) H8 t5 H17) in (ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: +T).(pr0 t2 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Flat Cast) u2 t4) t7)) +(\lambda (t7: T).(pr0 t2 t7))) (\lambda (x: T).(\lambda (H23: (pr0 t4 +x)).(\lambda (H24: (pr0 t2 x)).(ex_intro2 T (\lambda (t7: T).(pr0 (THead +(Flat Cast) u2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7)) x (pr0_tau t4 x H23 u2) +H24)))) (H20 t5 (tlt_head_dx (Flat Cast) u t5) t4 H22 t2 H13)))) k H19))))) +H16)) H15)))) t6 (sym_eq T t6 t2 H12))) t H10 H11 H9)))]) in (H9 (refl_equal +T t) (refl_equal T t2))))) t1 H6)) t H4 H5 H2 H3))) | (pr0_beta u v1 v2 H2 t3 +t4 H3) \Rightarrow (\lambda (H4: (eq T (THead (Flat Appl) v1 (THead (Bind +Abst) u t3)) t)).(\lambda (H5: (eq T (THead (Bind Abbr) v2 t4) t1)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (\lambda (_: T).((eq T (THead (Bind Abbr) v2 t4) t1) \to ((pr0 v1 v2) \to ((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6))))))) (\lambda (H6: (eq T (THead (Bind Abbr) v2 t4) t1)).(eq_ind T (THead (Bind Abbr) v2 t4) (\lambda (t5: T).((pr0 v1 v2) \to ((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t5 t6)) (\lambda (t6: T).(pr0 t2 t6)))))) (\lambda (H7: (pr0 v1 v2)).(\lambda -(H8: (pr0 t3 t4)).(let H9 \def (match H1 in pr0 return (\lambda (t5: -T).(\lambda (t6: T).(\lambda (_: (pr0 t5 t6)).((eq T t5 t) \to ((eq T t6 t2) -\to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: -T).(pr0 t2 t7)))))))) with [(pr0_refl t5) \Rightarrow (\lambda (H9: (eq T t5 -t)).(\lambda (H10: (eq T t5 t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2) -\to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: -T).(pr0 t2 t7))))) (\lambda (H11: (eq T t t2)).(eq_ind T t2 (\lambda (_: +(H8: (pr0 t3 t4)).(let H9 \def (match H1 with [(pr0_refl t5) \Rightarrow +(\lambda (H9: (eq T t5 t)).(\lambda (H10: (eq T t5 t2)).(eq_ind T t (\lambda +(t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 +t4) t7)) (\lambda (t7: T).(pr0 t2 t7))))) (\lambda (H11: (eq T t t2)).(eq_ind +T t2 (\lambda (_: T).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) +t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let H12 \def (eq_ind_r T t (\lambda +(t6: T).(eq T t6 t2)) H11 (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) H4) +in (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: -T).(pr0 t2 t7)))) (let H12 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t2)) -H11 (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) H4) in (eq_ind T (THead -(Flat Appl) v1 (THead (Bind Abst) u t3)) (\lambda (t6: T).(ex2 T (\lambda -(t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 t6 t7)))) -(let H13 \def (eq_ind_r T t (\lambda (t6: T).(eq T t5 t6)) H9 (THead (Flat -Appl) v1 (THead (Bind Abst) u t3)) H4) in (let H14 \def (eq_ind_r T t -(\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) -\to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) -(\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Flat Appl) v1 (THead (Bind -Abst) u t3)) H4) in (ex_intro2 T (\lambda (t6: T).(pr0 (THead (Bind Abbr) v2 -t4) t6)) (\lambda (t6: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u -t3)) t6)) (THead (Bind Abbr) v2 t4) (pr0_refl (THead (Bind Abbr) v2 t4)) -(pr0_beta u v1 v2 H7 t3 t4 H8)))) t2 H12)) t (sym_eq T t t2 H11))) t5 (sym_eq -T t5 t H9) H10))) | (pr0_comp u1 u2 H9 t5 t6 H10 k) \Rightarrow (\lambda -(H11: (eq T (THead k u1 t5) t)).(\lambda (H12: (eq T (THead k u2 t6) -t2)).(eq_ind T (THead k u1 t5) (\lambda (_: T).((eq T (THead k u2 t6) t2) \to -((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind -Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H13: (eq T -(THead k u2 t6) t2)).(eq_ind T (THead k u2 t6) (\lambda (t7: T).((pr0 u1 u2) -\to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) -t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (H14: (pr0 u1 u2)).(\lambda -(H15: (pr0 t5 t6)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead -(Flat Appl) v1 (THead (Bind Abst) u t3)) t7)) H4 (THead k u1 t5) H11) in (let -H17 \def (f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K) -with [(TSort _) \Rightarrow (Flat Appl) | (TLRef _) \Rightarrow (Flat Appl) | -(THead k0 _ _) \Rightarrow k0])) (THead (Flat Appl) v1 (THead (Bind Abst) u -t3)) (THead k u1 t5) H16) in ((let H18 \def (f_equal T T (\lambda (e: -T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow v1 | -(TLRef _) \Rightarrow v1 | (THead _ t7 _) \Rightarrow t7])) (THead (Flat -Appl) v1 (THead (Bind Abst) u t3)) (THead k u1 t5) H16) in ((let H19 \def -(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with -[(TSort _) \Rightarrow (THead (Bind Abst) u t3) | (TLRef _) \Rightarrow -(THead (Bind Abst) u t3) | (THead _ _ t7) \Rightarrow t7])) (THead (Flat -Appl) v1 (THead (Bind Abst) u t3)) (THead k u1 t5) H16) in (\lambda (H20: (eq -T v1 u1)).(\lambda (H21: (eq K (Flat Appl) k)).(eq_ind K (Flat Appl) (\lambda -(k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda -(t7: T).(pr0 (THead k0 u2 t6) t7)))) (let H22 \def (eq_ind_r K k (\lambda -(k0: K).(eq T (THead k0 u1 t5) t)) H11 (Flat Appl) H21) in (let H23 \def -(eq_ind_r T t5 (\lambda (t7: T).(pr0 t7 t6)) H15 (THead (Bind Abst) u t3) -H19) in (let H24 \def (match H23 in pr0 return (\lambda (t7: T).(\lambda (t8: -T).(\lambda (_: (pr0 t7 t8)).((eq T t7 (THead (Bind Abst) u t3)) \to ((eq T -t8 t6) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) -(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t6) t9)))))))) with [(pr0_refl -t7) \Rightarrow (\lambda (H24: (eq T t7 (THead (Bind Abst) u t3))).(\lambda -(H25: (eq T t7 t6)).(eq_ind T (THead (Bind Abst) u t3) (\lambda (t8: T).((eq -T t8 t6) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) -(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t6) t9))))) (\lambda (H26: (eq T -(THead (Bind Abst) u t3) t6)).(eq_ind T (THead (Bind Abst) u t3) (\lambda -(t8: T).(ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda -(t9: T).(pr0 (THead (Flat Appl) u2 t8) t9)))) (let H27 \def (eq_ind_r T t5 -(\lambda (t8: T).(eq T (THead (Flat Appl) u1 t8) t)) H22 (THead (Bind Abst) u -t3) H19) in (let H28 \def (eq_ind_r T t (\lambda (t8: T).(\forall (v: -T).((tlt v t8) \to (\forall (t9: T).((pr0 v t9) \to (\forall (t10: T).((pr0 v -t10) \to (ex2 T (\lambda (t11: T).(pr0 t9 t11)) (\lambda (t11: T).(pr0 t10 -t11)))))))))) H (THead (Flat Appl) u1 (THead (Bind Abst) u t3)) H27) in (let -H29 \def (eq_ind T v1 (\lambda (t8: T).(pr0 t8 v2)) H7 u1 H20) in (ex2_ind T -(\lambda (t8: T).(pr0 v2 t8)) (\lambda (t8: T).(pr0 u2 t8)) (ex2 T (\lambda -(t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 (THead -(Flat Appl) u2 (THead (Bind Abst) u t3)) t8))) (\lambda (x: T).(\lambda (H30: -(pr0 v2 x)).(\lambda (H31: (pr0 u2 x)).(ex_intro2 T (\lambda (t8: T).(pr0 -(THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 (THead (Flat Appl) u2 -(THead (Bind Abst) u t3)) t8)) (THead (Bind Abbr) x t4) (pr0_comp v2 x H30 t4 -t4 (pr0_refl t4) (Bind Abbr)) (pr0_beta u u2 x H31 t3 t4 H8))))) (H28 u1 -(tlt_head_sx (Flat Appl) u1 (THead (Bind Abst) u t3)) v2 H29 u2 H14))))) t6 -H26)) t7 (sym_eq T t7 (THead (Bind Abst) u t3) H24) H25))) | (pr0_comp u0 u3 -H24 t7 t8 H25 k0) \Rightarrow (\lambda (H26: (eq T (THead k0 u0 t7) (THead -(Bind Abst) u t3))).(\lambda (H27: (eq T (THead k0 u3 t8) t6)).((let H28 \def -(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with -[(TSort _) \Rightarrow t7 | (TLRef _) \Rightarrow t7 | (THead _ _ t9) -\Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t3) H26) in ((let H29 -\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) -with [(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t9 _) -\Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t3) H26) in ((let H30 -\def (f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K) -with [(TSort _) \Rightarrow k0 | (TLRef _) \Rightarrow k0 | (THead k1 _ _) -\Rightarrow k1])) (THead k0 u0 t7) (THead (Bind Abst) u t3) H26) in (eq_ind K -(Bind Abst) (\lambda (k1: K).((eq T u0 u) \to ((eq T t7 t3) \to ((eq T (THead -k1 u3 t8) t6) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: +T).(pr0 t6 t7)))) (let H13 \def (eq_ind_r T t (\lambda (t6: T).(eq T t5 t6)) +H9 (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) H4) in (let H14 \def +(eq_ind_r T t (\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7: +T).((pr0 v t7) \to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: +T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Flat Appl) v1 +(THead (Bind Abst) u t3)) H4) in (ex_intro2 T (\lambda (t6: T).(pr0 (THead +(Bind Abbr) v2 t4) t6)) (\lambda (t6: T).(pr0 (THead (Flat Appl) v1 (THead +(Bind Abst) u t3)) t6)) (THead (Bind Abbr) v2 t4) (pr0_refl (THead (Bind +Abbr) v2 t4)) (pr0_beta u v1 v2 H7 t3 t4 H8)))) t2 H12)) t (sym_eq T t t2 +H11))) t5 (sym_eq T t5 t H9) H10))) | (pr0_comp u1 u2 H9 t5 t6 H10 k) +\Rightarrow (\lambda (H11: (eq T (THead k u1 t5) t)).(\lambda (H12: (eq T +(THead k u2 t6) t2)).(eq_ind T (THead k u1 t5) (\lambda (_: T).((eq T (THead +k u2 t6) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: +T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) +(\lambda (H13: (eq T (THead k u2 t6) t2)).(eq_ind T (THead k u2 t6) (\lambda +(t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead +(Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (H14: (pr0 +u1 u2)).(\lambda (H15: (pr0 t5 t6)).(let H16 \def (eq_ind_r T t (\lambda (t7: +T).(eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) t7)) H4 (THead k u1 +t5) H11) in (let H17 \def (f_equal T K (\lambda (e: T).(match e with [(TSort +_) \Rightarrow (Flat Appl) | (TLRef _) \Rightarrow (Flat Appl) | (THead k0 _ +_) \Rightarrow k0])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead k +u1 t5) H16) in ((let H18 \def (f_equal T T (\lambda (e: T).(match e with +[(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t7 _) +\Rightarrow t7])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead k u1 +t5) H16) in ((let H19 \def (f_equal T T (\lambda (e: T).(match e with [(TSort +_) \Rightarrow (THead (Bind Abst) u t3) | (TLRef _) \Rightarrow (THead (Bind +Abst) u t3) | (THead _ _ t7) \Rightarrow t7])) (THead (Flat Appl) v1 (THead +(Bind Abst) u t3)) (THead k u1 t5) H16) in (\lambda (H20: (eq T v1 +u1)).(\lambda (H21: (eq K (Flat Appl) k)).(eq_ind K (Flat Appl) (\lambda (k0: +K).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: +T).(pr0 (THead k0 u2 t6) t7)))) (let H22 \def (eq_ind_r K k (\lambda (k0: +K).(eq T (THead k0 u1 t5) t)) H11 (Flat Appl) H21) in (let H23 \def (eq_ind_r +T t5 (\lambda (t7: T).(pr0 t7 t6)) H15 (THead (Bind Abst) u t3) H19) in (let +H24 \def (match H23 with [(pr0_refl t7) \Rightarrow (\lambda (H24: (eq T t7 +(THead (Bind Abst) u t3))).(\lambda (H25: (eq T t7 t6)).(eq_ind T (THead +(Bind Abst) u t3) (\lambda (t8: T).((eq T t8 t6) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat -Appl) u2 t6) t9))))))))) (\lambda (H31: (eq T u0 u)).(eq_ind T u (\lambda -(t9: T).((eq T t7 t3) \to ((eq T (THead (Bind Abst) u3 t8) t6) \to ((pr0 t9 -u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 -t4) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t6) t10)))))))) -(\lambda (H32: (eq T t7 t3)).(eq_ind T t3 (\lambda (t9: T).((eq T (THead -(Bind Abst) u3 t8) t6) \to ((pr0 u u3) \to ((pr0 t9 t8) \to (ex2 T (\lambda -(t10: T).(pr0 (THead (Bind Abbr) v2 t4) t10)) (\lambda (t10: T).(pr0 (THead -(Flat Appl) u2 t6) t10))))))) (\lambda (H33: (eq T (THead (Bind Abst) u3 t8) -t6)).(eq_ind T (THead (Bind Abst) u3 t8) (\lambda (t9: T).((pr0 u u3) \to -((pr0 t3 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4) -t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t9) t10)))))) (\lambda (_: -(pr0 u u3)).(\lambda (H35: (pr0 t3 t8)).(let H36 \def (eq_ind_r T t5 (\lambda -(t9: T).(eq T (THead (Flat Appl) u1 t9) t)) H22 (THead (Bind Abst) u t3) H19) -in (let H37 \def (eq_ind_r T t (\lambda (t9: T).(\forall (v: T).((tlt v t9) -\to (\forall (t10: T).((pr0 v t10) \to (\forall (t11: T).((pr0 v t11) \to -(ex2 T (\lambda (t12: T).(pr0 t10 t12)) (\lambda (t12: T).(pr0 t11 -t12)))))))))) H (THead (Flat Appl) u1 (THead (Bind Abst) u t3)) H36) in (let -H38 \def (eq_ind T v1 (\lambda (t9: T).(pr0 t9 v2)) H7 u1 H20) in (ex2_ind T -(\lambda (t9: T).(pr0 v2 t9)) (\lambda (t9: T).(pr0 u2 t9)) (ex2 T (\lambda -(t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead -(Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9))) (\lambda (x: T).(\lambda -(H39: (pr0 v2 x)).(\lambda (H40: (pr0 u2 x)).(ex2_ind T (\lambda (t9: T).(pr0 -t8 t9)) (\lambda (t9: T).(pr0 t4 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead -(Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead -(Bind Abst) u3 t8)) t9))) (\lambda (x0: T).(\lambda (H41: (pr0 t8 -x0)).(\lambda (H42: (pr0 t4 x0)).(ex_intro2 T (\lambda (t9: T).(pr0 (THead -(Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead -(Bind Abst) u3 t8)) t9)) (THead (Bind Abbr) x x0) (pr0_comp v2 x H39 t4 x0 -H42 (Bind Abbr)) (pr0_beta u3 u2 x H40 t8 x0 H41))))) (H37 t3 (tlt_trans -(THead (Bind Abst) u t3) t3 (THead (Flat Appl) u1 (THead (Bind Abst) u t3)) -(tlt_head_dx (Bind Abst) u t3) (tlt_head_dx (Flat Appl) u1 (THead (Bind Abst) -u t3))) t8 H35 t4 H8))))) (H37 u1 (tlt_head_sx (Flat Appl) u1 (THead (Bind -Abst) u t3)) v2 H38 u2 H14))))))) t6 H33)) t7 (sym_eq T t7 t3 H32))) u0 -(sym_eq T u0 u H31))) k0 (sym_eq K k0 (Bind Abst) H30))) H29)) H28)) H27 H24 -H25))) | (pr0_beta u0 v0 v3 H24 t7 t8 H25) \Rightarrow (\lambda (H26: (eq T -(THead (Flat Appl) v0 (THead (Bind Abst) u0 t7)) (THead (Bind Abst) u -t3))).(\lambda (H27: (eq T (THead (Bind Abbr) v3 t8) t6)).((let H28 \def -(eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u0 t7)) (\lambda (e: -T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow -False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in -K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) -\Rightarrow True])])) I (THead (Bind Abst) u t3) H26) in (False_ind ((eq T -(THead (Bind Abbr) v3 t8) t6) \to ((pr0 v0 v3) \to ((pr0 t7 t8) \to (ex2 T -(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 -(THead (Flat Appl) u2 t6) t9)))))) H28)) H27 H24 H25))) | (pr0_upsilon b H24 -v0 v3 H25 u0 u3 H26 t7 t8 H27) \Rightarrow (\lambda (H28: (eq T (THead (Flat -Appl) v0 (THead (Bind b) u0 t7)) (THead (Bind Abst) u t3))).(\lambda (H29: -(eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v3) t8)) t6)).((let -H30 \def (eq_ind T (THead (Flat Appl) v0 (THead (Bind b) u0 t7)) (\lambda (e: -T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow -False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in -K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) -\Rightarrow True])])) I (THead (Bind Abst) u t3) H28) in (False_ind ((eq T -(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v3) t8)) t6) \to ((not -(eq B b Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to (ex2 T +Appl) u2 t6) t9))))) (\lambda (H26: (eq T (THead (Bind Abst) u t3) +t6)).(eq_ind T (THead (Bind Abst) u t3) (\lambda (t8: T).(ex2 T (\lambda (t9: +T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat +Appl) u2 t8) t9)))) (let H27 \def (eq_ind_r T t5 (\lambda (t8: T).(eq T +(THead (Flat Appl) u1 t8) t)) H22 (THead (Bind Abst) u t3) H19) in (let H28 +\def (eq_ind_r T t (\lambda (t8: T).(\forall (v: T).((tlt v t8) \to (\forall +(t9: T).((pr0 v t9) \to (\forall (t10: T).((pr0 v t10) \to (ex2 T (\lambda +(t11: T).(pr0 t9 t11)) (\lambda (t11: T).(pr0 t10 t11)))))))))) H (THead +(Flat Appl) u1 (THead (Bind Abst) u t3)) H27) in (let H29 \def (eq_ind T v1 +(\lambda (t8: T).(pr0 t8 v2)) H7 u1 H20) in (ex2_ind T (\lambda (t8: T).(pr0 +v2 t8)) (\lambda (t8: T).(pr0 u2 t8)) (ex2 T (\lambda (t8: T).(pr0 (THead +(Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 (THead (Flat Appl) u2 (THead +(Bind Abst) u t3)) t8))) (\lambda (x: T).(\lambda (H30: (pr0 v2 x)).(\lambda +(H31: (pr0 u2 x)).(ex_intro2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 +t4) t8)) (\lambda (t8: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u +t3)) t8)) (THead (Bind Abbr) x t4) (pr0_comp v2 x H30 t4 t4 (pr0_refl t4) +(Bind Abbr)) (pr0_beta u u2 x H31 t3 t4 H8))))) (H28 u1 (tlt_head_sx (Flat +Appl) u1 (THead (Bind Abst) u t3)) v2 H29 u2 H14))))) t6 H26)) t7 (sym_eq T +t7 (THead (Bind Abst) u t3) H24) H25))) | (pr0_comp u0 u3 H24 t7 t8 H25 k0) +\Rightarrow (\lambda (H26: (eq T (THead k0 u0 t7) (THead (Bind Abst) u +t3))).(\lambda (H27: (eq T (THead k0 u3 t8) t6)).((let H28 \def (f_equal T T +(\lambda (e: T).(match e with [(TSort _) \Rightarrow t7 | (TLRef _) +\Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) (THead k0 u0 t7) (THead +(Bind Abst) u t3) H26) in ((let H29 \def (f_equal T T (\lambda (e: T).(match +e with [(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t9 _) +\Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t3) H26) in ((let H30 +\def (f_equal T K (\lambda (e: T).(match e with [(TSort _) \Rightarrow k0 | +(TLRef _) \Rightarrow k0 | (THead k1 _ _) \Rightarrow k1])) (THead k0 u0 t7) +(THead (Bind Abst) u t3) H26) in (eq_ind K (Bind Abst) (\lambda (k1: K).((eq +T u0 u) \to ((eq T t7 t3) \to ((eq T (THead k1 u3 t8) t6) \to ((pr0 u0 u3) +\to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) +t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t6) t9))))))))) (\lambda +(H31: (eq T u0 u)).(eq_ind T u (\lambda (t9: T).((eq T t7 t3) \to ((eq T +(THead (Bind Abst) u3 t8) t6) \to ((pr0 t9 u3) \to ((pr0 t7 t8) \to (ex2 T +(\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4) t10)) (\lambda (t10: T).(pr0 +(THead (Flat Appl) u2 t6) t10)))))))) (\lambda (H32: (eq T t7 t3)).(eq_ind T +t3 (\lambda (t9: T).((eq T (THead (Bind Abst) u3 t8) t6) \to ((pr0 u u3) \to +((pr0 t9 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4) +t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t6) t10))))))) (\lambda +(H33: (eq T (THead (Bind Abst) u3 t8) t6)).(eq_ind T (THead (Bind Abst) u3 +t8) (\lambda (t9: T).((pr0 u u3) \to ((pr0 t3 t8) \to (ex2 T (\lambda (t10: +T).(pr0 (THead (Bind Abbr) v2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Flat +Appl) u2 t9) t10)))))) (\lambda (_: (pr0 u u3)).(\lambda (H35: (pr0 t3 +t8)).(let H36 \def (eq_ind_r T t5 (\lambda (t9: T).(eq T (THead (Flat Appl) +u1 t9) t)) H22 (THead (Bind Abst) u t3) H19) in (let H37 \def (eq_ind_r T t +(\lambda (t9: T).(\forall (v: T).((tlt v t9) \to (\forall (t10: T).((pr0 v +t10) \to (\forall (t11: T).((pr0 v t11) \to (ex2 T (\lambda (t12: T).(pr0 t10 +t12)) (\lambda (t12: T).(pr0 t11 t12)))))))))) H (THead (Flat Appl) u1 (THead +(Bind Abst) u t3)) H36) in (let H38 \def (eq_ind T v1 (\lambda (t9: T).(pr0 +t9 v2)) H7 u1 H20) in (ex2_ind T (\lambda (t9: T).(pr0 v2 t9)) (\lambda (t9: +T).(pr0 u2 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) +(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9))) +(\lambda (x: T).(\lambda (H39: (pr0 v2 x)).(\lambda (H40: (pr0 u2 +x)).(ex2_ind T (\lambda (t9: T).(pr0 t8 t9)) (\lambda (t9: T).(pr0 t4 t9)) +(ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: +T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9))) (\lambda (x0: +T).(\lambda (H41: (pr0 t8 x0)).(\lambda (H42: (pr0 t4 x0)).(ex_intro2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 -(THead (Flat Appl) u2 t6) t9)))))))) H30)) H29 H24 H25 H26 H27))) | -(pr0_delta u0 u3 H24 t7 t8 H25 w H26) \Rightarrow (\lambda (H27: (eq T (THead -(Bind Abbr) u0 t7) (THead (Bind Abst) u t3))).(\lambda (H28: (eq T (THead -(Bind Abbr) u3 w) t6)).((let H29 \def (eq_ind T (THead (Bind Abbr) u0 t7) -(\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) +(THead (Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9)) (THead (Bind Abbr) x +x0) (pr0_comp v2 x H39 t4 x0 H42 (Bind Abbr)) (pr0_beta u3 u2 x H40 t8 x0 +H41))))) (H37 t3 (tlt_trans (THead (Bind Abst) u t3) t3 (THead (Flat Appl) u1 +(THead (Bind Abst) u t3)) (tlt_head_dx (Bind Abst) u t3) (tlt_head_dx (Flat +Appl) u1 (THead (Bind Abst) u t3))) t8 H35 t4 H8))))) (H37 u1 (tlt_head_sx +(Flat Appl) u1 (THead (Bind Abst) u t3)) v2 H38 u2 H14))))))) t6 H33)) t7 +(sym_eq T t7 t3 H32))) u0 (sym_eq T u0 u H31))) k0 (sym_eq K k0 (Bind Abst) +H30))) H29)) H28)) H27 H24 H25))) | (pr0_beta u0 v0 v3 H24 t7 t8 H25) +\Rightarrow (\lambda (H26: (eq T (THead (Flat Appl) v0 (THead (Bind Abst) u0 +t7)) (THead (Bind Abst) u t3))).(\lambda (H27: (eq T (THead (Bind Abbr) v3 +t8) t6)).((let H28 \def (eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u0 +t7)) (\lambda (e: T).(match e with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 with [(Bind _) +\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abst) u t3) +H26) in (False_ind ((eq T (THead (Bind Abbr) v3 t8) t6) \to ((pr0 v0 v3) \to +((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) +(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t6) t9)))))) H28)) H27 H24 H25))) +| (pr0_upsilon b H24 v0 v3 H25 u0 u3 H26 t7 t8 H27) \Rightarrow (\lambda +(H28: (eq T (THead (Flat Appl) v0 (THead (Bind b) u0 t7)) (THead (Bind Abst) +u t3))).(\lambda (H29: (eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S +O) O v3) t8)) t6)).((let H30 \def (eq_ind T (THead (Flat Appl) v0 (THead +(Bind b) u0 t7)) (\lambda (e: T).(match e with [(TSort _) \Rightarrow False | +(TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 with +[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind +Abst) u t3) H28) in (False_ind ((eq T (THead (Bind b) u3 (THead (Flat Appl) +(lift (S O) O v3) t8)) t6) \to ((not (eq B b Abst)) \to ((pr0 v0 v3) \to +((pr0 u0 u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind +Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t6) t9)))))))) +H30)) H29 H24 H25 H26 H27))) | (pr0_delta u0 u3 H24 t7 t8 H25 w H26) +\Rightarrow (\lambda (H27: (eq T (THead (Bind Abbr) u0 t7) (THead (Bind Abst) +u t3))).(\lambda (H28: (eq T (THead (Bind Abbr) u3 w) t6)).((let H29 \def +(eq_ind T (THead (Bind Abbr) u0 t7) (\lambda (e: T).(match e with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow -(match k0 in K return (\lambda (_: K).Prop) with [(Bind b) \Rightarrow (match -b in B return (\lambda (_: B).Prop) with [Abbr \Rightarrow True | Abst -\Rightarrow False | Void \Rightarrow False]) | (Flat _) \Rightarrow +(match k0 with [(Bind b) \Rightarrow (match b with [Abbr \Rightarrow True | +Abst \Rightarrow False | Void \Rightarrow False]) | (Flat _) \Rightarrow False])])) I (THead (Bind Abst) u t3) H27) in (False_ind ((eq T (THead (Bind Abbr) u3 w) t6) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to ((subst0 O u3 t8 w) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t6) t9))))))) H29)) H28 H24 H25 H26))) | (pr0_zeta b H24 t7 t8 H25 u0) \Rightarrow (\lambda (H26: (eq T (THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u t3))).(\lambda (H27: (eq T t8 -t6)).((let H28 \def (f_equal T T (\lambda (e: T).(match e in T return -(\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f: ((nat -\to nat))) (d: nat) (t9: T) on t9: T \def (match t9 with [(TSort n) -\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with -[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k0 u3 t10) -\Rightarrow (THead k0 (lref_map f d u3) (lref_map f (s k0 d) t10))]) in -lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _) \Rightarrow -((let rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T \def (match -t9 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef -(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | -(THead k0 u3 t10) \Rightarrow (THead k0 (lref_map f d u3) (lref_map f (s k0 -d) t10))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _ +t6)).((let H28 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) +\Rightarrow (lref_map (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _) +\Rightarrow (lref_map (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _ t9) \Rightarrow t9])) (THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind -Abst) u t3) H26) in ((let H29 \def (f_equal T T (\lambda (e: T).(match e in T -return (\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _) -\Rightarrow u0 | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b) u0 (lift (S -O) O t7)) (THead (Bind Abst) u t3) H26) in ((let H30 \def (f_equal T B -(\lambda (e: T).(match e in T return (\lambda (_: T).B) with [(TSort _) -\Rightarrow b | (TLRef _) \Rightarrow b | (THead k0 _ _) \Rightarrow (match -k0 in K return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) -\Rightarrow b])])) (THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u -t3) H26) in (eq_ind B Abst (\lambda (b0: B).((eq T u0 u) \to ((eq T (lift (S -O) O t7) t3) \to ((eq T t8 t6) \to ((not (eq B b0 Abst)) \to ((pr0 t7 t8) \to -(ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: -T).(pr0 (THead (Flat Appl) u2 t6) t9))))))))) (\lambda (H31: (eq T u0 -u)).(eq_ind T u (\lambda (_: T).((eq T (lift (S O) O t7) t3) \to ((eq T t8 -t6) \to ((not (eq B Abst Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: -T).(pr0 (THead (Bind Abbr) v2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Flat -Appl) u2 t6) t10)))))))) (\lambda (H32: (eq T (lift (S O) O t7) t3)).(eq_ind -T (lift (S O) O t7) (\lambda (_: T).((eq T t8 t6) \to ((not (eq B Abst Abst)) +Abst) u t3) H26) in ((let H29 \def (f_equal T T (\lambda (e: T).(match e with +[(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t9 _) +\Rightarrow t9])) (THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u +t3) H26) in ((let H30 \def (f_equal T B (\lambda (e: T).(match e with [(TSort +_) \Rightarrow b | (TLRef _) \Rightarrow b | (THead k0 _ _) \Rightarrow +(match k0 with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead +(Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u t3) H26) in (eq_ind B +Abst (\lambda (b0: B).((eq T u0 u) \to ((eq T (lift (S O) O t7) t3) \to ((eq +T t8 t6) \to ((not (eq B b0 Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: +T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat +Appl) u2 t6) t9))))))))) (\lambda (H31: (eq T u0 u)).(eq_ind T u (\lambda (_: +T).((eq T (lift (S O) O t7) t3) \to ((eq T t8 t6) \to ((not (eq B Abst Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4) -t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t6) t10))))))) (\lambda -(H33: (eq T t8 t6)).(eq_ind T t6 (\lambda (t9: T).((not (eq B Abst Abst)) \to -((pr0 t7 t9) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4) -t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t6) t10)))))) (\lambda -(H34: (not (eq B Abst Abst))).(\lambda (_: (pr0 t7 t6)).(let H36 \def (match -(H34 (refl_equal B Abst)) in False return (\lambda (_: False).(ex2 T (\lambda -(t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead -(Flat Appl) u2 t6) t9)))) with []) in H36))) t8 (sym_eq T t8 t6 H33))) t3 -H32)) u0 (sym_eq T u0 u H31))) b (sym_eq B b Abst H30))) H29)) H28)) H27 H24 -H25))) | (pr0_tau t7 t8 H24 u0) \Rightarrow (\lambda (H25: (eq T (THead (Flat -Cast) u0 t7) (THead (Bind Abst) u t3))).(\lambda (H26: (eq T t8 t6)).((let -H27 \def (eq_ind T (THead (Flat Cast) u0 t7) (\lambda (e: T).(match e in T -return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda -(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow -True])])) I (THead (Bind Abst) u t3) H25) in (False_ind ((eq T t8 t6) \to -((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) -(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t6) t9))))) H27)) H26 H24)))]) in -(H24 (refl_equal T (THead (Bind Abst) u t3)) (refl_equal T t6))))) k H21)))) -H18)) H17))))) t2 H13)) t H11 H12 H9 H10))) | (pr0_beta u0 v0 v3 H9 t5 t6 -H10) \Rightarrow (\lambda (H11: (eq T (THead (Flat Appl) v0 (THead (Bind -Abst) u0 t5)) t)).(\lambda (H12: (eq T (THead (Bind Abbr) v3 t6) t2)).(eq_ind -T (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5)) (\lambda (_: T).((eq T -(THead (Bind Abbr) v3 t6) t2) \to ((pr0 v0 v3) \to ((pr0 t5 t6) \to (ex2 T -(\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 -t8))))))) (\lambda (H13: (eq T (THead (Bind Abbr) v3 t6) t2)).(eq_ind T -(THead (Bind Abbr) v3 t6) (\lambda (t7: T).((pr0 v0 v3) \to ((pr0 t5 t6) \to -(ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: -T).(pr0 t7 t8)))))) (\lambda (H14: (pr0 v0 v3)).(\lambda (H15: (pr0 t5 -t6)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 -(THead (Bind Abst) u t3)) t7)) H4 (THead (Flat Appl) v0 (THead (Bind Abst) u0 -t5)) H11) in (let H17 \def (f_equal T T (\lambda (e: T).(match e in T return -(\lambda (_: T).T) with [(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1 -| (THead _ t7 _) \Rightarrow t7])) (THead (Flat Appl) v1 (THead (Bind Abst) u -t3)) (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5)) H16) in ((let H18 \def -(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with -[(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ _ t7) -\Rightarrow (match t7 in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t8 _) \Rightarrow t8])])) +t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t6) t10)))))))) (\lambda +(H32: (eq T (lift (S O) O t7) t3)).(eq_ind T (lift (S O) O t7) (\lambda (_: +T).((eq T t8 t6) \to ((not (eq B Abst Abst)) \to ((pr0 t7 t8) \to (ex2 T +(\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4) t10)) (\lambda (t10: T).(pr0 +(THead (Flat Appl) u2 t6) t10))))))) (\lambda (H33: (eq T t8 t6)).(eq_ind T +t6 (\lambda (t9: T).((not (eq B Abst Abst)) \to ((pr0 t7 t9) \to (ex2 T +(\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4) t10)) (\lambda (t10: T).(pr0 +(THead (Flat Appl) u2 t6) t10)))))) (\lambda (H34: (not (eq B Abst +Abst))).(\lambda (_: (pr0 t7 t6)).(let H36 \def (match (H34 (refl_equal B +Abst)) in False with []) in H36))) t8 (sym_eq T t8 t6 H33))) t3 H32)) u0 +(sym_eq T u0 u H31))) b (sym_eq B b Abst H30))) H29)) H28)) H27 H24 H25))) | +(pr0_tau t7 t8 H24 u0) \Rightarrow (\lambda (H25: (eq T (THead (Flat Cast) u0 +t7) (THead (Bind Abst) u t3))).(\lambda (H26: (eq T t8 t6)).((let H27 \def +(eq_ind T (THead (Flat Cast) u0 t7) (\lambda (e: T).(match e with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow +(match k0 with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I +(THead (Bind Abst) u t3) H25) in (False_ind ((eq T t8 t6) \to ((pr0 t7 t8) +\to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: +T).(pr0 (THead (Flat Appl) u2 t6) t9))))) H27)) H26 H24)))]) in (H24 +(refl_equal T (THead (Bind Abst) u t3)) (refl_equal T t6))))) k H21)))) H18)) +H17))))) t2 H13)) t H11 H12 H9 H10))) | (pr0_beta u0 v0 v3 H9 t5 t6 H10) +\Rightarrow (\lambda (H11: (eq T (THead (Flat Appl) v0 (THead (Bind Abst) u0 +t5)) t)).(\lambda (H12: (eq T (THead (Bind Abbr) v3 t6) t2)).(eq_ind T (THead +(Flat Appl) v0 (THead (Bind Abst) u0 t5)) (\lambda (_: T).((eq T (THead (Bind +Abbr) v3 t6) t2) \to ((pr0 v0 v3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: +T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) +(\lambda (H13: (eq T (THead (Bind Abbr) v3 t6) t2)).(eq_ind T (THead (Bind +Abbr) v3 t6) (\lambda (t7: T).((pr0 v0 v3) \to ((pr0 t5 t6) \to (ex2 T +(\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t7 +t8)))))) (\lambda (H14: (pr0 v0 v3)).(\lambda (H15: (pr0 t5 t6)).(let H16 +\def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind +Abst) u t3)) t7)) H4 (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5)) H11) in +(let H17 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) +\Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t7 _) \Rightarrow t7])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead (Flat Appl) v0 (THead -(Bind Abst) u0 t5)) H16) in ((let H19 \def (f_equal T T (\lambda (e: -T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | -(TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow (match t7 in T return -(\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 -| (THead _ _ t8) \Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind Abst) -u t3)) (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5)) H16) in (\lambda (_: -(eq T u u0)).(\lambda (H21: (eq T v1 v0)).(let H22 \def (eq_ind_r T t -(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) -\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) -(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Appl) v0 (THead (Bind -Abst) u0 t5)) H11) in (let H23 \def (eq_ind T v1 (\lambda (t7: T).(pr0 t7 -v2)) H7 v0 H21) in (let H24 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) -H8 t5 H19) in (ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 -t6 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda -(t7: T).(pr0 (THead (Bind Abbr) v3 t6) t7))) (\lambda (x: T).(\lambda (H25: -(pr0 t4 x)).(\lambda (H26: (pr0 t6 x)).(ex2_ind T (\lambda (t7: T).(pr0 v2 -t7)) (\lambda (t7: T).(pr0 v3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind -Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v3 t6) t7))) -(\lambda (x0: T).(\lambda (H27: (pr0 v2 x0)).(\lambda (H28: (pr0 v3 -x0)).(ex_intro2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) -(\lambda (t7: T).(pr0 (THead (Bind Abbr) v3 t6) t7)) (THead (Bind Abbr) x0 x) -(pr0_comp v2 x0 H27 t4 x H25 (Bind Abbr)) (pr0_comp v3 x0 H28 t6 x H26 (Bind -Abbr)))))) (H22 v0 (tlt_head_sx (Flat Appl) v0 (THead (Bind Abst) u0 t5)) v2 -H23 v3 H14))))) (H22 t5 (tlt_trans (THead (Bind Abst) u0 t5) t5 (THead (Flat -Appl) v0 (THead (Bind Abst) u0 t5)) (tlt_head_dx (Bind Abst) u0 t5) -(tlt_head_dx (Flat Appl) v0 (THead (Bind Abst) u0 t5))) t4 H24 t6 H15)))))))) -H18)) H17))))) t2 H13)) t H11 H12 H9 H10))) | (pr0_upsilon b H9 v0 v3 H10 u1 -u2 H11 t5 t6 H12) \Rightarrow (\lambda (H13: (eq T (THead (Flat Appl) v0 -(THead (Bind b) u1 t5)) t)).(\lambda (H14: (eq T (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v3) t6)) t2)).(eq_ind T (THead (Flat Appl) v0 -(THead (Bind b) u1 t5)) (\lambda (_: T).((eq T (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v3) t6)) t2) \to ((not (eq B b Abst)) \to ((pr0 v0 -v3) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead -(Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))))) (\lambda (H15: -(eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v3) t6)) -t2)).(eq_ind T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v3) t6)) -(\lambda (t7: T).((not (eq B b Abst)) \to ((pr0 v0 v3) \to ((pr0 u1 u2) \to +(Bind Abst) u0 t5)) H16) in ((let H18 \def (f_equal T T (\lambda (e: +T).(match e with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead +_ _ t7) \Rightarrow (match t7 with [(TSort _) \Rightarrow u | (TLRef _) +\Rightarrow u | (THead _ t8 _) \Rightarrow t8])])) (THead (Flat Appl) v1 +(THead (Bind Abst) u t3)) (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5)) +H16) in ((let H19 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) +\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow (match +t7 with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t8) +\Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead +(Flat Appl) v0 (THead (Bind Abst) u0 t5)) H16) in (\lambda (_: (eq T u +u0)).(\lambda (H21: (eq T v1 v0)).(let H22 \def (eq_ind_r T t (\lambda (t7: +T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall +(t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: +T).(pr0 t9 t10)))))))))) H (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5)) +H11) in (let H23 \def (eq_ind T v1 (\lambda (t7: T).(pr0 t7 v2)) H7 v0 H21) +in (let H24 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 t5 H19) in +(ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T +(\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 +(THead (Bind Abbr) v3 t6) t7))) (\lambda (x: T).(\lambda (H25: (pr0 t4 +x)).(\lambda (H26: (pr0 t6 x)).(ex2_ind T (\lambda (t7: T).(pr0 v2 t7)) +(\lambda (t7: T).(pr0 v3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) +v2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v3 t6) t7))) (\lambda +(x0: T).(\lambda (H27: (pr0 v2 x0)).(\lambda (H28: (pr0 v3 x0)).(ex_intro2 T +(\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 +(THead (Bind Abbr) v3 t6) t7)) (THead (Bind Abbr) x0 x) (pr0_comp v2 x0 H27 +t4 x H25 (Bind Abbr)) (pr0_comp v3 x0 H28 t6 x H26 (Bind Abbr)))))) (H22 v0 +(tlt_head_sx (Flat Appl) v0 (THead (Bind Abst) u0 t5)) v2 H23 v3 H14))))) +(H22 t5 (tlt_trans (THead (Bind Abst) u0 t5) t5 (THead (Flat Appl) v0 (THead +(Bind Abst) u0 t5)) (tlt_head_dx (Bind Abst) u0 t5) (tlt_head_dx (Flat Appl) +v0 (THead (Bind Abst) u0 t5))) t4 H24 t6 H15)))))))) H18)) H17))))) t2 H13)) +t H11 H12 H9 H10))) | (pr0_upsilon b H9 v0 v3 H10 u1 u2 H11 t5 t6 H12) +\Rightarrow (\lambda (H13: (eq T (THead (Flat Appl) v0 (THead (Bind b) u1 +t5)) t)).(\lambda (H14: (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v3) t6)) t2)).(eq_ind T (THead (Flat Appl) v0 (THead (Bind b) u1 t5)) +(\lambda (_: T).((eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O +v3) t6)) t2) \to ((not (eq B b Abst)) \to ((pr0 v0 v3) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) -(\lambda (t8: T).(pr0 t7 t8)))))))) (\lambda (H16: (not (eq B b -Abst))).(\lambda (_: (pr0 v0 v3)).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (pr0 -t5 t6)).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) -v1 (THead (Bind Abst) u t3)) t7)) H4 (THead (Flat Appl) v0 (THead (Bind b) u1 -t5)) H13) in (let H21 \def (f_equal T T (\lambda (e: T).(match e in T return -(\lambda (_: T).T) with [(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1 -| (THead _ t7 _) \Rightarrow t7])) (THead (Flat Appl) v1 (THead (Bind Abst) u -t3)) (THead (Flat Appl) v0 (THead (Bind b) u1 t5)) H20) in ((let H22 \def -(f_equal T B (\lambda (e: T).(match e in T return (\lambda (_: T).B) with +(\lambda (t8: T).(pr0 t2 t8))))))))) (\lambda (H15: (eq T (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v3) t6)) t2)).(eq_ind T (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v3) t6)) (\lambda (t7: T).((not (eq B b +Abst)) \to ((pr0 v0 v3) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda +(t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t7 +t8)))))))) (\lambda (H16: (not (eq B b Abst))).(\lambda (_: (pr0 v0 +v3)).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (pr0 t5 t6)).(let H20 \def +(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind Abst) +u t3)) t7)) H4 (THead (Flat Appl) v0 (THead (Bind b) u1 t5)) H13) in (let H21 +\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow v1 | +(TLRef _) \Rightarrow v1 | (THead _ t7 _) \Rightarrow t7])) (THead (Flat +Appl) v1 (THead (Bind Abst) u t3)) (THead (Flat Appl) v0 (THead (Bind b) u1 +t5)) H20) in ((let H22 \def (f_equal T B (\lambda (e: T).(match e with [(TSort _) \Rightarrow Abst | (TLRef _) \Rightarrow Abst | (THead _ _ t7) -\Rightarrow (match t7 in T return (\lambda (_: T).B) with [(TSort _) -\Rightarrow Abst | (TLRef _) \Rightarrow Abst | (THead k _ _) \Rightarrow -(match k in K return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | -(Flat _) \Rightarrow Abst])])])) (THead (Flat Appl) v1 (THead (Bind Abst) u -t3)) (THead (Flat Appl) v0 (THead (Bind b) u1 t5)) H20) in ((let H23 \def -(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with -[(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ _ t7) -\Rightarrow (match t7 in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t8 _) \Rightarrow t8])])) -(THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead (Flat Appl) v0 (THead -(Bind b) u1 t5)) H20) in ((let H24 \def (f_equal T T (\lambda (e: T).(match e -in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) -\Rightarrow t3 | (THead _ _ t7) \Rightarrow (match t7 in T return (\lambda -(_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead -_ _ t8) \Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) -(THead (Flat Appl) v0 (THead (Bind b) u1 t5)) H20) in (\lambda (_: (eq T u -u1)).(\lambda (H26: (eq B Abst b)).(\lambda (_: (eq T v1 v0)).(eq_ind B Abst -(\lambda (b0: B).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) -(\lambda (t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O -v3) t6)) t7)))) (let H28 \def (eq_ind_r B b (\lambda (b0: B).(not (eq B b0 -Abst))) H16 Abst H26) in (let H29 \def (match (H28 (refl_equal B Abst)) in -False return (\lambda (_: False).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind -Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abst) u2 (THead (Flat -Appl) (lift (S O) O v3) t6)) t7)))) with []) in H29)) b H26))))) H23)) H22)) -H21))))))) t2 H15)) t H13 H14 H9 H10 H11 H12))) | (pr0_delta u1 u2 H9 t5 t6 -H10 w H11) \Rightarrow (\lambda (H12: (eq T (THead (Bind Abbr) u1 t5) -t)).(\lambda (H13: (eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind -Abbr) u1 t5) (\lambda (_: T).((eq T (THead (Bind Abbr) u2 w) t2) \to ((pr0 u1 -u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 -(THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))))) (\lambda -(H14: (eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind Abbr) u2 w) -(\lambda (t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to +\Rightarrow (match t7 with [(TSort _) \Rightarrow Abst | (TLRef _) +\Rightarrow Abst | (THead k _ _) \Rightarrow (match k with [(Bind b0) +\Rightarrow b0 | (Flat _) \Rightarrow Abst])])])) (THead (Flat Appl) v1 +(THead (Bind Abst) u t3)) (THead (Flat Appl) v0 (THead (Bind b) u1 t5)) H20) +in ((let H23 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) +\Rightarrow u | (TLRef _) \Rightarrow u | (THead _ _ t7) \Rightarrow (match +t7 with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t8 _) +\Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead +(Flat Appl) v0 (THead (Bind b) u1 t5)) H20) in ((let H24 \def (f_equal T T +(\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 | (TLRef _) +\Rightarrow t3 | (THead _ _ t7) \Rightarrow (match t7 with [(TSort _) +\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t8) \Rightarrow +t8])])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead (Flat Appl) v0 +(THead (Bind b) u1 t5)) H20) in (\lambda (_: (eq T u u1)).(\lambda (H26: (eq +B Abst b)).(\lambda (_: (eq T v1 v0)).(eq_ind B Abst (\lambda (b0: B).(ex2 T +(\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 +(THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O v3) t6)) t7)))) (let H28 +\def (eq_ind_r B b (\lambda (b0: B).(not (eq B b0 Abst))) H16 Abst H26) in +(let H29 \def (match (H28 (refl_equal B Abst)) in False with []) in H29)) b +H26))))) H23)) H22)) H21))))))) t2 H15)) t H13 H14 H9 H10 H11 H12))) | +(pr0_delta u1 u2 H9 t5 t6 H10 w H11) \Rightarrow (\lambda (H12: (eq T (THead +(Bind Abbr) u1 t5) t)).(\lambda (H13: (eq T (THead (Bind Abbr) u2 w) +t2)).(eq_ind T (THead (Bind Abbr) u1 t5) (\lambda (_: T).((eq T (THead (Bind +Abbr) u2 w) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: -T).(pr0 t7 t8))))))) (\lambda (_: (pr0 u1 u2)).(\lambda (_: (pr0 t5 -t6)).(\lambda (_: (subst0 O u2 t6 w)).(let H18 \def (eq_ind_r T t (\lambda -(t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) t7)) H4 (THead -(Bind Abbr) u1 t5) H12) in (let H19 \def (eq_ind T (THead (Flat Appl) v1 -(THead (Bind Abst) u t3)) (\lambda (ee: T).(match ee in T return (\lambda (_: -T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | -(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with -[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind -Abbr) u1 t5) H18) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind -Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7))) -H19)))))) t2 H14)) t H12 H13 H9 H10 H11))) | (pr0_zeta b H9 t5 t6 H10 u0) -\Rightarrow (\lambda (H11: (eq T (THead (Bind b) u0 (lift (S O) O t5)) -t)).(\lambda (H12: (eq T t6 t2)).(eq_ind T (THead (Bind b) u0 (lift (S O) O -t5)) (\lambda (_: T).((eq T t6 t2) \to ((not (eq B b Abst)) \to ((pr0 t5 t6) -\to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: -T).(pr0 t2 t8))))))) (\lambda (H13: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: -T).((not (eq B b Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 -(THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (_: -(not (eq B b Abst))).(\lambda (_: (pr0 t5 t2)).(let H16 \def (eq_ind_r T t -(\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) t7)) -H4 (THead (Bind b) u0 (lift (S O) O t5)) H11) in (let H17 \def (eq_ind T -(THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (\lambda (ee: T).(match ee in -T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda -(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow -True])])) I (THead (Bind b) u0 (lift (S O) O t5)) H16) in (False_ind (ex2 T -(\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 t2 -t7))) H17))))) t6 (sym_eq T t6 t2 H13))) t H11 H12 H9 H10))) | (pr0_tau t5 t6 -H9 u0) \Rightarrow (\lambda (H10: (eq T (THead (Flat Cast) u0 t5) -t)).(\lambda (H11: (eq T t6 t2)).(eq_ind T (THead (Flat Cast) u0 t5) (\lambda -(_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead -(Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H12: (eq -T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to (ex2 T (\lambda (t8: -T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))) -(\lambda (_: (pr0 t5 t2)).(let H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T -(THead (Flat Appl) v1 (THead (Bind Abst) u t3)) t7)) H4 (THead (Flat Cast) u0 -t5) H10) in (let H15 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) -u t3)) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with -[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) -\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _) -\Rightarrow False | (Flat f) \Rightarrow (match f in F return (\lambda (_: -F).Prop) with [Appl \Rightarrow True | Cast \Rightarrow False])])])) I (THead -(Flat Cast) u0 t5) H14) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead -(Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7))) H15)))) t6 (sym_eq T -t6 t2 H12))) t H10 H11 H9)))]) in (H9 (refl_equal T t) (refl_equal T t2))))) -t1 H6)) t H4 H5 H2 H3))) | (pr0_upsilon b H2 v1 v2 H3 u1 u2 H4 t3 t4 H5) -\Rightarrow (\lambda (H6: (eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) -t)).(\lambda (H7: (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O -v2) t4)) t1)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) -(\lambda (_: T).((eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O -v2) t4)) t1) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to -((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 -t2 t6))))))))) (\lambda (H8: (eq T (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4)) t1)).(eq_ind T (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4)) (\lambda (t5: T).((not (eq B b Abst)) \to ((pr0 v1 v2) -\to ((pr0 u1 u2) \to ((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t5 t6)) -(\lambda (t6: T).(pr0 t2 t6)))))))) (\lambda (H9: (not (eq B b -Abst))).(\lambda (H10: (pr0 v1 v2)).(\lambda (H11: (pr0 u1 u2)).(\lambda -(H12: (pr0 t3 t4)).(let H13 \def (match H1 in pr0 return (\lambda (t5: -T).(\lambda (t6: T).(\lambda (_: (pr0 t5 t6)).((eq T t5 t) \to ((eq T t6 t2) -\to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift -(S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 t2 t7)))))))) with [(pr0_refl t5) +T).(pr0 t2 t8)))))))) (\lambda (H14: (eq T (THead (Bind Abbr) u2 w) +t2)).(eq_ind T (THead (Bind Abbr) u2 w) (\lambda (t7: T).((pr0 u1 u2) \to +((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 (THead +(Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (_: (pr0 +u1 u2)).(\lambda (_: (pr0 t5 t6)).(\lambda (_: (subst0 O u2 t6 w)).(let H18 +\def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind +Abst) u t3)) t7)) H4 (THead (Bind Abbr) u1 t5) H12) in (let H19 \def (eq_ind +T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (\lambda (ee: T).(match ee +with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ +_) \Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat _) +\Rightarrow True])])) I (THead (Bind Abbr) u1 t5) H18) in (False_ind (ex2 T +(\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 +(THead (Bind Abbr) u2 w) t7))) H19)))))) t2 H14)) t H12 H13 H9 H10 H11))) | +(pr0_zeta b H9 t5 t6 H10 u0) \Rightarrow (\lambda (H11: (eq T (THead (Bind b) +u0 (lift (S O) O t5)) t)).(\lambda (H12: (eq T t6 t2)).(eq_ind T (THead (Bind +b) u0 (lift (S O) O t5)) (\lambda (_: T).((eq T t6 t2) \to ((not (eq B b +Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) +v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H13: (eq T t6 +t2)).(eq_ind T t2 (\lambda (t7: T).((not (eq B b Abst)) \to ((pr0 t5 t7) \to +(ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: +T).(pr0 t2 t8)))))) (\lambda (_: (not (eq B b Abst))).(\lambda (_: (pr0 t5 +t2)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 +(THead (Bind Abst) u t3)) t7)) H4 (THead (Bind b) u0 (lift (S O) O t5)) H11) +in (let H17 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) +(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind _) +\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind b) u0 (lift +(S O) O t5)) H16) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind +Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7))) H17))))) t6 (sym_eq T t6 t2 +H13))) t H11 H12 H9 H10))) | (pr0_tau t5 t6 H9 u0) \Rightarrow (\lambda (H10: +(eq T (THead (Flat Cast) u0 t5) t)).(\lambda (H11: (eq T t6 t2)).(eq_ind T +(THead (Flat Cast) u0 t5) (\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to +(ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: +T).(pr0 t2 t8)))))) (\lambda (H12: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: +T).((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) +t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (_: (pr0 t5 t2)).(let H14 \def +(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind Abst) +u t3)) t7)) H4 (THead (Flat Cast) u0 t5) H10) in (let H15 \def (eq_ind T +(THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (\lambda (ee: T).(match ee +with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ +_) \Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat f) +\Rightarrow (match f with [Appl \Rightarrow True | Cast \Rightarrow +False])])])) I (THead (Flat Cast) u0 t5) H14) in (False_ind (ex2 T (\lambda +(t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7))) +H15)))) t6 (sym_eq T t6 t2 H12))) t H10 H11 H9)))]) in (H9 (refl_equal T t) +(refl_equal T t2))))) t1 H6)) t H4 H5 H2 H3))) | (pr0_upsilon b H2 v1 v2 H3 +u1 u2 H4 t3 t4 H5) \Rightarrow (\lambda (H6: (eq T (THead (Flat Appl) v1 +(THead (Bind b) u1 t3)) t)).(\lambda (H7: (eq T (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O v2) t4)) t1)).(eq_ind T (THead (Flat Appl) v1 +(THead (Bind b) u1 t3)) (\lambda (_: T).((eq T (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O v2) t4)) t1) \to ((not (eq B b Abst)) \to ((pr0 v1 +v2) \to ((pr0 u1 u2) \to ((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t1 +t6)) (\lambda (t6: T).(pr0 t2 t6))))))))) (\lambda (H8: (eq T (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t1)).(eq_ind T (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t4)) (\lambda (t5: T).((not (eq B b +Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t3 t4) \to (ex2 T (\lambda +(t6: T).(pr0 t5 t6)) (\lambda (t6: T).(pr0 t2 t6)))))))) (\lambda (H9: (not +(eq B b Abst))).(\lambda (H10: (pr0 v1 v2)).(\lambda (H11: (pr0 u1 +u2)).(\lambda (H12: (pr0 t3 t4)).(let H13 \def (match H1 with [(pr0_refl t5) \Rightarrow (\lambda (H13: (eq T t5 t)).(\lambda (H14: (eq T t5 t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: @@ -1467,143 +1351,133 @@ H14))) | (pr0_comp u0 u3 H13 t5 t6 H14 k) \Rightarrow (\lambda (H15: (eq T T).(pr0 t7 t8)))))) (\lambda (H18: (pr0 u0 u3)).(\lambda (H19: (pr0 t5 t6)).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) t7)) H6 (THead k u0 t5) H15) in (let H21 \def -(f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K) with -[(TSort _) \Rightarrow (Flat Appl) | (TLRef _) \Rightarrow (Flat Appl) | -(THead k0 _ _) \Rightarrow k0])) (THead (Flat Appl) v1 (THead (Bind b) u1 -t3)) (THead k u0 t5) H20) in ((let H22 \def (f_equal T T (\lambda (e: -T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow v1 | -(TLRef _) \Rightarrow v1 | (THead _ t7 _) \Rightarrow t7])) (THead (Flat -Appl) v1 (THead (Bind b) u1 t3)) (THead k u0 t5) H20) in ((let H23 \def -(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with -[(TSort _) \Rightarrow (THead (Bind b) u1 t3) | (TLRef _) \Rightarrow (THead -(Bind b) u1 t3) | (THead _ _ t7) \Rightarrow t7])) (THead (Flat Appl) v1 -(THead (Bind b) u1 t3)) (THead k u0 t5) H20) in (\lambda (H24: (eq T v1 -u0)).(\lambda (H25: (eq K (Flat Appl) k)).(eq_ind K (Flat Appl) (\lambda (k0: -K).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift -(S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 (THead k0 u3 t6) t7)))) (let H26 -\def (eq_ind_r K k (\lambda (k0: K).(eq T (THead k0 u0 t5) t)) H15 (Flat -Appl) H25) in (let H27 \def (eq_ind_r T t5 (\lambda (t7: T).(pr0 t7 t6)) H19 -(THead (Bind b) u1 t3) H23) in (let H28 \def (match H27 in pr0 return -(\lambda (t7: T).(\lambda (t8: T).(\lambda (_: (pr0 t7 t8)).((eq T t7 (THead -(Bind b) u1 t3)) \to ((eq T t8 t6) \to (ex2 T (\lambda (t9: T).(pr0 (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: -T).(pr0 (THead (Flat Appl) u3 t6) t9)))))))) with [(pr0_refl t7) \Rightarrow -(\lambda (H28: (eq T t7 (THead (Bind b) u1 t3))).(\lambda (H29: (eq T t7 -t6)).(eq_ind T (THead (Bind b) u1 t3) (\lambda (t8: T).((eq T t8 t6) \to (ex2 -T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O -v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))))) -(\lambda (H30: (eq T (THead (Bind b) u1 t3) t6)).(eq_ind T (THead (Bind b) u1 -t3) (\lambda (t8: T).(ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat -Appl) u3 t8) t9)))) (let H31 \def (eq_ind_r T t5 (\lambda (t8: T).(eq T -(THead (Flat Appl) u0 t8) t)) H26 (THead (Bind b) u1 t3) H23) in (let H32 -\def (eq_ind_r T t (\lambda (t8: T).(\forall (v: T).((tlt v t8) \to (\forall -(t9: T).((pr0 v t9) \to (\forall (t10: T).((pr0 v t10) \to (ex2 T (\lambda -(t11: T).(pr0 t9 t11)) (\lambda (t11: T).(pr0 t10 t11)))))))))) H (THead -(Flat Appl) u0 (THead (Bind b) u1 t3)) H31) in (let H33 \def (eq_ind T v1 -(\lambda (t8: T).(pr0 t8 v2)) H10 u0 H24) in (ex2_ind T (\lambda (t8: T).(pr0 -v2 t8)) (\lambda (t8: T).(pr0 u3 t8)) (ex2 T (\lambda (t8: T).(pr0 (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: -T).(pr0 (THead (Flat Appl) u3 (THead (Bind b) u1 t3)) t8))) (\lambda (x: -T).(\lambda (H34: (pr0 v2 x)).(\lambda (H35: (pr0 u3 x)).(ex2_sym T (pr0 -(THead (Flat Appl) u3 (THead (Bind b) u1 t3))) (pr0 (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t4))) (pr0_confluence__pr0_cong_upsilon_refl b -H9 u1 u2 H11 t3 t4 H12 u3 v2 x H35 H34))))) (H32 u0 (tlt_head_sx (Flat Appl) -u0 (THead (Bind b) u1 t3)) v2 H33 u3 H18))))) t6 H30)) t7 (sym_eq T t7 (THead -(Bind b) u1 t3) H28) H29))) | (pr0_comp u4 u5 H28 t7 t8 H29 k0) \Rightarrow -(\lambda (H30: (eq T (THead k0 u4 t7) (THead (Bind b) u1 t3))).(\lambda (H31: -(eq T (THead k0 u5 t8) t6)).((let H32 \def (f_equal T T (\lambda (e: -T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t7 | -(TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) (THead k0 u4 t7) -(THead (Bind b) u1 t3) H30) in ((let H33 \def (f_equal T T (\lambda (e: -T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u4 | -(TLRef _) \Rightarrow u4 | (THead _ t9 _) \Rightarrow t9])) (THead k0 u4 t7) -(THead (Bind b) u1 t3) H30) in ((let H34 \def (f_equal T K (\lambda (e: -T).(match e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k0 | -(TLRef _) \Rightarrow k0 | (THead k1 _ _) \Rightarrow k1])) (THead k0 u4 t7) -(THead (Bind b) u1 t3) H30) in (eq_ind K (Bind b) (\lambda (k1: K).((eq T u4 -u1) \to ((eq T t7 t3) \to ((eq T (THead k1 u5 t8) t6) \to ((pr0 u4 u5) \to -((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 -t6) t9))))))))) (\lambda (H35: (eq T u4 u1)).(eq_ind T u1 (\lambda (t9: -T).((eq T t7 t3) \to ((eq T (THead (Bind b) u5 t8) t6) \to ((pr0 t9 u5) \to -((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat -Appl) u3 t6) t10)))))))) (\lambda (H36: (eq T t7 t3)).(eq_ind T t3 (\lambda -(t9: T).((eq T (THead (Bind b) u5 t8) t6) \to ((pr0 u1 u5) \to ((pr0 t9 t8) -\to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift -(S O) O v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6) -t10))))))) (\lambda (H37: (eq T (THead (Bind b) u5 t8) t6)).(eq_ind T (THead -(Bind b) u5 t8) (\lambda (t9: T).((pr0 u1 u5) \to ((pr0 t3 t8) \to (ex2 T -(\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O -v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t9) t10)))))) -(\lambda (H38: (pr0 u1 u5)).(\lambda (H39: (pr0 t3 t8)).(let H40 \def -(eq_ind_r T t5 (\lambda (t9: T).(eq T (THead (Flat Appl) u0 t9) t)) H26 -(THead (Bind b) u1 t3) H23) in (let H41 \def (eq_ind_r T t (\lambda (t9: -T).(\forall (v: T).((tlt v t9) \to (\forall (t10: T).((pr0 v t10) \to -(\forall (t11: T).((pr0 v t11) \to (ex2 T (\lambda (t12: T).(pr0 t10 t12)) -(\lambda (t12: T).(pr0 t11 t12)))))))))) H (THead (Flat Appl) u0 (THead (Bind -b) u1 t3)) H40) in (let H42 \def (eq_ind T v1 (\lambda (t9: T).(pr0 t9 v2)) -H10 u0 H24) in (ex2_ind T (\lambda (t9: T).(pr0 v2 t9)) (\lambda (t9: T).(pr0 -u3 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 -(THead (Bind b) u5 t8)) t9))) (\lambda (x: T).(\lambda (H43: (pr0 v2 -x)).(\lambda (H44: (pr0 u3 x)).(ex2_ind T (\lambda (t9: T).(pr0 t8 t9)) -(\lambda (t9: T).(pr0 t4 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 +(f_equal T K (\lambda (e: T).(match e with [(TSort _) \Rightarrow (Flat Appl) +| (TLRef _) \Rightarrow (Flat Appl) | (THead k0 _ _) \Rightarrow k0])) (THead +(Flat Appl) v1 (THead (Bind b) u1 t3)) (THead k u0 t5) H20) in ((let H22 \def +(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow v1 | (TLRef +_) \Rightarrow v1 | (THead _ t7 _) \Rightarrow t7])) (THead (Flat Appl) v1 +(THead (Bind b) u1 t3)) (THead k u0 t5) H20) in ((let H23 \def (f_equal T T +(\lambda (e: T).(match e with [(TSort _) \Rightarrow (THead (Bind b) u1 t3) | +(TLRef _) \Rightarrow (THead (Bind b) u1 t3) | (THead _ _ t7) \Rightarrow +t7])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead k u0 t5) H20) in +(\lambda (H24: (eq T v1 u0)).(\lambda (H25: (eq K (Flat Appl) k)).(eq_ind K +(Flat Appl) (\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 (THead +k0 u3 t6) t7)))) (let H26 \def (eq_ind_r K k (\lambda (k0: K).(eq T (THead k0 +u0 t5) t)) H15 (Flat Appl) H25) in (let H27 \def (eq_ind_r T t5 (\lambda (t7: +T).(pr0 t7 t6)) H19 (THead (Bind b) u1 t3) H23) in (let H28 \def (match H27 +with [(pr0_refl t7) \Rightarrow (\lambda (H28: (eq T t7 (THead (Bind b) u1 +t3))).(\lambda (H29: (eq T t7 t6)).(eq_ind T (THead (Bind b) u1 t3) (\lambda +(t8: T).((eq T t8 t6) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead -(Flat Appl) u3 (THead (Bind b) u5 t8)) t9))) (\lambda (x0: T).(\lambda (H45: -(pr0 t8 x0)).(\lambda (H46: (pr0 t4 x0)).(ex2_ind T (\lambda (t9: T).(pr0 u5 -t9)) (\lambda (t9: T).(pr0 u2 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Bind -b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 -(THead (Flat Appl) u3 (THead (Bind b) u5 t8)) t9))) (\lambda (x1: T).(\lambda -(H47: (pr0 u5 x1)).(\lambda (H48: (pr0 u2 x1)).(ex2_sym T (pr0 (THead (Flat -Appl) u3 (THead (Bind b) u5 t8))) (pr0 (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4))) (pr0_confluence__pr0_cong_upsilon_cong b H9 u3 v2 x -H44 H43 t8 t4 x0 H45 H46 u5 u2 x1 H47 H48))))) (H41 u1 (tlt_trans (THead -(Bind b) u1 t3) u1 (THead (Flat Appl) u0 (THead (Bind b) u1 t3)) (tlt_head_sx -(Bind b) u1 t3) (tlt_head_dx (Flat Appl) u0 (THead (Bind b) u1 t3))) u5 H38 -u2 H11))))) (H41 t3 (tlt_trans (THead (Bind b) u1 t3) t3 (THead (Flat Appl) -u0 (THead (Bind b) u1 t3)) (tlt_head_dx (Bind b) u1 t3) (tlt_head_dx (Flat -Appl) u0 (THead (Bind b) u1 t3))) t8 H39 t4 H12))))) (H41 u0 (tlt_head_sx -(Flat Appl) u0 (THead (Bind b) u1 t3)) v2 H42 u3 H18))))))) t6 H37)) t7 -(sym_eq T t7 t3 H36))) u4 (sym_eq T u4 u1 H35))) k0 (sym_eq K k0 (Bind b) -H34))) H33)) H32)) H31 H28 H29))) | (pr0_beta u v0 v3 H28 t7 t8 H29) -\Rightarrow (\lambda (H30: (eq T (THead (Flat Appl) v0 (THead (Bind Abst) u -t7)) (THead (Bind b) u1 t3))).(\lambda (H31: (eq T (THead (Bind Abbr) v3 t8) -t6)).((let H32 \def (eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u t7)) -(\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) -\Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow -(match k0 in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False -| (Flat _) \Rightarrow True])])) I (THead (Bind b) u1 t3) H30) in (False_ind -((eq T (THead (Bind Abbr) v3 t8) t6) \to ((pr0 v0 v3) \to ((pr0 t7 t8) \to -(ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S -O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9)))))) -H32)) H31 H28 H29))) | (pr0_upsilon b0 H28 v0 v3 H29 u4 u5 H30 t7 t8 H31) -\Rightarrow (\lambda (H32: (eq T (THead (Flat Appl) v0 (THead (Bind b0) u4 -t7)) (THead (Bind b) u1 t3))).(\lambda (H33: (eq T (THead (Bind b0) u5 (THead -(Flat Appl) (lift (S O) O v3) t8)) t6)).((let H34 \def (eq_ind T (THead (Flat -Appl) v0 (THead (Bind b0) u4 t7)) (\lambda (e: T).(match e in T return -(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda -(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow -True])])) I (THead (Bind b) u1 t3) H32) in (False_ind ((eq T (THead (Bind b0) -u5 (THead (Flat Appl) (lift (S O) O v3) t8)) t6) \to ((not (eq B b0 Abst)) -\to ((pr0 v0 v3) \to ((pr0 u4 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: +(Flat Appl) u3 t6) t9))))) (\lambda (H30: (eq T (THead (Bind b) u1 t3) +t6)).(eq_ind T (THead (Bind b) u1 t3) (\lambda (t8: T).(ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) -(\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9)))))))) H34)) H33 H28 H29 -H30 H31))) | (pr0_delta u4 u5 H28 t7 t8 H29 w H30) \Rightarrow (\lambda (H31: -(eq T (THead (Bind Abbr) u4 t7) (THead (Bind b) u1 t3))).(\lambda (H32: (eq T -(THead (Bind Abbr) u5 w) t6)).((let H33 \def (f_equal T T (\lambda (e: -T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t7 | -(TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) (THead (Bind -Abbr) u4 t7) (THead (Bind b) u1 t3) H31) in ((let H34 \def (f_equal T T -(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) +(\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t8) t9)))) (let H31 \def +(eq_ind_r T t5 (\lambda (t8: T).(eq T (THead (Flat Appl) u0 t8) t)) H26 +(THead (Bind b) u1 t3) H23) in (let H32 \def (eq_ind_r T t (\lambda (t8: +T).(\forall (v: T).((tlt v t8) \to (\forall (t9: T).((pr0 v t9) \to (\forall +(t10: T).((pr0 v t10) \to (ex2 T (\lambda (t11: T).(pr0 t9 t11)) (\lambda +(t11: T).(pr0 t10 t11)))))))))) H (THead (Flat Appl) u0 (THead (Bind b) u1 +t3)) H31) in (let H33 \def (eq_ind T v1 (\lambda (t8: T).(pr0 t8 v2)) H10 u0 +H24) in (ex2_ind T (\lambda (t8: T).(pr0 v2 t8)) (\lambda (t8: T).(pr0 u3 +t8)) (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift +(S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 (THead (Flat Appl) u3 (THead +(Bind b) u1 t3)) t8))) (\lambda (x: T).(\lambda (H34: (pr0 v2 x)).(\lambda +(H35: (pr0 u3 x)).(ex2_sym T (pr0 (THead (Flat Appl) u3 (THead (Bind b) u1 +t3))) (pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) +(pr0_confluence__pr0_cong_upsilon_refl b H9 u1 u2 H11 t3 t4 H12 u3 v2 x H35 +H34))))) (H32 u0 (tlt_head_sx (Flat Appl) u0 (THead (Bind b) u1 t3)) v2 H33 +u3 H18))))) t6 H30)) t7 (sym_eq T t7 (THead (Bind b) u1 t3) H28) H29))) | +(pr0_comp u4 u5 H28 t7 t8 H29 k0) \Rightarrow (\lambda (H30: (eq T (THead k0 +u4 t7) (THead (Bind b) u1 t3))).(\lambda (H31: (eq T (THead k0 u5 t8) +t6)).((let H32 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) +\Rightarrow t7 | (TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) +(THead k0 u4 t7) (THead (Bind b) u1 t3) H30) in ((let H33 \def (f_equal T T +(\lambda (e: T).(match e with [(TSort _) \Rightarrow u4 | (TLRef _) +\Rightarrow u4 | (THead _ t9 _) \Rightarrow t9])) (THead k0 u4 t7) (THead +(Bind b) u1 t3) H30) in ((let H34 \def (f_equal T K (\lambda (e: T).(match e +with [(TSort _) \Rightarrow k0 | (TLRef _) \Rightarrow k0 | (THead k1 _ _) +\Rightarrow k1])) (THead k0 u4 t7) (THead (Bind b) u1 t3) H30) in (eq_ind K +(Bind b) (\lambda (k1: K).((eq T u4 u1) \to ((eq T t7 t3) \to ((eq T (THead +k1 u5 t8) t6) \to ((pr0 u4 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: +T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) +(\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))))))))) (\lambda (H35: +(eq T u4 u1)).(eq_ind T u1 (\lambda (t9: T).((eq T t7 t3) \to ((eq T (THead +(Bind b) u5 t8) t6) \to ((pr0 t9 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda +(t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6) t10)))))))) (\lambda +(H36: (eq T t7 t3)).(eq_ind T t3 (\lambda (t9: T).((eq T (THead (Bind b) u5 +t8) t6) \to ((pr0 u1 u5) \to ((pr0 t9 t8) \to (ex2 T (\lambda (t10: T).(pr0 +(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda +(t10: T).(pr0 (THead (Flat Appl) u3 t6) t10))))))) (\lambda (H37: (eq T +(THead (Bind b) u5 t8) t6)).(eq_ind T (THead (Bind b) u5 t8) (\lambda (t9: +T).((pr0 u1 u5) \to ((pr0 t3 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda (t10: +T).(pr0 (THead (Flat Appl) u3 t9) t10)))))) (\lambda (H38: (pr0 u1 +u5)).(\lambda (H39: (pr0 t3 t8)).(let H40 \def (eq_ind_r T t5 (\lambda (t9: +T).(eq T (THead (Flat Appl) u0 t9) t)) H26 (THead (Bind b) u1 t3) H23) in +(let H41 \def (eq_ind_r T t (\lambda (t9: T).(\forall (v: T).((tlt v t9) \to +(\forall (t10: T).((pr0 v t10) \to (\forall (t11: T).((pr0 v t11) \to (ex2 T +(\lambda (t12: T).(pr0 t10 t12)) (\lambda (t12: T).(pr0 t11 t12)))))))))) H +(THead (Flat Appl) u0 (THead (Bind b) u1 t3)) H40) in (let H42 \def (eq_ind T +v1 (\lambda (t9: T).(pr0 t9 v2)) H10 u0 H24) in (ex2_ind T (\lambda (t9: +T).(pr0 v2 t9)) (\lambda (t9: T).(pr0 u3 t9)) (ex2 T (\lambda (t9: T).(pr0 +(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda +(t9: T).(pr0 (THead (Flat Appl) u3 (THead (Bind b) u5 t8)) t9))) (\lambda (x: +T).(\lambda (H43: (pr0 v2 x)).(\lambda (H44: (pr0 u3 x)).(ex2_ind T (\lambda +(t9: T).(pr0 t8 t9)) (\lambda (t9: T).(pr0 t4 t9)) (ex2 T (\lambda (t9: +T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) +(\lambda (t9: T).(pr0 (THead (Flat Appl) u3 (THead (Bind b) u5 t8)) t9))) +(\lambda (x0: T).(\lambda (H45: (pr0 t8 x0)).(\lambda (H46: (pr0 t4 +x0)).(ex2_ind T (\lambda (t9: T).(pr0 u5 t9)) (\lambda (t9: T).(pr0 u2 t9)) +(ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 (THead (Bind +b) u5 t8)) t9))) (\lambda (x1: T).(\lambda (H47: (pr0 u5 x1)).(\lambda (H48: +(pr0 u2 x1)).(ex2_sym T (pr0 (THead (Flat Appl) u3 (THead (Bind b) u5 t8))) +(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) +(pr0_confluence__pr0_cong_upsilon_cong b H9 u3 v2 x H44 H43 t8 t4 x0 H45 H46 +u5 u2 x1 H47 H48))))) (H41 u1 (tlt_trans (THead (Bind b) u1 t3) u1 (THead +(Flat Appl) u0 (THead (Bind b) u1 t3)) (tlt_head_sx (Bind b) u1 t3) +(tlt_head_dx (Flat Appl) u0 (THead (Bind b) u1 t3))) u5 H38 u2 H11))))) (H41 +t3 (tlt_trans (THead (Bind b) u1 t3) t3 (THead (Flat Appl) u0 (THead (Bind b) +u1 t3)) (tlt_head_dx (Bind b) u1 t3) (tlt_head_dx (Flat Appl) u0 (THead (Bind +b) u1 t3))) t8 H39 t4 H12))))) (H41 u0 (tlt_head_sx (Flat Appl) u0 (THead +(Bind b) u1 t3)) v2 H42 u3 H18))))))) t6 H37)) t7 (sym_eq T t7 t3 H36))) u4 +(sym_eq T u4 u1 H35))) k0 (sym_eq K k0 (Bind b) H34))) H33)) H32)) H31 H28 +H29))) | (pr0_beta u v0 v3 H28 t7 t8 H29) \Rightarrow (\lambda (H30: (eq T +(THead (Flat Appl) v0 (THead (Bind Abst) u t7)) (THead (Bind b) u1 +t3))).(\lambda (H31: (eq T (THead (Bind Abbr) v3 t8) t6)).((let H32 \def +(eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u t7)) (\lambda (e: +T).(match e with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | +(THead k0 _ _) \Rightarrow (match k0 with [(Bind _) \Rightarrow False | (Flat +_) \Rightarrow True])])) I (THead (Bind b) u1 t3) H30) in (False_ind ((eq T +(THead (Bind Abbr) v3 t8) t6) \to ((pr0 v0 v3) \to ((pr0 t7 t8) \to (ex2 T +(\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) +t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9)))))) H32)) H31 +H28 H29))) | (pr0_upsilon b0 H28 v0 v3 H29 u4 u5 H30 t7 t8 H31) \Rightarrow +(\lambda (H32: (eq T (THead (Flat Appl) v0 (THead (Bind b0) u4 t7)) (THead +(Bind b) u1 t3))).(\lambda (H33: (eq T (THead (Bind b0) u5 (THead (Flat Appl) +(lift (S O) O v3) t8)) t6)).((let H34 \def (eq_ind T (THead (Flat Appl) v0 +(THead (Bind b0) u4 t7)) (\lambda (e: T).(match e with [(TSort _) \Rightarrow +False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 +with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead +(Bind b) u1 t3) H32) in (False_ind ((eq T (THead (Bind b0) u5 (THead (Flat +Appl) (lift (S O) O v3) t8)) t6) \to ((not (eq B b0 Abst)) \to ((pr0 v0 v3) +\to ((pr0 u4 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: +T).(pr0 (THead (Flat Appl) u3 t6) t9)))))))) H34)) H33 H28 H29 H30 H31))) | +(pr0_delta u4 u5 H28 t7 t8 H29 w H30) \Rightarrow (\lambda (H31: (eq T (THead +(Bind Abbr) u4 t7) (THead (Bind b) u1 t3))).(\lambda (H32: (eq T (THead (Bind +Abbr) u5 w) t6)).((let H33 \def (f_equal T T (\lambda (e: T).(match e with +[(TSort _) \Rightarrow t7 | (TLRef _) \Rightarrow t7 | (THead _ _ t9) +\Rightarrow t9])) (THead (Bind Abbr) u4 t7) (THead (Bind b) u1 t3) H31) in +((let H34 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u4 | (TLRef _) \Rightarrow u4 | (THead _ t9 _) \Rightarrow t9])) (THead (Bind Abbr) u4 t7) (THead (Bind b) u1 t3) H31) in ((let H35 \def -(f_equal T B (\lambda (e: T).(match e in T return (\lambda (_: T).B) with -[(TSort _) \Rightarrow Abbr | (TLRef _) \Rightarrow Abbr | (THead k0 _ _) -\Rightarrow (match k0 in K return (\lambda (_: K).B) with [(Bind b0) -\Rightarrow b0 | (Flat _) \Rightarrow Abbr])])) (THead (Bind Abbr) u4 t7) +(f_equal T B (\lambda (e: T).(match e with [(TSort _) \Rightarrow Abbr | +(TLRef _) \Rightarrow Abbr | (THead k0 _ _) \Rightarrow (match k0 with [(Bind +b0) \Rightarrow b0 | (Flat _) \Rightarrow Abbr])])) (THead (Bind Abbr) u4 t7) (THead (Bind b) u1 t3) H31) in (eq_ind B Abbr (\lambda (b0: B).((eq T u4 u1) \to ((eq T t7 t3) \to ((eq T (THead (Bind Abbr) u5 w) t6) \to ((pr0 u4 u5) \to ((pr0 t7 t8) \to ((subst0 O u5 t8 w) \to (ex2 T (\lambda (t9: T).(pr0 @@ -1660,326 +1534,299 @@ H18))))))))))) t6 H38)) t7 (sym_eq T t7 t3 H37))) u4 (sym_eq T u4 u1 H36))) b H35)) H34)) H33)) H32 H28 H29 H30))) | (pr0_zeta b0 H28 t7 t8 H29 u) \Rightarrow (\lambda (H30: (eq T (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) u1 t3))).(\lambda (H31: (eq T t8 t6)).((let H32 \def (f_equal T T -(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T -\def (match t9 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow -(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) -| (THead k0 u4 t10) \Rightarrow (THead k0 (lref_map f d u4) (lref_map f (s k0 -d) t10))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _) -\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T -\def (match t9 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow -(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) -| (THead k0 u4 t10) \Rightarrow (THead k0 (lref_map f d u4) (lref_map f (s k0 -d) t10))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _ -t9) \Rightarrow t9])) (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) -u1 t3) H30) in ((let H33 \def (f_equal T T (\lambda (e: T).(match e in T -return (\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _) -\Rightarrow u | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b0) u (lift (S -O) O t7)) (THead (Bind b) u1 t3) H30) in ((let H34 \def (f_equal T B (\lambda -(e: T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b0 -| (TLRef _) \Rightarrow b0 | (THead k0 _ _) \Rightarrow (match k0 in K return -(\lambda (_: K).B) with [(Bind b1) \Rightarrow b1 | (Flat _) \Rightarrow -b0])])) (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) u1 t3) H30) in -(eq_ind B b (\lambda (b1: B).((eq T u u1) \to ((eq T (lift (S O) O t7) t3) -\to ((eq T t8 t6) \to ((not (eq B b1 Abst)) \to ((pr0 t7 t8) \to (ex2 T -(\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) -t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))))))))) -(\lambda (H35: (eq T u u1)).(eq_ind T u1 (\lambda (_: T).((eq T (lift (S O) O -t7) t3) \to ((eq T t8 t6) \to ((not (eq B b Abst)) \to ((pr0 t7 t8) \to (ex2 -T (\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O -v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6) t10)))))))) -(\lambda (H36: (eq T (lift (S O) O t7) t3)).(eq_ind T (lift (S O) O t7) -(\lambda (_: T).((eq T t8 t6) \to ((not (eq B b Abst)) \to ((pr0 t7 t8) \to -(ex2 T (\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S -O) O v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6) -t10))))))) (\lambda (H37: (eq T t8 t6)).(eq_ind T t6 (\lambda (t9: T).((not -(eq B b Abst)) \to ((pr0 t7 t9) \to (ex2 T (\lambda (t10: T).(pr0 (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda (t10: -T).(pr0 (THead (Flat Appl) u3 t6) t10)))))) (\lambda (H38: (not (eq B b -Abst))).(\lambda (H39: (pr0 t7 t6)).(let H40 \def (eq_ind_r T t3 (\lambda -(t9: T).(eq T (THead (Bind b) u1 t9) t5)) H23 (lift (S O) O t7) H36) in (let -H41 \def (eq_ind_r T t5 (\lambda (t9: T).(eq T (THead (Flat Appl) u0 t9) t)) -H26 (THead (Bind b) u1 (lift (S O) O t7)) H40) in (let H42 \def (eq_ind_r T t -(\lambda (t9: T).(\forall (v: T).((tlt v t9) \to (\forall (t10: T).((pr0 v -t10) \to (\forall (t11: T).((pr0 v t11) \to (ex2 T (\lambda (t12: T).(pr0 t10 -t12)) (\lambda (t12: T).(pr0 t11 t12)))))))))) H (THead (Flat Appl) u0 (THead -(Bind b) u1 (lift (S O) O t7))) H41) in (let H43 \def (eq_ind_r T t3 (\lambda -(t9: T).(pr0 t9 t4)) H12 (lift (S O) O t7) H36) in (ex2_ind T (\lambda (t9: -T).(eq T t4 (lift (S O) O t9))) (\lambda (t9: T).(pr0 t7 t9)) (ex2 T (\lambda -(t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))) (\lambda (x: -T).(\lambda (H44: (eq T t4 (lift (S O) O x))).(\lambda (H45: (pr0 t7 -x)).(eq_ind_r T (lift (S O) O x) (\lambda (t9: T).(ex2 T (\lambda (t10: -T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t9)) t10)) -(\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6) t10)))) (let H46 \def -(eq_ind T v1 (\lambda (t9: T).(pr0 t9 v2)) H10 u0 H24) in (ex2_ind T (\lambda -(t9: T).(pr0 v2 t9)) (\lambda (t9: T).(pr0 u3 t9)) (ex2 T (\lambda (t9: -T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) (lift (S O) O -x))) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))) (\lambda (x0: -T).(\lambda (H47: (pr0 v2 x0)).(\lambda (H48: (pr0 u3 x0)).(ex2_ind T -(\lambda (t9: T).(pr0 x t9)) (\lambda (t9: T).(pr0 t6 t9)) (ex2 T (\lambda -(t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) (lift (S -O) O x))) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))) (\lambda -(x1: T).(\lambda (H49: (pr0 x x1)).(\lambda (H50: (pr0 t6 x1)).(ex2_sym T -(pr0 (THead (Flat Appl) u3 t6)) (pr0 (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) (lift (S O) O x)))) (pr0_confluence__pr0_cong_upsilon_zeta -b H38 u1 u2 H11 u3 v2 x0 H48 H47 x t6 x1 H49 H50))))) (H42 t7 (tlt_trans -(THead (Bind b) u1 (lift (S O) O t7)) t7 (THead (Flat Appl) u0 (THead (Bind -b) u1 (lift (S O) O t7))) (lift_tlt_dx (Bind b) u1 t7 (S O) O) (tlt_head_dx -(Flat Appl) u0 (THead (Bind b) u1 (lift (S O) O t7)))) x H45 t6 H39))))) (H42 -u0 (tlt_head_sx (Flat Appl) u0 (THead (Bind b) u1 (lift (S O) O t7))) v2 H46 -u3 H18))) t4 H44)))) (pr0_gen_lift t7 t4 (S O) O H43)))))))) t8 (sym_eq T t8 -t6 H37))) t3 H36)) u (sym_eq T u u1 H35))) b0 (sym_eq B b0 b H34))) H33)) -H32)) H31 H28 H29))) | (pr0_tau t7 t8 H28 u) \Rightarrow (\lambda (H29: (eq T -(THead (Flat Cast) u t7) (THead (Bind b) u1 t3))).(\lambda (H30: (eq T t8 -t6)).((let H31 \def (eq_ind T (THead (Flat Cast) u t7) (\lambda (e: T).(match -e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | -(TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K -return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) -\Rightarrow True])])) I (THead (Bind b) u1 t3) H29) in (False_ind ((eq T t8 -t6) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 +(\lambda (e: T).(match e with [(TSort _) \Rightarrow (lref_map (\lambda (x: +nat).(plus x (S O))) O t7) | (TLRef _) \Rightarrow (lref_map (\lambda (x: +nat).(plus x (S O))) O t7) | (THead _ _ t9) \Rightarrow t9])) (THead (Bind +b0) u (lift (S O) O t7)) (THead (Bind b) u1 t3) H30) in ((let H33 \def +(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u | (TLRef +_) \Rightarrow u | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b0) u (lift +(S O) O t7)) (THead (Bind b) u1 t3) H30) in ((let H34 \def (f_equal T B +(\lambda (e: T).(match e with [(TSort _) \Rightarrow b0 | (TLRef _) +\Rightarrow b0 | (THead k0 _ _) \Rightarrow (match k0 with [(Bind b1) +\Rightarrow b1 | (Flat _) \Rightarrow b0])])) (THead (Bind b0) u (lift (S O) +O t7)) (THead (Bind b) u1 t3) H30) in (eq_ind B b (\lambda (b1: B).((eq T u +u1) \to ((eq T (lift (S O) O t7) t3) \to ((eq T t8 t6) \to ((not (eq B b1 +Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead +(Flat Appl) u3 t6) t9))))))))) (\lambda (H35: (eq T u u1)).(eq_ind T u1 +(\lambda (_: T).((eq T (lift (S O) O t7) t3) \to ((eq T t8 t6) \to ((not (eq +B b Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda (t10: T).(pr0 +(THead (Flat Appl) u3 t6) t10)))))))) (\lambda (H36: (eq T (lift (S O) O t7) +t3)).(eq_ind T (lift (S O) O t7) (\lambda (_: T).((eq T t8 t6) \to ((not (eq +B b Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda (t10: T).(pr0 +(THead (Flat Appl) u3 t6) t10))))))) (\lambda (H37: (eq T t8 t6)).(eq_ind T +t6 (\lambda (t9: T).((not (eq B b Abst)) \to ((pr0 t7 t9) \to (ex2 T (\lambda +(t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6) t10)))))) (\lambda +(H38: (not (eq B b Abst))).(\lambda (H39: (pr0 t7 t6)).(let H40 \def +(eq_ind_r T t3 (\lambda (t9: T).(eq T (THead (Bind b) u1 t9) t5)) H23 (lift +(S O) O t7) H36) in (let H41 \def (eq_ind_r T t5 (\lambda (t9: T).(eq T +(THead (Flat Appl) u0 t9) t)) H26 (THead (Bind b) u1 (lift (S O) O t7)) H40) +in (let H42 \def (eq_ind_r T t (\lambda (t9: T).(\forall (v: T).((tlt v t9) +\to (\forall (t10: T).((pr0 v t10) \to (\forall (t11: T).((pr0 v t11) \to +(ex2 T (\lambda (t12: T).(pr0 t10 t12)) (\lambda (t12: T).(pr0 t11 +t12)))))))))) H (THead (Flat Appl) u0 (THead (Bind b) u1 (lift (S O) O t7))) +H41) in (let H43 \def (eq_ind_r T t3 (\lambda (t9: T).(pr0 t9 t4)) H12 (lift +(S O) O t7) H36) in (ex2_ind T (\lambda (t9: T).(eq T t4 (lift (S O) O t9))) +(\lambda (t9: T).(pr0 t7 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead -(Flat Appl) u3 t6) t9))))) H31)) H30 H28)))]) in (H28 (refl_equal T (THead -(Bind b) u1 t3)) (refl_equal T t6))))) k H25)))) H22)) H21))))) t2 H17)) t -H15 H16 H13 H14))) | (pr0_beta u v0 v3 H13 t5 t6 H14) \Rightarrow (\lambda -(H15: (eq T (THead (Flat Appl) v0 (THead (Bind Abst) u t5)) t)).(\lambda -(H16: (eq T (THead (Bind Abbr) v3 t6) t2)).(eq_ind T (THead (Flat Appl) v0 -(THead (Bind Abst) u t5)) (\lambda (_: T).((eq T (THead (Bind Abbr) v3 t6) -t2) \to ((pr0 v0 v3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead +(Flat Appl) u3 t6) t9))) (\lambda (x: T).(\lambda (H44: (eq T t4 (lift (S O) +O x))).(\lambda (H45: (pr0 t7 x)).(eq_ind_r T (lift (S O) O x) (\lambda (t9: +T).(ex2 T (\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift +(S O) O v2) t9)) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6) +t10)))) (let H46 \def (eq_ind T v1 (\lambda (t9: T).(pr0 t9 v2)) H10 u0 H24) +in (ex2_ind T (\lambda (t9: T).(pr0 v2 t9)) (\lambda (t9: T).(pr0 u3 t9)) +(ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) (lift (S O) O x))) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 +t6) t9))) (\lambda (x0: T).(\lambda (H47: (pr0 v2 x0)).(\lambda (H48: (pr0 u3 +x0)).(ex2_ind T (\lambda (t9: T).(pr0 x t9)) (\lambda (t9: T).(pr0 t6 t9)) +(ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) (lift (S O) O x))) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 +t6) t9))) (\lambda (x1: T).(\lambda (H49: (pr0 x x1)).(\lambda (H50: (pr0 t6 +x1)).(ex2_sym T (pr0 (THead (Flat Appl) u3 t6)) (pr0 (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v2) (lift (S O) O x)))) +(pr0_confluence__pr0_cong_upsilon_zeta b H38 u1 u2 H11 u3 v2 x0 H48 H47 x t6 +x1 H49 H50))))) (H42 t7 (tlt_trans (THead (Bind b) u1 (lift (S O) O t7)) t7 +(THead (Flat Appl) u0 (THead (Bind b) u1 (lift (S O) O t7))) (lift_tlt_dx +(Bind b) u1 t7 (S O) O) (tlt_head_dx (Flat Appl) u0 (THead (Bind b) u1 (lift +(S O) O t7)))) x H45 t6 H39))))) (H42 u0 (tlt_head_sx (Flat Appl) u0 (THead +(Bind b) u1 (lift (S O) O t7))) v2 H46 u3 H18))) t4 H44)))) (pr0_gen_lift t7 +t4 (S O) O H43)))))))) t8 (sym_eq T t8 t6 H37))) t3 H36)) u (sym_eq T u u1 +H35))) b0 (sym_eq B b0 b H34))) H33)) H32)) H31 H28 H29))) | (pr0_tau t7 t8 +H28 u) \Rightarrow (\lambda (H29: (eq T (THead (Flat Cast) u t7) (THead (Bind +b) u1 t3))).(\lambda (H30: (eq T t8 t6)).((let H31 \def (eq_ind T (THead +(Flat Cast) u t7) (\lambda (e: T).(match e with [(TSort _) \Rightarrow False +| (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 with +[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind +b) u1 t3) H29) in (False_ind ((eq T t8 t6) \to ((pr0 t7 t8) \to (ex2 T +(\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) +t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))))) H31)) H30 +H28)))]) in (H28 (refl_equal T (THead (Bind b) u1 t3)) (refl_equal T t6))))) +k H25)))) H22)) H21))))) t2 H17)) t H15 H16 H13 H14))) | (pr0_beta u v0 v3 +H13 t5 t6 H14) \Rightarrow (\lambda (H15: (eq T (THead (Flat Appl) v0 (THead +(Bind Abst) u t5)) t)).(\lambda (H16: (eq T (THead (Bind Abbr) v3 t6) +t2)).(eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u t5)) (\lambda (_: +T).((eq T (THead (Bind Abbr) v3 t6) t2) \to ((pr0 v0 v3) \to ((pr0 t5 t6) \to +(ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H17: (eq T +(THead (Bind Abbr) v3 t6) t2)).(eq_ind T (THead (Bind Abbr) v3 t6) (\lambda +(t7: T).((pr0 v0 v3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: -T).(pr0 t2 t8))))))) (\lambda (H17: (eq T (THead (Bind Abbr) v3 t6) -t2)).(eq_ind T (THead (Bind Abbr) v3 t6) (\lambda (t7: T).((pr0 v0 v3) \to -((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda -(_: (pr0 v0 v3)).(\lambda (_: (pr0 t5 t6)).(let H20 \def (eq_ind_r T t -(\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) t7)) H6 -(THead (Flat Appl) v0 (THead (Bind Abst) u t5)) H15) in (let H21 \def -(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with -[(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t7 _) -\Rightarrow t7])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat -Appl) v0 (THead (Bind Abst) u t5)) H20) in ((let H22 \def (f_equal T B -(\lambda (e: T).(match e in T return (\lambda (_: T).B) with [(TSort _) -\Rightarrow b | (TLRef _) \Rightarrow b | (THead _ _ t7) \Rightarrow (match -t7 in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b | (TLRef _) -\Rightarrow b | (THead k _ _) \Rightarrow (match k in K return (\lambda (_: -K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow b])])])) (THead -(Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat Appl) v0 (THead (Bind -Abst) u t5)) H20) in ((let H23 \def (f_equal T T (\lambda (e: T).(match e in -T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _) -\Rightarrow u1 | (THead _ _ t7) \Rightarrow (match t7 in T return (\lambda -(_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead -_ t8 _) \Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) -(THead (Flat Appl) v0 (THead (Bind Abst) u t5)) H20) in ((let H24 \def -(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with -[(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7) -\Rightarrow (match t7 in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t8) \Rightarrow +T).(pr0 t7 t8)))))) (\lambda (_: (pr0 v0 v3)).(\lambda (_: (pr0 t5 t6)).(let +H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead +(Bind b) u1 t3)) t7)) H6 (THead (Flat Appl) v0 (THead (Bind Abst) u t5)) H15) +in (let H21 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) +\Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t7 _) \Rightarrow t7])) +(THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat Appl) v0 (THead +(Bind Abst) u t5)) H20) in ((let H22 \def (f_equal T B (\lambda (e: T).(match +e with [(TSort _) \Rightarrow b | (TLRef _) \Rightarrow b | (THead _ _ t7) +\Rightarrow (match t7 with [(TSort _) \Rightarrow b | (TLRef _) \Rightarrow b +| (THead k _ _) \Rightarrow (match k with [(Bind b0) \Rightarrow b0 | (Flat +_) \Rightarrow b])])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead +(Flat Appl) v0 (THead (Bind Abst) u t5)) H20) in ((let H23 \def (f_equal T T +(\lambda (e: T).(match e with [(TSort _) \Rightarrow u1 | (TLRef _) +\Rightarrow u1 | (THead _ _ t7) \Rightarrow (match t7 with [(TSort _) +\Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t8 _) \Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat Appl) v0 -(THead (Bind Abst) u t5)) H20) in (\lambda (_: (eq T u1 u)).(\lambda (H26: -(eq B b Abst)).(\lambda (H27: (eq T v1 v0)).(let H28 \def (eq_ind_r T t -(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) -\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) -(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Appl) v0 (THead (Bind -Abst) u t5)) H15) in (let H29 \def (eq_ind T v1 (\lambda (t7: T).(pr0 t7 v2)) -H10 v0 H27) in (eq_ind_r B Abst (\lambda (b0: B).(ex2 T (\lambda (t7: T).(pr0 -(THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda -(t7: T).(pr0 (THead (Bind Abbr) v3 t6) t7)))) (let H30 \def (eq_ind B b -(\lambda (b0: B).(not (eq B b0 Abst))) H9 Abst H26) in (let H31 \def (match -(H30 (refl_equal B Abst)) in False return (\lambda (_: False).(ex2 T (\lambda -(t7: T).(pr0 (THead (Bind Abst) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v3 t6) t7)))) with []) in H31)) -b H26))))))) H23)) H22)) H21))))) t2 H17)) t H15 H16 H13 H14))) | -(pr0_upsilon b0 H13 v0 v3 H14 u0 u3 H15 t5 t6 H16) \Rightarrow (\lambda (H17: -(eq T (THead (Flat Appl) v0 (THead (Bind b0) u0 t5)) t)).(\lambda (H18: (eq T -(THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6)) t2)).(eq_ind T -(THead (Flat Appl) v0 (THead (Bind b0) u0 t5)) (\lambda (_: T).((eq T (THead -(Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6)) t2) \to ((not (eq B b0 -Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda -(t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -t8)) (\lambda (t8: T).(pr0 t2 t8))))))))) (\lambda (H19: (eq T (THead (Bind -b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6)) t2)).(eq_ind T (THead (Bind -b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6)) (\lambda (t7: T).((not (eq B -b0 Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T -(\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) -t4)) t8)) (\lambda (t8: T).(pr0 t7 t8)))))))) (\lambda (_: (not (eq B b0 -Abst))).(\lambda (H21: (pr0 v0 v3)).(\lambda (H22: (pr0 u0 u3)).(\lambda -(H23: (pr0 t5 t6)).(let H24 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead -(Flat Appl) v1 (THead (Bind b) u1 t3)) t7)) H6 (THead (Flat Appl) v0 (THead -(Bind b0) u0 t5)) H17) in (let H25 \def (f_equal T T (\lambda (e: T).(match e -in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow v1 | (TLRef _) +(THead (Bind Abst) u t5)) H20) in ((let H24 \def (f_equal T T (\lambda (e: +T).(match e with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | +(THead _ _ t7) \Rightarrow (match t7 with [(TSort _) \Rightarrow t3 | (TLRef +_) \Rightarrow t3 | (THead _ _ t8) \Rightarrow t8])])) (THead (Flat Appl) v1 +(THead (Bind b) u1 t3)) (THead (Flat Appl) v0 (THead (Bind Abst) u t5)) H20) +in (\lambda (_: (eq T u1 u)).(\lambda (H26: (eq B b Abst)).(\lambda (H27: (eq +T v1 v0)).(let H28 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt +v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to +(ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 +t10)))))))))) H (THead (Flat Appl) v0 (THead (Bind Abst) u t5)) H15) in (let +H29 \def (eq_ind T v1 (\lambda (t7: T).(pr0 t7 v2)) H10 v0 H27) in (eq_ind_r +B Abst (\lambda (b0: B).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind b0) u2 +(THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 (THead +(Bind Abbr) v3 t6) t7)))) (let H30 \def (eq_ind B b (\lambda (b0: B).(not (eq +B b0 Abst))) H9 Abst H26) in (let H31 \def (match (H30 (refl_equal B Abst)) +in False with []) in H31)) b H26))))))) H23)) H22)) H21))))) t2 H17)) t H15 +H16 H13 H14))) | (pr0_upsilon b0 H13 v0 v3 H14 u0 u3 H15 t5 t6 H16) +\Rightarrow (\lambda (H17: (eq T (THead (Flat Appl) v0 (THead (Bind b0) u0 +t5)) t)).(\lambda (H18: (eq T (THead (Bind b0) u3 (THead (Flat Appl) (lift (S +O) O v3) t6)) t2)).(eq_ind T (THead (Flat Appl) v0 (THead (Bind b0) u0 t5)) +(\lambda (_: T).((eq T (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O +v3) t6)) t2) \to ((not (eq B b0 Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) \to +((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2 t8))))))))) +(\lambda (H19: (eq T (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3) +t6)) t2)).(eq_ind T (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3) +t6)) (\lambda (t7: T).((not (eq B b0 Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) +\to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t7 t8)))))))) +(\lambda (_: (not (eq B b0 Abst))).(\lambda (H21: (pr0 v0 v3)).(\lambda (H22: +(pr0 u0 u3)).(\lambda (H23: (pr0 t5 t6)).(let H24 \def (eq_ind_r T t (\lambda +(t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) t7)) H6 (THead +(Flat Appl) v0 (THead (Bind b0) u0 t5)) H17) in (let H25 \def (f_equal T T +(\lambda (e: T).(match e with [(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t7 _) \Rightarrow t7])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat Appl) v0 (THead (Bind b0) u0 t5)) H24) -in ((let H26 \def (f_equal T B (\lambda (e: T).(match e in T return (\lambda -(_: T).B) with [(TSort _) \Rightarrow b | (TLRef _) \Rightarrow b | (THead _ -_ t7) \Rightarrow (match t7 in T return (\lambda (_: T).B) with [(TSort _) -\Rightarrow b | (TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k -in K return (\lambda (_: K).B) with [(Bind b1) \Rightarrow b1 | (Flat _) -\Rightarrow b])])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead -(Flat Appl) v0 (THead (Bind b0) u0 t5)) H24) in ((let H27 \def (f_equal T T -(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ _ t7) \Rightarrow (match -t7 in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _) -\Rightarrow u1 | (THead _ t8 _) \Rightarrow t8])])) (THead (Flat Appl) v1 +in ((let H26 \def (f_equal T B (\lambda (e: T).(match e with [(TSort _) +\Rightarrow b | (TLRef _) \Rightarrow b | (THead _ _ t7) \Rightarrow (match +t7 with [(TSort _) \Rightarrow b | (TLRef _) \Rightarrow b | (THead k _ _) +\Rightarrow (match k with [(Bind b1) \Rightarrow b1 | (Flat _) \Rightarrow +b])])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat Appl) v0 +(THead (Bind b0) u0 t5)) H24) in ((let H27 \def (f_equal T T (\lambda (e: +T).(match e with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 | +(THead _ _ t7) \Rightarrow (match t7 with [(TSort _) \Rightarrow u1 | (TLRef +_) \Rightarrow u1 | (THead _ t8 _) \Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat Appl) v0 (THead (Bind b0) u0 t5)) H24) -in ((let H28 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda -(_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead -_ _ t7) \Rightarrow (match t7 in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t8) \Rightarrow -t8])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat Appl) v0 -(THead (Bind b0) u0 t5)) H24) in (\lambda (H29: (eq T u1 u0)).(\lambda (H30: -(eq B b b0)).(\lambda (H31: (eq T v1 v0)).(let H32 \def (eq_ind_r T t -(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) -\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) -(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Appl) v0 (THead (Bind -b0) u0 t5)) H17) in (let H33 \def (eq_ind T v1 (\lambda (t7: T).(pr0 t7 v2)) -H10 v0 H31) in (eq_ind_r B b0 (\lambda (b1: B).(ex2 T (\lambda (t7: T).(pr0 -(THead (Bind b1) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda -(t7: T).(pr0 (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6)) -t7)))) (let H34 \def (eq_ind B b (\lambda (b1: B).(not (eq B b1 Abst))) H9 b0 -H30) in (let H35 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H11 u0 H29) -in (let H36 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H12 t5 H28) in -(ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T -(\lambda (t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O +in ((let H28 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) +\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow (match +t7 with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t8) +\Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead +(Flat Appl) v0 (THead (Bind b0) u0 t5)) H24) in (\lambda (H29: (eq T u1 +u0)).(\lambda (H30: (eq B b b0)).(\lambda (H31: (eq T v1 v0)).(let H32 \def +(eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: +T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: +T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Appl) +v0 (THead (Bind b0) u0 t5)) H17) in (let H33 \def (eq_ind T v1 (\lambda (t7: +T).(pr0 t7 v2)) H10 v0 H31) in (eq_ind_r B b0 (\lambda (b1: B).(ex2 T +(\lambda (t7: T).(pr0 (THead (Bind b1) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 (THead (Bind b0) u3 (THead (Flat Appl) -(lift (S O) O v3) t6)) t7))) (\lambda (x: T).(\lambda (H37: (pr0 t4 -x)).(\lambda (H38: (pr0 t6 x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7)) -(\lambda (t7: T).(pr0 u3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b0) +(lift (S O) O v3) t6)) t7)))) (let H34 \def (eq_ind B b (\lambda (b1: B).(not +(eq B b1 Abst))) H9 b0 H30) in (let H35 \def (eq_ind T u1 (\lambda (t7: +T).(pr0 t7 u2)) H11 u0 H29) in (let H36 \def (eq_ind T t3 (\lambda (t7: +T).(pr0 t7 t4)) H12 t5 H28) in (ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) +(\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6)) t7))) (\lambda -(x0: T).(\lambda (H39: (pr0 u2 x0)).(\lambda (H40: (pr0 u3 x0)).(ex2_ind T -(\lambda (t7: T).(pr0 v2 t7)) (\lambda (t7: T).(pr0 v3 t7)) (ex2 T (\lambda +(x: T).(\lambda (H37: (pr0 t4 x)).(\lambda (H38: (pr0 t6 x)).(ex2_ind T +(\lambda (t7: T).(pr0 u2 t7)) (\lambda (t7: T).(pr0 u3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) -O v3) t6)) t7))) (\lambda (x1: T).(\lambda (H41: (pr0 v2 x1)).(\lambda (H42: -(pr0 v3 x1)).(pr0_confluence__pr0_upsilon_upsilon b0 H34 v2 v3 x1 H41 H42 u2 -u3 x0 H39 H40 t4 t6 x H37 H38)))) (H32 v0 (tlt_head_sx (Flat Appl) v0 (THead -(Bind b0) u0 t5)) v2 H33 v3 H21))))) (H32 u0 (tlt_trans (THead (Bind b0) u0 -t5) u0 (THead (Flat Appl) v0 (THead (Bind b0) u0 t5)) (tlt_head_sx (Bind b0) -u0 t5) (tlt_head_dx (Flat Appl) v0 (THead (Bind b0) u0 t5))) u2 H35 u3 -H22))))) (H32 t5 (tlt_trans (THead (Bind b0) u0 t5) t5 (THead (Flat Appl) v0 -(THead (Bind b0) u0 t5)) (tlt_head_dx (Bind b0) u0 t5) (tlt_head_dx (Flat -Appl) v0 (THead (Bind b0) u0 t5))) t4 H36 t6 H23))))) b H30))))))) H27)) -H26)) H25))))))) t2 H19)) t H17 H18 H13 H14 H15 H16))) | (pr0_delta u0 u3 H13 -t5 t6 H14 w H15) \Rightarrow (\lambda (H16: (eq T (THead (Bind Abbr) u0 t5) -t)).(\lambda (H17: (eq T (THead (Bind Abbr) u3 w) t2)).(eq_ind T (THead (Bind -Abbr) u0 t5) (\lambda (_: T).((eq T (THead (Bind Abbr) u3 w) t2) \to ((pr0 u0 -u3) \to ((pr0 t5 t6) \to ((subst0 O u3 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 -(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda -(t8: T).(pr0 t2 t8)))))))) (\lambda (H18: (eq T (THead (Bind Abbr) u3 w) -t2)).(eq_ind T (THead (Bind Abbr) u3 w) (\lambda (t7: T).((pr0 u0 u3) \to -((pr0 t5 t6) \to ((subst0 O u3 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: -T).(pr0 t7 t8))))))) (\lambda (_: (pr0 u0 u3)).(\lambda (_: (pr0 t5 -t6)).(\lambda (_: (subst0 O u3 t6 w)).(let H22 \def (eq_ind_r T t (\lambda -(t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) t7)) H6 (THead -(Bind Abbr) u0 t5) H16) in (let H23 \def (eq_ind T (THead (Flat Appl) v1 -(THead (Bind b) u1 t3)) (\lambda (ee: T).(match ee in T return (\lambda (_: -T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | -(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with -[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind -Abbr) u0 t5) H22) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) -u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 -(THead (Bind Abbr) u3 w) t7))) H23)))))) t2 H18)) t H16 H17 H13 H14 H15))) | -(pr0_zeta b0 H13 t5 t6 H14 u) \Rightarrow (\lambda (H15: (eq T (THead (Bind -b0) u (lift (S O) O t5)) t)).(\lambda (H16: (eq T t6 t2)).(eq_ind T (THead -(Bind b0) u (lift (S O) O t5)) (\lambda (_: T).((eq T t6 t2) \to ((not (eq B -b0 Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) -u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2 -t8))))))) (\lambda (H17: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((not -(eq B b0 Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: -T).(pr0 t2 t8)))))) (\lambda (_: (not (eq B b0 Abst))).(\lambda (_: (pr0 t5 -t2)).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 -(THead (Bind b) u1 t3)) t7)) H6 (THead (Bind b0) u (lift (S O) O t5)) H15) in -(let H21 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) -(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) -\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow -(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | -(Flat _) \Rightarrow True])])) I (THead (Bind b0) u (lift (S O) O t5)) H20) -in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 t2 t7))) H21))))) t6 -(sym_eq T t6 t2 H17))) t H15 H16 H13 H14))) | (pr0_tau t5 t6 H13 u) -\Rightarrow (\lambda (H14: (eq T (THead (Flat Cast) u t5) t)).(\lambda (H15: -(eq T t6 t2)).(eq_ind T (THead (Flat Cast) u t5) (\lambda (_: T).((eq T t6 -t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2 -t8)))))) (\lambda (H16: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 -t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (_: -(pr0 t5 t2)).(let H18 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat -Appl) v1 (THead (Bind b) u1 t3)) t7)) H6 (THead (Flat Cast) u t5) H14) in -(let H19 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) -(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) +O v3) t6)) t7))) (\lambda (x0: T).(\lambda (H39: (pr0 u2 x0)).(\lambda (H40: +(pr0 u3 x0)).(ex2_ind T (\lambda (t7: T).(pr0 v2 t7)) (\lambda (t7: T).(pr0 +v3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) +(lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 (THead (Bind b0) u3 (THead +(Flat Appl) (lift (S O) O v3) t6)) t7))) (\lambda (x1: T).(\lambda (H41: (pr0 +v2 x1)).(\lambda (H42: (pr0 v3 x1)).(pr0_confluence__pr0_upsilon_upsilon b0 +H34 v2 v3 x1 H41 H42 u2 u3 x0 H39 H40 t4 t6 x H37 H38)))) (H32 v0 +(tlt_head_sx (Flat Appl) v0 (THead (Bind b0) u0 t5)) v2 H33 v3 H21))))) (H32 +u0 (tlt_trans (THead (Bind b0) u0 t5) u0 (THead (Flat Appl) v0 (THead (Bind +b0) u0 t5)) (tlt_head_sx (Bind b0) u0 t5) (tlt_head_dx (Flat Appl) v0 (THead +(Bind b0) u0 t5))) u2 H35 u3 H22))))) (H32 t5 (tlt_trans (THead (Bind b0) u0 +t5) t5 (THead (Flat Appl) v0 (THead (Bind b0) u0 t5)) (tlt_head_dx (Bind b0) +u0 t5) (tlt_head_dx (Flat Appl) v0 (THead (Bind b0) u0 t5))) t4 H36 t6 +H23))))) b H30))))))) H27)) H26)) H25))))))) t2 H19)) t H17 H18 H13 H14 H15 +H16))) | (pr0_delta u0 u3 H13 t5 t6 H14 w H15) \Rightarrow (\lambda (H16: (eq +T (THead (Bind Abbr) u0 t5) t)).(\lambda (H17: (eq T (THead (Bind Abbr) u3 w) +t2)).(eq_ind T (THead (Bind Abbr) u0 t5) (\lambda (_: T).((eq T (THead (Bind +Abbr) u3 w) t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to ((subst0 O u3 t6 w) \to +(ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2 t8)))))))) (\lambda (H18: (eq T +(THead (Bind Abbr) u3 w) t2)).(eq_ind T (THead (Bind Abbr) u3 w) (\lambda +(t7: T).((pr0 u0 u3) \to ((pr0 t5 t6) \to ((subst0 O u3 t6 w) \to (ex2 T +(\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) +t4)) t8)) (\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (_: (pr0 u0 +u3)).(\lambda (_: (pr0 t5 t6)).(\lambda (_: (subst0 O u3 t6 w)).(let H22 \def +(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1 +t3)) t7)) H6 (THead (Bind Abbr) u0 t5) H16) in (let H23 \def (eq_ind T (THead +(Flat Appl) v1 (THead (Bind b) u1 t3)) (\lambda (ee: T).(match ee with +[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) +\Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow +True])])) I (THead (Bind Abbr) u0 t5) H22) in (False_ind (ex2 T (\lambda (t7: +T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) +(\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 w) t7))) H23)))))) t2 H18)) t H16 +H17 H13 H14 H15))) | (pr0_zeta b0 H13 t5 t6 H14 u) \Rightarrow (\lambda (H15: +(eq T (THead (Bind b0) u (lift (S O) O t5)) t)).(\lambda (H16: (eq T t6 +t2)).(eq_ind T (THead (Bind b0) u (lift (S O) O t5)) (\lambda (_: T).((eq T +t6 t2) \to ((not (eq B b0 Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: +T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) +(\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H17: (eq T t6 t2)).(eq_ind T t2 +(\lambda (t7: T).((not (eq B b0 Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda +(t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (_: (not (eq B b0 +Abst))).(\lambda (_: (pr0 t5 t2)).(let H20 \def (eq_ind_r T t (\lambda (t7: +T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) t7)) H6 (THead (Bind +b0) u (lift (S O) O t5)) H15) in (let H21 \def (eq_ind T (THead (Flat Appl) +v1 (THead (Bind b) u1 t3)) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow -(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | -(Flat f) \Rightarrow (match f in F return (\lambda (_: F).Prop) with [Appl -\Rightarrow True | Cast \Rightarrow False])])])) I (THead (Flat Cast) u t5) -H18) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 t2 t7))) -H19)))) t6 (sym_eq T t6 t2 H16))) t H14 H15 H13)))]) in (H13 (refl_equal T t) -(refl_equal T t2))))))) t1 H8)) t H6 H7 H2 H3 H4 H5))) | (pr0_delta u1 u2 H2 -t3 t4 H3 w H4) \Rightarrow (\lambda (H5: (eq T (THead (Bind Abbr) u1 t3) -t)).(\lambda (H6: (eq T (THead (Bind Abbr) u2 w) t1)).(eq_ind T (THead (Bind -Abbr) u1 t3) (\lambda (_: T).((eq T (THead (Bind Abbr) u2 w) t1) \to ((pr0 u1 -u2) \to ((pr0 t3 t4) \to ((subst0 O u2 t4 w) \to (ex2 T (\lambda (t6: T).(pr0 -t1 t6)) (\lambda (t6: T).(pr0 t2 t6)))))))) (\lambda (H7: (eq T (THead (Bind -Abbr) u2 w) t1)).(eq_ind T (THead (Bind Abbr) u2 w) (\lambda (t5: T).((pr0 u1 -u2) \to ((pr0 t3 t4) \to ((subst0 O u2 t4 w) \to (ex2 T (\lambda (t6: T).(pr0 -t5 t6)) (\lambda (t6: T).(pr0 t2 t6))))))) (\lambda (H8: (pr0 u1 -u2)).(\lambda (H9: (pr0 t3 t4)).(\lambda (H10: (subst0 O u2 t4 w)).(let H11 -\def (match H1 in pr0 return (\lambda (t5: T).(\lambda (t6: T).(\lambda (_: -(pr0 t5 t6)).((eq T t5 t) \to ((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0 -(THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t2 t7)))))))) with -[(pr0_refl t5) \Rightarrow (\lambda (H11: (eq T t5 t)).(\lambda (H12: (eq T -t5 t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7: -T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t2 t7))))) -(\lambda (H13: (eq T t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t7: -T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let -H14 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t2)) H13 (THead (Bind Abbr) -u1 t3) H5) in (eq_ind T (THead (Bind Abbr) u1 t3) (\lambda (t6: T).(ex2 T -(\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t6 -t7)))) (let H15 \def (eq_ind_r T t (\lambda (t6: T).(eq T t5 t6)) H11 (THead -(Bind Abbr) u1 t3) H5) in (let H16 \def (eq_ind_r T t (\lambda (t6: -T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall -(t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: -T).(pr0 t8 t9)))))))))) H (THead (Bind Abbr) u1 t3) H5) in (ex_intro2 T -(\lambda (t6: T).(pr0 (THead (Bind Abbr) u2 w) t6)) (\lambda (t6: T).(pr0 -(THead (Bind Abbr) u1 t3) t6)) (THead (Bind Abbr) u2 w) (pr0_refl (THead -(Bind Abbr) u2 w)) (pr0_delta u1 u2 H8 t3 t4 H9 w H10)))) t2 H14)) t (sym_eq -T t t2 H13))) t5 (sym_eq T t5 t H11) H12))) | (pr0_comp u0 u3 H11 t5 t6 H12 -k) \Rightarrow (\lambda (H13: (eq T (THead k u0 t5) t)).(\lambda (H14: (eq T -(THead k u3 t6) t2)).(eq_ind T (THead k u0 t5) (\lambda (_: T).((eq T (THead -k u3 t6) t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: -T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) -(\lambda (H15: (eq T (THead k u3 t6) t2)).(eq_ind T (THead k u3 t6) (\lambda -(t7: T).((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead -(Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (H16: (pr0 -u0 u3)).(\lambda (H17: (pr0 t5 t6)).(let H18 \def (eq_ind_r T t (\lambda (t7: -T).(eq T (THead (Bind Abbr) u1 t3) t7)) H5 (THead k u0 t5) H13) in (let H19 -\def (f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K) -with [(TSort _) \Rightarrow (Bind Abbr) | (TLRef _) \Rightarrow (Bind Abbr) | -(THead k0 _ _) \Rightarrow k0])) (THead (Bind Abbr) u1 t3) (THead k u0 t5) -H18) in ((let H20 \def (f_equal T T (\lambda (e: T).(match e in T return -(\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 -| (THead _ t7 _) \Rightarrow t7])) (THead (Bind Abbr) u1 t3) (THead k u0 t5) -H18) in ((let H21 \def (f_equal T T (\lambda (e: T).(match e in T return -(\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 -| (THead _ _ t7) \Rightarrow t7])) (THead (Bind Abbr) u1 t3) (THead k u0 t5) -H18) in (\lambda (H22: (eq T u1 u0)).(\lambda (H23: (eq K (Bind Abbr) -k)).(eq_ind K (Bind Abbr) (\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 -(THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead k0 u3 t6) t7)))) -(let H24 \def (eq_ind_r K k (\lambda (k0: K).(eq T (THead k0 u0 t5) t)) H13 -(Bind Abbr) H23) in (let H25 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: -T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v -t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 -t10)))))))))) H (THead (Bind Abbr) u0 t5) H24) in (let H26 \def (eq_ind T u1 -(\lambda (t7: T).(pr0 t7 u2)) H8 u0 H22) in (let H27 \def (eq_ind T t3 -(\lambda (t7: T).(pr0 t7 t4)) H9 t5 H21) in (ex2_ind T (\lambda (t7: T).(pr0 -t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead -(Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 t6) t7))) -(\lambda (x: T).(\lambda (H28: (pr0 t4 x)).(\lambda (H29: (pr0 t6 -x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7)) (\lambda (t7: T).(pr0 u3 t7)) -(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: +(match k with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I +(THead (Bind b0) u (lift (S O) O t5)) H20) in (False_ind (ex2 T (\lambda (t7: +T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) +(\lambda (t7: T).(pr0 t2 t7))) H21))))) t6 (sym_eq T t6 t2 H17))) t H15 H16 +H13 H14))) | (pr0_tau t5 t6 H13 u) \Rightarrow (\lambda (H14: (eq T (THead +(Flat Cast) u t5) t)).(\lambda (H15: (eq T t6 t2)).(eq_ind T (THead (Flat +Cast) u t5) (\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to (ex2 T +(\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) +t4)) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H16: (eq T t6 +t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to (ex2 T (\lambda (t8: +T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) +(\lambda (t8: T).(pr0 t2 t8))))) (\lambda (_: (pr0 t5 t2)).(let H18 \def +(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1 +t3)) t7)) H6 (THead (Flat Cast) u t5) H14) in (let H19 \def (eq_ind T (THead +(Flat Appl) v1 (THead (Bind b) u1 t3)) (\lambda (ee: T).(match ee with +[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) +\Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat f) \Rightarrow +(match f with [Appl \Rightarrow True | Cast \Rightarrow False])])])) I (THead +(Flat Cast) u t5) H18) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: +T).(pr0 t2 t7))) H19)))) t6 (sym_eq T t6 t2 H16))) t H14 H15 H13)))]) in (H13 +(refl_equal T t) (refl_equal T t2))))))) t1 H8)) t H6 H7 H2 H3 H4 H5))) | +(pr0_delta u1 u2 H2 t3 t4 H3 w H4) \Rightarrow (\lambda (H5: (eq T (THead +(Bind Abbr) u1 t3) t)).(\lambda (H6: (eq T (THead (Bind Abbr) u2 w) +t1)).(eq_ind T (THead (Bind Abbr) u1 t3) (\lambda (_: T).((eq T (THead (Bind +Abbr) u2 w) t1) \to ((pr0 u1 u2) \to ((pr0 t3 t4) \to ((subst0 O u2 t4 w) \to +(ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6)))))))) +(\lambda (H7: (eq T (THead (Bind Abbr) u2 w) t1)).(eq_ind T (THead (Bind +Abbr) u2 w) (\lambda (t5: T).((pr0 u1 u2) \to ((pr0 t3 t4) \to ((subst0 O u2 +t4 w) \to (ex2 T (\lambda (t6: T).(pr0 t5 t6)) (\lambda (t6: T).(pr0 t2 +t6))))))) (\lambda (H8: (pr0 u1 u2)).(\lambda (H9: (pr0 t3 t4)).(\lambda +(H10: (subst0 O u2 t4 w)).(let H11 \def (match H1 with [(pr0_refl t5) +\Rightarrow (\lambda (H11: (eq T t5 t)).(\lambda (H12: (eq T t5 t2)).(eq_ind +T t (\lambda (t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0 (THead +(Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t2 t7))))) (\lambda (H13: (eq T +t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind +Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let H14 \def (eq_ind_r T t +(\lambda (t6: T).(eq T t6 t2)) H13 (THead (Bind Abbr) u1 t3) H5) in (eq_ind T +(THead (Bind Abbr) u1 t3) (\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 +(THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t6 t7)))) (let H15 \def +(eq_ind_r T t (\lambda (t6: T).(eq T t5 t6)) H11 (THead (Bind Abbr) u1 t3) +H5) in (let H16 \def (eq_ind_r T t (\lambda (t6: T).(\forall (v: T).((tlt v +t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v t8) \to +(ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8 t9)))))))))) H +(THead (Bind Abbr) u1 t3) H5) in (ex_intro2 T (\lambda (t6: T).(pr0 (THead +(Bind Abbr) u2 w) t6)) (\lambda (t6: T).(pr0 (THead (Bind Abbr) u1 t3) t6)) +(THead (Bind Abbr) u2 w) (pr0_refl (THead (Bind Abbr) u2 w)) (pr0_delta u1 u2 +H8 t3 t4 H9 w H10)))) t2 H14)) t (sym_eq T t t2 H13))) t5 (sym_eq T t5 t H11) +H12))) | (pr0_comp u0 u3 H11 t5 t6 H12 k) \Rightarrow (\lambda (H13: (eq T +(THead k u0 t5) t)).(\lambda (H14: (eq T (THead k u3 t6) t2)).(eq_ind T +(THead k u0 t5) (\lambda (_: T).((eq T (THead k u3 t6) t2) \to ((pr0 u0 u3) +\to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) +t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H15: (eq T (THead k u3 t6) +t2)).(eq_ind T (THead k u3 t6) (\lambda (t7: T).((pr0 u0 u3) \to ((pr0 t5 t6) +\to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8: +T).(pr0 t7 t8)))))) (\lambda (H16: (pr0 u0 u3)).(\lambda (H17: (pr0 t5 +t6)).(let H18 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind Abbr) u1 +t3) t7)) H5 (THead k u0 t5) H13) in (let H19 \def (f_equal T K (\lambda (e: +T).(match e with [(TSort _) \Rightarrow (Bind Abbr) | (TLRef _) \Rightarrow +(Bind Abbr) | (THead k0 _ _) \Rightarrow k0])) (THead (Bind Abbr) u1 t3) +(THead k u0 t5) H18) in ((let H20 \def (f_equal T T (\lambda (e: T).(match e +with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _) +\Rightarrow t7])) (THead (Bind Abbr) u1 t3) (THead k u0 t5) H18) in ((let H21 +\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 | +(TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead (Bind +Abbr) u1 t3) (THead k u0 t5) H18) in (\lambda (H22: (eq T u1 u0)).(\lambda +(H23: (eq K (Bind Abbr) k)).(eq_ind K (Bind Abbr) (\lambda (k0: K).(ex2 T +(\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 +(THead k0 u3 t6) t7)))) (let H24 \def (eq_ind_r K k (\lambda (k0: K).(eq T +(THead k0 u0 t5) t)) H13 (Bind Abbr) H23) in (let H25 \def (eq_ind_r T t +(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) +\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) +(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Bind Abbr) u0 t5) H24) in +(let H26 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H8 u0 H22) in (let +H27 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H9 t5 H21) in (ex2_ind T +(\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda +(t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind +Abbr) u3 t6) t7))) (\lambda (x: T).(\lambda (H28: (pr0 t4 x)).(\lambda (H29: +(pr0 t6 x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7)) (\lambda (t7: T).(pr0 u3 +t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 t6) t7))) (\lambda (x0: T).(\lambda (H30: (pr0 u2 x0)).(\lambda (H31: (pr0 u3 x0)).(ex2_sym T (pr0 (THead (Bind Abbr) u3 t6)) (pr0 (THead (Bind Abbr) u2 w)) (pr0_confluence__pr0_cong_delta u2 t4 w @@ -1997,10 +1844,9 @@ t2)).(eq_ind T (THead (Bind Abbr) v2 t6) (\lambda (t7: T).((pr0 v1 v2) \to (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 t5 t6)).(let H18 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind Abbr) u1 t3) t7)) H5 (THead (Flat Appl) v1 (THead (Bind Abst) u t5)) H13) in (let -H19 \def (eq_ind T (THead (Bind Abbr) u1 t3) (\lambda (ee: T).(match ee in T -return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda -(_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow +H19 \def (eq_ind T (THead (Bind Abbr) u1 t3) (\lambda (ee: T).(match ee with +[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) +\Rightarrow (match k with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Appl) v1 (THead (Bind Abst) u t5)) H18) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t6) t7))) H19))))) t2 H15)) t H13 @@ -2020,9 +1866,8 @@ t8)))))))) (\lambda (_: (not (eq B b Abst))).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 u0 u3)).(\lambda (_: (pr0 t5 t6)).(let H22 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind Abbr) u1 t3) t7)) H5 (THead (Flat Appl) v1 (THead (Bind b) u0 t5)) H15) in (let H23 \def (eq_ind T (THead -(Bind Abbr) u1 t3) (\lambda (ee: T).(match ee in T return (\lambda (_: -T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | -(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with +(Bind Abbr) u1 t3) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow +False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Appl) v1 (THead (Bind b) u0 t5)) H22) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind b) @@ -2039,49 +1884,47 @@ T).((pr0 u0 u3) \to ((pr0 t5 t6) \to ((subst0 O u3 t6 w0) \to (ex2 T (\lambda (\lambda (H17: (pr0 u0 u3)).(\lambda (H18: (pr0 t5 t6)).(\lambda (H19: (subst0 O u3 t6 w0)).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind Abbr) u1 t3) t7)) H5 (THead (Bind Abbr) u0 t5) H14) in (let H21 -\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) -with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _) -\Rightarrow t7])) (THead (Bind Abbr) u1 t3) (THead (Bind Abbr) u0 t5) H20) in -((let H22 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: -T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ -t7) \Rightarrow t7])) (THead (Bind Abbr) u1 t3) (THead (Bind Abbr) u0 t5) -H20) in (\lambda (H23: (eq T u1 u0)).(let H24 \def (eq_ind_r T t (\lambda -(t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to -(\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) -(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Bind Abbr) u0 t5) H14) in -(let H25 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H8 u0 H23) in (let -H26 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H9 t5 H22) in (ex2_ind T -(\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda -(t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind -Abbr) u3 w0) t7))) (\lambda (x: T).(\lambda (H27: (pr0 t4 x)).(\lambda (H28: -(pr0 t6 x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7)) (\lambda (t7: T).(pr0 u3 -t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: -T).(pr0 (THead (Bind Abbr) u3 w0) t7))) (\lambda (x0: T).(\lambda (H29: (pr0 -u2 x0)).(\lambda (H30: (pr0 u3 x0)).(pr0_confluence__pr0_delta_delta u2 t4 w -H10 u3 t6 w0 H19 x0 H29 H30 x H27 H28)))) (H24 u0 (tlt_head_sx (Bind Abbr) u0 -t5) u2 H25 u3 H17))))) (H24 t5 (tlt_head_dx (Bind Abbr) u0 t5) t4 H26 t6 -H18))))))) H21)))))) t2 H16)) t H14 H15 H11 H12 H13))) | (pr0_zeta b H11 t5 -t6 H12 u) \Rightarrow (\lambda (H13: (eq T (THead (Bind b) u (lift (S O) O -t5)) t)).(\lambda (H14: (eq T t6 t2)).(eq_ind T (THead (Bind b) u (lift (S O) -O t5)) (\lambda (_: T).((eq T t6 t2) \to ((not (eq B b Abst)) \to ((pr0 t5 -t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda -(t8: T).(pr0 t2 t8))))))) (\lambda (H15: (eq T t6 t2)).(eq_ind T t2 (\lambda -(t7: T).((not (eq B b Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda (t8: -T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) -(\lambda (H16: (not (eq B b Abst))).(\lambda (H17: (pr0 t5 t2)).(let H18 \def -(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind Abbr) u1 t3) t7)) H5 (THead -(Bind b) u (lift (S O) O t5)) H13) in (let H19 \def (f_equal T B (\lambda (e: -T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow Abbr | -(TLRef _) \Rightarrow Abbr | (THead k _ _) \Rightarrow (match k in K return -(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow -Abbr])])) (THead (Bind Abbr) u1 t3) (THead (Bind b) u (lift (S O) O t5)) H18) -in ((let H20 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda -(_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead -_ t7 _) \Rightarrow t7])) (THead (Bind Abbr) u1 t3) (THead (Bind b) u (lift -(S O) O t5)) H18) in ((let H21 \def (f_equal T T (\lambda (e: T).(match e in -T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) +\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u1 | +(TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead (Bind +Abbr) u1 t3) (THead (Bind Abbr) u0 t5) H20) in ((let H22 \def (f_equal T T +(\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead (Bind Abbr) u1 t3) -(THead (Bind b) u (lift (S O) O t5)) H18) in (\lambda (H22: (eq T u1 +(THead (Bind Abbr) u0 t5) H20) in (\lambda (H23: (eq T u1 u0)).(let H24 \def +(eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: +T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: +T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Bind Abbr) +u0 t5) H14) in (let H25 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H8 u0 +H23) in (let H26 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H9 t5 H22) +in (ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) +(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: +T).(pr0 (THead (Bind Abbr) u3 w0) t7))) (\lambda (x: T).(\lambda (H27: (pr0 +t4 x)).(\lambda (H28: (pr0 t6 x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7)) +(\lambda (t7: T).(pr0 u3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) +u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 w0) t7))) (\lambda +(x0: T).(\lambda (H29: (pr0 u2 x0)).(\lambda (H30: (pr0 u3 +x0)).(pr0_confluence__pr0_delta_delta u2 t4 w H10 u3 t6 w0 H19 x0 H29 H30 x +H27 H28)))) (H24 u0 (tlt_head_sx (Bind Abbr) u0 t5) u2 H25 u3 H17))))) (H24 +t5 (tlt_head_dx (Bind Abbr) u0 t5) t4 H26 t6 H18))))))) H21)))))) t2 H16)) t +H14 H15 H11 H12 H13))) | (pr0_zeta b H11 t5 t6 H12 u) \Rightarrow (\lambda +(H13: (eq T (THead (Bind b) u (lift (S O) O t5)) t)).(\lambda (H14: (eq T t6 +t2)).(eq_ind T (THead (Bind b) u (lift (S O) O t5)) (\lambda (_: T).((eq T t6 +t2) \to ((not (eq B b Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: +T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) +(\lambda (H15: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((not (eq B b +Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) +u2 w) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H16: (not (eq B b +Abst))).(\lambda (H17: (pr0 t5 t2)).(let H18 \def (eq_ind_r T t (\lambda (t7: +T).(eq T (THead (Bind Abbr) u1 t3) t7)) H5 (THead (Bind b) u (lift (S O) O +t5)) H13) in (let H19 \def (f_equal T B (\lambda (e: T).(match e with [(TSort +_) \Rightarrow Abbr | (TLRef _) \Rightarrow Abbr | (THead k _ _) \Rightarrow +(match k with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow Abbr])])) +(THead (Bind Abbr) u1 t3) (THead (Bind b) u (lift (S O) O t5)) H18) in ((let +H20 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u1 +| (TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead (Bind +Abbr) u1 t3) (THead (Bind b) u (lift (S O) O t5)) H18) in ((let H21 \def +(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 | (TLRef +_) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead (Bind Abbr) u1 +t3) (THead (Bind b) u (lift (S O) O t5)) H18) in (\lambda (H22: (eq T u1 u)).(\lambda (H23: (eq B Abbr b)).(let H24 \def (eq_ind_r B b (\lambda (b0: B).(not (eq B b0 Abst))) H16 Abbr H23) in (let H25 \def (eq_ind_r B b (\lambda (b0: B).(eq T (THead (Bind b0) u (lift (S O) O t5)) t)) H13 Abbr @@ -2111,10 +1954,9 @@ t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (_: (pr0 t5 t2)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind Abbr) u1 t3) t7)) H5 (THead (Flat Cast) u t5) H12) in (let H17 -\def (eq_ind T (THead (Bind Abbr) u1 t3) (\lambda (ee: T).(match ee in T -return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda -(_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow +\def (eq_ind T (THead (Bind Abbr) u1 t3) (\lambda (ee: T).(match ee with +[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) +\Rightarrow (match k with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Cast) u t5) H16) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t2 t7))) H17)))) t6 (sym_eq T t6 t2 H14))) t H12 H13 H11)))]) in (H11 (refl_equal T t) @@ -2126,51 +1968,39 @@ t3)) (\lambda (_: T).((eq T t4 t1) \to ((not (eq B b Abst)) \to ((pr0 t3 t4) (\lambda (H6: (eq T t4 t1)).(eq_ind T t1 (\lambda (t5: T).((not (eq B b Abst)) \to ((pr0 t3 t5) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6)))))) (\lambda (H7: (not (eq B b Abst))).(\lambda (H8: -(pr0 t3 t1)).(let H9 \def (match H1 in pr0 return (\lambda (t5: T).(\lambda -(t6: T).(\lambda (_: (pr0 t5 t6)).((eq T t5 t) \to ((eq T t6 t2) \to (ex2 T -(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)))))))) with -[(pr0_refl t5) \Rightarrow (\lambda (H9: (eq T t5 t)).(\lambda (H10: (eq T t5 -t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7: -T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))) (\lambda (H11: (eq T t -t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t7: T).(pr0 t1 t7)) -(\lambda (t7: T).(pr0 t2 t7)))) (let H12 \def (eq_ind_r T t (\lambda (t6: -T).(eq T t6 t2)) H11 (THead (Bind b) u (lift (S O) O t3)) H4) in (eq_ind T -(THead (Bind b) u (lift (S O) O t3)) (\lambda (t6: T).(ex2 T (\lambda (t7: -T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7)))) (let H13 \def (eq_ind_r T t -(\lambda (t6: T).(eq T t5 t6)) H9 (THead (Bind b) u (lift (S O) O t3)) H4) in -(let H14 \def (eq_ind_r T t (\lambda (t6: T).(\forall (v: T).((tlt v t6) \to -(\forall (t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v t8) \to (ex2 T -(\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead -(Bind b) u (lift (S O) O t3)) H4) in (ex_intro2 T (\lambda (t6: T).(pr0 t1 -t6)) (\lambda (t6: T).(pr0 (THead (Bind b) u (lift (S O) O t3)) t6)) t1 -(pr0_refl t1) (pr0_zeta b H7 t3 t1 H8 u)))) t2 H12)) t (sym_eq T t t2 H11))) -t5 (sym_eq T t5 t H9) H10))) | (pr0_comp u1 u2 H9 t5 t6 H10 k) \Rightarrow -(\lambda (H11: (eq T (THead k u1 t5) t)).(\lambda (H12: (eq T (THead k u2 t6) -t2)).(eq_ind T (THead k u1 t5) (\lambda (_: T).((eq T (THead k u2 t6) t2) \to -((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) -(\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H13: (eq T (THead k u2 t6) -t2)).(eq_ind T (THead k u2 t6) (\lambda (t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) -\to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t7 t8)))))) -(\lambda (_: (pr0 u1 u2)).(\lambda (H15: (pr0 t5 t6)).(let H16 \def (eq_ind_r -T t (\lambda (t7: T).(eq T (THead (Bind b) u (lift (S O) O t3)) t7)) H4 -(THead k u1 t5) H11) in (let H17 \def (f_equal T K (\lambda (e: T).(match e -in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow (Bind b) | (TLRef -_) \Rightarrow (Bind b) | (THead k0 _ _) \Rightarrow k0])) (THead (Bind b) u -(lift (S O) O t3)) (THead k u1 t5) H16) in ((let H18 \def (f_equal T T -(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) -\Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t7 _) \Rightarrow t7])) -(THead (Bind b) u (lift (S O) O t3)) (THead k u1 t5) H16) in ((let H19 \def -(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with -[(TSort _) \Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t7: -T) on t7: T \def (match t7 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) -\Rightarrow (TLRef (match (blt i d) with [true \Rightarrow i | false -\Rightarrow (f i)])) | (THead k0 u0 t8) \Rightarrow (THead k0 (lref_map f d -u0) (lref_map f (s k0 d) t8))]) in lref_map) (\lambda (x: nat).(plus x (S -O))) O t3) | (TLRef _) \Rightarrow ((let rec lref_map (f: ((nat \to nat))) -(d: nat) (t7: T) on t7: T \def (match t7 with [(TSort n) \Rightarrow (TSort -n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with [true \Rightarrow i | -false \Rightarrow (f i)])) | (THead k0 u0 t8) \Rightarrow (THead k0 (lref_map -f d u0) (lref_map f (s k0 d) t8))]) in lref_map) (\lambda (x: nat).(plus x (S +(pr0 t3 t1)).(let H9 \def (match H1 with [(pr0_refl t5) \Rightarrow (\lambda +(H9: (eq T t5 t)).(\lambda (H10: (eq T t5 t2)).(eq_ind T t (\lambda (t6: +T).((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: +T).(pr0 t2 t7))))) (\lambda (H11: (eq T t t2)).(eq_ind T t2 (\lambda (_: +T).(ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let +H12 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t2)) H11 (THead (Bind b) u +(lift (S O) O t3)) H4) in (eq_ind T (THead (Bind b) u (lift (S O) O t3)) +(\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 +t6 t7)))) (let H13 \def (eq_ind_r T t (\lambda (t6: T).(eq T t5 t6)) H9 +(THead (Bind b) u (lift (S O) O t3)) H4) in (let H14 \def (eq_ind_r T t +(\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) +\to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) +(\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Bind b) u (lift (S O) O t3)) +H4) in (ex_intro2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 +(THead (Bind b) u (lift (S O) O t3)) t6)) t1 (pr0_refl t1) (pr0_zeta b H7 t3 +t1 H8 u)))) t2 H12)) t (sym_eq T t t2 H11))) t5 (sym_eq T t5 t H9) H10))) | +(pr0_comp u1 u2 H9 t5 t6 H10 k) \Rightarrow (\lambda (H11: (eq T (THead k u1 +t5) t)).(\lambda (H12: (eq T (THead k u2 t6) t2)).(eq_ind T (THead k u1 t5) +(\lambda (_: T).((eq T (THead k u2 t6) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) +\to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))))) +(\lambda (H13: (eq T (THead k u2 t6) t2)).(eq_ind T (THead k u2 t6) (\lambda +(t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 +t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (_: (pr0 u1 u2)).(\lambda +(H15: (pr0 t5 t6)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead +(Bind b) u (lift (S O) O t3)) t7)) H4 (THead k u1 t5) H11) in (let H17 \def +(f_equal T K (\lambda (e: T).(match e with [(TSort _) \Rightarrow (Bind b) | +(TLRef _) \Rightarrow (Bind b) | (THead k0 _ _) \Rightarrow k0])) (THead +(Bind b) u (lift (S O) O t3)) (THead k u1 t5) H16) in ((let H18 \def (f_equal +T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u | (TLRef _) +\Rightarrow u | (THead _ t7 _) \Rightarrow t7])) (THead (Bind b) u (lift (S +O) O t3)) (THead k u1 t5) H16) in ((let H19 \def (f_equal T T (\lambda (e: +T).(match e with [(TSort _) \Rightarrow (lref_map (\lambda (x: nat).(plus x +(S O))) O t3) | (TLRef _) \Rightarrow (lref_map (\lambda (x: nat).(plus x (S O))) O t3) | (THead _ _ t7) \Rightarrow t7])) (THead (Bind b) u (lift (S O) O t3)) (THead k u1 t5) H16) in (\lambda (_: (eq T u u1)).(\lambda (H21: (eq K (Bind b) k)).(eq_ind K (Bind b) (\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 @@ -2206,9 +2036,8 @@ Abbr) v2 t6) (\lambda (t7: T).((pr0 v1 v2) \to ((pr0 t5 t6) \to (ex2 T (pr0 v1 v2)).(\lambda (_: (pr0 t5 t6)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind b) u (lift (S O) O t3)) t7)) H4 (THead (Flat Appl) v1 (THead (Bind Abst) u0 t5)) H11) in (let H17 \def (eq_ind T (THead (Bind b) -u (lift (S O) O t3)) (\lambda (ee: T).(match ee in T return (\lambda (_: -T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | -(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with +u (lift (S O) O t3)) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow +False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Appl) v1 (THead (Bind Abst) u0 t5)) H16) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t6) t7))) @@ -2228,61 +2057,50 @@ Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (_: (pr0 t5 t6)).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind b) u (lift (S O) O t3)) t7)) H4 (THead (Flat Appl) v1 (THead (Bind b0) u1 t5)) H13) in (let H21 \def (eq_ind T (THead (Bind b) u (lift (S O) O t3)) -(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) -\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow -(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow True | -(Flat _) \Rightarrow False])])) I (THead (Flat Appl) v1 (THead (Bind b0) u1 -t5)) H20) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: -T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O v2) t6)) t7))) -H21))))))) t2 H15)) t H13 H14 H9 H10 H11 H12))) | (pr0_delta u1 u2 H9 t5 t6 -H10 w H11) \Rightarrow (\lambda (H12: (eq T (THead (Bind Abbr) u1 t5) -t)).(\lambda (H13: (eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind -Abbr) u1 t5) (\lambda (_: T).((eq T (THead (Bind Abbr) u2 w) t2) \to ((pr0 u1 -u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 -t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))))) (\lambda (H14: (eq T (THead (Bind -Abbr) u2 w) t2)).(eq_ind T (THead (Bind Abbr) u2 w) (\lambda (t7: T).((pr0 u1 -u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 -t1 t8)) (\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (_: (pr0 u1 u2)).(\lambda -(H16: (pr0 t5 t6)).(\lambda (H17: (subst0 O u2 t6 w)).(let H18 \def (eq_ind_r -T t (\lambda (t7: T).(eq T (THead (Bind b) u (lift (S O) O t3)) t7)) H4 -(THead (Bind Abbr) u1 t5) H12) in (let H19 \def (f_equal T B (\lambda (e: -T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b | -(TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k in K return -(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow -b])])) (THead (Bind b) u (lift (S O) O t3)) (THead (Bind Abbr) u1 t5) H18) in -((let H20 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: -T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t7 -_) \Rightarrow t7])) (THead (Bind b) u (lift (S O) O t3)) (THead (Bind Abbr) -u1 t5) H18) in ((let H21 \def (f_equal T T (\lambda (e: T).(match e in T -return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f: -((nat \to nat))) (d: nat) (t7: T) on t7: T \def (match t7 with [(TSort n) -\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with -[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t8) -\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t8))]) in -lref_map) (\lambda (x: nat).(plus x (S O))) O t3) | (TLRef _) \Rightarrow -((let rec lref_map (f: ((nat \to nat))) (d: nat) (t7: T) on t7: T \def (match -t7 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef -(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | -(THead k u0 t8) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) -t8))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t3) | (THead _ _ t7) -\Rightarrow t7])) (THead (Bind b) u (lift (S O) O t3)) (THead (Bind Abbr) u1 -t5) H18) in (\lambda (_: (eq T u u1)).(\lambda (H23: (eq B b Abbr)).(let H24 -\def (eq_ind_r T t5 (\lambda (t7: T).(pr0 t7 t6)) H16 (lift (S O) O t3) H21) -in (ex2_ind T (\lambda (t7: T).(eq T t6 (lift (S O) O t7))) (\lambda (t7: -T).(pr0 t3 t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 -(THead (Bind Abbr) u2 w) t7))) (\lambda (x: T).(\lambda (H25: (eq T t6 (lift -(S O) O x))).(\lambda (H26: (pr0 t3 x)).(let H27 \def (eq_ind_r T t5 (\lambda -(t7: T).(eq T (THead (Bind Abbr) u1 t7) t)) H12 (lift (S O) O t3) H21) in -(let H28 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to -(\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T -(\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H -(THead (Bind Abbr) u1 (lift (S O) O t3)) H27) in (let H29 \def (eq_ind T t6 -(\lambda (t7: T).(subst0 O u2 t7 w)) H17 (lift (S O) O x) H25) in (let H30 -\def (eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H7 Abbr H23) in -(ex2_ind T (\lambda (t7: T).(pr0 x t7)) (\lambda (t7: T).(pr0 t1 t7)) (ex2 T -(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) -t7))) (\lambda (x0: T).(\lambda (_: (pr0 x x0)).(\lambda (_: (pr0 t1 -x0)).(ex2_sym T (pr0 (THead (Bind Abbr) u2 w)) (pr0 t1) +(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind _) +\Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Appl) v1 +(THead (Bind b0) u1 t5)) H20) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1 +t7)) (\lambda (t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) +O v2) t6)) t7))) H21))))))) t2 H15)) t H13 H14 H9 H10 H11 H12))) | (pr0_delta +u1 u2 H9 t5 t6 H10 w H11) \Rightarrow (\lambda (H12: (eq T (THead (Bind Abbr) +u1 t5) t)).(\lambda (H13: (eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T +(THead (Bind Abbr) u1 t5) (\lambda (_: T).((eq T (THead (Bind Abbr) u2 w) t2) +\to ((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda +(t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))))) (\lambda (H14: (eq T +(THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind Abbr) u2 w) (\lambda +(t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T +(\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (_: +(pr0 u1 u2)).(\lambda (H16: (pr0 t5 t6)).(\lambda (H17: (subst0 O u2 t6 +w)).(let H18 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind b) u +(lift (S O) O t3)) t7)) H4 (THead (Bind Abbr) u1 t5) H12) in (let H19 \def +(f_equal T B (\lambda (e: T).(match e with [(TSort _) \Rightarrow b | (TLRef +_) \Rightarrow b | (THead k _ _) \Rightarrow (match k with [(Bind b0) +\Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead (Bind b) u (lift (S O) O +t3)) (THead (Bind Abbr) u1 t5) H18) in ((let H20 \def (f_equal T T (\lambda +(e: T).(match e with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | +(THead _ t7 _) \Rightarrow t7])) (THead (Bind b) u (lift (S O) O t3)) (THead +(Bind Abbr) u1 t5) H18) in ((let H21 \def (f_equal T T (\lambda (e: T).(match +e with [(TSort _) \Rightarrow (lref_map (\lambda (x: nat).(plus x (S O))) O +t3) | (TLRef _) \Rightarrow (lref_map (\lambda (x: nat).(plus x (S O))) O t3) +| (THead _ _ t7) \Rightarrow t7])) (THead (Bind b) u (lift (S O) O t3)) +(THead (Bind Abbr) u1 t5) H18) in (\lambda (_: (eq T u u1)).(\lambda (H23: +(eq B b Abbr)).(let H24 \def (eq_ind_r T t5 (\lambda (t7: T).(pr0 t7 t6)) H16 +(lift (S O) O t3) H21) in (ex2_ind T (\lambda (t7: T).(eq T t6 (lift (S O) O +t7))) (\lambda (t7: T).(pr0 t3 t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7)) +(\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7))) (\lambda (x: T).(\lambda +(H25: (eq T t6 (lift (S O) O x))).(\lambda (H26: (pr0 t3 x)).(let H27 \def +(eq_ind_r T t5 (\lambda (t7: T).(eq T (THead (Bind Abbr) u1 t7) t)) H12 (lift +(S O) O t3) H21) in (let H28 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: +T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v +t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 +t10)))))))))) H (THead (Bind Abbr) u1 (lift (S O) O t3)) H27) in (let H29 +\def (eq_ind T t6 (\lambda (t7: T).(subst0 O u2 t7 w)) H17 (lift (S O) O x) +H25) in (let H30 \def (eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H7 +Abbr H23) in (ex2_ind T (\lambda (t7: T).(pr0 x t7)) (\lambda (t7: T).(pr0 t1 +t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Bind +Abbr) u2 w) t7))) (\lambda (x0: T).(\lambda (_: (pr0 x x0)).(\lambda (_: (pr0 +t1 x0)).(ex2_sym T (pr0 (THead (Bind Abbr) u2 w)) (pr0 t1) (pr0_confluence__pr0_delta_tau u2 (lift (S O) O x) w H29 x (pr0_refl (lift (S O) O x)) t1))))) (H28 t3 (lift_tlt_dx (Bind Abbr) u1 t3 (S O) O) x H26 t1 H8))))))))) (pr0_gen_lift t3 t6 (S O) O H24)))))) H20)) H19)))))) t2 H14)) t @@ -2296,212 +2114,190 @@ t2)).(eq_ind T t2 (\lambda (t7: T).((not (eq B b0 Abst)) \to ((pr0 t5 t7) \to (\lambda (_: (not (eq B b0 Abst))).(\lambda (H15: (pr0 t5 t2)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind b) u (lift (S O) O t3)) t7)) H4 (THead (Bind b0) u0 (lift (S O) O t5)) H11) in (let H17 \def (f_equal -T B (\lambda (e: T).(match e in T return (\lambda (_: T).B) with [(TSort _) -\Rightarrow b | (TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k -in K return (\lambda (_: K).B) with [(Bind b1) \Rightarrow b1 | (Flat _) -\Rightarrow b])])) (THead (Bind b) u (lift (S O) O t3)) (THead (Bind b0) u0 -(lift (S O) O t5)) H16) in ((let H18 \def (f_equal T T (\lambda (e: T).(match -e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _) +T B (\lambda (e: T).(match e with [(TSort _) \Rightarrow b | (TLRef _) +\Rightarrow b | (THead k _ _) \Rightarrow (match k with [(Bind b1) +\Rightarrow b1 | (Flat _) \Rightarrow b])])) (THead (Bind b) u (lift (S O) O +t3)) (THead (Bind b0) u0 (lift (S O) O t5)) H16) in ((let H18 \def (f_equal T +T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t7 _) \Rightarrow t7])) (THead (Bind b) u (lift (S O) O t3)) (THead (Bind b0) u0 (lift (S O) O t5)) H16) in ((let H19 \def -(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with -[(TSort _) \Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t7: -T) on t7: T \def (match t7 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) -\Rightarrow (TLRef (match (blt i d) with [true \Rightarrow i | false -\Rightarrow (f i)])) | (THead k u1 t8) \Rightarrow (THead k (lref_map f d u1) -(lref_map f (s k d) t8))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O -t3) | (TLRef _) \Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) -(t7: T) on t7: T \def (match t7 with [(TSort n) \Rightarrow (TSort n) | -(TLRef i) \Rightarrow (TLRef (match (blt i d) with [true \Rightarrow i | -false \Rightarrow (f i)])) | (THead k u1 t8) \Rightarrow (THead k (lref_map f -d u1) (lref_map f (s k d) t8))]) in lref_map) (\lambda (x: nat).(plus x (S -O))) O t3) | (THead _ _ t7) \Rightarrow t7])) (THead (Bind b) u (lift (S O) O -t3)) (THead (Bind b0) u0 (lift (S O) O t5)) H16) in (\lambda (_: (eq T u -u0)).(\lambda (H21: (eq B b b0)).(let H22 \def (eq_ind_r T t (\lambda (t7: -T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall -(t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: -T).(pr0 t9 t10)))))))))) H (THead (Bind b0) u0 (lift (S O) O t5)) H11) in -(let H23 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t1)) H8 t5 (lift_inj t3 -t5 (S O) O H19)) in (let H24 \def (eq_ind B b (\lambda (b1: B).(not (eq B b1 -Abst))) H7 b0 H21) in (ex2_ind T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: -T).(pr0 t2 t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 -t7))) (\lambda (x: T).(\lambda (H25: (pr0 t1 x)).(\lambda (H26: (pr0 t2 -x)).(ex_intro2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)) -x H25 H26)))) (H22 t5 (lift_tlt_dx (Bind b0) u0 t5 (S O) O) t1 H23 t2 -H15)))))))) H18)) H17))))) t6 (sym_eq T t6 t2 H13))) t H11 H12 H9 H10))) | -(pr0_tau t5 t6 H9 u0) \Rightarrow (\lambda (H10: (eq T (THead (Flat Cast) u0 -t5) t)).(\lambda (H11: (eq T t6 t2)).(eq_ind T (THead (Flat Cast) u0 t5) -(\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: -T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H12: (eq T t6 -t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to (ex2 T (\lambda (t8: -T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (_: (pr0 t5 -t2)).(let H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind b) u -(lift (S O) O t3)) t7)) H4 (THead (Flat Cast) u0 t5) H10) in (let H15 \def -(eq_ind T (THead (Bind b) u (lift (S O) O t3)) (\lambda (ee: T).(match ee in -T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) -\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda -(_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow -False])])) I (THead (Flat Cast) u0 t5) H14) in (False_ind (ex2 T (\lambda -(t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))) H15)))) t6 (sym_eq T t6 -t2 H12))) t H10 H11 H9)))]) in (H9 (refl_equal T t) (refl_equal T t2))))) t4 -(sym_eq T t4 t1 H6))) t H4 H5 H2 H3))) | (pr0_tau t3 t4 H2 u) \Rightarrow -(\lambda (H3: (eq T (THead (Flat Cast) u t3) t)).(\lambda (H4: (eq T t4 -t1)).(eq_ind T (THead (Flat Cast) u t3) (\lambda (_: T).((eq T t4 t1) \to -((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 -t2 t6)))))) (\lambda (H5: (eq T t4 t1)).(eq_ind T t1 (\lambda (t5: T).((pr0 -t3 t5) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 -t6))))) (\lambda (H6: (pr0 t3 t1)).(let H7 \def (match H1 in pr0 return -(\lambda (t5: T).(\lambda (t6: T).(\lambda (_: (pr0 t5 t6)).((eq T t5 t) \to -((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 -t2 t7)))))))) with [(pr0_refl t5) \Rightarrow (\lambda (H7: (eq T t5 -t)).(\lambda (H8: (eq T t5 t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2) -\to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))) -(\lambda (H9: (eq T t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t7: -T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let H10 \def (eq_ind_r T t -(\lambda (t6: T).(eq T t6 t2)) H9 (THead (Flat Cast) u t3) H3) in (eq_ind T -(THead (Flat Cast) u t3) (\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 t1 -t7)) (\lambda (t7: T).(pr0 t6 t7)))) (let H11 \def (eq_ind_r T t (\lambda -(t6: T).(eq T t5 t6)) H7 (THead (Flat Cast) u t3) H3) in (let H12 \def -(eq_ind_r T t (\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7: -T).((pr0 v t7) \to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: -T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Flat Cast) u -t3) H3) in (ex_intro2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 -(THead (Flat Cast) u t3) t6)) t1 (pr0_refl t1) (pr0_tau t3 t1 H6 u)))) t2 -H10)) t (sym_eq T t t2 H9))) t5 (sym_eq T t5 t H7) H8))) | (pr0_comp u1 u2 H7 -t5 t6 H8 k) \Rightarrow (\lambda (H9: (eq T (THead k u1 t5) t)).(\lambda -(H10: (eq T (THead k u2 t6) t2)).(eq_ind T (THead k u1 t5) (\lambda (_: -T).((eq T (THead k u2 t6) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T -(\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda -(H11: (eq T (THead k u2 t6) t2)).(eq_ind T (THead k u2 t6) (\lambda (t7: -T).((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) -(\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (_: (pr0 u1 u2)).(\lambda (H13: -(pr0 t5 t6)).(let H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat -Cast) u t3) t7)) H3 (THead k u1 t5) H9) in (let H15 \def (f_equal T K -(\lambda (e: T).(match e in T return (\lambda (_: T).K) with [(TSort _) -\Rightarrow (Flat Cast) | (TLRef _) \Rightarrow (Flat Cast) | (THead k0 _ _) -\Rightarrow k0])) (THead (Flat Cast) u t3) (THead k u1 t5) H14) in ((let H16 -\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) +(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow (lref_map +(\lambda (x: nat).(plus x (S O))) O t3) | (TLRef _) \Rightarrow (lref_map +(\lambda (x: nat).(plus x (S O))) O t3) | (THead _ _ t7) \Rightarrow t7])) +(THead (Bind b) u (lift (S O) O t3)) (THead (Bind b0) u0 (lift (S O) O t5)) +H16) in (\lambda (_: (eq T u u0)).(\lambda (H21: (eq B b b0)).(let H22 \def +(eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: +T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: +T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Bind b0) +u0 (lift (S O) O t5)) H11) in (let H23 \def (eq_ind T t3 (\lambda (t7: +T).(pr0 t7 t1)) H8 t5 (lift_inj t3 t5 (S O) O H19)) in (let H24 \def (eq_ind +B b (\lambda (b1: B).(not (eq B b1 Abst))) H7 b0 H21) in (ex2_ind T (\lambda +(t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)) (ex2 T (\lambda (t7: +T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))) (\lambda (x: T).(\lambda (H25: +(pr0 t1 x)).(\lambda (H26: (pr0 t2 x)).(ex_intro2 T (\lambda (t7: T).(pr0 t1 +t7)) (\lambda (t7: T).(pr0 t2 t7)) x H25 H26)))) (H22 t5 (lift_tlt_dx (Bind +b0) u0 t5 (S O) O) t1 H23 t2 H15)))))))) H18)) H17))))) t6 (sym_eq T t6 t2 +H13))) t H11 H12 H9 H10))) | (pr0_tau t5 t6 H9 u0) \Rightarrow (\lambda (H10: +(eq T (THead (Flat Cast) u0 t5) t)).(\lambda (H11: (eq T t6 t2)).(eq_ind T +(THead (Flat Cast) u0 t5) (\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to +(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))) +(\lambda (H12: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to +(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))) +(\lambda (_: (pr0 t5 t2)).(let H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T +(THead (Bind b) u (lift (S O) O t3)) t7)) H4 (THead (Flat Cast) u0 t5) H10) +in (let H15 \def (eq_ind T (THead (Bind b) u (lift (S O) O t3)) (\lambda (ee: +T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False +| (THead k _ _) \Rightarrow (match k with [(Bind _) \Rightarrow True | (Flat +_) \Rightarrow False])])) I (THead (Flat Cast) u0 t5) H14) in (False_ind (ex2 +T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))) H15)))) t6 +(sym_eq T t6 t2 H12))) t H10 H11 H9)))]) in (H9 (refl_equal T t) (refl_equal +T t2))))) t4 (sym_eq T t4 t1 H6))) t H4 H5 H2 H3))) | (pr0_tau t3 t4 H2 u) +\Rightarrow (\lambda (H3: (eq T (THead (Flat Cast) u t3) t)).(\lambda (H4: +(eq T t4 t1)).(eq_ind T (THead (Flat Cast) u t3) (\lambda (_: T).((eq T t4 +t1) \to ((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: +T).(pr0 t2 t6)))))) (\lambda (H5: (eq T t4 t1)).(eq_ind T t1 (\lambda (t5: +T).((pr0 t3 t5) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: +T).(pr0 t2 t6))))) (\lambda (H6: (pr0 t3 t1)).(let H7 \def (match H1 with +[(pr0_refl t5) \Rightarrow (\lambda (H7: (eq T t5 t)).(\lambda (H8: (eq T t5 +t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7: +T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))) (\lambda (H9: (eq T t +t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t7: T).(pr0 t1 t7)) +(\lambda (t7: T).(pr0 t2 t7)))) (let H10 \def (eq_ind_r T t (\lambda (t6: +T).(eq T t6 t2)) H9 (THead (Flat Cast) u t3) H3) in (eq_ind T (THead (Flat +Cast) u t3) (\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda +(t7: T).(pr0 t6 t7)))) (let H11 \def (eq_ind_r T t (\lambda (t6: T).(eq T t5 +t6)) H7 (THead (Flat Cast) u t3) H3) in (let H12 \def (eq_ind_r T t (\lambda +(t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to +(\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) +(\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Flat Cast) u t3) H3) in +(ex_intro2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 (THead (Flat +Cast) u t3) t6)) t1 (pr0_refl t1) (pr0_tau t3 t1 H6 u)))) t2 H10)) t (sym_eq +T t t2 H9))) t5 (sym_eq T t5 t H7) H8))) | (pr0_comp u1 u2 H7 t5 t6 H8 k) +\Rightarrow (\lambda (H9: (eq T (THead k u1 t5) t)).(\lambda (H10: (eq T +(THead k u2 t6) t2)).(eq_ind T (THead k u1 t5) (\lambda (_: T).((eq T (THead +k u2 t6) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: +T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H11: (eq T +(THead k u2 t6) t2)).(eq_ind T (THead k u2 t6) (\lambda (t7: T).((pr0 u1 u2) +\to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: +T).(pr0 t7 t8)))))) (\lambda (_: (pr0 u1 u2)).(\lambda (H13: (pr0 t5 +t6)).(let H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Cast) u +t3) t7)) H3 (THead k u1 t5) H9) in (let H15 \def (f_equal T K (\lambda (e: +T).(match e with [(TSort _) \Rightarrow (Flat Cast) | (TLRef _) \Rightarrow +(Flat Cast) | (THead k0 _ _) \Rightarrow k0])) (THead (Flat Cast) u t3) +(THead k u1 t5) H14) in ((let H16 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t7 _) \Rightarrow t7])) (THead (Flat Cast) u t3) (THead k u1 t5) H14) in ((let H17 -\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) -with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7) -\Rightarrow t7])) (THead (Flat Cast) u t3) (THead k u1 t5) H14) in (\lambda -(_: (eq T u u1)).(\lambda (H19: (eq K (Flat Cast) k)).(eq_ind K (Flat Cast) -(\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 -(THead k0 u2 t6) t7)))) (let H20 \def (eq_ind_r K k (\lambda (k0: K).(eq T -(THead k0 u1 t5) t)) H9 (Flat Cast) H19) in (let H21 \def (eq_ind_r T t -(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) -\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) -(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Cast) u1 t5) H20) in -(let H22 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t1)) H6 t5 H17) in -(ex2_ind T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T +\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 | +(TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead (Flat +Cast) u t3) (THead k u1 t5) H14) in (\lambda (_: (eq T u u1)).(\lambda (H19: +(eq K (Flat Cast) k)).(eq_ind K (Flat Cast) (\lambda (k0: K).(ex2 T (\lambda +(t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead k0 u2 t6) t7)))) (let H20 +\def (eq_ind_r K k (\lambda (k0: K).(eq T (THead k0 u1 t5) t)) H9 (Flat Cast) +H19) in (let H21 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v +t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to +(ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 +t10)))))))))) H (THead (Flat Cast) u1 t5) H20) in (let H22 \def (eq_ind T t3 +(\lambda (t7: T).(pr0 t7 t1)) H6 t5 H17) in (ex2_ind T (\lambda (t7: T).(pr0 +t1 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7)) +(\lambda (t7: T).(pr0 (THead (Flat Cast) u2 t6) t7))) (\lambda (x: +T).(\lambda (H23: (pr0 t1 x)).(\lambda (H24: (pr0 t6 x)).(ex_intro2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Flat Cast) u2 t6) -t7))) (\lambda (x: T).(\lambda (H23: (pr0 t1 x)).(\lambda (H24: (pr0 t6 -x)).(ex_intro2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead -(Flat Cast) u2 t6) t7)) x H23 (pr0_tau t6 x H24 u2))))) (H21 t5 (tlt_head_dx -(Flat Cast) u1 t5) t1 H22 t6 H13))))) k H19)))) H16)) H15))))) t2 H11)) t H9 -H10 H7 H8))) | (pr0_beta u0 v1 v2 H7 t5 t6 H8) \Rightarrow (\lambda (H9: (eq -T (THead (Flat Appl) v1 (THead (Bind Abst) u0 t5)) t)).(\lambda (H10: (eq T -(THead (Bind Abbr) v2 t6) t2)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind -Abst) u0 t5)) (\lambda (_: T).((eq T (THead (Bind Abbr) v2 t6) t2) \to ((pr0 -v1 v2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda -(t8: T).(pr0 t2 t8))))))) (\lambda (H11: (eq T (THead (Bind Abbr) v2 t6) -t2)).(eq_ind T (THead (Bind Abbr) v2 t6) (\lambda (t7: T).((pr0 v1 v2) \to +t7)) x H23 (pr0_tau t6 x H24 u2))))) (H21 t5 (tlt_head_dx (Flat Cast) u1 t5) +t1 H22 t6 H13))))) k H19)))) H16)) H15))))) t2 H11)) t H9 H10 H7 H8))) | +(pr0_beta u0 v1 v2 H7 t5 t6 H8) \Rightarrow (\lambda (H9: (eq T (THead (Flat +Appl) v1 (THead (Bind Abst) u0 t5)) t)).(\lambda (H10: (eq T (THead (Bind +Abbr) v2 t6) t2)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u0 t5)) +(\lambda (_: T).((eq T (THead (Bind Abbr) v2 t6) t2) \to ((pr0 v1 v2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 -t7 t8)))))) (\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 t5 t6)).(let H14 \def -(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Cast) u t3) t7)) H3 (THead -(Flat Appl) v1 (THead (Bind Abst) u0 t5)) H9) in (let H15 \def (eq_ind T -(THead (Flat Cast) u t3) (\lambda (ee: T).(match ee in T return (\lambda (_: -T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | -(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with -[(Bind _) \Rightarrow False | (Flat f) \Rightarrow (match f in F return -(\lambda (_: F).Prop) with [Appl \Rightarrow False | Cast \Rightarrow -True])])])) I (THead (Flat Appl) v1 (THead (Bind Abst) u0 t5)) H14) in -(False_ind (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead -(Bind Abbr) v2 t6) t7))) H15))))) t2 H11)) t H9 H10 H7 H8))) | (pr0_upsilon b -H7 v1 v2 H8 u1 u2 H9 t5 t6 H10) \Rightarrow (\lambda (H11: (eq T (THead (Flat -Appl) v1 (THead (Bind b) u1 t5)) t)).(\lambda (H12: (eq T (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t6)) t2)).(eq_ind T (THead (Flat Appl) -v1 (THead (Bind b) u1 t5)) (\lambda (_: T).((eq T (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t6)) t2) \to ((not (eq B b Abst)) \to ((pr0 v1 -v2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 -t8)) (\lambda (t8: T).(pr0 t2 t8))))))))) (\lambda (H13: (eq T (THead (Bind -b) u2 (THead (Flat Appl) (lift (S O) O v2) t6)) t2)).(eq_ind T (THead (Bind -b) u2 (THead (Flat Appl) (lift (S O) O v2) t6)) (\lambda (t7: T).((not (eq B -b Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T -(\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t7 t8)))))))) (\lambda -(_: (not (eq B b Abst))).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 u1 -u2)).(\lambda (_: (pr0 t5 t6)).(let H18 \def (eq_ind_r T t (\lambda (t7: -T).(eq T (THead (Flat Cast) u t3) t7)) H3 (THead (Flat Appl) v1 (THead (Bind -b) u1 t5)) H11) in (let H19 \def (eq_ind T (THead (Flat Cast) u t3) (\lambda -(ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) -\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow -(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | -(Flat f) \Rightarrow (match f in F return (\lambda (_: F).Prop) with [Appl -\Rightarrow False | Cast \Rightarrow True])])])) I (THead (Flat Appl) v1 -(THead (Bind b) u1 t5)) H18) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1 -t7)) (\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) -O v2) t6)) t7))) H19))))))) t2 H13)) t H11 H12 H7 H8 H9 H10))) | (pr0_delta -u1 u2 H7 t5 t6 H8 w H9) \Rightarrow (\lambda (H10: (eq T (THead (Bind Abbr) -u1 t5) t)).(\lambda (H11: (eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T -(THead (Bind Abbr) u1 t5) (\lambda (_: T).((eq T (THead (Bind Abbr) u2 w) t2) -\to ((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda -(t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))))) (\lambda (H12: (eq T -(THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind Abbr) u2 w) (\lambda -(t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T -(\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (_: -(pr0 u1 u2)).(\lambda (_: (pr0 t5 t6)).(\lambda (_: (subst0 O u2 t6 w)).(let -H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Cast) u t3) t7)) -H3 (THead (Bind Abbr) u1 t5) H10) in (let H17 \def (eq_ind T (THead (Flat -Cast) u t3) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with +t2 t8))))))) (\lambda (H11: (eq T (THead (Bind Abbr) v2 t6) t2)).(eq_ind T +(THead (Bind Abbr) v2 t6) (\lambda (t7: T).((pr0 v1 v2) \to ((pr0 t5 t6) \to +(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t7 t8)))))) +(\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 t5 t6)).(let H14 \def (eq_ind_r T +t (\lambda (t7: T).(eq T (THead (Flat Cast) u t3) t7)) H3 (THead (Flat Appl) +v1 (THead (Bind Abst) u0 t5)) H9) in (let H15 \def (eq_ind T (THead (Flat +Cast) u t3) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | +(TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind +_) \Rightarrow False | (Flat f) \Rightarrow (match f with [Appl \Rightarrow +False | Cast \Rightarrow True])])])) I (THead (Flat Appl) v1 (THead (Bind +Abst) u0 t5)) H14) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1 t7)) +(\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t6) t7))) H15))))) t2 H11)) t H9 +H10 H7 H8))) | (pr0_upsilon b H7 v1 v2 H8 u1 u2 H9 t5 t6 H10) \Rightarrow +(\lambda (H11: (eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t5)) +t)).(\lambda (H12: (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O +v2) t6)) t2)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t5)) +(\lambda (_: T).((eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O +v2) t6)) t2) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to +((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 +t2 t8))))))))) (\lambda (H13: (eq T (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t6)) t2)).(eq_ind T (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t6)) (\lambda (t7: T).((not (eq B b Abst)) \to ((pr0 v1 v2) +\to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) +(\lambda (t8: T).(pr0 t7 t8)))))))) (\lambda (_: (not (eq B b +Abst))).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (pr0 +t5 t6)).(let H18 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Cast) +u t3) t7)) H3 (THead (Flat Appl) v1 (THead (Bind b) u1 t5)) H11) in (let H19 +\def (eq_ind T (THead (Flat Cast) u t3) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) -\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _) -\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abbr) u1 -t5) H16) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: -T).(pr0 (THead (Bind Abbr) u2 w) t7))) H17)))))) t2 H12)) t H10 H11 H7 H8 -H9))) | (pr0_zeta b H7 t5 t6 H8 u0) \Rightarrow (\lambda (H9: (eq T (THead -(Bind b) u0 (lift (S O) O t5)) t)).(\lambda (H10: (eq T t6 t2)).(eq_ind T -(THead (Bind b) u0 (lift (S O) O t5)) (\lambda (_: T).((eq T t6 t2) \to ((not -(eq B b Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) -(\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H11: (eq T t6 t2)).(eq_ind T t2 -(\lambda (t7: T).((not (eq B b Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda -(t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (_: (not (eq -B b Abst))).(\lambda (_: (pr0 t5 t2)).(let H14 \def (eq_ind_r T t (\lambda -(t7: T).(eq T (THead (Flat Cast) u t3) t7)) H3 (THead (Bind b) u0 (lift (S O) -O t5)) H9) in (let H15 \def (eq_ind T (THead (Flat Cast) u t3) (\lambda (ee: -T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow -False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K -return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) -\Rightarrow True])])) I (THead (Bind b) u0 (lift (S O) O t5)) H14) in -(False_ind (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 -t7))) H15))))) t6 (sym_eq T t6 t2 H11))) t H9 H10 H7 H8))) | (pr0_tau t5 t6 -H7 u0) \Rightarrow (\lambda (H8: (eq T (THead (Flat Cast) u0 t5) t)).(\lambda -(H9: (eq T t6 t2)).(eq_ind T (THead (Flat Cast) u0 t5) (\lambda (_: T).((eq T -t6 t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda -(t8: T).(pr0 t2 t8)))))) (\lambda (H10: (eq T t6 t2)).(eq_ind T t2 (\lambda -(t7: T).((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: -T).(pr0 t2 t8))))) (\lambda (H11: (pr0 t5 t2)).(let H12 \def (eq_ind_r T t -(\lambda (t7: T).(eq T (THead (Flat Cast) u t3) t7)) H3 (THead (Flat Cast) u0 -t5) H8) in (let H13 \def (f_equal T T (\lambda (e: T).(match e in T return -(\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | -(THead _ t7 _) \Rightarrow t7])) (THead (Flat Cast) u t3) (THead (Flat Cast) -u0 t5) H12) in ((let H14 \def (f_equal T T (\lambda (e: T).(match e in T -return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) -\Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead (Flat Cast) u t3) -(THead (Flat Cast) u0 t5) H12) in (\lambda (_: (eq T u u0)).(let H16 \def -(eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: -T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: -T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Cast) -u0 t5) H8) in (let H17 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t1)) H6 t5 -H14) in (ex2_ind T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 -t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))) -(\lambda (x: T).(\lambda (H18: (pr0 t1 x)).(\lambda (H19: (pr0 t2 -x)).(ex_intro2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)) -x H18 H19)))) (H16 t5 (tlt_head_dx (Flat Cast) u0 t5) t1 H17 t2 H11)))))) -H13)))) t6 (sym_eq T t6 t2 H10))) t H8 H9 H7)))]) in (H7 (refl_equal T t) -(refl_equal T t2)))) t4 (sym_eq T t4 t1 H5))) t H3 H4 H2)))]) in (H2 -(refl_equal T t) (refl_equal T t1))))))))) t0). -(* COMMENTS -Initial nodes: 46103 -END *) +\Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat f) \Rightarrow +(match f with [Appl \Rightarrow False | Cast \Rightarrow True])])])) I (THead +(Flat Appl) v1 (THead (Bind b) u1 t5)) H18) in (False_ind (ex2 T (\lambda +(t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t6)) t7))) H19))))))) t2 H13)) t H11 H12 H7 H8 H9 +H10))) | (pr0_delta u1 u2 H7 t5 t6 H8 w H9) \Rightarrow (\lambda (H10: (eq T +(THead (Bind Abbr) u1 t5) t)).(\lambda (H11: (eq T (THead (Bind Abbr) u2 w) +t2)).(eq_ind T (THead (Bind Abbr) u1 t5) (\lambda (_: T).((eq T (THead (Bind +Abbr) u2 w) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to +(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))))) +(\lambda (H12: (eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind +Abbr) u2 w) (\lambda (t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 +t6 w) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t7 +t8))))))) (\lambda (_: (pr0 u1 u2)).(\lambda (_: (pr0 t5 t6)).(\lambda (_: +(subst0 O u2 t6 w)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead +(Flat Cast) u t3) t7)) H3 (THead (Bind Abbr) u1 t5) H10) in (let H17 \def +(eq_ind T (THead (Flat Cast) u t3) (\lambda (ee: T).(match ee with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow +(match k with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I +(THead (Bind Abbr) u1 t5) H16) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1 +t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7))) H17)))))) t2 H12)) +t H10 H11 H7 H8 H9))) | (pr0_zeta b H7 t5 t6 H8 u0) \Rightarrow (\lambda (H9: +(eq T (THead (Bind b) u0 (lift (S O) O t5)) t)).(\lambda (H10: (eq T t6 +t2)).(eq_ind T (THead (Bind b) u0 (lift (S O) O t5)) (\lambda (_: T).((eq T +t6 t2) \to ((not (eq B b Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: +T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H11: (eq T t6 +t2)).(eq_ind T t2 (\lambda (t7: T).((not (eq B b Abst)) \to ((pr0 t5 t7) \to +(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))) +(\lambda (_: (not (eq B b Abst))).(\lambda (_: (pr0 t5 t2)).(let H14 \def +(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Cast) u t3) t7)) H3 (THead +(Bind b) u0 (lift (S O) O t5)) H9) in (let H15 \def (eq_ind T (THead (Flat +Cast) u t3) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | +(TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind +_) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind b) u0 +(lift (S O) O t5)) H14) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1 t7)) +(\lambda (t7: T).(pr0 t2 t7))) H15))))) t6 (sym_eq T t6 t2 H11))) t H9 H10 H7 +H8))) | (pr0_tau t5 t6 H7 u0) \Rightarrow (\lambda (H8: (eq T (THead (Flat +Cast) u0 t5) t)).(\lambda (H9: (eq T t6 t2)).(eq_ind T (THead (Flat Cast) u0 +t5) (\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: +T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H10: (eq T t6 +t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to (ex2 T (\lambda (t8: +T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (H11: (pr0 t5 +t2)).(let H12 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Cast) u +t3) t7)) H3 (THead (Flat Cast) u0 t5) H8) in (let H13 \def (f_equal T T +(\lambda (e: T).(match e with [(TSort _) \Rightarrow u | (TLRef _) +\Rightarrow u | (THead _ t7 _) \Rightarrow t7])) (THead (Flat Cast) u t3) +(THead (Flat Cast) u0 t5) H12) in ((let H14 \def (f_equal T T (\lambda (e: +T).(match e with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | +(THead _ _ t7) \Rightarrow t7])) (THead (Flat Cast) u t3) (THead (Flat Cast) +u0 t5) H12) in (\lambda (_: (eq T u u0)).(let H16 \def (eq_ind_r T t (\lambda +(t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to +(\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) +(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Cast) u0 t5) H8) in +(let H17 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t1)) H6 t5 H14) in +(ex2_ind T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)) (ex2 T +(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))) (\lambda (x: +T).(\lambda (H18: (pr0 t1 x)).(\lambda (H19: (pr0 t2 x)).(ex_intro2 T +(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)) x H18 H19)))) +(H16 t5 (tlt_head_dx (Flat Cast) u0 t5) t1 H17 t2 H11)))))) H13)))) t6 +(sym_eq T t6 t2 H10))) t H8 H9 H7)))]) in (H7 (refl_equal T t) (refl_equal T +t2)))) t4 (sym_eq T t4 t1 H5))) t H3 H4 H2)))]) in (H2 (refl_equal T t) +(refl_equal T t1))))))))) t0). diff --git a/matita/matita/contribs/lambdadelta/basic_1/pr0/props.ma b/matita/matita/contribs/lambdadelta/basic_1/pr0/props.ma index d7f69d691..a99bdf288 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/pr0/props.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/pr0/props.ma @@ -14,1745 +14,1002 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/pr0/defs.ma". +include "basic_1/pr0/fwd.ma". -include "Basic-1/subst0/subst0.ma". +include "basic_1/subst0/props.ma". theorem pr0_lift: \forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t1) (lift h d t2)))))) \def - \lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr0 t1 t2)).(pr0_ind (\lambda -(t: T).(\lambda (t0: T).(\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t) -(lift h d t0)))))) (\lambda (t: T).(\lambda (h: nat).(\lambda (d: -nat).(pr0_refl (lift h d t))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda -(_: (pr0 u1 u2)).(\lambda (H1: ((\forall (h: nat).(\forall (d: nat).(pr0 -(lift h d u1) (lift h d u2)))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda -(_: (pr0 t3 t4)).(\lambda (H3: ((\forall (h: nat).(\forall (d: nat).(pr0 -(lift h d t3) (lift h d t4)))))).(\lambda (k: K).(\lambda (h: nat).(\lambda -(d: nat).(eq_ind_r T (THead k (lift h d u1) (lift h (s k d) t3)) (\lambda (t: -T).(pr0 t (lift h d (THead k u2 t4)))) (eq_ind_r T (THead k (lift h d u2) -(lift h (s k d) t4)) (\lambda (t: T).(pr0 (THead k (lift h d u1) (lift h (s k -d) t3)) t)) (pr0_comp (lift h d u1) (lift h d u2) (H1 h d) (lift h (s k d) -t3) (lift h (s k d) t4) (H3 h (s k d)) k) (lift h d (THead k u2 t4)) -(lift_head k u2 t4 h d)) (lift h d (THead k u1 t3)) (lift_head k u1 t3 h -d))))))))))))) (\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: + \lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr0 t1 t2)).(let TMP_3 \def +(\lambda (t: T).(\lambda (t0: T).(\forall (h: nat).(\forall (d: nat).(let +TMP_1 \def (lift h d t) in (let TMP_2 \def (lift h d t0) in (pr0 TMP_1 +TMP_2))))))) in (let TMP_5 \def (\lambda (t: T).(\lambda (h: nat).(\lambda +(d: nat).(let TMP_4 \def (lift h d t) in (pr0_refl TMP_4))))) in (let TMP_39 +\def (\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda +(H1: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d u1) (lift h d +u2)))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3 t4)).(\lambda +(H3: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t3) (lift h d +t4)))))).(\lambda (k: K).(\lambda (h: nat).(\lambda (d: nat).(let TMP_6 \def +(lift h d u1) in (let TMP_7 \def (s k d) in (let TMP_8 \def (lift h TMP_7 t3) +in (let TMP_9 \def (THead k TMP_6 TMP_8) in (let TMP_12 \def (\lambda (t: +T).(let TMP_10 \def (THead k u2 t4) in (let TMP_11 \def (lift h d TMP_10) in +(pr0 t TMP_11)))) in (let TMP_13 \def (lift h d u2) in (let TMP_14 \def (s k +d) in (let TMP_15 \def (lift h TMP_14 t4) in (let TMP_16 \def (THead k TMP_13 +TMP_15) in (let TMP_21 \def (\lambda (t: T).(let TMP_17 \def (lift h d u1) in +(let TMP_18 \def (s k d) in (let TMP_19 \def (lift h TMP_18 t3) in (let +TMP_20 \def (THead k TMP_17 TMP_19) in (pr0 TMP_20 t)))))) in (let TMP_22 +\def (lift h d u1) in (let TMP_23 \def (lift h d u2) in (let TMP_24 \def (H1 +h d) in (let TMP_25 \def (s k d) in (let TMP_26 \def (lift h TMP_25 t3) in +(let TMP_27 \def (s k d) in (let TMP_28 \def (lift h TMP_27 t4) in (let +TMP_29 \def (s k d) in (let TMP_30 \def (H3 h TMP_29) in (let TMP_31 \def +(pr0_comp TMP_22 TMP_23 TMP_24 TMP_26 TMP_28 TMP_30 k) in (let TMP_32 \def +(THead k u2 t4) in (let TMP_33 \def (lift h d TMP_32) in (let TMP_34 \def +(lift_head k u2 t4 h d) in (let TMP_35 \def (eq_ind_r T TMP_16 TMP_21 TMP_31 +TMP_33 TMP_34) in (let TMP_36 \def (THead k u1 t3) in (let TMP_37 \def (lift +h d TMP_36) in (let TMP_38 \def (lift_head k u1 t3 h d) in (eq_ind_r T TMP_9 +TMP_12 TMP_35 TMP_37 TMP_38))))))))))))))))))))))))))))))))))))))) in (let +TMP_132 \def (\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda (H1: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d v1) (lift h d v2)))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3 t4)).(\lambda (H3: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t3) -(lift h d t4)))))).(\lambda (h: nat).(\lambda (d: nat).(eq_ind_r T (THead -(Flat Appl) (lift h d v1) (lift h (s (Flat Appl) d) (THead (Bind Abst) u -t3))) (\lambda (t: T).(pr0 t (lift h d (THead (Bind Abbr) v2 t4)))) (eq_ind_r -T (THead (Bind Abst) (lift h (s (Flat Appl) d) u) (lift h (s (Bind Abst) (s -(Flat Appl) d)) t3)) (\lambda (t: T).(pr0 (THead (Flat Appl) (lift h d v1) t) -(lift h d (THead (Bind Abbr) v2 t4)))) (eq_ind_r T (THead (Bind Abbr) (lift h -d v2) (lift h (s (Bind Abbr) d) t4)) (\lambda (t: T).(pr0 (THead (Flat Appl) -(lift h d v1) (THead (Bind Abst) (lift h (s (Flat Appl) d) u) (lift h (s -(Bind Abst) (s (Flat Appl) d)) t3))) t)) (pr0_beta (lift h (s (Flat Appl) d) -u) (lift h d v1) (lift h d v2) (H1 h d) (lift h (s (Bind Abst) (s (Flat Appl) -d)) t3) (lift h (s (Bind Abbr) d) t4) (H3 h (s (Bind Abbr) d))) (lift h d -(THead (Bind Abbr) v2 t4)) (lift_head (Bind Abbr) v2 t4 h d)) (lift h (s -(Flat Appl) d) (THead (Bind Abst) u t3)) (lift_head (Bind Abst) u t3 h (s -(Flat Appl) d))) (lift h d (THead (Flat Appl) v1 (THead (Bind Abst) u t3))) -(lift_head (Flat Appl) v1 (THead (Bind Abst) u t3) h d))))))))))))) (\lambda -(b: B).(\lambda (H0: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2: -T).(\lambda (_: (pr0 v1 v2)).(\lambda (H2: ((\forall (h: nat).(\forall (d: -nat).(pr0 (lift h d v1) (lift h d v2)))))).(\lambda (u1: T).(\lambda (u2: -T).(\lambda (_: (pr0 u1 u2)).(\lambda (H4: ((\forall (h: nat).(\forall (d: -nat).(pr0 (lift h d u1) (lift h d u2)))))).(\lambda (t3: T).(\lambda (t4: -T).(\lambda (_: (pr0 t3 t4)).(\lambda (H6: ((\forall (h: nat).(\forall (d: -nat).(pr0 (lift h d t3) (lift h d t4)))))).(\lambda (h: nat).(\lambda (d: -nat).(eq_ind_r T (THead (Flat Appl) (lift h d v1) (lift h (s (Flat Appl) d) -(THead (Bind b) u1 t3))) (\lambda (t: T).(pr0 t (lift h d (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t4))))) (eq_ind_r T (THead (Bind b) -(lift h (s (Flat Appl) d) u1) (lift h (s (Bind b) (s (Flat Appl) d)) t3)) -(\lambda (t: T).(pr0 (THead (Flat Appl) (lift h d v1) t) (lift h d (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))))) (eq_ind_r T (THead -(Bind b) (lift h d u2) (lift h (s (Bind b) d) (THead (Flat Appl) (lift (S O) -O v2) t4))) (\lambda (t: T).(pr0 (THead (Flat Appl) (lift h d v1) (THead -(Bind b) (lift h (s (Flat Appl) d) u1) (lift h (s (Bind b) (s (Flat Appl) d)) -t3))) t)) (eq_ind_r T (THead (Flat Appl) (lift h (s (Bind b) d) (lift (S O) O -v2)) (lift h (s (Flat Appl) (s (Bind b) d)) t4)) (\lambda (t: T).(pr0 (THead -(Flat Appl) (lift h d v1) (THead (Bind b) (lift h (s (Flat Appl) d) u1) (lift -h (s (Bind b) (s (Flat Appl) d)) t3))) (THead (Bind b) (lift h d u2) t))) -(eq_ind nat (plus (S O) d) (\lambda (n: nat).(pr0 (THead (Flat Appl) (lift h -d v1) (THead (Bind b) (lift h d u1) (lift h n t3))) (THead (Bind b) (lift h d -u2) (THead (Flat Appl) (lift h n (lift (S O) O v2)) (lift h n t4))))) -(eq_ind_r T (lift (S O) O (lift h d v2)) (\lambda (t: T).(pr0 (THead (Flat -Appl) (lift h d v1) (THead (Bind b) (lift h d u1) (lift h (plus (S O) d) -t3))) (THead (Bind b) (lift h d u2) (THead (Flat Appl) t (lift h (plus (S O) -d) t4))))) (pr0_upsilon b H0 (lift h d v1) (lift h d v2) (H2 h d) (lift h d -u1) (lift h d u2) (H4 h d) (lift h (plus (S O) d) t3) (lift h (plus (S O) d) -t4) (H6 h (plus (S O) d))) (lift h (plus (S O) d) (lift (S O) O v2)) (lift_d -v2 h (S O) d O (le_O_n d))) (S d) (refl_equal nat (S d))) (lift h (s (Bind b) -d) (THead (Flat Appl) (lift (S O) O v2) t4)) (lift_head (Flat Appl) (lift (S -O) O v2) t4 h (s (Bind b) d))) (lift h d (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4))) (lift_head (Bind b) u2 (THead (Flat Appl) (lift -(S O) O v2) t4) h d)) (lift h (s (Flat Appl) d) (THead (Bind b) u1 t3)) -(lift_head (Bind b) u1 t3 h (s (Flat Appl) d))) (lift h d (THead (Flat Appl) -v1 (THead (Bind b) u1 t3))) (lift_head (Flat Appl) v1 (THead (Bind b) u1 t3) -h d)))))))))))))))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 +(lift h d t4)))))).(\lambda (h: nat).(\lambda (d: nat).(let TMP_40 \def (Flat +Appl) in (let TMP_41 \def (lift h d v1) in (let TMP_42 \def (Flat Appl) in +(let TMP_43 \def (s TMP_42 d) in (let TMP_44 \def (Bind Abst) in (let TMP_45 +\def (THead TMP_44 u t3) in (let TMP_46 \def (lift h TMP_43 TMP_45) in (let +TMP_47 \def (THead TMP_40 TMP_41 TMP_46) in (let TMP_51 \def (\lambda (t: +T).(let TMP_48 \def (Bind Abbr) in (let TMP_49 \def (THead TMP_48 v2 t4) in +(let TMP_50 \def (lift h d TMP_49) in (pr0 t TMP_50))))) in (let TMP_52 \def +(Bind Abst) in (let TMP_53 \def (Flat Appl) in (let TMP_54 \def (s TMP_53 d) +in (let TMP_55 \def (lift h TMP_54 u) in (let TMP_56 \def (Bind Abst) in (let +TMP_57 \def (Flat Appl) in (let TMP_58 \def (s TMP_57 d) in (let TMP_59 \def +(s TMP_56 TMP_58) in (let TMP_60 \def (lift h TMP_59 t3) in (let TMP_61 \def +(THead TMP_52 TMP_55 TMP_60) in (let TMP_68 \def (\lambda (t: T).(let TMP_62 +\def (Flat Appl) in (let TMP_63 \def (lift h d v1) in (let TMP_64 \def (THead +TMP_62 TMP_63 t) in (let TMP_65 \def (Bind Abbr) in (let TMP_66 \def (THead +TMP_65 v2 t4) in (let TMP_67 \def (lift h d TMP_66) in (pr0 TMP_64 +TMP_67)))))))) in (let TMP_69 \def (Bind Abbr) in (let TMP_70 \def (lift h d +v2) in (let TMP_71 \def (Bind Abbr) in (let TMP_72 \def (s TMP_71 d) in (let +TMP_73 \def (lift h TMP_72 t4) in (let TMP_74 \def (THead TMP_69 TMP_70 +TMP_73) in (let TMP_88 \def (\lambda (t: T).(let TMP_75 \def (Flat Appl) in +(let TMP_76 \def (lift h d v1) in (let TMP_77 \def (Bind Abst) in (let TMP_78 +\def (Flat Appl) in (let TMP_79 \def (s TMP_78 d) in (let TMP_80 \def (lift h +TMP_79 u) in (let TMP_81 \def (Bind Abst) in (let TMP_82 \def (Flat Appl) in +(let TMP_83 \def (s TMP_82 d) in (let TMP_84 \def (s TMP_81 TMP_83) in (let +TMP_85 \def (lift h TMP_84 t3) in (let TMP_86 \def (THead TMP_77 TMP_80 +TMP_85) in (let TMP_87 \def (THead TMP_75 TMP_76 TMP_86) in (pr0 TMP_87 +t))))))))))))))) in (let TMP_89 \def (Flat Appl) in (let TMP_90 \def (s +TMP_89 d) in (let TMP_91 \def (lift h TMP_90 u) in (let TMP_92 \def (lift h d +v1) in (let TMP_93 \def (lift h d v2) in (let TMP_94 \def (H1 h d) in (let +TMP_95 \def (Bind Abst) in (let TMP_96 \def (Flat Appl) in (let TMP_97 \def +(s TMP_96 d) in (let TMP_98 \def (s TMP_95 TMP_97) in (let TMP_99 \def (lift +h TMP_98 t3) in (let TMP_100 \def (Bind Abbr) in (let TMP_101 \def (s TMP_100 +d) in (let TMP_102 \def (lift h TMP_101 t4) in (let TMP_103 \def (Bind Abbr) +in (let TMP_104 \def (s TMP_103 d) in (let TMP_105 \def (H3 h TMP_104) in +(let TMP_106 \def (pr0_beta TMP_91 TMP_92 TMP_93 TMP_94 TMP_99 TMP_102 +TMP_105) in (let TMP_107 \def (Bind Abbr) in (let TMP_108 \def (THead TMP_107 +v2 t4) in (let TMP_109 \def (lift h d TMP_108) in (let TMP_110 \def (Bind +Abbr) in (let TMP_111 \def (lift_head TMP_110 v2 t4 h d) in (let TMP_112 \def +(eq_ind_r T TMP_74 TMP_88 TMP_106 TMP_109 TMP_111) in (let TMP_113 \def (Flat +Appl) in (let TMP_114 \def (s TMP_113 d) in (let TMP_115 \def (Bind Abst) in +(let TMP_116 \def (THead TMP_115 u t3) in (let TMP_117 \def (lift h TMP_114 +TMP_116) in (let TMP_118 \def (Bind Abst) in (let TMP_119 \def (Flat Appl) in +(let TMP_120 \def (s TMP_119 d) in (let TMP_121 \def (lift_head TMP_118 u t3 +h TMP_120) in (let TMP_122 \def (eq_ind_r T TMP_61 TMP_68 TMP_112 TMP_117 +TMP_121) in (let TMP_123 \def (Flat Appl) in (let TMP_124 \def (Bind Abst) in +(let TMP_125 \def (THead TMP_124 u t3) in (let TMP_126 \def (THead TMP_123 v1 +TMP_125) in (let TMP_127 \def (lift h d TMP_126) in (let TMP_128 \def (Flat +Appl) in (let TMP_129 \def (Bind Abst) in (let TMP_130 \def (THead TMP_129 u +t3) in (let TMP_131 \def (lift_head TMP_128 v1 TMP_130 h d) in (eq_ind_r T +TMP_47 TMP_51 TMP_122 TMP_127 +TMP_131))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) +))))))))))) in (let TMP_339 \def (\lambda (b: B).(\lambda (H0: (not (eq B b +Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda +(H2: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d v1) (lift h d +v2)))))).(\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda +(H4: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d u1) (lift h d +u2)))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3 t4)).(\lambda +(H6: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t3) (lift h d +t4)))))).(\lambda (h: nat).(\lambda (d: nat).(let TMP_133 \def (Flat Appl) in +(let TMP_134 \def (lift h d v1) in (let TMP_135 \def (Flat Appl) in (let +TMP_136 \def (s TMP_135 d) in (let TMP_137 \def (Bind b) in (let TMP_138 \def +(THead TMP_137 u1 t3) in (let TMP_139 \def (lift h TMP_136 TMP_138) in (let +TMP_140 \def (THead TMP_133 TMP_134 TMP_139) in (let TMP_148 \def (\lambda +(t: T).(let TMP_141 \def (Bind b) in (let TMP_142 \def (Flat Appl) in (let +TMP_143 \def (S O) in (let TMP_144 \def (lift TMP_143 O v2) in (let TMP_145 +\def (THead TMP_142 TMP_144 t4) in (let TMP_146 \def (THead TMP_141 u2 +TMP_145) in (let TMP_147 \def (lift h d TMP_146) in (pr0 t TMP_147))))))))) +in (let TMP_149 \def (Bind b) in (let TMP_150 \def (Flat Appl) in (let +TMP_151 \def (s TMP_150 d) in (let TMP_152 \def (lift h TMP_151 u1) in (let +TMP_153 \def (Bind b) in (let TMP_154 \def (Flat Appl) in (let TMP_155 \def +(s TMP_154 d) in (let TMP_156 \def (s TMP_153 TMP_155) in (let TMP_157 \def +(lift h TMP_156 t3) in (let TMP_158 \def (THead TMP_149 TMP_152 TMP_157) in +(let TMP_169 \def (\lambda (t: T).(let TMP_159 \def (Flat Appl) in (let +TMP_160 \def (lift h d v1) in (let TMP_161 \def (THead TMP_159 TMP_160 t) in +(let TMP_162 \def (Bind b) in (let TMP_163 \def (Flat Appl) in (let TMP_164 +\def (S O) in (let TMP_165 \def (lift TMP_164 O v2) in (let TMP_166 \def +(THead TMP_163 TMP_165 t4) in (let TMP_167 \def (THead TMP_162 u2 TMP_166) in +(let TMP_168 \def (lift h d TMP_167) in (pr0 TMP_161 TMP_168)))))))))))) in +(let TMP_170 \def (Bind b) in (let TMP_171 \def (lift h d u2) in (let TMP_172 +\def (Bind b) in (let TMP_173 \def (s TMP_172 d) in (let TMP_174 \def (Flat +Appl) in (let TMP_175 \def (S O) in (let TMP_176 \def (lift TMP_175 O v2) in +(let TMP_177 \def (THead TMP_174 TMP_176 t4) in (let TMP_178 \def (lift h +TMP_173 TMP_177) in (let TMP_179 \def (THead TMP_170 TMP_171 TMP_178) in (let +TMP_193 \def (\lambda (t: T).(let TMP_180 \def (Flat Appl) in (let TMP_181 +\def (lift h d v1) in (let TMP_182 \def (Bind b) in (let TMP_183 \def (Flat +Appl) in (let TMP_184 \def (s TMP_183 d) in (let TMP_185 \def (lift h TMP_184 +u1) in (let TMP_186 \def (Bind b) in (let TMP_187 \def (Flat Appl) in (let +TMP_188 \def (s TMP_187 d) in (let TMP_189 \def (s TMP_186 TMP_188) in (let +TMP_190 \def (lift h TMP_189 t3) in (let TMP_191 \def (THead TMP_182 TMP_185 +TMP_190) in (let TMP_192 \def (THead TMP_180 TMP_181 TMP_191) in (pr0 TMP_192 +t))))))))))))))) in (let TMP_194 \def (Flat Appl) in (let TMP_195 \def (Bind +b) in (let TMP_196 \def (s TMP_195 d) in (let TMP_197 \def (S O) in (let +TMP_198 \def (lift TMP_197 O v2) in (let TMP_199 \def (lift h TMP_196 +TMP_198) in (let TMP_200 \def (Flat Appl) in (let TMP_201 \def (Bind b) in +(let TMP_202 \def (s TMP_201 d) in (let TMP_203 \def (s TMP_200 TMP_202) in +(let TMP_204 \def (lift h TMP_203 t4) in (let TMP_205 \def (THead TMP_194 +TMP_199 TMP_204) in (let TMP_222 \def (\lambda (t: T).(let TMP_206 \def (Flat +Appl) in (let TMP_207 \def (lift h d v1) in (let TMP_208 \def (Bind b) in +(let TMP_209 \def (Flat Appl) in (let TMP_210 \def (s TMP_209 d) in (let +TMP_211 \def (lift h TMP_210 u1) in (let TMP_212 \def (Bind b) in (let +TMP_213 \def (Flat Appl) in (let TMP_214 \def (s TMP_213 d) in (let TMP_215 +\def (s TMP_212 TMP_214) in (let TMP_216 \def (lift h TMP_215 t3) in (let +TMP_217 \def (THead TMP_208 TMP_211 TMP_216) in (let TMP_218 \def (THead +TMP_206 TMP_207 TMP_217) in (let TMP_219 \def (Bind b) in (let TMP_220 \def +(lift h d u2) in (let TMP_221 \def (THead TMP_219 TMP_220 t) in (pr0 TMP_218 +TMP_221)))))))))))))))))) in (let TMP_223 \def (S O) in (let TMP_224 \def +(plus TMP_223 d) in (let TMP_241 \def (\lambda (n: nat).(let TMP_225 \def +(Flat Appl) in (let TMP_226 \def (lift h d v1) in (let TMP_227 \def (Bind b) +in (let TMP_228 \def (lift h d u1) in (let TMP_229 \def (lift h n t3) in (let +TMP_230 \def (THead TMP_227 TMP_228 TMP_229) in (let TMP_231 \def (THead +TMP_225 TMP_226 TMP_230) in (let TMP_232 \def (Bind b) in (let TMP_233 \def +(lift h d u2) in (let TMP_234 \def (Flat Appl) in (let TMP_235 \def (S O) in +(let TMP_236 \def (lift TMP_235 O v2) in (let TMP_237 \def (lift h n TMP_236) +in (let TMP_238 \def (lift h n t4) in (let TMP_239 \def (THead TMP_234 +TMP_237 TMP_238) in (let TMP_240 \def (THead TMP_232 TMP_233 TMP_239) in (pr0 +TMP_231 TMP_240)))))))))))))))))) in (let TMP_242 \def (S O) in (let TMP_243 +\def (lift h d v2) in (let TMP_244 \def (lift TMP_242 O TMP_243) in (let +TMP_262 \def (\lambda (t: T).(let TMP_245 \def (Flat Appl) in (let TMP_246 +\def (lift h d v1) in (let TMP_247 \def (Bind b) in (let TMP_248 \def (lift h +d u1) in (let TMP_249 \def (S O) in (let TMP_250 \def (plus TMP_249 d) in +(let TMP_251 \def (lift h TMP_250 t3) in (let TMP_252 \def (THead TMP_247 +TMP_248 TMP_251) in (let TMP_253 \def (THead TMP_245 TMP_246 TMP_252) in (let +TMP_254 \def (Bind b) in (let TMP_255 \def (lift h d u2) in (let TMP_256 \def +(Flat Appl) in (let TMP_257 \def (S O) in (let TMP_258 \def (plus TMP_257 d) +in (let TMP_259 \def (lift h TMP_258 t4) in (let TMP_260 \def (THead TMP_256 +t TMP_259) in (let TMP_261 \def (THead TMP_254 TMP_255 TMP_260) in (pr0 +TMP_253 TMP_261))))))))))))))))))) in (let TMP_263 \def (lift h d v1) in (let +TMP_264 \def (lift h d v2) in (let TMP_265 \def (H2 h d) in (let TMP_266 \def +(lift h d u1) in (let TMP_267 \def (lift h d u2) in (let TMP_268 \def (H4 h +d) in (let TMP_269 \def (S O) in (let TMP_270 \def (plus TMP_269 d) in (let +TMP_271 \def (lift h TMP_270 t3) in (let TMP_272 \def (S O) in (let TMP_273 +\def (plus TMP_272 d) in (let TMP_274 \def (lift h TMP_273 t4) in (let +TMP_275 \def (S O) in (let TMP_276 \def (plus TMP_275 d) in (let TMP_277 \def +(H6 h TMP_276) in (let TMP_278 \def (pr0_upsilon b H0 TMP_263 TMP_264 TMP_265 +TMP_266 TMP_267 TMP_268 TMP_271 TMP_274 TMP_277) in (let TMP_279 \def (S O) +in (let TMP_280 \def (plus TMP_279 d) in (let TMP_281 \def (S O) in (let +TMP_282 \def (lift TMP_281 O v2) in (let TMP_283 \def (lift h TMP_280 +TMP_282) in (let TMP_284 \def (S O) in (let TMP_285 \def (le_O_n d) in (let +TMP_286 \def (lift_d v2 h TMP_284 d O TMP_285) in (let TMP_287 \def (eq_ind_r +T TMP_244 TMP_262 TMP_278 TMP_283 TMP_286) in (let TMP_288 \def (S d) in (let +TMP_289 \def (S d) in (let TMP_290 \def (refl_equal nat TMP_289) in (let +TMP_291 \def (eq_ind nat TMP_224 TMP_241 TMP_287 TMP_288 TMP_290) in (let +TMP_292 \def (Bind b) in (let TMP_293 \def (s TMP_292 d) in (let TMP_294 \def +(Flat Appl) in (let TMP_295 \def (S O) in (let TMP_296 \def (lift TMP_295 O +v2) in (let TMP_297 \def (THead TMP_294 TMP_296 t4) in (let TMP_298 \def +(lift h TMP_293 TMP_297) in (let TMP_299 \def (Flat Appl) in (let TMP_300 +\def (S O) in (let TMP_301 \def (lift TMP_300 O v2) in (let TMP_302 \def +(Bind b) in (let TMP_303 \def (s TMP_302 d) in (let TMP_304 \def (lift_head +TMP_299 TMP_301 t4 h TMP_303) in (let TMP_305 \def (eq_ind_r T TMP_205 +TMP_222 TMP_291 TMP_298 TMP_304) in (let TMP_306 \def (Bind b) in (let +TMP_307 \def (Flat Appl) in (let TMP_308 \def (S O) in (let TMP_309 \def +(lift TMP_308 O v2) in (let TMP_310 \def (THead TMP_307 TMP_309 t4) in (let +TMP_311 \def (THead TMP_306 u2 TMP_310) in (let TMP_312 \def (lift h d +TMP_311) in (let TMP_313 \def (Bind b) in (let TMP_314 \def (Flat Appl) in +(let TMP_315 \def (S O) in (let TMP_316 \def (lift TMP_315 O v2) in (let +TMP_317 \def (THead TMP_314 TMP_316 t4) in (let TMP_318 \def (lift_head +TMP_313 u2 TMP_317 h d) in (let TMP_319 \def (eq_ind_r T TMP_179 TMP_193 +TMP_305 TMP_312 TMP_318) in (let TMP_320 \def (Flat Appl) in (let TMP_321 +\def (s TMP_320 d) in (let TMP_322 \def (Bind b) in (let TMP_323 \def (THead +TMP_322 u1 t3) in (let TMP_324 \def (lift h TMP_321 TMP_323) in (let TMP_325 +\def (Bind b) in (let TMP_326 \def (Flat Appl) in (let TMP_327 \def (s +TMP_326 d) in (let TMP_328 \def (lift_head TMP_325 u1 t3 h TMP_327) in (let +TMP_329 \def (eq_ind_r T TMP_158 TMP_169 TMP_319 TMP_324 TMP_328) in (let +TMP_330 \def (Flat Appl) in (let TMP_331 \def (Bind b) in (let TMP_332 \def +(THead TMP_331 u1 t3) in (let TMP_333 \def (THead TMP_330 v1 TMP_332) in (let +TMP_334 \def (lift h d TMP_333) in (let TMP_335 \def (Flat Appl) in (let +TMP_336 \def (Bind b) in (let TMP_337 \def (THead TMP_336 u1 t3) in (let +TMP_338 \def (lift_head TMP_335 v1 TMP_337 h d) in (eq_ind_r T TMP_140 +TMP_148 TMP_329 TMP_334 +TMP_338))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) +))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) in +(let TMP_405 \def (\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda (H1: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d u1) (lift h d u2)))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3 t4)).(\lambda (H3: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t3) (lift h d t4)))))).(\lambda (w: T).(\lambda (H4: (subst0 O u2 t4 w)).(\lambda -(h: nat).(\lambda (d: nat).(eq_ind_r T (THead (Bind Abbr) (lift h d u1) (lift -h (s (Bind Abbr) d) t3)) (\lambda (t: T).(pr0 t (lift h d (THead (Bind Abbr) -u2 w)))) (eq_ind_r T (THead (Bind Abbr) (lift h d u2) (lift h (s (Bind Abbr) -d) w)) (\lambda (t: T).(pr0 (THead (Bind Abbr) (lift h d u1) (lift h (s (Bind -Abbr) d) t3)) t)) (pr0_delta (lift h d u1) (lift h d u2) (H1 h d) (lift h (S -d) t3) (lift h (S d) t4) (H3 h (S d)) (lift h (S d) w) (let d' \def (S d) in -(eq_ind nat (minus (S d) (S O)) (\lambda (n: nat).(subst0 O (lift h n u2) -(lift h d' t4) (lift h d' w))) (subst0_lift_lt t4 w u2 O H4 (S d) (le_n_S O d -(le_O_n d)) h) d (eq_ind nat d (\lambda (n: nat).(eq nat n d)) (refl_equal -nat d) (minus d O) (minus_n_O d))))) (lift h d (THead (Bind Abbr) u2 w)) -(lift_head (Bind Abbr) u2 w h d)) (lift h d (THead (Bind Abbr) u1 t3)) -(lift_head (Bind Abbr) u1 t3 h d)))))))))))))) (\lambda (b: B).(\lambda (H0: -(not (eq B b Abst))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3 -t4)).(\lambda (H2: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t3) -(lift h d t4)))))).(\lambda (u: T).(\lambda (h: nat).(\lambda (d: -nat).(eq_ind_r T (THead (Bind b) (lift h d u) (lift h (s (Bind b) d) (lift (S -O) O t3))) (\lambda (t: T).(pr0 t (lift h d t4))) (eq_ind nat (plus (S O) d) -(\lambda (n: nat).(pr0 (THead (Bind b) (lift h d u) (lift h n (lift (S O) O -t3))) (lift h d t4))) (eq_ind_r T (lift (S O) O (lift h d t3)) (\lambda (t: -T).(pr0 (THead (Bind b) (lift h d u) t) (lift h d t4))) (pr0_zeta b H0 (lift -h d t3) (lift h d t4) (H2 h d) (lift h d u)) (lift h (plus (S O) d) (lift (S -O) O t3)) (lift_d t3 h (S O) d O (le_O_n d))) (S d) (refl_equal nat (S d))) -(lift h d (THead (Bind b) u (lift (S O) O t3))) (lift_head (Bind b) u (lift -(S O) O t3) h d))))))))))) (\lambda (t3: T).(\lambda (t4: T).(\lambda (_: -(pr0 t3 t4)).(\lambda (H1: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h -d t3) (lift h d t4)))))).(\lambda (u: T).(\lambda (h: nat).(\lambda (d: -nat).(eq_ind_r T (THead (Flat Cast) (lift h d u) (lift h (s (Flat Cast) d) -t3)) (\lambda (t: T).(pr0 t (lift h d t4))) (pr0_tau (lift h (s (Flat Cast) -d) t3) (lift h d t4) (H1 h d) (lift h d u)) (lift h d (THead (Flat Cast) u -t3)) (lift_head (Flat Cast) u t3 h d))))))))) t1 t2 H))). -(* COMMENTS -Initial nodes: 2845 -END *) +(h: nat).(\lambda (d: nat).(let TMP_340 \def (Bind Abbr) in (let TMP_341 \def +(lift h d u1) in (let TMP_342 \def (Bind Abbr) in (let TMP_343 \def (s +TMP_342 d) in (let TMP_344 \def (lift h TMP_343 t3) in (let TMP_345 \def +(THead TMP_340 TMP_341 TMP_344) in (let TMP_349 \def (\lambda (t: T).(let +TMP_346 \def (Bind Abbr) in (let TMP_347 \def (THead TMP_346 u2 w) in (let +TMP_348 \def (lift h d TMP_347) in (pr0 t TMP_348))))) in (let TMP_350 \def +(Bind Abbr) in (let TMP_351 \def (lift h d u2) in (let TMP_352 \def (Bind +Abbr) in (let TMP_353 \def (s TMP_352 d) in (let TMP_354 \def (lift h TMP_353 +w) in (let TMP_355 \def (THead TMP_350 TMP_351 TMP_354) in (let TMP_362 \def +(\lambda (t: T).(let TMP_356 \def (Bind Abbr) in (let TMP_357 \def (lift h d +u1) in (let TMP_358 \def (Bind Abbr) in (let TMP_359 \def (s TMP_358 d) in +(let TMP_360 \def (lift h TMP_359 t3) in (let TMP_361 \def (THead TMP_356 +TMP_357 TMP_360) in (pr0 TMP_361 t)))))))) in (let TMP_363 \def (lift h d u1) +in (let TMP_364 \def (lift h d u2) in (let TMP_365 \def (H1 h d) in (let +TMP_366 \def (S d) in (let TMP_367 \def (lift h TMP_366 t3) in (let TMP_368 +\def (S d) in (let TMP_369 \def (lift h TMP_368 t4) in (let TMP_370 \def (S +d) in (let TMP_371 \def (H3 h TMP_370) in (let TMP_372 \def (S d) in (let +TMP_373 \def (lift h TMP_372 w) in (let d' \def (S d) in (let TMP_374 \def (S +d) in (let TMP_375 \def (S O) in (let TMP_376 \def (minus TMP_374 TMP_375) in +(let TMP_380 \def (\lambda (n: nat).(let TMP_377 \def (lift h n u2) in (let +TMP_378 \def (lift h d' t4) in (let TMP_379 \def (lift h d' w) in (subst0 O +TMP_377 TMP_378 TMP_379))))) in (let TMP_381 \def (S d) in (let TMP_382 \def +(le_O_n d) in (let TMP_383 \def (le_n_S O d TMP_382) in (let TMP_384 \def +(subst0_lift_lt t4 w u2 O H4 TMP_381 TMP_383 h) in (let TMP_385 \def (\lambda +(n: nat).(eq nat n d)) in (let TMP_386 \def (le_n d) in (let TMP_387 \def +(le_n d) in (let TMP_388 \def (le_antisym d d TMP_386 TMP_387) in (let +TMP_389 \def (minus d O) in (let TMP_390 \def (minus_n_O d) in (let TMP_391 +\def (eq_ind nat d TMP_385 TMP_388 TMP_389 TMP_390) in (let TMP_392 \def +(eq_ind nat TMP_376 TMP_380 TMP_384 d TMP_391) in (let TMP_393 \def +(pr0_delta TMP_363 TMP_364 TMP_365 TMP_367 TMP_369 TMP_371 TMP_373 TMP_392) +in (let TMP_394 \def (Bind Abbr) in (let TMP_395 \def (THead TMP_394 u2 w) in +(let TMP_396 \def (lift h d TMP_395) in (let TMP_397 \def (Bind Abbr) in (let +TMP_398 \def (lift_head TMP_397 u2 w h d) in (let TMP_399 \def (eq_ind_r T +TMP_355 TMP_362 TMP_393 TMP_396 TMP_398) in (let TMP_400 \def (Bind Abbr) in +(let TMP_401 \def (THead TMP_400 u1 t3) in (let TMP_402 \def (lift h d +TMP_401) in (let TMP_403 \def (Bind Abbr) in (let TMP_404 \def (lift_head +TMP_403 u1 t3 h d) in (eq_ind_r T TMP_345 TMP_349 TMP_399 TMP_402 +TMP_404))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) in +(let TMP_461 \def (\lambda (b: B).(\lambda (H0: (not (eq B b Abst))).(\lambda +(t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3 t4)).(\lambda (H2: ((\forall +(h: nat).(\forall (d: nat).(pr0 (lift h d t3) (lift h d t4)))))).(\lambda (u: +T).(\lambda (h: nat).(\lambda (d: nat).(let TMP_406 \def (Bind b) in (let +TMP_407 \def (lift h d u) in (let TMP_408 \def (Bind b) in (let TMP_409 \def +(s TMP_408 d) in (let TMP_410 \def (S O) in (let TMP_411 \def (lift TMP_410 O +t3) in (let TMP_412 \def (lift h TMP_409 TMP_411) in (let TMP_413 \def (THead +TMP_406 TMP_407 TMP_412) in (let TMP_415 \def (\lambda (t: T).(let TMP_414 +\def (lift h d t4) in (pr0 t TMP_414))) in (let TMP_416 \def (S O) in (let +TMP_417 \def (plus TMP_416 d) in (let TMP_425 \def (\lambda (n: nat).(let +TMP_418 \def (Bind b) in (let TMP_419 \def (lift h d u) in (let TMP_420 \def +(S O) in (let TMP_421 \def (lift TMP_420 O t3) in (let TMP_422 \def (lift h n +TMP_421) in (let TMP_423 \def (THead TMP_418 TMP_419 TMP_422) in (let TMP_424 +\def (lift h d t4) in (pr0 TMP_423 TMP_424))))))))) in (let TMP_426 \def (S +O) in (let TMP_427 \def (lift h d t3) in (let TMP_428 \def (lift TMP_426 O +TMP_427) in (let TMP_433 \def (\lambda (t: T).(let TMP_429 \def (Bind b) in +(let TMP_430 \def (lift h d u) in (let TMP_431 \def (THead TMP_429 TMP_430 t) +in (let TMP_432 \def (lift h d t4) in (pr0 TMP_431 TMP_432)))))) in (let +TMP_434 \def (lift h d t3) in (let TMP_435 \def (lift h d t4) in (let TMP_436 +\def (H2 h d) in (let TMP_437 \def (lift h d u) in (let TMP_438 \def +(pr0_zeta b H0 TMP_434 TMP_435 TMP_436 TMP_437) in (let TMP_439 \def (S O) in +(let TMP_440 \def (plus TMP_439 d) in (let TMP_441 \def (S O) in (let TMP_442 +\def (lift TMP_441 O t3) in (let TMP_443 \def (lift h TMP_440 TMP_442) in +(let TMP_444 \def (S O) in (let TMP_445 \def (le_O_n d) in (let TMP_446 \def +(lift_d t3 h TMP_444 d O TMP_445) in (let TMP_447 \def (eq_ind_r T TMP_428 +TMP_433 TMP_438 TMP_443 TMP_446) in (let TMP_448 \def (S d) in (let TMP_449 +\def (S d) in (let TMP_450 \def (refl_equal nat TMP_449) in (let TMP_451 \def +(eq_ind nat TMP_417 TMP_425 TMP_447 TMP_448 TMP_450) in (let TMP_452 \def +(Bind b) in (let TMP_453 \def (S O) in (let TMP_454 \def (lift TMP_453 O t3) +in (let TMP_455 \def (THead TMP_452 u TMP_454) in (let TMP_456 \def (lift h d +TMP_455) in (let TMP_457 \def (Bind b) in (let TMP_458 \def (S O) in (let +TMP_459 \def (lift TMP_458 O t3) in (let TMP_460 \def (lift_head TMP_457 u +TMP_459 h d) in (eq_ind_r T TMP_413 TMP_415 TMP_451 TMP_456 +TMP_460))))))))))))))))))))))))))))))))))))))))))))))))))))) in (let TMP_482 +\def (\lambda (t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3 t4)).(\lambda +(H1: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t3) (lift h d +t4)))))).(\lambda (u: T).(\lambda (h: nat).(\lambda (d: nat).(let TMP_462 +\def (Flat Cast) in (let TMP_463 \def (lift h d u) in (let TMP_464 \def (Flat +Cast) in (let TMP_465 \def (s TMP_464 d) in (let TMP_466 \def (lift h TMP_465 +t3) in (let TMP_467 \def (THead TMP_462 TMP_463 TMP_466) in (let TMP_469 \def +(\lambda (t: T).(let TMP_468 \def (lift h d t4) in (pr0 t TMP_468))) in (let +TMP_470 \def (Flat Cast) in (let TMP_471 \def (s TMP_470 d) in (let TMP_472 +\def (lift h TMP_471 t3) in (let TMP_473 \def (lift h d t4) in (let TMP_474 +\def (H1 h d) in (let TMP_475 \def (lift h d u) in (let TMP_476 \def (pr0_tau +TMP_472 TMP_473 TMP_474 TMP_475) in (let TMP_477 \def (Flat Cast) in (let +TMP_478 \def (THead TMP_477 u t3) in (let TMP_479 \def (lift h d TMP_478) in +(let TMP_480 \def (Flat Cast) in (let TMP_481 \def (lift_head TMP_480 u t3 h +d) in (eq_ind_r T TMP_467 TMP_469 TMP_476 TMP_479 +TMP_481))))))))))))))))))))))))))) in (pr0_ind TMP_3 TMP_5 TMP_39 TMP_132 +TMP_339 TMP_405 TMP_461 TMP_482 t1 t2 H))))))))))). -theorem pr0_subst0_back: - \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst0 -i u2 t1 t2) \to (\forall (u1: T).((pr0 u1 u2) \to (ex2 T (\lambda (t: -T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t t2))))))))) +theorem pr0_gen_abbr: + \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Abbr) u1 +t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead +(Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda +(u2: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y)) +(\lambda (y: T).(subst0 O u2 y t2))))))) (pr0 t1 (lift (S O) O x)))))) \def - \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda -(H: (subst0 i u2 t1 t2)).(subst0_ind (\lambda (n: nat).(\lambda (t: -T).(\lambda (t0: T).(\lambda (t3: T).(\forall (u1: T).((pr0 u1 t) \to (ex2 T -(\lambda (t4: T).(subst0 n u1 t0 t4)) (\lambda (t4: T).(pr0 t4 t3))))))))) -(\lambda (v: T).(\lambda (i0: nat).(\lambda (u1: T).(\lambda (H0: (pr0 u1 -v)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1 (TLRef i0) t)) (\lambda (t: -T).(pr0 t (lift (S i0) O v))) (lift (S i0) O u1) (subst0_lref u1 i0) -(pr0_lift u1 v H0 (S i0) O)))))) (\lambda (v: T).(\lambda (u3: T).(\lambda -(u1: T).(\lambda (i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1: -((\forall (u4: T).((pr0 u4 v) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t)) -(\lambda (t: T).(pr0 t u3))))))).(\lambda (t: T).(\lambda (k: K).(\lambda -(u0: T).(\lambda (H2: (pr0 u0 v)).(ex2_ind T (\lambda (t0: T).(subst0 i0 u0 -u1 t0)) (\lambda (t0: T).(pr0 t0 u3)) (ex2 T (\lambda (t0: T).(subst0 i0 u0 -(THead k u1 t) t0)) (\lambda (t0: T).(pr0 t0 (THead k u3 t)))) (\lambda (x: -T).(\lambda (H3: (subst0 i0 u0 u1 x)).(\lambda (H4: (pr0 x u3)).(ex_intro2 T -(\lambda (t0: T).(subst0 i0 u0 (THead k u1 t) t0)) (\lambda (t0: T).(pr0 t0 -(THead k u3 t))) (THead k x t) (subst0_fst u0 x u1 i0 H3 t k) (pr0_comp x u3 -H4 t t (pr0_refl t) k))))) (H1 u0 H2)))))))))))) (\lambda (k: K).(\lambda (v: -T).(\lambda (t3: T).(\lambda (t4: T).(\lambda (i0: nat).(\lambda (_: (subst0 -(s k i0) v t4 t3)).(\lambda (H1: ((\forall (u1: T).((pr0 u1 v) \to (ex2 T -(\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t -t3))))))).(\lambda (u: T).(\lambda (u1: T).(\lambda (H2: (pr0 u1 v)).(ex2_ind -T (\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t t3)) (ex2 -T (\lambda (t: T).(subst0 i0 u1 (THead k u t4) t)) (\lambda (t: T).(pr0 t -(THead k u t3)))) (\lambda (x: T).(\lambda (H3: (subst0 (s k i0) u1 t4 -x)).(\lambda (H4: (pr0 x t3)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1 -(THead k u t4) t)) (\lambda (t: T).(pr0 t (THead k u t3))) (THead k u x) -(subst0_snd k u1 x t4 i0 H3 u) (pr0_comp u u (pr0_refl u) x t3 H4 k))))) (H1 -u1 H2)))))))))))) (\lambda (v: T).(\lambda (u1: T).(\lambda (u3: T).(\lambda -(i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1: ((\forall (u4: -T).((pr0 u4 v) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t)) (\lambda (t: -T).(pr0 t u3))))))).(\lambda (k: K).(\lambda (t3: T).(\lambda (t4: -T).(\lambda (_: (subst0 (s k i0) v t3 t4)).(\lambda (H3: ((\forall (u4: -T).((pr0 u4 v) \to (ex2 T (\lambda (t: T).(subst0 (s k i0) u4 t3 t)) (\lambda -(t: T).(pr0 t t4))))))).(\lambda (u0: T).(\lambda (H4: (pr0 u0 v)).(ex2_ind T -(\lambda (t: T).(subst0 (s k i0) u0 t3 t)) (\lambda (t: T).(pr0 t t4)) (ex2 T -(\lambda (t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 t -(THead k u3 t4)))) (\lambda (x: T).(\lambda (H5: (subst0 (s k i0) u0 t3 -x)).(\lambda (H6: (pr0 x t4)).(ex2_ind T (\lambda (t: T).(subst0 i0 u0 u1 t)) -(\lambda (t: T).(pr0 t u3)) (ex2 T (\lambda (t: T).(subst0 i0 u0 (THead k u1 -t3) t)) (\lambda (t: T).(pr0 t (THead k u3 t4)))) (\lambda (x0: T).(\lambda -(H7: (subst0 i0 u0 u1 x0)).(\lambda (H8: (pr0 x0 u3)).(ex_intro2 T (\lambda -(t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 t (THead k u3 -t4))) (THead k x0 x) (subst0_both u0 u1 x0 i0 H7 k t3 x H5) (pr0_comp x0 u3 -H8 x t4 H6 k))))) (H1 u0 H4))))) (H3 u0 H4))))))))))))))) i u2 t1 t2 H))))). -(* COMMENTS -Initial nodes: 979 -END *) + \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead +(Bind Abbr) u1 t1) x)).(let TMP_1 \def (Bind Abbr) in (let TMP_2 \def (THead +TMP_1 u1 t1) in (let TMP_3 \def (\lambda (t: T).(pr0 t x)) in (let TMP_17 +\def (\lambda (_: T).(let TMP_6 \def (\lambda (u2: T).(\lambda (t2: T).(let +TMP_4 \def (Bind Abbr) in (let TMP_5 \def (THead TMP_4 u2 t2) in (eq T x +TMP_5))))) in (let TMP_7 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) +in (let TMP_12 \def (\lambda (u2: T).(\lambda (t2: T).(let TMP_8 \def (pr0 t1 +t2) in (let TMP_9 \def (\lambda (y: T).(pr0 t1 y)) in (let TMP_10 \def +(\lambda (y: T).(subst0 O u2 y t2)) in (let TMP_11 \def (ex2 T TMP_9 TMP_10) +in (or TMP_8 TMP_11))))))) in (let TMP_13 \def (ex3_2 T T TMP_6 TMP_7 TMP_12) +in (let TMP_14 \def (S O) in (let TMP_15 \def (lift TMP_14 O x) in (let +TMP_16 \def (pr0 t1 TMP_15) in (or TMP_13 TMP_16))))))))) in (let TMP_448 +\def (\lambda (y: T).(\lambda (H0: (pr0 y x)).(let TMP_31 \def (\lambda (t: +T).(\lambda (t0: T).((eq T t (THead (Bind Abbr) u1 t1)) \to (let TMP_20 \def +(\lambda (u2: T).(\lambda (t2: T).(let TMP_18 \def (Bind Abbr) in (let TMP_19 +\def (THead TMP_18 u2 t2) in (eq T t0 TMP_19))))) in (let TMP_21 \def +(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) in (let TMP_26 \def (\lambda +(u2: T).(\lambda (t2: T).(let TMP_22 \def (pr0 t1 t2) in (let TMP_23 \def +(\lambda (y0: T).(pr0 t1 y0)) in (let TMP_24 \def (\lambda (y0: T).(subst0 O +u2 y0 t2)) in (let TMP_25 \def (ex2 T TMP_23 TMP_24) in (or TMP_22 +TMP_25))))))) in (let TMP_27 \def (ex3_2 T T TMP_20 TMP_21 TMP_26) in (let +TMP_28 \def (S O) in (let TMP_29 \def (lift TMP_28 O t0) in (let TMP_30 \def +(pr0 t1 TMP_29) in (or TMP_27 TMP_30))))))))))) in (let TMP_91 \def (\lambda +(t: T).(\lambda (H1: (eq T t (THead (Bind Abbr) u1 t1))).(let TMP_32 \def +(\lambda (e: T).e) in (let TMP_33 \def (Bind Abbr) in (let TMP_34 \def (THead +TMP_33 u1 t1) in (let H2 \def (f_equal T T TMP_32 t TMP_34 H1) in (let TMP_35 +\def (Bind Abbr) in (let TMP_36 \def (THead TMP_35 u1 t1) in (let TMP_50 \def +(\lambda (t0: T).(let TMP_39 \def (\lambda (u2: T).(\lambda (t2: T).(let +TMP_37 \def (Bind Abbr) in (let TMP_38 \def (THead TMP_37 u2 t2) in (eq T t0 +TMP_38))))) in (let TMP_40 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 +u2))) in (let TMP_45 \def (\lambda (u2: T).(\lambda (t2: T).(let TMP_41 \def +(pr0 t1 t2) in (let TMP_42 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_43 +\def (\lambda (y0: T).(subst0 O u2 y0 t2)) in (let TMP_44 \def (ex2 T TMP_42 +TMP_43) in (or TMP_41 TMP_44))))))) in (let TMP_46 \def (ex3_2 T T TMP_39 +TMP_40 TMP_45) in (let TMP_47 \def (S O) in (let TMP_48 \def (lift TMP_47 O +t0) in (let TMP_49 \def (pr0 t1 TMP_48) in (or TMP_46 TMP_49))))))))) in (let +TMP_55 \def (\lambda (u2: T).(\lambda (t2: T).(let TMP_51 \def (Bind Abbr) in +(let TMP_52 \def (THead TMP_51 u1 t1) in (let TMP_53 \def (Bind Abbr) in (let +TMP_54 \def (THead TMP_53 u2 t2) in (eq T TMP_52 TMP_54))))))) in (let TMP_56 +\def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) in (let TMP_61 \def +(\lambda (u2: T).(\lambda (t2: T).(let TMP_57 \def (pr0 t1 t2) in (let TMP_58 +\def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_59 \def (\lambda (y0: +T).(subst0 O u2 y0 t2)) in (let TMP_60 \def (ex2 T TMP_58 TMP_59) in (or +TMP_57 TMP_60))))))) in (let TMP_62 \def (ex3_2 T T TMP_55 TMP_56 TMP_61) in +(let TMP_63 \def (S O) in (let TMP_64 \def (Bind Abbr) in (let TMP_65 \def +(THead TMP_64 u1 t1) in (let TMP_66 \def (lift TMP_63 O TMP_65) in (let +TMP_67 \def (pr0 t1 TMP_66) in (let TMP_72 \def (\lambda (u2: T).(\lambda +(t2: T).(let TMP_68 \def (Bind Abbr) in (let TMP_69 \def (THead TMP_68 u1 t1) +in (let TMP_70 \def (Bind Abbr) in (let TMP_71 \def (THead TMP_70 u2 t2) in +(eq T TMP_69 TMP_71))))))) in (let TMP_73 \def (\lambda (u2: T).(\lambda (_: +T).(pr0 u1 u2))) in (let TMP_78 \def (\lambda (u2: T).(\lambda (t2: T).(let +TMP_74 \def (pr0 t1 t2) in (let TMP_75 \def (\lambda (y0: T).(pr0 t1 y0)) in +(let TMP_76 \def (\lambda (y0: T).(subst0 O u2 y0 t2)) in (let TMP_77 \def +(ex2 T TMP_75 TMP_76) in (or TMP_74 TMP_77))))))) in (let TMP_79 \def (Bind +Abbr) in (let TMP_80 \def (THead TMP_79 u1 t1) in (let TMP_81 \def +(refl_equal T TMP_80) in (let TMP_82 \def (pr0_refl u1) in (let TMP_83 \def +(pr0 t1 t1) in (let TMP_84 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_85 +\def (\lambda (y0: T).(subst0 O u1 y0 t1)) in (let TMP_86 \def (ex2 T TMP_84 +TMP_85) in (let TMP_87 \def (pr0_refl t1) in (let TMP_88 \def (or_introl +TMP_83 TMP_86 TMP_87) in (let TMP_89 \def (ex3_2_intro T T TMP_72 TMP_73 +TMP_78 u1 t1 TMP_81 TMP_82 TMP_88) in (let TMP_90 \def (or_introl TMP_62 +TMP_67 TMP_89) in (eq_ind_r T TMP_36 TMP_50 TMP_90 t +H2)))))))))))))))))))))))))))))))))) in (let TMP_191 \def (\lambda (u0: +T).(\lambda (u2: T).(\lambda (H1: (pr0 u0 u2)).(\lambda (H2: (((eq T u0 +(THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: +T).(eq T u2 (THead (Bind Abbr) u3 t2)))) (\lambda (u3: T).(\lambda (_: +T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T +(\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t2))))))) (pr0 +t1 (lift (S O) O u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H3: +(pr0 t0 t2)).(\lambda (H4: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or +(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u3 +t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: +T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) +(\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O +t2)))))).(\lambda (k: K).(\lambda (H5: (eq T (THead k u0 t0) (THead (Bind +Abbr) u1 t1))).(let TMP_92 \def (\lambda (e: T).(match e with [(TSort _) +\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0])) in +(let TMP_93 \def (THead k u0 t0) in (let TMP_94 \def (Bind Abbr) in (let +TMP_95 \def (THead TMP_94 u1 t1) in (let H6 \def (f_equal T K TMP_92 TMP_93 +TMP_95 H5) in (let TMP_96 \def (\lambda (e: T).(match e with [(TSort _) +\Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t])) in +(let TMP_97 \def (THead k u0 t0) in (let TMP_98 \def (Bind Abbr) in (let +TMP_99 \def (THead TMP_98 u1 t1) in (let H7 \def (f_equal T T TMP_96 TMP_97 +TMP_99 H5) in (let TMP_100 \def (\lambda (e: T).(match e with [(TSort _) +\Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t])) in +(let TMP_101 \def (THead k u0 t0) in (let TMP_102 \def (Bind Abbr) in (let +TMP_103 \def (THead TMP_102 u1 t1) in (let H8 \def (f_equal T T TMP_100 +TMP_101 TMP_103 H5) in (let TMP_189 \def (\lambda (H9: (eq T u0 u1)).(\lambda +(H10: (eq K k (Bind Abbr))).(let TMP_104 \def (Bind Abbr) in (let TMP_120 +\def (\lambda (k0: K).(let TMP_108 \def (\lambda (u3: T).(\lambda (t3: +T).(let TMP_105 \def (THead k0 u2 t2) in (let TMP_106 \def (Bind Abbr) in +(let TMP_107 \def (THead TMP_106 u3 t3) in (eq T TMP_105 TMP_107)))))) in +(let TMP_109 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let +TMP_114 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_110 \def (pr0 t1 t3) +in (let TMP_111 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_112 \def +(\lambda (y0: T).(subst0 O u3 y0 t3)) in (let TMP_113 \def (ex2 T TMP_111 +TMP_112) in (or TMP_110 TMP_113))))))) in (let TMP_115 \def (ex3_2 T T +TMP_108 TMP_109 TMP_114) in (let TMP_116 \def (S O) in (let TMP_117 \def +(THead k0 u2 t2) in (let TMP_118 \def (lift TMP_116 O TMP_117) in (let +TMP_119 \def (pr0 t1 TMP_118) in (or TMP_115 TMP_119)))))))))) in (let +TMP_134 \def (\lambda (t: T).((eq T t (THead (Bind Abbr) u1 t1)) \to (let +TMP_123 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_121 \def (Bind Abbr) +in (let TMP_122 \def (THead TMP_121 u3 t3) in (eq T t2 TMP_122))))) in (let +TMP_124 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let TMP_129 +\def (\lambda (u3: T).(\lambda (t3: T).(let TMP_125 \def (pr0 t1 t3) in (let +TMP_126 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_127 \def (\lambda (y0: +T).(subst0 O u3 y0 t3)) in (let TMP_128 \def (ex2 T TMP_126 TMP_127) in (or +TMP_125 TMP_128))))))) in (let TMP_130 \def (ex3_2 T T TMP_123 TMP_124 +TMP_129) in (let TMP_131 \def (S O) in (let TMP_132 \def (lift TMP_131 O t2) +in (let TMP_133 \def (pr0 t1 TMP_132) in (or TMP_130 TMP_133)))))))))) in +(let H11 \def (eq_ind T t0 TMP_134 H4 t1 H8) in (let TMP_135 \def (\lambda +(t: T).(pr0 t t2)) in (let H12 \def (eq_ind T t0 TMP_135 H3 t1 H8) in (let +TMP_149 \def (\lambda (t: T).((eq T t (THead (Bind Abbr) u1 t1)) \to (let +TMP_138 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_136 \def (Bind Abbr) +in (let TMP_137 \def (THead TMP_136 u3 t3) in (eq T u2 TMP_137))))) in (let +TMP_139 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let TMP_144 +\def (\lambda (u3: T).(\lambda (t3: T).(let TMP_140 \def (pr0 t1 t3) in (let +TMP_141 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_142 \def (\lambda (y0: +T).(subst0 O u3 y0 t3)) in (let TMP_143 \def (ex2 T TMP_141 TMP_142) in (or +TMP_140 TMP_143))))))) in (let TMP_145 \def (ex3_2 T T TMP_138 TMP_139 +TMP_144) in (let TMP_146 \def (S O) in (let TMP_147 \def (lift TMP_146 O u2) +in (let TMP_148 \def (pr0 t1 TMP_147) in (or TMP_145 TMP_148)))))))))) in +(let H13 \def (eq_ind T u0 TMP_149 H2 u1 H9) in (let TMP_150 \def (\lambda +(t: T).(pr0 t u2)) in (let H14 \def (eq_ind T u0 TMP_150 H1 u1 H9) in (let +TMP_155 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_151 \def (Bind Abbr) +in (let TMP_152 \def (THead TMP_151 u2 t2) in (let TMP_153 \def (Bind Abbr) +in (let TMP_154 \def (THead TMP_153 u3 t3) in (eq T TMP_152 TMP_154))))))) in +(let TMP_156 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let +TMP_161 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_157 \def (pr0 t1 t3) +in (let TMP_158 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_159 \def +(\lambda (y0: T).(subst0 O u3 y0 t3)) in (let TMP_160 \def (ex2 T TMP_158 +TMP_159) in (or TMP_157 TMP_160))))))) in (let TMP_162 \def (ex3_2 T T +TMP_155 TMP_156 TMP_161) in (let TMP_163 \def (S O) in (let TMP_164 \def +(Bind Abbr) in (let TMP_165 \def (THead TMP_164 u2 t2) in (let TMP_166 \def +(lift TMP_163 O TMP_165) in (let TMP_167 \def (pr0 t1 TMP_166) in (let +TMP_172 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_168 \def (Bind Abbr) +in (let TMP_169 \def (THead TMP_168 u2 t2) in (let TMP_170 \def (Bind Abbr) +in (let TMP_171 \def (THead TMP_170 u3 t3) in (eq T TMP_169 TMP_171))))))) in +(let TMP_173 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let +TMP_178 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_174 \def (pr0 t1 t3) +in (let TMP_175 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_176 \def +(\lambda (y0: T).(subst0 O u3 y0 t3)) in (let TMP_177 \def (ex2 T TMP_175 +TMP_176) in (or TMP_174 TMP_177))))))) in (let TMP_179 \def (Bind Abbr) in +(let TMP_180 \def (THead TMP_179 u2 t2) in (let TMP_181 \def (refl_equal T +TMP_180) in (let TMP_182 \def (pr0 t1 t2) in (let TMP_183 \def (\lambda (y0: +T).(pr0 t1 y0)) in (let TMP_184 \def (\lambda (y0: T).(subst0 O u2 y0 t2)) in +(let TMP_185 \def (ex2 T TMP_183 TMP_184) in (let TMP_186 \def (or_introl +TMP_182 TMP_185 H12) in (let TMP_187 \def (ex3_2_intro T T TMP_172 TMP_173 +TMP_178 u2 t2 TMP_181 H14 TMP_186) in (let TMP_188 \def (or_introl TMP_162 +TMP_167 TMP_187) in (eq_ind_r K TMP_104 TMP_120 TMP_188 k +H10))))))))))))))))))))))))))))))))))) in (let TMP_190 \def (TMP_189 H7) in +(TMP_190 H6)))))))))))))))))))))))))))) in (let TMP_217 \def (\lambda (u: +T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda (_: +(((eq T v1 (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u2: +T).(\lambda (t2: T).(eq T v2 (THead (Bind Abbr) u2 t2)))) (\lambda (u2: +T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2: T).(or (pr0 +t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u2 y0 +t2))))))) (pr0 t1 (lift (S O) O v2)))))).(\lambda (t0: T).(\lambda (t2: +T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Abbr) u1 +t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead +(Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda +(u2: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) +(\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t1 (lift (S O) O +t2)))))).(\lambda (H5: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) +(THead (Bind Abbr) u1 t1))).(let TMP_192 \def (Flat Appl) in (let TMP_193 +\def (Bind Abst) in (let TMP_194 \def (THead TMP_193 u t0) in (let TMP_195 +\def (THead TMP_192 v1 TMP_194) in (let TMP_196 \def (\lambda (ee: T).(match +ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k +_ _) \Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat _) +\Rightarrow True])])) in (let TMP_197 \def (Bind Abbr) in (let TMP_198 \def +(THead TMP_197 u1 t1) in (let H6 \def (eq_ind T TMP_195 TMP_196 I TMP_198 H5) +in (let TMP_203 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_199 \def +(Bind Abbr) in (let TMP_200 \def (THead TMP_199 v2 t2) in (let TMP_201 \def +(Bind Abbr) in (let TMP_202 \def (THead TMP_201 u2 t3) in (eq T TMP_200 +TMP_202))))))) in (let TMP_204 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 +u2))) in (let TMP_209 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_205 +\def (pr0 t1 t3) in (let TMP_206 \def (\lambda (y0: T).(pr0 t1 y0)) in (let +TMP_207 \def (\lambda (y0: T).(subst0 O u2 y0 t3)) in (let TMP_208 \def (ex2 +T TMP_206 TMP_207) in (or TMP_205 TMP_208))))))) in (let TMP_210 \def (ex3_2 +T T TMP_203 TMP_204 TMP_209) in (let TMP_211 \def (S O) in (let TMP_212 \def +(Bind Abbr) in (let TMP_213 \def (THead TMP_212 v2 t2) in (let TMP_214 \def +(lift TMP_211 O TMP_213) in (let TMP_215 \def (pr0 t1 TMP_214) in (let +TMP_216 \def (or TMP_210 TMP_215) in (False_ind TMP_216 +H6))))))))))))))))))))))))))))) in (let TMP_251 \def (\lambda (b: B).(\lambda +(_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 +v1 v2)).(\lambda (_: (((eq T v1 (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T +(\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead (Bind Abbr) u2 t2)))) +(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2: +T).(or (pr0 t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: +T).(subst0 O u2 y0 t2))))))) (pr0 t1 (lift (S O) O v2)))))).(\lambda (u0: +T).(\lambda (u2: T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead +(Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq +T u2 (THead (Bind Abbr) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 +u3))) (\lambda (u3: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y0: +T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t2))))))) (pr0 t1 (lift (S +O) O u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 +t2)).(\lambda (_: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T +(\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u3 t3)))) +(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: +T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: +T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (H8: (eq +T (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead (Bind Abbr) u1 +t1))).(let TMP_218 \def (Flat Appl) in (let TMP_219 \def (Bind b) in (let +TMP_220 \def (THead TMP_219 u0 t0) in (let TMP_221 \def (THead TMP_218 v1 +TMP_220) in (let TMP_222 \def (\lambda (ee: T).(match ee with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow +(match k with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) in +(let TMP_223 \def (Bind Abbr) in (let TMP_224 \def (THead TMP_223 u1 t1) in +(let H9 \def (eq_ind T TMP_221 TMP_222 I TMP_224 H8) in (let TMP_233 \def +(\lambda (u3: T).(\lambda (t3: T).(let TMP_225 \def (Bind b) in (let TMP_226 +\def (Flat Appl) in (let TMP_227 \def (S O) in (let TMP_228 \def (lift +TMP_227 O v2) in (let TMP_229 \def (THead TMP_226 TMP_228 t2) in (let TMP_230 +\def (THead TMP_225 u2 TMP_229) in (let TMP_231 \def (Bind Abbr) in (let +TMP_232 \def (THead TMP_231 u3 t3) in (eq T TMP_230 TMP_232))))))))))) in +(let TMP_234 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let +TMP_239 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_235 \def (pr0 t1 t3) +in (let TMP_236 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_237 \def +(\lambda (y0: T).(subst0 O u3 y0 t3)) in (let TMP_238 \def (ex2 T TMP_236 +TMP_237) in (or TMP_235 TMP_238))))))) in (let TMP_240 \def (ex3_2 T T +TMP_233 TMP_234 TMP_239) in (let TMP_241 \def (S O) in (let TMP_242 \def +(Bind b) in (let TMP_243 \def (Flat Appl) in (let TMP_244 \def (S O) in (let +TMP_245 \def (lift TMP_244 O v2) in (let TMP_246 \def (THead TMP_243 TMP_245 +t2) in (let TMP_247 \def (THead TMP_242 u2 TMP_246) in (let TMP_248 \def +(lift TMP_241 O TMP_247) in (let TMP_249 \def (pr0 t1 TMP_248) in (let +TMP_250 \def (or TMP_240 TMP_249) in (False_ind TMP_250 +H9)))))))))))))))))))))))))))))))))))))) in (let TMP_333 \def (\lambda (u0: +T).(\lambda (u2: T).(\lambda (H1: (pr0 u0 u2)).(\lambda (H2: (((eq T u0 +(THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: +T).(eq T u2 (THead (Bind Abbr) u3 t2)))) (\lambda (u3: T).(\lambda (_: +T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T +(\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t2))))))) (pr0 +t1 (lift (S O) O u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H3: +(pr0 t0 t2)).(\lambda (H4: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or +(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u3 +t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: +T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) +(\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O +t2)))))).(\lambda (w: T).(\lambda (H5: (subst0 O u2 t2 w)).(\lambda (H6: (eq +T (THead (Bind Abbr) u0 t0) (THead (Bind Abbr) u1 t1))).(let TMP_252 \def +(\lambda (e: T).(match e with [(TSort _) \Rightarrow u0 | (TLRef _) +\Rightarrow u0 | (THead _ t _) \Rightarrow t])) in (let TMP_253 \def (Bind +Abbr) in (let TMP_254 \def (THead TMP_253 u0 t0) in (let TMP_255 \def (Bind +Abbr) in (let TMP_256 \def (THead TMP_255 u1 t1) in (let H7 \def (f_equal T T +TMP_252 TMP_254 TMP_256 H6) in (let TMP_257 \def (\lambda (e: T).(match e +with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t) +\Rightarrow t])) in (let TMP_258 \def (Bind Abbr) in (let TMP_259 \def (THead +TMP_258 u0 t0) in (let TMP_260 \def (Bind Abbr) in (let TMP_261 \def (THead +TMP_260 u1 t1) in (let H8 \def (f_equal T T TMP_257 TMP_259 TMP_261 H6) in +(let TMP_332 \def (\lambda (H9: (eq T u0 u1)).(let TMP_275 \def (\lambda (t: +T).((eq T t (THead (Bind Abbr) u1 t1)) \to (let TMP_264 \def (\lambda (u3: +T).(\lambda (t3: T).(let TMP_262 \def (Bind Abbr) in (let TMP_263 \def (THead +TMP_262 u3 t3) in (eq T t2 TMP_263))))) in (let TMP_265 \def (\lambda (u3: +T).(\lambda (_: T).(pr0 u1 u3))) in (let TMP_270 \def (\lambda (u3: +T).(\lambda (t3: T).(let TMP_266 \def (pr0 t1 t3) in (let TMP_267 \def +(\lambda (y0: T).(pr0 t1 y0)) in (let TMP_268 \def (\lambda (y0: T).(subst0 O +u3 y0 t3)) in (let TMP_269 \def (ex2 T TMP_267 TMP_268) in (or TMP_266 +TMP_269))))))) in (let TMP_271 \def (ex3_2 T T TMP_264 TMP_265 TMP_270) in +(let TMP_272 \def (S O) in (let TMP_273 \def (lift TMP_272 O t2) in (let +TMP_274 \def (pr0 t1 TMP_273) in (or TMP_271 TMP_274)))))))))) in (let H10 +\def (eq_ind T t0 TMP_275 H4 t1 H8) in (let TMP_276 \def (\lambda (t: T).(pr0 +t t2)) in (let H11 \def (eq_ind T t0 TMP_276 H3 t1 H8) in (let TMP_290 \def +(\lambda (t: T).((eq T t (THead (Bind Abbr) u1 t1)) \to (let TMP_279 \def +(\lambda (u3: T).(\lambda (t3: T).(let TMP_277 \def (Bind Abbr) in (let +TMP_278 \def (THead TMP_277 u3 t3) in (eq T u2 TMP_278))))) in (let TMP_280 +\def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let TMP_285 \def +(\lambda (u3: T).(\lambda (t3: T).(let TMP_281 \def (pr0 t1 t3) in (let +TMP_282 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_283 \def (\lambda (y0: +T).(subst0 O u3 y0 t3)) in (let TMP_284 \def (ex2 T TMP_282 TMP_283) in (or +TMP_281 TMP_284))))))) in (let TMP_286 \def (ex3_2 T T TMP_279 TMP_280 +TMP_285) in (let TMP_287 \def (S O) in (let TMP_288 \def (lift TMP_287 O u2) +in (let TMP_289 \def (pr0 t1 TMP_288) in (or TMP_286 TMP_289)))))))))) in +(let H12 \def (eq_ind T u0 TMP_290 H2 u1 H9) in (let TMP_291 \def (\lambda +(t: T).(pr0 t u2)) in (let H13 \def (eq_ind T u0 TMP_291 H1 u1 H9) in (let +TMP_296 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_292 \def (Bind Abbr) +in (let TMP_293 \def (THead TMP_292 u2 w) in (let TMP_294 \def (Bind Abbr) in +(let TMP_295 \def (THead TMP_294 u3 t3) in (eq T TMP_293 TMP_295))))))) in +(let TMP_297 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let +TMP_302 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_298 \def (pr0 t1 t3) +in (let TMP_299 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_300 \def +(\lambda (y0: T).(subst0 O u3 y0 t3)) in (let TMP_301 \def (ex2 T TMP_299 +TMP_300) in (or TMP_298 TMP_301))))))) in (let TMP_303 \def (ex3_2 T T +TMP_296 TMP_297 TMP_302) in (let TMP_304 \def (S O) in (let TMP_305 \def +(Bind Abbr) in (let TMP_306 \def (THead TMP_305 u2 w) in (let TMP_307 \def +(lift TMP_304 O TMP_306) in (let TMP_308 \def (pr0 t1 TMP_307) in (let +TMP_313 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_309 \def (Bind Abbr) +in (let TMP_310 \def (THead TMP_309 u2 w) in (let TMP_311 \def (Bind Abbr) in +(let TMP_312 \def (THead TMP_311 u3 t3) in (eq T TMP_310 TMP_312))))))) in +(let TMP_314 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let +TMP_319 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_315 \def (pr0 t1 t3) +in (let TMP_316 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_317 \def +(\lambda (y0: T).(subst0 O u3 y0 t3)) in (let TMP_318 \def (ex2 T TMP_316 +TMP_317) in (or TMP_315 TMP_318))))))) in (let TMP_320 \def (Bind Abbr) in +(let TMP_321 \def (THead TMP_320 u2 w) in (let TMP_322 \def (refl_equal T +TMP_321) in (let TMP_323 \def (pr0 t1 w) in (let TMP_324 \def (\lambda (y0: +T).(pr0 t1 y0)) in (let TMP_325 \def (\lambda (y0: T).(subst0 O u2 y0 w)) in +(let TMP_326 \def (ex2 T TMP_324 TMP_325) in (let TMP_327 \def (\lambda (y0: +T).(pr0 t1 y0)) in (let TMP_328 \def (\lambda (y0: T).(subst0 O u2 y0 w)) in +(let TMP_329 \def (ex_intro2 T TMP_327 TMP_328 t2 H11 H5) in (let TMP_330 +\def (or_intror TMP_323 TMP_326 TMP_329) in (let TMP_331 \def (ex3_2_intro T +T TMP_313 TMP_314 TMP_319 u2 w TMP_322 H13 TMP_330) in (or_introl TMP_303 +TMP_308 TMP_331)))))))))))))))))))))))))))))))))) in (TMP_332 +H7))))))))))))))))))))))))) in (let TMP_427 \def (\lambda (b: B).(\lambda +(H1: (not (eq B b Abst))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H2: +(pr0 t0 t2)).(\lambda (H3: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or +(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 +t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: +T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) +(\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t1 (lift (S O) O +t2)))))).(\lambda (u: T).(\lambda (H4: (eq T (THead (Bind b) u (lift (S O) O +t0)) (THead (Bind Abbr) u1 t1))).(let TMP_334 \def (\lambda (e: T).(match e +with [(TSort _) \Rightarrow b | (TLRef _) \Rightarrow b | (THead k _ _) +\Rightarrow (match k with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow +b])])) in (let TMP_335 \def (Bind b) in (let TMP_336 \def (S O) in (let +TMP_337 \def (lift TMP_336 O t0) in (let TMP_338 \def (THead TMP_335 u +TMP_337) in (let TMP_339 \def (Bind Abbr) in (let TMP_340 \def (THead TMP_339 +u1 t1) in (let H5 \def (f_equal T B TMP_334 TMP_338 TMP_340 H4) in (let +TMP_341 \def (\lambda (e: T).(match e with [(TSort _) \Rightarrow u | (TLRef +_) \Rightarrow u | (THead _ t _) \Rightarrow t])) in (let TMP_342 \def (Bind +b) in (let TMP_343 \def (S O) in (let TMP_344 \def (lift TMP_343 O t0) in +(let TMP_345 \def (THead TMP_342 u TMP_344) in (let TMP_346 \def (Bind Abbr) +in (let TMP_347 \def (THead TMP_346 u1 t1) in (let H6 \def (f_equal T T +TMP_341 TMP_345 TMP_347 H4) in (let TMP_362 \def (\lambda (e: T).(match e +with [(TSort _) \Rightarrow (let TMP_361 \def (\lambda (x0: nat).(let TMP_360 +\def (S O) in (plus x0 TMP_360))) in (lref_map TMP_361 O t0)) | (TLRef _) +\Rightarrow (let TMP_354 \def (\lambda (x0: nat).(let TMP_353 \def (S O) in +(plus x0 TMP_353))) in (lref_map TMP_354 O t0)) | (THead _ _ t) \Rightarrow +t])) in (let TMP_363 \def (Bind b) in (let TMP_364 \def (S O) in (let TMP_365 +\def (lift TMP_364 O t0) in (let TMP_366 \def (THead TMP_363 u TMP_365) in +(let TMP_367 \def (Bind Abbr) in (let TMP_368 \def (THead TMP_367 u1 t1) in +(let H7 \def (f_equal T T TMP_362 TMP_366 TMP_368 H4) in (let TMP_425 \def +(\lambda (_: (eq T u u1)).(\lambda (H9: (eq B b Abbr)).(let TMP_370 \def +(\lambda (b0: B).(let TMP_369 \def (eq B b0 Abst) in (not TMP_369))) in (let +H10 \def (eq_ind B b TMP_370 H1 Abbr H9) in (let TMP_384 \def (\lambda (t: +T).((eq T t0 (THead (Bind Abbr) u1 t)) \to (let TMP_373 \def (\lambda (u2: +T).(\lambda (t3: T).(let TMP_371 \def (Bind Abbr) in (let TMP_372 \def (THead +TMP_371 u2 t3) in (eq T t2 TMP_372))))) in (let TMP_374 \def (\lambda (u2: +T).(\lambda (_: T).(pr0 u1 u2))) in (let TMP_379 \def (\lambda (u2: +T).(\lambda (t3: T).(let TMP_375 \def (pr0 t t3) in (let TMP_376 \def +(\lambda (y0: T).(pr0 t y0)) in (let TMP_377 \def (\lambda (y0: T).(subst0 O +u2 y0 t3)) in (let TMP_378 \def (ex2 T TMP_376 TMP_377) in (or TMP_375 +TMP_378))))))) in (let TMP_380 \def (ex3_2 T T TMP_373 TMP_374 TMP_379) in +(let TMP_381 \def (S O) in (let TMP_382 \def (lift TMP_381 O t2) in (let +TMP_383 \def (pr0 t TMP_382) in (or TMP_380 TMP_383)))))))))) in (let TMP_385 +\def (S O) in (let TMP_386 \def (lift TMP_385 O t0) in (let H11 \def +(eq_ind_r T t1 TMP_384 H3 TMP_386 H7) in (let TMP_387 \def (S O) in (let +TMP_388 \def (lift TMP_387 O t0) in (let TMP_402 \def (\lambda (t: T).(let +TMP_391 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_389 \def (Bind Abbr) +in (let TMP_390 \def (THead TMP_389 u2 t3) in (eq T t2 TMP_390))))) in (let +TMP_392 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) in (let TMP_397 +\def (\lambda (u2: T).(\lambda (t3: T).(let TMP_393 \def (pr0 t t3) in (let +TMP_394 \def (\lambda (y0: T).(pr0 t y0)) in (let TMP_395 \def (\lambda (y0: +T).(subst0 O u2 y0 t3)) in (let TMP_396 \def (ex2 T TMP_394 TMP_395) in (or +TMP_393 TMP_396))))))) in (let TMP_398 \def (ex3_2 T T TMP_391 TMP_392 +TMP_397) in (let TMP_399 \def (S O) in (let TMP_400 \def (lift TMP_399 O t2) +in (let TMP_401 \def (pr0 t TMP_400) in (or TMP_398 TMP_401))))))))) in (let +TMP_405 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_403 \def (Bind Abbr) +in (let TMP_404 \def (THead TMP_403 u2 t3) in (eq T t2 TMP_404))))) in (let +TMP_406 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) in (let TMP_415 +\def (\lambda (u2: T).(\lambda (t3: T).(let TMP_407 \def (S O) in (let +TMP_408 \def (lift TMP_407 O t0) in (let TMP_409 \def (pr0 TMP_408 t3) in +(let TMP_412 \def (\lambda (y0: T).(let TMP_410 \def (S O) in (let TMP_411 +\def (lift TMP_410 O t0) in (pr0 TMP_411 y0)))) in (let TMP_413 \def (\lambda +(y0: T).(subst0 O u2 y0 t3)) in (let TMP_414 \def (ex2 T TMP_412 TMP_413) in +(or TMP_409 TMP_414))))))))) in (let TMP_416 \def (ex3_2 T T TMP_405 TMP_406 +TMP_415) in (let TMP_417 \def (S O) in (let TMP_418 \def (lift TMP_417 O t0) +in (let TMP_419 \def (S O) in (let TMP_420 \def (lift TMP_419 O t2) in (let +TMP_421 \def (pr0 TMP_418 TMP_420) in (let TMP_422 \def (S O) in (let TMP_423 +\def (pr0_lift t0 t2 H2 TMP_422 O) in (let TMP_424 \def (or_intror TMP_416 +TMP_421 TMP_423) in (eq_ind T TMP_388 TMP_402 TMP_424 t1 +H7)))))))))))))))))))))))) in (let TMP_426 \def (TMP_425 H6) in (TMP_426 +H5))))))))))))))))))))))))))))))))))) in (let TMP_447 \def (\lambda (t0: +T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead +(Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq +T t2 (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 +u2))) (\lambda (u2: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: +T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t1 (lift (S +O) O t2)))))).(\lambda (u: T).(\lambda (H3: (eq T (THead (Flat Cast) u t0) +(THead (Bind Abbr) u1 t1))).(let TMP_428 \def (Flat Cast) in (let TMP_429 +\def (THead TMP_428 u t0) in (let TMP_430 \def (\lambda (ee: T).(match ee +with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ +_) \Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat _) +\Rightarrow True])])) in (let TMP_431 \def (Bind Abbr) in (let TMP_432 \def +(THead TMP_431 u1 t1) in (let H4 \def (eq_ind T TMP_429 TMP_430 I TMP_432 H3) +in (let TMP_435 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_433 \def +(Bind Abbr) in (let TMP_434 \def (THead TMP_433 u2 t3) in (eq T t2 +TMP_434))))) in (let TMP_436 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 +u2))) in (let TMP_441 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_437 +\def (pr0 t1 t3) in (let TMP_438 \def (\lambda (y0: T).(pr0 t1 y0)) in (let +TMP_439 \def (\lambda (y0: T).(subst0 O u2 y0 t3)) in (let TMP_440 \def (ex2 +T TMP_438 TMP_439) in (or TMP_437 TMP_440))))))) in (let TMP_442 \def (ex3_2 +T T TMP_435 TMP_436 TMP_441) in (let TMP_443 \def (S O) in (let TMP_444 \def +(lift TMP_443 O t2) in (let TMP_445 \def (pr0 t1 TMP_444) in (let TMP_446 +\def (or TMP_442 TMP_445) in (False_ind TMP_446 H4))))))))))))))))))))) in +(pr0_ind TMP_31 TMP_91 TMP_191 TMP_217 TMP_251 TMP_333 TMP_427 TMP_447 y x +H0))))))))))) in (insert_eq T TMP_2 TMP_3 TMP_17 TMP_448 H))))))))). -theorem pr0_subst0_fwd: - \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst0 -i u2 t1 t2) \to (\forall (u1: T).((pr0 u2 u1) \to (ex2 T (\lambda (t: -T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t2 t))))))))) +theorem pr0_gen_void: + \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Void) u1 +t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead +(Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda +(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O x)))))) \def - \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda -(H: (subst0 i u2 t1 t2)).(subst0_ind (\lambda (n: nat).(\lambda (t: -T).(\lambda (t0: T).(\lambda (t3: T).(\forall (u1: T).((pr0 t u1) \to (ex2 T -(\lambda (t4: T).(subst0 n u1 t0 t4)) (\lambda (t4: T).(pr0 t3 t4))))))))) -(\lambda (v: T).(\lambda (i0: nat).(\lambda (u1: T).(\lambda (H0: (pr0 v -u1)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1 (TLRef i0) t)) (\lambda (t: -T).(pr0 (lift (S i0) O v) t)) (lift (S i0) O u1) (subst0_lref u1 i0) -(pr0_lift v u1 H0 (S i0) O)))))) (\lambda (v: T).(\lambda (u3: T).(\lambda -(u1: T).(\lambda (i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1: -((\forall (u4: T).((pr0 v u4) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t)) -(\lambda (t: T).(pr0 u3 t))))))).(\lambda (t: T).(\lambda (k: K).(\lambda -(u0: T).(\lambda (H2: (pr0 v u0)).(ex2_ind T (\lambda (t0: T).(subst0 i0 u0 -u1 t0)) (\lambda (t0: T).(pr0 u3 t0)) (ex2 T (\lambda (t0: T).(subst0 i0 u0 -(THead k u1 t) t0)) (\lambda (t0: T).(pr0 (THead k u3 t) t0))) (\lambda (x: -T).(\lambda (H3: (subst0 i0 u0 u1 x)).(\lambda (H4: (pr0 u3 x)).(ex_intro2 T -(\lambda (t0: T).(subst0 i0 u0 (THead k u1 t) t0)) (\lambda (t0: T).(pr0 -(THead k u3 t) t0)) (THead k x t) (subst0_fst u0 x u1 i0 H3 t k) (pr0_comp u3 -x H4 t t (pr0_refl t) k))))) (H1 u0 H2)))))))))))) (\lambda (k: K).(\lambda -(v: T).(\lambda (t3: T).(\lambda (t4: T).(\lambda (i0: nat).(\lambda (_: -(subst0 (s k i0) v t4 t3)).(\lambda (H1: ((\forall (u1: T).((pr0 v u1) \to -(ex2 T (\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t3 -t))))))).(\lambda (u: T).(\lambda (u1: T).(\lambda (H2: (pr0 v u1)).(ex2_ind -T (\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t3 t)) (ex2 -T (\lambda (t: T).(subst0 i0 u1 (THead k u t4) t)) (\lambda (t: T).(pr0 -(THead k u t3) t))) (\lambda (x: T).(\lambda (H3: (subst0 (s k i0) u1 t4 -x)).(\lambda (H4: (pr0 t3 x)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1 -(THead k u t4) t)) (\lambda (t: T).(pr0 (THead k u t3) t)) (THead k u x) -(subst0_snd k u1 x t4 i0 H3 u) (pr0_comp u u (pr0_refl u) t3 x H4 k))))) (H1 -u1 H2)))))))))))) (\lambda (v: T).(\lambda (u1: T).(\lambda (u3: T).(\lambda -(i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1: ((\forall (u4: -T).((pr0 v u4) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t)) (\lambda (t: -T).(pr0 u3 t))))))).(\lambda (k: K).(\lambda (t3: T).(\lambda (t4: -T).(\lambda (_: (subst0 (s k i0) v t3 t4)).(\lambda (H3: ((\forall (u4: -T).((pr0 v u4) \to (ex2 T (\lambda (t: T).(subst0 (s k i0) u4 t3 t)) (\lambda -(t: T).(pr0 t4 t))))))).(\lambda (u0: T).(\lambda (H4: (pr0 v u0)).(ex2_ind T -(\lambda (t: T).(subst0 (s k i0) u0 t3 t)) (\lambda (t: T).(pr0 t4 t)) (ex2 T -(\lambda (t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 (THead -k u3 t4) t))) (\lambda (x: T).(\lambda (H5: (subst0 (s k i0) u0 t3 -x)).(\lambda (H6: (pr0 t4 x)).(ex2_ind T (\lambda (t: T).(subst0 i0 u0 u1 t)) -(\lambda (t: T).(pr0 u3 t)) (ex2 T (\lambda (t: T).(subst0 i0 u0 (THead k u1 -t3) t)) (\lambda (t: T).(pr0 (THead k u3 t4) t))) (\lambda (x0: T).(\lambda -(H7: (subst0 i0 u0 u1 x0)).(\lambda (H8: (pr0 u3 x0)).(ex_intro2 T (\lambda -(t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 (THead k u3 t4) -t)) (THead k x0 x) (subst0_both u0 u1 x0 i0 H7 k t3 x H5) (pr0_comp u3 x0 H8 -t4 x H6 k))))) (H1 u0 H4))))) (H3 u0 H4))))))))))))))) i u2 t1 t2 H))))). -(* COMMENTS -Initial nodes: 979 -END *) - -theorem pr0_subst0: - \forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (\forall (v1: T).(\forall -(w1: T).(\forall (i: nat).((subst0 i v1 t1 w1) \to (\forall (v2: T).((pr0 v1 -v2) \to (or (pr0 w1 t2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: -T).(subst0 i v2 t2 w2)))))))))))) -\def - \lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr0 t1 t2)).(pr0_ind (\lambda -(t: T).(\lambda (t0: T).(\forall (v1: T).(\forall (w1: T).(\forall (i: -nat).((subst0 i v1 t w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1 -t0) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t0 -w2)))))))))))) (\lambda (t: T).(\lambda (v1: T).(\lambda (w1: T).(\lambda (i: -nat).(\lambda (H0: (subst0 i v1 t w1)).(\lambda (v2: T).(\lambda (H1: (pr0 v1 -v2)).(or_intror (pr0 w1 t) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: -T).(subst0 i v2 t w2))) (ex2_sym T (subst0 i v2 t) (pr0 w1) (pr0_subst0_fwd -v1 t w1 i H0 v2 H1)))))))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda (H0: -(pr0 u1 u2)).(\lambda (H1: ((\forall (v1: T).(\forall (w1: T).(\forall (i: -nat).((subst0 i v1 u1 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1 -u2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 u2 -w2)))))))))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (H2: (pr0 t3 -t4)).(\lambda (H3: ((\forall (v1: T).(\forall (w1: T).(\forall (i: -nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1 -t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 -w2)))))))))))).(\lambda (k: K).(\lambda (v1: T).(\lambda (w1: T).(\lambda (i: -nat).(\lambda (H4: (subst0 i v1 (THead k u1 t3) w1)).(\lambda (v2: -T).(\lambda (H5: (pr0 v1 v2)).(or3_ind (ex2 T (\lambda (u3: T).(eq T w1 -(THead k u3 t3))) (\lambda (u3: T).(subst0 i v1 u1 u3))) (ex2 T (\lambda (t5: -T).(eq T w1 (THead k u1 t5))) (\lambda (t5: T).(subst0 (s k i) v1 t3 t5))) -(ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead k u3 t5)))) -(\lambda (u3: T).(\lambda (_: T).(subst0 i v1 u1 u3))) (\lambda (_: -T).(\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))) (or (pr0 w1 (THead k u2 t4)) -(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 (THead k -u2 t4) w2)))) (\lambda (H6: (ex2 T (\lambda (u3: T).(eq T w1 (THead k u3 -t3))) (\lambda (u3: T).(subst0 i v1 u1 u3)))).(ex2_ind T (\lambda (u3: T).(eq -T w1 (THead k u3 t3))) (\lambda (u3: T).(subst0 i v1 u1 u3)) (or (pr0 w1 -(THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: -T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: T).(\lambda (H7: (eq T w1 -(THead k x t3))).(\lambda (H8: (subst0 i v1 u1 x)).(eq_ind_r T (THead k x t3) -(\lambda (t: T).(or (pr0 t (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 t -w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))))) (or_ind (pr0 x u2) -(ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 u2 w2))) -(or (pr0 (THead k x t3) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead -k x t3) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda -(H9: (pr0 x u2)).(or_introl (pr0 (THead k x t3) (THead k u2 t4)) (ex2 T -(\lambda (w2: T).(pr0 (THead k x t3) w2)) (\lambda (w2: T).(subst0 i v2 -(THead k u2 t4) w2))) (pr0_comp x u2 H9 t3 t4 H2 k))) (\lambda (H9: (ex2 T -(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)))).(ex2_ind -T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)) (or (pr0 -(THead k x t3) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x t3) -w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x0: -T).(\lambda (H10: (pr0 x x0)).(\lambda (H11: (subst0 i v2 u2 x0)).(or_intror -(pr0 (THead k x t3) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x -t3) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T -(\lambda (w2: T).(pr0 (THead k x t3) w2)) (\lambda (w2: T).(subst0 i v2 -(THead k u2 t4) w2)) (THead k x0 t4) (pr0_comp x x0 H10 t3 t4 H2 k) -(subst0_fst v2 x0 u2 i H11 t4 k)))))) H9)) (H1 v1 x i H8 v2 H5)) w1 H7)))) -H6)) (\lambda (H6: (ex2 T (\lambda (t5: T).(eq T w1 (THead k u1 t5))) -(\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq -T w1 (THead k u1 t5))) (\lambda (t5: T).(subst0 (s k i) v1 t3 t5)) (or (pr0 -w1 (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: -T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: T).(\lambda (H7: (eq T w1 -(THead k u1 x))).(\lambda (H8: (subst0 (s k i) v1 t3 x)).(eq_ind_r T (THead k -u1 x) (\lambda (t: T).(or (pr0 t (THead k u2 t4)) (ex2 T (\lambda (w2: -T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))))) (or_ind -(pr0 x t4) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s k -i) v2 t4 w2))) (or (pr0 (THead k u1 x) (THead k u2 t4)) (ex2 T (\lambda (w2: -T).(pr0 (THead k u1 x) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) -w2)))) (\lambda (H9: (pr0 x t4)).(or_introl (pr0 (THead k u1 x) (THead k u2 -t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k u1 x) w2)) (\lambda (w2: -T).(subst0 i v2 (THead k u2 t4) w2))) (pr0_comp u1 u2 H0 x t4 H9 k))) -(\lambda (H9: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s -k i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: -T).(subst0 (s k i) v2 t4 w2)) (or (pr0 (THead k u1 x) (THead k u2 t4)) (ex2 T -(\lambda (w2: T).(pr0 (THead k u1 x) w2)) (\lambda (w2: T).(subst0 i v2 -(THead k u2 t4) w2)))) (\lambda (x0: T).(\lambda (H10: (pr0 x x0)).(\lambda -(H11: (subst0 (s k i) v2 t4 x0)).(or_intror (pr0 (THead k u1 x) (THead k u2 -t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k u1 x) w2)) (\lambda (w2: -T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 -(THead k u1 x) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)) (THead -k u2 x0) (pr0_comp u1 u2 H0 x x0 H10 k) (subst0_snd k v2 x0 t4 i H11 u2)))))) -H9)) (H3 v1 x (s k i) H8 v2 H5)) w1 H7)))) H6)) (\lambda (H6: (ex3_2 T T -(\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead k u3 t5)))) (\lambda (u3: -T).(\lambda (_: T).(subst0 i v1 u1 u3))) (\lambda (_: T).(\lambda (t5: -T).(subst0 (s k i) v1 t3 t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda -(t5: T).(eq T w1 (THead k u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 -i v1 u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s k i) v1 t3 t5))) -(or (pr0 w1 (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda -(w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x0: T).(\lambda (x1: -T).(\lambda (H7: (eq T w1 (THead k x0 x1))).(\lambda (H8: (subst0 i v1 u1 -x0)).(\lambda (H9: (subst0 (s k i) v1 t3 x1)).(eq_ind_r T (THead k x0 x1) -(\lambda (t: T).(or (pr0 t (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 t -w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))))) (or_ind (pr0 x1 -t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s k i) v2 -t4 w2))) (or (pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: -T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) -w2)))) (\lambda (H10: (pr0 x1 t4)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: -T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2))) (or (pr0 (THead k x0 -x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) -(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (H11: (pr0 x0 -u2)).(or_introl (pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: -T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) -w2))) (pr0_comp x0 u2 H11 x1 t4 H10 k))) (\lambda (H11: (ex2 T (\lambda (w2: -T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda -(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead k -x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) -(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: T).(\lambda -(H12: (pr0 x0 x)).(\lambda (H13: (subst0 i v2 u2 x)).(or_intror (pr0 (THead k -x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) -(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda -(w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 -t4) w2)) (THead k x t4) (pr0_comp x0 x H12 x1 t4 H10 k) (subst0_fst v2 x u2 i -H13 t4 k)))))) H11)) (H1 v1 x0 i H8 v2 H5))) (\lambda (H10: (ex2 T (\lambda -(w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s k i) v2 t4 w2)))).(ex2_ind T -(\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s k i) v2 t4 w2)) (or -(pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k -x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: -T).(\lambda (H11: (pr0 x1 x)).(\lambda (H12: (subst0 (s k i) v2 t4 -x)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: -T).(subst0 i v2 u2 w2))) (or (pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T -(\lambda (w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 -(THead k u2 t4) w2)))) (\lambda (H13: (pr0 x0 u2)).(or_intror (pr0 (THead k -x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) -(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda -(w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 -t4) w2)) (THead k u2 x) (pr0_comp x0 u2 H13 x1 x H11 k) (subst0_snd k v2 x t4 -i H12 u2)))) (\lambda (H13: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda -(w2: T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) -(\lambda (w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead k x0 x1) (THead k u2 -t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: -T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x2: T).(\lambda (H14: (pr0 -x0 x2)).(\lambda (H15: (subst0 i v2 u2 x2)).(or_intror (pr0 (THead k x0 x1) -(THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) (\lambda -(w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 -(THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)) -(THead k x2 x) (pr0_comp x0 x2 H14 x1 x H11 k) (subst0_both v2 u2 x2 i H15 k -t4 x H12)))))) H13)) (H1 v1 x0 i H8 v2 H5))))) H10)) (H3 v1 x1 (s k i) H9 v2 -H5)) w1 H7)))))) H6)) (subst0_gen_head k v1 u1 t3 w1 i H4))))))))))))))))) -(\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (H0: (pr0 v1 -v2)).(\lambda (H1: ((\forall (v3: T).(\forall (w1: T).(\forall (i: -nat).((subst0 i v3 v1 w1) \to (\forall (v4: T).((pr0 v3 v4) \to (or (pr0 w1 -v2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v4 v2 -w2)))))))))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (H2: (pr0 t3 -t4)).(\lambda (H3: ((\forall (v3: T).(\forall (w1: T).(\forall (i: -nat).((subst0 i v3 t3 w1) \to (\forall (v4: T).((pr0 v3 v4) \to (or (pr0 w1 -t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v4 t4 -w2)))))))))))).(\lambda (v0: T).(\lambda (w1: T).(\lambda (i: nat).(\lambda -(H4: (subst0 i v0 (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) -w1)).(\lambda (v3: T).(\lambda (H5: (pr0 v0 v3)).(or3_ind (ex2 T (\lambda -(u2: T).(eq T w1 (THead (Flat Appl) u2 (THead (Bind Abst) u t3)))) (\lambda -(u2: T).(subst0 i v0 v1 u2))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Flat -Appl) v1 t5))) (\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead (Bind -Abst) u t3) t5))) (ex3_2 T T (\lambda (u2: T).(\lambda (t5: T).(eq T w1 -(THead (Flat Appl) u2 t5)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v0 v1 -u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead -(Bind Abst) u t3) t5)))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T -(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind -Abbr) v2 t4) w2)))) (\lambda (H6: (ex2 T (\lambda (u2: T).(eq T w1 (THead -(Flat Appl) u2 (THead (Bind Abst) u t3)))) (\lambda (u2: T).(subst0 i v0 v1 -u2)))).(ex2_ind T (\lambda (u2: T).(eq T w1 (THead (Flat Appl) u2 (THead -(Bind Abst) u t3)))) (\lambda (u2: T).(subst0 i v0 v1 u2)) (or (pr0 w1 (THead -(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x: T).(\lambda -(H7: (eq T w1 (THead (Flat Appl) x (THead (Bind Abst) u t3)))).(\lambda (H8: -(subst0 i v0 v1 x)).(eq_ind_r T (THead (Flat Appl) x (THead (Bind Abst) u -t3)) (\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda -(w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) -w2))))) (or_ind (pr0 x v2) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: -T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x (THead (Bind Abst) u -t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat -Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead -(Bind Abbr) v2 t4) w2)))) (\lambda (H9: (pr0 x v2)).(or_introl (pr0 (THead -(Flat Appl) x (THead (Bind Abst) u t3)) (THead (Bind Abbr) v2 t4)) (ex2 T -(\lambda (w2: T).(pr0 (THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta u x -v2 H9 t3 t4 H2))) (\lambda (H9: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda -(w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) -(\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x (THead -(Bind Abst) u t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 -(THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2: T).(subst0 -i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x0: T).(\lambda (H10: (pr0 x -x0)).(\lambda (H11: (subst0 i v3 v2 x0)).(or_intror (pr0 (THead (Flat Appl) x -(THead (Bind Abst) u t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) x0 t4) -(pr0_beta u x x0 H10 t3 t4 H2) (subst0_fst v3 x0 v2 i H11 t4 (Bind -Abbr))))))) H9)) (H1 v0 x i H8 v3 H5)) w1 H7)))) H6)) (\lambda (H6: (ex2 T -(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5: -T).(subst0 (s (Flat Appl) i) v0 (THead (Bind Abst) u t3) t5)))).(ex2_ind T -(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5: -T).(subst0 (s (Flat Appl) i) v0 (THead (Bind Abst) u t3) t5)) (or (pr0 w1 -(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x: T).(\lambda -(H7: (eq T w1 (THead (Flat Appl) v1 x))).(\lambda (H8: (subst0 (s (Flat Appl) -i) v0 (THead (Bind Abst) u t3) x)).(or3_ind (ex2 T (\lambda (u2: T).(eq T x -(THead (Bind Abst) u2 t3))) (\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u -u2))) (ex2 T (\lambda (t5: T).(eq T x (THead (Bind Abst) u t5))) (\lambda -(t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T -(\lambda (u2: T).(\lambda (t5: T).(eq T x (THead (Bind Abst) u2 t5)))) -(\lambda (u2: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2))) -(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 -t3 t5)))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 -w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) -(\lambda (H9: (ex2 T (\lambda (u2: T).(eq T x (THead (Bind Abst) u2 t3))) -(\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u u2)))).(ex2_ind T (\lambda -(u2: T).(eq T x (THead (Bind Abst) u2 t3))) (\lambda (u2: T).(subst0 (s (Flat -Appl) i) v0 u u2)) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda -(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) -w2)))) (\lambda (x0: T).(\lambda (H10: (eq T x (THead (Bind Abst) x0 -t3))).(\lambda (_: (subst0 (s (Flat Appl) i) v0 u x0)).(let H12 \def (eq_ind -T x (\lambda (t: T).(eq T w1 (THead (Flat Appl) v1 t))) H7 (THead (Bind Abst) -x0 t3) H10) in (eq_ind_r T (THead (Flat Appl) v1 (THead (Bind Abst) x0 t3)) -(\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: -T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) -w2))))) (or_introl (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 t3)) -(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 -(THead (Bind Abst) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind -Abbr) v2 t4) w2))) (pr0_beta x0 v1 v2 H0 t3 t4 H2)) w1 H12))))) H9)) (\lambda -(H9: (ex2 T (\lambda (t5: T).(eq T x (THead (Bind Abst) u t5))) (\lambda (t5: -T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5)))).(ex2_ind T (\lambda -(t5: T).(eq T x (THead (Bind Abst) u t5))) (\lambda (t5: T).(subst0 (s (Bind -Abst) (s (Flat Appl) i)) v0 t3 t5)) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) -(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead -(Bind Abbr) v2 t4) w2)))) (\lambda (x0: T).(\lambda (H10: (eq T x (THead -(Bind Abst) u x0))).(\lambda (H11: (subst0 (s (Bind Abst) (s (Flat Appl) i)) -v0 t3 x0)).(let H12 \def (eq_ind T x (\lambda (t: T).(eq T w1 (THead (Flat -Appl) v1 t))) H7 (THead (Bind Abst) u x0) H10) in (eq_ind_r T (THead (Flat -Appl) v1 (THead (Bind Abst) u x0)) (\lambda (t: T).(or (pr0 t (THead (Bind -Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i -v3 (THead (Bind Abbr) v2 t4) w2))))) (or_ind (pr0 x0 t4) (ex2 T (\lambda (w2: -T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 -t4 w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) (THead -(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead -(Bind Abst) u x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 -t4) w2)))) (\lambda (H13: (pr0 x0 t4)).(or_introl (pr0 (THead (Flat Appl) v1 -(THead (Bind Abst) u x0)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta u v1 v2 H0 x0 t4 -H13))) (\lambda (H13: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: -T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda -(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) -i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) -(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 -(THead (Bind Abst) u x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind -Abbr) v2 t4) w2)))) (\lambda (x1: T).(\lambda (H14: (pr0 x0 x1)).(\lambda -(H15: (subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 x1)).(or_intror (pr0 -(THead (Flat Appl) v1 (THead (Bind Abst) u x0)) (THead (Bind Abbr) v2 t4)) -(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) -w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 -T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind -Abbr) v2 x1) (pr0_beta u v1 v2 H0 x0 x1 H14) (subst0_snd (Bind Abbr) v3 x1 t4 -i H15 v2)))))) H13)) (H3 v0 x0 (s (Bind Abst) (s (Flat Appl) i)) H11 v3 H5)) -w1 H12))))) H9)) (\lambda (H9: (ex3_2 T T (\lambda (u2: T).(\lambda (t5: -T).(eq T x (THead (Bind Abst) u2 t5)))) (\lambda (u2: T).(\lambda (_: -T).(subst0 (s (Flat Appl) i) v0 u u2))) (\lambda (_: T).(\lambda (t5: -T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))))).(ex3_2_ind T T -(\lambda (u2: T).(\lambda (t5: T).(eq T x (THead (Bind Abst) u2 t5)))) -(\lambda (u2: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2))) -(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 -t3 t5))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 -w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) -(\lambda (x0: T).(\lambda (x1: T).(\lambda (H10: (eq T x (THead (Bind Abst) -x0 x1))).(\lambda (_: (subst0 (s (Flat Appl) i) v0 u x0)).(\lambda (H12: -(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 x1)).(let H13 \def (eq_ind T -x (\lambda (t: T).(eq T w1 (THead (Flat Appl) v1 t))) H7 (THead (Bind Abst) -x0 x1) H10) in (eq_ind_r T (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) -(\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: -T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) -w2))))) (or_ind (pr0 x1 t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda -(w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead -(Flat Appl) v1 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) v2 t4)) (ex2 T -(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H14: -(pr0 x1 t4)).(or_introl (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) -(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 -(THead (Bind Abst) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind -Abbr) v2 t4) w2))) (pr0_beta x0 v1 v2 H0 x1 t4 H14))) (\lambda (H14: (ex2 T -(\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s -(Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1 w2)) -(\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)) (or -(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) v2 -t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 -x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) -(\lambda (x2: T).(\lambda (H15: (pr0 x1 x2)).(\lambda (H16: (subst0 (s (Bind -Abst) (s (Flat Appl) i)) v3 t4 x2)).(or_intror (pr0 (THead (Flat Appl) v1 -(THead (Bind Abst) x0 x1)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) v2 x2) -(pr0_beta x0 v1 v2 H0 x1 x2 H15) (subst0_snd (Bind Abbr) v3 x2 t4 i H16 -v2)))))) H14)) (H3 v0 x1 (s (Bind Abst) (s (Flat Appl) i)) H12 v3 H5)) w1 -H13))))))) H9)) (subst0_gen_head (Bind Abst) v0 u t3 x (s (Flat Appl) i) -H8))))) H6)) (\lambda (H6: (ex3_2 T T (\lambda (u2: T).(\lambda (t5: T).(eq T -w1 (THead (Flat Appl) u2 t5)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v0 -v1 u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead -(Bind Abst) u t3) t5))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t5: -T).(eq T w1 (THead (Flat Appl) u2 t5)))) (\lambda (u2: T).(\lambda (_: -T).(subst0 i v0 v1 u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat -Appl) i) v0 (THead (Bind Abst) u t3) t5))) (or (pr0 w1 (THead (Bind Abbr) v2 -t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 -(THead (Bind Abbr) v2 t4) w2)))) (\lambda (x0: T).(\lambda (x1: T).(\lambda -(H7: (eq T w1 (THead (Flat Appl) x0 x1))).(\lambda (H8: (subst0 i v0 v1 -x0)).(\lambda (H9: (subst0 (s (Flat Appl) i) v0 (THead (Bind Abst) u t3) -x1)).(or3_ind (ex2 T (\lambda (u2: T).(eq T x1 (THead (Bind Abst) u2 t3))) -(\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u u2))) (ex2 T (\lambda (t5: -T).(eq T x1 (THead (Bind Abst) u t5))) (\lambda (t5: T).(subst0 (s (Bind -Abst) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T (\lambda (u2: T).(\lambda -(t5: T).(eq T x1 (THead (Bind Abst) u2 t5)))) (\lambda (u2: T).(\lambda (_: -T).(subst0 (s (Flat Appl) i) v0 u u2))) (\lambda (_: T).(\lambda (t5: -T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5)))) (or (pr0 w1 (THead -(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H10: (ex2 T -(\lambda (u2: T).(eq T x1 (THead (Bind Abst) u2 t3))) (\lambda (u2: -T).(subst0 (s (Flat Appl) i) v0 u u2)))).(ex2_ind T (\lambda (u2: T).(eq T x1 -(THead (Bind Abst) u2 t3))) (\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u -u2)) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 -w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda -(x: T).(\lambda (H11: (eq T x1 (THead (Bind Abst) x t3))).(\lambda (_: -(subst0 (s (Flat Appl) i) v0 u x)).(let H13 \def (eq_ind T x1 (\lambda (t: -T).(eq T w1 (THead (Flat Appl) x0 t))) H7 (THead (Bind Abst) x t3) H11) in -(eq_ind_r T (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) (\lambda (t: -T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 t w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))) (or_ind (pr0 -x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 -w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) (THead (Bind -Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind -Abst) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) -w2)))) (\lambda (H14: (pr0 x0 v2)).(or_introl (pr0 (THead (Flat Appl) x0 -(THead (Bind Abst) x t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta x x0 v2 H14 t3 t4 -H2))) (\lambda (H14: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: -T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda -(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind -Abst) x t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead -(Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 -(THead (Bind Abbr) v2 t4) w2)))) (\lambda (x2: T).(\lambda (H15: (pr0 x0 -x2)).(\lambda (H16: (subst0 i v3 v2 x2)).(or_intror (pr0 (THead (Flat Appl) -x0 (THead (Bind Abst) x t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) x2 t4) -(pr0_beta x x0 x2 H15 t3 t4 H2) (subst0_fst v3 x2 v2 i H16 t4 (Bind -Abbr))))))) H14)) (H1 v0 x0 i H8 v3 H5)) w1 H13))))) H10)) (\lambda (H10: -(ex2 T (\lambda (t5: T).(eq T x1 (THead (Bind Abst) u t5))) (\lambda (t5: -T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5)))).(ex2_ind T (\lambda -(t5: T).(eq T x1 (THead (Bind Abst) u t5))) (\lambda (t5: T).(subst0 (s (Bind -Abst) (s (Flat Appl) i)) v0 t3 t5)) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) -(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead -(Bind Abbr) v2 t4) w2)))) (\lambda (x: T).(\lambda (H11: (eq T x1 (THead -(Bind Abst) u x))).(\lambda (H12: (subst0 (s (Bind Abst) (s (Flat Appl) i)) -v0 t3 x)).(let H13 \def (eq_ind T x1 (\lambda (t: T).(eq T w1 (THead (Flat -Appl) x0 t))) H7 (THead (Bind Abst) u x) H11) in (eq_ind_r T (THead (Flat -Appl) x0 (THead (Bind Abst) u x)) (\lambda (t: T).(or (pr0 t (THead (Bind -Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i -v3 (THead (Bind Abbr) v2 t4) w2))))) (or_ind (pr0 x t4) (ex2 T (\lambda (w2: -T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 -t4 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind -Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind -Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) -w2)))) (\lambda (H14: (pr0 x t4)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: -T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat -Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda -(w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) w2)) (\lambda -(w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H15: (pr0 x0 -v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead -(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead -(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 -t4) w2))) (pr0_beta u x0 v2 H15 x t4 H14))) (\lambda (H15: (ex2 T (\lambda -(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T -(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0 -(THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4)) -(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) -w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda -(x2: T).(\lambda (H16: (pr0 x0 x2)).(\lambda (H17: (subst0 i v3 v2 -x2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead -(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead -(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 -t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead -(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 -t4) w2)) (THead (Bind Abbr) x2 t4) (pr0_beta u x0 x2 H16 x t4 H14) -(subst0_fst v3 x2 v2 i H17 t4 (Bind Abbr))))))) H15)) (H1 v0 x0 i H8 v3 H5))) -(\lambda (H14: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 -(s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2: -T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 -t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind -Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind -Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) -w2)))) (\lambda (x2: T).(\lambda (H15: (pr0 x x2)).(\lambda (H16: (subst0 (s -(Bind Abst) (s (Flat Appl) i)) v3 t4 x2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda -(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead -(Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4)) (ex2 T -(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H17: -(pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) -(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 -(THead (Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind -Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 -(THead (Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind -Abbr) v2 t4) w2)) (THead (Bind Abbr) v2 x2) (pr0_beta u x0 v2 H17 x x2 H15) -(subst0_snd (Bind Abbr) v3 x2 t4 i H16 v2)))) (\lambda (H17: (ex2 T (\lambda -(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T -(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0 -(THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4)) -(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) -w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda -(x3: T).(\lambda (H18: (pr0 x0 x3)).(\lambda (H19: (subst0 i v3 v2 -x3)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead -(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead -(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 -t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead -(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 -t4) w2)) (THead (Bind Abbr) x3 x2) (pr0_beta u x0 x3 H18 x x2 H15) -(subst0_both v3 v2 x3 i H19 (Bind Abbr) t4 x2 H16)))))) H17)) (H1 v0 x0 i H8 -v3 H5))))) H14)) (H3 v0 x (s (Bind Abst) (s (Flat Appl) i)) H12 v3 H5)) w1 -H13))))) H10)) (\lambda (H10: (ex3_2 T T (\lambda (u2: T).(\lambda (t5: -T).(eq T x1 (THead (Bind Abst) u2 t5)))) (\lambda (u2: T).(\lambda (_: -T).(subst0 (s (Flat Appl) i) v0 u u2))) (\lambda (_: T).(\lambda (t5: -T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))))).(ex3_2_ind T T -(\lambda (u2: T).(\lambda (t5: T).(eq T x1 (THead (Bind Abst) u2 t5)))) -(\lambda (u2: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2))) -(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 -t3 t5))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 -w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) -(\lambda (x2: T).(\lambda (x3: T).(\lambda (H11: (eq T x1 (THead (Bind Abst) -x2 x3))).(\lambda (_: (subst0 (s (Flat Appl) i) v0 u x2)).(\lambda (H13: -(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 x3)).(let H14 \def (eq_ind T -x1 (\lambda (t: T).(eq T w1 (THead (Flat Appl) x0 t))) H7 (THead (Bind Abst) -x2 x3) H11) in (eq_ind_r T (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) -(\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: -T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) -w2))))) (or_ind (pr0 x3 t4) (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda -(w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead -(Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T -(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H15: -(pr0 x3 t4)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) -(\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead -(Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 -(THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H16: (pr0 x0 -v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead -(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead -(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 -t4) w2))) (pr0_beta x2 x0 v2 H16 x3 t4 H15))) (\lambda (H16: (ex2 T (\lambda -(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T -(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0 -(THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4)) -(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) -w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda -(x: T).(\lambda (H17: (pr0 x0 x)).(\lambda (H18: (subst0 i v3 v2 -x)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead -(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead -(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 -t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead -(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 -t4) w2)) (THead (Bind Abbr) x t4) (pr0_beta x2 x0 x H17 x3 t4 H15) -(subst0_fst v3 x v2 i H18 t4 (Bind Abbr))))))) H16)) (H1 v0 x0 i H8 v3 H5))) -(\lambda (H15: (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 -(s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2: -T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 -t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead -(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead -(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 -t4) w2)))) (\lambda (x: T).(\lambda (H16: (pr0 x3 x)).(\lambda (H17: (subst0 -(s (Bind Abst) (s (Flat Appl) i)) v3 t4 x)).(or_ind (pr0 x0 v2) (ex2 T -(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 -(THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4)) -(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) -w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda -(H18: (pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) -x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat -Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead -(Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat -Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead -(Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) v2 x) (pr0_beta x2 x0 v2 H18 x3 x -H16) (subst0_snd (Bind Abbr) v3 x t4 i H17 v2)))) (\lambda (H18: (ex2 T -(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 -w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 -v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead -(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead -(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 -t4) w2)))) (\lambda (x4: T).(\lambda (H19: (pr0 x0 x4)).(\lambda (H20: -(subst0 i v3 v2 x4)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) -x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat -Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead -(Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat -Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead -(Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) x4 x) (pr0_beta x2 x0 x4 H19 x3 x -H16) (subst0_both v3 v2 x4 i H20 (Bind Abbr) t4 x H17)))))) H18)) (H1 v0 x0 i -H8 v3 H5))))) H15)) (H3 v0 x3 (s (Bind Abst) (s (Flat Appl) i)) H13 v3 H5)) -w1 H14))))))) H10)) (subst0_gen_head (Bind Abst) v0 u t3 x1 (s (Flat Appl) i) -H9))))))) H6)) (subst0_gen_head (Flat Appl) v0 v1 (THead (Bind Abst) u t3) w1 -i H4))))))))))))))))) (\lambda (b: B).(\lambda (H0: (not (eq B b -Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (H1: (pr0 v1 v2)).(\lambda -(H2: ((\forall (v3: T).(\forall (w1: T).(\forall (i: nat).((subst0 i v3 v1 -w1) \to (\forall (v4: T).((pr0 v3 v4) \to (or (pr0 w1 v2) (ex2 T (\lambda -(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v4 v2 w2)))))))))))).(\lambda -(u1: T).(\lambda (u2: T).(\lambda (H3: (pr0 u1 u2)).(\lambda (H4: ((\forall -(v3: T).(\forall (w1: T).(\forall (i: nat).((subst0 i v3 u1 w1) \to (\forall -(v4: T).((pr0 v3 v4) \to (or (pr0 w1 u2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) -(\lambda (w2: T).(subst0 i v4 u2 w2)))))))))))).(\lambda (t3: T).(\lambda -(t4: T).(\lambda (H5: (pr0 t3 t4)).(\lambda (H6: ((\forall (v3: T).(\forall -(w1: T).(\forall (i: nat).((subst0 i v3 t3 w1) \to (\forall (v4: T).((pr0 v3 -v4) \to (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: -T).(subst0 i v4 t4 w2)))))))))))).(\lambda (v0: T).(\lambda (w1: T).(\lambda -(i: nat).(\lambda (H7: (subst0 i v0 (THead (Flat Appl) v1 (THead (Bind b) u1 -t3)) w1)).(\lambda (v3: T).(\lambda (H8: (pr0 v0 v3)).(or3_ind (ex2 T -(\lambda (u3: T).(eq T w1 (THead (Flat Appl) u3 (THead (Bind b) u1 t3)))) -(\lambda (u3: T).(subst0 i v0 v1 u3))) (ex2 T (\lambda (t5: T).(eq T w1 -(THead (Flat Appl) v1 t5))) (\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 -(THead (Bind b) u1 t3) t5))) (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq -T w1 (THead (Flat Appl) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i -v0 v1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 -(THead (Bind b) u1 t3) t5)))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda -(w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) -t4)) w2)))) (\lambda (H9: (ex2 T (\lambda (u3: T).(eq T w1 (THead (Flat Appl) -u3 (THead (Bind b) u1 t3)))) (\lambda (u3: T).(subst0 i v0 v1 u3)))).(ex2_ind -T (\lambda (u3: T).(eq T w1 (THead (Flat Appl) u3 (THead (Bind b) u1 t3)))) -(\lambda (u3: T).(subst0 i v0 v1 u3)) (or (pr0 w1 (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S -O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H10: (eq T w1 (THead (Flat -Appl) x (THead (Bind b) u1 t3)))).(\lambda (H11: (subst0 i v0 v1 -x)).(eq_ind_r T (THead (Flat Appl) x (THead (Bind b) u1 t3)) (\lambda (t: -T).(or (pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) -(ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x -v2) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v3 v2 -w2))) (or (pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) (THead (Bind b) -u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 -(THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) (\lambda (w2: T).(subst0 i -v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) -(\lambda (H12: (pr0 x v2)).(or_introl (pr0 (THead (Flat Appl) x (THead (Bind -b) u1 t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 -T (\lambda (w2: T).(pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S -O) O v2) t4)) w2))) (pr0_upsilon b H0 x v2 H12 u1 u2 H3 t3 t4 H5))) (\lambda -(H12: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v3 v2 -w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v3 -v2 w2)) (or (pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) (THead (Bind b) -u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 -(THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) (\lambda (w2: T).(subst0 i -v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) -(\lambda (x0: T).(\lambda (H13: (pr0 x x0)).(\lambda (H14: (subst0 i v3 v2 -x0)).(or_intror (pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x (THead (Bind b) -u1 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift -(S O) O x0) t4)) (pr0_upsilon b H0 x x0 H13 u1 u2 H3 t3 t4 H5) (subst0_snd -(Bind b) v3 (THead (Flat Appl) (lift (S O) O x0) t4) (THead (Flat Appl) (lift -(S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x0) (lift (S O) O v2) (s (Bind -b) i) (subst0_lift_ge_s v2 x0 v3 i H14 O (le_O_n i) b) t4 (Flat Appl)) -u2)))))) H12)) (H2 v0 x i H11 v3 H8)) w1 H10)))) H9)) (\lambda (H9: (ex2 T -(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5: -T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) u1 t3) t5)))).(ex2_ind T -(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5: -T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) u1 t3) t5)) (or (pr0 w1 -(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda -(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H10: (eq -T w1 (THead (Flat Appl) v1 x))).(\lambda (H11: (subst0 (s (Flat Appl) i) v0 -(THead (Bind b) u1 t3) x)).(or3_ind (ex2 T (\lambda (u3: T).(eq T x (THead -(Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (ex2 -T (\lambda (t5: T).(eq T x (THead (Bind b) u1 t5))) (\lambda (t5: T).(subst0 -(s (Bind b) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T (\lambda (u3: -T).(\lambda (t5: T).(eq T x (THead (Bind b) u3 t5)))) (\lambda (u3: -T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_: -T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5)))) (or -(pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T -(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) -u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H12: (ex2 T -(\lambda (u3: T).(eq T x (THead (Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s -(Flat Appl) i) v0 u1 u3)))).(ex2_ind T (\lambda (u3: T).(eq T x (THead (Bind -b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3)) (or (pr0 w1 -(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda -(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x0: T).(\lambda (H13: (eq -T x (THead (Bind b) x0 t3))).(\lambda (H14: (subst0 (s (Flat Appl) i) v0 u1 -x0)).(let H15 \def (eq_ind T x (\lambda (t: T).(eq T w1 (THead (Flat Appl) v1 -t))) H10 (THead (Bind b) x0 t3) H13) in (eq_ind_r T (THead (Flat Appl) v1 -(THead (Bind b) x0 t3)) (\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S -O) O v2) t4)) w2))))) (or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 -w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2))) (or (pr0 (THead -(Flat Appl) v1 (THead (Bind b) x0 t3)) (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 -(THead (Bind b) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H16: (pr0 x0 -u2)).(or_introl (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 t3)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 t3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2))) (pr0_upsilon b H0 v1 v2 H1 x0 u2 H16 t3 t4 H5))) (\lambda (H16: (ex2 T -(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 -u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 -(s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) -x0 t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T -(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 t3)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S -O) O v2) t4)) w2)))) (\lambda (x1: T).(\lambda (H17: (pr0 x0 x1)).(\lambda -(H18: (subst0 (s (Flat Appl) i) v3 u2 x1)).(or_intror (pr0 (THead (Flat Appl) -v1 (THead (Bind b) x0 t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) -O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind -b) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead -(Flat Appl) v1 (THead (Bind b) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 -(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead -(Bind b) x1 (THead (Flat Appl) (lift (S O) O v2) t4)) (pr0_upsilon b H0 v1 v2 -H1 x0 x1 H17 t3 t4 H5) (subst0_fst v3 x1 u2 i H18 (THead (Flat Appl) (lift (S -O) O v2) t4) (Bind b))))))) H16)) (H4 v0 x0 (s (Flat Appl) i) H14 v3 H8)) w1 -H15))))) H12)) (\lambda (H12: (ex2 T (\lambda (t5: T).(eq T x (THead (Bind b) -u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 -t5)))).(ex2_ind T (\lambda (t5: T).(eq T x (THead (Bind b) u1 t5))) (\lambda -(t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5)) (or (pr0 w1 (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x0: T).(\lambda (H13: (eq T x -(THead (Bind b) u1 x0))).(\lambda (H14: (subst0 (s (Bind b) (s (Flat Appl) -i)) v0 t3 x0)).(let H15 \def (eq_ind T x (\lambda (t: T).(eq T w1 (THead -(Flat Appl) v1 t))) H10 (THead (Bind b) u1 x0) H13) in (eq_ind_r T (THead -(Flat Appl) v1 (THead (Bind b) u1 x0)) (\lambda (t: T).(or (pr0 t (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x0 t4) (ex2 T (\lambda (w2: -T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 -w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 x0)) (THead (Bind b) -u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 -(THead (Flat Appl) v1 (THead (Bind b) u1 x0)) w2)) (\lambda (w2: T).(subst0 i -v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) -(\lambda (H16: (pr0 x0 t4)).(or_introl (pr0 (THead (Flat Appl) v1 (THead -(Bind b) u1 x0)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) -t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 -x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 v1 v2 H1 u1 u2 H3 x0 t4 H16))) -(\lambda (H16: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 -(s (Bind b) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 -x0 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2)) -(or (pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 x0)) (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 -(THead (Flat Appl) v1 (THead (Bind b) u1 x0)) w2)) (\lambda (w2: T).(subst0 i -v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) -(\lambda (x1: T).(\lambda (H17: (pr0 x0 x1)).(\lambda (H18: (subst0 (s (Bind -b) (s (Flat Appl) i)) v3 t4 x1)).(or_intror (pr0 (THead (Flat Appl) v1 (THead -(Bind b) u1 x0)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) -t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 -x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat -Appl) v1 (THead (Bind b) u1 x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) x1)) (pr0_upsilon b H0 v1 v2 H1 u1 u2 H3 -x0 x1 H17) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O v2) x1) -(THead (Flat Appl) (lift (S O) O v2) t4) i (subst0_snd (Flat Appl) v3 x1 t4 -(s (Bind b) i) H18 (lift (S O) O v2)) u2)))))) H16)) (H6 v0 x0 (s (Bind b) (s -(Flat Appl) i)) H14 v3 H8)) w1 H15))))) H12)) (\lambda (H12: (ex3_2 T T -(\lambda (u3: T).(\lambda (t5: T).(eq T x (THead (Bind b) u3 t5)))) (\lambda -(u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_: -T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 -t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T x (THead (Bind -b) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 -u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) -v0 t3 t5))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O -v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 -(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda -(x0: T).(\lambda (x1: T).(\lambda (H13: (eq T x (THead (Bind b) x0 -x1))).(\lambda (H14: (subst0 (s (Flat Appl) i) v0 u1 x0)).(\lambda (H15: -(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 x1)).(let H16 \def (eq_ind T x -(\lambda (t: T).(eq T w1 (THead (Flat Appl) v1 t))) H10 (THead (Bind b) x0 -x1) H13) in (eq_ind_r T (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) -(\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) -O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 -(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind -(pr0 x1 t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s -(Bind b) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead (Flat Appl) v1 (THead -(Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) -t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 -x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4)) w2)))) (\lambda (H17: (pr0 x1 t4)).(or_ind (pr0 x0 u2) -(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) -i) v3 u2 w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2)))) (\lambda (H18: (pr0 x0 u2)).(or_introl (pr0 (THead (Flat Appl) v1 -(THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O -v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) -x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 v1 v2 H1 x0 u2 H18 x1 t4 -H17))) (\lambda (H18: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: -T).(subst0 (s (Flat Appl) i) v3 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 -w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead -(Flat Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 -(THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda -(H19: (pr0 x0 x2)).(\lambda (H20: (subst0 (s (Flat Appl) i) v3 u2 -x2)).(or_intror (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind -b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x2 (THead (Flat Appl) (lift -(S O) O v2) t4)) (pr0_upsilon b H0 v1 v2 H1 x0 x2 H19 x1 t4 H17) (subst0_fst -v3 x2 u2 i H20 (THead (Flat Appl) (lift (S O) O v2) t4) (Bind b))))))) H18)) -(H4 v0 x0 (s (Flat Appl) i) H14 v3 H8))) (\lambda (H17: (ex2 T (\lambda (w2: -T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 -w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s -(Bind b) (s (Flat Appl) i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) v1 (THead -(Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) -t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 -x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H18: (pr0 x1 -x2)).(\lambda (H19: (subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 x2)).(or_ind -(pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s -(Flat Appl) i) v3 u2 w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 -x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T -(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S -O) O v2) t4)) w2)))) (\lambda (H20: (pr0 x0 u2)).(or_intror (pr0 (THead (Flat -Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift -(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead -(Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 -(THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i -v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) x2)) (pr0_upsilon b H0 v1 v2 -H1 x0 u2 H20 x1 x2 H18) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S -O) O v2) x2) (THead (Flat Appl) (lift (S O) O v2) t4) i (subst0_snd (Flat -Appl) v3 x2 t4 (s (Bind b) i) H19 (lift (S O) O v2)) u2)))) (\lambda (H20: -(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) -i) v3 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: -T).(subst0 (s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) v1 (THead -(Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) -t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 -x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4)) w2)))) (\lambda (x3: T).(\lambda (H21: (pr0 x0 -x3)).(\lambda (H22: (subst0 (s (Flat Appl) i) v3 u2 x3)).(or_intror (pr0 -(THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) -v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) -u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2)) (THead (Bind b) x3 (THead (Flat Appl) (lift (S O) O v2) x2)) -(pr0_upsilon b H0 v1 v2 H1 x0 x3 H21 x1 x2 H18) (subst0_both v3 u2 x3 i H22 -(Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat Appl) (lift (S -O) O v2) x2) (subst0_snd (Flat Appl) v3 x2 t4 (s (Bind b) i) H19 (lift (S O) -O v2)))))))) H20)) (H4 v0 x0 (s (Flat Appl) i) H14 v3 H8))))) H17)) (H6 v0 x1 -(s (Bind b) (s (Flat Appl) i)) H15 v3 H8)) w1 H16))))))) H12)) -(subst0_gen_head (Bind b) v0 u1 t3 x (s (Flat Appl) i) H11))))) H9)) (\lambda -(H9: (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead (Flat Appl) -u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v0 v1 u3))) (\lambda (_: -T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) u1 t3) -t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead -(Flat Appl) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v0 v1 u3))) -(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) -u1 t3) t5))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O -v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 -(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda -(x0: T).(\lambda (x1: T).(\lambda (H10: (eq T w1 (THead (Flat Appl) x0 -x1))).(\lambda (H11: (subst0 i v0 v1 x0)).(\lambda (H12: (subst0 (s (Flat -Appl) i) v0 (THead (Bind b) u1 t3) x1)).(or3_ind (ex2 T (\lambda (u3: T).(eq -T x1 (THead (Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 -u1 u3))) (ex2 T (\lambda (t5: T).(eq T x1 (THead (Bind b) u1 t5))) (\lambda -(t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T -(\lambda (u3: T).(\lambda (t5: T).(eq T x1 (THead (Bind b) u3 t5)))) (\lambda -(u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_: -T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5)))) (or -(pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T -(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) -u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H13: (ex2 T -(\lambda (u3: T).(eq T x1 (THead (Bind b) u3 t3))) (\lambda (u3: T).(subst0 -(s (Flat Appl) i) v0 u1 u3)))).(ex2_ind T (\lambda (u3: T).(eq T x1 (THead -(Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3)) (or -(pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T -(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) -u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda -(H14: (eq T x1 (THead (Bind b) x t3))).(\lambda (H15: (subst0 (s (Flat Appl) -i) v0 u1 x)).(let H16 \def (eq_ind T x1 (\lambda (t: T).(eq T w1 (THead (Flat -Appl) x0 t))) H10 (THead (Bind b) x t3) H14) in (eq_ind_r T (THead (Flat -Appl) x0 (THead (Bind b) x t3)) (\lambda (t: T).(or (pr0 t (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t -w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x u2) (ex2 T (\lambda (w2: -T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2))) (or -(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat -Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H17: -(pr0 x u2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda -(w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) -x t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T -(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S -O) O v2) t4)) w2)))) (\lambda (H18: (pr0 x0 v2)).(or_introl (pr0 (THead (Flat -Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift -(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead -(Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 x0 v2 H18 x u2 H17 -t3 t4 H5))) (\lambda (H18: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: -T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda -(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x -t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T -(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S -O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H19: (pr0 x0 x2)).(\lambda -(H20: (subst0 i v3 v2 x2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind -b) x t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 -T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S -O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 -(THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O x2) t4)) (pr0_upsilon b H0 x0 x2 H19 x u2 H17 t3 t4 -H5) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O x2) t4) (THead -(Flat Appl) (lift (S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x2) (lift (S -O) O v2) (s (Bind b) i) (subst0_lift_ge_s v2 x2 v3 i H20 O (le_O_n i) b) t4 -(Flat Appl)) u2)))))) H18)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H17: (ex2 T -(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 -w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s -(Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x -t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T -(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S -O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H18: (pr0 x x2)).(\lambda -(H19: (subst0 (s (Flat Appl) i) v3 u2 x2)).(or_ind (pr0 x0 v2) (ex2 T -(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 -(THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) -x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) -u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H20: (pr0 x0 -v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind -b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x2 (THead (Flat Appl) (lift -(S O) O v2) t4)) (pr0_upsilon b H0 x0 v2 H20 x x2 H18 t3 t4 H5) (subst0_fst -v3 x2 u2 i H19 (THead (Flat Appl) (lift (S O) O v2) t4) (Bind b))))) (\lambda -(H20: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 -w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 -v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) -u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 -(THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i -v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) -(\lambda (x3: T).(\lambda (H21: (pr0 x0 x3)).(\lambda (H22: (subst0 i v3 v2 -x3)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind -b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x2 (THead (Flat Appl) (lift -(S O) O x3) t4)) (pr0_upsilon b H0 x0 x3 H21 x x2 H18 t3 t4 H5) (subst0_both -v3 u2 x2 i H19 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat -Appl) (lift (S O) O x3) t4) (subst0_fst v3 (lift (S O) O x3) (lift (S O) O -v2) (s (Bind b) i) (subst0_lift_ge_s v2 x3 v3 i H22 O (le_O_n i) b) t4 (Flat -Appl)))))))) H20)) (H2 v0 x0 i H11 v3 H8))))) H17)) (H4 v0 x (s (Flat Appl) -i) H15 v3 H8)) w1 H16))))) H13)) (\lambda (H13: (ex2 T (\lambda (t5: T).(eq T -x1 (THead (Bind b) u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s (Flat -Appl) i)) v0 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq T x1 (THead (Bind b) -u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5)) -(or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) -(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x: -T).(\lambda (H14: (eq T x1 (THead (Bind b) u1 x))).(\lambda (H15: (subst0 (s -(Bind b) (s (Flat Appl) i)) v0 t3 x)).(let H16 \def (eq_ind T x1 (\lambda (t: -T).(eq T w1 (THead (Flat Appl) x0 t))) H10 (THead (Bind b) u1 x) H14) in -(eq_ind_r T (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (\lambda (t: T).(or -(pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T -(\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x t4) (ex2 T -(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat -Appl) i)) v3 t4 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) -(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda -(w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2)))) (\lambda (H17: (pr0 x t4)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: -T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat -Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift -(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead -(Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H18: (pr0 x0 -v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2))) (pr0_upsilon b H0 x0 v2 H18 u1 u2 H3 x t4 H17))) (\lambda (H18: (ex2 T -(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 -w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 -v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b) -u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 -(THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i -v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) -(\lambda (x2: T).(\lambda (H19: (pr0 x0 x2)).(\lambda (H20: (subst0 i v3 v2 -x2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind -b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift -(S O) O x2) t4)) (pr0_upsilon b H0 x0 x2 H19 u1 u2 H3 x t4 H17) (subst0_snd -(Bind b) v3 (THead (Flat Appl) (lift (S O) O x2) t4) (THead (Flat Appl) (lift -(S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x2) (lift (S O) O v2) (s (Bind -b) i) (subst0_lift_ge_s v2 x2 v3 i H20 O (le_O_n i) b) t4 (Flat Appl)) -u2)))))) H18)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H17: (ex2 T (\lambda (w2: -T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 -w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s -(Bind b) (s (Flat Appl) i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead -(Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) -(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) -w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H18: (pr0 x -x2)).(\lambda (H19: (subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 x2)).(or_ind -(pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i -v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2)))) (\lambda (H20: (pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 -(THead (Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O -v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) -u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead -(Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 -(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) x2)) (pr0_upsilon b H0 x0 v2 -H20 u1 u2 H3 x x2 H18) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) -O v2) x2) (THead (Flat Appl) (lift (S O) O v2) t4) i (subst0_snd (Flat Appl) -v3 x2 t4 (s (Bind b) i) H19 (lift (S O) O v2)) u2)))) (\lambda (H20: (ex2 T -(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 -w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 -v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b) -u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 -(THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i -v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) -(\lambda (x3: T).(\lambda (H21: (pr0 x0 x3)).(\lambda (H22: (subst0 i v3 v2 -x3)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind -b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift -(S O) O x3) x2)) (pr0_upsilon b H0 x0 x3 H21 u1 u2 H3 x x2 H18) (subst0_snd -(Bind b) v3 (THead (Flat Appl) (lift (S O) O x3) x2) (THead (Flat Appl) (lift -(S O) O v2) t4) i (subst0_both v3 (lift (S O) O v2) (lift (S O) O x3) (s -(Bind b) i) (subst0_lift_ge_s v2 x3 v3 i H22 O (le_O_n i) b) (Flat Appl) t4 -x2 H19) u2)))))) H20)) (H2 v0 x0 i H11 v3 H8))))) H17)) (H6 v0 x (s (Bind b) -(s (Flat Appl) i)) H15 v3 H8)) w1 H16))))) H13)) (\lambda (H13: (ex3_2 T T -(\lambda (u3: T).(\lambda (t5: T).(eq T x1 (THead (Bind b) u3 t5)))) (\lambda -(u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_: -T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 -t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T x1 (THead -(Bind b) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) -v0 u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat -Appl) i)) v0 t3 t5))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift -(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2)))) (\lambda (x2: T).(\lambda (x3: T).(\lambda (H14: (eq T x1 (THead (Bind -b) x2 x3))).(\lambda (H15: (subst0 (s (Flat Appl) i) v0 u1 x2)).(\lambda -(H16: (subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 x3)).(let H17 \def (eq_ind -T x1 (\lambda (t: T).(eq T w1 (THead (Flat Appl) x0 t))) H10 (THead (Bind b) -x2 x3) H14) in (eq_ind_r T (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) -(\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) -O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 -(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind -(pr0 x3 t4) (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 (s -(Bind b) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead (Flat Appl) x0 (THead -(Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) -t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 -x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4)) w2)))) (\lambda (H18: (pr0 x3 t4)).(or_ind (pr0 x2 u2) -(ex2 T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) -i) v3 u2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2)))) (\lambda (H19: (pr0 x2 u2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: -T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat -Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift -(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead -(Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H20: (pr0 x0 -v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2))) (pr0_upsilon b H0 x0 v2 H20 x2 u2 H19 x3 t4 H18))) (\lambda (H20: (ex2 -T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 -w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 -v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind -b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 -(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i -v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) -(\lambda (x: T).(\lambda (H21: (pr0 x0 x)).(\lambda (H22: (subst0 i v3 v2 -x)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind -b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift -(S O) O x) t4)) (pr0_upsilon b H0 x0 x H21 x2 u2 H19 x3 t4 H18) (subst0_snd -(Bind b) v3 (THead (Flat Appl) (lift (S O) O x) t4) (THead (Flat Appl) (lift -(S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x) (lift (S O) O v2) (s (Bind -b) i) (subst0_lift_ge_s v2 x v3 i H22 O (le_O_n i) b) t4 (Flat Appl)) -u2)))))) H20)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H19: (ex2 T (\lambda (w2: -T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 -w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s -(Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 -x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T -(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S -O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H20: (pr0 x2 x)).(\lambda -(H21: (subst0 (s (Flat Appl) i) v3 u2 x)).(or_ind (pr0 x0 v2) (ex2 T (\lambda -(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead -(Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 -(THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H22: (pr0 x0 -v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind -b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x (THead (Flat Appl) (lift -(S O) O v2) t4)) (pr0_upsilon b H0 x0 v2 H22 x2 x H20 x3 t4 H18) (subst0_fst -v3 x u2 i H21 (THead (Flat Appl) (lift (S O) O v2) t4) (Bind b))))) (\lambda -(H22: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 -w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 -v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind -b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 -(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i -v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) -(\lambda (x4: T).(\lambda (H23: (pr0 x0 x4)).(\lambda (H24: (subst0 i v3 v2 -x4)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind -b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x (THead (Flat Appl) (lift -(S O) O x4) t4)) (pr0_upsilon b H0 x0 x4 H23 x2 x H20 x3 t4 H18) (subst0_both -v3 u2 x i H21 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat -Appl) (lift (S O) O x4) t4) (subst0_fst v3 (lift (S O) O x4) (lift (S O) O -v2) (s (Bind b) i) (subst0_lift_ge_s v2 x4 v3 i H24 O (le_O_n i) b) t4 (Flat -Appl)))))))) H22)) (H2 v0 x0 i H11 v3 H8))))) H19)) (H4 v0 x2 (s (Flat Appl) -i) H15 v3 H8))) (\lambda (H18: (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda -(w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T -(\lambda (w2: T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat -Appl) i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) -(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda -(w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2)))) (\lambda (x: T).(\lambda (H19: (pr0 x3 x)).(\lambda (H20: (subst0 (s -(Bind b) (s (Flat Appl) i)) v3 t4 x)).(or_ind (pr0 x2 u2) (ex2 T (\lambda -(w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2))) -(or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 -(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i -v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) -(\lambda (H21: (pr0 x2 u2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 -x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 -(THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O -v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) -x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H22: (pr0 x0 v2)).(or_intror -(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat -Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T -(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S -O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) -x)) (pr0_upsilon b H0 x0 v2 H22 x2 u2 H21 x3 x H19) (subst0_snd (Bind b) v3 -(THead (Flat Appl) (lift (S O) O v2) x) (THead (Flat Appl) (lift (S O) O v2) -t4) i (subst0_snd (Flat Appl) v3 x t4 (s (Bind b) i) H20 (lift (S O) O v2)) -u2)))) (\lambda (H22: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: -T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda -(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) -x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T -(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S -O) O v2) t4)) w2)))) (\lambda (x4: T).(\lambda (H23: (pr0 x0 x4)).(\lambda -(H24: (subst0 i v3 v2 x4)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind -b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 -T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) -(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S -O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 -(THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead -(Flat Appl) (lift (S O) O x4) x)) (pr0_upsilon b H0 x0 x4 H23 x2 u2 H21 x3 x -H19) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O x4) x) (THead -(Flat Appl) (lift (S O) O v2) t4) i (subst0_both v3 (lift (S O) O v2) (lift -(S O) O x4) (s (Bind b) i) (subst0_lift_ge_s v2 x4 v3 i H24 O (le_O_n i) b) -(Flat Appl) t4 x H20) u2)))))) H22)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H21: -(ex2 T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) -i) v3 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: -T).(subst0 (s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead -(Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) -t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 -x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4)) w2)))) (\lambda (x4: T).(\lambda (H22: (pr0 x2 -x4)).(\lambda (H23: (subst0 (s (Flat Appl) i) v3 u2 x4)).(or_ind (pr0 x0 v2) -(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) -(or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 -(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 -(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i -v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) -(\lambda (H24: (pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead -(Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) -t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 -x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) -(lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat -Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x4 -(THead (Flat Appl) (lift (S O) O v2) x)) (pr0_upsilon b H0 x0 v2 H24 x2 x4 -H22 x3 x H19) (subst0_both v3 u2 x4 i H23 (Bind b) (THead (Flat Appl) (lift -(S O) O v2) t4) (THead (Flat Appl) (lift (S O) O v2) x) (subst0_snd (Flat -Appl) v3 x t4 (s (Bind b) i) H20 (lift (S O) O v2)))))) (\lambda (H24: (ex2 T -(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 -w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 -v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind -b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 -(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i -v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) -(\lambda (x5: T).(\lambda (H25: (pr0 x0 x5)).(\lambda (H26: (subst0 i v3 v2 -x5)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead -(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: -T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) -w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind -b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat -Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x4 (THead (Flat Appl) (lift -(S O) O x5) x)) (pr0_upsilon b H0 x0 x5 H25 x2 x4 H22 x3 x H19) (subst0_both -v3 u2 x4 i H23 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat -Appl) (lift (S O) O x5) x) (subst0_both v3 (lift (S O) O v2) (lift (S O) O -x5) (s (Bind b) i) (subst0_lift_ge_s v2 x5 v3 i H26 O (le_O_n i) b) (Flat -Appl) t4 x H20))))))) H24)) (H2 v0 x0 i H11 v3 H8))))) H21)) (H4 v0 x2 (s -(Flat Appl) i) H15 v3 H8))))) H18)) (H6 v0 x3 (s (Bind b) (s (Flat Appl) i)) -H16 v3 H8)) w1 H17))))))) H13)) (subst0_gen_head (Bind b) v0 u1 t3 x1 (s -(Flat Appl) i) H12))))))) H9)) (subst0_gen_head (Flat Appl) v0 v1 (THead -(Bind b) u1 t3) w1 i H7)))))))))))))))))))))) (\lambda (u1: T).(\lambda (u2: -T).(\lambda (H0: (pr0 u1 u2)).(\lambda (H1: ((\forall (v1: T).(\forall (w1: -T).(\forall (i: nat).((subst0 i v1 u1 w1) \to (\forall (v2: T).((pr0 v1 v2) -\to (or (pr0 w1 u2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: -T).(subst0 i v2 u2 w2)))))))))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda -(H2: (pr0 t3 t4)).(\lambda (H3: ((\forall (v1: T).(\forall (w1: T).(\forall -(i: nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 -w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 -w2)))))))))))).(\lambda (w: T).(\lambda (H4: (subst0 O u2 t4 w)).(\lambda -(v1: T).(\lambda (w1: T).(\lambda (i: nat).(\lambda (H5: (subst0 i v1 (THead -(Bind Abbr) u1 t3) w1)).(\lambda (v2: T).(\lambda (H6: (pr0 v1 v2)).(or3_ind -(ex2 T (\lambda (u3: T).(eq T w1 (THead (Bind Abbr) u3 t3))) (\lambda (u3: -T).(subst0 i v1 u1 u3))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind Abbr) -u1 t5))) (\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5))) (ex3_2 T T -(\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead (Bind Abbr) u3 t5)))) -(\lambda (u3: T).(\lambda (_: T).(subst0 i v1 u1 u3))) (\lambda (_: -T).(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5)))) (or (pr0 w1 (THead -(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: -T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H7: (ex2 T (\lambda -(u3: T).(eq T w1 (THead (Bind Abbr) u3 t3))) (\lambda (u3: T).(subst0 i v1 u1 -u3)))).(ex2_ind T (\lambda (u3: T).(eq T w1 (THead (Bind Abbr) u3 t3))) -(\lambda (u3: T).(subst0 i v1 u1 u3)) (or (pr0 w1 (THead (Bind Abbr) u2 w)) -(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 (THead -(Bind Abbr) u2 w) w2)))) (\lambda (x: T).(\lambda (H8: (eq T w1 (THead (Bind -Abbr) x t3))).(\lambda (H9: (subst0 i v1 u1 x)).(eq_ind_r T (THead (Bind -Abbr) x t3) (\lambda (t: T).(or (pr0 t (THead (Bind Abbr) u2 w)) (ex2 T -(\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) -u2 w) w2))))) (or_ind (pr0 x u2) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda -(w2: T).(subst0 i v2 u2 w2))) (or (pr0 (THead (Bind Abbr) x t3) (THead (Bind -Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) -(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H10: -(pr0 x u2)).(or_introl (pr0 (THead (Bind Abbr) x t3) (THead (Bind Abbr) u2 -w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) (\lambda (w2: -T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (pr0_delta x u2 H10 t3 t4 H2 w -H4))) (\lambda (H10: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: -T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda -(w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead (Bind Abbr) x t3) (THead (Bind -Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) -(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x0: -T).(\lambda (H11: (pr0 x x0)).(\lambda (H12: (subst0 i v2 u2 x0)).(ex2_ind T -(\lambda (t: T).(subst0 O x0 t4 t)) (\lambda (t: T).(subst0 (S (plus i O)) v2 -w t)) (or (pr0 (THead (Bind Abbr) x t3) (THead (Bind Abbr) u2 w)) (ex2 T -(\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) (\lambda (w2: T).(subst0 -i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x1: T).(\lambda (H13: (subst0 -O x0 t4 x1)).(\lambda (H14: (subst0 (S (plus i O)) v2 w x1)).(let H15 \def -(f_equal nat nat S (plus i O) i (sym_eq nat i (plus i O) (plus_n_O i))) in -(let H16 \def (eq_ind nat (S (plus i O)) (\lambda (n: nat).(subst0 n v2 w -x1)) H14 (S i) H15) in (or_intror (pr0 (THead (Bind Abbr) x t3) (THead (Bind -Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) -(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T -(\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) (\lambda (w2: T).(subst0 -i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) x0 x1) (pr0_delta x x0 -H11 t3 t4 H2 x1 H13) (subst0_both v2 u2 x0 i H12 (Bind Abbr) w x1 H16)))))))) -(subst0_subst0_back t4 w u2 O H4 x0 v2 i H12))))) H10)) (H1 v1 x i H9 v2 H6)) -w1 H8)))) H7)) (\lambda (H7: (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind -Abbr) u1 t5))) (\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 -t5)))).(ex2_ind T (\lambda (t5: T).(eq T w1 (THead (Bind Abbr) u1 t5))) -(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5)) (or (pr0 w1 (THead -(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: -T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x: T).(\lambda (H8: -(eq T w1 (THead (Bind Abbr) u1 x))).(\lambda (H9: (subst0 (s (Bind Abbr) i) -v1 t3 x)).(eq_ind_r T (THead (Bind Abbr) u1 x) (\lambda (t: T).(or (pr0 t -(THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: -T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))) (or_ind (pr0 x t4) (ex2 T -(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr) i) v2 t4 -w2))) (or (pr0 (THead (Bind Abbr) u1 x) (THead (Bind Abbr) u2 w)) (ex2 T -(\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 x) w2)) (\lambda (w2: T).(subst0 -i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H10: (pr0 x t4)).(or_introl -(pr0 (THead (Bind Abbr) u1 x) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: -T).(pr0 (THead (Bind Abbr) u1 x) w2)) (\lambda (w2: T).(subst0 i v2 (THead -(Bind Abbr) u2 w) w2))) (pr0_delta u1 u2 H0 x t4 H10 w H4))) (\lambda (H10: -(ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr) -i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: -T).(subst0 (s (Bind Abbr) i) v2 t4 w2)) (or (pr0 (THead (Bind Abbr) u1 x) -(THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 -x) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) -(\lambda (x0: T).(\lambda (H11: (pr0 x x0)).(\lambda (H12: (subst0 (s (Bind -Abbr) i) v2 t4 x0)).(ex2_ind T (\lambda (t: T).(subst0 O u2 x0 t)) (\lambda -(t: T).(subst0 (s (Bind Abbr) i) v2 w t)) (or (pr0 (THead (Bind Abbr) u1 x) -(THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 -x) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) -(\lambda (x1: T).(\lambda (H13: (subst0 O u2 x0 x1)).(\lambda (H14: (subst0 -(s (Bind Abbr) i) v2 w x1)).(or_intror (pr0 (THead (Bind Abbr) u1 x) (THead -(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 x) w2)) -(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T -(\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 x) w2)) (\lambda (w2: T).(subst0 -i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) u2 x1) (pr0_delta u1 u2 -H0 x x0 H11 x1 H13) (subst0_snd (Bind Abbr) v2 x1 w i H14 u2)))))) -(subst0_confluence_neq t4 x0 v2 (s (Bind Abbr) i) H12 w u2 O H4 (sym_not_eq -nat O (S i) (O_S i))))))) H10)) (H3 v1 x (s (Bind Abbr) i) H9 v2 H6)) w1 -H8)))) H7)) (\lambda (H7: (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq T -w1 (THead (Bind Abbr) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v1 -u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 -t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead -(Bind Abbr) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v1 u1 u3))) -(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5))) (or -(pr0 w1 (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) -(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x0: -T).(\lambda (x1: T).(\lambda (H8: (eq T w1 (THead (Bind Abbr) x0 -x1))).(\lambda (H9: (subst0 i v1 u1 x0)).(\lambda (H10: (subst0 (s (Bind -Abbr) i) v1 t3 x1)).(eq_ind_r T (THead (Bind Abbr) x0 x1) (\lambda (t: T).(or -(pr0 t (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda -(w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))) (or_ind (pr0 x1 t4) -(ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr) -i) v2 t4 w2))) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) -(ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: -T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H11: (pr0 x1 -t4)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: -T).(subst0 i v2 u2 w2))) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind -Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) -(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H12: -(pr0 x0 u2)).(or_introl (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 -w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: -T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (pr0_delta x0 u2 H12 x1 t4 H11 -w H4))) (\lambda (H12: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: -T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda -(w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind -Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) -(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x: -T).(\lambda (H13: (pr0 x0 x)).(\lambda (H14: (subst0 i v2 u2 x)).(ex2_ind T -(\lambda (t: T).(subst0 O x t4 t)) (\lambda (t: T).(subst0 (S (plus i O)) v2 -w t)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T -(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 -i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x2: T).(\lambda (H15: (subst0 -O x t4 x2)).(\lambda (H16: (subst0 (S (plus i O)) v2 w x2)).(let H17 \def -(f_equal nat nat S (plus i O) i (sym_eq nat i (plus i O) (plus_n_O i))) in -(let H18 \def (eq_ind nat (S (plus i O)) (\lambda (n: nat).(subst0 n v2 w -x2)) H16 (S i) H17) in (or_intror (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind -Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) -(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T -(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 -i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) x x2) (pr0_delta x0 x -H13 x1 t4 H11 x2 H15) (subst0_both v2 u2 x i H14 (Bind Abbr) w x2 H18)))))))) -(subst0_subst0_back t4 w u2 O H4 x v2 i H14))))) H12)) (H1 v1 x0 i H9 v2 -H6))) (\lambda (H11: (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: -T).(subst0 (s (Bind Abbr) i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1 -w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr) i) v2 t4 w2)) (or (pr0 (THead -(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 -(THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind -Abbr) u2 w) w2)))) (\lambda (x: T).(\lambda (H12: (pr0 x1 x)).(\lambda (H13: -(subst0 (s (Bind Abbr) i) v2 t4 x)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: -T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2))) (or (pr0 (THead (Bind -Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead -(Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 -w) w2)))) (\lambda (H14: (pr0 x0 u2)).(ex2_ind T (\lambda (t: T).(subst0 O u2 -x t)) (\lambda (t: T).(subst0 (s (Bind Abbr) i) v2 w t)) (or (pr0 (THead -(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 -(THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind -Abbr) u2 w) w2)))) (\lambda (x2: T).(\lambda (H15: (subst0 O u2 x -x2)).(\lambda (H16: (subst0 (s (Bind Abbr) i) v2 w x2)).(or_intror (pr0 -(THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: -T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead -(Bind Abbr) u2 w) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) -x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)) -(THead (Bind Abbr) u2 x2) (pr0_delta x0 u2 H14 x1 x H12 x2 H15) (subst0_snd -(Bind Abbr) v2 x2 w i H16 u2)))))) (subst0_confluence_neq t4 x v2 (s (Bind -Abbr) i) H13 w u2 O H4 (sym_not_eq nat O (S i) (O_S i))))) (\lambda (H14: -(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 -w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 -u2 w2)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T -(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 -i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x2: T).(\lambda (H15: (pr0 x0 -x2)).(\lambda (H16: (subst0 i v2 u2 x2)).(ex2_ind T (\lambda (t: T).(subst0 O -x2 t4 t)) (\lambda (t: T).(subst0 (S (plus i O)) v2 w t)) (or (pr0 (THead -(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 -(THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind -Abbr) u2 w) w2)))) (\lambda (x3: T).(\lambda (H17: (subst0 O x2 t4 -x3)).(\lambda (H18: (subst0 (S (plus i O)) v2 w x3)).(let H19 \def (f_equal -nat nat S (plus i O) i (sym_eq nat i (plus i O) (plus_n_O i))) in (let H20 -\def (eq_ind nat (S (plus i O)) (\lambda (n: nat).(subst0 n v2 w x3)) H18 (S -i) H19) in (ex2_ind T (\lambda (t: T).(subst0 (s (Bind Abbr) i) v2 x3 t)) -(\lambda (t: T).(subst0 O x2 x t)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead -(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) -w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda -(x4: T).(\lambda (H21: (subst0 (s (Bind Abbr) i) v2 x3 x4)).(\lambda (H22: -(subst0 O x2 x x4)).(or_intror (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind -Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) -(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T -(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 -i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) x2 x4) (pr0_delta x0 x2 -H15 x1 x H12 x4 H22) (subst0_both v2 u2 x2 i H16 (Bind Abbr) w x4 -(subst0_trans x3 w v2 (s (Bind Abbr) i) H20 x4 H21))))))) -(subst0_confluence_neq t4 x3 x2 O H17 x v2 (s (Bind Abbr) i) H13 (O_S -i)))))))) (subst0_subst0_back t4 w u2 O H4 x2 v2 i H16))))) H14)) (H1 v1 x0 i -H9 v2 H6))))) H11)) (H3 v1 x1 (s (Bind Abbr) i) H10 v2 H6)) w1 H8)))))) H7)) -(subst0_gen_head (Bind Abbr) v1 u1 t3 w1 i H5)))))))))))))))))) (\lambda (b: -B).(\lambda (H0: (not (eq B b Abst))).(\lambda (t3: T).(\lambda (t4: -T).(\lambda (H1: (pr0 t3 t4)).(\lambda (H2: ((\forall (v1: T).(\forall (w1: -T).(\forall (i: nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2) -\to (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: -T).(subst0 i v2 t4 w2)))))))))))).(\lambda (u: T).(\lambda (v1: T).(\lambda -(w1: T).(\lambda (i: nat).(\lambda (H3: (subst0 i v1 (THead (Bind b) u (lift -(S O) O t3)) w1)).(\lambda (v2: T).(\lambda (H4: (pr0 v1 v2)).(or3_ind (ex2 T -(\lambda (u2: T).(eq T w1 (THead (Bind b) u2 (lift (S O) O t3)))) (\lambda -(u2: T).(subst0 i v1 u u2))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind b) -u t5))) (\lambda (t5: T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5))) -(ex3_2 T T (\lambda (u2: T).(\lambda (t5: T).(eq T w1 (THead (Bind b) u2 -t5)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: -T).(\lambda (t5: T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5)))) (or -(pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i -v2 t4 w2)))) (\lambda (H5: (ex2 T (\lambda (u2: T).(eq T w1 (THead (Bind b) -u2 (lift (S O) O t3)))) (\lambda (u2: T).(subst0 i v1 u u2)))).(ex2_ind T -(\lambda (u2: T).(eq T w1 (THead (Bind b) u2 (lift (S O) O t3)))) (\lambda -(u2: T).(subst0 i v1 u u2)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 -w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H6: -(eq T w1 (THead (Bind b) x (lift (S O) O t3)))).(\lambda (_: (subst0 i v1 u -x)).(eq_ind_r T (THead (Bind b) x (lift (S O) O t3)) (\lambda (t: T).(or (pr0 -t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4 -w2))))) (or_introl (pr0 (THead (Bind b) x (lift (S O) O t3)) t4) (ex2 T -(\lambda (w2: T).(pr0 (THead (Bind b) x (lift (S O) O t3)) w2)) (\lambda (w2: -T).(subst0 i v2 t4 w2))) (pr0_zeta b H0 t3 t4 H1 x)) w1 H6)))) H5)) (\lambda -(H5: (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind b) u t5))) (\lambda (t5: -T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5)))).(ex2_ind T (\lambda -(t5: T).(eq T w1 (THead (Bind b) u t5))) (\lambda (t5: T).(subst0 (s (Bind b) -i) v1 (lift (S O) O t3) t5)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 -w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H6: -(eq T w1 (THead (Bind b) u x))).(\lambda (H7: (subst0 (s (Bind b) i) v1 (lift -(S O) O t3) x)).(ex2_ind T (\lambda (t5: T).(eq T x (lift (S O) O t5))) -(\lambda (t5: T).(subst0 (minus (s (Bind b) i) (S O)) v1 t3 t5)) (or (pr0 w1 -t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 -w2)))) (\lambda (x0: T).(\lambda (H8: (eq T x (lift (S O) O x0))).(\lambda -(H9: (subst0 (minus (s (Bind b) i) (S O)) v1 t3 x0)).(let H10 \def (eq_ind T -x (\lambda (t: T).(eq T w1 (THead (Bind b) u t))) H6 (lift (S O) O x0) H8) in -(eq_ind_r T (THead (Bind b) u (lift (S O) O x0)) (\lambda (t: T).(or (pr0 t -t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4 -w2))))) (let H11 \def (eq_ind_r nat (minus i O) (\lambda (n: nat).(subst0 n -v1 t3 x0)) H9 i (minus_n_O i)) in (or_ind (pr0 x0 t4) (ex2 T (\lambda (w2: -T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (or (pr0 (THead (Bind -b) u (lift (S O) O x0)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) u -(lift (S O) O x0)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda -(H12: (pr0 x0 t4)).(or_introl (pr0 (THead (Bind b) u (lift (S O) O x0)) t4) -(ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) w2)) -(\lambda (w2: T).(subst0 i v2 t4 w2))) (pr0_zeta b H0 x0 t4 H12 u))) (\lambda -(H12: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 t4 -w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 -t4 w2)) (or (pr0 (THead (Bind b) u (lift (S O) O x0)) t4) (ex2 T (\lambda -(w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) w2)) (\lambda (w2: -T).(subst0 i v2 t4 w2)))) (\lambda (x1: T).(\lambda (H13: (pr0 x0 -x1)).(\lambda (H14: (subst0 i v2 t4 x1)).(or_intror (pr0 (THead (Bind b) u -(lift (S O) O x0)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) u (lift -(S O) O x0)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (ex_intro2 T -(\lambda (w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) w2)) (\lambda (w2: -T).(subst0 i v2 t4 w2)) x1 (pr0_zeta b H0 x0 x1 H13 u) H14))))) H12)) (H2 v1 -x0 i H11 v2 H4))) w1 H10))))) (subst0_gen_lift_ge v1 t3 x (s (Bind b) i) (S -O) O H7 (le_n_S O i (le_O_n i))))))) H5)) (\lambda (H5: (ex3_2 T T (\lambda -(u2: T).(\lambda (t5: T).(eq T w1 (THead (Bind b) u2 t5)))) (\lambda (u2: -T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5: -T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5))))).(ex3_2_ind T T -(\lambda (u2: T).(\lambda (t5: T).(eq T w1 (THead (Bind b) u2 t5)))) (\lambda -(u2: T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5: -T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5))) (or (pr0 w1 t4) (ex2 T -(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) -(\lambda (x0: T).(\lambda (x1: T).(\lambda (H6: (eq T w1 (THead (Bind b) x0 -x1))).(\lambda (_: (subst0 i v1 u x0)).(\lambda (H8: (subst0 (s (Bind b) i) -v1 (lift (S O) O t3) x1)).(ex2_ind T (\lambda (t5: T).(eq T x1 (lift (S O) O -t5))) (\lambda (t5: T).(subst0 (minus (s (Bind b) i) (S O)) v1 t3 t5)) (or -(pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i -v2 t4 w2)))) (\lambda (x: T).(\lambda (H9: (eq T x1 (lift (S O) O -x))).(\lambda (H10: (subst0 (minus (s (Bind b) i) (S O)) v1 t3 x)).(let H11 -\def (eq_ind T x1 (\lambda (t: T).(eq T w1 (THead (Bind b) x0 t))) H6 (lift -(S O) O x) H9) in (eq_ind_r T (THead (Bind b) x0 (lift (S O) O x)) (\lambda -(t: T).(or (pr0 t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: -T).(subst0 i v2 t4 w2))))) (let H12 \def (eq_ind_r nat (minus i O) (\lambda -(n: nat).(subst0 n v1 t3 x)) H10 i (minus_n_O i)) in (or_ind (pr0 x t4) (ex2 -T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (or -(pr0 (THead (Bind b) x0 (lift (S O) O x)) t4) (ex2 T (\lambda (w2: T).(pr0 -(THead (Bind b) x0 (lift (S O) O x)) w2)) (\lambda (w2: T).(subst0 i v2 t4 -w2)))) (\lambda (H13: (pr0 x t4)).(or_introl (pr0 (THead (Bind b) x0 (lift (S -O) O x)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) x0 (lift (S O) O -x)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (pr0_zeta b H0 x t4 H13 x0))) -(\lambda (H13: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i -v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 -i v2 t4 w2)) (or (pr0 (THead (Bind b) x0 (lift (S O) O x)) t4) (ex2 T -(\lambda (w2: T).(pr0 (THead (Bind b) x0 (lift (S O) O x)) w2)) (\lambda (w2: -T).(subst0 i v2 t4 w2)))) (\lambda (x2: T).(\lambda (H14: (pr0 x -x2)).(\lambda (H15: (subst0 i v2 t4 x2)).(or_intror (pr0 (THead (Bind b) x0 -(lift (S O) O x)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) x0 (lift -(S O) O x)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (ex_intro2 T (\lambda -(w2: T).(pr0 (THead (Bind b) x0 (lift (S O) O x)) w2)) (\lambda (w2: -T).(subst0 i v2 t4 w2)) x2 (pr0_zeta b H0 x x2 H14 x0) H15))))) H13)) (H2 v1 -x i H12 v2 H4))) w1 H11))))) (subst0_gen_lift_ge v1 t3 x1 (s (Bind b) i) (S -O) O H8 (le_n_S O i (le_O_n i))))))))) H5)) (subst0_gen_head (Bind b) v1 u -(lift (S O) O t3) w1 i H3))))))))))))))) (\lambda (t3: T).(\lambda (t4: -T).(\lambda (H0: (pr0 t3 t4)).(\lambda (H1: ((\forall (v1: T).(\forall (w1: -T).(\forall (i: nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2) -\to (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: -T).(subst0 i v2 t4 w2)))))))))))).(\lambda (u: T).(\lambda (v1: T).(\lambda -(w1: T).(\lambda (i: nat).(\lambda (H2: (subst0 i v1 (THead (Flat Cast) u t3) -w1)).(\lambda (v2: T).(\lambda (H3: (pr0 v1 v2)).(or3_ind (ex2 T (\lambda -(u2: T).(eq T w1 (THead (Flat Cast) u2 t3))) (\lambda (u2: T).(subst0 i v1 u -u2))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Flat Cast) u t5))) (\lambda -(t5: T).(subst0 (s (Flat Cast) i) v1 t3 t5))) (ex3_2 T T (\lambda (u2: -T).(\lambda (t5: T).(eq T w1 (THead (Flat Cast) u2 t5)))) (\lambda (u2: -T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5: -T).(subst0 (s (Flat Cast) i) v1 t3 t5)))) (or (pr0 w1 t4) (ex2 T (\lambda -(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (H4: -(ex2 T (\lambda (u2: T).(eq T w1 (THead (Flat Cast) u2 t3))) (\lambda (u2: -T).(subst0 i v1 u u2)))).(ex2_ind T (\lambda (u2: T).(eq T w1 (THead (Flat -Cast) u2 t3))) (\lambda (u2: T).(subst0 i v1 u u2)) (or (pr0 w1 t4) (ex2 T -(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) -(\lambda (x: T).(\lambda (H5: (eq T w1 (THead (Flat Cast) x t3))).(\lambda -(_: (subst0 i v1 u x)).(eq_ind_r T (THead (Flat Cast) x t3) (\lambda (t: -T).(or (pr0 t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: -T).(subst0 i v2 t4 w2))))) (or_introl (pr0 (THead (Flat Cast) x t3) t4) (ex2 -T (\lambda (w2: T).(pr0 (THead (Flat Cast) x t3) w2)) (\lambda (w2: -T).(subst0 i v2 t4 w2))) (pr0_tau t3 t4 H0 x)) w1 H5)))) H4)) (\lambda (H4: -(ex2 T (\lambda (t5: T).(eq T w1 (THead (Flat Cast) u t5))) (\lambda (t5: -T).(subst0 (s (Flat Cast) i) v1 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq T -w1 (THead (Flat Cast) u t5))) (\lambda (t5: T).(subst0 (s (Flat Cast) i) v1 -t3 t5)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: -T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H5: (eq T w1 (THead (Flat -Cast) u x))).(\lambda (H6: (subst0 (s (Flat Cast) i) v1 t3 x)).(eq_ind_r T -(THead (Flat Cast) u x) (\lambda (t: T).(or (pr0 t t4) (ex2 T (\lambda (w2: -T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))) (or_ind (pr0 x t4) -(ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Cast) -i) v2 t4 w2))) (or (pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2: -T).(pr0 (THead (Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) -(\lambda (H7: (pr0 x t4)).(or_introl (pr0 (THead (Flat Cast) u x) t4) (ex2 T -(\lambda (w2: T).(pr0 (THead (Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i -v2 t4 w2))) (pr0_tau x t4 H7 u))) (\lambda (H7: (ex2 T (\lambda (w2: T).(pr0 -x w2)) (\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2)))).(ex2_ind T -(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4 -w2)) (or (pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2: T).(pr0 (THead -(Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x0: -T).(\lambda (H8: (pr0 x x0)).(\lambda (H9: (subst0 (s (Flat Cast) i) v2 t4 -x0)).(or_intror (pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2: T).(pr0 -(THead (Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) -(ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) u x) w2)) (\lambda (w2: -T).(subst0 i v2 t4 w2)) x0 (pr0_tau x x0 H8 u) H9))))) H7)) (H1 v1 x (s (Flat -Cast) i) H6 v2 H3)) w1 H5)))) H4)) (\lambda (H4: (ex3_2 T T (\lambda (u2: -T).(\lambda (t5: T).(eq T w1 (THead (Flat Cast) u2 t5)))) (\lambda (u2: -T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5: -T).(subst0 (s (Flat Cast) i) v1 t3 t5))))).(ex3_2_ind T T (\lambda (u2: -T).(\lambda (t5: T).(eq T w1 (THead (Flat Cast) u2 t5)))) (\lambda (u2: -T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5: -T).(subst0 (s (Flat Cast) i) v1 t3 t5))) (or (pr0 w1 t4) (ex2 T (\lambda (w2: -T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x0: -T).(\lambda (x1: T).(\lambda (H5: (eq T w1 (THead (Flat Cast) x0 -x1))).(\lambda (_: (subst0 i v1 u x0)).(\lambda (H7: (subst0 (s (Flat Cast) -i) v1 t3 x1)).(eq_ind_r T (THead (Flat Cast) x0 x1) (\lambda (t: T).(or (pr0 -t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4 -w2))))) (or_ind (pr0 x1 t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda -(w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2))) (or (pr0 (THead (Flat Cast) x0 -x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) x0 x1) w2)) (\lambda -(w2: T).(subst0 i v2 t4 w2)))) (\lambda (H8: (pr0 x1 t4)).(or_introl (pr0 -(THead (Flat Cast) x0 x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) -x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (pr0_tau x1 t4 H8 x0))) -(\lambda (H8: (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 -(s (Flat Cast) i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1 w2)) -(\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2)) (or (pr0 (THead (Flat -Cast) x0 x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) x0 x1) w2)) -(\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H9: (pr0 x1 -x)).(\lambda (H10: (subst0 (s (Flat Cast) i) v2 t4 x)).(or_intror (pr0 (THead -(Flat Cast) x0 x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) x0 x1) -w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (ex_intro2 T (\lambda (w2: -T).(pr0 (THead (Flat Cast) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)) -x (pr0_tau x1 x H9 x0) H10))))) H8)) (H1 v1 x1 (s (Flat Cast) i) H7 v2 H3)) -w1 H5)))))) H4)) (subst0_gen_head (Flat Cast) v1 u t3 w1 i H2))))))))))))) t1 -t2 H))). -(* COMMENTS -Initial nodes: 38857 -END *) + \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead +(Bind Void) u1 t1) x)).(let TMP_1 \def (Bind Void) in (let TMP_2 \def (THead +TMP_1 u1 t1) in (let TMP_3 \def (\lambda (t: T).(pr0 t x)) in (let TMP_13 +\def (\lambda (_: T).(let TMP_6 \def (\lambda (u2: T).(\lambda (t2: T).(let +TMP_4 \def (Bind Void) in (let TMP_5 \def (THead TMP_4 u2 t2) in (eq T x +TMP_5))))) in (let TMP_7 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) +in (let TMP_8 \def (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2))) in (let +TMP_9 \def (ex3_2 T T TMP_6 TMP_7 TMP_8) in (let TMP_10 \def (S O) in (let +TMP_11 \def (lift TMP_10 O x) in (let TMP_12 \def (pr0 t1 TMP_11) in (or +TMP_9 TMP_12))))))))) in (let TMP_310 \def (\lambda (y: T).(\lambda (H0: (pr0 +y x)).(let TMP_23 \def (\lambda (t: T).(\lambda (t0: T).((eq T t (THead (Bind +Void) u1 t1)) \to (let TMP_16 \def (\lambda (u2: T).(\lambda (t2: T).(let +TMP_14 \def (Bind Void) in (let TMP_15 \def (THead TMP_14 u2 t2) in (eq T t0 +TMP_15))))) in (let TMP_17 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 +u2))) in (let TMP_18 \def (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2))) in +(let TMP_19 \def (ex3_2 T T TMP_16 TMP_17 TMP_18) in (let TMP_20 \def (S O) +in (let TMP_21 \def (lift TMP_20 O t0) in (let TMP_22 \def (pr0 t1 TMP_21) in +(or TMP_19 TMP_22))))))))))) in (let TMP_66 \def (\lambda (t: T).(\lambda +(H1: (eq T t (THead (Bind Void) u1 t1))).(let TMP_24 \def (\lambda (e: T).e) +in (let TMP_25 \def (Bind Void) in (let TMP_26 \def (THead TMP_25 u1 t1) in +(let H2 \def (f_equal T T TMP_24 t TMP_26 H1) in (let TMP_27 \def (Bind Void) +in (let TMP_28 \def (THead TMP_27 u1 t1) in (let TMP_38 \def (\lambda (t0: +T).(let TMP_31 \def (\lambda (u2: T).(\lambda (t2: T).(let TMP_29 \def (Bind +Void) in (let TMP_30 \def (THead TMP_29 u2 t2) in (eq T t0 TMP_30))))) in +(let TMP_32 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) in (let +TMP_33 \def (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2))) in (let TMP_34 +\def (ex3_2 T T TMP_31 TMP_32 TMP_33) in (let TMP_35 \def (S O) in (let +TMP_36 \def (lift TMP_35 O t0) in (let TMP_37 \def (pr0 t1 TMP_36) in (or +TMP_34 TMP_37))))))))) in (let TMP_43 \def (\lambda (u2: T).(\lambda (t2: +T).(let TMP_39 \def (Bind Void) in (let TMP_40 \def (THead TMP_39 u1 t1) in +(let TMP_41 \def (Bind Void) in (let TMP_42 \def (THead TMP_41 u2 t2) in (eq +T TMP_40 TMP_42))))))) in (let TMP_44 \def (\lambda (u2: T).(\lambda (_: +T).(pr0 u1 u2))) in (let TMP_45 \def (\lambda (_: T).(\lambda (t2: T).(pr0 t1 +t2))) in (let TMP_46 \def (ex3_2 T T TMP_43 TMP_44 TMP_45) in (let TMP_47 +\def (S O) in (let TMP_48 \def (Bind Void) in (let TMP_49 \def (THead TMP_48 +u1 t1) in (let TMP_50 \def (lift TMP_47 O TMP_49) in (let TMP_51 \def (pr0 t1 +TMP_50) in (let TMP_56 \def (\lambda (u2: T).(\lambda (t2: T).(let TMP_52 +\def (Bind Void) in (let TMP_53 \def (THead TMP_52 u1 t1) in (let TMP_54 \def +(Bind Void) in (let TMP_55 \def (THead TMP_54 u2 t2) in (eq T TMP_53 +TMP_55))))))) in (let TMP_57 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 +u2))) in (let TMP_58 \def (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2))) in +(let TMP_59 \def (Bind Void) in (let TMP_60 \def (THead TMP_59 u1 t1) in (let +TMP_61 \def (refl_equal T TMP_60) in (let TMP_62 \def (pr0_refl u1) in (let +TMP_63 \def (pr0_refl t1) in (let TMP_64 \def (ex3_2_intro T T TMP_56 TMP_57 +TMP_58 u1 t1 TMP_61 TMP_62 TMP_63) in (let TMP_65 \def (or_introl TMP_46 +TMP_51 TMP_64) in (eq_ind_r T TMP_28 TMP_38 TMP_65 t +H2))))))))))))))))))))))))))))) in (let TMP_141 \def (\lambda (u0: +T).(\lambda (u2: T).(\lambda (H1: (pr0 u0 u2)).(\lambda (H2: (((eq T u0 +(THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: +T).(eq T u2 (THead (Bind Void) u3 t2)))) (\lambda (u3: T).(\lambda (_: +T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 +(lift (S O) O u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H3: (pr0 +t0 t2)).(\lambda (H4: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T +T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u3 t3)))) +(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: +T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (k: K).(\lambda +(H5: (eq T (THead k u0 t0) (THead (Bind Void) u1 t1))).(let TMP_67 \def +(\lambda (e: T).(match e with [(TSort _) \Rightarrow k | (TLRef _) +\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) in (let TMP_68 \def (THead k +u0 t0) in (let TMP_69 \def (Bind Void) in (let TMP_70 \def (THead TMP_69 u1 +t1) in (let H6 \def (f_equal T K TMP_67 TMP_68 TMP_70 H5) in (let TMP_71 \def +(\lambda (e: T).(match e with [(TSort _) \Rightarrow u0 | (TLRef _) +\Rightarrow u0 | (THead _ t _) \Rightarrow t])) in (let TMP_72 \def (THead k +u0 t0) in (let TMP_73 \def (Bind Void) in (let TMP_74 \def (THead TMP_73 u1 +t1) in (let H7 \def (f_equal T T TMP_71 TMP_72 TMP_74 H5) in (let TMP_75 \def +(\lambda (e: T).(match e with [(TSort _) \Rightarrow t0 | (TLRef _) +\Rightarrow t0 | (THead _ _ t) \Rightarrow t])) in (let TMP_76 \def (THead k +u0 t0) in (let TMP_77 \def (Bind Void) in (let TMP_78 \def (THead TMP_77 u1 +t1) in (let H8 \def (f_equal T T TMP_75 TMP_76 TMP_78 H5) in (let TMP_139 +\def (\lambda (H9: (eq T u0 u1)).(\lambda (H10: (eq K k (Bind Void))).(let +TMP_79 \def (Bind Void) in (let TMP_91 \def (\lambda (k0: K).(let TMP_83 \def +(\lambda (u3: T).(\lambda (t3: T).(let TMP_80 \def (THead k0 u2 t2) in (let +TMP_81 \def (Bind Void) in (let TMP_82 \def (THead TMP_81 u3 t3) in (eq T +TMP_80 TMP_82)))))) in (let TMP_84 \def (\lambda (u3: T).(\lambda (_: T).(pr0 +u1 u3))) in (let TMP_85 \def (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) +in (let TMP_86 \def (ex3_2 T T TMP_83 TMP_84 TMP_85) in (let TMP_87 \def (S +O) in (let TMP_88 \def (THead k0 u2 t2) in (let TMP_89 \def (lift TMP_87 O +TMP_88) in (let TMP_90 \def (pr0 t1 TMP_89) in (or TMP_86 TMP_90)))))))))) in +(let TMP_101 \def (\lambda (t: T).((eq T t (THead (Bind Void) u1 t1)) \to +(let TMP_94 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_92 \def (Bind +Void) in (let TMP_93 \def (THead TMP_92 u3 t3) in (eq T t2 TMP_93))))) in +(let TMP_95 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let +TMP_96 \def (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) in (let TMP_97 +\def (ex3_2 T T TMP_94 TMP_95 TMP_96) in (let TMP_98 \def (S O) in (let +TMP_99 \def (lift TMP_98 O t2) in (let TMP_100 \def (pr0 t1 TMP_99) in (or +TMP_97 TMP_100)))))))))) in (let H11 \def (eq_ind T t0 TMP_101 H4 t1 H8) in +(let TMP_102 \def (\lambda (t: T).(pr0 t t2)) in (let H12 \def (eq_ind T t0 +TMP_102 H3 t1 H8) in (let TMP_112 \def (\lambda (t: T).((eq T t (THead (Bind +Void) u1 t1)) \to (let TMP_105 \def (\lambda (u3: T).(\lambda (t3: T).(let +TMP_103 \def (Bind Void) in (let TMP_104 \def (THead TMP_103 u3 t3) in (eq T +u2 TMP_104))))) in (let TMP_106 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 +u3))) in (let TMP_107 \def (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) in +(let TMP_108 \def (ex3_2 T T TMP_105 TMP_106 TMP_107) in (let TMP_109 \def (S +O) in (let TMP_110 \def (lift TMP_109 O u2) in (let TMP_111 \def (pr0 t1 +TMP_110) in (or TMP_108 TMP_111)))))))))) in (let H13 \def (eq_ind T u0 +TMP_112 H2 u1 H9) in (let TMP_113 \def (\lambda (t: T).(pr0 t u2)) in (let +H14 \def (eq_ind T u0 TMP_113 H1 u1 H9) in (let TMP_118 \def (\lambda (u3: +T).(\lambda (t3: T).(let TMP_114 \def (Bind Void) in (let TMP_115 \def (THead +TMP_114 u2 t2) in (let TMP_116 \def (Bind Void) in (let TMP_117 \def (THead +TMP_116 u3 t3) in (eq T TMP_115 TMP_117))))))) in (let TMP_119 \def (\lambda +(u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let TMP_120 \def (\lambda (_: +T).(\lambda (t3: T).(pr0 t1 t3))) in (let TMP_121 \def (ex3_2 T T TMP_118 +TMP_119 TMP_120) in (let TMP_122 \def (S O) in (let TMP_123 \def (Bind Void) +in (let TMP_124 \def (THead TMP_123 u2 t2) in (let TMP_125 \def (lift TMP_122 +O TMP_124) in (let TMP_126 \def (pr0 t1 TMP_125) in (let TMP_131 \def +(\lambda (u3: T).(\lambda (t3: T).(let TMP_127 \def (Bind Void) in (let +TMP_128 \def (THead TMP_127 u2 t2) in (let TMP_129 \def (Bind Void) in (let +TMP_130 \def (THead TMP_129 u3 t3) in (eq T TMP_128 TMP_130))))))) in (let +TMP_132 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let TMP_133 +\def (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) in (let TMP_134 \def +(Bind Void) in (let TMP_135 \def (THead TMP_134 u2 t2) in (let TMP_136 \def +(refl_equal T TMP_135) in (let TMP_137 \def (ex3_2_intro T T TMP_131 TMP_132 +TMP_133 u2 t2 TMP_136 H14 H12) in (let TMP_138 \def (or_introl TMP_121 +TMP_126 TMP_137) in (eq_ind_r K TMP_79 TMP_91 TMP_138 k +H10)))))))))))))))))))))))))))))) in (let TMP_140 \def (TMP_139 H7) in +(TMP_140 H6)))))))))))))))))))))))))))) in (let TMP_163 \def (\lambda (u: +T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda (_: +(((eq T v1 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u2: +T).(\lambda (t2: T).(eq T v2 (THead (Bind Void) u2 t2)))) (\lambda (u2: +T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 +t2)))) (pr0 t1 (lift (S O) O v2)))))).(\lambda (t0: T).(\lambda (t2: +T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Void) u1 +t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead +(Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda +(_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O +t2)))))).(\lambda (H5: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) +(THead (Bind Void) u1 t1))).(let TMP_142 \def (Flat Appl) in (let TMP_143 +\def (Bind Abst) in (let TMP_144 \def (THead TMP_143 u t0) in (let TMP_145 +\def (THead TMP_142 v1 TMP_144) in (let TMP_146 \def (\lambda (ee: T).(match +ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k +_ _) \Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat _) +\Rightarrow True])])) in (let TMP_147 \def (Bind Void) in (let TMP_148 \def +(THead TMP_147 u1 t1) in (let H6 \def (eq_ind T TMP_145 TMP_146 I TMP_148 H5) +in (let TMP_153 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_149 \def +(Bind Abbr) in (let TMP_150 \def (THead TMP_149 v2 t2) in (let TMP_151 \def +(Bind Void) in (let TMP_152 \def (THead TMP_151 u2 t3) in (eq T TMP_150 +TMP_152))))))) in (let TMP_154 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 +u2))) in (let TMP_155 \def (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) in +(let TMP_156 \def (ex3_2 T T TMP_153 TMP_154 TMP_155) in (let TMP_157 \def (S +O) in (let TMP_158 \def (Bind Abbr) in (let TMP_159 \def (THead TMP_158 v2 +t2) in (let TMP_160 \def (lift TMP_157 O TMP_159) in (let TMP_161 \def (pr0 +t1 TMP_160) in (let TMP_162 \def (or TMP_156 TMP_161) in (False_ind TMP_162 +H6))))))))))))))))))))))))))))) in (let TMP_193 \def (\lambda (b: B).(\lambda +(_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 +v1 v2)).(\lambda (_: (((eq T v1 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T +(\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead (Bind Void) u2 t2)))) +(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: +T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O v2)))))).(\lambda (u0: T).(\lambda +(u2: T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead (Bind Void) +u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead +(Bind Void) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda +(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O +u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda +(_: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: +T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u3 t3)))) (\lambda (u3: +T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 +t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (H8: (eq T (THead (Flat Appl) +v1 (THead (Bind b) u0 t0)) (THead (Bind Void) u1 t1))).(let TMP_164 \def +(Flat Appl) in (let TMP_165 \def (Bind b) in (let TMP_166 \def (THead TMP_165 +u0 t0) in (let TMP_167 \def (THead TMP_164 v1 TMP_166) in (let TMP_168 \def +(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind _) +\Rightarrow False | (Flat _) \Rightarrow True])])) in (let TMP_169 \def (Bind +Void) in (let TMP_170 \def (THead TMP_169 u1 t1) in (let H9 \def (eq_ind T +TMP_167 TMP_168 I TMP_170 H8) in (let TMP_179 \def (\lambda (u3: T).(\lambda +(t3: T).(let TMP_171 \def (Bind b) in (let TMP_172 \def (Flat Appl) in (let +TMP_173 \def (S O) in (let TMP_174 \def (lift TMP_173 O v2) in (let TMP_175 +\def (THead TMP_172 TMP_174 t2) in (let TMP_176 \def (THead TMP_171 u2 +TMP_175) in (let TMP_177 \def (Bind Void) in (let TMP_178 \def (THead TMP_177 +u3 t3) in (eq T TMP_176 TMP_178))))))))))) in (let TMP_180 \def (\lambda (u3: +T).(\lambda (_: T).(pr0 u1 u3))) in (let TMP_181 \def (\lambda (_: +T).(\lambda (t3: T).(pr0 t1 t3))) in (let TMP_182 \def (ex3_2 T T TMP_179 +TMP_180 TMP_181) in (let TMP_183 \def (S O) in (let TMP_184 \def (Bind b) in +(let TMP_185 \def (Flat Appl) in (let TMP_186 \def (S O) in (let TMP_187 \def +(lift TMP_186 O v2) in (let TMP_188 \def (THead TMP_185 TMP_187 t2) in (let +TMP_189 \def (THead TMP_184 u2 TMP_188) in (let TMP_190 \def (lift TMP_183 O +TMP_189) in (let TMP_191 \def (pr0 t1 TMP_190) in (let TMP_192 \def (or +TMP_182 TMP_191) in (False_ind TMP_192 +H9)))))))))))))))))))))))))))))))))))))) in (let TMP_213 \def (\lambda (u0: +T).(\lambda (u2: T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead +(Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq +T u2 (THead (Bind Void) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 +u3))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O +u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda +(_: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: +T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u3 t3)))) (\lambda (u3: +T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 +t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (w: T).(\lambda (_: (subst0 O +u2 t2 w)).(\lambda (H6: (eq T (THead (Bind Abbr) u0 t0) (THead (Bind Void) u1 +t1))).(let TMP_194 \def (Bind Abbr) in (let TMP_195 \def (THead TMP_194 u0 +t0) in (let TMP_196 \def (\lambda (ee: T).(match ee with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow +(match k with [(Bind b) \Rightarrow (match b with [Abbr \Rightarrow True | +Abst \Rightarrow False | Void \Rightarrow False]) | (Flat _) \Rightarrow +False])])) in (let TMP_197 \def (Bind Void) in (let TMP_198 \def (THead +TMP_197 u1 t1) in (let H7 \def (eq_ind T TMP_195 TMP_196 I TMP_198 H6) in +(let TMP_203 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_199 \def (Bind +Abbr) in (let TMP_200 \def (THead TMP_199 u2 w) in (let TMP_201 \def (Bind +Void) in (let TMP_202 \def (THead TMP_201 u3 t3) in (eq T TMP_200 +TMP_202))))))) in (let TMP_204 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 +u3))) in (let TMP_205 \def (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) in +(let TMP_206 \def (ex3_2 T T TMP_203 TMP_204 TMP_205) in (let TMP_207 \def (S +O) in (let TMP_208 \def (Bind Abbr) in (let TMP_209 \def (THead TMP_208 u2 w) +in (let TMP_210 \def (lift TMP_207 O TMP_209) in (let TMP_211 \def (pr0 t1 +TMP_210) in (let TMP_212 \def (or TMP_206 TMP_211) in (False_ind TMP_212 +H7)))))))))))))))))))))))))))) in (let TMP_293 \def (\lambda (b: B).(\lambda +(H1: (not (eq B b Abst))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H2: +(pr0 t0 t2)).(\lambda (H3: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or +(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u2 +t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: +T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda +(u: T).(\lambda (H4: (eq T (THead (Bind b) u (lift (S O) O t0)) (THead (Bind +Void) u1 t1))).(let TMP_214 \def (\lambda (e: T).(match e with [(TSort _) +\Rightarrow b | (TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k +with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow b])])) in (let TMP_215 +\def (Bind b) in (let TMP_216 \def (S O) in (let TMP_217 \def (lift TMP_216 O +t0) in (let TMP_218 \def (THead TMP_215 u TMP_217) in (let TMP_219 \def (Bind +Void) in (let TMP_220 \def (THead TMP_219 u1 t1) in (let H5 \def (f_equal T B +TMP_214 TMP_218 TMP_220 H4) in (let TMP_221 \def (\lambda (e: T).(match e +with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t _) +\Rightarrow t])) in (let TMP_222 \def (Bind b) in (let TMP_223 \def (S O) in +(let TMP_224 \def (lift TMP_223 O t0) in (let TMP_225 \def (THead TMP_222 u +TMP_224) in (let TMP_226 \def (Bind Void) in (let TMP_227 \def (THead TMP_226 +u1 t1) in (let H6 \def (f_equal T T TMP_221 TMP_225 TMP_227 H4) in (let +TMP_242 \def (\lambda (e: T).(match e with [(TSort _) \Rightarrow (let +TMP_241 \def (\lambda (x0: nat).(let TMP_240 \def (S O) in (plus x0 +TMP_240))) in (lref_map TMP_241 O t0)) | (TLRef _) \Rightarrow (let TMP_234 +\def (\lambda (x0: nat).(let TMP_233 \def (S O) in (plus x0 TMP_233))) in +(lref_map TMP_234 O t0)) | (THead _ _ t) \Rightarrow t])) in (let TMP_243 +\def (Bind b) in (let TMP_244 \def (S O) in (let TMP_245 \def (lift TMP_244 O +t0) in (let TMP_246 \def (THead TMP_243 u TMP_245) in (let TMP_247 \def (Bind +Void) in (let TMP_248 \def (THead TMP_247 u1 t1) in (let H7 \def (f_equal T T +TMP_242 TMP_246 TMP_248 H4) in (let TMP_291 \def (\lambda (_: (eq T u +u1)).(\lambda (H9: (eq B b Void)).(let TMP_250 \def (\lambda (b0: B).(let +TMP_249 \def (eq B b0 Abst) in (not TMP_249))) in (let H10 \def (eq_ind B b +TMP_250 H1 Void H9) in (let TMP_260 \def (\lambda (t: T).((eq T t0 (THead +(Bind Void) u1 t)) \to (let TMP_253 \def (\lambda (u2: T).(\lambda (t3: +T).(let TMP_251 \def (Bind Void) in (let TMP_252 \def (THead TMP_251 u2 t3) +in (eq T t2 TMP_252))))) in (let TMP_254 \def (\lambda (u2: T).(\lambda (_: +T).(pr0 u1 u2))) in (let TMP_255 \def (\lambda (_: T).(\lambda (t3: T).(pr0 t +t3))) in (let TMP_256 \def (ex3_2 T T TMP_253 TMP_254 TMP_255) in (let +TMP_257 \def (S O) in (let TMP_258 \def (lift TMP_257 O t2) in (let TMP_259 +\def (pr0 t TMP_258) in (or TMP_256 TMP_259)))))))))) in (let TMP_261 \def (S +O) in (let TMP_262 \def (lift TMP_261 O t0) in (let H11 \def (eq_ind_r T t1 +TMP_260 H3 TMP_262 H7) in (let TMP_263 \def (S O) in (let TMP_264 \def (lift +TMP_263 O t0) in (let TMP_274 \def (\lambda (t: T).(let TMP_267 \def (\lambda +(u2: T).(\lambda (t3: T).(let TMP_265 \def (Bind Void) in (let TMP_266 \def +(THead TMP_265 u2 t3) in (eq T t2 TMP_266))))) in (let TMP_268 \def (\lambda +(u2: T).(\lambda (_: T).(pr0 u1 u2))) in (let TMP_269 \def (\lambda (_: +T).(\lambda (t3: T).(pr0 t t3))) in (let TMP_270 \def (ex3_2 T T TMP_267 +TMP_268 TMP_269) in (let TMP_271 \def (S O) in (let TMP_272 \def (lift +TMP_271 O t2) in (let TMP_273 \def (pr0 t TMP_272) in (or TMP_270 +TMP_273))))))))) in (let TMP_277 \def (\lambda (u2: T).(\lambda (t3: T).(let +TMP_275 \def (Bind Void) in (let TMP_276 \def (THead TMP_275 u2 t3) in (eq T +t2 TMP_276))))) in (let TMP_278 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 +u2))) in (let TMP_281 \def (\lambda (_: T).(\lambda (t3: T).(let TMP_279 \def +(S O) in (let TMP_280 \def (lift TMP_279 O t0) in (pr0 TMP_280 t3))))) in +(let TMP_282 \def (ex3_2 T T TMP_277 TMP_278 TMP_281) in (let TMP_283 \def (S +O) in (let TMP_284 \def (lift TMP_283 O t0) in (let TMP_285 \def (S O) in +(let TMP_286 \def (lift TMP_285 O t2) in (let TMP_287 \def (pr0 TMP_284 +TMP_286) in (let TMP_288 \def (S O) in (let TMP_289 \def (pr0_lift t0 t2 H2 +TMP_288 O) in (let TMP_290 \def (or_intror TMP_282 TMP_287 TMP_289) in +(eq_ind T TMP_264 TMP_274 TMP_290 t1 H7)))))))))))))))))))))))) in (let +TMP_292 \def (TMP_291 H6) in (TMP_292 H5))))))))))))))))))))))))))))))))))) +in (let TMP_309 \def (\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 +t2)).(\lambda (_: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T +(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u2 t3)))) +(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: +T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (u: T).(\lambda +(H3: (eq T (THead (Flat Cast) u t0) (THead (Bind Void) u1 t1))).(let TMP_294 +\def (Flat Cast) in (let TMP_295 \def (THead TMP_294 u t0) in (let TMP_296 +\def (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind _) +\Rightarrow False | (Flat _) \Rightarrow True])])) in (let TMP_297 \def (Bind +Void) in (let TMP_298 \def (THead TMP_297 u1 t1) in (let H4 \def (eq_ind T +TMP_295 TMP_296 I TMP_298 H3) in (let TMP_301 \def (\lambda (u2: T).(\lambda +(t3: T).(let TMP_299 \def (Bind Void) in (let TMP_300 \def (THead TMP_299 u2 +t3) in (eq T t2 TMP_300))))) in (let TMP_302 \def (\lambda (u2: T).(\lambda +(_: T).(pr0 u1 u2))) in (let TMP_303 \def (\lambda (_: T).(\lambda (t3: +T).(pr0 t1 t3))) in (let TMP_304 \def (ex3_2 T T TMP_301 TMP_302 TMP_303) in +(let TMP_305 \def (S O) in (let TMP_306 \def (lift TMP_305 O t2) in (let +TMP_307 \def (pr0 t1 TMP_306) in (let TMP_308 \def (or TMP_304 TMP_307) in +(False_ind TMP_308 H4))))))))))))))))))))) in (pr0_ind TMP_23 TMP_66 TMP_141 +TMP_163 TMP_193 TMP_213 TMP_293 TMP_309 y x H0))))))))))) in (insert_eq T +TMP_2 TMP_3 TMP_13 TMP_310 H))))))))). diff --git a/matita/matita/contribs/lambdadelta/basic_1/pr0/subst0.ma b/matita/matita/contribs/lambdadelta/basic_1/pr0/subst0.ma new file mode 100644 index 000000000..12f17331f --- /dev/null +++ b/matita/matita/contribs/lambdadelta/basic_1/pr0/subst0.ma @@ -0,0 +1,1647 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +(* This file was automatically generated: do not edit *********************) + +include "basic_1/pr0/props.ma". + +include "basic_1/subst0/subst0.ma". + +theorem pr0_subst0_back: + \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst0 +i u2 t1 t2) \to (\forall (u1: T).((pr0 u1 u2) \to (ex2 T (\lambda (t: +T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t t2))))))))) +\def + \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda +(H: (subst0 i u2 t1 t2)).(subst0_ind (\lambda (n: nat).(\lambda (t: +T).(\lambda (t0: T).(\lambda (t3: T).(\forall (u1: T).((pr0 u1 t) \to (ex2 T +(\lambda (t4: T).(subst0 n u1 t0 t4)) (\lambda (t4: T).(pr0 t4 t3))))))))) +(\lambda (v: T).(\lambda (i0: nat).(\lambda (u1: T).(\lambda (H0: (pr0 u1 +v)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1 (TLRef i0) t)) (\lambda (t: +T).(pr0 t (lift (S i0) O v))) (lift (S i0) O u1) (subst0_lref u1 i0) +(pr0_lift u1 v H0 (S i0) O)))))) (\lambda (v: T).(\lambda (u3: T).(\lambda +(u1: T).(\lambda (i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1: +((\forall (u4: T).((pr0 u4 v) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t)) +(\lambda (t: T).(pr0 t u3))))))).(\lambda (t: T).(\lambda (k: K).(\lambda +(u0: T).(\lambda (H2: (pr0 u0 v)).(ex2_ind T (\lambda (t0: T).(subst0 i0 u0 +u1 t0)) (\lambda (t0: T).(pr0 t0 u3)) (ex2 T (\lambda (t0: T).(subst0 i0 u0 +(THead k u1 t) t0)) (\lambda (t0: T).(pr0 t0 (THead k u3 t)))) (\lambda (x: +T).(\lambda (H3: (subst0 i0 u0 u1 x)).(\lambda (H4: (pr0 x u3)).(ex_intro2 T +(\lambda (t0: T).(subst0 i0 u0 (THead k u1 t) t0)) (\lambda (t0: T).(pr0 t0 +(THead k u3 t))) (THead k x t) (subst0_fst u0 x u1 i0 H3 t k) (pr0_comp x u3 +H4 t t (pr0_refl t) k))))) (H1 u0 H2)))))))))))) (\lambda (k: K).(\lambda (v: +T).(\lambda (t3: T).(\lambda (t4: T).(\lambda (i0: nat).(\lambda (_: (subst0 +(s k i0) v t4 t3)).(\lambda (H1: ((\forall (u1: T).((pr0 u1 v) \to (ex2 T +(\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t +t3))))))).(\lambda (u: T).(\lambda (u1: T).(\lambda (H2: (pr0 u1 v)).(ex2_ind +T (\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t t3)) (ex2 +T (\lambda (t: T).(subst0 i0 u1 (THead k u t4) t)) (\lambda (t: T).(pr0 t +(THead k u t3)))) (\lambda (x: T).(\lambda (H3: (subst0 (s k i0) u1 t4 +x)).(\lambda (H4: (pr0 x t3)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1 +(THead k u t4) t)) (\lambda (t: T).(pr0 t (THead k u t3))) (THead k u x) +(subst0_snd k u1 x t4 i0 H3 u) (pr0_comp u u (pr0_refl u) x t3 H4 k))))) (H1 +u1 H2)))))))))))) (\lambda (v: T).(\lambda (u1: T).(\lambda (u3: T).(\lambda +(i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1: ((\forall (u4: +T).((pr0 u4 v) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t)) (\lambda (t: +T).(pr0 t u3))))))).(\lambda (k: K).(\lambda (t3: T).(\lambda (t4: +T).(\lambda (_: (subst0 (s k i0) v t3 t4)).(\lambda (H3: ((\forall (u4: +T).((pr0 u4 v) \to (ex2 T (\lambda (t: T).(subst0 (s k i0) u4 t3 t)) (\lambda +(t: T).(pr0 t t4))))))).(\lambda (u0: T).(\lambda (H4: (pr0 u0 v)).(ex2_ind T +(\lambda (t: T).(subst0 (s k i0) u0 t3 t)) (\lambda (t: T).(pr0 t t4)) (ex2 T +(\lambda (t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 t +(THead k u3 t4)))) (\lambda (x: T).(\lambda (H5: (subst0 (s k i0) u0 t3 +x)).(\lambda (H6: (pr0 x t4)).(ex2_ind T (\lambda (t: T).(subst0 i0 u0 u1 t)) +(\lambda (t: T).(pr0 t u3)) (ex2 T (\lambda (t: T).(subst0 i0 u0 (THead k u1 +t3) t)) (\lambda (t: T).(pr0 t (THead k u3 t4)))) (\lambda (x0: T).(\lambda +(H7: (subst0 i0 u0 u1 x0)).(\lambda (H8: (pr0 x0 u3)).(ex_intro2 T (\lambda +(t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 t (THead k u3 +t4))) (THead k x0 x) (subst0_both u0 u1 x0 i0 H7 k t3 x H5) (pr0_comp x0 u3 +H8 x t4 H6 k))))) (H1 u0 H4))))) (H3 u0 H4))))))))))))))) i u2 t1 t2 H))))). + +theorem pr0_subst0_fwd: + \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst0 +i u2 t1 t2) \to (\forall (u1: T).((pr0 u2 u1) \to (ex2 T (\lambda (t: +T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t2 t))))))))) +\def + \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda +(H: (subst0 i u2 t1 t2)).(subst0_ind (\lambda (n: nat).(\lambda (t: +T).(\lambda (t0: T).(\lambda (t3: T).(\forall (u1: T).((pr0 t u1) \to (ex2 T +(\lambda (t4: T).(subst0 n u1 t0 t4)) (\lambda (t4: T).(pr0 t3 t4))))))))) +(\lambda (v: T).(\lambda (i0: nat).(\lambda (u1: T).(\lambda (H0: (pr0 v +u1)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1 (TLRef i0) t)) (\lambda (t: +T).(pr0 (lift (S i0) O v) t)) (lift (S i0) O u1) (subst0_lref u1 i0) +(pr0_lift v u1 H0 (S i0) O)))))) (\lambda (v: T).(\lambda (u3: T).(\lambda +(u1: T).(\lambda (i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1: +((\forall (u4: T).((pr0 v u4) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t)) +(\lambda (t: T).(pr0 u3 t))))))).(\lambda (t: T).(\lambda (k: K).(\lambda +(u0: T).(\lambda (H2: (pr0 v u0)).(ex2_ind T (\lambda (t0: T).(subst0 i0 u0 +u1 t0)) (\lambda (t0: T).(pr0 u3 t0)) (ex2 T (\lambda (t0: T).(subst0 i0 u0 +(THead k u1 t) t0)) (\lambda (t0: T).(pr0 (THead k u3 t) t0))) (\lambda (x: +T).(\lambda (H3: (subst0 i0 u0 u1 x)).(\lambda (H4: (pr0 u3 x)).(ex_intro2 T +(\lambda (t0: T).(subst0 i0 u0 (THead k u1 t) t0)) (\lambda (t0: T).(pr0 +(THead k u3 t) t0)) (THead k x t) (subst0_fst u0 x u1 i0 H3 t k) (pr0_comp u3 +x H4 t t (pr0_refl t) k))))) (H1 u0 H2)))))))))))) (\lambda (k: K).(\lambda +(v: T).(\lambda (t3: T).(\lambda (t4: T).(\lambda (i0: nat).(\lambda (_: +(subst0 (s k i0) v t4 t3)).(\lambda (H1: ((\forall (u1: T).((pr0 v u1) \to +(ex2 T (\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t3 +t))))))).(\lambda (u: T).(\lambda (u1: T).(\lambda (H2: (pr0 v u1)).(ex2_ind +T (\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t3 t)) (ex2 +T (\lambda (t: T).(subst0 i0 u1 (THead k u t4) t)) (\lambda (t: T).(pr0 +(THead k u t3) t))) (\lambda (x: T).(\lambda (H3: (subst0 (s k i0) u1 t4 +x)).(\lambda (H4: (pr0 t3 x)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1 +(THead k u t4) t)) (\lambda (t: T).(pr0 (THead k u t3) t)) (THead k u x) +(subst0_snd k u1 x t4 i0 H3 u) (pr0_comp u u (pr0_refl u) t3 x H4 k))))) (H1 +u1 H2)))))))))))) (\lambda (v: T).(\lambda (u1: T).(\lambda (u3: T).(\lambda +(i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1: ((\forall (u4: +T).((pr0 v u4) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t)) (\lambda (t: +T).(pr0 u3 t))))))).(\lambda (k: K).(\lambda (t3: T).(\lambda (t4: +T).(\lambda (_: (subst0 (s k i0) v t3 t4)).(\lambda (H3: ((\forall (u4: +T).((pr0 v u4) \to (ex2 T (\lambda (t: T).(subst0 (s k i0) u4 t3 t)) (\lambda +(t: T).(pr0 t4 t))))))).(\lambda (u0: T).(\lambda (H4: (pr0 v u0)).(ex2_ind T +(\lambda (t: T).(subst0 (s k i0) u0 t3 t)) (\lambda (t: T).(pr0 t4 t)) (ex2 T +(\lambda (t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 (THead +k u3 t4) t))) (\lambda (x: T).(\lambda (H5: (subst0 (s k i0) u0 t3 +x)).(\lambda (H6: (pr0 t4 x)).(ex2_ind T (\lambda (t: T).(subst0 i0 u0 u1 t)) +(\lambda (t: T).(pr0 u3 t)) (ex2 T (\lambda (t: T).(subst0 i0 u0 (THead k u1 +t3) t)) (\lambda (t: T).(pr0 (THead k u3 t4) t))) (\lambda (x0: T).(\lambda +(H7: (subst0 i0 u0 u1 x0)).(\lambda (H8: (pr0 u3 x0)).(ex_intro2 T (\lambda +(t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 (THead k u3 t4) +t)) (THead k x0 x) (subst0_both u0 u1 x0 i0 H7 k t3 x H5) (pr0_comp u3 x0 H8 +t4 x H6 k))))) (H1 u0 H4))))) (H3 u0 H4))))))))))))))) i u2 t1 t2 H))))). + +theorem pr0_subst0: + \forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (\forall (v1: T).(\forall +(w1: T).(\forall (i: nat).((subst0 i v1 t1 w1) \to (\forall (v2: T).((pr0 v1 +v2) \to (or (pr0 w1 t2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: +T).(subst0 i v2 t2 w2)))))))))))) +\def + \lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr0 t1 t2)).(pr0_ind (\lambda +(t: T).(\lambda (t0: T).(\forall (v1: T).(\forall (w1: T).(\forall (i: +nat).((subst0 i v1 t w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1 +t0) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t0 +w2)))))))))))) (\lambda (t: T).(\lambda (v1: T).(\lambda (w1: T).(\lambda (i: +nat).(\lambda (H0: (subst0 i v1 t w1)).(\lambda (v2: T).(\lambda (H1: (pr0 v1 +v2)).(or_intror (pr0 w1 t) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: +T).(subst0 i v2 t w2))) (ex2_sym T (subst0 i v2 t) (pr0 w1) (pr0_subst0_fwd +v1 t w1 i H0 v2 H1)))))))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda (H0: +(pr0 u1 u2)).(\lambda (H1: ((\forall (v1: T).(\forall (w1: T).(\forall (i: +nat).((subst0 i v1 u1 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1 +u2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 u2 +w2)))))))))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (H2: (pr0 t3 +t4)).(\lambda (H3: ((\forall (v1: T).(\forall (w1: T).(\forall (i: +nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1 +t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 +w2)))))))))))).(\lambda (k: K).(\lambda (v1: T).(\lambda (w1: T).(\lambda (i: +nat).(\lambda (H4: (subst0 i v1 (THead k u1 t3) w1)).(\lambda (v2: +T).(\lambda (H5: (pr0 v1 v2)).(or3_ind (ex2 T (\lambda (u3: T).(eq T w1 +(THead k u3 t3))) (\lambda (u3: T).(subst0 i v1 u1 u3))) (ex2 T (\lambda (t5: +T).(eq T w1 (THead k u1 t5))) (\lambda (t5: T).(subst0 (s k i) v1 t3 t5))) +(ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead k u3 t5)))) +(\lambda (u3: T).(\lambda (_: T).(subst0 i v1 u1 u3))) (\lambda (_: +T).(\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))) (or (pr0 w1 (THead k u2 t4)) +(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 (THead k +u2 t4) w2)))) (\lambda (H6: (ex2 T (\lambda (u3: T).(eq T w1 (THead k u3 +t3))) (\lambda (u3: T).(subst0 i v1 u1 u3)))).(ex2_ind T (\lambda (u3: T).(eq +T w1 (THead k u3 t3))) (\lambda (u3: T).(subst0 i v1 u1 u3)) (or (pr0 w1 +(THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: +T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: T).(\lambda (H7: (eq T w1 +(THead k x t3))).(\lambda (H8: (subst0 i v1 u1 x)).(eq_ind_r T (THead k x t3) +(\lambda (t: T).(or (pr0 t (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 t +w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))))) (or_ind (pr0 x u2) +(ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 u2 w2))) +(or (pr0 (THead k x t3) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead +k x t3) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda +(H9: (pr0 x u2)).(or_introl (pr0 (THead k x t3) (THead k u2 t4)) (ex2 T +(\lambda (w2: T).(pr0 (THead k x t3) w2)) (\lambda (w2: T).(subst0 i v2 +(THead k u2 t4) w2))) (pr0_comp x u2 H9 t3 t4 H2 k))) (\lambda (H9: (ex2 T +(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)))).(ex2_ind +T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)) (or (pr0 +(THead k x t3) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x t3) +w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x0: +T).(\lambda (H10: (pr0 x x0)).(\lambda (H11: (subst0 i v2 u2 x0)).(or_intror +(pr0 (THead k x t3) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x +t3) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T +(\lambda (w2: T).(pr0 (THead k x t3) w2)) (\lambda (w2: T).(subst0 i v2 +(THead k u2 t4) w2)) (THead k x0 t4) (pr0_comp x x0 H10 t3 t4 H2 k) +(subst0_fst v2 x0 u2 i H11 t4 k)))))) H9)) (H1 v1 x i H8 v2 H5)) w1 H7)))) +H6)) (\lambda (H6: (ex2 T (\lambda (t5: T).(eq T w1 (THead k u1 t5))) +(\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq +T w1 (THead k u1 t5))) (\lambda (t5: T).(subst0 (s k i) v1 t3 t5)) (or (pr0 +w1 (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: +T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: T).(\lambda (H7: (eq T w1 +(THead k u1 x))).(\lambda (H8: (subst0 (s k i) v1 t3 x)).(eq_ind_r T (THead k +u1 x) (\lambda (t: T).(or (pr0 t (THead k u2 t4)) (ex2 T (\lambda (w2: +T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))))) (or_ind +(pr0 x t4) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s k +i) v2 t4 w2))) (or (pr0 (THead k u1 x) (THead k u2 t4)) (ex2 T (\lambda (w2: +T).(pr0 (THead k u1 x) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) +w2)))) (\lambda (H9: (pr0 x t4)).(or_introl (pr0 (THead k u1 x) (THead k u2 +t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k u1 x) w2)) (\lambda (w2: +T).(subst0 i v2 (THead k u2 t4) w2))) (pr0_comp u1 u2 H0 x t4 H9 k))) +(\lambda (H9: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s +k i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: +T).(subst0 (s k i) v2 t4 w2)) (or (pr0 (THead k u1 x) (THead k u2 t4)) (ex2 T +(\lambda (w2: T).(pr0 (THead k u1 x) w2)) (\lambda (w2: T).(subst0 i v2 +(THead k u2 t4) w2)))) (\lambda (x0: T).(\lambda (H10: (pr0 x x0)).(\lambda +(H11: (subst0 (s k i) v2 t4 x0)).(or_intror (pr0 (THead k u1 x) (THead k u2 +t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k u1 x) w2)) (\lambda (w2: +T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 +(THead k u1 x) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)) (THead +k u2 x0) (pr0_comp u1 u2 H0 x x0 H10 k) (subst0_snd k v2 x0 t4 i H11 u2)))))) +H9)) (H3 v1 x (s k i) H8 v2 H5)) w1 H7)))) H6)) (\lambda (H6: (ex3_2 T T +(\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead k u3 t5)))) (\lambda (u3: +T).(\lambda (_: T).(subst0 i v1 u1 u3))) (\lambda (_: T).(\lambda (t5: +T).(subst0 (s k i) v1 t3 t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda +(t5: T).(eq T w1 (THead k u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 +i v1 u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s k i) v1 t3 t5))) +(or (pr0 w1 (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda +(w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x0: T).(\lambda (x1: +T).(\lambda (H7: (eq T w1 (THead k x0 x1))).(\lambda (H8: (subst0 i v1 u1 +x0)).(\lambda (H9: (subst0 (s k i) v1 t3 x1)).(eq_ind_r T (THead k x0 x1) +(\lambda (t: T).(or (pr0 t (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 t +w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))))) (or_ind (pr0 x1 +t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s k i) v2 +t4 w2))) (or (pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: +T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) +w2)))) (\lambda (H10: (pr0 x1 t4)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: +T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2))) (or (pr0 (THead k x0 +x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) +(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (H11: (pr0 x0 +u2)).(or_introl (pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: +T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) +w2))) (pr0_comp x0 u2 H11 x1 t4 H10 k))) (\lambda (H11: (ex2 T (\lambda (w2: +T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda +(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead k +x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) +(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: T).(\lambda +(H12: (pr0 x0 x)).(\lambda (H13: (subst0 i v2 u2 x)).(or_intror (pr0 (THead k +x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) +(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda +(w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 +t4) w2)) (THead k x t4) (pr0_comp x0 x H12 x1 t4 H10 k) (subst0_fst v2 x u2 i +H13 t4 k)))))) H11)) (H1 v1 x0 i H8 v2 H5))) (\lambda (H10: (ex2 T (\lambda +(w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s k i) v2 t4 w2)))).(ex2_ind T +(\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s k i) v2 t4 w2)) (or +(pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k +x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: +T).(\lambda (H11: (pr0 x1 x)).(\lambda (H12: (subst0 (s k i) v2 t4 +x)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: +T).(subst0 i v2 u2 w2))) (or (pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T +(\lambda (w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 +(THead k u2 t4) w2)))) (\lambda (H13: (pr0 x0 u2)).(or_intror (pr0 (THead k +x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) +(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda +(w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 +t4) w2)) (THead k u2 x) (pr0_comp x0 u2 H13 x1 x H11 k) (subst0_snd k v2 x t4 +i H12 u2)))) (\lambda (H13: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda +(w2: T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) +(\lambda (w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead k x0 x1) (THead k u2 +t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: +T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x2: T).(\lambda (H14: (pr0 +x0 x2)).(\lambda (H15: (subst0 i v2 u2 x2)).(or_intror (pr0 (THead k x0 x1) +(THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) (\lambda +(w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 +(THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)) +(THead k x2 x) (pr0_comp x0 x2 H14 x1 x H11 k) (subst0_both v2 u2 x2 i H15 k +t4 x H12)))))) H13)) (H1 v1 x0 i H8 v2 H5))))) H10)) (H3 v1 x1 (s k i) H9 v2 +H5)) w1 H7)))))) H6)) (subst0_gen_head k v1 u1 t3 w1 i H4))))))))))))))))) +(\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (H0: (pr0 v1 +v2)).(\lambda (H1: ((\forall (v3: T).(\forall (w1: T).(\forall (i: +nat).((subst0 i v3 v1 w1) \to (\forall (v4: T).((pr0 v3 v4) \to (or (pr0 w1 +v2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v4 v2 +w2)))))))))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (H2: (pr0 t3 +t4)).(\lambda (H3: ((\forall (v3: T).(\forall (w1: T).(\forall (i: +nat).((subst0 i v3 t3 w1) \to (\forall (v4: T).((pr0 v3 v4) \to (or (pr0 w1 +t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v4 t4 +w2)))))))))))).(\lambda (v0: T).(\lambda (w1: T).(\lambda (i: nat).(\lambda +(H4: (subst0 i v0 (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) +w1)).(\lambda (v3: T).(\lambda (H5: (pr0 v0 v3)).(or3_ind (ex2 T (\lambda +(u2: T).(eq T w1 (THead (Flat Appl) u2 (THead (Bind Abst) u t3)))) (\lambda +(u2: T).(subst0 i v0 v1 u2))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Flat +Appl) v1 t5))) (\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead (Bind +Abst) u t3) t5))) (ex3_2 T T (\lambda (u2: T).(\lambda (t5: T).(eq T w1 +(THead (Flat Appl) u2 t5)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v0 v1 +u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead +(Bind Abst) u t3) t5)))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T +(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind +Abbr) v2 t4) w2)))) (\lambda (H6: (ex2 T (\lambda (u2: T).(eq T w1 (THead +(Flat Appl) u2 (THead (Bind Abst) u t3)))) (\lambda (u2: T).(subst0 i v0 v1 +u2)))).(ex2_ind T (\lambda (u2: T).(eq T w1 (THead (Flat Appl) u2 (THead +(Bind Abst) u t3)))) (\lambda (u2: T).(subst0 i v0 v1 u2)) (or (pr0 w1 (THead +(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x: T).(\lambda +(H7: (eq T w1 (THead (Flat Appl) x (THead (Bind Abst) u t3)))).(\lambda (H8: +(subst0 i v0 v1 x)).(eq_ind_r T (THead (Flat Appl) x (THead (Bind Abst) u +t3)) (\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda +(w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) +w2))))) (or_ind (pr0 x v2) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: +T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x (THead (Bind Abst) u +t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat +Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead +(Bind Abbr) v2 t4) w2)))) (\lambda (H9: (pr0 x v2)).(or_introl (pr0 (THead +(Flat Appl) x (THead (Bind Abst) u t3)) (THead (Bind Abbr) v2 t4)) (ex2 T +(\lambda (w2: T).(pr0 (THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta u x +v2 H9 t3 t4 H2))) (\lambda (H9: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda +(w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) +(\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x (THead +(Bind Abst) u t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 +(THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2: T).(subst0 +i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x0: T).(\lambda (H10: (pr0 x +x0)).(\lambda (H11: (subst0 i v3 v2 x0)).(or_intror (pr0 (THead (Flat Appl) x +(THead (Bind Abst) u t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) x0 t4) +(pr0_beta u x x0 H10 t3 t4 H2) (subst0_fst v3 x0 v2 i H11 t4 (Bind +Abbr))))))) H9)) (H1 v0 x i H8 v3 H5)) w1 H7)))) H6)) (\lambda (H6: (ex2 T +(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5: +T).(subst0 (s (Flat Appl) i) v0 (THead (Bind Abst) u t3) t5)))).(ex2_ind T +(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5: +T).(subst0 (s (Flat Appl) i) v0 (THead (Bind Abst) u t3) t5)) (or (pr0 w1 +(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x: T).(\lambda +(H7: (eq T w1 (THead (Flat Appl) v1 x))).(\lambda (H8: (subst0 (s (Flat Appl) +i) v0 (THead (Bind Abst) u t3) x)).(or3_ind (ex2 T (\lambda (u2: T).(eq T x +(THead (Bind Abst) u2 t3))) (\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u +u2))) (ex2 T (\lambda (t5: T).(eq T x (THead (Bind Abst) u t5))) (\lambda +(t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T +(\lambda (u2: T).(\lambda (t5: T).(eq T x (THead (Bind Abst) u2 t5)))) +(\lambda (u2: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2))) +(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 +t3 t5)))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 +w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) +(\lambda (H9: (ex2 T (\lambda (u2: T).(eq T x (THead (Bind Abst) u2 t3))) +(\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u u2)))).(ex2_ind T (\lambda +(u2: T).(eq T x (THead (Bind Abst) u2 t3))) (\lambda (u2: T).(subst0 (s (Flat +Appl) i) v0 u u2)) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda +(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) +w2)))) (\lambda (x0: T).(\lambda (H10: (eq T x (THead (Bind Abst) x0 +t3))).(\lambda (_: (subst0 (s (Flat Appl) i) v0 u x0)).(let H12 \def (eq_ind +T x (\lambda (t: T).(eq T w1 (THead (Flat Appl) v1 t))) H7 (THead (Bind Abst) +x0 t3) H10) in (eq_ind_r T (THead (Flat Appl) v1 (THead (Bind Abst) x0 t3)) +(\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: +T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) +w2))))) (or_introl (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 t3)) +(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 +(THead (Bind Abst) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind +Abbr) v2 t4) w2))) (pr0_beta x0 v1 v2 H0 t3 t4 H2)) w1 H12))))) H9)) (\lambda +(H9: (ex2 T (\lambda (t5: T).(eq T x (THead (Bind Abst) u t5))) (\lambda (t5: +T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5)))).(ex2_ind T (\lambda +(t5: T).(eq T x (THead (Bind Abst) u t5))) (\lambda (t5: T).(subst0 (s (Bind +Abst) (s (Flat Appl) i)) v0 t3 t5)) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) +(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead +(Bind Abbr) v2 t4) w2)))) (\lambda (x0: T).(\lambda (H10: (eq T x (THead +(Bind Abst) u x0))).(\lambda (H11: (subst0 (s (Bind Abst) (s (Flat Appl) i)) +v0 t3 x0)).(let H12 \def (eq_ind T x (\lambda (t: T).(eq T w1 (THead (Flat +Appl) v1 t))) H7 (THead (Bind Abst) u x0) H10) in (eq_ind_r T (THead (Flat +Appl) v1 (THead (Bind Abst) u x0)) (\lambda (t: T).(or (pr0 t (THead (Bind +Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i +v3 (THead (Bind Abbr) v2 t4) w2))))) (or_ind (pr0 x0 t4) (ex2 T (\lambda (w2: +T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 +t4 w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) (THead +(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead +(Bind Abst) u x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 +t4) w2)))) (\lambda (H13: (pr0 x0 t4)).(or_introl (pr0 (THead (Flat Appl) v1 +(THead (Bind Abst) u x0)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta u v1 v2 H0 x0 t4 +H13))) (\lambda (H13: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: +T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda +(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) +i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) +(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 +(THead (Bind Abst) u x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind +Abbr) v2 t4) w2)))) (\lambda (x1: T).(\lambda (H14: (pr0 x0 x1)).(\lambda +(H15: (subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 x1)).(or_intror (pr0 +(THead (Flat Appl) v1 (THead (Bind Abst) u x0)) (THead (Bind Abbr) v2 t4)) +(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) +w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 +T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind +Abbr) v2 x1) (pr0_beta u v1 v2 H0 x0 x1 H14) (subst0_snd (Bind Abbr) v3 x1 t4 +i H15 v2)))))) H13)) (H3 v0 x0 (s (Bind Abst) (s (Flat Appl) i)) H11 v3 H5)) +w1 H12))))) H9)) (\lambda (H9: (ex3_2 T T (\lambda (u2: T).(\lambda (t5: +T).(eq T x (THead (Bind Abst) u2 t5)))) (\lambda (u2: T).(\lambda (_: +T).(subst0 (s (Flat Appl) i) v0 u u2))) (\lambda (_: T).(\lambda (t5: +T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))))).(ex3_2_ind T T +(\lambda (u2: T).(\lambda (t5: T).(eq T x (THead (Bind Abst) u2 t5)))) +(\lambda (u2: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2))) +(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 +t3 t5))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 +w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) +(\lambda (x0: T).(\lambda (x1: T).(\lambda (H10: (eq T x (THead (Bind Abst) +x0 x1))).(\lambda (_: (subst0 (s (Flat Appl) i) v0 u x0)).(\lambda (H12: +(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 x1)).(let H13 \def (eq_ind T +x (\lambda (t: T).(eq T w1 (THead (Flat Appl) v1 t))) H7 (THead (Bind Abst) +x0 x1) H10) in (eq_ind_r T (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) +(\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: +T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) +w2))))) (or_ind (pr0 x1 t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda +(w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead +(Flat Appl) v1 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) v2 t4)) (ex2 T +(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H14: +(pr0 x1 t4)).(or_introl (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) +(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 +(THead (Bind Abst) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind +Abbr) v2 t4) w2))) (pr0_beta x0 v1 v2 H0 x1 t4 H14))) (\lambda (H14: (ex2 T +(\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s +(Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1 w2)) +(\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)) (or +(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) v2 +t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 +x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) +(\lambda (x2: T).(\lambda (H15: (pr0 x1 x2)).(\lambda (H16: (subst0 (s (Bind +Abst) (s (Flat Appl) i)) v3 t4 x2)).(or_intror (pr0 (THead (Flat Appl) v1 +(THead (Bind Abst) x0 x1)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) v2 x2) +(pr0_beta x0 v1 v2 H0 x1 x2 H15) (subst0_snd (Bind Abbr) v3 x2 t4 i H16 +v2)))))) H14)) (H3 v0 x1 (s (Bind Abst) (s (Flat Appl) i)) H12 v3 H5)) w1 +H13))))))) H9)) (subst0_gen_head (Bind Abst) v0 u t3 x (s (Flat Appl) i) +H8))))) H6)) (\lambda (H6: (ex3_2 T T (\lambda (u2: T).(\lambda (t5: T).(eq T +w1 (THead (Flat Appl) u2 t5)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v0 +v1 u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead +(Bind Abst) u t3) t5))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t5: +T).(eq T w1 (THead (Flat Appl) u2 t5)))) (\lambda (u2: T).(\lambda (_: +T).(subst0 i v0 v1 u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat +Appl) i) v0 (THead (Bind Abst) u t3) t5))) (or (pr0 w1 (THead (Bind Abbr) v2 +t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 +(THead (Bind Abbr) v2 t4) w2)))) (\lambda (x0: T).(\lambda (x1: T).(\lambda +(H7: (eq T w1 (THead (Flat Appl) x0 x1))).(\lambda (H8: (subst0 i v0 v1 +x0)).(\lambda (H9: (subst0 (s (Flat Appl) i) v0 (THead (Bind Abst) u t3) +x1)).(or3_ind (ex2 T (\lambda (u2: T).(eq T x1 (THead (Bind Abst) u2 t3))) +(\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u u2))) (ex2 T (\lambda (t5: +T).(eq T x1 (THead (Bind Abst) u t5))) (\lambda (t5: T).(subst0 (s (Bind +Abst) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T (\lambda (u2: T).(\lambda +(t5: T).(eq T x1 (THead (Bind Abst) u2 t5)))) (\lambda (u2: T).(\lambda (_: +T).(subst0 (s (Flat Appl) i) v0 u u2))) (\lambda (_: T).(\lambda (t5: +T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5)))) (or (pr0 w1 (THead +(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H10: (ex2 T +(\lambda (u2: T).(eq T x1 (THead (Bind Abst) u2 t3))) (\lambda (u2: +T).(subst0 (s (Flat Appl) i) v0 u u2)))).(ex2_ind T (\lambda (u2: T).(eq T x1 +(THead (Bind Abst) u2 t3))) (\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u +u2)) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 +w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda +(x: T).(\lambda (H11: (eq T x1 (THead (Bind Abst) x t3))).(\lambda (_: +(subst0 (s (Flat Appl) i) v0 u x)).(let H13 \def (eq_ind T x1 (\lambda (t: +T).(eq T w1 (THead (Flat Appl) x0 t))) H7 (THead (Bind Abst) x t3) H11) in +(eq_ind_r T (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) (\lambda (t: +T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 t w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))) (or_ind (pr0 +x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 +w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) (THead (Bind +Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind +Abst) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) +w2)))) (\lambda (H14: (pr0 x0 v2)).(or_introl (pr0 (THead (Flat Appl) x0 +(THead (Bind Abst) x t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta x x0 v2 H14 t3 t4 +H2))) (\lambda (H14: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: +T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda +(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind +Abst) x t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead +(Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 +(THead (Bind Abbr) v2 t4) w2)))) (\lambda (x2: T).(\lambda (H15: (pr0 x0 +x2)).(\lambda (H16: (subst0 i v3 v2 x2)).(or_intror (pr0 (THead (Flat Appl) +x0 (THead (Bind Abst) x t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) x2 t4) +(pr0_beta x x0 x2 H15 t3 t4 H2) (subst0_fst v3 x2 v2 i H16 t4 (Bind +Abbr))))))) H14)) (H1 v0 x0 i H8 v3 H5)) w1 H13))))) H10)) (\lambda (H10: +(ex2 T (\lambda (t5: T).(eq T x1 (THead (Bind Abst) u t5))) (\lambda (t5: +T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5)))).(ex2_ind T (\lambda +(t5: T).(eq T x1 (THead (Bind Abst) u t5))) (\lambda (t5: T).(subst0 (s (Bind +Abst) (s (Flat Appl) i)) v0 t3 t5)) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) +(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead +(Bind Abbr) v2 t4) w2)))) (\lambda (x: T).(\lambda (H11: (eq T x1 (THead +(Bind Abst) u x))).(\lambda (H12: (subst0 (s (Bind Abst) (s (Flat Appl) i)) +v0 t3 x)).(let H13 \def (eq_ind T x1 (\lambda (t: T).(eq T w1 (THead (Flat +Appl) x0 t))) H7 (THead (Bind Abst) u x) H11) in (eq_ind_r T (THead (Flat +Appl) x0 (THead (Bind Abst) u x)) (\lambda (t: T).(or (pr0 t (THead (Bind +Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i +v3 (THead (Bind Abbr) v2 t4) w2))))) (or_ind (pr0 x t4) (ex2 T (\lambda (w2: +T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 +t4 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind +Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind +Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) +w2)))) (\lambda (H14: (pr0 x t4)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: +T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat +Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda +(w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) w2)) (\lambda +(w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H15: (pr0 x0 +v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead +(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead +(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 +t4) w2))) (pr0_beta u x0 v2 H15 x t4 H14))) (\lambda (H15: (ex2 T (\lambda +(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T +(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0 +(THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4)) +(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) +w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda +(x2: T).(\lambda (H16: (pr0 x0 x2)).(\lambda (H17: (subst0 i v3 v2 +x2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead +(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead +(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 +t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead +(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 +t4) w2)) (THead (Bind Abbr) x2 t4) (pr0_beta u x0 x2 H16 x t4 H14) +(subst0_fst v3 x2 v2 i H17 t4 (Bind Abbr))))))) H15)) (H1 v0 x0 i H8 v3 H5))) +(\lambda (H14: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 +(s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2: +T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 +t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind +Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind +Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) +w2)))) (\lambda (x2: T).(\lambda (H15: (pr0 x x2)).(\lambda (H16: (subst0 (s +(Bind Abst) (s (Flat Appl) i)) v3 t4 x2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda +(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead +(Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4)) (ex2 T +(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H17: +(pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) +(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 +(THead (Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind +Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 +(THead (Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind +Abbr) v2 t4) w2)) (THead (Bind Abbr) v2 x2) (pr0_beta u x0 v2 H17 x x2 H15) +(subst0_snd (Bind Abbr) v3 x2 t4 i H16 v2)))) (\lambda (H17: (ex2 T (\lambda +(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T +(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0 +(THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4)) +(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) +w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda +(x3: T).(\lambda (H18: (pr0 x0 x3)).(\lambda (H19: (subst0 i v3 v2 +x3)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead +(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead +(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 +t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead +(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 +t4) w2)) (THead (Bind Abbr) x3 x2) (pr0_beta u x0 x3 H18 x x2 H15) +(subst0_both v3 v2 x3 i H19 (Bind Abbr) t4 x2 H16)))))) H17)) (H1 v0 x0 i H8 +v3 H5))))) H14)) (H3 v0 x (s (Bind Abst) (s (Flat Appl) i)) H12 v3 H5)) w1 +H13))))) H10)) (\lambda (H10: (ex3_2 T T (\lambda (u2: T).(\lambda (t5: +T).(eq T x1 (THead (Bind Abst) u2 t5)))) (\lambda (u2: T).(\lambda (_: +T).(subst0 (s (Flat Appl) i) v0 u u2))) (\lambda (_: T).(\lambda (t5: +T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))))).(ex3_2_ind T T +(\lambda (u2: T).(\lambda (t5: T).(eq T x1 (THead (Bind Abst) u2 t5)))) +(\lambda (u2: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2))) +(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 +t3 t5))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 +w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) +(\lambda (x2: T).(\lambda (x3: T).(\lambda (H11: (eq T x1 (THead (Bind Abst) +x2 x3))).(\lambda (_: (subst0 (s (Flat Appl) i) v0 u x2)).(\lambda (H13: +(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 x3)).(let H14 \def (eq_ind T +x1 (\lambda (t: T).(eq T w1 (THead (Flat Appl) x0 t))) H7 (THead (Bind Abst) +x2 x3) H11) in (eq_ind_r T (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) +(\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: +T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) +w2))))) (or_ind (pr0 x3 t4) (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda +(w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead +(Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T +(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H15: +(pr0 x3 t4)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) +(\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead +(Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 +(THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H16: (pr0 x0 +v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead +(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead +(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 +t4) w2))) (pr0_beta x2 x0 v2 H16 x3 t4 H15))) (\lambda (H16: (ex2 T (\lambda +(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T +(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0 +(THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4)) +(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) +w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda +(x: T).(\lambda (H17: (pr0 x0 x)).(\lambda (H18: (subst0 i v3 v2 +x)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead +(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead +(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 +t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead +(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 +t4) w2)) (THead (Bind Abbr) x t4) (pr0_beta x2 x0 x H17 x3 t4 H15) +(subst0_fst v3 x v2 i H18 t4 (Bind Abbr))))))) H16)) (H1 v0 x0 i H8 v3 H5))) +(\lambda (H15: (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 +(s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2: +T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 +t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead +(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead +(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 +t4) w2)))) (\lambda (x: T).(\lambda (H16: (pr0 x3 x)).(\lambda (H17: (subst0 +(s (Bind Abst) (s (Flat Appl) i)) v3 t4 x)).(or_ind (pr0 x0 v2) (ex2 T +(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 +(THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4)) +(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) +w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda +(H18: (pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) +x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat +Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead +(Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat +Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead +(Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) v2 x) (pr0_beta x2 x0 v2 H18 x3 x +H16) (subst0_snd (Bind Abbr) v3 x t4 i H17 v2)))) (\lambda (H18: (ex2 T +(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 +w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 +v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead +(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead +(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 +t4) w2)))) (\lambda (x4: T).(\lambda (H19: (pr0 x0 x4)).(\lambda (H20: +(subst0 i v3 v2 x4)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) +x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat +Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead +(Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat +Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead +(Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) x4 x) (pr0_beta x2 x0 x4 H19 x3 x +H16) (subst0_both v3 v2 x4 i H20 (Bind Abbr) t4 x H17)))))) H18)) (H1 v0 x0 i +H8 v3 H5))))) H15)) (H3 v0 x3 (s (Bind Abst) (s (Flat Appl) i)) H13 v3 H5)) +w1 H14))))))) H10)) (subst0_gen_head (Bind Abst) v0 u t3 x1 (s (Flat Appl) i) +H9))))))) H6)) (subst0_gen_head (Flat Appl) v0 v1 (THead (Bind Abst) u t3) w1 +i H4))))))))))))))))) (\lambda (b: B).(\lambda (H0: (not (eq B b +Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (H1: (pr0 v1 v2)).(\lambda +(H2: ((\forall (v3: T).(\forall (w1: T).(\forall (i: nat).((subst0 i v3 v1 +w1) \to (\forall (v4: T).((pr0 v3 v4) \to (or (pr0 w1 v2) (ex2 T (\lambda +(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v4 v2 w2)))))))))))).(\lambda +(u1: T).(\lambda (u2: T).(\lambda (H3: (pr0 u1 u2)).(\lambda (H4: ((\forall +(v3: T).(\forall (w1: T).(\forall (i: nat).((subst0 i v3 u1 w1) \to (\forall +(v4: T).((pr0 v3 v4) \to (or (pr0 w1 u2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) +(\lambda (w2: T).(subst0 i v4 u2 w2)))))))))))).(\lambda (t3: T).(\lambda +(t4: T).(\lambda (H5: (pr0 t3 t4)).(\lambda (H6: ((\forall (v3: T).(\forall +(w1: T).(\forall (i: nat).((subst0 i v3 t3 w1) \to (\forall (v4: T).((pr0 v3 +v4) \to (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: +T).(subst0 i v4 t4 w2)))))))))))).(\lambda (v0: T).(\lambda (w1: T).(\lambda +(i: nat).(\lambda (H7: (subst0 i v0 (THead (Flat Appl) v1 (THead (Bind b) u1 +t3)) w1)).(\lambda (v3: T).(\lambda (H8: (pr0 v0 v3)).(or3_ind (ex2 T +(\lambda (u3: T).(eq T w1 (THead (Flat Appl) u3 (THead (Bind b) u1 t3)))) +(\lambda (u3: T).(subst0 i v0 v1 u3))) (ex2 T (\lambda (t5: T).(eq T w1 +(THead (Flat Appl) v1 t5))) (\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 +(THead (Bind b) u1 t3) t5))) (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq +T w1 (THead (Flat Appl) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i +v0 v1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 +(THead (Bind b) u1 t3) t5)))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda +(w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) +t4)) w2)))) (\lambda (H9: (ex2 T (\lambda (u3: T).(eq T w1 (THead (Flat Appl) +u3 (THead (Bind b) u1 t3)))) (\lambda (u3: T).(subst0 i v0 v1 u3)))).(ex2_ind +T (\lambda (u3: T).(eq T w1 (THead (Flat Appl) u3 (THead (Bind b) u1 t3)))) +(\lambda (u3: T).(subst0 i v0 v1 u3)) (or (pr0 w1 (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H10: (eq T w1 (THead (Flat +Appl) x (THead (Bind b) u1 t3)))).(\lambda (H11: (subst0 i v0 v1 +x)).(eq_ind_r T (THead (Flat Appl) x (THead (Bind b) u1 t3)) (\lambda (t: +T).(or (pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) +(ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x +v2) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v3 v2 +w2))) (or (pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 +(THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) (\lambda (w2: T).(subst0 i +v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) +(\lambda (H12: (pr0 x v2)).(or_introl (pr0 (THead (Flat Appl) x (THead (Bind +b) u1 t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 +T (\lambda (w2: T).(pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) w2))) (pr0_upsilon b H0 x v2 H12 u1 u2 H3 t3 t4 H5))) (\lambda +(H12: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v3 v2 +w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v3 +v2 w2)) (or (pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 +(THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) (\lambda (w2: T).(subst0 i +v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) +(\lambda (x0: T).(\lambda (H13: (pr0 x x0)).(\lambda (H14: (subst0 i v3 v2 +x0)).(or_intror (pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x (THead (Bind b) +u1 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift +(S O) O x0) t4)) (pr0_upsilon b H0 x x0 H13 u1 u2 H3 t3 t4 H5) (subst0_snd +(Bind b) v3 (THead (Flat Appl) (lift (S O) O x0) t4) (THead (Flat Appl) (lift +(S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x0) (lift (S O) O v2) (s (Bind +b) i) (subst0_lift_ge_s v2 x0 v3 i H14 O (le_O_n i) b) t4 (Flat Appl)) +u2)))))) H12)) (H2 v0 x i H11 v3 H8)) w1 H10)))) H9)) (\lambda (H9: (ex2 T +(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5: +T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) u1 t3) t5)))).(ex2_ind T +(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5: +T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) u1 t3) t5)) (or (pr0 w1 +(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda +(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H10: (eq +T w1 (THead (Flat Appl) v1 x))).(\lambda (H11: (subst0 (s (Flat Appl) i) v0 +(THead (Bind b) u1 t3) x)).(or3_ind (ex2 T (\lambda (u3: T).(eq T x (THead +(Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (ex2 +T (\lambda (t5: T).(eq T x (THead (Bind b) u1 t5))) (\lambda (t5: T).(subst0 +(s (Bind b) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T (\lambda (u3: +T).(\lambda (t5: T).(eq T x (THead (Bind b) u3 t5)))) (\lambda (u3: +T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_: +T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5)))) (or +(pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T +(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H12: (ex2 T +(\lambda (u3: T).(eq T x (THead (Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s +(Flat Appl) i) v0 u1 u3)))).(ex2_ind T (\lambda (u3: T).(eq T x (THead (Bind +b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3)) (or (pr0 w1 +(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda +(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x0: T).(\lambda (H13: (eq +T x (THead (Bind b) x0 t3))).(\lambda (H14: (subst0 (s (Flat Appl) i) v0 u1 +x0)).(let H15 \def (eq_ind T x (\lambda (t: T).(eq T w1 (THead (Flat Appl) v1 +t))) H10 (THead (Bind b) x0 t3) H13) in (eq_ind_r T (THead (Flat Appl) v1 +(THead (Bind b) x0 t3)) (\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) w2))))) (or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 +w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2))) (or (pr0 (THead +(Flat Appl) v1 (THead (Bind b) x0 t3)) (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 +(THead (Bind b) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H16: (pr0 x0 +u2)).(or_introl (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 t3)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 t3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2))) (pr0_upsilon b H0 v1 v2 H1 x0 u2 H16 t3 t4 H5))) (\lambda (H16: (ex2 T +(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 +u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 +(s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) +x0 t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T +(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 t3)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) w2)))) (\lambda (x1: T).(\lambda (H17: (pr0 x0 x1)).(\lambda +(H18: (subst0 (s (Flat Appl) i) v3 u2 x1)).(or_intror (pr0 (THead (Flat Appl) +v1 (THead (Bind b) x0 t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) +O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind +b) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead +(Flat Appl) v1 (THead (Bind b) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 +(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead +(Bind b) x1 (THead (Flat Appl) (lift (S O) O v2) t4)) (pr0_upsilon b H0 v1 v2 +H1 x0 x1 H17 t3 t4 H5) (subst0_fst v3 x1 u2 i H18 (THead (Flat Appl) (lift (S +O) O v2) t4) (Bind b))))))) H16)) (H4 v0 x0 (s (Flat Appl) i) H14 v3 H8)) w1 +H15))))) H12)) (\lambda (H12: (ex2 T (\lambda (t5: T).(eq T x (THead (Bind b) +u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 +t5)))).(ex2_ind T (\lambda (t5: T).(eq T x (THead (Bind b) u1 t5))) (\lambda +(t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5)) (or (pr0 w1 (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x0: T).(\lambda (H13: (eq T x +(THead (Bind b) u1 x0))).(\lambda (H14: (subst0 (s (Bind b) (s (Flat Appl) +i)) v0 t3 x0)).(let H15 \def (eq_ind T x (\lambda (t: T).(eq T w1 (THead +(Flat Appl) v1 t))) H10 (THead (Bind b) u1 x0) H13) in (eq_ind_r T (THead +(Flat Appl) v1 (THead (Bind b) u1 x0)) (\lambda (t: T).(or (pr0 t (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x0 t4) (ex2 T (\lambda (w2: +T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 +w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 x0)) (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 +(THead (Flat Appl) v1 (THead (Bind b) u1 x0)) w2)) (\lambda (w2: T).(subst0 i +v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) +(\lambda (H16: (pr0 x0 t4)).(or_introl (pr0 (THead (Flat Appl) v1 (THead +(Bind b) u1 x0)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) +t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 +x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 v1 v2 H1 u1 u2 H3 x0 t4 H16))) +(\lambda (H16: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 +(s (Bind b) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 +x0 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2)) +(or (pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 x0)) (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 +(THead (Flat Appl) v1 (THead (Bind b) u1 x0)) w2)) (\lambda (w2: T).(subst0 i +v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) +(\lambda (x1: T).(\lambda (H17: (pr0 x0 x1)).(\lambda (H18: (subst0 (s (Bind +b) (s (Flat Appl) i)) v3 t4 x1)).(or_intror (pr0 (THead (Flat Appl) v1 (THead +(Bind b) u1 x0)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) +t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 +x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat +Appl) v1 (THead (Bind b) u1 x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v2) x1)) (pr0_upsilon b H0 v1 v2 H1 u1 u2 H3 +x0 x1 H17) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O v2) x1) +(THead (Flat Appl) (lift (S O) O v2) t4) i (subst0_snd (Flat Appl) v3 x1 t4 +(s (Bind b) i) H18 (lift (S O) O v2)) u2)))))) H16)) (H6 v0 x0 (s (Bind b) (s +(Flat Appl) i)) H14 v3 H8)) w1 H15))))) H12)) (\lambda (H12: (ex3_2 T T +(\lambda (u3: T).(\lambda (t5: T).(eq T x (THead (Bind b) u3 t5)))) (\lambda +(u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_: +T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 +t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T x (THead (Bind +b) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 +u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) +v0 t3 t5))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O +v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 +(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda +(x0: T).(\lambda (x1: T).(\lambda (H13: (eq T x (THead (Bind b) x0 +x1))).(\lambda (H14: (subst0 (s (Flat Appl) i) v0 u1 x0)).(\lambda (H15: +(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 x1)).(let H16 \def (eq_ind T x +(\lambda (t: T).(eq T w1 (THead (Flat Appl) v1 t))) H10 (THead (Bind b) x0 +x1) H13) in (eq_ind_r T (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) +(\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) +O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 +(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind +(pr0 x1 t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s +(Bind b) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead (Flat Appl) v1 (THead +(Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) +t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 +x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t4)) w2)))) (\lambda (H17: (pr0 x1 t4)).(or_ind (pr0 x0 u2) +(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) +i) v3 u2 w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2)))) (\lambda (H18: (pr0 x0 u2)).(or_introl (pr0 (THead (Flat Appl) v1 +(THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O +v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) +x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 v1 v2 H1 x0 u2 H18 x1 t4 +H17))) (\lambda (H18: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: +T).(subst0 (s (Flat Appl) i) v3 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 +w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead +(Flat Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 +(THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda +(H19: (pr0 x0 x2)).(\lambda (H20: (subst0 (s (Flat Appl) i) v3 u2 +x2)).(or_intror (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind +b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x2 (THead (Flat Appl) (lift +(S O) O v2) t4)) (pr0_upsilon b H0 v1 v2 H1 x0 x2 H19 x1 t4 H17) (subst0_fst +v3 x2 u2 i H20 (THead (Flat Appl) (lift (S O) O v2) t4) (Bind b))))))) H18)) +(H4 v0 x0 (s (Flat Appl) i) H14 v3 H8))) (\lambda (H17: (ex2 T (\lambda (w2: +T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 +w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s +(Bind b) (s (Flat Appl) i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) v1 (THead +(Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) +t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 +x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H18: (pr0 x1 +x2)).(\lambda (H19: (subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 x2)).(or_ind +(pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s +(Flat Appl) i) v3 u2 w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 +x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T +(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) w2)))) (\lambda (H20: (pr0 x0 u2)).(or_intror (pr0 (THead (Flat +Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift +(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead +(Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 +(THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i +v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) x2)) (pr0_upsilon b H0 v1 v2 +H1 x0 u2 H20 x1 x2 H18) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S +O) O v2) x2) (THead (Flat Appl) (lift (S O) O v2) t4) i (subst0_snd (Flat +Appl) v3 x2 t4 (s (Bind b) i) H19 (lift (S O) O v2)) u2)))) (\lambda (H20: +(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) +i) v3 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: +T).(subst0 (s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) v1 (THead +(Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) +t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 +x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t4)) w2)))) (\lambda (x3: T).(\lambda (H21: (pr0 x0 +x3)).(\lambda (H22: (subst0 (s (Flat Appl) i) v3 u2 x3)).(or_intror (pr0 +(THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) +v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2)) (THead (Bind b) x3 (THead (Flat Appl) (lift (S O) O v2) x2)) +(pr0_upsilon b H0 v1 v2 H1 x0 x3 H21 x1 x2 H18) (subst0_both v3 u2 x3 i H22 +(Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat Appl) (lift (S +O) O v2) x2) (subst0_snd (Flat Appl) v3 x2 t4 (s (Bind b) i) H19 (lift (S O) +O v2)))))))) H20)) (H4 v0 x0 (s (Flat Appl) i) H14 v3 H8))))) H17)) (H6 v0 x1 +(s (Bind b) (s (Flat Appl) i)) H15 v3 H8)) w1 H16))))))) H12)) +(subst0_gen_head (Bind b) v0 u1 t3 x (s (Flat Appl) i) H11))))) H9)) (\lambda +(H9: (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead (Flat Appl) +u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v0 v1 u3))) (\lambda (_: +T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) u1 t3) +t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead +(Flat Appl) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v0 v1 u3))) +(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) +u1 t3) t5))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O +v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 +(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda +(x0: T).(\lambda (x1: T).(\lambda (H10: (eq T w1 (THead (Flat Appl) x0 +x1))).(\lambda (H11: (subst0 i v0 v1 x0)).(\lambda (H12: (subst0 (s (Flat +Appl) i) v0 (THead (Bind b) u1 t3) x1)).(or3_ind (ex2 T (\lambda (u3: T).(eq +T x1 (THead (Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 +u1 u3))) (ex2 T (\lambda (t5: T).(eq T x1 (THead (Bind b) u1 t5))) (\lambda +(t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T +(\lambda (u3: T).(\lambda (t5: T).(eq T x1 (THead (Bind b) u3 t5)))) (\lambda +(u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_: +T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5)))) (or +(pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T +(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H13: (ex2 T +(\lambda (u3: T).(eq T x1 (THead (Bind b) u3 t3))) (\lambda (u3: T).(subst0 +(s (Flat Appl) i) v0 u1 u3)))).(ex2_ind T (\lambda (u3: T).(eq T x1 (THead +(Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3)) (or +(pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T +(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda +(H14: (eq T x1 (THead (Bind b) x t3))).(\lambda (H15: (subst0 (s (Flat Appl) +i) v0 u1 x)).(let H16 \def (eq_ind T x1 (\lambda (t: T).(eq T w1 (THead (Flat +Appl) x0 t))) H10 (THead (Bind b) x t3) H14) in (eq_ind_r T (THead (Flat +Appl) x0 (THead (Bind b) x t3)) (\lambda (t: T).(or (pr0 t (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t +w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x u2) (ex2 T (\lambda (w2: +T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2))) (or +(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat +Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H17: +(pr0 x u2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda +(w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) +x t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T +(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) w2)))) (\lambda (H18: (pr0 x0 v2)).(or_introl (pr0 (THead (Flat +Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift +(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead +(Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 x0 v2 H18 x u2 H17 +t3 t4 H5))) (\lambda (H18: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: +T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda +(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x +t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T +(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H19: (pr0 x0 x2)).(\lambda +(H20: (subst0 i v3 v2 x2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind +b) x t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 +T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 +(THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O x2) t4)) (pr0_upsilon b H0 x0 x2 H19 x u2 H17 t3 t4 +H5) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O x2) t4) (THead +(Flat Appl) (lift (S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x2) (lift (S +O) O v2) (s (Bind b) i) (subst0_lift_ge_s v2 x2 v3 i H20 O (le_O_n i) b) t4 +(Flat Appl)) u2)))))) H18)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H17: (ex2 T +(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 +w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s +(Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x +t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T +(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H18: (pr0 x x2)).(\lambda +(H19: (subst0 (s (Flat Appl) i) v3 u2 x2)).(or_ind (pr0 x0 v2) (ex2 T +(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 +(THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) +x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H20: (pr0 x0 +v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind +b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x2 (THead (Flat Appl) (lift +(S O) O v2) t4)) (pr0_upsilon b H0 x0 v2 H20 x x2 H18 t3 t4 H5) (subst0_fst +v3 x2 u2 i H19 (THead (Flat Appl) (lift (S O) O v2) t4) (Bind b))))) (\lambda +(H20: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 +w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 +v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 +(THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i +v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) +(\lambda (x3: T).(\lambda (H21: (pr0 x0 x3)).(\lambda (H22: (subst0 i v3 v2 +x3)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind +b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x2 (THead (Flat Appl) (lift +(S O) O x3) t4)) (pr0_upsilon b H0 x0 x3 H21 x x2 H18 t3 t4 H5) (subst0_both +v3 u2 x2 i H19 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat +Appl) (lift (S O) O x3) t4) (subst0_fst v3 (lift (S O) O x3) (lift (S O) O +v2) (s (Bind b) i) (subst0_lift_ge_s v2 x3 v3 i H22 O (le_O_n i) b) t4 (Flat +Appl)))))))) H20)) (H2 v0 x0 i H11 v3 H8))))) H17)) (H4 v0 x (s (Flat Appl) +i) H15 v3 H8)) w1 H16))))) H13)) (\lambda (H13: (ex2 T (\lambda (t5: T).(eq T +x1 (THead (Bind b) u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s (Flat +Appl) i)) v0 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq T x1 (THead (Bind b) +u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5)) +(or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) +(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x: +T).(\lambda (H14: (eq T x1 (THead (Bind b) u1 x))).(\lambda (H15: (subst0 (s +(Bind b) (s (Flat Appl) i)) v0 t3 x)).(let H16 \def (eq_ind T x1 (\lambda (t: +T).(eq T w1 (THead (Flat Appl) x0 t))) H10 (THead (Bind b) u1 x) H14) in +(eq_ind_r T (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (\lambda (t: T).(or +(pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T +(\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x t4) (ex2 T +(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat +Appl) i)) v3 t4 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) +(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda +(w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2)))) (\lambda (H17: (pr0 x t4)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: +T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat +Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift +(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead +(Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H18: (pr0 x0 +v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2))) (pr0_upsilon b H0 x0 v2 H18 u1 u2 H3 x t4 H17))) (\lambda (H18: (ex2 T +(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 +w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 +v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 +(THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i +v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) +(\lambda (x2: T).(\lambda (H19: (pr0 x0 x2)).(\lambda (H20: (subst0 i v3 v2 +x2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind +b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift +(S O) O x2) t4)) (pr0_upsilon b H0 x0 x2 H19 u1 u2 H3 x t4 H17) (subst0_snd +(Bind b) v3 (THead (Flat Appl) (lift (S O) O x2) t4) (THead (Flat Appl) (lift +(S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x2) (lift (S O) O v2) (s (Bind +b) i) (subst0_lift_ge_s v2 x2 v3 i H20 O (le_O_n i) b) t4 (Flat Appl)) +u2)))))) H18)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H17: (ex2 T (\lambda (w2: +T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 +w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s +(Bind b) (s (Flat Appl) i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead +(Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) +(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) +w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H18: (pr0 x +x2)).(\lambda (H19: (subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 x2)).(or_ind +(pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i +v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2)))) (\lambda (H20: (pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 +(THead (Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O +v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) +u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead +(Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 +(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) x2)) (pr0_upsilon b H0 x0 v2 +H20 u1 u2 H3 x x2 H18) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) +O v2) x2) (THead (Flat Appl) (lift (S O) O v2) t4) i (subst0_snd (Flat Appl) +v3 x2 t4 (s (Bind b) i) H19 (lift (S O) O v2)) u2)))) (\lambda (H20: (ex2 T +(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 +w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 +v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b) +u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 +(THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i +v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) +(\lambda (x3: T).(\lambda (H21: (pr0 x0 x3)).(\lambda (H22: (subst0 i v3 v2 +x3)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind +b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift +(S O) O x3) x2)) (pr0_upsilon b H0 x0 x3 H21 u1 u2 H3 x x2 H18) (subst0_snd +(Bind b) v3 (THead (Flat Appl) (lift (S O) O x3) x2) (THead (Flat Appl) (lift +(S O) O v2) t4) i (subst0_both v3 (lift (S O) O v2) (lift (S O) O x3) (s +(Bind b) i) (subst0_lift_ge_s v2 x3 v3 i H22 O (le_O_n i) b) (Flat Appl) t4 +x2 H19) u2)))))) H20)) (H2 v0 x0 i H11 v3 H8))))) H17)) (H6 v0 x (s (Bind b) +(s (Flat Appl) i)) H15 v3 H8)) w1 H16))))) H13)) (\lambda (H13: (ex3_2 T T +(\lambda (u3: T).(\lambda (t5: T).(eq T x1 (THead (Bind b) u3 t5)))) (\lambda +(u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_: +T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 +t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T x1 (THead +(Bind b) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) +v0 u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat +Appl) i)) v0 t3 t5))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift +(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2)))) (\lambda (x2: T).(\lambda (x3: T).(\lambda (H14: (eq T x1 (THead (Bind +b) x2 x3))).(\lambda (H15: (subst0 (s (Flat Appl) i) v0 u1 x2)).(\lambda +(H16: (subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 x3)).(let H17 \def (eq_ind +T x1 (\lambda (t: T).(eq T w1 (THead (Flat Appl) x0 t))) H10 (THead (Bind b) +x2 x3) H14) in (eq_ind_r T (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) +(\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) +O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 +(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind +(pr0 x3 t4) (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 (s +(Bind b) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead (Flat Appl) x0 (THead +(Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) +t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 +x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t4)) w2)))) (\lambda (H18: (pr0 x3 t4)).(or_ind (pr0 x2 u2) +(ex2 T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) +i) v3 u2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2)))) (\lambda (H19: (pr0 x2 u2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: +T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat +Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift +(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead +(Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H20: (pr0 x0 +v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2))) (pr0_upsilon b H0 x0 v2 H20 x2 u2 H19 x3 t4 H18))) (\lambda (H20: (ex2 +T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 +w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 +v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind +b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 +(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i +v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) +(\lambda (x: T).(\lambda (H21: (pr0 x0 x)).(\lambda (H22: (subst0 i v3 v2 +x)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind +b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift +(S O) O x) t4)) (pr0_upsilon b H0 x0 x H21 x2 u2 H19 x3 t4 H18) (subst0_snd +(Bind b) v3 (THead (Flat Appl) (lift (S O) O x) t4) (THead (Flat Appl) (lift +(S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x) (lift (S O) O v2) (s (Bind +b) i) (subst0_lift_ge_s v2 x v3 i H22 O (le_O_n i) b) t4 (Flat Appl)) +u2)))))) H20)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H19: (ex2 T (\lambda (w2: +T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 +w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s +(Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 +x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T +(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H20: (pr0 x2 x)).(\lambda +(H21: (subst0 (s (Flat Appl) i) v3 u2 x)).(or_ind (pr0 x0 v2) (ex2 T (\lambda +(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead +(Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 +(THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H22: (pr0 x0 +v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind +b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x (THead (Flat Appl) (lift +(S O) O v2) t4)) (pr0_upsilon b H0 x0 v2 H22 x2 x H20 x3 t4 H18) (subst0_fst +v3 x u2 i H21 (THead (Flat Appl) (lift (S O) O v2) t4) (Bind b))))) (\lambda +(H22: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 +w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 +v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind +b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 +(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i +v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) +(\lambda (x4: T).(\lambda (H23: (pr0 x0 x4)).(\lambda (H24: (subst0 i v3 v2 +x4)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind +b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x (THead (Flat Appl) (lift +(S O) O x4) t4)) (pr0_upsilon b H0 x0 x4 H23 x2 x H20 x3 t4 H18) (subst0_both +v3 u2 x i H21 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat +Appl) (lift (S O) O x4) t4) (subst0_fst v3 (lift (S O) O x4) (lift (S O) O +v2) (s (Bind b) i) (subst0_lift_ge_s v2 x4 v3 i H24 O (le_O_n i) b) t4 (Flat +Appl)))))))) H22)) (H2 v0 x0 i H11 v3 H8))))) H19)) (H4 v0 x2 (s (Flat Appl) +i) H15 v3 H8))) (\lambda (H18: (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda +(w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T +(\lambda (w2: T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat +Appl) i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) +(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda +(w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2)))) (\lambda (x: T).(\lambda (H19: (pr0 x3 x)).(\lambda (H20: (subst0 (s +(Bind b) (s (Flat Appl) i)) v3 t4 x)).(or_ind (pr0 x2 u2) (ex2 T (\lambda +(w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2))) +(or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 +(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i +v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) +(\lambda (H21: (pr0 x2 u2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 +x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 +(THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O +v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) +x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H22: (pr0 x0 v2)).(or_intror +(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat +Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T +(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) +x)) (pr0_upsilon b H0 x0 v2 H22 x2 u2 H21 x3 x H19) (subst0_snd (Bind b) v3 +(THead (Flat Appl) (lift (S O) O v2) x) (THead (Flat Appl) (lift (S O) O v2) +t4) i (subst0_snd (Flat Appl) v3 x t4 (s (Bind b) i) H20 (lift (S O) O v2)) +u2)))) (\lambda (H22: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: +T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda +(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) +x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T +(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) w2)))) (\lambda (x4: T).(\lambda (H23: (pr0 x0 x4)).(\lambda +(H24: (subst0 i v3 v2 x4)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind +b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 +T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) +(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S +O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 +(THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead +(Flat Appl) (lift (S O) O x4) x)) (pr0_upsilon b H0 x0 x4 H23 x2 u2 H21 x3 x +H19) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O x4) x) (THead +(Flat Appl) (lift (S O) O v2) t4) i (subst0_both v3 (lift (S O) O v2) (lift +(S O) O x4) (s (Bind b) i) (subst0_lift_ge_s v2 x4 v3 i H24 O (le_O_n i) b) +(Flat Appl) t4 x H20) u2)))))) H22)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H21: +(ex2 T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) +i) v3 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: +T).(subst0 (s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead +(Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) +t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 +x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t4)) w2)))) (\lambda (x4: T).(\lambda (H22: (pr0 x2 +x4)).(\lambda (H23: (subst0 (s (Flat Appl) i) v3 u2 x4)).(or_ind (pr0 x0 v2) +(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) +(or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 +(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 +(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i +v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) +(\lambda (H24: (pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead +(Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) +t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 +x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) +(lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat +Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x4 +(THead (Flat Appl) (lift (S O) O v2) x)) (pr0_upsilon b H0 x0 v2 H24 x2 x4 +H22 x3 x H19) (subst0_both v3 u2 x4 i H23 (Bind b) (THead (Flat Appl) (lift +(S O) O v2) t4) (THead (Flat Appl) (lift (S O) O v2) x) (subst0_snd (Flat +Appl) v3 x t4 (s (Bind b) i) H20 (lift (S O) O v2)))))) (\lambda (H24: (ex2 T +(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 +w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 +v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind +b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 +(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i +v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) +(\lambda (x5: T).(\lambda (H25: (pr0 x0 x5)).(\lambda (H26: (subst0 i v3 v2 +x5)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead +(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: +T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) +w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind +b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat +Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x4 (THead (Flat Appl) (lift +(S O) O x5) x)) (pr0_upsilon b H0 x0 x5 H25 x2 x4 H22 x3 x H19) (subst0_both +v3 u2 x4 i H23 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat +Appl) (lift (S O) O x5) x) (subst0_both v3 (lift (S O) O v2) (lift (S O) O +x5) (s (Bind b) i) (subst0_lift_ge_s v2 x5 v3 i H26 O (le_O_n i) b) (Flat +Appl) t4 x H20))))))) H24)) (H2 v0 x0 i H11 v3 H8))))) H21)) (H4 v0 x2 (s +(Flat Appl) i) H15 v3 H8))))) H18)) (H6 v0 x3 (s (Bind b) (s (Flat Appl) i)) +H16 v3 H8)) w1 H17))))))) H13)) (subst0_gen_head (Bind b) v0 u1 t3 x1 (s +(Flat Appl) i) H12))))))) H9)) (subst0_gen_head (Flat Appl) v0 v1 (THead +(Bind b) u1 t3) w1 i H7)))))))))))))))))))))) (\lambda (u1: T).(\lambda (u2: +T).(\lambda (H0: (pr0 u1 u2)).(\lambda (H1: ((\forall (v1: T).(\forall (w1: +T).(\forall (i: nat).((subst0 i v1 u1 w1) \to (\forall (v2: T).((pr0 v1 v2) +\to (or (pr0 w1 u2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: +T).(subst0 i v2 u2 w2)))))))))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda +(H2: (pr0 t3 t4)).(\lambda (H3: ((\forall (v1: T).(\forall (w1: T).(\forall +(i: nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 +w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 +w2)))))))))))).(\lambda (w: T).(\lambda (H4: (subst0 O u2 t4 w)).(\lambda +(v1: T).(\lambda (w1: T).(\lambda (i: nat).(\lambda (H5: (subst0 i v1 (THead +(Bind Abbr) u1 t3) w1)).(\lambda (v2: T).(\lambda (H6: (pr0 v1 v2)).(or3_ind +(ex2 T (\lambda (u3: T).(eq T w1 (THead (Bind Abbr) u3 t3))) (\lambda (u3: +T).(subst0 i v1 u1 u3))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind Abbr) +u1 t5))) (\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5))) (ex3_2 T T +(\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead (Bind Abbr) u3 t5)))) +(\lambda (u3: T).(\lambda (_: T).(subst0 i v1 u1 u3))) (\lambda (_: +T).(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5)))) (or (pr0 w1 (THead +(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: +T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H7: (ex2 T (\lambda +(u3: T).(eq T w1 (THead (Bind Abbr) u3 t3))) (\lambda (u3: T).(subst0 i v1 u1 +u3)))).(ex2_ind T (\lambda (u3: T).(eq T w1 (THead (Bind Abbr) u3 t3))) +(\lambda (u3: T).(subst0 i v1 u1 u3)) (or (pr0 w1 (THead (Bind Abbr) u2 w)) +(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 (THead +(Bind Abbr) u2 w) w2)))) (\lambda (x: T).(\lambda (H8: (eq T w1 (THead (Bind +Abbr) x t3))).(\lambda (H9: (subst0 i v1 u1 x)).(eq_ind_r T (THead (Bind +Abbr) x t3) (\lambda (t: T).(or (pr0 t (THead (Bind Abbr) u2 w)) (ex2 T +(\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) +u2 w) w2))))) (or_ind (pr0 x u2) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda +(w2: T).(subst0 i v2 u2 w2))) (or (pr0 (THead (Bind Abbr) x t3) (THead (Bind +Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) +(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H10: +(pr0 x u2)).(or_introl (pr0 (THead (Bind Abbr) x t3) (THead (Bind Abbr) u2 +w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) (\lambda (w2: +T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (pr0_delta x u2 H10 t3 t4 H2 w +H4))) (\lambda (H10: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: +T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda +(w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead (Bind Abbr) x t3) (THead (Bind +Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) +(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x0: +T).(\lambda (H11: (pr0 x x0)).(\lambda (H12: (subst0 i v2 u2 x0)).(ex2_ind T +(\lambda (t: T).(subst0 O x0 t4 t)) (\lambda (t: T).(subst0 (S (plus i O)) v2 +w t)) (or (pr0 (THead (Bind Abbr) x t3) (THead (Bind Abbr) u2 w)) (ex2 T +(\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) (\lambda (w2: T).(subst0 +i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x1: T).(\lambda (H13: (subst0 +O x0 t4 x1)).(\lambda (H14: (subst0 (S (plus i O)) v2 w x1)).(let H15 \def +(f_equal nat nat S (plus i O) i (sym_eq nat i (plus i O) (plus_n_O i))) in +(let H16 \def (eq_ind nat (S (plus i O)) (\lambda (n: nat).(subst0 n v2 w +x1)) H14 (S i) H15) in (or_intror (pr0 (THead (Bind Abbr) x t3) (THead (Bind +Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) +(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T +(\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) (\lambda (w2: T).(subst0 +i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) x0 x1) (pr0_delta x x0 +H11 t3 t4 H2 x1 H13) (subst0_both v2 u2 x0 i H12 (Bind Abbr) w x1 H16)))))))) +(subst0_subst0_back t4 w u2 O H4 x0 v2 i H12))))) H10)) (H1 v1 x i H9 v2 H6)) +w1 H8)))) H7)) (\lambda (H7: (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind +Abbr) u1 t5))) (\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 +t5)))).(ex2_ind T (\lambda (t5: T).(eq T w1 (THead (Bind Abbr) u1 t5))) +(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5)) (or (pr0 w1 (THead +(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: +T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x: T).(\lambda (H8: +(eq T w1 (THead (Bind Abbr) u1 x))).(\lambda (H9: (subst0 (s (Bind Abbr) i) +v1 t3 x)).(eq_ind_r T (THead (Bind Abbr) u1 x) (\lambda (t: T).(or (pr0 t +(THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: +T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))) (or_ind (pr0 x t4) (ex2 T +(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr) i) v2 t4 +w2))) (or (pr0 (THead (Bind Abbr) u1 x) (THead (Bind Abbr) u2 w)) (ex2 T +(\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 x) w2)) (\lambda (w2: T).(subst0 +i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H10: (pr0 x t4)).(or_introl +(pr0 (THead (Bind Abbr) u1 x) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: +T).(pr0 (THead (Bind Abbr) u1 x) w2)) (\lambda (w2: T).(subst0 i v2 (THead +(Bind Abbr) u2 w) w2))) (pr0_delta u1 u2 H0 x t4 H10 w H4))) (\lambda (H10: +(ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr) +i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: +T).(subst0 (s (Bind Abbr) i) v2 t4 w2)) (or (pr0 (THead (Bind Abbr) u1 x) +(THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 +x) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) +(\lambda (x0: T).(\lambda (H11: (pr0 x x0)).(\lambda (H12: (subst0 (s (Bind +Abbr) i) v2 t4 x0)).(ex2_ind T (\lambda (t: T).(subst0 O u2 x0 t)) (\lambda +(t: T).(subst0 (s (Bind Abbr) i) v2 w t)) (or (pr0 (THead (Bind Abbr) u1 x) +(THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 +x) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) +(\lambda (x1: T).(\lambda (H13: (subst0 O u2 x0 x1)).(\lambda (H14: (subst0 +(s (Bind Abbr) i) v2 w x1)).(or_intror (pr0 (THead (Bind Abbr) u1 x) (THead +(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 x) w2)) +(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T +(\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 x) w2)) (\lambda (w2: T).(subst0 +i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) u2 x1) (pr0_delta u1 u2 +H0 x x0 H11 x1 H13) (subst0_snd (Bind Abbr) v2 x1 w i H14 u2)))))) +(subst0_confluence_neq t4 x0 v2 (s (Bind Abbr) i) H12 w u2 O H4 (sym_not_eq +nat O (S i) (O_S i))))))) H10)) (H3 v1 x (s (Bind Abbr) i) H9 v2 H6)) w1 +H8)))) H7)) (\lambda (H7: (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq T +w1 (THead (Bind Abbr) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v1 +u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 +t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead +(Bind Abbr) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v1 u1 u3))) +(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5))) (or +(pr0 w1 (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) +(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x0: +T).(\lambda (x1: T).(\lambda (H8: (eq T w1 (THead (Bind Abbr) x0 +x1))).(\lambda (H9: (subst0 i v1 u1 x0)).(\lambda (H10: (subst0 (s (Bind +Abbr) i) v1 t3 x1)).(eq_ind_r T (THead (Bind Abbr) x0 x1) (\lambda (t: T).(or +(pr0 t (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda +(w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))) (or_ind (pr0 x1 t4) +(ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr) +i) v2 t4 w2))) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) +(ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: +T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H11: (pr0 x1 +t4)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: +T).(subst0 i v2 u2 w2))) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind +Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) +(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H12: +(pr0 x0 u2)).(or_introl (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 +w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: +T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (pr0_delta x0 u2 H12 x1 t4 H11 +w H4))) (\lambda (H12: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: +T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda +(w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind +Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) +(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x: +T).(\lambda (H13: (pr0 x0 x)).(\lambda (H14: (subst0 i v2 u2 x)).(ex2_ind T +(\lambda (t: T).(subst0 O x t4 t)) (\lambda (t: T).(subst0 (S (plus i O)) v2 +w t)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T +(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 +i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x2: T).(\lambda (H15: (subst0 +O x t4 x2)).(\lambda (H16: (subst0 (S (plus i O)) v2 w x2)).(let H17 \def +(f_equal nat nat S (plus i O) i (sym_eq nat i (plus i O) (plus_n_O i))) in +(let H18 \def (eq_ind nat (S (plus i O)) (\lambda (n: nat).(subst0 n v2 w +x2)) H16 (S i) H17) in (or_intror (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind +Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) +(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T +(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 +i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) x x2) (pr0_delta x0 x +H13 x1 t4 H11 x2 H15) (subst0_both v2 u2 x i H14 (Bind Abbr) w x2 H18)))))))) +(subst0_subst0_back t4 w u2 O H4 x v2 i H14))))) H12)) (H1 v1 x0 i H9 v2 +H6))) (\lambda (H11: (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: +T).(subst0 (s (Bind Abbr) i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1 +w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr) i) v2 t4 w2)) (or (pr0 (THead +(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 +(THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind +Abbr) u2 w) w2)))) (\lambda (x: T).(\lambda (H12: (pr0 x1 x)).(\lambda (H13: +(subst0 (s (Bind Abbr) i) v2 t4 x)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: +T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2))) (or (pr0 (THead (Bind +Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead +(Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 +w) w2)))) (\lambda (H14: (pr0 x0 u2)).(ex2_ind T (\lambda (t: T).(subst0 O u2 +x t)) (\lambda (t: T).(subst0 (s (Bind Abbr) i) v2 w t)) (or (pr0 (THead +(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 +(THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind +Abbr) u2 w) w2)))) (\lambda (x2: T).(\lambda (H15: (subst0 O u2 x +x2)).(\lambda (H16: (subst0 (s (Bind Abbr) i) v2 w x2)).(or_intror (pr0 +(THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: +T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead +(Bind Abbr) u2 w) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) +x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)) +(THead (Bind Abbr) u2 x2) (pr0_delta x0 u2 H14 x1 x H12 x2 H15) (subst0_snd +(Bind Abbr) v2 x2 w i H16 u2)))))) (subst0_confluence_neq t4 x v2 (s (Bind +Abbr) i) H13 w u2 O H4 (sym_not_eq nat O (S i) (O_S i))))) (\lambda (H14: +(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 +w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 +u2 w2)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T +(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 +i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x2: T).(\lambda (H15: (pr0 x0 +x2)).(\lambda (H16: (subst0 i v2 u2 x2)).(ex2_ind T (\lambda (t: T).(subst0 O +x2 t4 t)) (\lambda (t: T).(subst0 (S (plus i O)) v2 w t)) (or (pr0 (THead +(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 +(THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind +Abbr) u2 w) w2)))) (\lambda (x3: T).(\lambda (H17: (subst0 O x2 t4 +x3)).(\lambda (H18: (subst0 (S (plus i O)) v2 w x3)).(let H19 \def (f_equal +nat nat S (plus i O) i (sym_eq nat i (plus i O) (plus_n_O i))) in (let H20 +\def (eq_ind nat (S (plus i O)) (\lambda (n: nat).(subst0 n v2 w x3)) H18 (S +i) H19) in (ex2_ind T (\lambda (t: T).(subst0 (s (Bind Abbr) i) v2 x3 t)) +(\lambda (t: T).(subst0 O x2 x t)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead +(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) +w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda +(x4: T).(\lambda (H21: (subst0 (s (Bind Abbr) i) v2 x3 x4)).(\lambda (H22: +(subst0 O x2 x x4)).(or_intror (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind +Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) +(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T +(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 +i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) x2 x4) (pr0_delta x0 x2 +H15 x1 x H12 x4 H22) (subst0_both v2 u2 x2 i H16 (Bind Abbr) w x4 +(subst0_trans x3 w v2 (s (Bind Abbr) i) H20 x4 H21))))))) +(subst0_confluence_neq t4 x3 x2 O H17 x v2 (s (Bind Abbr) i) H13 (O_S +i)))))))) (subst0_subst0_back t4 w u2 O H4 x2 v2 i H16))))) H14)) (H1 v1 x0 i +H9 v2 H6))))) H11)) (H3 v1 x1 (s (Bind Abbr) i) H10 v2 H6)) w1 H8)))))) H7)) +(subst0_gen_head (Bind Abbr) v1 u1 t3 w1 i H5)))))))))))))))))) (\lambda (b: +B).(\lambda (H0: (not (eq B b Abst))).(\lambda (t3: T).(\lambda (t4: +T).(\lambda (H1: (pr0 t3 t4)).(\lambda (H2: ((\forall (v1: T).(\forall (w1: +T).(\forall (i: nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2) +\to (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: +T).(subst0 i v2 t4 w2)))))))))))).(\lambda (u: T).(\lambda (v1: T).(\lambda +(w1: T).(\lambda (i: nat).(\lambda (H3: (subst0 i v1 (THead (Bind b) u (lift +(S O) O t3)) w1)).(\lambda (v2: T).(\lambda (H4: (pr0 v1 v2)).(or3_ind (ex2 T +(\lambda (u2: T).(eq T w1 (THead (Bind b) u2 (lift (S O) O t3)))) (\lambda +(u2: T).(subst0 i v1 u u2))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind b) +u t5))) (\lambda (t5: T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5))) +(ex3_2 T T (\lambda (u2: T).(\lambda (t5: T).(eq T w1 (THead (Bind b) u2 +t5)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: +T).(\lambda (t5: T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5)))) (or +(pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i +v2 t4 w2)))) (\lambda (H5: (ex2 T (\lambda (u2: T).(eq T w1 (THead (Bind b) +u2 (lift (S O) O t3)))) (\lambda (u2: T).(subst0 i v1 u u2)))).(ex2_ind T +(\lambda (u2: T).(eq T w1 (THead (Bind b) u2 (lift (S O) O t3)))) (\lambda +(u2: T).(subst0 i v1 u u2)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 +w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H6: +(eq T w1 (THead (Bind b) x (lift (S O) O t3)))).(\lambda (_: (subst0 i v1 u +x)).(eq_ind_r T (THead (Bind b) x (lift (S O) O t3)) (\lambda (t: T).(or (pr0 +t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4 +w2))))) (or_introl (pr0 (THead (Bind b) x (lift (S O) O t3)) t4) (ex2 T +(\lambda (w2: T).(pr0 (THead (Bind b) x (lift (S O) O t3)) w2)) (\lambda (w2: +T).(subst0 i v2 t4 w2))) (pr0_zeta b H0 t3 t4 H1 x)) w1 H6)))) H5)) (\lambda +(H5: (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind b) u t5))) (\lambda (t5: +T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5)))).(ex2_ind T (\lambda +(t5: T).(eq T w1 (THead (Bind b) u t5))) (\lambda (t5: T).(subst0 (s (Bind b) +i) v1 (lift (S O) O t3) t5)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 +w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H6: +(eq T w1 (THead (Bind b) u x))).(\lambda (H7: (subst0 (s (Bind b) i) v1 (lift +(S O) O t3) x)).(lt_le_e (s (Bind b) i) (S O) (or (pr0 w1 t4) (ex2 T (\lambda +(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (H8: +(lt (s (Bind b) i) (S O))).(subst0_gen_lift_false t3 v1 x (S O) O (s (Bind b) +i) (le_O_n (s (Bind b) i)) H8 H7 (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 +w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))))) (\lambda (Hle: (le (S O) (s +(Bind b) i))).(let H_x \def (subst0_gen_lift_ge v1 t3 x (s (Bind b) i) (S O) +O H7 Hle) in (let H8 \def H_x in (ex2_ind T (\lambda (t5: T).(eq T x (lift (S +O) O t5))) (\lambda (t5: T).(subst0 (minus i O) v1 t3 t5)) (or (pr0 w1 t4) +(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) +(\lambda (x0: T).(\lambda (H9: (eq T x (lift (S O) O x0))).(\lambda (H10: +(subst0 (minus i O) v1 t3 x0)).(let H11 \def (eq_ind T x (\lambda (t: T).(eq +T w1 (THead (Bind b) u t))) H6 (lift (S O) O x0) H9) in (eq_ind_r T (THead +(Bind b) u (lift (S O) O x0)) (\lambda (t: T).(or (pr0 t t4) (ex2 T (\lambda +(w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))) (let H12 \def +(eq_ind_r nat (minus i O) (\lambda (n: nat).(subst0 n v1 t3 x0)) H10 i +(minus_n_O i)) in (or_ind (pr0 x0 t4) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) +(\lambda (w2: T).(subst0 i v2 t4 w2))) (or (pr0 (THead (Bind b) u (lift (S O) +O x0)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) +w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (H13: (pr0 x0 +t4)).(or_introl (pr0 (THead (Bind b) u (lift (S O) O x0)) t4) (ex2 T (\lambda +(w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) w2)) (\lambda (w2: +T).(subst0 i v2 t4 w2))) (pr0_zeta b H0 x0 t4 H13 u))) (\lambda (H13: (ex2 T +(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 t4 +w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 +t4 w2)) (or (pr0 (THead (Bind b) u (lift (S O) O x0)) t4) (ex2 T (\lambda +(w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) w2)) (\lambda (w2: +T).(subst0 i v2 t4 w2)))) (\lambda (x1: T).(\lambda (H14: (pr0 x0 +x1)).(\lambda (H15: (subst0 i v2 t4 x1)).(or_intror (pr0 (THead (Bind b) u +(lift (S O) O x0)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) u (lift +(S O) O x0)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (ex_intro2 T +(\lambda (w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) w2)) (\lambda (w2: +T).(subst0 i v2 t4 w2)) x1 (pr0_zeta b H0 x0 x1 H14 u) H15))))) H13)) (H2 v1 +x0 i H12 v2 H4))) w1 H11))))) H8)))))))) H5)) (\lambda (H5: (ex3_2 T T +(\lambda (u2: T).(\lambda (t5: T).(eq T w1 (THead (Bind b) u2 t5)))) (\lambda +(u2: T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5: +T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5))))).(ex3_2_ind T T +(\lambda (u2: T).(\lambda (t5: T).(eq T w1 (THead (Bind b) u2 t5)))) (\lambda +(u2: T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5: +T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5))) (or (pr0 w1 t4) (ex2 T +(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) +(\lambda (x0: T).(\lambda (x1: T).(\lambda (H6: (eq T w1 (THead (Bind b) x0 +x1))).(\lambda (_: (subst0 i v1 u x0)).(\lambda (H8: (subst0 (s (Bind b) i) +v1 (lift (S O) O t3) x1)).(lt_le_e (s (Bind b) i) (S O) (or (pr0 w1 t4) (ex2 +T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) +(\lambda (H9: (lt (s (Bind b) i) (S O))).(subst0_gen_lift_false t3 v1 x1 (S +O) O (s (Bind b) i) (le_O_n (s (Bind b) i)) H9 H8 (or (pr0 w1 t4) (ex2 T +(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))))) +(\lambda (Hle: (le (S O) (s (Bind b) i))).(let H_x \def (subst0_gen_lift_ge +v1 t3 x1 (s (Bind b) i) (S O) O H8 Hle) in (let H9 \def H_x in (ex2_ind T +(\lambda (t5: T).(eq T x1 (lift (S O) O t5))) (\lambda (t5: T).(subst0 (minus +i O) v1 t3 t5)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda +(w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H10: (eq T x1 (lift +(S O) O x))).(\lambda (H11: (subst0 (minus i O) v1 t3 x)).(let H12 \def +(eq_ind T x1 (\lambda (t: T).(eq T w1 (THead (Bind b) x0 t))) H6 (lift (S O) +O x) H10) in (eq_ind_r T (THead (Bind b) x0 (lift (S O) O x)) (\lambda (t: +T).(or (pr0 t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: +T).(subst0 i v2 t4 w2))))) (let H13 \def (eq_ind_r nat (minus i O) (\lambda +(n: nat).(subst0 n v1 t3 x)) H11 i (minus_n_O i)) in (or_ind (pr0 x t4) (ex2 +T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (or +(pr0 (THead (Bind b) x0 (lift (S O) O x)) t4) (ex2 T (\lambda (w2: T).(pr0 +(THead (Bind b) x0 (lift (S O) O x)) w2)) (\lambda (w2: T).(subst0 i v2 t4 +w2)))) (\lambda (H14: (pr0 x t4)).(or_introl (pr0 (THead (Bind b) x0 (lift (S +O) O x)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) x0 (lift (S O) O +x)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (pr0_zeta b H0 x t4 H14 x0))) +(\lambda (H14: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i +v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 +i v2 t4 w2)) (or (pr0 (THead (Bind b) x0 (lift (S O) O x)) t4) (ex2 T +(\lambda (w2: T).(pr0 (THead (Bind b) x0 (lift (S O) O x)) w2)) (\lambda (w2: +T).(subst0 i v2 t4 w2)))) (\lambda (x2: T).(\lambda (H15: (pr0 x +x2)).(\lambda (H16: (subst0 i v2 t4 x2)).(or_intror (pr0 (THead (Bind b) x0 +(lift (S O) O x)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) x0 (lift +(S O) O x)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (ex_intro2 T (\lambda +(w2: T).(pr0 (THead (Bind b) x0 (lift (S O) O x)) w2)) (\lambda (w2: +T).(subst0 i v2 t4 w2)) x2 (pr0_zeta b H0 x x2 H15 x0) H16))))) H14)) (H2 v1 +x i H13 v2 H4))) w1 H12))))) H9)))))))))) H5)) (subst0_gen_head (Bind b) v1 u +(lift (S O) O t3) w1 i H3))))))))))))))) (\lambda (t3: T).(\lambda (t4: +T).(\lambda (H0: (pr0 t3 t4)).(\lambda (H1: ((\forall (v1: T).(\forall (w1: +T).(\forall (i: nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2) +\to (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: +T).(subst0 i v2 t4 w2)))))))))))).(\lambda (u: T).(\lambda (v1: T).(\lambda +(w1: T).(\lambda (i: nat).(\lambda (H2: (subst0 i v1 (THead (Flat Cast) u t3) +w1)).(\lambda (v2: T).(\lambda (H3: (pr0 v1 v2)).(or3_ind (ex2 T (\lambda +(u2: T).(eq T w1 (THead (Flat Cast) u2 t3))) (\lambda (u2: T).(subst0 i v1 u +u2))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Flat Cast) u t5))) (\lambda +(t5: T).(subst0 (s (Flat Cast) i) v1 t3 t5))) (ex3_2 T T (\lambda (u2: +T).(\lambda (t5: T).(eq T w1 (THead (Flat Cast) u2 t5)))) (\lambda (u2: +T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5: +T).(subst0 (s (Flat Cast) i) v1 t3 t5)))) (or (pr0 w1 t4) (ex2 T (\lambda +(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (H4: +(ex2 T (\lambda (u2: T).(eq T w1 (THead (Flat Cast) u2 t3))) (\lambda (u2: +T).(subst0 i v1 u u2)))).(ex2_ind T (\lambda (u2: T).(eq T w1 (THead (Flat +Cast) u2 t3))) (\lambda (u2: T).(subst0 i v1 u u2)) (or (pr0 w1 t4) (ex2 T +(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) +(\lambda (x: T).(\lambda (H5: (eq T w1 (THead (Flat Cast) x t3))).(\lambda +(_: (subst0 i v1 u x)).(eq_ind_r T (THead (Flat Cast) x t3) (\lambda (t: +T).(or (pr0 t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: +T).(subst0 i v2 t4 w2))))) (or_introl (pr0 (THead (Flat Cast) x t3) t4) (ex2 +T (\lambda (w2: T).(pr0 (THead (Flat Cast) x t3) w2)) (\lambda (w2: +T).(subst0 i v2 t4 w2))) (pr0_tau t3 t4 H0 x)) w1 H5)))) H4)) (\lambda (H4: +(ex2 T (\lambda (t5: T).(eq T w1 (THead (Flat Cast) u t5))) (\lambda (t5: +T).(subst0 (s (Flat Cast) i) v1 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq T +w1 (THead (Flat Cast) u t5))) (\lambda (t5: T).(subst0 (s (Flat Cast) i) v1 +t3 t5)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: +T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H5: (eq T w1 (THead (Flat +Cast) u x))).(\lambda (H6: (subst0 (s (Flat Cast) i) v1 t3 x)).(eq_ind_r T +(THead (Flat Cast) u x) (\lambda (t: T).(or (pr0 t t4) (ex2 T (\lambda (w2: +T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))) (or_ind (pr0 x t4) +(ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Cast) +i) v2 t4 w2))) (or (pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2: +T).(pr0 (THead (Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) +(\lambda (H7: (pr0 x t4)).(or_introl (pr0 (THead (Flat Cast) u x) t4) (ex2 T +(\lambda (w2: T).(pr0 (THead (Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i +v2 t4 w2))) (pr0_tau x t4 H7 u))) (\lambda (H7: (ex2 T (\lambda (w2: T).(pr0 +x w2)) (\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2)))).(ex2_ind T +(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4 +w2)) (or (pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2: T).(pr0 (THead +(Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x0: +T).(\lambda (H8: (pr0 x x0)).(\lambda (H9: (subst0 (s (Flat Cast) i) v2 t4 +x0)).(or_intror (pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2: T).(pr0 +(THead (Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) +(ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) u x) w2)) (\lambda (w2: +T).(subst0 i v2 t4 w2)) x0 (pr0_tau x x0 H8 u) H9))))) H7)) (H1 v1 x (s (Flat +Cast) i) H6 v2 H3)) w1 H5)))) H4)) (\lambda (H4: (ex3_2 T T (\lambda (u2: +T).(\lambda (t5: T).(eq T w1 (THead (Flat Cast) u2 t5)))) (\lambda (u2: +T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5: +T).(subst0 (s (Flat Cast) i) v1 t3 t5))))).(ex3_2_ind T T (\lambda (u2: +T).(\lambda (t5: T).(eq T w1 (THead (Flat Cast) u2 t5)))) (\lambda (u2: +T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5: +T).(subst0 (s (Flat Cast) i) v1 t3 t5))) (or (pr0 w1 t4) (ex2 T (\lambda (w2: +T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x0: +T).(\lambda (x1: T).(\lambda (H5: (eq T w1 (THead (Flat Cast) x0 +x1))).(\lambda (_: (subst0 i v1 u x0)).(\lambda (H7: (subst0 (s (Flat Cast) +i) v1 t3 x1)).(eq_ind_r T (THead (Flat Cast) x0 x1) (\lambda (t: T).(or (pr0 +t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4 +w2))))) (or_ind (pr0 x1 t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda +(w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2))) (or (pr0 (THead (Flat Cast) x0 +x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) x0 x1) w2)) (\lambda +(w2: T).(subst0 i v2 t4 w2)))) (\lambda (H8: (pr0 x1 t4)).(or_introl (pr0 +(THead (Flat Cast) x0 x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) +x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (pr0_tau x1 t4 H8 x0))) +(\lambda (H8: (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 +(s (Flat Cast) i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1 w2)) +(\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2)) (or (pr0 (THead (Flat +Cast) x0 x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) x0 x1) w2)) +(\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H9: (pr0 x1 +x)).(\lambda (H10: (subst0 (s (Flat Cast) i) v2 t4 x)).(or_intror (pr0 (THead +(Flat Cast) x0 x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) x0 x1) +w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (ex_intro2 T (\lambda (w2: +T).(pr0 (THead (Flat Cast) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)) +x (pr0_tau x1 x H9 x0) H10))))) H8)) (H1 v1 x1 (s (Flat Cast) i) H7 v2 H3)) +w1 H5)))))) H4)) (subst0_gen_head (Flat Cast) v1 u t3 w1 i H2))))))))))))) t1 +t2 H))). + diff --git a/matita/matita/contribs/lambdadelta/basic_1/pr0/subst1.ma b/matita/matita/contribs/lambdadelta/basic_1/pr0/subst1.ma index 877f87f01..5a67308c4 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/pr0/subst1.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/pr0/subst1.ma @@ -14,9 +14,9 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/pr0/props.ma". +include "basic_1/pr0/subst0.ma". -include "Basic-1/subst1/defs.ma". +include "basic_1/subst1/fwd.ma". theorem pr0_delta1: \forall (u1: T).(\forall (u2: T).((pr0 u1 u2) \to (\forall (t1: T).(\forall @@ -25,13 +25,13 @@ theorem pr0_delta1: \def \lambda (u1: T).(\lambda (u2: T).(\lambda (H: (pr0 u1 u2)).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H0: (pr0 t1 t2)).(\lambda (w: T).(\lambda (H1: -(subst1 O u2 t2 w)).(subst1_ind O u2 t2 (\lambda (t: T).(pr0 (THead (Bind -Abbr) u1 t1) (THead (Bind Abbr) u2 t))) (pr0_comp u1 u2 H t1 t2 H0 (Bind -Abbr)) (\lambda (t0: T).(\lambda (H2: (subst0 O u2 t2 t0)).(pr0_delta u1 u2 H -t1 t2 H0 t0 H2))) w H1)))))))). -(* COMMENTS -Initial nodes: 115 -END *) +(subst1 O u2 t2 w)).(let TMP_5 \def (\lambda (t: T).(let TMP_1 \def (Bind +Abbr) in (let TMP_2 \def (THead TMP_1 u1 t1) in (let TMP_3 \def (Bind Abbr) +in (let TMP_4 \def (THead TMP_3 u2 t) in (pr0 TMP_2 TMP_4)))))) in (let TMP_6 +\def (Bind Abbr) in (let TMP_7 \def (pr0_comp u1 u2 H t1 t2 H0 TMP_6) in (let +TMP_8 \def (\lambda (t0: T).(\lambda (H2: (subst0 O u2 t2 t0)).(pr0_delta u1 +u2 H t1 t2 H0 t0 H2))) in (subst1_ind O u2 t2 TMP_5 TMP_7 TMP_8 w +H1)))))))))))). theorem pr0_subst1_back: \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst1 @@ -39,20 +39,24 @@ i u2 t1 t2) \to (\forall (u1: T).((pr0 u1 u2) \to (ex2 T (\lambda (t: T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t2))))))))) \def \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda -(H: (subst1 i u2 t1 t2)).(subst1_ind i u2 t1 (\lambda (t: T).(\forall (u1: -T).((pr0 u1 u2) \to (ex2 T (\lambda (t0: T).(subst1 i u1 t1 t0)) (\lambda -(t0: T).(pr0 t0 t)))))) (\lambda (u1: T).(\lambda (_: (pr0 u1 u2)).(ex_intro2 -T (\lambda (t: T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t1)) t1 -(subst1_refl i u1 t1) (pr0_refl t1)))) (\lambda (t0: T).(\lambda (H0: (subst0 -i u2 t1 t0)).(\lambda (u1: T).(\lambda (H1: (pr0 u1 u2)).(ex2_ind T (\lambda -(t: T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t t0)) (ex2 T (\lambda (t: -T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t0))) (\lambda (x: T).(\lambda -(H2: (subst0 i u1 t1 x)).(\lambda (H3: (pr0 x t0)).(ex_intro2 T (\lambda (t: -T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t0)) x (subst1_single i u1 t1 x -H2) H3)))) (pr0_subst0_back u2 t1 t0 i H0 u1 H1)))))) t2 H))))). -(* COMMENTS -Initial nodes: 251 -END *) +(H: (subst1 i u2 t1 t2)).(let TMP_3 \def (\lambda (t: T).(\forall (u1: +T).((pr0 u1 u2) \to (let TMP_1 \def (\lambda (t0: T).(subst1 i u1 t1 t0)) in +(let TMP_2 \def (\lambda (t0: T).(pr0 t0 t)) in (ex2 T TMP_1 TMP_2)))))) in +(let TMP_8 \def (\lambda (u1: T).(\lambda (_: (pr0 u1 u2)).(let TMP_4 \def +(\lambda (t: T).(subst1 i u1 t1 t)) in (let TMP_5 \def (\lambda (t: T).(pr0 t +t1)) in (let TMP_6 \def (subst1_refl i u1 t1) in (let TMP_7 \def (pr0_refl +t1) in (ex_intro2 T TMP_4 TMP_5 t1 TMP_6 TMP_7))))))) in (let TMP_19 \def +(\lambda (t0: T).(\lambda (H0: (subst0 i u2 t1 t0)).(\lambda (u1: T).(\lambda +(H1: (pr0 u1 u2)).(let TMP_9 \def (\lambda (t: T).(subst0 i u1 t1 t)) in (let +TMP_10 \def (\lambda (t: T).(pr0 t t0)) in (let TMP_11 \def (\lambda (t: +T).(subst1 i u1 t1 t)) in (let TMP_12 \def (\lambda (t: T).(pr0 t t0)) in +(let TMP_13 \def (ex2 T TMP_11 TMP_12) in (let TMP_17 \def (\lambda (x: +T).(\lambda (H2: (subst0 i u1 t1 x)).(\lambda (H3: (pr0 x t0)).(let TMP_14 +\def (\lambda (t: T).(subst1 i u1 t1 t)) in (let TMP_15 \def (\lambda (t: +T).(pr0 t t0)) in (let TMP_16 \def (subst1_single i u1 t1 x H2) in (ex_intro2 +T TMP_14 TMP_15 x TMP_16 H3))))))) in (let TMP_18 \def (pr0_subst0_back u2 t1 +t0 i H0 u1 H1) in (ex2_ind T TMP_9 TMP_10 TMP_13 TMP_17 TMP_18)))))))))))) in +(subst1_ind i u2 t1 TMP_3 TMP_8 TMP_19 t2 H)))))))). theorem pr0_subst1_fwd: \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst1 @@ -60,20 +64,24 @@ i u2 t1 t2) \to (\forall (u1: T).((pr0 u2 u1) \to (ex2 T (\lambda (t: T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t2 t))))))))) \def \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda -(H: (subst1 i u2 t1 t2)).(subst1_ind i u2 t1 (\lambda (t: T).(\forall (u1: -T).((pr0 u2 u1) \to (ex2 T (\lambda (t0: T).(subst1 i u1 t1 t0)) (\lambda -(t0: T).(pr0 t t0)))))) (\lambda (u1: T).(\lambda (_: (pr0 u2 u1)).(ex_intro2 -T (\lambda (t: T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t1 t)) t1 -(subst1_refl i u1 t1) (pr0_refl t1)))) (\lambda (t0: T).(\lambda (H0: (subst0 -i u2 t1 t0)).(\lambda (u1: T).(\lambda (H1: (pr0 u2 u1)).(ex2_ind T (\lambda -(t: T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t0 t)) (ex2 T (\lambda (t: -T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t0 t))) (\lambda (x: T).(\lambda -(H2: (subst0 i u1 t1 x)).(\lambda (H3: (pr0 t0 x)).(ex_intro2 T (\lambda (t: -T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t0 t)) x (subst1_single i u1 t1 x -H2) H3)))) (pr0_subst0_fwd u2 t1 t0 i H0 u1 H1)))))) t2 H))))). -(* COMMENTS -Initial nodes: 251 -END *) +(H: (subst1 i u2 t1 t2)).(let TMP_3 \def (\lambda (t: T).(\forall (u1: +T).((pr0 u2 u1) \to (let TMP_1 \def (\lambda (t0: T).(subst1 i u1 t1 t0)) in +(let TMP_2 \def (\lambda (t0: T).(pr0 t t0)) in (ex2 T TMP_1 TMP_2)))))) in +(let TMP_8 \def (\lambda (u1: T).(\lambda (_: (pr0 u2 u1)).(let TMP_4 \def +(\lambda (t: T).(subst1 i u1 t1 t)) in (let TMP_5 \def (\lambda (t: T).(pr0 +t1 t)) in (let TMP_6 \def (subst1_refl i u1 t1) in (let TMP_7 \def (pr0_refl +t1) in (ex_intro2 T TMP_4 TMP_5 t1 TMP_6 TMP_7))))))) in (let TMP_19 \def +(\lambda (t0: T).(\lambda (H0: (subst0 i u2 t1 t0)).(\lambda (u1: T).(\lambda +(H1: (pr0 u2 u1)).(let TMP_9 \def (\lambda (t: T).(subst0 i u1 t1 t)) in (let +TMP_10 \def (\lambda (t: T).(pr0 t0 t)) in (let TMP_11 \def (\lambda (t: +T).(subst1 i u1 t1 t)) in (let TMP_12 \def (\lambda (t: T).(pr0 t0 t)) in +(let TMP_13 \def (ex2 T TMP_11 TMP_12) in (let TMP_17 \def (\lambda (x: +T).(\lambda (H2: (subst0 i u1 t1 x)).(\lambda (H3: (pr0 t0 x)).(let TMP_14 +\def (\lambda (t: T).(subst1 i u1 t1 t)) in (let TMP_15 \def (\lambda (t: +T).(pr0 t0 t)) in (let TMP_16 \def (subst1_single i u1 t1 x H2) in (ex_intro2 +T TMP_14 TMP_15 x TMP_16 H3))))))) in (let TMP_18 \def (pr0_subst0_fwd u2 t1 +t0 i H0 u1 H1) in (ex2_ind T TMP_9 TMP_10 TMP_13 TMP_17 TMP_18)))))))))))) in +(subst1_ind i u2 t1 TMP_3 TMP_8 TMP_19 t2 H)))))))). theorem pr0_subst1: \forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (\forall (v1: T).(\forall @@ -82,24 +90,33 @@ v2) \to (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst1 i v2 t2 w2))))))))))) \def \lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr0 t1 t2)).(\lambda (v1: -T).(\lambda (w1: T).(\lambda (i: nat).(\lambda (H0: (subst1 i v1 t1 -w1)).(subst1_ind i v1 t1 (\lambda (t: T).(\forall (v2: T).((pr0 v1 v2) \to -(ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst1 i v2 t2 w2)))))) -(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(ex_intro2 T (\lambda (w2: T).(pr0 -t1 w2)) (\lambda (w2: T).(subst1 i v2 t2 w2)) t2 H (subst1_refl i v2 t2)))) -(\lambda (t0: T).(\lambda (H1: (subst0 i v1 t1 t0)).(\lambda (v2: T).(\lambda -(H2: (pr0 v1 v2)).(or_ind (pr0 t0 t2) (ex2 T (\lambda (w2: T).(pr0 t0 w2)) -(\lambda (w2: T).(subst0 i v2 t2 w2))) (ex2 T (\lambda (w2: T).(pr0 t0 w2)) -(\lambda (w2: T).(subst1 i v2 t2 w2))) (\lambda (H3: (pr0 t0 t2)).(ex_intro2 -T (\lambda (w2: T).(pr0 t0 w2)) (\lambda (w2: T).(subst1 i v2 t2 w2)) t2 H3 -(subst1_refl i v2 t2))) (\lambda (H3: (ex2 T (\lambda (w2: T).(pr0 t0 w2)) -(\lambda (w2: T).(subst0 i v2 t2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 t0 -w2)) (\lambda (w2: T).(subst0 i v2 t2 w2)) (ex2 T (\lambda (w2: T).(pr0 t0 -w2)) (\lambda (w2: T).(subst1 i v2 t2 w2))) (\lambda (x: T).(\lambda (H4: -(pr0 t0 x)).(\lambda (H5: (subst0 i v2 t2 x)).(ex_intro2 T (\lambda (w2: -T).(pr0 t0 w2)) (\lambda (w2: T).(subst1 i v2 t2 w2)) x H4 (subst1_single i -v2 t2 x H5))))) H3)) (pr0_subst0 t1 t2 H v1 t0 i H1 v2 H2)))))) w1 H0))))))). -(* COMMENTS -Initial nodes: 385 -END *) +T).(\lambda (w1: T).(\lambda (i: nat).(\lambda (H0: (subst1 i v1 t1 w1)).(let +TMP_3 \def (\lambda (t: T).(\forall (v2: T).((pr0 v1 v2) \to (let TMP_1 \def +(\lambda (w2: T).(pr0 t w2)) in (let TMP_2 \def (\lambda (w2: T).(subst1 i v2 +t2 w2)) in (ex2 T TMP_1 TMP_2)))))) in (let TMP_7 \def (\lambda (v2: +T).(\lambda (_: (pr0 v1 v2)).(let TMP_4 \def (\lambda (w2: T).(pr0 t1 w2)) in +(let TMP_5 \def (\lambda (w2: T).(subst1 i v2 t2 w2)) in (let TMP_6 \def +(subst1_refl i v2 t2) in (ex_intro2 T TMP_4 TMP_5 t2 H TMP_6)))))) in (let +TMP_30 \def (\lambda (t0: T).(\lambda (H1: (subst0 i v1 t1 t0)).(\lambda (v2: +T).(\lambda (H2: (pr0 v1 v2)).(let TMP_8 \def (pr0 t0 t2) in (let TMP_9 \def +(\lambda (w2: T).(pr0 t0 w2)) in (let TMP_10 \def (\lambda (w2: T).(subst0 i +v2 t2 w2)) in (let TMP_11 \def (ex2 T TMP_9 TMP_10) in (let TMP_12 \def +(\lambda (w2: T).(pr0 t0 w2)) in (let TMP_13 \def (\lambda (w2: T).(subst1 i +v2 t2 w2)) in (let TMP_14 \def (ex2 T TMP_12 TMP_13) in (let TMP_18 \def +(\lambda (H3: (pr0 t0 t2)).(let TMP_15 \def (\lambda (w2: T).(pr0 t0 w2)) in +(let TMP_16 \def (\lambda (w2: T).(subst1 i v2 t2 w2)) in (let TMP_17 \def +(subst1_refl i v2 t2) in (ex_intro2 T TMP_15 TMP_16 t2 H3 TMP_17))))) in (let +TMP_28 \def (\lambda (H3: (ex2 T (\lambda (w2: T).(pr0 t0 w2)) (\lambda (w2: +T).(subst0 i v2 t2 w2)))).(let TMP_19 \def (\lambda (w2: T).(pr0 t0 w2)) in +(let TMP_20 \def (\lambda (w2: T).(subst0 i v2 t2 w2)) in (let TMP_21 \def +(\lambda (w2: T).(pr0 t0 w2)) in (let TMP_22 \def (\lambda (w2: T).(subst1 i +v2 t2 w2)) in (let TMP_23 \def (ex2 T TMP_21 TMP_22) in (let TMP_27 \def +(\lambda (x: T).(\lambda (H4: (pr0 t0 x)).(\lambda (H5: (subst0 i v2 t2 +x)).(let TMP_24 \def (\lambda (w2: T).(pr0 t0 w2)) in (let TMP_25 \def +(\lambda (w2: T).(subst1 i v2 t2 w2)) in (let TMP_26 \def (subst1_single i v2 +t2 x H5) in (ex_intro2 T TMP_24 TMP_25 x H4 TMP_26))))))) in (ex2_ind T +TMP_19 TMP_20 TMP_23 TMP_27 H3)))))))) in (let TMP_29 \def (pr0_subst0 t1 t2 +H v1 t0 i H1 v2 H2) in (or_ind TMP_8 TMP_11 TMP_14 TMP_18 TMP_28 +TMP_29))))))))))))))) in (subst1_ind i v1 t1 TMP_3 TMP_7 TMP_30 w1 +H0)))))))))).