From: Claudio Sacerdoti Coen Date: Mon, 15 Oct 2007 09:50:18 +0000 (+0000) Subject: auto => autobatch X-Git-Tag: 0.4.95@7852~127 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=63c80d98ebf619b965c078bec3672b30664a3a65;p=helm.git auto => autobatch --- diff --git a/matita/tests/elim.ma b/matita/tests/elim.ma index dbcd0930b..e038c5da2 100644 --- a/matita/tests/elim.ma +++ b/matita/tests/elim.ma @@ -75,5 +75,5 @@ theorem t': \forall x,y. \forall H: sum x y O. simplify. intros. generalize in match H1. rewrite < H2; rewrite < H3.intro. - rewrite > H4.auto new library. + rewrite > H4.autobatch library. qed. diff --git a/matita/tests/hard_refine.ma b/matita/tests/hard_refine.ma index 94766ab0b..059a27be3 100644 --- a/matita/tests/hard_refine.ma +++ b/matita/tests/hard_refine.ma @@ -52,16 +52,16 @@ letin k3 \def (eq_ind_r A (add (multiply ? (inverse ?)) (multiply b n1)) (\lambd focus 633. clearbody k3. exact (eq_ind A b (\lambda x:A.(eq A x b)) (refl_equal A b) (add (multiply a b) b) (eq_ind A (multiply b n1) (\lambda x:A.(eq A x (add (multiply a b) b))) (eq_ind_r A (add a n1) (\lambda x:A.(eq A (multiply b x) (add (multiply a b) b))) (eq_ind_r A (multiply n1 b) (\lambda x:A.(eq A (multiply b (add a n1)) (add (multiply a b) x))) (H5 b a n1) b (eq_ind A (multiply b n1) (\lambda x:A.(eq A b (multiply n1 x))) (eq_ind A (multiply b n1) (\lambda x:A.(eq A x (multiply n1 (multiply b n1)))) (eq_ind_r A (add b b) (\lambda x:A.(eq A (multiply b n1) (multiply n1 x))) (eq_ind A (add n1 n1) (\lambda x:A.(eq A (multiply b x) (multiply n1 (add b b)))) (eq_ind A (add n1 n1) (\lambda x:A.(eq A (multiply b (add n1 n1)) (multiply x (add b b)))) (eq_ind_r A (add (multiply b (add n1 n1)) (multiply b (add n1 n1))) (\lambda x:A.(eq A (multiply b (add n1 n1)) x)) (eq_ind_r A (add (multiply n1 b) (multiply n1 b)) (\lambda x:A.(eq A (multiply b (add n1 n1)) (add (multiply b (add n1 n1)) x))) (eq_ind_r A (add (multiply n1 b) (multiply n1 b)) (\lambda x:A.(eq A x (add (multiply b (add n1 n1)) (add (multiply n1 b) (multiply n1 b))))) (eq_ind_r A (add (multiply n1 b) (multiply n1 b)) (\lambda x:A.(eq A (add (multiply n1 b) (multiply n1 b)) (add x (add (multiply n1 b) (multiply n1 b))))) (eq_ind A (multiply (add (multiply n1 b) (multiply n1 b)) n1) (\lambda x:A.(eq A x (add (add (multiply n1 b) (multiply n1 b)) (add (multiply n1 b) (multiply n1 b))))) (H7 (multiply n1 b)) (add (multiply n1 b) (multiply n1 b)) (H8 (multiply n1 b))) (multiply b (add n1 n1)) (H5 b n1 n1)) (multiply b (add n1 n1)) (H5 b n1 n1)) (multiply b (add n1 n1)) (H5 b n1 n1)) (multiply (add n1 n1) (add b b)) (H5 (add n1 n1) b b)) n1 (eq_ind A (multiply (add n1 n1) n1) (\lambda x:A.(eq A x n1)) (H6 n1 n1) (add n1 n1) (H8 n1))) n1 (eq_ind A (multiply (add n1 n1) n1) (\lambda x:A.(eq A x n1)) (H6 n1 n1) (add n1 n1) (H8 n1))) (multiply b n1) (eq_ind_r A (multiply n1 (add b b)) (\lambda x:A.(eq A x (add b b))) (eq_ind A (multiply (add b b) n1) (\lambda x:A.(eq A (multiply n1 (add b b)) x)) (eq_ind A (add n1 n1) (\lambda x:A.(eq A (multiply n1 (add b b)) (multiply (add b b) x))) (eq_ind_r A (add (multiply n1 (add b b)) (multiply n1 (add b b))) (\lambda x:A.(eq A (multiply n1 (add b b)) x)) (eq_ind_r A (add (multiply b n1) (multiply b n1)) (\lambda x:A.(eq A (multiply n1 (add b b)) (add (multiply n1 (add b b)) x))) (eq_ind_r A (add (multiply b n1) (multiply b n1)) (\lambda x:A.(eq A x (add (multiply n1 (add b b)) (add (multiply b n1) (multiply b n1))))) (eq_ind_r A (add (multiply b n1) (multiply b n1)) (\lambda x:A.(eq A (add (multiply b n1) (multiply b n1)) (add x (add (multiply b n1) (multiply b n1))))) (eq_ind A (multiply (add (multiply b n1) (multiply b n1)) n1) (\lambda x:A.(eq A x (add (add (multiply b n1) (multiply b n1)) (add (multiply b n1) (multiply b n1))))) (H7 (multiply b n1)) (add (multiply b n1) (multiply b n1)) (H8 (multiply b n1))) (multiply n1 (add b b)) (H5 n1 b b)) (multiply n1 (add b b)) (H5 n1 b b)) (multiply n1 (add b b)) (H5 n1 b b)) (multiply (add b b) (add n1 n1)) (H5 (add b b) n1 n1)) n1 (eq_ind A (multiply (add n1 n1) n1) (\lambda x:A.(eq A x n1)) (H6 n1 n1) (add n1 n1) (H8 n1))) (add b b) (H8 b)) (multiply b n1) (eq_ind A (add n1 n1) (\lambda x:A.(eq A (multiply b x) (multiply n1 (add b b)))) (eq_ind A (add n1 n1) (\lambda x:A.(eq A (multiply b (add n1 n1)) (multiply x (add b b)))) (eq_ind_r A (add (multiply b (add n1 n1)) (multiply b (add n1 n1))) (\lambda x:A.(eq A (multiply b (add n1 n1)) x)) (eq_ind_r A (add (multiply n1 b) (multiply n1 b)) (\lambda x:A.(eq A (multiply b (add n1 n1)) (add (multiply b (add n1 n1)) x))) (eq_ind_r A (add (multiply n1 b) (multiply n1 b)) (\lambda x:A.(eq A x (add (multiply b (add n1 n1)) (add (multiply n1 b) (multiply n1 b))))) (eq_ind_r A (add (multiply n1 b) (multiply n1 b)) (\lambda x:A.(eq A (add (multiply n1 b) (multiply n1 b)) (add x (add (multiply n1 b) (multiply n1 b))))) (eq_ind A (multiply (add (multiply n1 b) (multiply n1 b)) n1) (\lambda x:A.(eq A x (add (add (multiply n1 b) (multiply n1 b)) (add (multiply n1 b) (multiply n1 b))))) (H7 (multiply n1 b)) (add (multiply n1 b) (multiply n1 b)) (H8 (multiply n1 b))) (multiply b (add n1 n1)) (H5 b n1 n1)) (multiply b (add n1 n1)) (H5 b n1 n1)) (multiply b (add n1 n1)) (H5 b n1 n1)) (multiply (add n1 n1) (add b b)) (H5 (add n1 n1) b b)) n1 (eq_ind A (multiply (add n1 n1) n1) (\lambda x:A.(eq A x n1)) (H6 n1 n1) (add n1 n1) (H8 n1))) n1 (eq_ind A (multiply (add n1 n1) n1) (\lambda x:A.(eq A x n1)) (H6 n1 n1) (add n1 n1) (H8 n1))))) b ?) b ?)) n1 ?) b ?)). -auto new. -auto new. -auto new. -auto new. +autobatch. +autobatch. +autobatch. +autobatch. unfocus. -auto new. +autobatch. unfocus. -auto new. +autobatch. unfocus. -auto new. +autobatch. unfocus. -auto new. +autobatch. qed. diff --git a/matita/tests/inversion.ma b/matita/tests/inversion.ma index 07d3a0c4a..4c33beee0 100644 --- a/matita/tests/inversion.ma +++ b/matita/tests/inversion.ma @@ -42,7 +42,7 @@ theorem t: \forall x,y. \forall H: sum x y O. simplify. intros. generalize in match H1. rewrite < H2; rewrite < H3.intro. - rewrite > H4.auto new library. + rewrite > H4.autobatch library. qed. theorem t1: \forall x,y. sum x y O \to x = y. @@ -57,5 +57,5 @@ apply (sum_ind ? (\lambda a,b,K. y=a \to O=b \to x=a) ? ? ? s).*) inversion s. intros.simplify. intros. -rewrite > H. rewrite < H2. auto new library. +rewrite > H. rewrite < H2. autobatch library. qed. diff --git a/matita/tests/replace.ma b/matita/tests/replace.ma index 843075766..ba1f41a8f 100644 --- a/matita/tests/replace.ma +++ b/matita/tests/replace.ma @@ -30,7 +30,7 @@ theorem t: \forall x:nat. x * (x + 0) = (0 + x) * (x + x * 0). rewrite < (plus_n_O x). reflexivity. reflexivity. - auto new library. + autobatch library. qed. (* This test tests "replace in match t" where t contains some metavariables *) diff --git a/matita/tests/test3.ma b/matita/tests/test3.ma index 5753f37af..85180da5b 100644 --- a/matita/tests/test3.ma +++ b/matita/tests/test3.ma @@ -27,5 +27,5 @@ alias symbol "times" (instance 0) = "Coq's natural times". theorem b:\forall p:nat. p * 0=0. intro. -auto new library. +autobatch library. qed.