From: Andrea Asperti Date: Wed, 7 Nov 2012 16:59:25 +0000 (+0000) Subject: New multi tapes machines X-Git-Tag: make_still_working~1483 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=64207d0b4d80bcedcfbae0526ce635e993f027a7;p=helm.git New multi tapes machines --- diff --git a/matita/matita/lib/turing/turing.ma b/matita/matita/lib/turing/turing.ma index db86f4a0b..d76d096c5 100644 --- a/matita/matita/lib/turing/turing.ma +++ b/matita/matita/lib/turing/turing.ma @@ -1,198 +1,404 @@ -(* - -Macchina A: -postcondizione -PA(in,out) ≝ - ∀ls,cs,d,rs. - left (tape in) = cs@'#'::ls → - right (tape in) = d::rs → - state in = q0 → - left (tape out) = ls ∧ - right (tape out) = d::'#'::rev cs@rs ∧ - state out = qfinal - -Macchina A0: -postcondizione: -PA0(in,out) ≝ - ∀ls,c,rs. - left (tape in) = c::ls → - right (tape in) = d::rs → - state in = q0 → - left (tape out) = ls ∧ - right (tape out) = d::c::rs - state out = qfinal - -Macchina A1 -postcondizione true: -PA1t(in,out) ≝ - ∀c,rs. - right (tape in) = c::rs → - tape in = tape out ∧ - (c ≠ '#' → state out = qtrue) - -postcondizione false: -PA1f(in,out) ≝ - ∀c,rs. - right (tape in) = c::rs → - tape in = tape out ∧ - (c = '#' → state out = qfalse) ∧ +include "turing/mono.ma". +include "basics/vectors.ma". + +(* We do not distinuish an input tape *) + +record mTM (sig:FinSet): Type[1] ≝ +{ states : FinSet; + tapes_no: nat; (* additional working tapes *) + trans : states × (Vector (option sig) (S tapes_no)) → + states × (Vector (option (sig × move))(S tapes_no)); + start: states; + halt : states → bool +}. + +record mconfig (sig,states:FinSet) (n:nat): Type[0] ≝ +{ cstate : states; + ctapes : Vector (tape sig) (S n) +}. + +definition current_chars ≝ λsig.λn.λtapes. + vec_map ?? (current sig) (S n) tapes. + +definition step ≝ λsig.λM:mTM sig.λc:mconfig sig (states ? M) (tapes_no ? M). + let 〈news,mvs〉 ≝ trans sig M 〈cstate ??? c,current_chars ?? (ctapes ??? c)〉 in + mk_mconfig ??? + news + (pmap_vec ??? (tape_move sig) ? (ctapes ??? c) mvs). + +definition empty_tapes ≝ λsig.λn. +mk_Vector ? n (make_list (tape sig) (niltape sig) n) ?. +elim n // normalize // +qed. +(************************** Realizability *************************************) +definition loopM ≝ λsig.λM:mTM sig.λi,cin. + loop ? i (step sig M) (λc.halt sig M (cstate ??? c)) cin. -A = do A0 while A1 inv PA0 var |right (tape in)|; +lemma loopM_unfold : ∀sig,M,i,cin. + loopM sig M i cin = loop ? i (step sig M) (λc.halt sig M (cstate ??? c)) cin. +// qed. - posso assumere le precondizioni di A - H1 : left (tape in) = c::cs@'#'::ls - H2 : right (tape in) = d::rs +definition initc ≝ λsig.λM:mTM sig.λtapes. + mk_mconfig sig (states sig M) (tapes_no sig M) (start sig M) tapes. - in particolare H2 → precondizioni di A1 - - eseguiamo dunque if A1 then (A0; A) else skip - +definition Realize ≝ λsig.λM:mTM sig.λR:relation (Vector (tape sig) ?). +∀t.∃i.∃outc. + loopM sig M i (initc sig M t) = Some ? outc ∧ R t (ctapes ??? outc). + +definition WRealize ≝ λsig.λM:mTM sig.λR:relation (Vector (tape sig) ?). +∀t,i,outc. + loopM sig M i (initc sig M t) = Some ? outc → R t (ctapes ??? outc). + +definition Terminate ≝ λsig.λM:mTM sig.λt. ∃i,outc. + loopM sig M i (initc sig M t) = Some ? outc. - -by induction on left (tape in) - - per casi su d =?= '#' - - Hcase: d ≠ '#' ⇒ - eseguo (A1; A0; A) - devo allora provare che PA1°PA0°PA(in,out) → PA(in,out) - ∃s1,s2: PA1t(in,s1) ∧ PA0(s1,s2) ∧ PA(s2,out) - - usando anche Hcase, ottengo che tape in = tape s1 - soddisfo allora le precondizioni di PA0(s1,s2) ottenendo che - left (tape s2) = cs@'#'::ls - right (tape s2) = d::c::rs - - soddisfo allora le precondizioni di PA e per ipotesi induttiva - - - left (tape s) = d::cs@'#'::ls - right (tape s) = - +(* notation "M \vDash R" non associative with precedence 45 for @{ 'models $M $R}. *) +interpretation "multi realizability" 'models M R = (Realize ? M R). + +(* notation "M \VDash R" non associative with precedence 45 for @{ 'wmodels $M $R}. *) +interpretation "weak multi realizability" 'wmodels M R = (WRealize ? M R). + +interpretation "multi termination" 'fintersects M t = (Terminate ? M t). + +lemma WRealize_to_Realize : ∀sig.∀M: mTM sig.∀R. + (∀t.M ↓ t) → M ⊫ R → M ⊨ R. +#sig #M #R #HT #HW #t cases (HT … t) #i * #outc #Hloop +@(ex_intro … i) @(ex_intro … outc) % // @(HW … i) // +qed. + +theorem Realize_to_WRealize : ∀sig.∀M:mTM sig.∀R. + M ⊨ R → M ⊫ R. +#sig #M #R #H1 #inc #i #outc #Hloop +cases (H1 inc) #k * #outc1 * #Hloop1 #HR >(loop_eq … Hloop Hloop1) // +qed. + +definition accRealize ≝ λsig.λM:mTM sig.λacc:states sig M.λRtrue,Rfalse. +∀t.∃i.∃outc. + loopM sig M i (initc sig M t) = Some ? outc ∧ + (cstate ??? outc = acc → Rtrue t (ctapes ??? outc)) ∧ + (cstate ??? outc ≠ acc → Rfalse t (ctapes ??? outc)). +(* notation "M ⊨ [q: R1,R2]" non associative with precedence 45 for @{ 'cmodels $M $q $R1 $R2}. *) +interpretation "conditional multi realizability" 'cmodels M q R1 R2 = (accRealize ? M q R1 R2). +(*************************** guarded realizablity *****************************) +definition GRealize ≝ λsig.λM:mTM sig.λPre:Vector (tape sig) ? →Prop.λR:relation (Vector (tape sig) ?). +∀t.Pre t → ∃i.∃outc. + loopM sig M i (initc sig M t) = Some ? outc ∧ R t (ctapes ??? outc). + +definition accGRealize ≝ λsig.λM:mTM sig.λacc:states sig M. +λPre: Vector (tape sig) ? → Prop.λRtrue,Rfalse. +∀t.Pre t → ∃i.∃outc. + loopM sig M i (initc sig M t) = Some ? outc ∧ + (cstate ??? outc = acc → Rtrue t (ctapes ??? outc)) ∧ + (cstate ??? outc ≠ acc → Rfalse t (ctapes ??? outc)). + +lemma WRealize_to_GRealize : ∀sig.∀M: mTM sig.∀Pre,R. + (∀t.Pre t → M ↓ t) → M ⊫ R → GRealize sig M Pre R. +#sig #M #Pre #R #HT #HW #t #HPre cases (HT … t HPre) #i * #outc #Hloop +@(ex_intro … i) @(ex_intro … outc) % // @(HW … i) // +qed. +lemma Realize_to_GRealize : ∀sig.∀M: mTM sig.∀P,R. + M ⊨ R → GRealize sig M P R. +#alpha #M #Pre #R #HR #t #HPre +cases (HR t) -HR #k * #outc * #Hloop #HR +@(ex_intro ?? k) @(ex_intro ?? outc) % + [ @Hloop | @HR ] +qed. +lemma acc_Realize_to_acc_GRealize: ∀sig.∀M:mTM sig.∀q:states sig M.∀P,R1,R2. + M ⊨ [q:R1,R2] → accGRealize sig M q P R1 R2. +#alpha #M #q #Pre #R1 #R2 #HR #t #HPre +cases (HR t) -HR #k * #outc * * #Hloop #HRtrue #HRfalse +@(ex_intro ?? k) @(ex_intro ?? outc) % + [ % [@Hloop] @HRtrue | @HRfalse] +qed. +(******************************** monotonicity ********************************) +lemma Realize_to_Realize : ∀sig.∀M:mTM sig.∀R1,R2. + R1 ⊆ R2 → Realize sig M R1 → Realize sig M R2. +#alpha #M #R1 #R2 #Himpl #HR1 #intape +cases (HR1 intape) -HR1 #k * #outc * #Hloop #HR1 +@(ex_intro ?? k) @(ex_intro ?? outc) % /2/ +qed. +lemma WRealize_to_WRealize: ∀sig.∀M:mTM sig.∀R1,R2. + R1 ⊆ R2 → WRealize sig M R1 → WRealize ? M R2. +#alpha #M #R1 #R2 #Hsub #HR1 #intape #i #outc #Hloop +@Hsub @(HR1 … i) @Hloop +qed. -∀inc. - (∃ls,cs,d,rs. left inc = ... ∧ right inc = ... ∧ state inc = q0) → -∃i,outc. loop i step inc = Some ? outc - ∧(∀ls,cs,d,rs.left inc = ... → right inc = ... → - ∧ left outc = ls - ∧ right outc = d::"#"::rev cs::rs - ∧ state outc = qfinal) +lemma GRealize_to_GRealize : ∀sig.∀M:mTM sig.∀P,R1,R2. + R1 ⊆ R2 → GRealize sig M P R1 → GRealize sig M P R2. +#alpha #M #P #R1 #R2 #Himpl #HR1 #intape #HP +cases (HR1 intape HP) -HR1 #k * #outc * #Hloop #HR1 +@(ex_intro ?? k) @(ex_intro ?? outc) % /2/ +qed. -ϕ1 M1 ψ1 → ϕ2 M2 ψ2 → -(ψ1(in1,out1) → ϕ2(out1)) → (ψ2(out1,out2) → ψ3(in1,out2)) → -ϕ1 (M1;M2) ψ3 +lemma GRealize_to_GRealize_2 : ∀sig.∀M:mTM sig.∀P1,P2,R1,R2. + P2 ⊆ P1 → R1 ⊆ R2 → GRealize sig M P1 R1 → GRealize sig M P2 R2. +#alpha #M #P1 #P2 #R1 #R2 #Himpl1 #Himpl2 #H1 #intape #HP +cases (H1 intape (Himpl1 … HP)) -H1 #k * #outc * #Hloop #H1 +@(ex_intro ?? k) @(ex_intro ?? outc) % /2/ +qed. +lemma acc_Realize_to_acc_Realize: ∀sig.∀M:mTM sig.∀q:states sig M.∀R1,R2,R3,R4. + R1 ⊆ R3 → R2 ⊆ R4 → M ⊨ [q:R1,R2] → M ⊨ [q:R3,R4]. +#alpha #M #q #R1 #R2 #R3 #R4 #Hsub13 #Hsub24 #HRa #intape +cases (HRa intape) -HRa #k * #outc * * #Hloop #HRtrue #HRfalse +@(ex_intro ?? k) @(ex_intro ?? outc) % + [ % [@Hloop] #Hq @Hsub13 @HRtrue // | #Hq @Hsub24 @HRfalse //] +qed. +(**************************** A canonical relation ****************************) ------------------------------------------------------ -{} (tmp ≝ x; x ≝ y; y ≝ tmp) {x = old(x), y = old(y)} +definition R_mTM ≝ λsig.λM:mTM sig.λq.λt1,t2. +∃i,outc. + loopM ? M i (mk_mconfig ??? q t1) = Some ? outc ∧ + t2 = (ctapes ??? outc). +lemma R_mTM_to_R: ∀sig.∀M:mTM sig.∀R. ∀t1,t2. + M ⊫ R → R_mTM ? M (start sig M) t1 t2 → R t1 t2. +#sig #M #R #t1 #t2 whd in ⊢ (%→?); #HMR * #i * #outc * +#Hloop #Ht2 >Ht2 @(HMR … Hloop) +qed. -∀inc. - ∀ls:list sig. - ∀cs:list (sig\#). - ∀d.sig. - ∀rs:list sig. - left inc = cs@"#"::ls → - right inc = d::rs → - state inc = q0 → -∃i,outc. loop i step inc = Some outc - ∧ - (∀ls,cs,d,rs.left inc = ... → right inc = ... → - ∧ left outc = ls - ∧ right outc = d::"#"::rev cs::rs - ∧ state outc = qfinal - -*) - - -(* - ||M|| This file is part of HELM, an Hypertextual, Electronic - ||A|| Library of Mathematics, developed at the Computer Science - ||T|| Department of the University of Bologna, Italy. - ||I|| - ||T|| - ||A|| - \ / This file is distributed under the terms of the - \ / GNU General Public License Version 2 - V_____________________________________________________________*) +(******************************** NOP Machine *********************************) -include "basics/vectors.ma". +(* NO OPERATION + t1 = t2 + +definition nop_states ≝ initN 1. +definition start_nop : initN 1 ≝ mk_Sig ?? 0 (le_n … 1). *) + +definition mnop ≝ + λalpha:FinSet.λn.mk_mTM alpha nop_states n + (λp.let 〈q,a〉 ≝ p in 〈q,mk_Vector ? (S n) (make_list ? (None ?) (S n)) ?〉) + start_nop (λ_.true). +elim n normalize // +qed. + +definition R_mnop ≝ λalpha,n.λt1,t2:Vector (tape alpha) (S n).t2 = t1. -record tape (sig:FinSet): Type[0] ≝ -{ left : list sig; - right: list sig -}. +lemma sem_mnop : + ∀alpha,n.mnop alpha n⊨ R_mnop alpha n. +#alpha #n #intapes @(ex_intro ?? 1) +@(ex_intro … (mk_mconfig ??? start_nop intapes)) % % +qed. -inductive move : Type[0] ≝ -| L : move -| R : move -| N : move. +lemma mnop_single_state: ∀sig,n.∀q1,q2:states ? (mnop sig n). q1 = q2. +normalize #sig #n0 * #n #ltn1 * #m #ltm1 +generalize in match ltn1; generalize in match ltm1; +<(le_n_O_to_eq … (le_S_S_to_le … ltn1)) <(le_n_O_to_eq … (le_S_S_to_le … ltm1)) +// qed. + +(************************** Sequential Composition ****************************) + +definition seq_trans ≝ λsig. λM1,M2 : TM sig. +λp. let 〈s,a〉 ≝ p in + match s with + [ inl s1 ⇒ + if halt sig M1 s1 then 〈inr … (start sig M2), None ?〉 + else let 〈news1,m〉 ≝ trans sig M1 〈s1,a〉 in 〈inl … news1,m〉 + | inr s2 ⇒ let 〈news2,m〉 ≝ trans sig M2 〈s2,a〉 in 〈inr … news2,m〉 + ]. + +definition seq ≝ λsig. λM1,M2 : TM sig. + mk_TM sig + (FinSum (states sig M1) (states sig M2)) + (seq_trans sig M1 M2) + (inl … (start sig M1)) + (λs.match s with + [ inl _ ⇒ false | inr s2 ⇒ halt sig M2 s2]). + +notation "a · b" right associative with precedence 65 for @{ 'middot $a $b}. +interpretation "sequential composition" 'middot a b = (seq ? a b). + +definition lift_confL ≝ + λsig,S1,S2,c.match c with + [ mk_config s t ⇒ mk_config sig (FinSum S1 S2) (inl … s) t ]. + +definition lift_confR ≝ + λsig,S1,S2,c.match c with + [ mk_config s t ⇒ mk_config sig (FinSum S1 S2) (inr … s) t ]. + +definition halt_liftL ≝ + λS1,S2,halt.λs:FinSum S1 S2. + match s with + [ inl s1 ⇒ halt s1 + | inr _ ⇒ true ]. (* should be vacuous in all cases we use halt_liftL *) + +definition halt_liftR ≝ + λS1,S2,halt.λs:FinSum S1 S2. + match s with + [ inl _ ⇒ false + | inr s2 ⇒ halt s2 ]. + +lemma p_halt_liftL : ∀sig,S1,S2,halt,c. + halt (cstate sig S1 c) = + halt_liftL S1 S2 halt (cstate … (lift_confL … c)). +#sig #S1 #S2 #halt #c cases c #s #t % +qed. -(* We do not distinuish an input tape *) +lemma trans_seq_liftL : ∀sig,M1,M2,s,a,news,move. + halt ? M1 s = false → + trans sig M1 〈s,a〉 = 〈news,move〉 → + trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inl … news,move〉. +#sig (*#M1*) * #Q1 #T1 #init1 #halt1 #M2 #s #a #news #move +#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % +qed. -record TM (sig:FinSet): Type[1] ≝ -{ states : FinSet; - tapes_no: nat; (* additional working tapes *) - trans : states × (Vector (option sig) (S tapes_no)) → - states × (Vector (sig × move) (S tapes_no)) × (option sig) ; - output: list sig; - start: states; - halt : states → bool -}. +lemma trans_seq_liftR : ∀sig,M1,M2,s,a,news,move. + halt ? M2 s = false → + trans sig M2 〈s,a〉 = 〈news,move〉 → + trans sig (seq sig M1 M2) 〈inr … s,a〉 = 〈inr … news,move〉. +#sig #M1 * #Q2 #T2 #init2 #halt2 #s #a #news #move +#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % +qed. -record config (sig:FinSet) (M:TM sig): Type[0] ≝ -{ state : states sig M; - tapes : Vector (tape sig) (S (tapes_no sig M)); - out : list sig -}. +lemma step_seq_liftR : ∀sig,M1,M2,c0. + halt ? M2 (cstate ?? c0) = false → + step sig (seq sig M1 M2) (lift_confR sig (states ? M1) (states ? M2) c0) = + lift_confR sig (states ? M1) (states ? M2) (step sig M2 c0). +#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s #t + lapply (refl ? (trans ?? 〈s,current sig t〉)) + cases (trans ?? 〈s,current sig t〉) in ⊢ (???% → %); + #s0 #m0 cases t + [ #Heq #Hhalt + | 2,3: #s1 #l1 #Heq #Hhalt + |#ls #s1 #rs #Heq #Hhalt ] + whd in ⊢ (???(????%)); >Heq whd in ⊢ (???%); + whd in ⊢ (??(???%)?); whd in ⊢ (??%?); >(trans_seq_liftR … Heq) // +qed. -definition option_hd ≝ λA.λl:list A. - match l with - [nil ⇒ None ? - |cons a _ ⇒ Some ? a - ]. +lemma step_seq_liftL : ∀sig,M1,M2,c0. + halt ? M1 (cstate ?? c0) = false → + step sig (seq sig M1 M2) (lift_confL sig (states ? M1) (states ? M2) c0) = + lift_confL sig ?? (step sig M1 c0). +#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s #t + lapply (refl ? (trans ?? 〈s,current sig t〉)) + cases (trans ?? 〈s,current sig t〉) in ⊢ (???% → %); + #s0 #m0 cases t + [ #Heq #Hhalt + | 2,3: #s1 #l1 #Heq #Hhalt + |#ls #s1 #rs #Heq #Hhalt ] + whd in ⊢ (???(????%)); >Heq whd in ⊢ (???%); + whd in ⊢ (??(???%)?); whd in ⊢ (??%?); >(trans_seq_liftL … Heq) // +qed. -definition tape_move ≝ λsig.λt: tape sig.λm:sig × move. - match \snd m with - [ R ⇒ mk_tape sig ((\fst m)::(left ? t)) (tail ? (right ? t)) - | L ⇒ mk_tape sig (tail ? (left ? t)) ((\fst m)::(right ? t)) - | N ⇒ mk_tape sig (left ? t) ((\fst m)::(tail ? (right ? t))) - ]. +lemma trans_liftL_true : ∀sig,M1,M2,s,a. + halt ? M1 s = true → + trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inr … (start ? M2),None ?〉. +#sig #M1 #M2 #s #a #Hhalt whd in ⊢ (??%?); >Hhalt % +qed. -definition current_chars ≝ λsig.λM:TM sig.λc:config sig M. - vec_map ?? (λt.option_hd ? (right ? t)) (S (tapes_no sig M)) (tapes ?? c). +lemma eq_ctape_lift_conf_L : ∀sig,S1,S2,outc. + ctape sig (FinSum S1 S2) (lift_confL … outc) = ctape … outc. +#sig #S1 #S2 #outc cases outc #s #t % +qed. + +lemma eq_ctape_lift_conf_R : ∀sig,S1,S2,outc. + ctape sig (FinSum S1 S2) (lift_confR … outc) = ctape … outc. +#sig #S1 #S2 #outc cases outc #s #t % +qed. -definition opt_cons ≝ λA.λa:option A.λl:list A. - match a with - [ None ⇒ l - | Some a ⇒ a::l - ]. +theorem sem_seq: ∀sig.∀M1,M2:TM sig.∀R1,R2. + M1 ⊨ R1 → M2 ⊨ R2 → M1 · M2 ⊨ R1 ∘ R2. +#sig #M1 #M2 #R1 #R2 #HR1 #HR2 #t +cases (HR1 t) #k1 * #outc1 * #Hloop1 #HM1 +cases (HR2 (ctape sig (states ? M1) outc1)) #k2 * #outc2 * #Hloop2 #HM2 +@(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2)) +% +[@(loop_merge ??????????? + (loop_lift ??? (lift_confL sig (states sig M1) (states sig M2)) + (step sig M1) (step sig (seq sig M1 M2)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) … Hloop1)) + [ * * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + || #c0 #Hhalt (trans_liftL_true sig M1 M2 ??) + [ whd in ⊢ (??%?); whd in ⊢ (???%); + @config_eq whd in ⊢ (???%); // + | @(loop_Some ?????? Hloop10) ] + ] +| @(ex_intro … (ctape ? (FinSum (states ? M1) (states ? M2)) (lift_confL … outc1))) + % // >eq_ctape_lift_conf_L >eq_ctape_lift_conf_R // +] +qed. -definition step ≝ λsig.λM:TM sig.λc:config sig M. - let 〈news,mvs,outchar〉 ≝ trans sig M 〈state ?? c,current_chars ?? c〉 in - mk_config ?? - news - (pmap_vec ??? (tape_move sig) ? (tapes ?? c) mvs) - (opt_cons ? outchar (out ?? c)). +theorem sem_seq_app: ∀sig.∀M1,M2:TM sig.∀R1,R2,R3. + M1 ⊨ R1 → M2 ⊨ R2 → R1 ∘ R2 ⊆ R3 → M1 · M2 ⊨ R3. +#sig #M1 #M2 #R1 #R2 #R3 #HR1 #HR2 #Hsub +#t cases (sem_seq … HR1 HR2 t) +#k * #outc * #Hloop #Houtc @(ex_intro … k) @(ex_intro … outc) +% [@Hloop |@Hsub @Houtc] +qed. -definition empty_tapes ≝ λsig.λn. -mk_Vector ? n (make_list (tape sig) (mk_tape sig [] []) n) ?. -elim n // normalize // +(* composition with guards *) +theorem sem_seq_guarded: ∀sig.∀M1,M2:TM sig.∀Pre1,Pre2,R1,R2. + GRealize sig M1 Pre1 R1 → GRealize sig M2 Pre2 R2 → + (∀t1,t2.Pre1 t1 → R1 t1 t2 → Pre2 t2) → + GRealize sig (M1 · M2) Pre1 (R1 ∘ R2). +#sig #M1 #M2 #Pre1 #Pre2 #R1 #R2 #HGR1 #HGR2 #Hinv #t1 #HPre1 +cases (HGR1 t1 HPre1) #k1 * #outc1 * #Hloop1 #HM1 +cases (HGR2 (ctape sig (states ? M1) outc1) ?) + [2: @(Hinv … HPre1 HM1)] +#k2 * #outc2 * #Hloop2 #HM2 +@(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2)) +% +[@(loop_merge ??????????? + (loop_lift ??? (lift_confL sig (states sig M1) (states sig M2)) + (step sig M1) (step sig (seq sig M1 M2)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) … Hloop1)) + [ * * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + || #c0 #Hhalt (trans_liftL_true sig M1 M2 ??) + [ whd in ⊢ (??%?); whd in ⊢ (???%); + @config_eq whd in ⊢ (???%); // + | @(loop_Some ?????? Hloop10) ] + ] +| @(ex_intro … (ctape ? (FinSum (states ? M1) (states ? M2)) (lift_confL … outc1))) + % // >eq_ctape_lift_conf_L >eq_ctape_lift_conf_R // +] qed. -definition init ≝ λsig.λM:TM sig.λi:(list sig). - mk_config ?? - (start sig M) - (vec_cons ? (mk_tape sig [] i) ? (empty_tapes sig (tapes_no sig M))) - [ ]. +theorem sem_seq_app_guarded: ∀sig.∀M1,M2:TM sig.∀Pre1,Pre2,R1,R2,R3. + GRealize sig M1 Pre1 R1 → GRealize sig M2 Pre2 R2 → + (∀t1,t2.Pre1 t1 → R1 t1 t2 → Pre2 t2) → R1 ∘ R2 ⊆ R3 → + GRealize sig (M1 · M2) Pre1 R3. +#sig #M1 #M2 #Pre1 #Pre2 #R1 #R2 #R3 #HR1 #HR2 #Hinv #Hsub +#t #HPre1 cases (sem_seq_guarded … HR1 HR2 Hinv t HPre1) +#k * #outc * #Hloop #Houtc @(ex_intro … k) @(ex_intro … outc) +% [@Hloop |@Hsub @Houtc] +qed. + + + + + + + definition stop ≝ λsig.λM:TM sig.λc:config sig M. halt sig M (state sig M c). @@ -240,3 +446,4 @@ definition Compute_expl ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). definition ComputeB_expl ≝ λsig.λM:TM sig.λf:(list sig) → bool. ∀l.∃c.computation sig M (init sig M l) c → (stop sig M c = true) ∧ (isnilb ? (out ?? c) = false). + \ No newline at end of file