From: Andrea Asperti Date: Wed, 4 Apr 2012 07:28:38 +0000 (+0000) Subject: Added in basics X-Git-Tag: make_still_working~1820 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=65a3b93b01f2d00960c56df3563b879f36f3cbfd;p=helm.git Added in basics - vectors.ma - finset.ma Added turing minor ntegrations in list,ma and listb.ma --- diff --git a/matita/matita/lib/basics/finset.ma b/matita/matita/lib/basics/finset.ma new file mode 100644 index 000000000..1b972ec06 --- /dev/null +++ b/matita/matita/lib/basics/finset.ma @@ -0,0 +1,70 @@ +(* + ||M|| This file is part of HELM, an Hypertextual, Electronic + ||A|| Library of Mathematics, developed at the Computer Science + ||T|| Department of the University of Bologna, Italy. + ||I|| + ||T|| + ||A|| + \ / This file is distributed under the terms of the + \ / GNU General Public License Version 2 + V_______________________________________________________________ *) + +include "basics/lists/listb.ma". + +(****** DeqSet: a set with a decidbale equality ******) + +record FinSet : Type[1] ≝ +{ carr:> DeqSet; + enum: list carr; + enum_complete: ∀x.memb carr x enum = true; + enum_unique: uniqueb carr enum = true +}. + +(* +definition DeqBool ≝ mk_DeqSet bool beqb beqb_true. + +unification hint 0 ≔ ; + X ≟ mk_DeqSet bool beqb beqb_true +(* ---------------------------------------- *) ⊢ + bool ≡ carr X. + +unification hint 0 ≔ b1,b2:bool; + X ≟ mk_DeqSet bool beqb beqb_true +(* ---------------------------------------- *) ⊢ + beqb b1 b2 ≡ eqb X b1 b2. + +example exhint: ∀b:bool. (b == false) = true → b = false. +#b #H @(\P H). +qed. + +(* pairs *) +definition eq_pairs ≝ + λA,B:DeqSet.λp1,p2:A×B.(\fst p1 == \fst p2) ∧ (\snd p1 == \snd p2). + +lemma eq_pairs_true: ∀A,B:DeqSet.∀p1,p2:A×B. + eq_pairs A B p1 p2 = true ↔ p1 = p2. +#A #B * #a1 #b1 * #a2 #b2 % + [#H cases (andb_true …H) #eqa #eqb >(\P eqa) >(\P eqb) // + |#H destruct normalize >(\b (refl … a2)) >(\b (refl … b2)) // + ] +qed. + +definition DeqProd ≝ λA,B:DeqSet. + mk_DeqSet (A×B) (eq_pairs A B) (eq_pairs_true A B). + +unification hint 0 ≔ C1,C2; + T1 ≟ carr C1, + T2 ≟ carr C2, + X ≟ DeqProd C1 C2 +(* ---------------------------------------- *) ⊢ + T1×T2 ≡ carr X. + +unification hint 0 ≔ T1,T2,p1,p2; + X ≟ DeqProd T1 T2 +(* ---------------------------------------- *) ⊢ + eq_pairs T1 T2 p1 p2 ≡ eqb X p1 p2. + +example hint2: ∀b1,b2. + 〈b1,true〉==〈false,b2〉=true → 〈b1,true〉=〈false,b2〉. +#b1 #b2 #H @(\P H). +*) \ No newline at end of file diff --git a/matita/matita/lib/basics/lists/list.ma b/matita/matita/lib/basics/lists/list.ma index 021e9d400..2ed7fcc86 100644 --- a/matita/matita/lib/basics/lists/list.ma +++ b/matita/matita/lib/basics/lists/list.ma @@ -31,12 +31,12 @@ notation "hvbox(l1 break @ l2)" interpretation "nil" 'nil = (nil ?). interpretation "cons" 'cons hd tl = (cons ? hd tl). -definition not_nil: ∀A:Type[0].list A → Prop ≝ +definition is_nil: ∀A:Type[0].list A → Prop ≝ λA.λl.match l with [ nil ⇒ True | cons hd tl ⇒ False ]. theorem nil_cons: ∀A:Type[0].∀l:list A.∀a:A. a::l ≠ []. - #A #l #a @nmk #Heq (change with (not_nil ? (a::l))) >Heq // + #A #l #a @nmk #Heq (change with (is_nil ? (a::l))) >Heq // qed. (* @@ -165,11 +165,19 @@ let rec length (A:Type[0]) (l:list A) on l ≝ notation "|M|" non associative with precedence 60 for @{'norm $M}. interpretation "norm" 'norm l = (length ? l). +lemma length_tail: ∀A,l. length ? (tail A l) = pred (length ? l). +#A #l elim l // +qed. + lemma length_append: ∀A.∀l1,l2:list A. |l1@l2| = |l1|+|l2|. #A #l1 elim l1 // normalize /2/ qed. +lemma length_map: ∀A,B,l.∀f:A→B. length ? (map ?? f l) = length ? l. +#A #B #l #f elim l // #a #tl #Hind normalize // +qed. + (****************************** nth ********************************) let rec nth n (A:Type[0]) (l:list A) (d:A) ≝ match n with diff --git a/matita/matita/lib/basics/lists/listb.ma b/matita/matita/lib/basics/lists/listb.ma index 5abf50f14..b6d5864f8 100644 --- a/matita/matita/lib/basics/lists/listb.ma +++ b/matita/matita/lib/basics/lists/listb.ma @@ -16,6 +16,13 @@ include "basics/lists/list.ma". include "basics/sets.ma". include "basics/deqsets.ma". +(********* isnilb *********) +let rec isnilb A (l: list A) on l ≝ +match l with +[ nil ⇒ true +| cons hd tl ⇒ false +]. + (********* search *********) let rec memb (S:DeqSet) (x:S) (l: list S) on l ≝ diff --git a/matita/matita/lib/basics/vectors.ma b/matita/matita/lib/basics/vectors.ma new file mode 100644 index 000000000..b43014b7b --- /dev/null +++ b/matita/matita/lib/basics/vectors.ma @@ -0,0 +1,60 @@ +(* + ||M|| This file is part of HELM, an Hypertextual, Electronic + ||A|| Library of Mathematics, developed at the Computer Science + ||T|| Department of the University of Bologna, Italy. + ||I|| + ||T|| + ||A|| + \ / This file is distributed under the terms of the + \ / GNU General Public License Version 2 + V_____________________________________________________________*) + +include "basics/finset.ma". + +record Vector (A:Type[0]) (n:nat): Type[0] ≝ +{ vec :> list A; + len: length ? vec = n +}. + +definition vec_tail ≝ λA.λn.λv:Vector A n. +mk_Vector A (pred n) (tail A v) ?. +>length_tail >(len A n v) // +qed. + +definition vec_cons ≝ λA.λa.λn.λv:Vector A n. +mk_Vector A (S n) (cons A a v) ?. +normalize >(len A n v) // +qed. + +definition vec_append ≝ λA.λn1,n2.λv1:Vector A n1.λv2: Vector A n2. +mk_Vector A (n1+n2) (v1@v2). + +definition vec_map ≝ λA,B.λf:A→B.λn.λv:Vector A n. +mk_Vector B n (map ?? f v) + (trans_eq … (length_map …) (len A n v)). + +let rec pmap A B C (f:A→B→C) l1 l2 on l1 ≝ + match l1 with + [ nil ⇒ nil C + | cons a tlA ⇒ + match l2 with + [nil ⇒ nil C + |cons b tlB ⇒ (f a b)::pmap A B C f tlA tlB + ] + ]. + +lemma length_pmap: ∀A,B,C.∀f:A→B→C.∀l1,l2. +length C (pmap A B C f l1 l2) = + min (length A l1) (length B l2). +#A #B #C #f #l1 elim l1 // #a #tlA #Hind #l2 cases l2 // +#b #tlB lapply (Hind tlB) normalize +cases (true_or_false (leb (length A tlA) (length B tlB))) #H >H +normalize // +qed. + +definition pmap_vec ≝ λA,B,C.λf:A→B→C.λn.λvA:Vector A n.λvB:Vector B n. +mk_Vector C n (pmap A B C f vA vB) ?. +>length_pmap >(len A n vA) >(len B n vB) normalize +>(le_to_leb_true … (le_n n)) // +qed. + diff --git a/matita/matita/lib/re/moves.ma b/matita/matita/lib/re/moves.ma index 6e4dbb974..1372b4976 100644 --- a/matita/matita/lib/re/moves.ma +++ b/matita/matita/lib/re/moves.ma @@ -15,6 +15,19 @@ include "re/re.ma". include "basics/lists/listb.ma". +(* +Moves + +We now define the move operation, that corresponds to the advancement of the +state in response to the processing of an input character a. The intuition is +clear: we have to look at points inside $e$ preceding the given character a, +let the point traverse the character, and broadcast it. All other points must +be removed. + +We can give a particularly elegant definition in terms of the +lifted operators of the previous section: +*) + let rec move (S: DeqSet) (x:S) (E: pitem S) on E : pre S ≝ match E with [ pz ⇒ 〈 `∅, false 〉 @@ -67,10 +80,25 @@ theorem move_ok: [>(\P H) % [* // #bot @False_ind //| #H1 destruct /2/] |% [@False_ind |#H1 cases (\Pf H) #H2 @H2 destruct //] ] - |#i1 #i2 #HI1 #HI2 #w >move_cat - @iff_trans[|@sem_odot] >same_kernel >sem_cat_w - @iff_trans[||@(iff_or_l … (HI2 w))] @iff_or_r + |#i1 #i2 #HI1 #HI2 #w + (* lhs = w∈\sem{move S a (i1·i2)} *) + >move_cat + (* lhs = w∈\sem{move S a i1}⊙\sem{move S a i2} *) + @iff_trans[|@sem_odot] >same_kernel + (* lhs = w∈\sem{move S a i1}·\sem{|i2|} ∨ a∈\sem{move S a i2} *) + (* now we work on the rhs, that is + rhs = a::w1∈\sem{i1·i2} *) + >sem_cat_w + (* rhs = a::w1∈\sem{i1}\sem{|i2|} ∨ a::w∈\sem{i2} *) + @iff_trans[||@(iff_or_l … (HI2 w))] + (* rhs = a::w1∈\sem{i1}\sem{|i2|} ∨ w∈\sem{move S a i2} *) + @iff_or_r + check deriv_middot + (* we are left to prove that + w∈\sem{move S a i1}·\sem{|i2|} ↔ a::w∈\sem{i1}\sem{|i2|} + we use deriv_middot on the rhs *) @iff_trans[||@iff_sym @deriv_middot //] + (* w∈\sem{move S a i1}·\sem{|i2|} ↔ w∈(deriv S \sem{i1} a) · \sem{|i2|} *) @cat_ext_l @HI1 |#i1 #i2 #HI1 #HI2 #w >(sem_plus S i1 i2) >move_plus >sem_plus_w @iff_trans[|@sem_oplus] @@ -117,15 +145,12 @@ theorem decidable_sem: ∀S:DeqSet.∀w: word S. ∀e:pre S. #S #w elim w [* #i #b >moves_empty cases b % /2/ |#a #w1 #Hind #e >moves_cons + check not_epsilon_sem @iff_trans [||@iff_sym @not_epsilon_sem] @iff_trans [||@move_ok] @Hind ] qed. -(* lemma not_true_to_false: ∀b.b≠true → b =false. -#b * cases b // #H @False_ind /2/ -qed. *) - (************************ pit state ***************************) definition pit_pre ≝ λS.λi.〈blank S (|i|), false〉. @@ -180,7 +205,11 @@ qed. (* bisimulation *) definition cofinal ≝ λS.λp:(pre S)×(pre S). \snd (\fst p) = \snd (\snd p). - + +(* As a corollary of decidable_sem, we have that two expressions +e1 and e2 are equivalent iff for any word w the states reachable +through w are cofinal. *) + theorem equiv_sem: ∀S:DeqSet.∀e1,e2:pre S. \sem{e1} =1 \sem{e2} ↔ ∀w.cofinal ? 〈moves ? w e1,moves ? w e2〉. #S #e1 #e2 % @@ -192,6 +221,11 @@ theorem equiv_sem: ∀S:DeqSet.∀e1,e2:pre S. |#H #w1 @iff_trans [||@decidable_sem] unfold_bisim // @@ -296,6 +375,9 @@ lemma notb_eq_true_l: ∀b. notb b = true → b = false. #b cases b normalize // qed. +(* In order to prove termination of bisim we must be able to effectively +enumerate all possible pres: *) + let rec pitem_enum S (i:re S) on i ≝ match i with [ z ⇒ [pz S] @@ -333,6 +415,11 @@ lemma space_enum_complete : ∀S.∀e1,e2: pre S. #S #e1 #e2 @(memb_compose … (λi,b.〈i,b〉)) // qed. +(* We are ready to prove that bisim is correct; we use the invariant +that at each call of bisim the two lists visited and frontier only contain +nodes reachable from \langle e_1,e_2\rangle, hence it is absurd to suppose +to meet a pair which is not cofinal. *) + definition all_reachable ≝ λS.λe1,e2:pre S.λl: list ?. uniqueb ? l = true ∧ ∀p. memb ? p l = true → @@ -391,6 +478,10 @@ definition all_true ≝ λS.λl.∀p:(pre S) × (pre S). memb ? p l = true → definition sub_sons ≝ λS,l,l1,l2.∀x:(pre S) × (pre S). memb ? x l1 = true → sublist ? (sons ? l x) l2. +(* For completeness, we use the invariant that all the nodes in visited are cofinal, +and the sons of visited are either in visited or in the frontier; since +at the end frontier is empty, visited is hence a bisimulation. *) + lemma bisim_complete: ∀S,l,n.∀frontier,visited,visited_res:list ?. all_true S visited → @@ -488,6 +579,25 @@ definition exp1 ≝ ((a·b)^*·a). definition exp2 ≝ a·(b·a)^*. definition exp4 ≝ (b·a)^*. +definition exp5 ≝ (a·(a·(a·b)^*·b)^*·b)^*. + +example + moves1: \snd (moves DeqNat [0;1;0] (•(blank ? exp2))) = true. +normalize // +qed. + +example + moves2: \snd (moves DeqNat [0;1;0;0;0] (•(blank ? exp2))) = false. +normalize // qed. + +example + moves3: \snd (moves DeqNat [0;0;0;1;0;1;1;0;1;1] (•(blank ? exp5))) = true. +normalize // qed. + +example + moves4: \snd (moves DeqNat [0;0;0;1;0;1;1;0;1;1;1;0] (•(blank ? exp5))) = false. +normalize // qed. + definition exp6 ≝ a·(a ·a ·b^* + b^* ). definition exp7 ≝ a · a^* · b^*. @@ -506,3 +616,4 @@ normalize // qed. +\v \ No newline at end of file diff --git a/matita/matita/lib/re/re.ma b/matita/matita/lib/re/re.ma index 5894af561..9b6378846 100644 --- a/matita/matita/lib/re/re.ma +++ b/matita/matita/lib/re/re.ma @@ -14,6 +14,9 @@ include "re/lang.ma". +(* The type re of regular expressions over an alphabet $S$ is the smallest +collection of objects generated by the following constructors: *) + inductive re (S: DeqSet) : Type[0] ≝ z: re S | e: re S @@ -34,6 +37,9 @@ interpretation "atom" 'ps a = (s ? a). notation "`∅" non associative with precedence 90 for @{ 'empty }. interpretation "empty" 'empty = (z ?). +(* The language sem{e} associated with the regular expression e is inductively +defined by the following function: *) + let rec in_l (S : DeqSet) (r : re S) on r : word S → Prop ≝ match r with [ z ⇒ ∅ @@ -50,8 +56,37 @@ interpretation "in_l mem" 'mem w l = (in_l ? l w). lemma rsem_star : ∀S.∀r: re S. \sem{r^*} = \sem{r}^*. // qed. +(* +Pointed Regular expressions + +We now introduce pointed regular expressions, that are the main tool we shall +use for the construction of the automaton. +A pointed regular expression is just a regular expression internally labelled +with some additional points. Intuitively, points mark the positions inside the +regular expression which have been reached after reading some prefix of +the input string, or better the positions where the processing of the remaining +string has to be started. Each pointed expression for $e$ represents a state of +the {\em deterministic} automaton associated with $e$; since we obviously have +only a finite number of possible labellings, the number of states of the automaton +is finite. + +Pointed regular expressions provide the tool for an algebraic revisitation of +McNaughton and Yamada's algorithm for position automata, making the proof of its +correctness, that is far from trivial, particularly clear and simple. In particular, +pointed expressions offer an appealing alternative to Brzozowski's derivatives, +avoiding their weakest point, namely the fact of being forced to quotient derivatives +w.r.t. a suitable notion of equivalence in order to get a finite number of states +(that is not essential for recognizing strings, but is crucial for comparing regular +expressions). + +Our main data structure is the notion of pointed item, that is meant whose purpose +is to encode a set of positions inside a regular expression. +The idea of formalizing pointers inside a data type by means of a labelled version +of the data type itself is probably one of the first, major lessons learned in the +formalization of the metatheory of programming languages. For our purposes, it is +enough to mark positions preceding individual characters, so we shall have two kinds +of characters •a (pp a) and a (ps a) according to the case a is pointed or not. *) -(* pointed items *) inductive pitem (S: DeqSet) : Type[0] ≝ pz: pitem S | pe: pitem S @@ -61,6 +96,12 @@ inductive pitem (S: DeqSet) : Type[0] ≝ | po: pitem S → pitem S → pitem S | pk: pitem S → pitem S. +(* A pointed regular expression (pre) is just a pointed item with an additional +boolean, that must be understood as the possibility to have a trailing point at +the end of the expression. As we shall see, pointed regular expressions can be +understood as states of a DFA, and the boolean indicates if +the state is final or not. *) + definition pre ≝ λS.pitem S × bool. interpretation "pitem star" 'star a = (pk ? a). @@ -73,6 +114,10 @@ interpretation "pitem ps" 'ps a = (ps ? a). interpretation "pitem epsilon" 'epsilon = (pe ?). interpretation "pitem empty" 'empty = (pz ?). +(* The carrier $|i|$ of an item i is the regular expression obtained from i by +removing all the points. Similarly, the carrier of a pointed regular expression +is the carrier of its item. *) + let rec forget (S: DeqSet) (l : pitem S) on l: re S ≝ match l with [ pz ⇒ `∅ @@ -96,7 +141,14 @@ lemma erase_plus : ∀S.∀i1,i2:pitem S. lemma erase_star : ∀S.∀i:pitem S.|i^*| = |i|^*. // qed. -(* boolean equality *) +(* +Comparing items and pres + +Items and pres are very concrete datatypes: they can be effectively compared, +and enumerated. In particular, we can define a boolean equality beqitem and a proof +beqitem_true that it refects propositional equality, enriching the set (pitem S) +to a DeqSet. *) + let rec beqitem S (i1,i2: pitem S) on i1 ≝ match i1 with [ pz ⇒ match i2 with [ pz ⇒ true | _ ⇒ false] @@ -144,7 +196,11 @@ qed. definition DeqItem ≝ λS. mk_DeqSet (pitem S) (beqitem S) (beqitem_true S). - + +(* We also add a couple of unification hints to allow the type inference system +to look at (pitem S) as the carrier of a DeqSet, and at beqitem as if it was the +equality function of a DeqSet. *) + unification hint 0 ≔ S; X ≟ mk_DeqSet (pitem S) (beqitem S) (beqitem_true S) (* ---------------------------------------- *) ⊢ @@ -155,7 +211,12 @@ unification hint 0 ≔ S,i1,i2; (* ---------------------------------------- *) ⊢ beqitem S i1 i2 ≡ eqb X i1 i2. -(* semantics *) +(* +Semantics of pointed regular expressions + +The intuitive semantic of a point is to mark the position where +we should start reading the regular expression. The language associated +to a pre is the union of the languages associated with its points. *) let rec in_pl (S : DeqSet) (r : pitem S) on r : word S → Prop ≝ match r with @@ -176,6 +237,8 @@ definition in_prl ≝ λS : DeqSet.λp:pre S. interpretation "in_prl mem" 'mem w l = (in_prl ? l w). interpretation "in_prl" 'in_l E = (in_prl ? E). +(* The following, trivial lemmas are only meant for rewriting purposes. *) + lemma sem_pre_true : ∀S.∀i:pitem S. \sem{〈i,true〉} = \sem{i} ∪ {ϵ}. // qed. @@ -208,6 +271,14 @@ lemma sem_star_w : ∀S.∀i:pitem S.∀w. \sem{i^*} w = (∃w1,w2.w1 @ w2 = w ∧ \sem{i} w1 ∧ \sem{|i|}^* w2). // qed. +(* Below are a few, simple, semantic properties of items. In particular: +- not_epsilon_item : ∀S:DeqSet.∀i:pitem S. ¬ (\sem{i} ϵ). +- epsilon_pre : ∀S.∀e:pre S. (\sem{i} ϵ) ↔ (\snd e = true). +- minus_eps_item: ∀S.∀i:pitem S. \sem{i} =1 \sem{i}-{[ ]}. +- minus_eps_pre: ∀S.∀e:pre S. \sem{\fst e} =1 \sem{e}-{[ ]}. +The first property is proved by a simple induction on $i$; the other +results are easy corollaries. We need an auxiliary lemma first. *) + lemma append_eq_nil : ∀S.∀w1,w2:word S. w1 @ w2 = ϵ → w1 = ϵ. #S #w1 #w2 cases w1 // #a #tl normalize #H destruct qed. @@ -220,7 +291,6 @@ lemma not_epsilon_lp : ∀S:DeqSet.∀e:pitem S. ¬ (ϵ ∈ e). ] qed. -(* lemma 12 *) lemma epsilon_to_true : ∀S.∀e:pre S. ϵ ∈ e → \snd e = true. #S * #i #b cases b // normalize #H @False_ind /2/ qed. @@ -244,6 +314,33 @@ lemma minus_eps_pre: ∀S.∀e:pre S. \sem{\fst e} =1 \sem{e}-{[ ]}. ] qed. +(* +Broadcasting points + +Intuitively, a regular expression e must be understood as a pointed expression with a single +point in front of it. Since however we only allow points before symbols, we must broadcast +this initial point inside e traversing all nullable subexpressions, that essentially corresponds +to the ϵ-closure operation on automata. We use the notation •(_) to denote such an operation; +its definition is the expected one: let us start discussing an example. + +Example +Let us broadcast a point inside (a + ϵ)(b*a + b)b. We start working in parallel on the +first occurrence of a (where the point stops), and on ϵ that gets traversed. We have hence +reached the end of a + ϵ and we must pursue broadcasting inside (b*a + b)b. Again, we work in +parallel on the two additive subterms b^*a and b; the first point is allowed to both enter the +star, and to traverse it, stopping in front of a; the second point just stops in front of b. +No point reached that end of b^*a + b hence no further propagation is possible. In conclusion: + •((a + ϵ)(b^*a + b)b) = 〈(•a + ϵ)((•b)^*•a + •b)b, false〉 +*) + +(* Broadcasting a point inside an item generates a pre, since the point could possibly reach +the end of the expression. +Broadcasting inside a i1+i2 amounts to broadcast in parallel inside i1 and i2. +If we define + 〈i1,b1〉 ⊕ 〈i2,b2〉 = 〈i1 + i2, b1 ∨ b2〉 +then, we just have •(i1+i2) = •(i1)⊕ •(i2). +*) + definition lo ≝ λS:DeqSet.λa,b:pre S.〈\fst a + \fst b,\snd a ∨ \snd b〉. notation "a ⊕ b" left associative with precedence 60 for @{'oplus $a $b}. interpretation "oplus" 'oplus a b = (lo ? a b). @@ -251,12 +348,31 @@ interpretation "oplus" 'oplus a b = (lo ? a b). lemma lo_def: ∀S.∀i1,i2:pitem S.∀b1,b2. 〈i1,b1〉⊕〈i2,b2〉=〈i1+i2,b1∨b2〉. // qed. +(* +Concatenation is a bit more complex. In order to broadcast a point inside i1 · i2 +we should start broadcasting it inside i1 and then proceed into i2 if and only if a +point reached the end of i1. This suggests to define •(i1 · i2) as •(i1) ▹ i2, where +e ▹ i is a general operation of concatenation between a pre and an item, defined by +cases on the boolean in e: + + 〈i1,true〉 ▹ i2 = i1 ◃ •(i_2) + 〈i1,false〉 ▹ i2 = i1 · i2 + +In turn, ◃ says how to concatenate an item with a pre, that is however extremely simple: + + i1 ◃ 〈i1,b〉 = 〈i_1 · i2, b〉 + +Let us come to the formalized definitions: +*) + definition pre_concat_r ≝ λS:DeqSet.λi:pitem S.λe:pre S. match e with [ mk_Prod i1 b ⇒ 〈i · i1, b〉]. notation "i ◃ e" left associative with precedence 60 for @{'lhd $i $e}. interpretation "pre_concat_r" 'lhd i e = (pre_concat_r ? i e). +(* The behaviour of ◃ is summarized by the following, easy lemma: *) + lemma eq_to_ex_eq: ∀S.∀A,B:word S → Prop. A = B → A =1 B. #S #A #B #H >H /2/ qed. @@ -266,7 +382,13 @@ lemma sem_pre_concat_r : ∀S,i.∀e:pre S. #S #i * #i1 #b1 cases b1 [2: @eq_to_ex_eq //] >sem_pre_true >sem_cat >sem_pre_true /2/ qed. - + +(* The definition of $•(-)$ (eclose) and ▹ (pre_concat_l) are mutually recursive. +In this situation, a viable alternative that is usually simpler to reason about, +is to abstract one of the two functions with respect to the other. In particular +we abstract pre_concat_l with respect to an input bcast function from items to +pres. *) + definition pre_concat_l ≝ λS:DeqSet.λbcast:∀S:DeqSet.pitem S → pre S.λe1:pre S.λi2:pitem S. match e1 with [ mk_Prod i1 b1 ⇒ match b1 with @@ -280,6 +402,8 @@ interpretation "item-pre concat" 'tril op a b = (pre_concat_l ? op a b). notation "•" non associative with precedence 60 for @{eclose ?}. +(* We are ready to give the formal definition of the broadcasting operation. *) + let rec eclose (S: DeqSet) (i: pitem S) on i : pre S ≝ match i with [ pz ⇒ 〈 `∅, false 〉 @@ -293,6 +417,8 @@ let rec eclose (S: DeqSet) (i: pitem S) on i : pre S ≝ notation "• x" non associative with precedence 60 for @{'eclose $x}. interpretation "eclose" 'eclose x = (eclose ? x). +(* Here are a few simple properties of ▹ and •(-) *) + lemma eclose_plus: ∀S:DeqSet.∀i1,i2:pitem S. •(i1 + i2) = •i1 ⊕ •i2. // qed. @@ -305,22 +431,6 @@ lemma eclose_star: ∀S:DeqSet.∀i:pitem S. •i^* = 〈(\fst(•i))^*,true〉. // qed. -definition lift ≝ λS.λf:pitem S →pre S.λe:pre S. - match e with - [ mk_Prod i b ⇒ 〈\fst (f i), \snd (f i) ∨ b〉]. - -definition preclose ≝ λS. lift S (eclose S). -interpretation "preclose" 'eclose x = (preclose ? x). - -(* theorem 16: 2 *) -lemma sem_oplus: ∀S:DeqSet.∀e1,e2:pre S. - \sem{e1 ⊕ e2} =1 \sem{e1} ∪ \sem{e2}. -#S * #i1 #b1 * #i2 #b2 #w % - [cases b1 cases b2 normalize /2/ * /3/ * /3/ - |cases b1 cases b2 normalize /2/ * /3/ * /3/ - ] -qed. - lemma odot_true : ∀S.∀i1,i2:pitem S. 〈i1,true〉 ▹ i2 = i1 ◃ (•i2). @@ -336,9 +446,18 @@ lemma odot_false: 〈i1,false〉 ▹ i2 = 〈i1 · i2, false〉. // qed. -lemma LcatE : ∀S.∀e1,e2:pitem S. - \sem{e1 · e2} = \sem{e1} · \sem{|e2|} ∪ \sem{e2}. -// qed. +(* The definition of •(-) (eclose) can then be lifted from items to pres +in the obvious way. *) + +definition lift ≝ λS.λf:pitem S →pre S.λe:pre S. + match e with + [ mk_Prod i b ⇒ 〈\fst (f i), \snd (f i) ∨ b〉]. + +definition preclose ≝ λS. lift S (eclose S). +interpretation "preclose" 'eclose x = (preclose ? x). + +(* Obviously, broadcasting does not change the carrier of the item, +as it is easily proved by structural induction. *) lemma erase_bull : ∀S.∀i:pitem S. |\fst (•i)| = |i|. #S #i elim i // @@ -350,13 +469,36 @@ lemma erase_bull : ∀S.∀i:pitem S. |\fst (•i)| = |i|. ] qed. -(* -lemma sem_eclose_star: ∀S:DeqSet.∀i:pitem S. - \sem{〈i^*,true〉} =1 \sem{〈i,false〉}·\sem{|i|}^* ∪ {ϵ}. -/2/ qed. -*) +(* We are now ready to state the main semantic properties of ⊕, ◃ and •(-): + +sem_oplus: \sem{e1 ⊕ e2} =1 \sem{e1} ∪ \sem{e2} +sem_pcl: \sem{e1 ▹ i2} =1 \sem{e1} · \sem{|i2|} ∪ \sem{i2} +sem_bullet \sem{•i} =1 \sem{i} ∪ \sem{|i|} + +The proof of sem_oplus is straightforward. *) + +lemma sem_oplus: ∀S:DeqSet.∀e1,e2:pre S. + \sem{e1 ⊕ e2} =1 \sem{e1} ∪ \sem{e2}. +#S * #i1 #b1 * #i2 #b2 #w % + [cases b1 cases b2 normalize /2/ * /3/ * /3/ + |cases b1 cases b2 normalize /2/ * /3/ * /3/ + ] +qed. + +(* For the others, we proceed as follow: we first prove the following +auxiliary lemma, that assumes sem_bullet: + +sem_pcl_aux: + \sem{•i2} =1 \sem{i2} ∪ \sem{|i2|} → + \sem{e1 ▹ i2} =1 \sem{e1} · \sem{|i2|} ∪ \sem{i2}. + +Then, using the previous result, we prove sem_bullet by induction +on i. Finally, sem_pcl_aux and sem_bullet give sem_pcl. *) + +lemma LcatE : ∀S.∀e1,e2:pitem S. + \sem{e1 · e2} = \sem{e1} · \sem{|e2|} ∪ \sem{e2}. +// qed. -(* theorem 16: 1 → 3 *) lemma odot_dot_aux : ∀S.∀e1:pre S.∀i2:pitem S. \sem{•i2} =1 \sem{i2} ∪ \sem{|i2|} → \sem{e1 ▹ i2} =1 \sem{e1} · \sem{|i2|} ∪ \sem{i2}. @@ -378,21 +520,31 @@ lemma minus_eps_pre_aux: ∀S.∀e:pre S.∀i:pitem S.∀A. @eqP_substract_r // qed. -(* theorem 16: 1 *) theorem sem_bull: ∀S:DeqSet. ∀i:pitem S. \sem{•i} =1 \sem{i} ∪ \sem{|i|}. #S #e elim e [#w normalize % [/2/ | * //] |/2/ |#x normalize #w % [ /2/ | * [@False_ind | //]] |#x normalize #w % [ /2/ | * // ] - |#i1 #i2 #IH1 #IH2 >eclose_dot - @eqP_trans [|@odot_dot_aux //] >sem_cat + |#i1 #i2 #IH1 #IH2 + (* lhs = \sem{•(i1 ·i2)} *) + >eclose_dot + (* lhs =\sem{•(i1) ▹ i2)} *) + @eqP_trans [|@odot_dot_aux //] + (* lhs = \sem{•(i1)·\sem{|i2|}∪\sem{i2} *) @eqP_trans [|@eqP_union_r [|@eqP_trans [|@(cat_ext_l … IH1)] @distr_cat_r]] + (* lhs = \sem{i1}·\sem{|i2|}∪\sem{|i1|}·\sem{|i2|}∪\sem{i2} *) @eqP_trans [|@union_assoc] + (* lhs = \sem{i1}·\sem{|i2|}∪(\sem{|i1|}·\sem{|i2|}∪\sem{i2}) *) + (* Now we work on the rhs that is + rhs = \sem{i1·i2} ∪ \sem{|i1·i2|} *) + >sem_cat + (* rhs = \sem{i1}·\sem{|i2|} ∪ \sem{i2} ∪ \sem{|i1·i2|} *) @eqP_trans [||@eqP_sym @union_assoc] - @eqP_union_l // + (* rhs = \sem{i1}·\sem{|i2|}∪ (\sem{i2} ∪ \sem{|i1·i2|}) *) + @eqP_union_l @union_comm |#i1 #i2 #IH1 #IH2 >eclose_plus @eqP_trans [|@sem_oplus] >sem_plus >erase_plus @eqP_trans [|@(eqP_union_l … IH2)] @@ -409,7 +561,15 @@ theorem sem_bull: ∀S:DeqSet. ∀i:pitem S. \sem{•i} =1 \sem{i} ∪ \sem{|i| ] qed. -(* blank item *) +(* +Blank item + +As a corollary of theorem sem_bullet, given a regular expression e, we can easily +find an item with the same semantics of $e$: it is enough to get an item (blank e) +having e as carrier and no point, and then broadcast a point in it. The semantics of +(blank e) is obviously the empty language: from the point of view of the automaton, +it corresponds with the pit state. *) + let rec blank (S: DeqSet) (i: re S) on i :pitem S ≝ match i with [ z ⇒ `∅ @@ -446,7 +606,12 @@ theorem re_embedding: ∀S.∀e:re S. @eqP_trans [|@union_comm] @union_empty_r. qed. -(* lefted operations *) +(* +Lifted Operators + +Plus and bullet have been already lifted from items to pres. We can now +do a similar job for concatenation ⊙ and Kleene's star ⊛. *) + definition lifted_cat ≝ λS:DeqSet.λe:pre S. lift S (pre_concat_l S eclose e). @@ -469,6 +634,8 @@ lemma erase_odot:∀S.∀e1,e2:pre S. #S * #i1 * * #i2 #b2 // >odot_true_b // qed. +(* Let us come to the star operation: *) + definition lk ≝ λS:DeqSet.λe:pre S. match e with [ mk_Prod i1 b1 ⇒ @@ -513,6 +680,9 @@ cut (e1 ⊙ 〈i,false〉 = 〈\fst (e1 ▹ i), \snd(e1 ▹ i) ∨ false〉) [// cases (e1 ▹ i) #i1 #b1 cases b1 #H @H qed. +(* We conclude this section with the proof of the main semantic properties +of ⊙ and ⊛. *) + lemma sem_odot: ∀S.∀e1,e2: pre S. \sem{e1 ⊙ e2} =1 \sem{e1}· \sem{|\fst e2|} ∪ \sem{e2}. #S #e1 * #i2 * @@ -522,17 +692,28 @@ lemma sem_odot: |>sem_pre_false >eq_odot_false @odot_dot_aux // ] qed. - -(* theorem 16: 4 *) + theorem sem_ostar: ∀S.∀e:pre S. \sem{e^⊛} =1 \sem{e} · \sem{|\fst e|}^*. #S * #i #b cases b - [>sem_pre_true >sem_pre_true >sem_star >erase_bull + [(* lhs = \sem{〈i,true〉^⊛} *) + >sem_pre_true (* >sem_pre_true *) + (* lhs = \sem{(\fst (•i))^*}∪{ϵ} *) + >sem_star >erase_bull + (* lhs = \sem{\fst (•i)}·(\sem{|i|)^*∪{ϵ} *) @eqP_trans [|@eqP_union_r[|@cat_ext_l [|@minus_eps_pre_aux //]]] + (* lhs = (\sem{i}∪(\sem{|i|}-{ϵ})·(\sem{|i|)^*∪{ϵ} *) @eqP_trans [|@eqP_union_r [|@distr_cat_r]] + (* lhs = (\sem{i}·(\sem{|i|)^*∪(\sem{|i|}-{ϵ})·(\sem{|i|)^*∪{ϵ} *) + @eqP_trans [|@union_assoc] + (* lhs = (\sem{i}·(\sem{|i|)^*∪((\sem{|i|}-{ϵ})·(\sem{|i|)^*∪{ϵ}) *) + @eqP_trans [|@eqP_union_l[|@eqP_sym @star_fix_eps]] + (* lhs = (\sem{i}·(\sem{|i|)^*∪(\sem{|i|)^* *) + (* now we work on the right hand side, that is + rhs = \sem{〈i,true〉}·(\sem{|i|}^* *) @eqP_trans [||@eqP_sym @distr_cat_r] - @eqP_trans [|@union_assoc] @eqP_union_l - @eqP_trans [||@eqP_sym @epsilon_cat_l] @eqP_sym @star_fix_eps + (* rhs = (\sem{i}·(\sem{|i|)^*∪{ϵ}·(\sem{|i|)^* *) + @eqP_union_l @eqP_sym @epsilon_cat_l |>sem_pre_false >sem_pre_false >sem_star /2/ ] qed. diff --git a/matita/matita/lib/turing/ntm.ma b/matita/matita/lib/turing/ntm.ma new file mode 100644 index 000000000..603a0a0da --- /dev/null +++ b/matita/matita/lib/turing/ntm.ma @@ -0,0 +1,150 @@ +(* + ||M|| This file is part of HELM, an Hypertextual, Electronic + ||A|| Library of Mathematics, developed at the Computer Science + ||T|| Department of the University of Bologna, Italy. + ||I|| + ||T|| + ||A|| + \ / This file is distributed under the terms of the + \ / GNU General Public License Version 2 + V_____________________________________________________________*) + +include "basics/star.ma". +include "turing/turing.ma". + +(* +record Vector (A:Type[0]) (n:nat): Type[0] ≝ +{ vec :> list A; + len: length ? vec = n +}. + +record tape (sig:FinSet): Type[0] ≝ +{ left : list sig; + right: list sig +}. + +inductive move : Type[0] ≝ +| L : move +| R : move +| N : move +. +*) + +record NTM (sig:FinSet): Type[1] ≝ +{ states : FinSet; + tapes_no: nat; (* additional working tapes *) + trans : list ((states × (Vector (option sig) (S tapes_no))) × + (states × (Vector (sig × move) (S tapes_no)))); + output: list sig; + start: states; + halt : states → bool; + accept : states → bool +}. + +record config (sig:FinSet) (M:NTM sig): Type[0] ≝ +{ state : states sig M; + tapes : Vector (tape sig) (S (tapes_no sig M)) +}. + +(* +definition option_hd ≝ λA.λl:list A. + match l with + [nil ⇒ None ? + |cons a _ ⇒ Some ? a + ]. + +lemma length_tail: ∀A,l. length ? (tail A l) = pred (length ? l). +#A #l elim l // +qed. + +definition vec_tail ≝ λA.λn.λv:Vector A n. +mk_Vector A (pred n) (tail A v) ?. +>length_tail >(len A n v) // +qed. + +definition vec_cons ≝ λA.λa.λn.λv:Vector A n. +mk_Vector A (S n) (cons A a v) ?. +normalize >(len A n v) // +qed. + +lemma length_map: ∀A,B,l.∀f:A→B. length ? (map ?? f l) = length ? l. +#A #B #l #f elim l // #a #tl #Hind normalize // +qed. + +definition vec_map ≝ λA,B.λf:A→B.λn.λv:Vector A n. +mk_Vector B n (map ?? f v) + (trans_eq … (length_map …) (len A n v)). + +definition tape_move ≝ λsig.λt: tape sig.λm:sig × move. + match \snd m with + [ R ⇒ mk_tape sig ((\fst m)::(left ? t)) (tail ? (right ? t)) + | L ⇒ mk_tape sig (tail ? (left ? t)) ((\fst m)::(right ? t)) + ]. +*) + +(* +definition hds ≝ λsig.λM.λc:config sig M. vec_map ?? (option_hd ?) (tapes_no sig M) (\snd c). + +definition tls ≝ λsig.λM.λc:config sig M.vec_map ?? (tail ?) (tapes_no sig M) (\snd c). +*) +(* +let rec compose A B C (f:A→B→C) l1 l2 on l1 ≝ + match l1 with + [ nil ⇒ nil C + | cons a tlA ⇒ + match l2 with + [nil ⇒ nil C + |cons b tlB ⇒ (f a b)::compose A B C f tlA tlB + ] + ]. + +lemma length_compose: ∀A,B,C.∀f:A→B→C.∀l1,l2. +length C (compose A B C f l1 l2) = + min (length A l1) (length B l2). +#A #B #C #f #l1 elim l1 // #a #tlA #Hind #l2 cases l2 // +#b #tlB lapply (Hind tlB) normalize +cases (true_or_false (leb (length A tlA) (length B tlB))) #H >H +normalize // +qed. + +definition compose_vec ≝ λA,B,C.λf:A→B→C.λn.λvA:Vector A n.λvB:Vector B n. +mk_Vector C n (compose A B C f vA vB) ?. +>length_compose >(len A n vA) >(len B n vB) normalize +>(le_to_leb_true … (le_n n)) // +qed. +*) + +definition current_chars ≝ λsig.λM:NTM sig.λc:config sig M. + vec_map ?? (λt.option_hd ? (right ? t)) (S (tapes_no sig M)) (tapes ?? c). + +let rec mem A (a:A) (l:list A) on l ≝ + match l with + [ nil ⇒ False + | cons hd tl ⇒ a=hd ∨ mem A a tl + ]. + +definition reach ≝ λsig.λM:NTM sig.λc,c1:config sig M. + ∃q,l,q1,mvs. + state ?? c = q ∧ + halt ?? q = false ∧ + current_chars ?? c = l ∧ + mem ? 〈〈q,l〉,〈q1,mvs〉〉 (trans ? M) ∧ + state ?? c1 = q1 ∧ + tapes ?? c1 = (compose_vec ??? (tape_move sig) ? (tapes ?? c) mvs). + +(* +definition empty_tapes ≝ λsig.λn. +mk_Vector ? n (make_list (tape sig) (mk_tape sig [] []) n) ?. +elim n // normalize // +qed. +*) + +definition init ≝ λsig.λM:NTM sig.λi:(list sig). + mk_config ?? + (start sig M) + (vec_cons ? (mk_tape sig [] i) ? (empty_tapes sig (tapes_no sig M))). + +definition accepted ≝ λsig.λM:NTM sig.λw:(list sig). +∃c. star ? (reach sig M) (init sig M w) c ∧ + accept ?? (state ?? c) = true. + diff --git a/matita/matita/lib/turing/oracle.ma b/matita/matita/lib/turing/oracle.ma new file mode 100644 index 000000000..4b6d7b1c7 --- /dev/null +++ b/matita/matita/lib/turing/oracle.ma @@ -0,0 +1,99 @@ +(* + ||M|| This file is part of HELM, an Hypertextual, Electronic + ||A|| Library of Mathematics, developed at the Computer Science + ||T|| Department of the University of Bologna, Italy. + ||I|| + ||T|| + ||A|| + \ / This file is distributed under the terms of the + \ / GNU General Public License Version 2 + V_____________________________________________________________*) + +include "turing/turing.ma". + +(* Oracle machines *) + +record TM (sig:FinSet): Type[1] ≝ +{ states : FinSet; + tapes_no: nat; (* additional working tapes *) + trans : states × (Vector (option sig) (S tapes_no)) → + states × (Vector (sig × move) (S tapes_no)) × (option sig) ; + output: list sig; + start: states; + halt : states → bool +}. + +inductive oracle_states :Type[0] ≝ + | query : oracle_states + | yes : oracle_states + | no : oracle_states. + +record config (sig:FinSet) (M:TM sig): Type[0] ≝ +{ state : states sig M; + query : list sig; + tapes : Vector (tape sig) (S (tapes_no sig M)); + out : list sig +}. + +definition option_hd ≝ λA.λl:list A. + match l with + [nil ⇒ None ? + |cons a _ ⇒ Some ? a + ]. + +definition tape_move ≝ λsig.λt: tape sig.λm:sig × move. + match \snd m with + [ R ⇒ mk_tape sig ((\fst m)::(left ? t)) (tail ? (right ? t)) + | L ⇒ mk_tape sig (tail ? (left ? t)) ((\fst m)::(right ? t)) + | N ⇒ mk_tape sig (left ? t) ((\fst m)::(tail ? (right ? t))) + ]. + +definition current_chars ≝ λsig.λM:TM sig.λc:config sig M. + vec_map ?? (λt.option_hd ? (right ? t)) (S (tapes_no sig M)) (tapes ?? c). + +definition opt_cons ≝ λA.λa:option A.λl:list A. + match a with + [ None ⇒ l + | Some a ⇒ a::l + ]. + +definition step ≝ λsig.λM:TM sig.λc:config sig M. + let 〈news,mvs,outchar〉 ≝ trans sig M 〈state ?? c,current_chars ?? c〉 in + mk_config ?? + news + (pmap_vec ??? (tape_move sig) ? (tapes ?? c) mvs) + (opt_cons ? outchar (out ?? c)). + +definition empty_tapes ≝ λsig.λn. +mk_Vector ? n (make_list (tape sig) (mk_tape sig [] []) n) ?. +elim n // normalize // +qed. + +definition init ≝ λsig.λM:TM sig.λi:(list sig). + mk_config ?? + (start sig M) + (vec_cons ? (mk_tape sig [] i) ? (empty_tapes sig (tapes_no sig M))) + [ ]. + +definition stop ≝ λsig.λM:TM sig.λc:config sig M. + halt sig M (state sig M c). + +let rec loop (A:Type[0]) n (f:A→A) p a on n ≝ + match n with + [ O ⇒ None ? + | S m ⇒ if p a then (Some ? a) else loop A m f p (f a) + ]. + +(* Compute ? M f states that f is computed by M *) +definition Compute ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). +∀l.∃i.∃c. + loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ + out ?? c = f l. + +(* for decision problems, we accept a string if on termination +output is not empty *) + +definition ComputeB ≝ λsig.λM:TM sig.λf:(list sig) → bool. +∀l.∃i.∃c. + loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ + (isnilb ? (out ?? c) = false). diff --git a/matita/matita/lib/turing/turing.ma b/matita/matita/lib/turing/turing.ma new file mode 100644 index 000000000..946999784 --- /dev/null +++ b/matita/matita/lib/turing/turing.ma @@ -0,0 +1,103 @@ +(* + ||M|| This file is part of HELM, an Hypertextual, Electronic + ||A|| Library of Mathematics, developed at the Computer Science + ||T|| Department of the University of Bologna, Italy. + ||I|| + ||T|| + ||A|| + \ / This file is distributed under the terms of the + \ / GNU General Public License Version 2 + V_____________________________________________________________*) + +include "basics/vectors.ma". + +record tape (sig:FinSet): Type[0] ≝ +{ left : list sig; + right: list sig +}. + +inductive move : Type[0] ≝ +| L : move +| R : move +| N : move. + +(* We do not distinuish an input tape *) + +record TM (sig:FinSet): Type[1] ≝ +{ states : FinSet; + tapes_no: nat; (* additional working tapes *) + trans : states × (Vector (option sig) (S tapes_no)) → + states × (Vector (sig × move) (S tapes_no)) × (option sig) ; + output: list sig; + start: states; + halt : states → bool +}. + +record config (sig:FinSet) (M:TM sig): Type[0] ≝ +{ state : states sig M; + tapes : Vector (tape sig) (S (tapes_no sig M)); + out : list sig +}. + +definition option_hd ≝ λA.λl:list A. + match l with + [nil ⇒ None ? + |cons a _ ⇒ Some ? a + ]. + +definition tape_move ≝ λsig.λt: tape sig.λm:sig × move. + match \snd m with + [ R ⇒ mk_tape sig ((\fst m)::(left ? t)) (tail ? (right ? t)) + | L ⇒ mk_tape sig (tail ? (left ? t)) ((\fst m)::(right ? t)) + | N ⇒ mk_tape sig (left ? t) ((\fst m)::(tail ? (right ? t))) + ]. + +definition current_chars ≝ λsig.λM:TM sig.λc:config sig M. + vec_map ?? (λt.option_hd ? (right ? t)) (S (tapes_no sig M)) (tapes ?? c). + +definition opt_cons ≝ λA.λa:option A.λl:list A. + match a with + [ None ⇒ l + | Some a ⇒ a::l + ]. + +definition step ≝ λsig.λM:TM sig.λc:config sig M. + let 〈news,mvs,outchar〉 ≝ trans sig M 〈state ?? c,current_chars ?? c〉 in + mk_config ?? + news + (pmap_vec ??? (tape_move sig) ? (tapes ?? c) mvs) + (opt_cons ? outchar (out ?? c)). + +definition empty_tapes ≝ λsig.λn. +mk_Vector ? n (make_list (tape sig) (mk_tape sig [] []) n) ?. +elim n // normalize // +qed. + +definition init ≝ λsig.λM:TM sig.λi:(list sig). + mk_config ?? + (start sig M) + (vec_cons ? (mk_tape sig [] i) ? (empty_tapes sig (tapes_no sig M))) + [ ]. + +definition stop ≝ λsig.λM:TM sig.λc:config sig M. + halt sig M (state sig M c). + +let rec loop (A:Type[0]) n (f:A→A) p a on n ≝ + match n with + [ O ⇒ None ? + | S m ⇒ if p a then (Some ? a) else loop A m f p (f a) + ]. + +(* Compute ? M f states that f is computed by M *) +definition Compute ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). +∀l.∃i.∃c. + loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ + out ?? c = f l. + +(* for decision problems, we accept a string if on termination +output is not empty *) + +definition ComputeB ≝ λsig.λM:TM sig.λf:(list sig) → bool. +∀l.∃i.∃c. + loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ + (isnilb ? (out ?? c) = false). diff --git a/matita/matita/lib/turing/turing_old.ma b/matita/matita/lib/turing/turing_old.ma new file mode 100644 index 000000000..f50426985 --- /dev/null +++ b/matita/matita/lib/turing/turing_old.ma @@ -0,0 +1,119 @@ +(* + ||M|| This file is part of HELM, an Hypertextual, Electronic + ||A|| Library of Mathematics, developed at the Computer Science + ||T|| Department of the University of Bologna, Italy. + ||I|| + ||T|| + ||A|| + \ / This file is distributed under the terms of the + \ / GNU General Public License Version 2 + V_____________________________________________________________*) + +include "basics/finset.ma". + +record Vector (A:Type[0]) (n:nat): Type[0] ≝ +{ vec :> list A; + len: length ? vec = n +}. + +record TM (sig:FinSet): Type[1] ≝ +{ states : FinSet; + tapes_no: nat; + trans : states × (option sig) × (Vector (option sig) tapes_no) → + states × bool × (Vector (list sig) tapes_no); + start: states; + halt : states +}. + +definition config ≝ λsig.λM:TM sig. + states sig M × (list sig) × (Vector (list sig) (tapes_no sig M)). + +definition option_hd ≝ λA.λl:list A. + match l with + [nil ⇒ None ? + |cons a _ ⇒ Some ? a + ]. + +lemma length_tail: ∀A,l. length ? (tail A l) = pred (length ? l). +#A #l elim l // +qed. + +definition vec_tail ≝ λA.λn.λv:Vector A n. +mk_Vector A (pred n) (tail A v) ?. +>length_tail >(len A n v) // +qed. + +definition vec_cons ≝ λA.λa.λn.λv:Vector A n. +mk_Vector A (S n) (cons A a v) ?. +normalize >(len A n v) // +qed. + +lemma length_map: ∀A,B,l.∀f:A→B. length ? (map ?? f l) = length ? l. +#A #B #l #f elim l // #a #tl #Hind normalize // +qed. + +definition vec_map ≝ λA,B.λf:A→B.λn.λv:Vector A n. +mk_Vector B n (map ?? f v) + (trans_eq … (length_map …) (len A n v)). + +definition hds ≝ λsig.λM.λc:config sig M. vec_map ?? (option_hd ?) (tapes_no sig M) (\snd c). + +definition tls ≝ λsig.λM.λc:config sig M.vec_map ?? (tail ?) (tapes_no sig M) (\snd c). + +let rec compose A B C (f:A→B→C) l1 l2 on l1 ≝ + match l1 with + [ nil ⇒ nil C + | cons a tlA ⇒ + match l2 with + [nil ⇒ nil C + |cons b tlB ⇒ (f a b)::compose A B C f tlA tlB + ] + ]. + +lemma length_compose: ∀A,B,C.∀f:A→B→C.∀l1,l2. +length C (compose A B C f l1 l2) = + min (length A l1) (length B l2). +#A #B #C #f #l1 elim l1 // #a #tlA #Hind #l2 cases l2 // +#b #tlB lapply (Hind tlB) normalize +cases (true_or_false (leb (length A tlA) (length B tlB))) #H >H +normalize // +qed. + +definition compose_vec ≝ λA,B,C.λf:A→B→C.λn.λvA:Vector A n.λvB:Vector B n. +mk_Vector C n (compose A B C f vA vB) ?. +>length_compose >(len A n vA) >(len B n vB) normalize +>(le_to_leb_true … (le_n n)) // +qed. + +definition step ≝ λsig.λM:TM sig.λc:config sig M. + match (trans sig M 〈〈\fst (\fst c),option_hd ? (\snd (\fst c))〉,hds sig M c〉) with + [mk_Prod p l ⇒ + let work_tapes ≝ compose_vec ??? (append ?) (tapes_no sig M) l (tls sig M c) in + match p with + [mk_Prod s b ⇒ + let old_input ≝ \snd (\fst c) in + let input ≝ if b then tail ? old_input else old_input in + 〈〈s,input〉,work_tapes〉]]. + +definition empty_tapes ≝ λsig.λM:TM sig. +mk_Vector ? (tapes_no sig M) (make_list (list sig) [ ] (tapes_no sig M)) ?. +elim (tapes_no sig M) // normalize // +qed. + +definition init ≝ λsig.λM:TM sig.λi:(list sig). + 〈〈start sig M,i〉,empty_tapes sig M〉. + +definition stop ≝ λsig.λM:TM sig.λc:config sig M. + eqb (states sig M) (\fst(\fst c)) (halt sig M). + +let rec loop (A:Type[0]) n (f:A→A) p a on n ≝ + match n with + [ O ⇒ None ? + | S m ⇒ if p a then (Some ? a) else loop A m f p (f a) + ]. + +definition Compute ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). +∀l.∃i.∃c.((loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c) ∧ + (hd ? (\snd c) [ ] = f l)). + +(* An extended machine *) \ No newline at end of file