From: Claudio Sacerdoti Coen Date: Tue, 9 Sep 2008 09:41:23 +0000 (+0000) Subject: Getting closer thanks to more technical arrangements. X-Git-Tag: make_still_working~4798 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=66fd21a89d537cac8f77b24809fdace413aea967;p=helm.git Getting closer thanks to more technical arrangements. --- diff --git a/helm/software/matita/library/formal_topology/concrete_spaces.ma b/helm/software/matita/library/formal_topology/concrete_spaces.ma index 703facfa5..175f9fbb8 100644 --- a/helm/software/matita/library/formal_topology/concrete_spaces.ma +++ b/helm/software/matita/library/formal_topology/concrete_spaces.ma @@ -30,7 +30,7 @@ definition ext: ∀X,S:REL. ∀r: arrows1 ? X S. S ⇒ Ω \sup X. | apply (. #‡(#‡H\sup -1)); assumption]] qed. -definition BPext: ∀o: basic_pair. form o ⇒ Ω \sup (concr o) ≝ λo.ext ? ? (rel o). +definition BPext: ∀o: BP. form o ⇒ Ω \sup (concr o) ≝ λo.ext ? ? (rel o). definition extS: ∀X,S:REL. ∀r: arrows1 ? X S. Ω \sup S ⇒ Ω \sup X. (* ∃ is not yet a morphism apply (λX,S,r,F.{x ∈ X | ∃a. a ∈ F ∧ x ♮r a});*) @@ -50,10 +50,10 @@ definition extS: ∀X,S:REL. ∀r: arrows1 ? X S. Ω \sup S ⇒ Ω \sup X. | apply (. (#‡H\sup -1)‡#); assumption]]] qed. -definition BPextS: ∀o: basic_pair. Ω \sup (form o) ⇒ Ω \sup (concr o) ≝ +definition BPextS: ∀o: BP. Ω \sup (form o) ⇒ Ω \sup (concr o) ≝ λo.extS ?? (rel o). -definition fintersects: ∀o: basic_pair. binary_morphism1 (form o) (form o) (Ω \sup (form o)). +definition fintersects: ∀o: BP. binary_morphism1 (form o) (form o) (Ω \sup (form o)). intros (o); constructor 1; [ apply (λa,b: form o.{c | BPext o c ⊆ BPext o a ∩ BPext o b }); intros; simplify; apply (.= (†H)‡#); apply refl1 @@ -65,7 +65,7 @@ qed. interpretation "fintersects" 'fintersects U V = (fun1 ___ (fintersects _) U V). definition fintersectsS: - ∀o:basic_pair. binary_morphism1 (Ω \sup (form o)) (Ω \sup (form o)) (Ω \sup (form o)). + ∀o:BP. binary_morphism1 (Ω \sup (form o)) (Ω \sup (form o)) (Ω \sup (form o)). intros (o); constructor 1; [ apply (λo: basic_pair.λa,b: Ω \sup (form o).{c | BPext o c ⊆ BPextS o a ∩ BPextS o b }); intros; simplify; apply (.= (†H)‡#); apply refl1 @@ -76,7 +76,7 @@ qed. interpretation "fintersectsS" 'fintersects U V = (fun1 ___ (fintersectsS _) U V). -definition relS: ∀o: basic_pair. binary_morphism1 (concr o) (Ω \sup (form o)) CPROP. +definition relS: ∀o: BP. binary_morphism1 (concr o) (Ω \sup (form o)) CPROP. intros (o); constructor 1; [ apply (λx:concr o.λS: Ω \sup (form o).∃y: form o.y ∈ S ∧ x ⊩ y); | intros; split; intros; cases H2; exists [1,3: apply w] @@ -88,13 +88,17 @@ interpretation "basic pair relation for subsets" 'Vdash2 x y = (fun1 (concr _) _ interpretation "basic pair relation for subsets (non applied)" 'Vdash = (fun1 ___ (relS _)). record concrete_space : Type ≝ - { bp:> basic_pair; + { bp:> BP; converges: ∀a: concr bp.∀U,V: form bp. a ⊩ U → a ⊩ V → a ⊩ (U ↓ V); all_covered: ∀x: concr bp. x ⊩ form bp }. +definition bp': concrete_space → basic_pair ≝ λc.bp c. + +coercion bp'. + record convergent_relation_pair (CS1,CS2: concrete_space) : Type ≝ - { rp:> relation_pair CS1 CS2; + { rp:> arrows1 ? CS1 CS2; respects_converges: ∀b,c. extS ?? rp \sub\c (BPextS CS2 (b ↓ c)) = @@ -103,6 +107,11 @@ record convergent_relation_pair (CS1,CS2: concrete_space) : Type ≝ extS ?? rp\sub\c (BPextS CS2 (form CS2)) = BPextS CS1 (form CS1) }. +definition rp' : ∀CS1,CS2. convergent_relation_pair CS1 CS2 → relation_pair CS1 CS2 ≝ + λCS1,CS2,c. rp CS1 CS2 c. + +coercion rp'. + definition convergent_relation_space_setoid: concrete_space → concrete_space → setoid1. intros; constructor 1; @@ -115,6 +124,11 @@ definition convergent_relation_space_setoid: concrete_space → concrete_space | intros 3; apply trans1]] qed. +definition rp'': ∀CS1,CS2.convergent_relation_space_setoid CS1 CS2 → arrows1 ? CS1 CS2 ≝ + λCS1,CS2,c.rp ?? c. + +coercion rp''. + lemma equalset_extS_id_X_X: ∀o:REL.∀X.extS ?? (id1 ? o) X = X. intros; unfold extS; simplify; @@ -149,7 +163,6 @@ lemma extS_id: ∀o:basic_pair.∀X.extS (concr o) (concr o) (id o) \sub \c X = | exists; [apply a] split; [ assumption | change with (a = a); apply refl]]] qed. - (* definition CSPA: category1. constructor 1; @@ -172,8 +185,15 @@ definition CSPA: category1. | intros; | ] - | intros; intros 2; simplify; - letin xxx ≝ (comp BP); clearbody xxx; unfold BP in xxx:(?→?→?→?→?→%); simplify in xxx; - unfold basic_pair in xxx; simplify in xxx; - ] -*) \ No newline at end of file + | intros; + change with (a ∘ b = a' ∘ b'); + change in H with (rp'' ?? a = rp'' ?? a'); + change in H1 with (rp'' ?? b = rp ?? b'); + apply (.= (H‡H1)); + apply refl1] + | intros; simplify; + change with ((a12 ∘ a23) ∘ a34 = a12 ∘ (a23 ∘ a34)); + apply (.= ASSOC1); + apply refl1 + | intros; simplify; + change with (id o1 ∘ a = a);*) \ No newline at end of file