From: Ferruccio Guidi Date: Wed, 11 Feb 2015 21:25:22 +0000 (+0000) Subject: components: subst1 csubst0 csubst1 fsubst0 X-Git-Tag: make_still_working~744 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=685c36442ffed93a7bb0de464d35478821884c77;p=helm.git components: subst1 csubst0 csubst1 fsubst0 we committed almost half of basic_1 --- diff --git a/matita/matita/contribs/lambdadelta/basic_1/csubst0/clear.ma b/matita/matita/contribs/lambdadelta/basic_1/csubst0/clear.ma index 0700d7d48..82f3fd1fd 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/csubst0/clear.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/csubst0/clear.ma @@ -14,11 +14,11 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/csubst0/props.ma". +include "basic_1/csubst0/props.ma". -include "Basic-1/csubst0/fwd.ma". +include "basic_1/csubst0/fwd.ma". -include "Basic-1/clear/fwd.ma". +include "basic_1/clear/fwd.ma". theorem csubst0_clear_O: \forall (c1: C).(\forall (c2: C).(\forall (v: T).((csubst0 O v c1 c2) \to @@ -32,79 +32,74 @@ c)).(csubst0_gen_sort c2 v O n H (clear c2 c)))))))) (\lambda (c: C).(\lambda (H: ((\forall (c2: C).(\forall (v: T).((csubst0 O v c c2) \to (\forall (c0: C).((clear c c0) \to (clear c2 c0)))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (c2: C).(\lambda (v: T).(\lambda (H0: (csubst0 O v (CHead c k t) -c2)).(\lambda (c0: C).(\lambda (H1: (clear (CHead c k t) c0)).(or3_ind (ex3_2 -T nat (\lambda (_: T).(\lambda (j: nat).(eq nat O (s k j)))) (\lambda (u2: -T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: -nat).(subst0 j v t u2)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq -nat O (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k -t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (ex4_3 T C nat -(\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat O (s k j))))) -(\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k -u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t -u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c -c3))))) (clear c2 c0) (\lambda (H2: (ex3_2 T nat (\lambda (_: T).(\lambda (j: -nat).(eq nat O (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead -c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t -u2))))).(ex3_2_ind T nat (\lambda (_: T).(\lambda (j: nat).(eq nat O (s k +c2)).(\lambda (c0: C).(\lambda (H1: (clear (CHead c k t) c0)).(let H2 \def +(csubst0_gen_head k c c2 t v O H0) in (or3_ind (ex3_2 T nat (\lambda (_: +T).(\lambda (j: nat).(eq nat O (s k j)))) (\lambda (u2: T).(\lambda (_: +nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j +v t u2)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat O (s k +j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda +(c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (ex4_3 T C nat (\lambda (_: +T).(\lambda (_: C).(\lambda (j: nat).(eq nat O (s k j))))) (\lambda (u2: +T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda +(u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: +T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))) (clear c2 c0) +(\lambda (H3: (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat O (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda -(u2: T).(\lambda (j: nat).(subst0 j v t u2))) (clear c2 c0) (\lambda (x0: -T).(\lambda (x1: nat).(\lambda (H3: (eq nat O (s k x1))).(\lambda (H4: (eq C -c2 (CHead c k x0))).(\lambda (H5: (subst0 x1 v t x0)).(eq_ind_r C (CHead c k -x0) (\lambda (c3: C).(clear c3 c0)) (K_ind (\lambda (k0: K).((clear (CHead c -k0 t) c0) \to ((eq nat O (s k0 x1)) \to (clear (CHead c k0 x0) c0)))) -(\lambda (b: B).(\lambda (_: (clear (CHead c (Bind b) t) c0)).(\lambda (H7: -(eq nat O (s (Bind b) x1))).(let H8 \def (eq_ind nat O (\lambda (ee: -nat).(match ee in nat return (\lambda (_: nat).Prop) with [O \Rightarrow True -| (S _) \Rightarrow False])) I (S x1) H7) in (False_ind (clear (CHead c (Bind -b) x0) c0) H8))))) (\lambda (f: F).(\lambda (H6: (clear (CHead c (Flat f) t) -c0)).(\lambda (H7: (eq nat O (s (Flat f) x1))).(let H8 \def (eq_ind_r nat x1 -(\lambda (n: nat).(subst0 n v t x0)) H5 O H7) in (clear_flat c c0 -(clear_gen_flat f c c0 t H6) f x0))))) k H1 H3) c2 H4)))))) H2)) (\lambda -(H2: (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat O (s k j)))) +(u2: T).(\lambda (j: nat).(subst0 j v t u2))))).(ex3_2_ind T nat (\lambda (_: +T).(\lambda (j: nat).(eq nat O (s k j)))) (\lambda (u2: T).(\lambda (_: +nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j +v t u2))) (clear c2 c0) (\lambda (x0: T).(\lambda (x1: nat).(\lambda (H4: (eq +nat O (s k x1))).(\lambda (H5: (eq C c2 (CHead c k x0))).(\lambda (H6: +(subst0 x1 v t x0)).(eq_ind_r C (CHead c k x0) (\lambda (c3: C).(clear c3 +c0)) (K_ind (\lambda (k0: K).((clear (CHead c k0 t) c0) \to ((eq nat O (s k0 +x1)) \to (clear (CHead c k0 x0) c0)))) (\lambda (b: B).(\lambda (_: (clear +(CHead c (Bind b) t) c0)).(\lambda (H8: (eq nat O (s (Bind b) x1))).(let H9 +\def (eq_ind nat O (\lambda (ee: nat).(match ee with [O \Rightarrow True | (S +_) \Rightarrow False])) I (S x1) H8) in (False_ind (clear (CHead c (Bind b) +x0) c0) H9))))) (\lambda (f: F).(\lambda (H7: (clear (CHead c (Flat f) t) +c0)).(\lambda (H8: (eq nat O (s (Flat f) x1))).(let H9 \def (eq_ind_r nat x1 +(\lambda (n: nat).(subst0 n v t x0)) H6 O H8) in (clear_flat c c0 +(clear_gen_flat f c c0 t H7) f x0))))) k H1 H4) c2 H5)))))) H3)) (\lambda +(H3: (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat O (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))).(ex3_2_ind C nat (\lambda (_: C).(\lambda (j: nat).(eq nat O (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j -v c c3))) (clear c2 c0) (\lambda (x0: C).(\lambda (x1: nat).(\lambda (H3: (eq -nat O (s k x1))).(\lambda (H4: (eq C c2 (CHead x0 k t))).(\lambda (H5: +v c c3))) (clear c2 c0) (\lambda (x0: C).(\lambda (x1: nat).(\lambda (H4: (eq +nat O (s k x1))).(\lambda (H5: (eq C c2 (CHead x0 k t))).(\lambda (H6: (csubst0 x1 v c x0)).(eq_ind_r C (CHead x0 k t) (\lambda (c3: C).(clear c3 c0)) (K_ind (\lambda (k0: K).((clear (CHead c k0 t) c0) \to ((eq nat O (s k0 x1)) \to (clear (CHead x0 k0 t) c0)))) (\lambda (b: B).(\lambda (_: (clear -(CHead c (Bind b) t) c0)).(\lambda (H7: (eq nat O (s (Bind b) x1))).(let H8 -\def (eq_ind nat O (\lambda (ee: nat).(match ee in nat return (\lambda (_: -nat).Prop) with [O \Rightarrow True | (S _) \Rightarrow False])) I (S x1) H7) -in (False_ind (clear (CHead x0 (Bind b) t) c0) H8))))) (\lambda (f: -F).(\lambda (H6: (clear (CHead c (Flat f) t) c0)).(\lambda (H7: (eq nat O (s -(Flat f) x1))).(let H8 \def (eq_ind_r nat x1 (\lambda (n: nat).(csubst0 n v c -x0)) H5 O H7) in (clear_flat x0 c0 (H x0 v H8 c0 (clear_gen_flat f c c0 t -H6)) f t))))) k H1 H3) c2 H4)))))) H2)) (\lambda (H2: (ex4_3 T C nat (\lambda -(_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat O (s k j))))) (\lambda (u2: -T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda -(u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: -T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3)))))).(ex4_3_ind T C -nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat O (s k j))))) -(\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k -u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t -u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c -c3)))) (clear c2 c0) (\lambda (x0: T).(\lambda (x1: C).(\lambda (x2: -nat).(\lambda (H3: (eq nat O (s k x2))).(\lambda (H4: (eq C c2 (CHead x1 k -x0))).(\lambda (H5: (subst0 x2 v t x0)).(\lambda (H6: (csubst0 x2 v c -x1)).(eq_ind_r C (CHead x1 k x0) (\lambda (c3: C).(clear c3 c0)) (K_ind -(\lambda (k0: K).((clear (CHead c k0 t) c0) \to ((eq nat O (s k0 x2)) \to -(clear (CHead x1 k0 x0) c0)))) (\lambda (b: B).(\lambda (_: (clear (CHead c -(Bind b) t) c0)).(\lambda (H8: (eq nat O (s (Bind b) x2))).(let H9 \def -(eq_ind nat O (\lambda (ee: nat).(match ee in nat return (\lambda (_: -nat).Prop) with [O \Rightarrow True | (S _) \Rightarrow False])) I (S x2) H8) -in (False_ind (clear (CHead x1 (Bind b) x0) c0) H9))))) (\lambda (f: -F).(\lambda (H7: (clear (CHead c (Flat f) t) c0)).(\lambda (H8: (eq nat O (s -(Flat f) x2))).(let H9 \def (eq_ind_r nat x2 (\lambda (n: nat).(csubst0 n v c -x1)) H6 O H8) in (let H10 \def (eq_ind_r nat x2 (\lambda (n: nat).(subst0 n v -t x0)) H5 O H8) in (clear_flat x1 c0 (H x1 v H9 c0 (clear_gen_flat f c c0 t -H7)) f x0)))))) k H1 H3) c2 H4)))))))) H2)) (csubst0_gen_head k c c2 t v O -H0))))))))))) c1). -(* COMMENTS -Initial nodes: 1582 -END *) +(CHead c (Bind b) t) c0)).(\lambda (H8: (eq nat O (s (Bind b) x1))).(let H9 +\def (eq_ind nat O (\lambda (ee: nat).(match ee with [O \Rightarrow True | (S +_) \Rightarrow False])) I (S x1) H8) in (False_ind (clear (CHead x0 (Bind b) +t) c0) H9))))) (\lambda (f: F).(\lambda (H7: (clear (CHead c (Flat f) t) +c0)).(\lambda (H8: (eq nat O (s (Flat f) x1))).(let H9 \def (eq_ind_r nat x1 +(\lambda (n: nat).(csubst0 n v c x0)) H6 O H8) in (clear_flat x0 c0 (H x0 v +H9 c0 (clear_gen_flat f c c0 t H7)) f t))))) k H1 H4) c2 H5)))))) H3)) +(\lambda (H3: (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: +nat).(eq nat O (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: +nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda +(j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: +nat).(csubst0 j v c c3)))))).(ex4_3_ind T C nat (\lambda (_: T).(\lambda (_: +C).(\lambda (j: nat).(eq nat O (s k j))))) (\lambda (u2: T).(\lambda (c3: +C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda +(_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: +C).(\lambda (j: nat).(csubst0 j v c c3)))) (clear c2 c0) (\lambda (x0: +T).(\lambda (x1: C).(\lambda (x2: nat).(\lambda (H4: (eq nat O (s k +x2))).(\lambda (H5: (eq C c2 (CHead x1 k x0))).(\lambda (H6: (subst0 x2 v t +x0)).(\lambda (H7: (csubst0 x2 v c x1)).(eq_ind_r C (CHead x1 k x0) (\lambda +(c3: C).(clear c3 c0)) (K_ind (\lambda (k0: K).((clear (CHead c k0 t) c0) \to +((eq nat O (s k0 x2)) \to (clear (CHead x1 k0 x0) c0)))) (\lambda (b: +B).(\lambda (_: (clear (CHead c (Bind b) t) c0)).(\lambda (H9: (eq nat O (s +(Bind b) x2))).(let H10 \def (eq_ind nat O (\lambda (ee: nat).(match ee with +[O \Rightarrow True | (S _) \Rightarrow False])) I (S x2) H9) in (False_ind +(clear (CHead x1 (Bind b) x0) c0) H10))))) (\lambda (f: F).(\lambda (H8: +(clear (CHead c (Flat f) t) c0)).(\lambda (H9: (eq nat O (s (Flat f) +x2))).(let H10 \def (eq_ind_r nat x2 (\lambda (n: nat).(csubst0 n v c x1)) H7 +O H9) in (let H11 \def (eq_ind_r nat x2 (\lambda (n: nat).(subst0 n v t x0)) +H6 O H9) in (clear_flat x1 c0 (H x1 v H10 c0 (clear_gen_flat f c c0 t H8)) f +x0)))))) k H1 H4) c2 H5)))))))) H3)) H2))))))))))) c1). theorem csubst0_clear_O_back: \forall (c1: C).(\forall (c2: C).(\forall (v: T).((csubst0 O v c1 c2) \to @@ -118,80 +113,75 @@ c)).(csubst0_gen_sort c2 v O n H (clear (CSort n) c)))))))) (\lambda (c: C).(\lambda (H: ((\forall (c2: C).(\forall (v: T).((csubst0 O v c c2) \to (\forall (c0: C).((clear c2 c0) \to (clear c c0)))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (c2: C).(\lambda (v: T).(\lambda (H0: (csubst0 O -v (CHead c k t) c2)).(\lambda (c0: C).(\lambda (H1: (clear c2 c0)).(or3_ind -(ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat O (s k j)))) (\lambda -(u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: -T).(\lambda (j: nat).(subst0 j v t u2)))) (ex3_2 C nat (\lambda (_: -C).(\lambda (j: nat).(eq nat O (s k j)))) (\lambda (c3: C).(\lambda (_: -nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j -v c c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: -nat).(eq nat O (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: -nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda -(j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: -nat).(csubst0 j v c c3))))) (clear (CHead c k t) c0) (\lambda (H2: (ex3_2 T -nat (\lambda (_: T).(\lambda (j: nat).(eq nat O (s k j)))) (\lambda (u2: +v (CHead c k t) c2)).(\lambda (c0: C).(\lambda (H1: (clear c2 c0)).(let H2 +\def (csubst0_gen_head k c c2 t v O H0) in (or3_ind (ex3_2 T nat (\lambda (_: +T).(\lambda (j: nat).(eq nat O (s k j)))) (\lambda (u2: T).(\lambda (_: +nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j +v t u2)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat O (s k +j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda +(c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (ex4_3 T C nat (\lambda (_: +T).(\lambda (_: C).(\lambda (j: nat).(eq nat O (s k j))))) (\lambda (u2: +T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda +(u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: +T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))) (clear (CHead c +k t) c0) (\lambda (H3: (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat +O (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) +(\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2))))).(ex3_2_ind T nat +(\lambda (_: T).(\lambda (j: nat).(eq nat O (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: -nat).(subst0 j v t u2))))).(ex3_2_ind T nat (\lambda (_: T).(\lambda (j: -nat).(eq nat O (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead -c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2))) (clear -(CHead c k t) c0) (\lambda (x0: T).(\lambda (x1: nat).(\lambda (H3: (eq nat O -(s k x1))).(\lambda (H4: (eq C c2 (CHead c k x0))).(\lambda (H5: (subst0 x1 v -t x0)).(let H6 \def (eq_ind C c2 (\lambda (c3: C).(clear c3 c0)) H1 (CHead c -k x0) H4) in (K_ind (\lambda (k0: K).((eq nat O (s k0 x1)) \to ((clear (CHead -c k0 x0) c0) \to (clear (CHead c k0 t) c0)))) (\lambda (b: B).(\lambda (H7: -(eq nat O (s (Bind b) x1))).(\lambda (_: (clear (CHead c (Bind b) x0) -c0)).(let H9 \def (eq_ind nat O (\lambda (ee: nat).(match ee in nat return -(\lambda (_: nat).Prop) with [O \Rightarrow True | (S _) \Rightarrow False])) -I (S x1) H7) in (False_ind (clear (CHead c (Bind b) t) c0) H9))))) (\lambda -(f: F).(\lambda (H7: (eq nat O (s (Flat f) x1))).(\lambda (H8: (clear (CHead -c (Flat f) x0) c0)).(let H9 \def (eq_ind_r nat x1 (\lambda (n: nat).(subst0 n -v t x0)) H5 O H7) in (clear_flat c c0 (clear_gen_flat f c c0 x0 H8) f t))))) -k H3 H6))))))) H2)) (\lambda (H2: (ex3_2 C nat (\lambda (_: C).(\lambda (j: +nat).(subst0 j v t u2))) (clear (CHead c k t) c0) (\lambda (x0: T).(\lambda +(x1: nat).(\lambda (H4: (eq nat O (s k x1))).(\lambda (H5: (eq C c2 (CHead c +k x0))).(\lambda (H6: (subst0 x1 v t x0)).(let H7 \def (eq_ind C c2 (\lambda +(c3: C).(clear c3 c0)) H1 (CHead c k x0) H5) in (K_ind (\lambda (k0: K).((eq +nat O (s k0 x1)) \to ((clear (CHead c k0 x0) c0) \to (clear (CHead c k0 t) +c0)))) (\lambda (b: B).(\lambda (H8: (eq nat O (s (Bind b) x1))).(\lambda (_: +(clear (CHead c (Bind b) x0) c0)).(let H10 \def (eq_ind nat O (\lambda (ee: +nat).(match ee with [O \Rightarrow True | (S _) \Rightarrow False])) I (S x1) +H8) in (False_ind (clear (CHead c (Bind b) t) c0) H10))))) (\lambda (f: +F).(\lambda (H8: (eq nat O (s (Flat f) x1))).(\lambda (H9: (clear (CHead c +(Flat f) x0) c0)).(let H10 \def (eq_ind_r nat x1 (\lambda (n: nat).(subst0 n +v t x0)) H6 O H8) in (clear_flat c c0 (clear_gen_flat f c c0 x0 H9) f t))))) +k H4 H7))))))) H3)) (\lambda (H3: (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat O (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))).(ex3_2_ind C nat (\lambda (_: C).(\lambda (j: nat).(eq nat O (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))) (clear (CHead c k t) c0) -(\lambda (x0: C).(\lambda (x1: nat).(\lambda (H3: (eq nat O (s k -x1))).(\lambda (H4: (eq C c2 (CHead x0 k t))).(\lambda (H5: (csubst0 x1 v c -x0)).(let H6 \def (eq_ind C c2 (\lambda (c3: C).(clear c3 c0)) H1 (CHead x0 k -t) H4) in (K_ind (\lambda (k0: K).((eq nat O (s k0 x1)) \to ((clear (CHead x0 -k0 t) c0) \to (clear (CHead c k0 t) c0)))) (\lambda (b: B).(\lambda (H7: (eq +(\lambda (x0: C).(\lambda (x1: nat).(\lambda (H4: (eq nat O (s k +x1))).(\lambda (H5: (eq C c2 (CHead x0 k t))).(\lambda (H6: (csubst0 x1 v c +x0)).(let H7 \def (eq_ind C c2 (\lambda (c3: C).(clear c3 c0)) H1 (CHead x0 k +t) H5) in (K_ind (\lambda (k0: K).((eq nat O (s k0 x1)) \to ((clear (CHead x0 +k0 t) c0) \to (clear (CHead c k0 t) c0)))) (\lambda (b: B).(\lambda (H8: (eq nat O (s (Bind b) x1))).(\lambda (_: (clear (CHead x0 (Bind b) t) c0)).(let -H9 \def (eq_ind nat O (\lambda (ee: nat).(match ee in nat return (\lambda (_: -nat).Prop) with [O \Rightarrow True | (S _) \Rightarrow False])) I (S x1) H7) -in (False_ind (clear (CHead c (Bind b) t) c0) H9))))) (\lambda (f: -F).(\lambda (H7: (eq nat O (s (Flat f) x1))).(\lambda (H8: (clear (CHead x0 -(Flat f) t) c0)).(let H9 \def (eq_ind_r nat x1 (\lambda (n: nat).(csubst0 n v -c x0)) H5 O H7) in (clear_flat c c0 (H x0 v H9 c0 (clear_gen_flat f x0 c0 t -H8)) f t))))) k H3 H6))))))) H2)) (\lambda (H2: (ex4_3 T C nat (\lambda (_: -T).(\lambda (_: C).(\lambda (j: nat).(eq nat O (s k j))))) (\lambda (u2: -T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda -(u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: -T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3)))))).(ex4_3_ind T C -nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat O (s k j))))) -(\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k -u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t -u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c -c3)))) (clear (CHead c k t) c0) (\lambda (x0: T).(\lambda (x1: C).(\lambda -(x2: nat).(\lambda (H3: (eq nat O (s k x2))).(\lambda (H4: (eq C c2 (CHead x1 -k x0))).(\lambda (H5: (subst0 x2 v t x0)).(\lambda (H6: (csubst0 x2 v c -x1)).(let H7 \def (eq_ind C c2 (\lambda (c3: C).(clear c3 c0)) H1 (CHead x1 k -x0) H4) in (K_ind (\lambda (k0: K).((eq nat O (s k0 x2)) \to ((clear (CHead -x1 k0 x0) c0) \to (clear (CHead c k0 t) c0)))) (\lambda (b: B).(\lambda (H8: -(eq nat O (s (Bind b) x2))).(\lambda (_: (clear (CHead x1 (Bind b) x0) -c0)).(let H10 \def (eq_ind nat O (\lambda (ee: nat).(match ee in nat return -(\lambda (_: nat).Prop) with [O \Rightarrow True | (S _) \Rightarrow False])) -I (S x2) H8) in (False_ind (clear (CHead c (Bind b) t) c0) H10))))) (\lambda -(f: F).(\lambda (H8: (eq nat O (s (Flat f) x2))).(\lambda (H9: (clear (CHead -x1 (Flat f) x0) c0)).(let H10 \def (eq_ind_r nat x2 (\lambda (n: -nat).(csubst0 n v c x1)) H6 O H8) in (let H11 \def (eq_ind_r nat x2 (\lambda -(n: nat).(subst0 n v t x0)) H5 O H8) in (clear_flat c c0 (H x1 v H10 c0 -(clear_gen_flat f x1 c0 x0 H9)) f t)))))) k H3 H7))))))))) H2)) -(csubst0_gen_head k c c2 t v O H0))))))))))) c1). -(* COMMENTS -Initial nodes: 1606 -END *) +H10 \def (eq_ind nat O (\lambda (ee: nat).(match ee with [O \Rightarrow True +| (S _) \Rightarrow False])) I (S x1) H8) in (False_ind (clear (CHead c (Bind +b) t) c0) H10))))) (\lambda (f: F).(\lambda (H8: (eq nat O (s (Flat f) +x1))).(\lambda (H9: (clear (CHead x0 (Flat f) t) c0)).(let H10 \def (eq_ind_r +nat x1 (\lambda (n: nat).(csubst0 n v c x0)) H6 O H8) in (clear_flat c c0 (H +x0 v H10 c0 (clear_gen_flat f x0 c0 t H9)) f t))))) k H4 H7))))))) H3)) +(\lambda (H3: (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: +nat).(eq nat O (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: +nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda +(j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: +nat).(csubst0 j v c c3)))))).(ex4_3_ind T C nat (\lambda (_: T).(\lambda (_: +C).(\lambda (j: nat).(eq nat O (s k j))))) (\lambda (u2: T).(\lambda (c3: +C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda +(_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: +C).(\lambda (j: nat).(csubst0 j v c c3)))) (clear (CHead c k t) c0) (\lambda +(x0: T).(\lambda (x1: C).(\lambda (x2: nat).(\lambda (H4: (eq nat O (s k +x2))).(\lambda (H5: (eq C c2 (CHead x1 k x0))).(\lambda (H6: (subst0 x2 v t +x0)).(\lambda (H7: (csubst0 x2 v c x1)).(let H8 \def (eq_ind C c2 (\lambda +(c3: C).(clear c3 c0)) H1 (CHead x1 k x0) H5) in (K_ind (\lambda (k0: K).((eq +nat O (s k0 x2)) \to ((clear (CHead x1 k0 x0) c0) \to (clear (CHead c k0 t) +c0)))) (\lambda (b: B).(\lambda (H9: (eq nat O (s (Bind b) x2))).(\lambda (_: +(clear (CHead x1 (Bind b) x0) c0)).(let H11 \def (eq_ind nat O (\lambda (ee: +nat).(match ee with [O \Rightarrow True | (S _) \Rightarrow False])) I (S x2) +H9) in (False_ind (clear (CHead c (Bind b) t) c0) H11))))) (\lambda (f: +F).(\lambda (H9: (eq nat O (s (Flat f) x2))).(\lambda (H10: (clear (CHead x1 +(Flat f) x0) c0)).(let H11 \def (eq_ind_r nat x2 (\lambda (n: nat).(csubst0 n +v c x1)) H7 O H9) in (let H12 \def (eq_ind_r nat x2 (\lambda (n: nat).(subst0 +n v t x0)) H6 O H9) in (clear_flat c c0 (H x1 v H11 c0 (clear_gen_flat f x1 +c0 x0 H10)) f t)))))) k H4 H8))))))))) H3)) H2))))))))))) c1). theorem csubst0_clear_S: \forall (c1: C).(\forall (c2: C).(\forall (v: T).(\forall (i: nat).((csubst0 @@ -266,135 +256,135 @@ C).(\lambda (_: T).(\lambda (u2: T).(clear c2 (CHead e2 (Bind b) u2))))))) (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2)))))))))))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (c2: C).(\lambda (v: T).(\lambda (i: nat).(\lambda (H0: (csubst0 (S i) v (CHead c k t) -c2)).(\lambda (c0: C).(\lambda (H1: (clear (CHead c k t) c0)).(or3_ind (ex3_2 -T nat (\lambda (_: T).(\lambda (j: nat).(eq nat (S i) (s k j)))) (\lambda -(u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: -T).(\lambda (j: nat).(subst0 j v t u2)))) (ex3_2 C nat (\lambda (_: -C).(\lambda (j: nat).(eq nat (S i) (s k j)))) (\lambda (c3: C).(\lambda (_: -nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j -v c c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: -nat).(eq nat (S i) (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: -nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda -(j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: -nat).(csubst0 j v c c3))))) (or4 (clear c2 c0) (ex3_4 B C T T (\lambda (b: -B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind -b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: -T).(clear c2 (CHead e (Bind b) u2)))))) (\lambda (_: B).(\lambda (_: +c2)).(\lambda (c0: C).(\lambda (H1: (clear (CHead c k t) c0)).(let H2 \def +(csubst0_gen_head k c c2 t v (S i) H0) in (or3_ind (ex3_2 T nat (\lambda (_: +T).(\lambda (j: nat).(eq nat (S i) (s k j)))) (\lambda (u2: T).(\lambda (_: +nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j +v t u2)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat (S i) (s k +j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda +(c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (ex4_3 T C nat (\lambda (_: +T).(\lambda (_: C).(\lambda (j: nat).(eq nat (S i) (s k j))))) (\lambda (u2: +T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda +(u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: +T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))) (or4 (clear c2 +c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda +(_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: +C).(\lambda (_: T).(\lambda (u2: T).(clear c2 (CHead e (Bind b) u2)))))) +(\lambda (_: B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v +u1 u2)))))) (ex3_4 B C C T (\lambda (b: B).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u: T).(eq C c0 (CHead e1 (Bind b) u)))))) (\lambda (b: +B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(clear c2 (CHead e2 (Bind +b) u)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(csubst0 i v e1 e2)))))) (ex4_5 B C C T T (\lambda (b: B).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e1 (Bind +b) u1))))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (u2: T).(clear c2 (CHead e2 (Bind b) u2))))))) (\lambda (_: +B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 +i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (_: T).(csubst0 i v e1 e2)))))))) (\lambda (H3: (ex3_2 T nat +(\lambda (_: T).(\lambda (j: nat).(eq nat (S i) (s k j)))) (\lambda (u2: +T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: +nat).(subst0 j v t u2))))).(ex3_2_ind T nat (\lambda (_: T).(\lambda (j: +nat).(eq nat (S i) (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 +(CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2))) (or4 +(clear c2 c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: +T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: +B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear c2 (CHead e (Bind +b) u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 i v u1 u2)))))) (ex3_4 B C C T (\lambda (b: B).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u: T).(eq C c0 (CHead e1 (Bind b) u)))))) +(\lambda (b: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(clear c2 +(CHead e2 (Bind b) u)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 i v e1 e2)))))) (ex4_5 B C C T T (\lambda (b: +B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 +(CHead e1 (Bind b) u1))))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (u2: T).(clear c2 (CHead e2 (Bind b) u2))))))) +(\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda +(u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda +(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2)))))))) (\lambda +(x0: T).(\lambda (x1: nat).(\lambda (H4: (eq nat (S i) (s k x1))).(\lambda +(H5: (eq C c2 (CHead c k x0))).(\lambda (H6: (subst0 x1 v t x0)).(eq_ind_r C +(CHead c k x0) (\lambda (c3: C).(or4 (clear c3 c0) (ex3_4 B C T T (\lambda +(b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e +(Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda +(u2: T).(clear c3 (CHead e (Bind b) u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (ex3_4 B C C T (\lambda (b: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C c0 (CHead e1 (Bind b) u)))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(clear c2 (CHead e2 (Bind b) u)))))) (\lambda (_: +C).(\lambda (u: T).(clear c3 (CHead e2 (Bind b) u)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i v e1 e2)))))) (ex4_5 B C C T T (\lambda (b: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e1 (Bind b) u1))))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(clear -c2 (CHead e2 (Bind b) u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: +c3 (CHead e2 (Bind b) u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -i v e1 e2)))))))) (\lambda (H2: (ex3_2 T nat (\lambda (_: T).(\lambda (j: -nat).(eq nat (S i) (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 -(CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t -u2))))).(ex3_2_ind T nat (\lambda (_: T).(\lambda (j: nat).(eq nat (S i) (s k -j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda -(u2: T).(\lambda (j: nat).(subst0 j v t u2))) (or4 (clear c2 c0) (ex3_4 B C T -T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 +i v e1 e2))))))))) (K_ind (\lambda (k0: K).((clear (CHead c k0 t) c0) \to +((eq nat (S i) (s k0 x1)) \to (or4 (clear (CHead c k0 x0) c0) (ex3_4 B C T T +(\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: -T).(\lambda (u2: T).(clear c2 (CHead e (Bind b) u2)))))) (\lambda (_: -B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) -(ex3_4 B C C T (\lambda (b: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(eq C c0 (CHead e1 (Bind b) u)))))) (\lambda (b: B).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(clear c2 (CHead e2 (Bind b) u)))))) -(\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i -v e1 e2)))))) (ex4_5 B C C T T (\lambda (b: B).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e1 (Bind b) u1))))))) -(\lambda (b: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(u2: T).(clear c2 (CHead e2 (Bind b) u2))))))) (\lambda (_: B).(\lambda (_: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) -(\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 i v e1 e2)))))))) (\lambda (x0: T).(\lambda (x1: -nat).(\lambda (H3: (eq nat (S i) (s k x1))).(\lambda (H4: (eq C c2 (CHead c k -x0))).(\lambda (H5: (subst0 x1 v t x0)).(eq_ind_r C (CHead c k x0) (\lambda -(c3: C).(or4 (clear c3 c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: -C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) -(\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear c3 -(CHead e (Bind b) u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (ex3_4 B C C T (\lambda (b: -B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C c0 (CHead e1 (Bind -b) u)))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: -T).(clear c3 (CHead e2 (Bind b) u)))))) (\lambda (_: B).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i v e1 e2)))))) (ex4_5 B C C T T -(\lambda (b: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(_: T).(eq C c0 (CHead e1 (Bind b) u1))))))) (\lambda (b: B).(\lambda (_: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(clear c3 (CHead e2 -(Bind b) u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda -(u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda -(e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 -e2))))))))) (K_ind (\lambda (k0: K).((clear (CHead c k0 t) c0) \to ((eq nat -(S i) (s k0 x1)) \to (or4 (clear (CHead c k0 x0) c0) (ex3_4 B C T T (\lambda -(b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e -(Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda -(u2: T).(clear (CHead c k0 x0) (CHead e (Bind b) u2)))))) (\lambda (_: -B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) -(ex3_4 B C C T (\lambda (b: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(eq C c0 (CHead e1 (Bind b) u)))))) (\lambda (b: B).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(clear (CHead c k0 x0) (CHead e2 (Bind b) -u)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(csubst0 i v e1 e2)))))) (ex4_5 B C C T T (\lambda (b: B).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e1 (Bind -b) u1))))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (u2: T).(clear (CHead c k0 x0) (CHead e2 (Bind b) u2))))))) -(\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2))))))))))) -(\lambda (b: B).(\lambda (H6: (clear (CHead c (Bind b) t) c0)).(\lambda (H7: -(eq nat (S i) (s (Bind b) x1))).(let H8 \def (f_equal nat nat (\lambda (e: -nat).(match e in nat return (\lambda (_: nat).nat) with [O \Rightarrow i | (S -n) \Rightarrow n])) (S i) (S x1) H7) in (let H9 \def (eq_ind_r nat x1 -(\lambda (n: nat).(subst0 n v t x0)) H5 i H8) in (eq_ind_r C (CHead c (Bind -b) t) (\lambda (c3: C).(or4 (clear (CHead c (Bind b) x0) c3) (ex3_4 B C T T -(\lambda (b0: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c3 -(CHead e (Bind b0) u1)))))) (\lambda (b0: B).(\lambda (e: C).(\lambda (_: -T).(\lambda (u2: T).(clear (CHead c (Bind b) x0) (CHead e (Bind b0) u2)))))) +T).(\lambda (u2: T).(clear (CHead c k0 x0) (CHead e (Bind b) u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v -u1 u2)))))) (ex3_4 B C C T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u: T).(eq C c3 (CHead e1 (Bind b0) u)))))) (\lambda (b0: -B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(clear (CHead c (Bind b) -x0) (CHead e2 (Bind b0) u)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(csubst0 i v e1 e2)))))) (ex4_5 B C C T T (\lambda -(b0: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(eq -C c3 (CHead e1 (Bind b0) u1))))))) (\lambda (b0: B).(\lambda (_: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead c (Bind b) x0) (CHead -e2 (Bind b0) u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: -B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -i v e1 e2))))))))) (or4_intro1 (clear (CHead c (Bind b) x0) (CHead c (Bind b) -t)) (ex3_4 B C T T (\lambda (b0: B).(\lambda (e: C).(\lambda (u1: T).(\lambda -(_: T).(eq C (CHead c (Bind b) t) (CHead e (Bind b0) u1)))))) (\lambda (b0: -B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead c (Bind b) -x0) (CHead e (Bind b0) u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (ex3_4 B C C T (\lambda (b0: -B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C (CHead c (Bind b) -t) (CHead e1 (Bind b0) u)))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (e2: +u1 u2)))))) (ex3_4 B C C T (\lambda (b: B).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u: T).(eq C c0 (CHead e1 (Bind b) u)))))) (\lambda (b: +B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(clear (CHead c k0 x0) +(CHead e2 (Bind b) u)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 i v e1 e2)))))) (ex4_5 B C C T T (\lambda (b: +B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 +(CHead e1 (Bind b) u1))))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead c k0 x0) (CHead e2 (Bind b) +u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 +e2))))))))))) (\lambda (b: B).(\lambda (H7: (clear (CHead c (Bind b) t) +c0)).(\lambda (H8: (eq nat (S i) (s (Bind b) x1))).(let H9 \def (f_equal nat +nat (\lambda (e: nat).(match e with [O \Rightarrow i | (S n) \Rightarrow n])) +(S i) (S x1) H8) in (let H10 \def (eq_ind_r nat x1 (\lambda (n: nat).(subst0 +n v t x0)) H6 i H9) in (eq_ind_r C (CHead c (Bind b) t) (\lambda (c3: C).(or4 +(clear (CHead c (Bind b) x0) c3) (ex3_4 B C T T (\lambda (b0: B).(\lambda (e: +C).(\lambda (u1: T).(\lambda (_: T).(eq C c3 (CHead e (Bind b0) u1)))))) +(\lambda (b0: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear +(CHead c (Bind b) x0) (CHead e (Bind b0) u2)))))) (\lambda (_: B).(\lambda +(_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (ex3_4 B C C +T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C c3 +(CHead e1 (Bind b0) u)))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(clear (CHead c (Bind b) x0) (CHead e2 (Bind b0) u)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i v e1 e2)))))) (ex4_5 B C C T T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (_: T).(eq C (CHead c (Bind b) t) (CHead e1 -(Bind b0) u1))))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead c (Bind b) x0) (CHead e2 -(Bind b0) u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda -(u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda -(e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 -e2))))))) (ex3_4_intro B C T T (\lambda (b0: B).(\lambda (e: C).(\lambda (u1: +C).(\lambda (u1: T).(\lambda (_: T).(eq C c3 (CHead e1 (Bind b0) u1))))))) +(\lambda (b0: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda +(u2: T).(clear (CHead c (Bind b) x0) (CHead e2 (Bind b0) u2))))))) (\lambda +(_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2))))))))) (or4_intro1 +(clear (CHead c (Bind b) x0) (CHead c (Bind b) t)) (ex3_4 B C T T (\lambda +(b0: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C (CHead c (Bind +b) t) (CHead e (Bind b0) u1)))))) (\lambda (b0: B).(\lambda (e: C).(\lambda +(_: T).(\lambda (u2: T).(clear (CHead c (Bind b) x0) (CHead e (Bind b0) +u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 i v u1 u2)))))) (ex3_4 B C C T (\lambda (b0: B).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u: T).(eq C (CHead c (Bind b) t) (CHead e1 (Bind +b0) u)))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: +T).(clear (CHead c (Bind b) x0) (CHead e2 (Bind b0) u)))))) (\lambda (_: +B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i v e1 e2)))))) +(ex4_5 B C C T T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: C).(\lambda +(u1: T).(\lambda (_: T).(eq C (CHead c (Bind b) t) (CHead e1 (Bind b0) +u1))))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (u2: T).(clear (CHead c (Bind b) x0) (CHead e2 (Bind b0) +u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2))))))) +(ex3_4_intro B C T T (\lambda (b0: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C (CHead c (Bind b) t) (CHead e (Bind b0) u1)))))) (\lambda (b0: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead c (Bind b) x0) (CHead e (Bind b0) u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2))))) b c t x0 -(refl_equal C (CHead c (Bind b) t)) (clear_bind b c x0) H9)) c0 -(clear_gen_bind b c c0 t H6))))))) (\lambda (f: F).(\lambda (H6: (clear -(CHead c (Flat f) t) c0)).(\lambda (H7: (eq nat (S i) (s (Flat f) x1))).(let -H8 \def (f_equal nat nat (\lambda (e: nat).e) (S i) (s (Flat f) x1) H7) in -(let H9 \def (eq_ind_r nat x1 (\lambda (n: nat).(subst0 n v t x0)) H5 (S i) -H8) in (or4_intro0 (clear (CHead c (Flat f) x0) c0) (ex3_4 B C T T (\lambda +(refl_equal C (CHead c (Bind b) t)) (clear_bind b c x0) H10)) c0 +(clear_gen_bind b c c0 t H7))))))) (\lambda (f: F).(\lambda (H7: (clear +(CHead c (Flat f) t) c0)).(\lambda (H8: (eq nat (S i) (s (Flat f) x1))).(let +H9 \def (f_equal nat nat (\lambda (e: nat).e) (S i) (s (Flat f) x1) H8) in +(let H10 \def (eq_ind_r nat x1 (\lambda (n: nat).(subst0 n v t x0)) H6 (S i) +H9) in (or4_intro0 (clear (CHead c (Flat f) x0) c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead c (Flat f) x0) (CHead e (Bind b) u2)))))) (\lambda (_: @@ -410,8 +400,8 @@ C).(\lambda (e2: C).(\lambda (u: T).(clear (CHead c (Flat f) x0) (CHead e2 u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2))))))) -(clear_flat c c0 (clear_gen_flat f c c0 t H6) f x0))))))) k H1 H3) c2 -H4)))))) H2)) (\lambda (H2: (ex3_2 C nat (\lambda (_: C).(\lambda (j: +(clear_flat c c0 (clear_gen_flat f c c0 t H7) f x0))))))) k H1 H4) c2 +H5)))))) H3)) (\lambda (H3: (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat (S i) (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))).(ex3_2_ind C nat (\lambda (_: C).(\lambda (j: nat).(eq nat (S i) (s k @@ -432,8 +422,8 @@ C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e1 (Bind b) u1))))))) C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2)))))))) (\lambda (x0: C).(\lambda (x1: -nat).(\lambda (H3: (eq nat (S i) (s k x1))).(\lambda (H4: (eq C c2 (CHead x0 -k t))).(\lambda (H5: (csubst0 x1 v c x0)).(eq_ind_r C (CHead x0 k t) (\lambda +nat).(\lambda (H4: (eq nat (S i) (s k x1))).(\lambda (H5: (eq C c2 (CHead x0 +k t))).(\lambda (H6: (csubst0 x1 v c x0)).(eq_ind_r C (CHead x0 k t) (\lambda (c3: C).(or4 (clear c3 c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear c3 @@ -466,56 +456,55 @@ T).(\lambda (u2: T).(clear (CHead x0 k0 t) (CHead e2 (Bind b) u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2))))))))))) -(\lambda (b: B).(\lambda (H6: (clear (CHead c (Bind b) t) c0)).(\lambda (H7: -(eq nat (S i) (s (Bind b) x1))).(let H8 \def (f_equal nat nat (\lambda (e: -nat).(match e in nat return (\lambda (_: nat).nat) with [O \Rightarrow i | (S -n) \Rightarrow n])) (S i) (S x1) H7) in (let H9 \def (eq_ind_r nat x1 -(\lambda (n: nat).(csubst0 n v c x0)) H5 i H8) in (eq_ind_r C (CHead c (Bind -b) t) (\lambda (c3: C).(or4 (clear (CHead x0 (Bind b) t) c3) (ex3_4 B C T T -(\lambda (b0: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c3 -(CHead e (Bind b0) u1)))))) (\lambda (b0: B).(\lambda (e: C).(\lambda (_: -T).(\lambda (u2: T).(clear (CHead x0 (Bind b) t) (CHead e (Bind b0) u2)))))) -(\lambda (_: B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v -u1 u2)))))) (ex3_4 B C C T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u: T).(eq C c3 (CHead e1 (Bind b0) u)))))) (\lambda (b0: -B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(clear (CHead x0 (Bind b) -t) (CHead e2 (Bind b0) u)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: -C).(\lambda (_: T).(csubst0 i v e1 e2)))))) (ex4_5 B C C T T (\lambda (b0: -B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(eq C c3 -(CHead e1 (Bind b0) u1))))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x0 (Bind b) t) (CHead e2 -(Bind b0) u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda -(u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda -(e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 -e2))))))))) (or4_intro2 (clear (CHead x0 (Bind b) t) (CHead c (Bind b) t)) -(ex3_4 B C T T (\lambda (b0: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: -T).(eq C (CHead c (Bind b) t) (CHead e (Bind b0) u1)))))) (\lambda (b0: +(\lambda (b: B).(\lambda (H7: (clear (CHead c (Bind b) t) c0)).(\lambda (H8: +(eq nat (S i) (s (Bind b) x1))).(let H9 \def (f_equal nat nat (\lambda (e: +nat).(match e with [O \Rightarrow i | (S n) \Rightarrow n])) (S i) (S x1) H8) +in (let H10 \def (eq_ind_r nat x1 (\lambda (n: nat).(csubst0 n v c x0)) H6 i +H9) in (eq_ind_r C (CHead c (Bind b) t) (\lambda (c3: C).(or4 (clear (CHead +x0 (Bind b) t) c3) (ex3_4 B C T T (\lambda (b0: B).(\lambda (e: C).(\lambda +(u1: T).(\lambda (_: T).(eq C c3 (CHead e (Bind b0) u1)))))) (\lambda (b0: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x0 (Bind b) t) (CHead e (Bind b0) u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (ex3_4 B C C T (\lambda (b0: +B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C c3 (CHead e1 (Bind +b0) u)))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: +T).(clear (CHead x0 (Bind b) t) (CHead e2 (Bind b0) u)))))) (\lambda (_: +B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i v e1 e2)))))) +(ex4_5 B C C T T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: C).(\lambda +(u1: T).(\lambda (_: T).(eq C c3 (CHead e1 (Bind b0) u1))))))) (\lambda (b0: +B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(clear +(CHead x0 (Bind b) t) (CHead e2 (Bind b0) u2))))))) (\lambda (_: B).(\lambda +(_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 +u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (_: T).(csubst0 i v e1 e2))))))))) (or4_intro2 (clear (CHead x0 +(Bind b) t) (CHead c (Bind b) t)) (ex3_4 B C T T (\lambda (b0: B).(\lambda +(e: C).(\lambda (u1: T).(\lambda (_: T).(eq C (CHead c (Bind b) t) (CHead e +(Bind b0) u1)))))) (\lambda (b0: B).(\lambda (e: C).(\lambda (_: T).(\lambda +(u2: T).(clear (CHead x0 (Bind b) t) (CHead e (Bind b0) u2)))))) (\lambda (_: +B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) +(ex3_4 B C C T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: +T).(eq C (CHead c (Bind b) t) (CHead e1 (Bind b0) u)))))) (\lambda (b0: +B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(clear (CHead x0 (Bind b) +t) (CHead e2 (Bind b0) u)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 i v e1 e2)))))) (ex4_5 B C C T T (\lambda (b0: +B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(eq C +(CHead c (Bind b) t) (CHead e1 (Bind b0) u1))))))) (\lambda (b0: B).(\lambda +(_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x0 +(Bind b) t) (CHead e2 (Bind b0) u2))))))) (\lambda (_: B).(\lambda (_: +C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) +(\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda +(_: T).(csubst0 i v e1 e2))))))) (ex3_4_intro B C C T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C (CHead c (Bind b) t) (CHead e1 (Bind b0) u)))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(clear (CHead x0 (Bind b) t) (CHead e2 (Bind b0) u)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i -v e1 e2)))))) (ex4_5 B C C T T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (_: T).(eq C (CHead c (Bind b) t) (CHead e1 -(Bind b0) u1))))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x0 (Bind b) t) (CHead e2 -(Bind b0) u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda -(u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda -(e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 -e2))))))) (ex3_4_intro B C C T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u: T).(eq C (CHead c (Bind b) t) (CHead e1 (Bind b0) u)))))) -(\lambda (b0: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(clear -(CHead x0 (Bind b) t) (CHead e2 (Bind b0) u)))))) (\lambda (_: B).(\lambda -(e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i v e1 e2))))) b c x0 t -(refl_equal C (CHead c (Bind b) t)) (clear_bind b x0 t) H9)) c0 -(clear_gen_bind b c c0 t H6))))))) (\lambda (f: F).(\lambda (H6: (clear -(CHead c (Flat f) t) c0)).(\lambda (H7: (eq nat (S i) (s (Flat f) x1))).(let -H8 \def (f_equal nat nat (\lambda (e: nat).e) (S i) (s (Flat f) x1) H7) in -(let H9 \def (eq_ind_r nat x1 (\lambda (n: nat).(csubst0 n v c x0)) H5 (S i) -H8) in (let H10 \def (H x0 v i H9 c0 (clear_gen_flat f c c0 t H6)) in -(or4_ind (clear x0 c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: +v e1 e2))))) b c x0 t (refl_equal C (CHead c (Bind b) t)) (clear_bind b x0 t) +H10)) c0 (clear_gen_bind b c c0 t H7))))))) (\lambda (f: F).(\lambda (H7: +(clear (CHead c (Flat f) t) c0)).(\lambda (H8: (eq nat (S i) (s (Flat f) +x1))).(let H9 \def (f_equal nat nat (\lambda (e: nat).e) (S i) (s (Flat f) +x1) H8) in (let H10 \def (eq_ind_r nat x1 (\lambda (n: nat).(csubst0 n v c +x0)) H6 (S i) H9) in (let H11 \def (H x0 v i H10 c0 (clear_gen_flat f c c0 t +H7)) in (or4_ind (clear x0 c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear x0 (CHead e (Bind b) u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: @@ -546,7 +535,7 @@ C).(\lambda (e2: C).(\lambda (u: T).(clear (CHead x0 (Flat f) t) (CHead e2 u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 -e2)))))))) (\lambda (H11: (clear x0 c0)).(or4_intro0 (clear (CHead x0 (Flat +e2)))))))) (\lambda (H12: (clear x0 c0)).(or4_intro0 (clear (CHead x0 (Flat f) t) c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x0 (Flat f) @@ -562,8 +551,8 @@ B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x0 (Flat f) t) (CHead e2 (Bind b) u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (_: T).(csubst0 i v e1 e2))))))) (clear_flat x0 c0 H11 f t))) -(\lambda (H11: (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: +T).(\lambda (_: T).(csubst0 i v e1 e2))))))) (clear_flat x0 c0 H12 f t))) +(\lambda (H12: (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear x0 (CHead e (Bind b) u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: @@ -588,8 +577,8 @@ B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(clear (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2)))))))) (\lambda (x2: B).(\lambda (x3: -C).(\lambda (x4: T).(\lambda (x5: T).(\lambda (H12: (eq C c0 (CHead x3 (Bind -x2) x4))).(\lambda (H13: (clear x0 (CHead x3 (Bind x2) x5))).(\lambda (H14: +C).(\lambda (x4: T).(\lambda (x5: T).(\lambda (H13: (eq C c0 (CHead x3 (Bind +x2) x4))).(\lambda (H14: (clear x0 (CHead x3 (Bind x2) x5))).(\lambda (H15: (subst0 i v x4 x5)).(or4_intro1 (clear (CHead x0 (Flat f) t) c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: @@ -610,8 +599,8 @@ e2))))))) (ex3_4_intro B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x0 (Flat f) t) (CHead e (Bind b) u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 i v u1 u2))))) x2 x3 x4 x5 H12 (clear_flat x0 -(CHead x3 (Bind x2) x5) H13 f t) H14))))))))) H11)) (\lambda (H11: (ex3_4 B C +T).(\lambda (u2: T).(subst0 i v u1 u2))))) x2 x3 x4 x5 H13 (clear_flat x0 +(CHead x3 (Bind x2) x5) H14 f t) H15))))))))) H12)) (\lambda (H12: (ex3_4 B C C T (\lambda (b: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C c0 (CHead e1 (Bind b) u)))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(clear x0 (CHead e2 (Bind b) u)))))) (\lambda (_: @@ -637,8 +626,8 @@ C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x0 (Flat f) t) (CHead e2 (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2)))))))) (\lambda (x2: B).(\lambda (x3: C).(\lambda (x4: C).(\lambda (x5: -T).(\lambda (H12: (eq C c0 (CHead x3 (Bind x2) x5))).(\lambda (H13: (clear x0 -(CHead x4 (Bind x2) x5))).(\lambda (H14: (csubst0 i v x3 x4)).(or4_intro2 +T).(\lambda (H13: (eq C c0 (CHead x3 (Bind x2) x5))).(\lambda (H14: (clear x0 +(CHead x4 (Bind x2) x5))).(\lambda (H15: (csubst0 i v x3 x4)).(or4_intro2 (clear (CHead x0 (Flat f) t) c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear @@ -659,8 +648,8 @@ C T (\lambda (b: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C c0 (CHead e1 (Bind b) u)))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(clear (CHead x0 (Flat f) t) (CHead e2 (Bind b) u)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i -v e1 e2))))) x2 x3 x4 x5 H12 (clear_flat x0 (CHead x4 (Bind x2) x5) H13 f t) -H14))))))))) H11)) (\lambda (H11: (ex4_5 B C C T T (\lambda (b: B).(\lambda +v e1 e2))))) x2 x3 x4 x5 H13 (clear_flat x0 (CHead x4 (Bind x2) x5) H14 f t) +H15))))))))) H12)) (\lambda (H12: (ex4_5 B C C T T (\lambda (b: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e1 (Bind b) u1))))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(clear x0 (CHead e2 (Bind b) u2))))))) (\lambda (_: @@ -690,9 +679,9 @@ u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2)))))))) (\lambda (x2: B).(\lambda (x3: C).(\lambda (x4: C).(\lambda (x5: -T).(\lambda (x6: T).(\lambda (H12: (eq C c0 (CHead x3 (Bind x2) -x5))).(\lambda (H13: (clear x0 (CHead x4 (Bind x2) x6))).(\lambda (H14: -(subst0 i v x5 x6)).(\lambda (H15: (csubst0 i v x3 x4)).(or4_intro3 (clear +T).(\lambda (x6: T).(\lambda (H13: (eq C c0 (CHead x3 (Bind x2) +x5))).(\lambda (H14: (clear x0 (CHead x4 (Bind x2) x6))).(\lambda (H15: +(subst0 i v x5 x6)).(\lambda (H16: (csubst0 i v x3 x4)).(or4_intro3 (clear (CHead x0 (Flat f) t) c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear @@ -715,9 +704,9 @@ B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x0 (Flat f) t) (CHead e2 (Bind b) u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (_: T).(csubst0 i v e1 e2)))))) x2 x3 x4 x5 x6 H12 (clear_flat x0 -(CHead x4 (Bind x2) x6) H13 f t) H14 H15))))))))))) H11)) H10))))))) k H1 H3) -c2 H4)))))) H2)) (\lambda (H2: (ex4_3 T C nat (\lambda (_: T).(\lambda (_: +T).(\lambda (_: T).(csubst0 i v e1 e2)))))) x2 x3 x4 x5 x6 H13 (clear_flat x0 +(CHead x4 (Bind x2) x6) H14 f t) H15 H16))))))))))) H12)) H11))))))) k H1 H4) +c2 H5)))))) H3)) (\lambda (H3: (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat (S i) (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: @@ -741,9 +730,9 @@ T).(\lambda (u2: T).(clear c2 (CHead e2 (Bind b) u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2)))))))) (\lambda (x0: T).(\lambda -(x1: C).(\lambda (x2: nat).(\lambda (H3: (eq nat (S i) (s k x2))).(\lambda -(H4: (eq C c2 (CHead x1 k x0))).(\lambda (H5: (subst0 x2 v t x0)).(\lambda -(H6: (csubst0 x2 v c x1)).(eq_ind_r C (CHead x1 k x0) (\lambda (c3: C).(or4 +(x1: C).(\lambda (x2: nat).(\lambda (H4: (eq nat (S i) (s k x2))).(\lambda +(H5: (eq C c2 (CHead x1 k x0))).(\lambda (H6: (subst0 x2 v t x0)).(\lambda +(H7: (csubst0 x2 v c x1)).(eq_ind_r C (CHead x1 k x0) (\lambda (c3: C).(or4 (clear c3 c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear c3 (CHead e (Bind @@ -776,61 +765,61 @@ C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e1 (Bind b) u1))))))) B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2))))))))))) (\lambda (b: B).(\lambda -(H7: (clear (CHead c (Bind b) t) c0)).(\lambda (H8: (eq nat (S i) (s (Bind b) -x2))).(let H9 \def (f_equal nat nat (\lambda (e: nat).(match e in nat return -(\lambda (_: nat).nat) with [O \Rightarrow i | (S n) \Rightarrow n])) (S i) -(S x2) H8) in (let H10 \def (eq_ind_r nat x2 (\lambda (n: nat).(csubst0 n v c -x1)) H6 i H9) in (let H11 \def (eq_ind_r nat x2 (\lambda (n: nat).(subst0 n v -t x0)) H5 i H9) in (eq_ind_r C (CHead c (Bind b) t) (\lambda (c3: C).(or4 -(clear (CHead x1 (Bind b) x0) c3) (ex3_4 B C T T (\lambda (b0: B).(\lambda -(e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c3 (CHead e (Bind b0) u1)))))) -(\lambda (b0: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear -(CHead x1 (Bind b) x0) (CHead e (Bind b0) u2)))))) (\lambda (_: B).(\lambda -(_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (ex3_4 B C C -T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C c3 -(CHead e1 (Bind b0) u)))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(clear (CHead x1 (Bind b) x0) (CHead e2 (Bind b0) u)))))) -(\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i -v e1 e2)))))) (ex4_5 B C C T T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (_: T).(eq C c3 (CHead e1 (Bind b0) u1))))))) -(\lambda (b0: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(u2: T).(clear (CHead x1 (Bind b) x0) (CHead e2 (Bind b0) u2))))))) (\lambda -(_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: -T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2))))))))) (or4_intro3 -(clear (CHead x1 (Bind b) x0) (CHead c (Bind b) t)) (ex3_4 B C T T (\lambda -(b0: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C (CHead c (Bind -b) t) (CHead e (Bind b0) u1)))))) (\lambda (b0: B).(\lambda (e: C).(\lambda -(_: T).(\lambda (u2: T).(clear (CHead x1 (Bind b) x0) (CHead e (Bind b0) -u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: -T).(subst0 i v u1 u2)))))) (ex3_4 B C C T (\lambda (b0: B).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(eq C (CHead c (Bind b) t) (CHead e1 (Bind +(H8: (clear (CHead c (Bind b) t) c0)).(\lambda (H9: (eq nat (S i) (s (Bind b) +x2))).(let H10 \def (f_equal nat nat (\lambda (e: nat).(match e with [O +\Rightarrow i | (S n) \Rightarrow n])) (S i) (S x2) H9) in (let H11 \def +(eq_ind_r nat x2 (\lambda (n: nat).(csubst0 n v c x1)) H7 i H10) in (let H12 +\def (eq_ind_r nat x2 (\lambda (n: nat).(subst0 n v t x0)) H6 i H10) in +(eq_ind_r C (CHead c (Bind b) t) (\lambda (c3: C).(or4 (clear (CHead x1 (Bind +b) x0) c3) (ex3_4 B C T T (\lambda (b0: B).(\lambda (e: C).(\lambda (u1: +T).(\lambda (_: T).(eq C c3 (CHead e (Bind b0) u1)))))) (\lambda (b0: +B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x1 (Bind b) +x0) (CHead e (Bind b0) u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (ex3_4 B C C T (\lambda (b0: +B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C c3 (CHead e1 (Bind b0) u)))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(clear (CHead x1 (Bind b) x0) (CHead e2 (Bind b0) u)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i v e1 e2)))))) (ex4_5 B C C T T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: C).(\lambda -(u1: T).(\lambda (_: T).(eq C (CHead c (Bind b) t) (CHead e1 (Bind b0) -u1))))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (u2: T).(clear (CHead x1 (Bind b) x0) (CHead e2 (Bind b0) -u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2))))))) -(ex4_5_intro B C C T T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (_: T).(eq C (CHead c (Bind b) t) (CHead e1 -(Bind b0) u1))))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x1 (Bind b) x0) (CHead e2 -(Bind b0) u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda -(u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda -(e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 -e2)))))) b c x1 t x0 (refl_equal C (CHead c (Bind b) t)) (clear_bind b x1 x0) -H11 H10)) c0 (clear_gen_bind b c c0 t H7)))))))) (\lambda (f: F).(\lambda -(H7: (clear (CHead c (Flat f) t) c0)).(\lambda (H8: (eq nat (S i) (s (Flat f) -x2))).(let H9 \def (f_equal nat nat (\lambda (e: nat).e) (S i) (s (Flat f) -x2) H8) in (let H10 \def (eq_ind_r nat x2 (\lambda (n: nat).(csubst0 n v c -x1)) H6 (S i) H9) in (let H11 \def (eq_ind_r nat x2 (\lambda (n: nat).(subst0 -n v t x0)) H5 (S i) H9) in (let H12 \def (H x1 v i H10 c0 (clear_gen_flat f c -c0 t H7)) in (or4_ind (clear x1 c0) (ex3_4 B C T T (\lambda (b: B).(\lambda -(e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) +(u1: T).(\lambda (_: T).(eq C c3 (CHead e1 (Bind b0) u1))))))) (\lambda (b0: +B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(clear +(CHead x1 (Bind b) x0) (CHead e2 (Bind b0) u2))))))) (\lambda (_: B).(\lambda +(_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 +u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (_: T).(csubst0 i v e1 e2))))))))) (or4_intro3 (clear (CHead x1 +(Bind b) x0) (CHead c (Bind b) t)) (ex3_4 B C T T (\lambda (b0: B).(\lambda +(e: C).(\lambda (u1: T).(\lambda (_: T).(eq C (CHead c (Bind b) t) (CHead e +(Bind b0) u1)))))) (\lambda (b0: B).(\lambda (e: C).(\lambda (_: T).(\lambda +(u2: T).(clear (CHead x1 (Bind b) x0) (CHead e (Bind b0) u2)))))) (\lambda +(_: B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 +u2)))))) (ex3_4 B C C T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u: T).(eq C (CHead c (Bind b) t) (CHead e1 (Bind b0) u)))))) +(\lambda (b0: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(clear +(CHead x1 (Bind b) x0) (CHead e2 (Bind b0) u)))))) (\lambda (_: B).(\lambda +(e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i v e1 e2)))))) (ex4_5 B C +C T T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (_: T).(eq C (CHead c (Bind b) t) (CHead e1 (Bind b0) u1))))))) +(\lambda (b0: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda +(u2: T).(clear (CHead x1 (Bind b) x0) (CHead e2 (Bind b0) u2))))))) (\lambda +(_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2))))))) (ex4_5_intro B C +C T T (\lambda (b0: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (_: T).(eq C (CHead c (Bind b) t) (CHead e1 (Bind b0) u1))))))) +(\lambda (b0: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda +(u2: T).(clear (CHead x1 (Bind b) x0) (CHead e2 (Bind b0) u2))))))) (\lambda +(_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2)))))) b c x1 t x0 +(refl_equal C (CHead c (Bind b) t)) (clear_bind b x1 x0) H12 H11)) c0 +(clear_gen_bind b c c0 t H8)))))))) (\lambda (f: F).(\lambda (H8: (clear +(CHead c (Flat f) t) c0)).(\lambda (H9: (eq nat (S i) (s (Flat f) x2))).(let +H10 \def (f_equal nat nat (\lambda (e: nat).e) (S i) (s (Flat f) x2) H9) in +(let H11 \def (eq_ind_r nat x2 (\lambda (n: nat).(csubst0 n v c x1)) H7 (S i) +H10) in (let H12 \def (eq_ind_r nat x2 (\lambda (n: nat).(subst0 n v t x0)) +H6 (S i) H10) in (let H13 \def (H x1 v i H11 c0 (clear_gen_flat f c c0 t H8)) +in (or4_ind (clear x1 c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: +C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear x1 (CHead e (Bind b) u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (ex3_4 B C C T (\lambda (b: @@ -860,7 +849,7 @@ C).(\lambda (e2: C).(\lambda (u: T).(clear (CHead x1 (Flat f) x0) (CHead e2 u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 -e2)))))))) (\lambda (H13: (clear x1 c0)).(or4_intro0 (clear (CHead x1 (Flat +e2)))))))) (\lambda (H14: (clear x1 c0)).(or4_intro0 (clear (CHead x1 (Flat f) x0) c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x1 (Flat f) @@ -876,8 +865,8 @@ B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x1 (Flat f) x0) (CHead e2 (Bind b) u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (_: T).(csubst0 i v e1 e2))))))) (clear_flat x1 c0 H13 f x0))) -(\lambda (H13: (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: +T).(\lambda (_: T).(csubst0 i v e1 e2))))))) (clear_flat x1 c0 H14 f x0))) +(\lambda (H14: (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear x1 (CHead e (Bind b) u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: @@ -902,8 +891,8 @@ B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(clear (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2)))))))) (\lambda (x3: B).(\lambda (x4: -C).(\lambda (x5: T).(\lambda (x6: T).(\lambda (H14: (eq C c0 (CHead x4 (Bind -x3) x5))).(\lambda (H15: (clear x1 (CHead x4 (Bind x3) x6))).(\lambda (H16: +C).(\lambda (x5: T).(\lambda (x6: T).(\lambda (H15: (eq C c0 (CHead x4 (Bind +x3) x5))).(\lambda (H16: (clear x1 (CHead x4 (Bind x3) x6))).(\lambda (H17: (subst0 i v x5 x6)).(or4_intro1 (clear (CHead x1 (Flat f) x0) c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: @@ -924,8 +913,8 @@ e2))))))) (ex3_4_intro B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x1 (Flat f) x0) (CHead e (Bind b) u2)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 i v u1 u2))))) x3 x4 x5 x6 H14 (clear_flat x1 -(CHead x4 (Bind x3) x6) H15 f x0) H16))))))))) H13)) (\lambda (H13: (ex3_4 B +T).(\lambda (u2: T).(subst0 i v u1 u2))))) x3 x4 x5 x6 H15 (clear_flat x1 +(CHead x4 (Bind x3) x6) H16 f x0) H17))))))))) H14)) (\lambda (H14: (ex3_4 B C C T (\lambda (b: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C c0 (CHead e1 (Bind b) u)))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(clear x1 (CHead e2 (Bind b) u)))))) (\lambda (_: @@ -951,8 +940,8 @@ C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x1 (Flat f) x0) (CHead e2 (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2)))))))) (\lambda (x3: B).(\lambda (x4: C).(\lambda (x5: C).(\lambda (x6: -T).(\lambda (H14: (eq C c0 (CHead x4 (Bind x3) x6))).(\lambda (H15: (clear x1 -(CHead x5 (Bind x3) x6))).(\lambda (H16: (csubst0 i v x4 x5)).(or4_intro2 +T).(\lambda (H15: (eq C c0 (CHead x4 (Bind x3) x6))).(\lambda (H16: (clear x1 +(CHead x5 (Bind x3) x6))).(\lambda (H17: (csubst0 i v x4 x5)).(or4_intro2 (clear (CHead x1 (Flat f) x0) c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear @@ -973,8 +962,8 @@ C T (\lambda (b: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C c0 (CHead e1 (Bind b) u)))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(clear (CHead x1 (Flat f) x0) (CHead e2 (Bind b) u)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i -v e1 e2))))) x3 x4 x5 x6 H14 (clear_flat x1 (CHead x5 (Bind x3) x6) H15 f x0) -H16))))))))) H13)) (\lambda (H13: (ex4_5 B C C T T (\lambda (b: B).(\lambda +v e1 e2))))) x3 x4 x5 x6 H15 (clear_flat x1 (CHead x5 (Bind x3) x6) H16 f x0) +H17))))))))) H14)) (\lambda (H14: (ex4_5 B C C T T (\lambda (b: B).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e1 (Bind b) u1))))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(clear x1 (CHead e2 (Bind b) u2))))))) (\lambda (_: @@ -1004,9 +993,9 @@ u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v e1 e2)))))))) (\lambda (x3: B).(\lambda (x4: C).(\lambda (x5: C).(\lambda (x6: -T).(\lambda (x7: T).(\lambda (H14: (eq C c0 (CHead x4 (Bind x3) -x6))).(\lambda (H15: (clear x1 (CHead x5 (Bind x3) x7))).(\lambda (H16: -(subst0 i v x6 x7)).(\lambda (H17: (csubst0 i v x4 x5)).(or4_intro3 (clear +T).(\lambda (x7: T).(\lambda (H15: (eq C c0 (CHead x4 (Bind x3) +x6))).(\lambda (H16: (clear x1 (CHead x5 (Bind x3) x7))).(\lambda (H17: +(subst0 i v x6 x7)).(\lambda (H18: (csubst0 i v x4 x5)).(or4_intro3 (clear (CHead x1 (Flat f) x0) c0) (ex3_4 B C T T (\lambda (b: B).(\lambda (e: C).(\lambda (u1: T).(\lambda (_: T).(eq C c0 (CHead e (Bind b) u1)))))) (\lambda (b: B).(\lambda (e: C).(\lambda (_: T).(\lambda (u2: T).(clear @@ -1029,111 +1018,153 @@ B).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(clear (CHead x1 (Flat f) x0) (CHead e2 (Bind b) u2))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v u1 u2)))))) (\lambda (_: B).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (_: T).(csubst0 i v e1 e2)))))) x3 x4 x5 x6 x7 H14 (clear_flat x1 -(CHead x5 (Bind x3) x7) H15 f x0) H16 H17))))))))))) H13)) H12)))))))) k H1 -H3) c2 H4)))))))) H2)) (csubst0_gen_head k c c2 t v (S i) H0)))))))))))) c1). -(* COMMENTS -Initial nodes: 14968 -END *) +T).(\lambda (_: T).(csubst0 i v e1 e2)))))) x3 x4 x5 x6 x7 H15 (clear_flat x1 +(CHead x5 (Bind x3) x7) H16 f x0) H17 H18))))))))))) H14)) H13)))))))) k H1 +H4) c2 H5)))))))) H3)) H2)))))))))))) c1). theorem csubst0_clear_trans: \forall (c1: C).(\forall (c2: C).(\forall (v: T).(\forall (i: nat).((csubst0 i v c1 c2) \to (\forall (e2: C).((clear c2 e2) \to (or (clear c1 e2) (ex2 C (\lambda (e1: C).(csubst0 i v e1 e2)) (\lambda (e1: C).(clear c1 e1)))))))))) \def - \lambda (c1: C).(\lambda (c2: C).(\lambda (v: T).(\lambda (i: nat).(\lambda -(H: (csubst0 i v c1 c2)).(csubst0_ind (\lambda (n: nat).(\lambda (t: -T).(\lambda (c: C).(\lambda (c0: C).(\forall (e2: C).((clear c0 e2) \to (or -(clear c e2) (ex2 C (\lambda (e1: C).(csubst0 n t e1 e2)) (\lambda (e1: -C).(clear c e1)))))))))) (\lambda (k: K).(\lambda (i0: nat).(\lambda (v0: -T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H0: (subst0 i0 v0 u1 -u2)).(\lambda (c: C).(\lambda (e2: C).(\lambda (H1: (clear (CHead c k u2) -e2)).(K_ind (\lambda (k0: K).((clear (CHead c k0 u2) e2) \to (or (clear -(CHead c k0 u1) e2) (ex2 C (\lambda (e1: C).(csubst0 (s k0 i0) v0 e1 e2)) -(\lambda (e1: C).(clear (CHead c k0 u1) e1)))))) (\lambda (b: B).(\lambda -(H2: (clear (CHead c (Bind b) u2) e2)).(eq_ind_r C (CHead c (Bind b) u2) -(\lambda (c0: C).(or (clear (CHead c (Bind b) u1) c0) (ex2 C (\lambda (e1: -C).(csubst0 (s (Bind b) i0) v0 e1 c0)) (\lambda (e1: C).(clear (CHead c (Bind -b) u1) e1))))) (or_intror (clear (CHead c (Bind b) u1) (CHead c (Bind b) u2)) -(ex2 C (\lambda (e1: C).(csubst0 (S i0) v0 e1 (CHead c (Bind b) u2))) -(\lambda (e1: C).(clear (CHead c (Bind b) u1) e1))) (ex_intro2 C (\lambda -(e1: C).(csubst0 (S i0) v0 e1 (CHead c (Bind b) u2))) (\lambda (e1: C).(clear -(CHead c (Bind b) u1) e1)) (CHead c (Bind b) u1) (csubst0_snd_bind b i0 v0 u1 -u2 H0 c) (clear_bind b c u1))) e2 (clear_gen_bind b c e2 u2 H2)))) (\lambda -(f: F).(\lambda (H2: (clear (CHead c (Flat f) u2) e2)).(or_introl (clear -(CHead c (Flat f) u1) e2) (ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2)) -(\lambda (e1: C).(clear (CHead c (Flat f) u1) e1))) (clear_flat c e2 -(clear_gen_flat f c e2 u2 H2) f u1)))) k H1)))))))))) (\lambda (k: -K).(\lambda (i0: nat).(\lambda (c3: C).(\lambda (c4: C).(\lambda (v0: -T).(\lambda (H0: (csubst0 i0 v0 c3 c4)).(\lambda (H1: ((\forall (e2: -C).((clear c4 e2) \to (or (clear c3 e2) (ex2 C (\lambda (e1: C).(csubst0 i0 -v0 e1 e2)) (\lambda (e1: C).(clear c3 e1)))))))).(\lambda (u: T).(\lambda -(e2: C).(\lambda (H2: (clear (CHead c4 k u) e2)).(K_ind (\lambda (k0: -K).((clear (CHead c4 k0 u) e2) \to (or (clear (CHead c3 k0 u) e2) (ex2 C -(\lambda (e1: C).(csubst0 (s k0 i0) v0 e1 e2)) (\lambda (e1: C).(clear (CHead -c3 k0 u) e1)))))) (\lambda (b: B).(\lambda (H3: (clear (CHead c4 (Bind b) u) -e2)).(eq_ind_r C (CHead c4 (Bind b) u) (\lambda (c: C).(or (clear (CHead c3 -(Bind b) u) c) (ex2 C (\lambda (e1: C).(csubst0 (s (Bind b) i0) v0 e1 c)) -(\lambda (e1: C).(clear (CHead c3 (Bind b) u) e1))))) (or_intror (clear -(CHead c3 (Bind b) u) (CHead c4 (Bind b) u)) (ex2 C (\lambda (e1: C).(csubst0 -(S i0) v0 e1 (CHead c4 (Bind b) u))) (\lambda (e1: C).(clear (CHead c3 (Bind -b) u) e1))) (ex_intro2 C (\lambda (e1: C).(csubst0 (S i0) v0 e1 (CHead c4 -(Bind b) u))) (\lambda (e1: C).(clear (CHead c3 (Bind b) u) e1)) (CHead c3 -(Bind b) u) (csubst0_fst_bind b i0 c3 c4 v0 H0 u) (clear_bind b c3 u))) e2 -(clear_gen_bind b c4 e2 u H3)))) (\lambda (f: F).(\lambda (H3: (clear (CHead -c4 (Flat f) u) e2)).(let H_x \def (H1 e2 (clear_gen_flat f c4 e2 u H3)) in -(let H4 \def H_x in (or_ind (clear c3 e2) (ex2 C (\lambda (e1: C).(csubst0 i0 -v0 e1 e2)) (\lambda (e1: C).(clear c3 e1))) (or (clear (CHead c3 (Flat f) u) -e2) (ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear -(CHead c3 (Flat f) u) e1)))) (\lambda (H5: (clear c3 e2)).(or_introl (clear -(CHead c3 (Flat f) u) e2) (ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2)) -(\lambda (e1: C).(clear (CHead c3 (Flat f) u) e1))) (clear_flat c3 e2 H5 f -u))) (\lambda (H5: (ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda -(e1: C).(clear c3 e1)))).(ex2_ind C (\lambda (e1: C).(csubst0 i0 v0 e1 e2)) -(\lambda (e1: C).(clear c3 e1)) (or (clear (CHead c3 (Flat f) u) e2) (ex2 C -(\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear (CHead c3 -(Flat f) u) e1)))) (\lambda (x: C).(\lambda (H6: (csubst0 i0 v0 x -e2)).(\lambda (H7: (clear c3 x)).(or_intror (clear (CHead c3 (Flat f) u) e2) -(ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear (CHead -c3 (Flat f) u) e1))) (ex_intro2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2)) -(\lambda (e1: C).(clear (CHead c3 (Flat f) u) e1)) x H6 (clear_flat c3 x H7 f -u)))))) H5)) H4))))) k H2))))))))))) (\lambda (k: K).(\lambda (i0: -nat).(\lambda (v0: T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H0: (subst0 -i0 v0 u1 u2)).(\lambda (c3: C).(\lambda (c4: C).(\lambda (H1: (csubst0 i0 v0 -c3 c4)).(\lambda (H2: ((\forall (e2: C).((clear c4 e2) \to (or (clear c3 e2) -(ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear c3 -e1)))))))).(\lambda (e2: C).(\lambda (H3: (clear (CHead c4 k u2) e2)).(K_ind -(\lambda (k0: K).((clear (CHead c4 k0 u2) e2) \to (or (clear (CHead c3 k0 u1) -e2) (ex2 C (\lambda (e1: C).(csubst0 (s k0 i0) v0 e1 e2)) (\lambda (e1: -C).(clear (CHead c3 k0 u1) e1)))))) (\lambda (b: B).(\lambda (H4: (clear -(CHead c4 (Bind b) u2) e2)).(eq_ind_r C (CHead c4 (Bind b) u2) (\lambda (c: -C).(or (clear (CHead c3 (Bind b) u1) c) (ex2 C (\lambda (e1: C).(csubst0 (s -(Bind b) i0) v0 e1 c)) (\lambda (e1: C).(clear (CHead c3 (Bind b) u1) e1))))) -(or_intror (clear (CHead c3 (Bind b) u1) (CHead c4 (Bind b) u2)) (ex2 C -(\lambda (e1: C).(csubst0 (S i0) v0 e1 (CHead c4 (Bind b) u2))) (\lambda (e1: -C).(clear (CHead c3 (Bind b) u1) e1))) (ex_intro2 C (\lambda (e1: C).(csubst0 -(S i0) v0 e1 (CHead c4 (Bind b) u2))) (\lambda (e1: C).(clear (CHead c3 (Bind -b) u1) e1)) (CHead c3 (Bind b) u1) (csubst0_both_bind b i0 v0 u1 u2 H0 c3 c4 -H1) (clear_bind b c3 u1))) e2 (clear_gen_bind b c4 e2 u2 H4)))) (\lambda (f: -F).(\lambda (H4: (clear (CHead c4 (Flat f) u2) e2)).(let H_x \def (H2 e2 -(clear_gen_flat f c4 e2 u2 H4)) in (let H5 \def H_x in (or_ind (clear c3 e2) -(ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear c3 -e1))) (or (clear (CHead c3 (Flat f) u1) e2) (ex2 C (\lambda (e1: C).(csubst0 -i0 v0 e1 e2)) (\lambda (e1: C).(clear (CHead c3 (Flat f) u1) e1)))) (\lambda -(H6: (clear c3 e2)).(or_introl (clear (CHead c3 (Flat f) u1) e2) (ex2 C -(\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear (CHead c3 -(Flat f) u1) e1))) (clear_flat c3 e2 H6 f u1))) (\lambda (H6: (ex2 C (\lambda -(e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear c3 e1)))).(ex2_ind C -(\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear c3 e1)) (or -(clear (CHead c3 (Flat f) u1) e2) (ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 -e2)) (\lambda (e1: C).(clear (CHead c3 (Flat f) u1) e1)))) (\lambda (x: -C).(\lambda (H7: (csubst0 i0 v0 x e2)).(\lambda (H8: (clear c3 x)).(or_intror -(clear (CHead c3 (Flat f) u1) e2) (ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 -e2)) (\lambda (e1: C).(clear (CHead c3 (Flat f) u1) e1))) (ex_intro2 C -(\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear (CHead c3 -(Flat f) u1) e1)) x H7 (clear_flat c3 x H8 f u1)))))) H6)) H5))))) k -H3))))))))))))) i v c1 c2 H))))). -(* COMMENTS -Initial nodes: 2085 -END *) + \lambda (c1: C).(C_ind (\lambda (c: C).(\forall (c2: C).(\forall (v: +T).(\forall (i: nat).((csubst0 i v c c2) \to (\forall (e2: C).((clear c2 e2) +\to (or (clear c e2) (ex2 C (\lambda (e1: C).(csubst0 i v e1 e2)) (\lambda +(e1: C).(clear c e1))))))))))) (\lambda (n: nat).(\lambda (c2: C).(\lambda +(v: T).(\lambda (i: nat).(\lambda (H: (csubst0 i v (CSort n) c2)).(\lambda +(e2: C).(\lambda (_: (clear c2 e2)).(csubst0_gen_sort c2 v i n H (or (clear +(CSort n) e2) (ex2 C (\lambda (e1: C).(csubst0 i v e1 e2)) (\lambda (e1: +C).(clear (CSort n) e1)))))))))))) (\lambda (c: C).(\lambda (H: ((\forall +(c2: C).(\forall (v: T).(\forall (i: nat).((csubst0 i v c c2) \to (\forall +(e2: C).((clear c2 e2) \to (or (clear c e2) (ex2 C (\lambda (e1: C).(csubst0 +i v e1 e2)) (\lambda (e1: C).(clear c e1)))))))))))).(\lambda (k: K).(\lambda +(t: T).(\lambda (c2: C).(\lambda (v: T).(\lambda (i: nat).(\lambda (H0: +(csubst0 i v (CHead c k t) c2)).(\lambda (e2: C).(\lambda (H1: (clear c2 +e2)).(let H2 \def (csubst0_gen_head k c c2 t v i H0) in (or3_ind (ex3_2 T nat +(\lambda (_: T).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (u2: +T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: +nat).(subst0 j v t u2)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq +nat i (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k +t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (ex4_3 T C nat +(\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j))))) +(\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k +u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t +u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c +c3))))) (or (clear (CHead c k t) e2) (ex2 C (\lambda (e1: C).(csubst0 i v e1 +e2)) (\lambda (e1: C).(clear (CHead c k t) e1)))) (\lambda (H3: (ex3_2 T nat +(\lambda (_: T).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (u2: +T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: +nat).(subst0 j v t u2))))).(ex3_2_ind T nat (\lambda (_: T).(\lambda (j: +nat).(eq nat i (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead +c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2))) (or (clear +(CHead c k t) e2) (ex2 C (\lambda (e1: C).(csubst0 i v e1 e2)) (\lambda (e1: +C).(clear (CHead c k t) e1)))) (\lambda (x0: T).(\lambda (x1: nat).(\lambda +(H4: (eq nat i (s k x1))).(\lambda (H5: (eq C c2 (CHead c k x0))).(\lambda +(H6: (subst0 x1 v t x0)).(eq_ind_r nat (s k x1) (\lambda (n: nat).(or (clear +(CHead c k t) e2) (ex2 C (\lambda (e1: C).(csubst0 n v e1 e2)) (\lambda (e1: +C).(clear (CHead c k t) e1))))) (let H7 \def (eq_ind C c2 (\lambda (c0: +C).(clear c0 e2)) H1 (CHead c k x0) H5) in (K_ind (\lambda (k0: K).((clear +(CHead c k0 x0) e2) \to (or (clear (CHead c k0 t) e2) (ex2 C (\lambda (e1: +C).(csubst0 (s k0 x1) v e1 e2)) (\lambda (e1: C).(clear (CHead c k0 t) +e1)))))) (\lambda (b: B).(\lambda (H8: (clear (CHead c (Bind b) x0) +e2)).(eq_ind_r C (CHead c (Bind b) x0) (\lambda (c0: C).(or (clear (CHead c +(Bind b) t) c0) (ex2 C (\lambda (e1: C).(csubst0 (s (Bind b) x1) v e1 c0)) +(\lambda (e1: C).(clear (CHead c (Bind b) t) e1))))) (or_intror (clear (CHead +c (Bind b) t) (CHead c (Bind b) x0)) (ex2 C (\lambda (e1: C).(csubst0 (s +(Bind b) x1) v e1 (CHead c (Bind b) x0))) (\lambda (e1: C).(clear (CHead c +(Bind b) t) e1))) (ex_intro2 C (\lambda (e1: C).(csubst0 (s (Bind b) x1) v e1 +(CHead c (Bind b) x0))) (\lambda (e1: C).(clear (CHead c (Bind b) t) e1)) +(CHead c (Bind b) t) (csubst0_snd (Bind b) x1 v t x0 H6 c) (clear_bind b c +t))) e2 (clear_gen_bind b c e2 x0 H8)))) (\lambda (f: F).(\lambda (H8: (clear +(CHead c (Flat f) x0) e2)).(or_introl (clear (CHead c (Flat f) t) e2) (ex2 C +(\lambda (e1: C).(csubst0 (s (Flat f) x1) v e1 e2)) (\lambda (e1: C).(clear +(CHead c (Flat f) t) e1))) (clear_flat c e2 (clear_gen_flat f c e2 x0 H8) f +t)))) k H7)) i H4)))))) H3)) (\lambda (H3: (ex3_2 C nat (\lambda (_: +C).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (c3: C).(\lambda (_: +nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j +v c c3))))).(ex3_2_ind C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i (s k +j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda +(c3: C).(\lambda (j: nat).(csubst0 j v c c3))) (or (clear (CHead c k t) e2) +(ex2 C (\lambda (e1: C).(csubst0 i v e1 e2)) (\lambda (e1: C).(clear (CHead c +k t) e1)))) (\lambda (x0: C).(\lambda (x1: nat).(\lambda (H4: (eq nat i (s k +x1))).(\lambda (H5: (eq C c2 (CHead x0 k t))).(\lambda (H6: (csubst0 x1 v c +x0)).(eq_ind_r nat (s k x1) (\lambda (n: nat).(or (clear (CHead c k t) e2) +(ex2 C (\lambda (e1: C).(csubst0 n v e1 e2)) (\lambda (e1: C).(clear (CHead c +k t) e1))))) (let H7 \def (eq_ind C c2 (\lambda (c0: C).(clear c0 e2)) H1 +(CHead x0 k t) H5) in (K_ind (\lambda (k0: K).((clear (CHead x0 k0 t) e2) \to +(or (clear (CHead c k0 t) e2) (ex2 C (\lambda (e1: C).(csubst0 (s k0 x1) v e1 +e2)) (\lambda (e1: C).(clear (CHead c k0 t) e1)))))) (\lambda (b: B).(\lambda +(H8: (clear (CHead x0 (Bind b) t) e2)).(eq_ind_r C (CHead x0 (Bind b) t) +(\lambda (c0: C).(or (clear (CHead c (Bind b) t) c0) (ex2 C (\lambda (e1: +C).(csubst0 (s (Bind b) x1) v e1 c0)) (\lambda (e1: C).(clear (CHead c (Bind +b) t) e1))))) (or_intror (clear (CHead c (Bind b) t) (CHead x0 (Bind b) t)) +(ex2 C (\lambda (e1: C).(csubst0 (s (Bind b) x1) v e1 (CHead x0 (Bind b) t))) +(\lambda (e1: C).(clear (CHead c (Bind b) t) e1))) (ex_intro2 C (\lambda (e1: +C).(csubst0 (s (Bind b) x1) v e1 (CHead x0 (Bind b) t))) (\lambda (e1: +C).(clear (CHead c (Bind b) t) e1)) (CHead c (Bind b) t) (csubst0_fst (Bind +b) x1 c x0 v H6 t) (clear_bind b c t))) e2 (clear_gen_bind b x0 e2 t H8)))) +(\lambda (f: F).(\lambda (H8: (clear (CHead x0 (Flat f) t) e2)).(let H_x \def +(H x0 v x1 H6 e2 (clear_gen_flat f x0 e2 t H8)) in (let H9 \def H_x in +(or_ind (clear c e2) (ex2 C (\lambda (e1: C).(csubst0 x1 v e1 e2)) (\lambda +(e1: C).(clear c e1))) (or (clear (CHead c (Flat f) t) e2) (ex2 C (\lambda +(e1: C).(csubst0 (s (Flat f) x1) v e1 e2)) (\lambda (e1: C).(clear (CHead c +(Flat f) t) e1)))) (\lambda (H10: (clear c e2)).(or_introl (clear (CHead c +(Flat f) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (s (Flat f) x1) v e1 e2)) +(\lambda (e1: C).(clear (CHead c (Flat f) t) e1))) (clear_flat c e2 H10 f +t))) (\lambda (H10: (ex2 C (\lambda (e1: C).(csubst0 x1 v e1 e2)) (\lambda +(e1: C).(clear c e1)))).(ex2_ind C (\lambda (e1: C).(csubst0 x1 v e1 e2)) +(\lambda (e1: C).(clear c e1)) (or (clear (CHead c (Flat f) t) e2) (ex2 C +(\lambda (e1: C).(csubst0 (s (Flat f) x1) v e1 e2)) (\lambda (e1: C).(clear +(CHead c (Flat f) t) e1)))) (\lambda (x: C).(\lambda (H11: (csubst0 x1 v x +e2)).(\lambda (H12: (clear c x)).(or_intror (clear (CHead c (Flat f) t) e2) +(ex2 C (\lambda (e1: C).(csubst0 (s (Flat f) x1) v e1 e2)) (\lambda (e1: +C).(clear (CHead c (Flat f) t) e1))) (ex_intro2 C (\lambda (e1: C).(csubst0 +(s (Flat f) x1) v e1 e2)) (\lambda (e1: C).(clear (CHead c (Flat f) t) e1)) x +H11 (clear_flat c x H12 f t)))))) H10)) H9))))) k H7)) i H4)))))) H3)) +(\lambda (H3: (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: +nat).(eq nat i (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: +nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda +(j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: +nat).(csubst0 j v c c3)))))).(ex4_3_ind T C nat (\lambda (_: T).(\lambda (_: +C).(\lambda (j: nat).(eq nat i (s k j))))) (\lambda (u2: T).(\lambda (c3: +C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda +(_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: +C).(\lambda (j: nat).(csubst0 j v c c3)))) (or (clear (CHead c k t) e2) (ex2 +C (\lambda (e1: C).(csubst0 i v e1 e2)) (\lambda (e1: C).(clear (CHead c k t) +e1)))) (\lambda (x0: T).(\lambda (x1: C).(\lambda (x2: nat).(\lambda (H4: (eq +nat i (s k x2))).(\lambda (H5: (eq C c2 (CHead x1 k x0))).(\lambda (H6: +(subst0 x2 v t x0)).(\lambda (H7: (csubst0 x2 v c x1)).(eq_ind_r nat (s k x2) +(\lambda (n: nat).(or (clear (CHead c k t) e2) (ex2 C (\lambda (e1: +C).(csubst0 n v e1 e2)) (\lambda (e1: C).(clear (CHead c k t) e1))))) (let H8 +\def (eq_ind C c2 (\lambda (c0: C).(clear c0 e2)) H1 (CHead x1 k x0) H5) in +(K_ind (\lambda (k0: K).((clear (CHead x1 k0 x0) e2) \to (or (clear (CHead c +k0 t) e2) (ex2 C (\lambda (e1: C).(csubst0 (s k0 x2) v e1 e2)) (\lambda (e1: +C).(clear (CHead c k0 t) e1)))))) (\lambda (b: B).(\lambda (H9: (clear (CHead +x1 (Bind b) x0) e2)).(eq_ind_r C (CHead x1 (Bind b) x0) (\lambda (c0: C).(or +(clear (CHead c (Bind b) t) c0) (ex2 C (\lambda (e1: C).(csubst0 (s (Bind b) +x2) v e1 c0)) (\lambda (e1: C).(clear (CHead c (Bind b) t) e1))))) (or_intror +(clear (CHead c (Bind b) t) (CHead x1 (Bind b) x0)) (ex2 C (\lambda (e1: +C).(csubst0 (s (Bind b) x2) v e1 (CHead x1 (Bind b) x0))) (\lambda (e1: +C).(clear (CHead c (Bind b) t) e1))) (ex_intro2 C (\lambda (e1: C).(csubst0 +(s (Bind b) x2) v e1 (CHead x1 (Bind b) x0))) (\lambda (e1: C).(clear (CHead +c (Bind b) t) e1)) (CHead c (Bind b) t) (csubst0_both (Bind b) x2 v t x0 H6 c +x1 H7) (clear_bind b c t))) e2 (clear_gen_bind b x1 e2 x0 H9)))) (\lambda (f: +F).(\lambda (H9: (clear (CHead x1 (Flat f) x0) e2)).(let H_x \def (H x1 v x2 +H7 e2 (clear_gen_flat f x1 e2 x0 H9)) in (let H10 \def H_x in (or_ind (clear +c e2) (ex2 C (\lambda (e1: C).(csubst0 x2 v e1 e2)) (\lambda (e1: C).(clear c +e1))) (or (clear (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (s +(Flat f) x2) v e1 e2)) (\lambda (e1: C).(clear (CHead c (Flat f) t) e1)))) +(\lambda (H11: (clear c e2)).(or_introl (clear (CHead c (Flat f) t) e2) (ex2 +C (\lambda (e1: C).(csubst0 (s (Flat f) x2) v e1 e2)) (\lambda (e1: C).(clear +(CHead c (Flat f) t) e1))) (clear_flat c e2 H11 f t))) (\lambda (H11: (ex2 C +(\lambda (e1: C).(csubst0 x2 v e1 e2)) (\lambda (e1: C).(clear c +e1)))).(ex2_ind C (\lambda (e1: C).(csubst0 x2 v e1 e2)) (\lambda (e1: +C).(clear c e1)) (or (clear (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: +C).(csubst0 (s (Flat f) x2) v e1 e2)) (\lambda (e1: C).(clear (CHead c (Flat +f) t) e1)))) (\lambda (x: C).(\lambda (H12: (csubst0 x2 v x e2)).(\lambda +(H13: (clear c x)).(or_intror (clear (CHead c (Flat f) t) e2) (ex2 C (\lambda +(e1: C).(csubst0 (s (Flat f) x2) v e1 e2)) (\lambda (e1: C).(clear (CHead c +(Flat f) t) e1))) (ex_intro2 C (\lambda (e1: C).(csubst0 (s (Flat f) x2) v e1 +e2)) (\lambda (e1: C).(clear (CHead c (Flat f) t) e1)) x H12 (clear_flat c x +H13 f t)))))) H11)) H10))))) k H8)) i H4)))))))) H3)) H2)))))))))))) c1). diff --git a/matita/matita/contribs/lambdadelta/basic_1/csubst0/defs.ma b/matita/matita/contribs/lambdadelta/basic_1/csubst0/defs.ma index 0068e19f6..eec1e74b7 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/csubst0/defs.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/csubst0/defs.ma @@ -14,9 +14,9 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/subst0/defs.ma". +include "basic_1/subst0/defs.ma". -include "Basic-1/C/defs.ma". +include "basic_1/C/defs.ma". inductive csubst0: nat \to (T \to (C \to (C \to Prop))) \def | csubst0_snd: \forall (k: K).(\forall (i: nat).(\forall (v: T).(\forall (u1: diff --git a/matita/matita/contribs/lambdadelta/basic_1/csubst0/drop.ma b/matita/matita/contribs/lambdadelta/basic_1/csubst0/drop.ma index b6bc6cae7..f4853b5f7 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/csubst0/drop.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/csubst0/drop.ma @@ -14,11 +14,9 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/csubst0/fwd.ma". +include "basic_1/csubst0/fwd.ma". -include "Basic-1/drop/fwd.ma". - -include "Basic-1/s/props.ma". +include "basic_1/drop/fwd.ma". theorem csubst0_drop_gt: \forall (n: nat).(\forall (i: nat).((lt i n) \to (\forall (c1: C).(\forall @@ -42,88 +40,88 @@ e)).(and3_ind (eq C e (CSort n1)) (eq nat (S n0) O) (eq nat O O) (drop (S n0) O c2 e) (\lambda (H3: (eq C e (CSort n1))).(\lambda (H4: (eq nat (S n0) O)).(\lambda (_: (eq nat O O)).(eq_ind_r C (CSort n1) (\lambda (c: C).(drop (S n0) O c2 c)) (let H6 \def (eq_ind nat (S n0) (\lambda (ee: nat).(match ee -in nat return (\lambda (_: nat).Prop) with [O \Rightarrow False | (S _) -\Rightarrow True])) I O H4) in (False_ind (drop (S n0) O c2 (CSort n1)) H6)) -e H3)))) (drop_gen_sort n1 (S n0) O e H2)))))))) (\lambda (c: C).(\lambda -(H1: ((\forall (c2: C).(\forall (v: T).((csubst0 i v c c2) \to (\forall (e: -C).((drop (S n0) O c e) \to (drop (S n0) O c2 e)))))))).(\lambda (k: -K).(\lambda (t: T).(\lambda (c2: C).(\lambda (v: T).(\lambda (H2: (csubst0 i -v (CHead c k t) c2)).(\lambda (e: C).(\lambda (H3: (drop (S n0) O (CHead c k -t) e)).(or3_ind (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i (s k -j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda -(u2: T).(\lambda (j: nat).(subst0 j v t u2)))) (ex3_2 C nat (\lambda (_: -C).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (c3: C).(\lambda (_: +with [O \Rightarrow False | (S _) \Rightarrow True])) I O H4) in (False_ind +(drop (S n0) O c2 (CSort n1)) H6)) e H3)))) (drop_gen_sort n1 (S n0) O e +H2)))))))) (\lambda (c: C).(\lambda (H1: ((\forall (c2: C).(\forall (v: +T).((csubst0 i v c c2) \to (\forall (e: C).((drop (S n0) O c e) \to (drop (S +n0) O c2 e)))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (c2: C).(\lambda +(v: T).(\lambda (H2: (csubst0 i v (CHead c k t) c2)).(\lambda (e: C).(\lambda +(H3: (drop (S n0) O (CHead c k t) e)).(let H4 \def (csubst0_gen_head k c c2 t +v i H2) in (or3_ind (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i +(s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) +(\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2)))) (ex3_2 C nat (\lambda +(_: C).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: -nat).(csubst0 j v c c3))))) (drop (S n0) O c2 e) (\lambda (H4: (ex3_2 T nat +nat).(csubst0 j v c c3))))) (drop (S n0) O c2 e) (\lambda (H5: (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2))))).(ex3_2_ind T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2))) (drop (S -n0) O c2 e) (\lambda (x0: T).(\lambda (x1: nat).(\lambda (H5: (eq nat i (s k -x1))).(\lambda (H6: (eq C c2 (CHead c k x0))).(\lambda (_: (subst0 x1 v t +n0) O c2 e) (\lambda (x0: T).(\lambda (x1: nat).(\lambda (H6: (eq nat i (s k +x1))).(\lambda (H7: (eq C c2 (CHead c k x0))).(\lambda (_: (subst0 x1 v t x0)).(eq_ind_r C (CHead c k x0) (\lambda (c0: C).(drop (S n0) O c0 e)) (let -H8 \def (eq_ind nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: +H9 \def (eq_ind nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: T).((csubst0 n1 v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (drop -(S n0) O c3 e0))))))) H1 (s k x1) H5) in (let H9 \def (eq_ind nat i (\lambda -(n1: nat).(lt n1 (S n0))) H0 (s k x1) H5) in (K_ind (\lambda (k0: K).((drop +(S n0) O c3 e0))))))) H1 (s k x1) H6) in (let H10 \def (eq_ind nat i (\lambda +(n1: nat).(lt n1 (S n0))) H0 (s k x1) H6) in (K_ind (\lambda (k0: K).((drop (r k0 n0) O c e) \to (((\forall (c3: C).(\forall (v0: T).((csubst0 (s k0 x1) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (drop (S n0) O c3 e0))))))) \to ((lt (s k0 x1) (S n0)) \to (drop (S n0) O (CHead c k0 x0) -e))))) (\lambda (b: B).(\lambda (H10: (drop (r (Bind b) n0) O c e)).(\lambda +e))))) (\lambda (b: B).(\lambda (H11: (drop (r (Bind b) n0) O c e)).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Bind b) x1) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (drop (S n0) O c3 e0)))))))).(\lambda (_: (lt (s (Bind b) x1) (S n0))).(drop_drop (Bind b) n0 c -e H10 x0))))) (\lambda (f: F).(\lambda (H10: (drop (r (Flat f) n0) O c +e H11 x0))))) (\lambda (f: F).(\lambda (H11: (drop (r (Flat f) n0) O c e)).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Flat f) x1) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (drop (S n0) O c3 -e0)))))))).(\lambda (H12: (lt (s (Flat f) x1) (S n0))).(or_ind (eq nat x1 O) +e0)))))))).(\lambda (H13: (lt (s (Flat f) x1) (S n0))).(or_ind (eq nat x1 O) (ex2 nat (\lambda (m: nat).(eq nat x1 (S m))) (\lambda (m: nat).(lt m n0))) (drop (S n0) O (CHead c (Flat f) x0) e) (\lambda (_: (eq nat x1 -O)).(drop_drop (Flat f) n0 c e H10 x0)) (\lambda (H13: (ex2 nat (\lambda (m: +O)).(drop_drop (Flat f) n0 c e H11 x0)) (\lambda (H14: (ex2 nat (\lambda (m: nat).(eq nat x1 (S m))) (\lambda (m: nat).(lt m n0)))).(ex2_ind nat (\lambda (m: nat).(eq nat x1 (S m))) (\lambda (m: nat).(lt m n0)) (drop (S n0) O (CHead c (Flat f) x0) e) (\lambda (x: nat).(\lambda (_: (eq nat x1 (S -x))).(\lambda (_: (lt x n0)).(drop_drop (Flat f) n0 c e H10 x0)))) H13)) -(lt_gen_xS x1 n0 H12)))))) k (drop_gen_drop k c e t n0 H3) H8 H9))) c2 -H6)))))) H4)) (\lambda (H4: (ex3_2 C nat (\lambda (_: C).(\lambda (j: +x))).(\lambda (_: (lt x n0)).(drop_drop (Flat f) n0 c e H11 x0)))) H14)) +(lt_gen_xS x1 n0 H13)))))) k (drop_gen_drop k c e t n0 H3) H9 H10))) c2 +H7)))))) H5)) (\lambda (H5: (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))).(ex3_2_ind C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))) (drop (S n0) O c2 e) (\lambda -(x0: C).(\lambda (x1: nat).(\lambda (H5: (eq nat i (s k x1))).(\lambda (H6: -(eq C c2 (CHead x0 k t))).(\lambda (H7: (csubst0 x1 v c x0)).(eq_ind_r C -(CHead x0 k t) (\lambda (c0: C).(drop (S n0) O c0 e)) (let H8 \def (eq_ind +(x0: C).(\lambda (x1: nat).(\lambda (H6: (eq nat i (s k x1))).(\lambda (H7: +(eq C c2 (CHead x0 k t))).(\lambda (H8: (csubst0 x1 v c x0)).(eq_ind_r C +(CHead x0 k t) (\lambda (c0: C).(drop (S n0) O c0 e)) (let H9 \def (eq_ind nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: T).((csubst0 n1 v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (drop (S n0) O c3 -e0))))))) H1 (s k x1) H5) in (let H9 \def (eq_ind nat i (\lambda (n1: -nat).(lt n1 (S n0))) H0 (s k x1) H5) in (K_ind (\lambda (k0: K).((drop (r k0 +e0))))))) H1 (s k x1) H6) in (let H10 \def (eq_ind nat i (\lambda (n1: +nat).(lt n1 (S n0))) H0 (s k x1) H6) in (K_ind (\lambda (k0: K).((drop (r k0 n0) O c e) \to (((\forall (c3: C).(\forall (v0: T).((csubst0 (s k0 x1) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (drop (S n0) O c3 e0))))))) \to ((lt (s k0 x1) (S n0)) \to (drop (S n0) O (CHead x0 k0 t) -e))))) (\lambda (b: B).(\lambda (H10: (drop (r (Bind b) n0) O c e)).(\lambda +e))))) (\lambda (b: B).(\lambda (H11: (drop (r (Bind b) n0) O c e)).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Bind b) x1) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (drop (S n0) O c3 -e0)))))))).(\lambda (H12: (lt (s (Bind b) x1) (S n0))).(drop_drop (Bind b) n0 -x0 e (H x1 (lt_S_n x1 n0 H12) c x0 v H7 e H10) t))))) (\lambda (f: -F).(\lambda (H10: (drop (r (Flat f) n0) O c e)).(\lambda (H11: ((\forall (c3: +e0)))))))).(\lambda (H13: (lt (s (Bind b) x1) (S n0))).(drop_drop (Bind b) n0 +x0 e (H x1 (lt_S_n x1 n0 H13) c x0 v H8 e H11) t))))) (\lambda (f: +F).(\lambda (H11: (drop (r (Flat f) n0) O c e)).(\lambda (H12: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Flat f) x1) v0 c c3) \to (\forall (e0: -C).((drop (S n0) O c e0) \to (drop (S n0) O c3 e0)))))))).(\lambda (H12: (lt +C).((drop (S n0) O c e0) \to (drop (S n0) O c3 e0)))))))).(\lambda (H13: (lt (s (Flat f) x1) (S n0))).(or_ind (eq nat x1 O) (ex2 nat (\lambda (m: nat).(eq nat x1 (S m))) (\lambda (m: nat).(lt m n0))) (drop (S n0) O (CHead x0 (Flat -f) t) e) (\lambda (_: (eq nat x1 O)).(drop_drop (Flat f) n0 x0 e (H11 x0 v H7 -e H10) t)) (\lambda (H13: (ex2 nat (\lambda (m: nat).(eq nat x1 (S m))) +f) t) e) (\lambda (_: (eq nat x1 O)).(drop_drop (Flat f) n0 x0 e (H12 x0 v H8 +e H11) t)) (\lambda (H14: (ex2 nat (\lambda (m: nat).(eq nat x1 (S m))) (\lambda (m: nat).(lt m n0)))).(ex2_ind nat (\lambda (m: nat).(eq nat x1 (S m))) (\lambda (m: nat).(lt m n0)) (drop (S n0) O (CHead x0 (Flat f) t) e) (\lambda (x: nat).(\lambda (_: (eq nat x1 (S x))).(\lambda (_: (lt x -n0)).(drop_drop (Flat f) n0 x0 e (H11 x0 v H7 e H10) t)))) H13)) (lt_gen_xS -x1 n0 H12)))))) k (drop_gen_drop k c e t n0 H3) H8 H9))) c2 H6)))))) H4)) -(\lambda (H4: (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: +n0)).(drop_drop (Flat f) n0 x0 e (H12 x0 v H8 e H11) t)))) H14)) (lt_gen_xS +x1 n0 H13)))))) k (drop_gen_drop k c e t n0 H3) H9 H10))) c2 H7)))))) H5)) +(\lambda (H5: (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: @@ -132,38 +130,35 @@ C).(\lambda (j: nat).(eq nat i (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (drop (S n0) O c2 e) (\lambda (x0: -T).(\lambda (x1: C).(\lambda (x2: nat).(\lambda (H5: (eq nat i (s k -x2))).(\lambda (H6: (eq C c2 (CHead x1 k x0))).(\lambda (_: (subst0 x2 v t -x0)).(\lambda (H8: (csubst0 x2 v c x1)).(eq_ind_r C (CHead x1 k x0) (\lambda -(c0: C).(drop (S n0) O c0 e)) (let H9 \def (eq_ind nat i (\lambda (n1: +T).(\lambda (x1: C).(\lambda (x2: nat).(\lambda (H6: (eq nat i (s k +x2))).(\lambda (H7: (eq C c2 (CHead x1 k x0))).(\lambda (_: (subst0 x2 v t +x0)).(\lambda (H9: (csubst0 x2 v c x1)).(eq_ind_r C (CHead x1 k x0) (\lambda +(c0: C).(drop (S n0) O c0 e)) (let H10 \def (eq_ind nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: T).((csubst0 n1 v0 c c3) \to (\forall -(e0: C).((drop (S n0) O c e0) \to (drop (S n0) O c3 e0))))))) H1 (s k x2) H5) -in (let H10 \def (eq_ind nat i (\lambda (n1: nat).(lt n1 (S n0))) H0 (s k x2) -H5) in (K_ind (\lambda (k0: K).((drop (r k0 n0) O c e) \to (((\forall (c3: +(e0: C).((drop (S n0) O c e0) \to (drop (S n0) O c3 e0))))))) H1 (s k x2) H6) +in (let H11 \def (eq_ind nat i (\lambda (n1: nat).(lt n1 (S n0))) H0 (s k x2) +H6) in (K_ind (\lambda (k0: K).((drop (r k0 n0) O c e) \to (((\forall (c3: C).(\forall (v0: T).((csubst0 (s k0 x2) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (drop (S n0) O c3 e0))))))) \to ((lt (s k0 x2) (S n0)) \to -(drop (S n0) O (CHead x1 k0 x0) e))))) (\lambda (b: B).(\lambda (H11: (drop +(drop (S n0) O (CHead x1 k0 x0) e))))) (\lambda (b: B).(\lambda (H12: (drop (r (Bind b) n0) O c e)).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Bind b) x2) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c -e0) \to (drop (S n0) O c3 e0)))))))).(\lambda (H13: (lt (s (Bind b) x2) (S -n0))).(drop_drop (Bind b) n0 x1 e (H x2 (lt_S_n x2 n0 H13) c x1 v H8 e H11) -x0))))) (\lambda (f: F).(\lambda (H11: (drop (r (Flat f) n0) O c e)).(\lambda -(H12: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Flat f) x2) v0 c c3) +e0) \to (drop (S n0) O c3 e0)))))))).(\lambda (H14: (lt (s (Bind b) x2) (S +n0))).(drop_drop (Bind b) n0 x1 e (H x2 (lt_S_n x2 n0 H14) c x1 v H9 e H12) +x0))))) (\lambda (f: F).(\lambda (H12: (drop (r (Flat f) n0) O c e)).(\lambda +(H13: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Flat f) x2) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (drop (S n0) O c3 -e0)))))))).(\lambda (H13: (lt (s (Flat f) x2) (S n0))).(or_ind (eq nat x2 O) +e0)))))))).(\lambda (H14: (lt (s (Flat f) x2) (S n0))).(or_ind (eq nat x2 O) (ex2 nat (\lambda (m: nat).(eq nat x2 (S m))) (\lambda (m: nat).(lt m n0))) (drop (S n0) O (CHead x1 (Flat f) x0) e) (\lambda (_: (eq nat x2 -O)).(drop_drop (Flat f) n0 x1 e (H12 x1 v H8 e H11) x0)) (\lambda (H14: (ex2 +O)).(drop_drop (Flat f) n0 x1 e (H13 x1 v H9 e H12) x0)) (\lambda (H15: (ex2 nat (\lambda (m: nat).(eq nat x2 (S m))) (\lambda (m: nat).(lt m n0)))).(ex2_ind nat (\lambda (m: nat).(eq nat x2 (S m))) (\lambda (m: nat).(lt m n0)) (drop (S n0) O (CHead x1 (Flat f) x0) e) (\lambda (x: nat).(\lambda (_: (eq nat x2 (S x))).(\lambda (_: (lt x n0)).(drop_drop (Flat -f) n0 x1 e (H12 x1 v H8 e H11) x0)))) H14)) (lt_gen_xS x2 n0 H13)))))) k -(drop_gen_drop k c e t n0 H3) H9 H10))) c2 H6)))))))) H4)) (csubst0_gen_head -k c c2 t v i H2))))))))))) c1)))))) n). -(* COMMENTS -Initial nodes: 3092 -END *) +f) n0 x1 e (H13 x1 v H9 e H12) x0)))) H15)) (lt_gen_xS x2 n0 H14)))))) k +(drop_gen_drop k c e t n0 H3) H10 H11))) c2 H7)))))))) H5)) H4))))))))))) +c1)))))) n). theorem csubst0_drop_gt_back: \forall (n: nat).(\forall (i: nat).((lt i n) \to (\forall (c1: C).(\forall @@ -188,81 +183,82 @@ e)).(csubst0_gen_sort c2 v i n1 H1 (drop (S n0) O (CSort n1) e)))))))) c c2) \to (\forall (e: C).((drop (S n0) O c2 e) \to (drop (S n0) O c e)))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (c2: C).(\lambda (v: T).(\lambda (H2: (csubst0 i v (CHead c k t) c2)).(\lambda (e: C).(\lambda -(H3: (drop (S n0) O c2 e)).(or3_ind (ex3_2 T nat (\lambda (_: T).(\lambda (j: -nat).(eq nat i (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead -c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2)))) (ex3_2 C -nat (\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (c3: -C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: -nat).(csubst0 j v c c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: -C).(\lambda (j: nat).(eq nat i (s k j))))) (\lambda (u2: T).(\lambda (c3: -C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda -(_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: -C).(\lambda (j: nat).(csubst0 j v c c3))))) (drop (S n0) O (CHead c k t) e) -(\lambda (H4: (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i (s k -j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda -(u2: T).(\lambda (j: nat).(subst0 j v t u2))))).(ex3_2_ind T nat (\lambda (_: +(H3: (drop (S n0) O c2 e)).(let H4 \def (csubst0_gen_head k c c2 t v i H2) in +(or3_ind (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i (s k j)))) +(\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: +T).(\lambda (j: nat).(subst0 j v t u2)))) (ex3_2 C nat (\lambda (_: +C).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (c3: C).(\lambda (_: +nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j +v c c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: +nat).(eq nat i (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: +nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda +(j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: +nat).(csubst0 j v c c3))))) (drop (S n0) O (CHead c k t) e) (\lambda (H5: +(ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda +(u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: +T).(\lambda (j: nat).(subst0 j v t u2))))).(ex3_2_ind T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2))) (drop (S n0) O (CHead c k t) e) (\lambda (x0: T).(\lambda (x1: -nat).(\lambda (H5: (eq nat i (s k x1))).(\lambda (H6: (eq C c2 (CHead c k -x0))).(\lambda (_: (subst0 x1 v t x0)).(let H8 \def (eq_ind C c2 (\lambda -(c0: C).(drop (S n0) O c0 e)) H3 (CHead c k x0) H6) in (let H9 \def (eq_ind +nat).(\lambda (H6: (eq nat i (s k x1))).(\lambda (H7: (eq C c2 (CHead c k +x0))).(\lambda (_: (subst0 x1 v t x0)).(let H9 \def (eq_ind C c2 (\lambda +(c0: C).(drop (S n0) O c0 e)) H3 (CHead c k x0) H7) in (let H10 \def (eq_ind nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: T).((csubst0 n1 v0 c c3) \to (\forall (e0: C).((drop (S n0) O c3 e0) \to (drop (S n0) O c -e0))))))) H1 (s k x1) H5) in (let H10 \def (eq_ind nat i (\lambda (n1: -nat).(lt n1 (S n0))) H0 (s k x1) H5) in (K_ind (\lambda (k0: K).(((\forall +e0))))))) H1 (s k x1) H6) in (let H11 \def (eq_ind nat i (\lambda (n1: +nat).(lt n1 (S n0))) H0 (s k x1) H6) in (K_ind (\lambda (k0: K).(((\forall (c3: C).(\forall (v0: T).((csubst0 (s k0 x1) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c3 e0) \to (drop (S n0) O c e0))))))) \to ((lt (s k0 x1) (S n0)) \to ((drop (r k0 n0) O c e) \to (drop (S n0) O (CHead c k0 t) e))))) (\lambda (b: B).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Bind b) x1) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c3 e0) \to (drop (S n0) O c e0)))))))).(\lambda (_: (lt (s (Bind b) x1) (S n0))).(\lambda -(H13: (drop (r (Bind b) n0) O c e)).(drop_drop (Bind b) n0 c e H13 t))))) +(H14: (drop (r (Bind b) n0) O c e)).(drop_drop (Bind b) n0 c e H14 t))))) (\lambda (f: F).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Flat f) x1) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c3 e0) \to (drop -(S n0) O c e0)))))))).(\lambda (H12: (lt (s (Flat f) x1) (S n0))).(\lambda -(H13: (drop (r (Flat f) n0) O c e)).(or_ind (eq nat x1 O) (ex2 nat (\lambda +(S n0) O c e0)))))))).(\lambda (H13: (lt (s (Flat f) x1) (S n0))).(\lambda +(H14: (drop (r (Flat f) n0) O c e)).(or_ind (eq nat x1 O) (ex2 nat (\lambda (m: nat).(eq nat x1 (S m))) (\lambda (m: nat).(lt m n0))) (drop (S n0) O (CHead c (Flat f) t) e) (\lambda (_: (eq nat x1 O)).(drop_drop (Flat f) n0 c -e H13 t)) (\lambda (H14: (ex2 nat (\lambda (m: nat).(eq nat x1 (S m))) +e H14 t)) (\lambda (H15: (ex2 nat (\lambda (m: nat).(eq nat x1 (S m))) (\lambda (m: nat).(lt m n0)))).(ex2_ind nat (\lambda (m: nat).(eq nat x1 (S m))) (\lambda (m: nat).(lt m n0)) (drop (S n0) O (CHead c (Flat f) t) e) (\lambda (x: nat).(\lambda (_: (eq nat x1 (S x))).(\lambda (_: (lt x -n0)).(drop_drop (Flat f) n0 c e H13 t)))) H14)) (lt_gen_xS x1 n0 H12)))))) k -H9 H10 (drop_gen_drop k c e x0 n0 H8)))))))))) H4)) (\lambda (H4: (ex3_2 C +n0)).(drop_drop (Flat f) n0 c e H14 t)))) H15)) (lt_gen_xS x1 n0 H13)))))) k +H10 H11 (drop_gen_drop k c e x0 n0 H9)))))))))) H5)) (\lambda (H5: (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))).(ex3_2_ind C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))) (drop (S -n0) O (CHead c k t) e) (\lambda (x0: C).(\lambda (x1: nat).(\lambda (H5: (eq -nat i (s k x1))).(\lambda (H6: (eq C c2 (CHead x0 k t))).(\lambda (H7: -(csubst0 x1 v c x0)).(let H8 \def (eq_ind C c2 (\lambda (c0: C).(drop (S n0) -O c0 e)) H3 (CHead x0 k t) H6) in (let H9 \def (eq_ind nat i (\lambda (n1: +n0) O (CHead c k t) e) (\lambda (x0: C).(\lambda (x1: nat).(\lambda (H6: (eq +nat i (s k x1))).(\lambda (H7: (eq C c2 (CHead x0 k t))).(\lambda (H8: +(csubst0 x1 v c x0)).(let H9 \def (eq_ind C c2 (\lambda (c0: C).(drop (S n0) +O c0 e)) H3 (CHead x0 k t) H7) in (let H10 \def (eq_ind nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: T).((csubst0 n1 v0 c c3) \to (\forall -(e0: C).((drop (S n0) O c3 e0) \to (drop (S n0) O c e0))))))) H1 (s k x1) H5) -in (let H10 \def (eq_ind nat i (\lambda (n1: nat).(lt n1 (S n0))) H0 (s k x1) -H5) in (K_ind (\lambda (k0: K).(((\forall (c3: C).(\forall (v0: T).((csubst0 +(e0: C).((drop (S n0) O c3 e0) \to (drop (S n0) O c e0))))))) H1 (s k x1) H6) +in (let H11 \def (eq_ind nat i (\lambda (n1: nat).(lt n1 (S n0))) H0 (s k x1) +H6) in (K_ind (\lambda (k0: K).(((\forall (c3: C).(\forall (v0: T).((csubst0 (s k0 x1) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c3 e0) \to (drop (S n0) O c e0))))))) \to ((lt (s k0 x1) (S n0)) \to ((drop (r k0 n0) O x0 e) \to (drop (S n0) O (CHead c k0 t) e))))) (\lambda (b: B).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Bind b) x1) v0 c c3) \to (\forall (e0: -C).((drop (S n0) O c3 e0) \to (drop (S n0) O c e0)))))))).(\lambda (H12: (lt -(s (Bind b) x1) (S n0))).(\lambda (H13: (drop (r (Bind b) n0) O x0 -e)).(drop_drop (Bind b) n0 c e (H x1 (lt_S_n x1 n0 H12) c x0 v H7 e H13) -t))))) (\lambda (f: F).(\lambda (H11: ((\forall (c3: C).(\forall (v0: +C).((drop (S n0) O c3 e0) \to (drop (S n0) O c e0)))))))).(\lambda (H13: (lt +(s (Bind b) x1) (S n0))).(\lambda (H14: (drop (r (Bind b) n0) O x0 +e)).(drop_drop (Bind b) n0 c e (H x1 (lt_S_n x1 n0 H13) c x0 v H8 e H14) +t))))) (\lambda (f: F).(\lambda (H12: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Flat f) x1) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c3 -e0) \to (drop (S n0) O c e0)))))))).(\lambda (H12: (lt (s (Flat f) x1) (S -n0))).(\lambda (H13: (drop (r (Flat f) n0) O x0 e)).(or_ind (eq nat x1 O) +e0) \to (drop (S n0) O c e0)))))))).(\lambda (H13: (lt (s (Flat f) x1) (S +n0))).(\lambda (H14: (drop (r (Flat f) n0) O x0 e)).(or_ind (eq nat x1 O) (ex2 nat (\lambda (m: nat).(eq nat x1 (S m))) (\lambda (m: nat).(lt m n0))) (drop (S n0) O (CHead c (Flat f) t) e) (\lambda (_: (eq nat x1 O)).(drop_drop -(Flat f) n0 c e (H11 x0 v H7 e H13) t)) (\lambda (H14: (ex2 nat (\lambda (m: +(Flat f) n0 c e (H12 x0 v H8 e H14) t)) (\lambda (H15: (ex2 nat (\lambda (m: nat).(eq nat x1 (S m))) (\lambda (m: nat).(lt m n0)))).(ex2_ind nat (\lambda (m: nat).(eq nat x1 (S m))) (\lambda (m: nat).(lt m n0)) (drop (S n0) O (CHead c (Flat f) t) e) (\lambda (x: nat).(\lambda (_: (eq nat x1 (S -x))).(\lambda (_: (lt x n0)).(drop_drop (Flat f) n0 c e (H11 x0 v H7 e H13) -t)))) H14)) (lt_gen_xS x1 n0 H12)))))) k H9 H10 (drop_gen_drop k x0 e t n0 -H8)))))))))) H4)) (\lambda (H4: (ex4_3 T C nat (\lambda (_: T).(\lambda (_: +x))).(\lambda (_: (lt x n0)).(drop_drop (Flat f) n0 c e (H12 x0 v H8 e H14) +t)))) H15)) (lt_gen_xS x1 n0 H13)))))) k H10 H11 (drop_gen_drop k x0 e t n0 +H9)))))))))) H5)) (\lambda (H5: (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: @@ -272,37 +268,34 @@ T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (drop (S n0) O (CHead c k t) e) (\lambda (x0: T).(\lambda (x1: C).(\lambda (x2: -nat).(\lambda (H5: (eq nat i (s k x2))).(\lambda (H6: (eq C c2 (CHead x1 k -x0))).(\lambda (_: (subst0 x2 v t x0)).(\lambda (H8: (csubst0 x2 v c -x1)).(let H9 \def (eq_ind C c2 (\lambda (c0: C).(drop (S n0) O c0 e)) H3 -(CHead x1 k x0) H6) in (let H10 \def (eq_ind nat i (\lambda (n1: +nat).(\lambda (H6: (eq nat i (s k x2))).(\lambda (H7: (eq C c2 (CHead x1 k +x0))).(\lambda (_: (subst0 x2 v t x0)).(\lambda (H9: (csubst0 x2 v c +x1)).(let H10 \def (eq_ind C c2 (\lambda (c0: C).(drop (S n0) O c0 e)) H3 +(CHead x1 k x0) H7) in (let H11 \def (eq_ind nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: T).((csubst0 n1 v0 c c3) \to (\forall -(e0: C).((drop (S n0) O c3 e0) \to (drop (S n0) O c e0))))))) H1 (s k x2) H5) -in (let H11 \def (eq_ind nat i (\lambda (n1: nat).(lt n1 (S n0))) H0 (s k x2) -H5) in (K_ind (\lambda (k0: K).(((\forall (c3: C).(\forall (v0: T).((csubst0 +(e0: C).((drop (S n0) O c3 e0) \to (drop (S n0) O c e0))))))) H1 (s k x2) H6) +in (let H12 \def (eq_ind nat i (\lambda (n1: nat).(lt n1 (S n0))) H0 (s k x2) +H6) in (K_ind (\lambda (k0: K).(((\forall (c3: C).(\forall (v0: T).((csubst0 (s k0 x2) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c3 e0) \to (drop (S n0) O c e0))))))) \to ((lt (s k0 x2) (S n0)) \to ((drop (r k0 n0) O x1 e) \to (drop (S n0) O (CHead c k0 t) e))))) (\lambda (b: B).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Bind b) x2) v0 c c3) \to (\forall (e0: -C).((drop (S n0) O c3 e0) \to (drop (S n0) O c e0)))))))).(\lambda (H13: (lt -(s (Bind b) x2) (S n0))).(\lambda (H14: (drop (r (Bind b) n0) O x1 -e)).(drop_drop (Bind b) n0 c e (H x2 (lt_S_n x2 n0 H13) c x1 v H8 e H14) -t))))) (\lambda (f: F).(\lambda (H12: ((\forall (c3: C).(\forall (v0: +C).((drop (S n0) O c3 e0) \to (drop (S n0) O c e0)))))))).(\lambda (H14: (lt +(s (Bind b) x2) (S n0))).(\lambda (H15: (drop (r (Bind b) n0) O x1 +e)).(drop_drop (Bind b) n0 c e (H x2 (lt_S_n x2 n0 H14) c x1 v H9 e H15) +t))))) (\lambda (f: F).(\lambda (H13: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Flat f) x2) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c3 -e0) \to (drop (S n0) O c e0)))))))).(\lambda (H13: (lt (s (Flat f) x2) (S -n0))).(\lambda (H14: (drop (r (Flat f) n0) O x1 e)).(or_ind (eq nat x2 O) +e0) \to (drop (S n0) O c e0)))))))).(\lambda (H14: (lt (s (Flat f) x2) (S +n0))).(\lambda (H15: (drop (r (Flat f) n0) O x1 e)).(or_ind (eq nat x2 O) (ex2 nat (\lambda (m: nat).(eq nat x2 (S m))) (\lambda (m: nat).(lt m n0))) (drop (S n0) O (CHead c (Flat f) t) e) (\lambda (_: (eq nat x2 O)).(drop_drop -(Flat f) n0 c e (H12 x1 v H8 e H14) t)) (\lambda (H15: (ex2 nat (\lambda (m: +(Flat f) n0 c e (H13 x1 v H9 e H15) t)) (\lambda (H16: (ex2 nat (\lambda (m: nat).(eq nat x2 (S m))) (\lambda (m: nat).(lt m n0)))).(ex2_ind nat (\lambda (m: nat).(eq nat x2 (S m))) (\lambda (m: nat).(lt m n0)) (drop (S n0) O (CHead c (Flat f) t) e) (\lambda (x: nat).(\lambda (_: (eq nat x2 (S -x))).(\lambda (_: (lt x n0)).(drop_drop (Flat f) n0 c e (H12 x1 v H8 e H14) -t)))) H15)) (lt_gen_xS x2 n0 H13)))))) k H10 H11 (drop_gen_drop k x1 e x0 n0 -H9)))))))))))) H4)) (csubst0_gen_head k c c2 t v i H2))))))))))) c1)))))) n). -(* COMMENTS -Initial nodes: 2989 -END *) +x))).(\lambda (_: (lt x n0)).(drop_drop (Flat f) n0 c e (H13 x1 v H9 e H15) +t)))) H16)) (lt_gen_xS x2 n0 H14)))))) k H11 H12 (drop_gen_drop k x1 e x0 n0 +H10)))))))))))) H5)) H4))))))))))) c1)))))) n). theorem csubst0_drop_lt: \forall (n: nat).(\forall (i: nat).((lt n i) \to (\forall (c1: C).(\forall @@ -583,45 +576,45 @@ n0) O c2 (CHead e2 k w))))))) (\lambda (k: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus i (s k (S n0))) v u w)))))) (\lambda (k: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus i (s k (S n0))) v e1 e2))))))))) (let H5 \def (eq_ind -nat (S n0) (\lambda (ee: nat).(match ee in nat return (\lambda (_: nat).Prop) -with [O \Rightarrow False | (S _) \Rightarrow True])) I O H3) in (False_ind -(or4 (drop (S n0) O c2 (CSort n1)) (ex3_4 K C T T (\lambda (k: K).(\lambda -(e0: C).(\lambda (u: T).(\lambda (_: T).(eq C (CSort n1) (CHead e0 k u)))))) -(\lambda (k: K).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) -O c2 (CHead e0 k w)))))) (\lambda (k: K).(\lambda (_: C).(\lambda (u: -T).(\lambda (w: T).(subst0 (minus i (s k (S n0))) v u w)))))) (ex3_4 K C C T -(\lambda (k: K).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C (CSort -n1) (CHead e1 k u)))))) (\lambda (k: K).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(drop (S n0) O c2 (CHead e2 k u)))))) (\lambda (k: -K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (minus i (s k -(S n0))) v e1 e2)))))) (ex4_5 K C C T T (\lambda (k: K).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C (CSort n1) (CHead e1 -k u))))))) (\lambda (k: K).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (w: T).(drop (S n0) O c2 (CHead e2 k w))))))) (\lambda (k: -K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 -(minus i (s k (S n0))) v u w)))))) (\lambda (k: K).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus i (s k (S n0))) v e1 -e2)))))))) H5)) e H2)))) (drop_gen_sort n1 (S n0) O e H1)))))))) (\lambda (c: -C).(\lambda (H0: ((\forall (c2: C).(\forall (v: T).((csubst0 i v c c2) \to -(\forall (e: C).((drop (S n0) O c e) \to (or4 (drop (S n0) O c2 e) (ex3_4 K C -T T (\lambda (k: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e -(CHead e0 k u)))))) (\lambda (k: K).(\lambda (e0: C).(\lambda (_: T).(\lambda -(w: T).(drop (S n0) O c2 (CHead e0 k w)))))) (\lambda (k: K).(\lambda (_: -C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus i (s k (S n0))) v u w)))))) -(ex3_4 K C C T (\lambda (k: K).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(eq C e (CHead e1 k u)))))) (\lambda (k: K).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(drop (S n0) O c2 (CHead e2 k u)))))) (\lambda (k: -K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (minus i (s k -(S n0))) v e1 e2)))))) (ex4_5 K C C T T (\lambda (k: K).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 k -u))))))) (\lambda (k: K).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (w: T).(drop (S n0) O c2 (CHead e2 k w))))))) (\lambda (k: -K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 -(minus i (s k (S n0))) v u w)))))) (\lambda (k: K).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus i (s k (S n0))) v e1 -e2))))))))))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (c2: C).(\lambda -(v: T).(\lambda (H1: (csubst0 i v (CHead c k t) c2)).(\lambda (e: C).(\lambda -(H2: (drop (S n0) O (CHead c k t) e)).(or3_ind (ex3_2 T nat (\lambda (_: +nat (S n0) (\lambda (ee: nat).(match ee with [O \Rightarrow False | (S _) +\Rightarrow True])) I O H3) in (False_ind (or4 (drop (S n0) O c2 (CSort n1)) +(ex3_4 K C T T (\lambda (k: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: +T).(eq C (CSort n1) (CHead e0 k u)))))) (\lambda (k: K).(\lambda (e0: +C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead e0 k w)))))) +(\lambda (k: K).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 +(minus i (s k (S n0))) v u w)))))) (ex3_4 K C C T (\lambda (k: K).(\lambda +(e1: C).(\lambda (_: C).(\lambda (u: T).(eq C (CSort n1) (CHead e1 k u)))))) +(\lambda (k: K).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) +O c2 (CHead e2 k u)))))) (\lambda (k: K).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 (minus i (s k (S n0))) v e1 e2)))))) (ex4_5 K C C +T T (\lambda (k: K).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda +(_: T).(eq C (CSort n1) (CHead e1 k u))))))) (\lambda (k: K).(\lambda (_: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead +e2 k w))))))) (\lambda (k: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: +T).(\lambda (w: T).(subst0 (minus i (s k (S n0))) v u w)))))) (\lambda (k: +K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 +(minus i (s k (S n0))) v e1 e2)))))))) H5)) e H2)))) (drop_gen_sort n1 (S n0) +O e H1)))))))) (\lambda (c: C).(\lambda (H0: ((\forall (c2: C).(\forall (v: +T).((csubst0 i v c c2) \to (\forall (e: C).((drop (S n0) O c e) \to (or4 +(drop (S n0) O c2 e) (ex3_4 K C T T (\lambda (k: K).(\lambda (e0: C).(\lambda +(u: T).(\lambda (_: T).(eq C e (CHead e0 k u)))))) (\lambda (k: K).(\lambda +(e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead e0 k w)))))) +(\lambda (k: K).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 +(minus i (s k (S n0))) v u w)))))) (ex3_4 K C C T (\lambda (k: K).(\lambda +(e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 k u)))))) (\lambda +(k: K).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O c2 +(CHead e2 k u)))))) (\lambda (k: K).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 (minus i (s k (S n0))) v e1 e2)))))) (ex4_5 K C C +T T (\lambda (k: K).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda +(_: T).(eq C e (CHead e1 k u))))))) (\lambda (k: K).(\lambda (_: C).(\lambda +(e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead e2 k +w))))))) (\lambda (k: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: +T).(\lambda (w: T).(subst0 (minus i (s k (S n0))) v u w)))))) (\lambda (k: +K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 +(minus i (s k (S n0))) v e1 e2))))))))))))))).(\lambda (k: K).(\lambda (t: +T).(\lambda (c2: C).(\lambda (v: T).(\lambda (H1: (csubst0 i v (CHead c k t) +c2)).(\lambda (e: C).(\lambda (H2: (drop (S n0) O (CHead c k t) e)).(let H3 +\def (csubst0_gen_head k c c2 t v i H1) in (or3_ind (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i (s k @@ -647,7 +640,7 @@ T).(drop (S n0) O c2 (CHead e2 k0 w))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus i (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus i (s k0 (S n0))) v e1 e2)))))))) -(\lambda (H3: (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i (s k +(\lambda (H4: (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2))))).(ex3_2_ind T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (u2: T).(\lambda (_: @@ -668,8 +661,8 @@ T).(\lambda (w: T).(drop (S n0) O c2 (CHead e2 k0 w))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus i (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus i (s k0 -(S n0))) v e1 e2)))))))) (\lambda (x0: T).(\lambda (x1: nat).(\lambda (H4: -(eq nat i (s k x1))).(\lambda (H5: (eq C c2 (CHead c k x0))).(\lambda (_: +(S n0))) v e1 e2)))))))) (\lambda (x0: T).(\lambda (x1: nat).(\lambda (H5: +(eq nat i (s k x1))).(\lambda (H6: (eq C c2 (CHead c k x0))).(\lambda (_: (subst0 x1 v t x0)).(eq_ind_r C (CHead c k x0) (\lambda (c0: C).(or4 (drop (S n0) O c0 e) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda @@ -687,7 +680,7 @@ T).(drop (S n0) O c0 (CHead e2 k0 w))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus i (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus i (s k0 (S n0))) v e1 e2))))))))) (let -H7 \def (eq_ind nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: +H8 \def (eq_ind nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: T).((csubst0 n1 v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (or4 (drop (S n0) O c3 e0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e1: C).(\lambda (u: T).(\lambda (_: T).(eq C e0 (CHead e1 k0 u)))))) (\lambda @@ -705,8 +698,8 @@ T).(\lambda (w: T).(drop (S n0) O c3 (CHead e2 k0 w))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus n1 (s k0 (S n0))) v0 u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus n1 (s k0 -(S n0))) v0 e1 e2)))))))))))))) H0 (s k x1) H4) in (let H8 \def (eq_ind nat i -(\lambda (n1: nat).(lt (S n0) n1)) H (s k x1) H4) in (eq_ind_r nat (s k x1) +(S n0))) v0 e1 e2)))))))))))))) H0 (s k x1) H5) in (let H9 \def (eq_ind nat i +(\lambda (n1: nat).(lt (S n0) n1)) H (s k x1) H5) in (eq_ind_r nat (s k x1) (\lambda (n1: nat).(or4 (drop (S n0) O (CHead c k x0) e) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: @@ -761,7 +754,7 @@ k1 w))))))) (\lambda (k1: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s k0 x1) (s k1 (S n0))) v u w)))))) (\lambda (k1: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s k0 x1) (s k1 (S n0))) v e1 e2)))))))))))) (\lambda -(b: B).(\lambda (H9: (drop (r (Bind b) n0) O c e)).(\lambda (_: ((\forall +(b: B).(\lambda (H10: (drop (r (Bind b) n0) O c e)).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Bind b) x1) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (or4 (drop (S n0) O c3 e0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e1: C).(\lambda (u: T).(\lambda (_: T).(eq C e0 @@ -799,8 +792,8 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead c (Bind b) x0) C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 -e2))))))) (drop_drop (Bind b) n0 c e H9 x0)))))) (\lambda (f: F).(\lambda -(H9: (drop (r (Flat f) n0) O c e)).(\lambda (_: ((\forall (c3: C).(\forall +e2))))))) (drop_drop (Bind b) n0 c e H10 x0)))))) (\lambda (f: F).(\lambda +(H10: (drop (r (Flat f) n0) O c e)).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Flat f) x1) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (or4 (drop (S n0) O c3 e0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e1: C).(\lambda (u: T).(\lambda (_: T).(eq C e0 (CHead e1 k0 @@ -838,8 +831,8 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead c (Flat f) x0) C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 -e2))))))) (drop_drop (Flat f) n0 c e H9 x0)))))) k (drop_gen_drop k c e t n0 -H2) H7 H8) i H4))) c2 H5)))))) H3)) (\lambda (H3: (ex3_2 C nat (\lambda (_: +e2))))))) (drop_drop (Flat f) n0 c e H10 x0)))))) k (drop_gen_drop k c e t n0 +H2) H8 H9) i H5))) c2 H6)))))) H4)) (\lambda (H4: (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))).(ex3_2_ind C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i (s k @@ -860,8 +853,8 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead e2 k0 w))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus i (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus i (s k0 -(S n0))) v e1 e2)))))))) (\lambda (x0: C).(\lambda (x1: nat).(\lambda (H4: -(eq nat i (s k x1))).(\lambda (H5: (eq C c2 (CHead x0 k t))).(\lambda (H6: +(S n0))) v e1 e2)))))))) (\lambda (x0: C).(\lambda (x1: nat).(\lambda (H5: +(eq nat i (s k x1))).(\lambda (H6: (eq C c2 (CHead x0 k t))).(\lambda (H7: (csubst0 x1 v c x0)).(eq_ind_r C (CHead x0 k t) (\lambda (c0: C).(or4 (drop (S n0) O c0 e) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda @@ -879,7 +872,7 @@ T).(drop (S n0) O c0 (CHead e2 k0 w))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus i (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus i (s k0 (S n0))) v e1 e2))))))))) (let -H7 \def (eq_ind nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: +H8 \def (eq_ind nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: T).((csubst0 n1 v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (or4 (drop (S n0) O c3 e0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e1: C).(\lambda (u: T).(\lambda (_: T).(eq C e0 (CHead e1 k0 u)))))) (\lambda @@ -897,8 +890,8 @@ T).(\lambda (w: T).(drop (S n0) O c3 (CHead e2 k0 w))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus n1 (s k0 (S n0))) v0 u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus n1 (s k0 -(S n0))) v0 e1 e2)))))))))))))) H0 (s k x1) H4) in (let H8 \def (eq_ind nat i -(\lambda (n1: nat).(lt (S n0) n1)) H (s k x1) H4) in (eq_ind_r nat (s k x1) +(S n0))) v0 e1 e2)))))))))))))) H0 (s k x1) H5) in (let H9 \def (eq_ind nat i +(\lambda (n1: nat).(lt (S n0) n1)) H (s k x1) H5) in (eq_ind_r nat (s k x1) (\lambda (n1: nat).(or4 (drop (S n0) O (CHead x0 k t) e) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: @@ -953,7 +946,7 @@ k1 w))))))) (\lambda (k1: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s k0 x1) (s k1 (S n0))) v u w)))))) (\lambda (k1: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s k0 x1) (s k1 (S n0))) v e1 e2)))))))))))) (\lambda -(b: B).(\lambda (H9: (drop (r (Bind b) n0) O c e)).(\lambda (_: ((\forall +(b: B).(\lambda (H10: (drop (r (Bind b) n0) O c e)).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Bind b) x1) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (or4 (drop (S n0) O c3 e0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e1: C).(\lambda (u: T).(\lambda (_: T).(eq C e0 @@ -972,8 +965,8 @@ T).(drop (S n0) O c3 (CHead e2 k0 w))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v0 u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Bind b) x1) (s k0 -(S n0))) v0 e1 e2))))))))))))))).(\lambda (H11: (lt (S n0) (s (Bind b) -x1))).(let H12 \def (IHn x1 (le_S_n (S n0) x1 H11) c x0 v H6 e H9) in +(S n0))) v0 e1 e2))))))))))))))).(\lambda (H12: (lt (S n0) (s (Bind b) +x1))).(let H13 \def (IHn x1 (le_S_n (S n0) x1 H12) c x0 v H7 e H10) in (or4_ind (drop n0 O x0 e) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop n0 O x0 (CHead e0 @@ -1007,7 +1000,7 @@ T).(drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 w))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s -(Bind b) x1) (s k0 (S n0))) v e1 e2)))))))) (\lambda (H13: (drop n0 O x0 +(Bind b) x1) (s k0 (S n0))) v e1 e2)))))))) (\lambda (H14: (drop n0 O x0 e)).(or4_intro0 (drop (S n0) O (CHead x0 (Bind b) t) e) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: @@ -1026,7 +1019,7 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 (Bind b) t) C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 -e2))))))) (drop_drop (Bind b) n0 x0 e H13 t))) (\lambda (H13: (ex3_4 K C T T +e2))))))) (drop_drop (Bind b) n0 x0 e H14 t))) (\lambda (H14: (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop n0 O x0 (CHead e0 k0 w)))))) (\lambda (k0: @@ -1054,8 +1047,8 @@ C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2)))))))) (\lambda (x2: K).(\lambda (x3: C).(\lambda (x4: -T).(\lambda (x5: T).(\lambda (H14: (eq C e (CHead x3 x2 x4))).(\lambda (H15: -(drop n0 O x0 (CHead x3 x2 x5))).(\lambda (H16: (subst0 (minus x1 (s x2 n0)) +T).(\lambda (x5: T).(\lambda (H15: (eq C e (CHead x3 x2 x4))).(\lambda (H16: +(drop n0 O x0 (CHead x3 x2 x5))).(\lambda (H17: (subst0 (minus x1 (s x2 n0)) v x4 x5)).(eq_ind_r C (CHead x3 x2 x4) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x0 (Bind b) t) c0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 k0 u)))))) (\lambda @@ -1099,9 +1092,9 @@ u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 k0 w)))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w))))) x2 x3 x4 x5 (refl_equal C (CHead x3 x2 x4)) -(drop_drop (Bind b) n0 x0 (CHead x3 x2 x5) H15 t) (eq_ind_r nat (S (s x2 n0)) -(\lambda (n1: nat).(subst0 (minus (s (Bind b) x1) n1) v x4 x5)) H16 (s x2 (S -n0)) (s_S x2 n0)))) e H14)))))))) H13)) (\lambda (H13: (ex3_4 K C C T +(drop_drop (Bind b) n0 x0 (CHead x3 x2 x5) H16 t) (eq_ind_r nat (S (s x2 n0)) +(\lambda (n1: nat).(subst0 (minus (s (Bind b) x1) n1) v x4 x5)) H17 (s x2 (S +n0)) (s_S x2 n0)))) e H15)))))))) H14)) (\lambda (H14: (ex3_4 K C C T (\lambda (k0: K).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 k0 u)))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop n0 O x0 (CHead e2 k0 u)))))) (\lambda (k0: @@ -1129,8 +1122,8 @@ C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2)))))))) (\lambda (x2: K).(\lambda (x3: C).(\lambda (x4: -C).(\lambda (x5: T).(\lambda (H14: (eq C e (CHead x3 x2 x5))).(\lambda (H15: -(drop n0 O x0 (CHead x4 x2 x5))).(\lambda (H16: (csubst0 (minus x1 (s x2 n0)) +C).(\lambda (x5: T).(\lambda (H15: (eq C e (CHead x3 x2 x5))).(\lambda (H16: +(drop n0 O x0 (CHead x4 x2 x5))).(\lambda (H17: (csubst0 (minus x1 (s x2 n0)) v x3 x4)).(eq_ind_r C (CHead x3 x2 x5) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x0 (Bind b) t) c0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 k0 u)))))) (\lambda @@ -1174,9 +1167,9 @@ u)))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 k0 u)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2))))) x2 x3 x4 x5 (refl_equal C (CHead x3 x2 -x5)) (drop_drop (Bind b) n0 x0 (CHead x4 x2 x5) H15 t) (eq_ind_r nat (S (s x2 -n0)) (\lambda (n1: nat).(csubst0 (minus (s (Bind b) x1) n1) v x3 x4)) H16 (s -x2 (S n0)) (s_S x2 n0)))) e H14)))))))) H13)) (\lambda (H13: (ex4_5 K C C T T +x5)) (drop_drop (Bind b) n0 x0 (CHead x4 x2 x5) H16 t) (eq_ind_r nat (S (s x2 +n0)) (\lambda (n1: nat).(csubst0 (minus (s (Bind b) x1) n1) v x3 x4)) H17 (s +x2 (S n0)) (s_S x2 n0)))) e H15)))))))) H14)) (\lambda (H14: (ex4_5 K C C T T (\lambda (k0: K).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 k0 u))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop n0 O x0 (CHead e2 @@ -1209,9 +1202,9 @@ C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2)))))))) (\lambda (x2: K).(\lambda (x3: C).(\lambda (x4: C).(\lambda (x5: -T).(\lambda (x6: T).(\lambda (H14: (eq C e (CHead x3 x2 x5))).(\lambda (H15: -(drop n0 O x0 (CHead x4 x2 x6))).(\lambda (H16: (subst0 (minus x1 (s x2 n0)) -v x5 x6)).(\lambda (H17: (csubst0 (minus x1 (s x2 n0)) v x3 x4)).(eq_ind_r C +T).(\lambda (x6: T).(\lambda (H15: (eq C e (CHead x3 x2 x5))).(\lambda (H16: +(drop n0 O x0 (CHead x4 x2 x6))).(\lambda (H17: (subst0 (minus x1 (s x2 n0)) +v x5 x6)).(\lambda (H18: (csubst0 (minus x1 (s x2 n0)) v x3 x4)).(eq_ind_r C (CHead x3 x2 x5) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x0 (Bind b) t) c0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: @@ -1258,11 +1251,11 @@ T).(subst0 (minus (s (Bind b) x1) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Bind b) x1) (s k0 (S n0))) v e1 e2)))))) x2 x3 x4 x5 x6 (refl_equal C (CHead x3 x2 x5)) (drop_drop (Bind b) n0 x0 (CHead x4 x2 x6) -H15 t) (eq_ind_r nat (S (s x2 n0)) (\lambda (n1: nat).(subst0 (minus (s (Bind -b) x1) n1) v x5 x6)) H16 (s x2 (S n0)) (s_S x2 n0)) (eq_ind_r nat (S (s x2 -n0)) (\lambda (n1: nat).(csubst0 (minus (s (Bind b) x1) n1) v x3 x4)) H17 (s -x2 (S n0)) (s_S x2 n0)))) e H14)))))))))) H13)) H12)))))) (\lambda (f: -F).(\lambda (H9: (drop (r (Flat f) n0) O c e)).(\lambda (H10: ((\forall (c3: +H16 t) (eq_ind_r nat (S (s x2 n0)) (\lambda (n1: nat).(subst0 (minus (s (Bind +b) x1) n1) v x5 x6)) H17 (s x2 (S n0)) (s_S x2 n0)) (eq_ind_r nat (S (s x2 +n0)) (\lambda (n1: nat).(csubst0 (minus (s (Bind b) x1) n1) v x3 x4)) H18 (s +x2 (S n0)) (s_S x2 n0)))) e H15)))))))))) H14)) H13)))))) (\lambda (f: +F).(\lambda (H10: (drop (r (Flat f) n0) O c e)).(\lambda (H11: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Flat f) x1) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (or4 (drop (S n0) O c3 e0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e1: C).(\lambda (u: T).(\lambda (_: T).(eq C e0 @@ -1282,7 +1275,7 @@ C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v0 e1 e2))))))))))))))).(\lambda (_: (lt (S n0) (s (Flat f) -x1))).(let H12 \def (H10 x0 v H6 e H9) in (or4_ind (drop (S n0) O x0 e) +x1))).(let H13 \def (H11 x0 v H7 e H10) in (or4_ind (drop (S n0) O x0 e) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O x0 (CHead e0 k0 w)))))) (\lambda (k0: @@ -1316,7 +1309,7 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 (Flat f) t) C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 -e2)))))))) (\lambda (H13: (drop (S n0) O x0 e)).(or4_intro0 (drop (S n0) O +e2)))))))) (\lambda (H14: (drop (S n0) O x0 e)).(or4_intro0 (drop (S n0) O (CHead x0 (Flat f) t) e) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 @@ -1334,8 +1327,8 @@ T).(drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 w))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s -(Flat f) x1) (s k0 (S n0))) v e1 e2))))))) (drop_drop (Flat f) n0 x0 e H13 -t))) (\lambda (H13: (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda +(Flat f) x1) (s k0 (S n0))) v e1 e2))))))) (drop_drop (Flat f) n0 x0 e H14 +t))) (\lambda (H14: (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O x0 (CHead e0 k0 w)))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (u: T).(\lambda (w: @@ -1362,8 +1355,8 @@ K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2)))))))) (\lambda (x2: K).(\lambda (x3: -C).(\lambda (x4: T).(\lambda (x5: T).(\lambda (H14: (eq C e (CHead x3 x2 -x4))).(\lambda (H15: (drop (S n0) O x0 (CHead x3 x2 x5))).(\lambda (H16: +C).(\lambda (x4: T).(\lambda (x5: T).(\lambda (H15: (eq C e (CHead x3 x2 +x4))).(\lambda (H16: (drop (S n0) O x0 (CHead x3 x2 x5))).(\lambda (H17: (subst0 (minus x1 (s x2 (S n0))) v x4 x5)).(eq_ind_r C (CHead x3 x2 x4) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x0 (Flat f) t) c0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 @@ -1408,7 +1401,7 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 k0 w)))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w))))) x2 x3 x4 x5 (refl_equal C (CHead x3 x2 x4)) (drop_drop (Flat f) n0 x0 (CHead -x3 x2 x5) H15 t) H16)) e H14)))))))) H13)) (\lambda (H13: (ex3_4 K C C T +x3 x2 x5) H16 t) H17)) e H15)))))))) H14)) (\lambda (H14: (ex3_4 K C C T (\lambda (k0: K).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 k0 u)))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O x0 (CHead e2 k0 u)))))) (\lambda (k0: @@ -1436,8 +1429,8 @@ C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2)))))))) (\lambda (x2: K).(\lambda (x3: C).(\lambda (x4: -C).(\lambda (x5: T).(\lambda (H14: (eq C e (CHead x3 x2 x5))).(\lambda (H15: -(drop (S n0) O x0 (CHead x4 x2 x5))).(\lambda (H16: (csubst0 (minus x1 (s x2 +C).(\lambda (x5: T).(\lambda (H15: (eq C e (CHead x3 x2 x5))).(\lambda (H16: +(drop (S n0) O x0 (CHead x4 x2 x5))).(\lambda (H17: (csubst0 (minus x1 (s x2 (S n0))) v x3 x4)).(eq_ind_r C (CHead x3 x2 x5) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x0 (Flat f) t) c0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 k0 u)))))) @@ -1481,8 +1474,8 @@ u)))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 k0 u)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2))))) x2 x3 x4 x5 (refl_equal C (CHead x3 x2 -x5)) (drop_drop (Flat f) n0 x0 (CHead x4 x2 x5) H15 t) H16)) e H14)))))))) -H13)) (\lambda (H13: (ex4_5 K C C T T (\lambda (k0: K).(\lambda (e1: +x5)) (drop_drop (Flat f) n0 x0 (CHead x4 x2 x5) H16 t) H17)) e H15)))))))) +H14)) (\lambda (H14: (ex4_5 K C C T T (\lambda (k0: K).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 k0 u))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O x0 (CHead e2 k0 w))))))) (\lambda (k0: @@ -1515,9 +1508,9 @@ C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2)))))))) (\lambda (x2: K).(\lambda (x3: C).(\lambda (x4: C).(\lambda (x5: -T).(\lambda (x6: T).(\lambda (H14: (eq C e (CHead x3 x2 x5))).(\lambda (H15: -(drop (S n0) O x0 (CHead x4 x2 x6))).(\lambda (H16: (subst0 (minus x1 (s x2 -(S n0))) v x5 x6)).(\lambda (H17: (csubst0 (minus x1 (s x2 (S n0))) v x3 +T).(\lambda (x6: T).(\lambda (H15: (eq C e (CHead x3 x2 x5))).(\lambda (H16: +(drop (S n0) O x0 (CHead x4 x2 x6))).(\lambda (H17: (subst0 (minus x1 (s x2 +(S n0))) v x5 x6)).(\lambda (H18: (csubst0 (minus x1 (s x2 (S n0))) v x3 x4)).(eq_ind_r C (CHead x3 x2 x5) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x0 (Flat f) t) c0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 k0 u)))))) (\lambda (k0: @@ -1564,8 +1557,8 @@ C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x1) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Flat f) x1) (s k0 (S n0))) v e1 e2)))))) x2 x3 x4 x5 x6 (refl_equal C (CHead x3 x2 x5)) (drop_drop (Flat f) -n0 x0 (CHead x4 x2 x6) H15 t) H16 H17)) e H14)))))))))) H13)) H12)))))) k -(drop_gen_drop k c e t n0 H2) H7 H8) i H4))) c2 H5)))))) H3)) (\lambda (H3: +n0 x0 (CHead x4 x2 x6) H16 t) H17 H18)) e H15)))))))))) H14)) H13)))))) k +(drop_gen_drop k c e t n0 H2) H8 H9) i H5))) c2 H6)))))) H4)) (\lambda (H4: (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t @@ -1591,8 +1584,8 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead e2 k0 w))))))) T).(subst0 (minus i (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus i (s k0 (S n0))) v e1 e2)))))))) (\lambda (x0: T).(\lambda (x1: C).(\lambda (x2: -nat).(\lambda (H4: (eq nat i (s k x2))).(\lambda (H5: (eq C c2 (CHead x1 k -x0))).(\lambda (_: (subst0 x2 v t x0)).(\lambda (H7: (csubst0 x2 v c +nat).(\lambda (H5: (eq nat i (s k x2))).(\lambda (H6: (eq C c2 (CHead x1 k +x0))).(\lambda (_: (subst0 x2 v t x0)).(\lambda (H8: (csubst0 x2 v c x1)).(eq_ind_r C (CHead x1 k x0) (\lambda (c0: C).(or4 (drop (S n0) O c0 e) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda @@ -1609,7 +1602,7 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c0 (CHead e2 k0 w))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus i (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus i (s k0 -(S n0))) v e1 e2))))))))) (let H8 \def (eq_ind nat i (\lambda (n1: +(S n0))) v e1 e2))))))))) (let H9 \def (eq_ind nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: T).((csubst0 n1 v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (or4 (drop (S n0) O c3 e0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e1: C).(\lambda (u: T).(\lambda (_: T).(eq C e0 @@ -1627,11 +1620,11 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c3 (CHead e2 k0 w))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus n1 (s k0 (S n0))) v0 u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus n1 -(s k0 (S n0))) v0 e1 e2)))))))))))))) H0 (s k x2) H4) in (let H9 \def (eq_ind -nat i (\lambda (n1: nat).(lt (S n0) n1)) H (s k x2) H4) in (eq_ind_r nat (s k -x2) (\lambda (n1: nat).(or4 (drop (S n0) O (CHead x1 k x0) e) (ex3_4 K C T T -(\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e -(CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: +(s k0 (S n0))) v0 e1 e2)))))))))))))) H0 (s k x2) H5) in (let H10 \def +(eq_ind nat i (\lambda (n1: nat).(lt (S n0) n1)) H (s k x2) H5) in (eq_ind_r +nat (s k x2) (\lambda (n1: nat).(or4 (drop (S n0) O (CHead x1 k x0) e) (ex3_4 +K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq +C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 k x0) (CHead e0 k0 w)))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus n1 (s k0 (S n0))) v u w)))))) (ex3_4 K C C T (\lambda (k0: K).(\lambda @@ -1683,7 +1676,7 @@ k1 w))))))) (\lambda (k1: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s k0 x2) (s k1 (S n0))) v u w)))))) (\lambda (k1: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s k0 x2) (s k1 (S n0))) v e1 e2)))))))))))) (\lambda -(b: B).(\lambda (H10: (drop (r (Bind b) n0) O c e)).(\lambda (_: ((\forall +(b: B).(\lambda (H11: (drop (r (Bind b) n0) O c e)).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Bind b) x2) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (or4 (drop (S n0) O c3 e0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e1: C).(\lambda (u: T).(\lambda (_: T).(eq C e0 @@ -1702,8 +1695,8 @@ T).(drop (S n0) O c3 (CHead e2 k0 w))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v0 u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Bind b) x2) (s k0 -(S n0))) v0 e1 e2))))))))))))))).(\lambda (H12: (lt (S n0) (s (Bind b) -x2))).(let H13 \def (IHn x2 (le_S_n (S n0) x2 H12) c x1 v H7 e H10) in +(S n0))) v0 e1 e2))))))))))))))).(\lambda (H13: (lt (S n0) (s (Bind b) +x2))).(let H14 \def (IHn x2 (le_S_n (S n0) x2 H13) c x1 v H8 e H11) in (or4_ind (drop n0 O x1 e) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop n0 O x1 (CHead e0 @@ -1737,7 +1730,7 @@ T).(drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 w))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s -(Bind b) x2) (s k0 (S n0))) v e1 e2)))))))) (\lambda (H14: (drop n0 O x1 +(Bind b) x2) (s k0 (S n0))) v e1 e2)))))))) (\lambda (H15: (drop n0 O x1 e)).(or4_intro0 (drop (S n0) O (CHead x1 (Bind b) x0) e) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: @@ -1756,7 +1749,7 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 (Bind b) x0) C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 -e2))))))) (drop_drop (Bind b) n0 x1 e H14 x0))) (\lambda (H14: (ex3_4 K C T T +e2))))))) (drop_drop (Bind b) n0 x1 e H15 x0))) (\lambda (H15: (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop n0 O x1 (CHead e0 k0 w)))))) (\lambda (k0: @@ -1784,8 +1777,8 @@ C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2)))))))) (\lambda (x3: K).(\lambda (x4: C).(\lambda (x5: -T).(\lambda (x6: T).(\lambda (H15: (eq C e (CHead x4 x3 x5))).(\lambda (H16: -(drop n0 O x1 (CHead x4 x3 x6))).(\lambda (H17: (subst0 (minus x2 (s x3 n0)) +T).(\lambda (x6: T).(\lambda (H16: (eq C e (CHead x4 x3 x5))).(\lambda (H17: +(drop n0 O x1 (CHead x4 x3 x6))).(\lambda (H18: (subst0 (minus x2 (s x3 n0)) v x5 x6)).(eq_ind_r C (CHead x4 x3 x5) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x1 (Bind b) x0) c0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 k0 u)))))) (\lambda @@ -1829,9 +1822,9 @@ u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 k0 w)))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w))))) x3 x4 x5 x6 (refl_equal C (CHead x4 x3 x5)) -(drop_drop (Bind b) n0 x1 (CHead x4 x3 x6) H16 x0) (eq_ind_r nat (S (s x3 -n0)) (\lambda (n1: nat).(subst0 (minus (s (Bind b) x2) n1) v x5 x6)) H17 (s -x3 (S n0)) (s_S x3 n0)))) e H15)))))))) H14)) (\lambda (H14: (ex3_4 K C C T +(drop_drop (Bind b) n0 x1 (CHead x4 x3 x6) H17 x0) (eq_ind_r nat (S (s x3 +n0)) (\lambda (n1: nat).(subst0 (minus (s (Bind b) x2) n1) v x5 x6)) H18 (s +x3 (S n0)) (s_S x3 n0)))) e H16)))))))) H15)) (\lambda (H15: (ex3_4 K C C T (\lambda (k0: K).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 k0 u)))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop n0 O x1 (CHead e2 k0 u)))))) (\lambda (k0: @@ -1859,8 +1852,8 @@ C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2)))))))) (\lambda (x3: K).(\lambda (x4: C).(\lambda (x5: -C).(\lambda (x6: T).(\lambda (H15: (eq C e (CHead x4 x3 x6))).(\lambda (H16: -(drop n0 O x1 (CHead x5 x3 x6))).(\lambda (H17: (csubst0 (minus x2 (s x3 n0)) +C).(\lambda (x6: T).(\lambda (H16: (eq C e (CHead x4 x3 x6))).(\lambda (H17: +(drop n0 O x1 (CHead x5 x3 x6))).(\lambda (H18: (csubst0 (minus x2 (s x3 n0)) v x4 x5)).(eq_ind_r C (CHead x4 x3 x6) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x1 (Bind b) x0) c0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 k0 u)))))) (\lambda @@ -1904,9 +1897,9 @@ u)))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 k0 u)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2))))) x3 x4 x5 x6 (refl_equal C (CHead x4 x3 -x6)) (drop_drop (Bind b) n0 x1 (CHead x5 x3 x6) H16 x0) (eq_ind_r nat (S (s -x3 n0)) (\lambda (n1: nat).(csubst0 (minus (s (Bind b) x2) n1) v x4 x5)) H17 -(s x3 (S n0)) (s_S x3 n0)))) e H15)))))))) H14)) (\lambda (H14: (ex4_5 K C C +x6)) (drop_drop (Bind b) n0 x1 (CHead x5 x3 x6) H17 x0) (eq_ind_r nat (S (s +x3 n0)) (\lambda (n1: nat).(csubst0 (minus (s (Bind b) x2) n1) v x4 x5)) H18 +(s x3 (S n0)) (s_S x3 n0)))) e H16)))))))) H15)) (\lambda (H15: (ex4_5 K C C T T (\lambda (k0: K).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 k0 u))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop n0 O x1 (CHead @@ -1939,9 +1932,9 @@ C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2)))))))) (\lambda (x3: K).(\lambda (x4: C).(\lambda (x5: C).(\lambda (x6: -T).(\lambda (x7: T).(\lambda (H15: (eq C e (CHead x4 x3 x6))).(\lambda (H16: -(drop n0 O x1 (CHead x5 x3 x7))).(\lambda (H17: (subst0 (minus x2 (s x3 n0)) -v x6 x7)).(\lambda (H18: (csubst0 (minus x2 (s x3 n0)) v x4 x5)).(eq_ind_r C +T).(\lambda (x7: T).(\lambda (H16: (eq C e (CHead x4 x3 x6))).(\lambda (H17: +(drop n0 O x1 (CHead x5 x3 x7))).(\lambda (H18: (subst0 (minus x2 (s x3 n0)) +v x6 x7)).(\lambda (H19: (csubst0 (minus x2 (s x3 n0)) v x4 x5)).(eq_ind_r C (CHead x4 x3 x6) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x1 (Bind b) x0) c0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: @@ -1988,11 +1981,11 @@ T).(\lambda (w: T).(subst0 (minus (s (Bind b) x2) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Bind b) x2) (s k0 (S n0))) v e1 e2)))))) x3 x4 x5 x6 x7 (refl_equal C (CHead x4 x3 x6)) (drop_drop (Bind b) n0 x1 (CHead x5 x3 -x7) H16 x0) (eq_ind_r nat (S (s x3 n0)) (\lambda (n1: nat).(subst0 (minus (s -(Bind b) x2) n1) v x6 x7)) H17 (s x3 (S n0)) (s_S x3 n0)) (eq_ind_r nat (S (s -x3 n0)) (\lambda (n1: nat).(csubst0 (minus (s (Bind b) x2) n1) v x4 x5)) H18 -(s x3 (S n0)) (s_S x3 n0)))) e H15)))))))))) H14)) H13)))))) (\lambda (f: -F).(\lambda (H10: (drop (r (Flat f) n0) O c e)).(\lambda (H11: ((\forall (c3: +x7) H17 x0) (eq_ind_r nat (S (s x3 n0)) (\lambda (n1: nat).(subst0 (minus (s +(Bind b) x2) n1) v x6 x7)) H18 (s x3 (S n0)) (s_S x3 n0)) (eq_ind_r nat (S (s +x3 n0)) (\lambda (n1: nat).(csubst0 (minus (s (Bind b) x2) n1) v x4 x5)) H19 +(s x3 (S n0)) (s_S x3 n0)))) e H16)))))))))) H15)) H14)))))) (\lambda (f: +F).(\lambda (H11: (drop (r (Flat f) n0) O c e)).(\lambda (H12: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Flat f) x2) v0 c c3) \to (\forall (e0: C).((drop (S n0) O c e0) \to (or4 (drop (S n0) O c3 e0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e1: C).(\lambda (u: T).(\lambda (_: T).(eq C e0 @@ -2012,7 +2005,7 @@ C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v0 u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v0 e1 e2))))))))))))))).(\lambda (_: (lt (S n0) (s (Flat f) -x2))).(let H13 \def (H11 x1 v H7 e H10) in (or4_ind (drop (S n0) O x1 e) +x2))).(let H14 \def (H12 x1 v H8 e H11) in (or4_ind (drop (S n0) O x1 e) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O x1 (CHead e0 k0 w)))))) (\lambda (k0: @@ -2046,7 +2039,7 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 (Flat f) x0) C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 -e2)))))))) (\lambda (H14: (drop (S n0) O x1 e)).(or4_intro0 (drop (S n0) O +e2)))))))) (\lambda (H15: (drop (S n0) O x1 e)).(or4_intro0 (drop (S n0) O (CHead x1 (Flat f) x0) e) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 @@ -2064,8 +2057,8 @@ T).(drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 w))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s -(Flat f) x2) (s k0 (S n0))) v e1 e2))))))) (drop_drop (Flat f) n0 x1 e H14 -x0))) (\lambda (H14: (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: +(Flat f) x2) (s k0 (S n0))) v e1 e2))))))) (drop_drop (Flat f) n0 x1 e H15 +x0))) (\lambda (H15: (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O x1 (CHead e0 k0 w)))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (u: T).(\lambda (w: @@ -2092,8 +2085,8 @@ K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2)))))))) (\lambda (x3: K).(\lambda (x4: -C).(\lambda (x5: T).(\lambda (x6: T).(\lambda (H15: (eq C e (CHead x4 x3 -x5))).(\lambda (H16: (drop (S n0) O x1 (CHead x4 x3 x6))).(\lambda (H17: +C).(\lambda (x5: T).(\lambda (x6: T).(\lambda (H16: (eq C e (CHead x4 x3 +x5))).(\lambda (H17: (drop (S n0) O x1 (CHead x4 x3 x6))).(\lambda (H18: (subst0 (minus x2 (s x3 (S n0))) v x5 x6)).(eq_ind_r C (CHead x4 x3 x5) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x1 (Flat f) x0) c0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 @@ -2138,7 +2131,7 @@ K).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 k0 w)))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w))))) x3 x4 x5 x6 (refl_equal C (CHead x4 x3 x5)) (drop_drop (Flat f) n0 x1 -(CHead x4 x3 x6) H16 x0) H17)) e H15)))))))) H14)) (\lambda (H14: (ex3_4 K C +(CHead x4 x3 x6) H17 x0) H18)) e H16)))))))) H15)) (\lambda (H15: (ex3_4 K C C T (\lambda (k0: K).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 k0 u)))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O x1 (CHead e2 k0 u)))))) (\lambda (k0: @@ -2166,8 +2159,8 @@ C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2)))))))) (\lambda (x3: K).(\lambda (x4: C).(\lambda (x5: -C).(\lambda (x6: T).(\lambda (H15: (eq C e (CHead x4 x3 x6))).(\lambda (H16: -(drop (S n0) O x1 (CHead x5 x3 x6))).(\lambda (H17: (csubst0 (minus x2 (s x3 +C).(\lambda (x6: T).(\lambda (H16: (eq C e (CHead x4 x3 x6))).(\lambda (H17: +(drop (S n0) O x1 (CHead x5 x3 x6))).(\lambda (H18: (csubst0 (minus x2 (s x3 (S n0))) v x4 x5)).(eq_ind_r C (CHead x4 x3 x6) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x1 (Flat f) x0) c0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 k0 u)))))) @@ -2212,7 +2205,7 @@ K).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 k0 u)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2))))) x3 x4 x5 x6 (refl_equal C (CHead x4 x3 x6)) (drop_drop (Flat f) n0 x1 -(CHead x5 x3 x6) H16 x0) H17)) e H15)))))))) H14)) (\lambda (H14: (ex4_5 K C +(CHead x5 x3 x6) H17 x0) H18)) e H16)))))))) H15)) (\lambda (H15: (ex4_5 K C C T T (\lambda (k0: K).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 k0 u))))))) (\lambda (k0: K).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O x1 @@ -2245,10 +2238,10 @@ K).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2)))))))) (\lambda (x3: K).(\lambda (x4: -C).(\lambda (x5: C).(\lambda (x6: T).(\lambda (x7: T).(\lambda (H15: (eq C e -(CHead x4 x3 x6))).(\lambda (H16: (drop (S n0) O x1 (CHead x5 x3 -x7))).(\lambda (H17: (subst0 (minus x2 (s x3 (S n0))) v x6 x7)).(\lambda -(H18: (csubst0 (minus x2 (s x3 (S n0))) v x4 x5)).(eq_ind_r C (CHead x4 x3 +C).(\lambda (x5: C).(\lambda (x6: T).(\lambda (x7: T).(\lambda (H16: (eq C e +(CHead x4 x3 x6))).(\lambda (H17: (drop (S n0) O x1 (CHead x5 x3 +x7))).(\lambda (H18: (subst0 (minus x2 (s x3 (S n0))) v x6 x7)).(\lambda +(H19: (csubst0 (minus x2 (s x3 (S n0))) v x4 x5)).(eq_ind_r C (CHead x4 x3 x6) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x1 (Flat f) x0) c0) (ex3_4 K C T T (\lambda (k0: K).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 k0 u)))))) (\lambda (k0: K).(\lambda (e0: C).(\lambda (_: @@ -2295,12 +2288,8 @@ T).(\lambda (w: T).(subst0 (minus (s (Flat f) x2) (s k0 (S n0))) v u w)))))) (\lambda (k0: K).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus (s (Flat f) x2) (s k0 (S n0))) v e1 e2)))))) x3 x4 x5 x6 x7 (refl_equal C (CHead x4 x3 x6)) (drop_drop (Flat f) n0 x1 (CHead x5 x3 -x7) H16 x0) H17 H18)) e H15)))))))))) H14)) H13)))))) k (drop_gen_drop k c e -t n0 H2) H8 H9) i H4))) c2 H5)))))))) H3)) (csubst0_gen_head k c c2 t v i -H1))))))))))) c1)))))) n). -(* COMMENTS -Initial nodes: 39886 -END *) +x7) H17 x0) H18 H19)) e H16)))))))))) H15)) H14)))))) k (drop_gen_drop k c e +t n0 H2) H9 H10) i H5))) c2 H6)))))))) H4)) H3))))))))))) c1)))))) n). theorem csubst0_drop_eq: \forall (n: nat).(\forall (c1: C).(\forall (c2: C).(\forall (v: T).((csubst0 @@ -2411,35 +2400,35 @@ F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (s k0 i) v0 e1 e2)))))))))))))))) (\lambda (b: B).(\lambda (i: nat).(\lambda (v0: T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (subst0 i v0 u1 u2)).(\lambda (c: C).(\lambda (H3: (eq nat (S i) O)).(let H4 \def (eq_ind nat -(S i) (\lambda (ee: nat).(match ee in nat return (\lambda (_: nat).Prop) with -[O \Rightarrow False | (S _) \Rightarrow True])) I O H3) in (False_ind (or4 -(drop (S i) (S i) (CHead c (Bind b) u2) (CHead c (Bind b) u1)) (ex3_4 F C T T -(\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C (CHead -c (Bind b) u1) (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (w: T).(drop (S i) (S i) (CHead c (Bind b) u2) -(CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: -T).(\lambda (w: T).(subst0 (S i) v0 u w)))))) (ex3_4 F C C T (\lambda (f: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C (CHead c (Bind b) -u1) (CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(drop (S i) (S i) (CHead c (Bind b) u2) (CHead e2 (Flat f) -u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(csubst0 (S i) v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda -(e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C (CHead c (Bind -b) u1) (CHead e1 (Flat f) u))))))) (\lambda (f: F).(\lambda (_: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S i) (S i) (CHead c (Bind b) -u2) (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: -C).(\lambda (u: T).(\lambda (w: T).(subst0 (S i) v0 u w)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -(S i) v0 e1 e2)))))))) H4)))))))))) (\lambda (f: F).(\lambda (i: -nat).(\lambda (v0: T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H2: (subst0 -i v0 u1 u2)).(\lambda (c: C).(\lambda (H3: (eq nat i O)).(let H4 \def (eq_ind -nat i (\lambda (n0: nat).(subst0 n0 v0 u1 u2)) H2 O H3) in (eq_ind_r nat O -(\lambda (n0: nat).(or4 (drop n0 n0 (CHead c (Flat f) u2) (CHead c (Flat f) -u1)) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: -T).(\lambda (_: T).(eq C (CHead c (Flat f) u1) (CHead e0 (Flat f0) u)))))) -(\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop n0 n0 -(CHead c (Flat f) u2) (CHead e0 (Flat f0) w)))))) (\lambda (_: F).(\lambda -(_: C).(\lambda (u: T).(\lambda (w: T).(subst0 n0 v0 u w)))))) (ex3_4 F C C T +(S i) (\lambda (ee: nat).(match ee with [O \Rightarrow False | (S _) +\Rightarrow True])) I O H3) in (False_ind (or4 (drop (S i) (S i) (CHead c +(Bind b) u2) (CHead c (Bind b) u1)) (ex3_4 F C T T (\lambda (f: F).(\lambda +(e0: C).(\lambda (u: T).(\lambda (_: T).(eq C (CHead c (Bind b) u1) (CHead e0 +(Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda +(w: T).(drop (S i) (S i) (CHead c (Bind b) u2) (CHead e0 (Flat f) w)))))) +(\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (S i) +v0 u w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u: T).(eq C (CHead c (Bind b) u1) (CHead e1 (Flat f) u)))))) +(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S i) +(S i) (CHead c (Bind b) u2) (CHead e2 (Flat f) u)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (S i) v0 e1 +e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u: T).(\lambda (_: T).(eq C (CHead c (Bind b) u1) (CHead e1 +(Flat f) u))))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (w: T).(drop (S i) (S i) (CHead c (Bind b) u2) (CHead e2 +(Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda +(u: T).(\lambda (w: T).(subst0 (S i) v0 u w)))))) (\lambda (_: F).(\lambda +(e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (S i) v0 e1 +e2)))))))) H4)))))))))) (\lambda (f: F).(\lambda (i: nat).(\lambda (v0: +T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H2: (subst0 i v0 u1 +u2)).(\lambda (c: C).(\lambda (H3: (eq nat i O)).(let H4 \def (eq_ind nat i +(\lambda (n0: nat).(subst0 n0 v0 u1 u2)) H2 O H3) in (eq_ind_r nat O (\lambda +(n0: nat).(or4 (drop n0 n0 (CHead c (Flat f) u2) (CHead c (Flat f) u1)) +(ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: +T).(eq C (CHead c (Flat f) u1) (CHead e0 (Flat f0) u)))))) (\lambda (f0: +F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop n0 n0 (CHead c +(Flat f) u2) (CHead e0 (Flat f0) w)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u: T).(\lambda (w: T).(subst0 n0 v0 u w)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C (CHead c (Flat f) u1) (CHead e1 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop n0 n0 (CHead c (Flat f) u2) @@ -2528,141 +2517,141 @@ T).(drop i i c4 (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 i v0 u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v0 e1 e2))))))))))).(\lambda (u: T).(\lambda (H4: (eq nat -(S i) O)).(let H5 \def (eq_ind nat (S i) (\lambda (ee: nat).(match ee in nat -return (\lambda (_: nat).Prop) with [O \Rightarrow False | (S _) \Rightarrow -True])) I O H4) in (False_ind (or4 (drop (S i) (S i) (CHead c4 (Bind b) u) -(CHead c3 (Bind b) u)) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: -C).(\lambda (u0: T).(\lambda (_: T).(eq C (CHead c3 (Bind b) u) (CHead e0 -(Flat f) u0)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda -(w: T).(drop (S i) (S i) (CHead c4 (Bind b) u) (CHead e0 (Flat f) w)))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (u0: T).(\lambda (w: T).(subst0 (S -i) v0 u0 w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u0: T).(eq C (CHead c3 (Bind b) u) (CHead e1 (Flat f) u0)))))) -(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u0: T).(drop (S i) -(S i) (CHead c4 (Bind b) u) (CHead e2 (Flat f) u0)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (S i) v0 e1 -e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u0: T).(\lambda (_: T).(eq C (CHead c3 (Bind b) u) (CHead e1 -(Flat f) u0))))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (w: T).(drop (S i) (S i) (CHead c4 (Bind b) u) (CHead e2 -(Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda -(u0: T).(\lambda (w: T).(subst0 (S i) v0 u0 w)))))) (\lambda (_: F).(\lambda -(e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (S i) v0 e1 -e2)))))))) H5))))))))))) (\lambda (f: F).(\lambda (i: nat).(\lambda (c3: -C).(\lambda (c4: C).(\lambda (v0: T).(\lambda (H2: (csubst0 i v0 c3 -c4)).(\lambda (H3: (((eq nat i O) \to (or4 (drop i i c4 c3) (ex3_4 F C T T -(\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c3 -(CHead e0 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: -T).(\lambda (w: T).(drop i i c4 (CHead e0 (Flat f0) w)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 i v0 u w)))))) -(ex3_4 F C C T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(eq C c3 (CHead e1 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(drop i i c4 (CHead e2 (Flat f0) u)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i -v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (e1: C).(\lambda -(_: C).(\lambda (u: T).(\lambda (_: T).(eq C c3 (CHead e1 (Flat f0) u))))))) +(S i) O)).(let H5 \def (eq_ind nat (S i) (\lambda (ee: nat).(match ee with [O +\Rightarrow False | (S _) \Rightarrow True])) I O H4) in (False_ind (or4 +(drop (S i) (S i) (CHead c4 (Bind b) u) (CHead c3 (Bind b) u)) (ex3_4 F C T T +(\lambda (f: F).(\lambda (e0: C).(\lambda (u0: T).(\lambda (_: T).(eq C +(CHead c3 (Bind b) u) (CHead e0 (Flat f) u0)))))) (\lambda (f: F).(\lambda +(e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S i) (S i) (CHead c4 (Bind b) +u) (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u0: +T).(\lambda (w: T).(subst0 (S i) v0 u0 w)))))) (ex3_4 F C C T (\lambda (f: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u0: T).(eq C (CHead c3 (Bind b) +u) (CHead e1 (Flat f) u0)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (u0: T).(drop (S i) (S i) (CHead c4 (Bind b) u) (CHead e2 (Flat +f) u0)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(csubst0 (S i) v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda +(e1: C).(\lambda (_: C).(\lambda (u0: T).(\lambda (_: T).(eq C (CHead c3 +(Bind b) u) (CHead e1 (Flat f) u0))))))) (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S i) (S i) (CHead +c4 (Bind b) u) (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (_: C).(\lambda (u0: T).(\lambda (w: T).(subst0 (S i) v0 u0 +w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (_: T).(csubst0 (S i) v0 e1 e2)))))))) H5))))))))))) (\lambda (f: +F).(\lambda (i: nat).(\lambda (c3: C).(\lambda (c4: C).(\lambda (v0: +T).(\lambda (H2: (csubst0 i v0 c3 c4)).(\lambda (H3: (((eq nat i O) \to (or4 +(drop i i c4 c3) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda +(u: T).(\lambda (_: T).(eq C c3 (CHead e0 (Flat f0) u)))))) (\lambda (f0: +F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop i i c4 (CHead e0 +(Flat f0) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda +(w: T).(subst0 i v0 u w)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u: T).(eq C c3 (CHead e1 (Flat f0) u)))))) +(\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop i i +c4 (CHead e2 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 i v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C c3 +(CHead e1 (Flat f0) u))))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (w: T).(drop i i c4 (CHead e2 (Flat f0) w))))))) +(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: +T).(subst0 i v0 u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v0 e1 e2))))))))))).(\lambda +(u: T).(\lambda (H4: (eq nat i O)).(let H5 \def (eq_ind nat i (\lambda (n0: +nat).((eq nat n0 O) \to (or4 (drop n0 n0 c4 c3) (ex3_4 F C T T (\lambda (f0: +F).(\lambda (e0: C).(\lambda (u0: T).(\lambda (_: T).(eq C c3 (CHead e0 (Flat +f0) u0)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: +T).(drop n0 n0 c4 (CHead e0 (Flat f0) w)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u0: T).(\lambda (w: T).(subst0 n0 v0 u0 w)))))) (ex3_4 F C C T +(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u0: T).(eq C c3 +(CHead e1 (Flat f0) u0)))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (u0: T).(drop n0 n0 c4 (CHead e2 (Flat f0) u0)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 n0 v0 e1 +e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u0: T).(\lambda (_: T).(eq C c3 (CHead e1 (Flat f0) u0))))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(w: T).(drop i i c4 (CHead e2 (Flat f0) w))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 i v0 u w)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 i v0 e1 e2))))))))))).(\lambda (u: T).(\lambda (H4: (eq nat i -O)).(let H5 \def (eq_ind nat i (\lambda (n0: nat).((eq nat n0 O) \to (or4 -(drop n0 n0 c4 c3) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda -(u0: T).(\lambda (_: T).(eq C c3 (CHead e0 (Flat f0) u0)))))) (\lambda (f0: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop n0 n0 c4 (CHead e0 -(Flat f0) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u0: T).(\lambda -(w: T).(subst0 n0 v0 u0 w)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u0: T).(eq C c3 (CHead e1 (Flat f0) u0)))))) -(\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u0: T).(drop n0 -n0 c4 (CHead e2 (Flat f0) u0)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(csubst0 n0 v0 e1 e2)))))) (ex4_5 F C C T T (\lambda -(f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u0: T).(\lambda (_: T).(eq -C c3 (CHead e1 (Flat f0) u0))))))) (\lambda (f0: F).(\lambda (_: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (w: T).(drop n0 n0 c4 (CHead e2 (Flat f0) -w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u0: -T).(\lambda (w: T).(subst0 n0 v0 u0 w)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 n0 v0 e1 -e2)))))))))) H3 O H4) in (let H6 \def (eq_ind nat i (\lambda (n0: -nat).(csubst0 n0 v0 c3 c4)) H2 O H4) in (eq_ind_r nat O (\lambda (n0: -nat).(or4 (drop n0 n0 (CHead c4 (Flat f) u) (CHead c3 (Flat f) u)) (ex3_4 F C -T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u0: T).(\lambda (_: T).(eq C -(CHead c3 (Flat f) u) (CHead e0 (Flat f0) u0)))))) (\lambda (f0: F).(\lambda -(e0: C).(\lambda (_: T).(\lambda (w: T).(drop n0 n0 (CHead c4 (Flat f) u) -(CHead e0 (Flat f0) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u0: -T).(\lambda (w: T).(subst0 n0 v0 u0 w)))))) (ex3_4 F C C T (\lambda (f0: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u0: T).(eq C (CHead c3 (Flat f) -u) (CHead e1 (Flat f0) u0)))))) (\lambda (f0: F).(\lambda (_: C).(\lambda -(e2: C).(\lambda (u0: T).(drop n0 n0 (CHead c4 (Flat f) u) (CHead e2 (Flat -f0) u0)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(csubst0 n0 v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u0: T).(\lambda (_: T).(eq C (CHead c3 (Flat f) -u) (CHead e1 (Flat f0) u0))))))) (\lambda (f0: F).(\lambda (_: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (w: T).(drop n0 n0 (CHead c4 (Flat f) u) -(CHead e2 (Flat f0) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: -C).(\lambda (u0: T).(\lambda (w: T).(subst0 n0 v0 u0 w)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -n0 v0 e1 e2))))))))) (or4_intro2 (drop O O (CHead c4 (Flat f) u) (CHead c3 +(w: T).(drop n0 n0 c4 (CHead e2 (Flat f0) w))))))) (\lambda (_: F).(\lambda +(_: C).(\lambda (_: C).(\lambda (u0: T).(\lambda (w: T).(subst0 n0 v0 u0 +w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (_: T).(csubst0 n0 v0 e1 e2)))))))))) H3 O H4) in (let H6 \def +(eq_ind nat i (\lambda (n0: nat).(csubst0 n0 v0 c3 c4)) H2 O H4) in (eq_ind_r +nat O (\lambda (n0: nat).(or4 (drop n0 n0 (CHead c4 (Flat f) u) (CHead c3 (Flat f) u)) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u0: T).(\lambda (_: T).(eq C (CHead c3 (Flat f) u) (CHead e0 (Flat f0) u0)))))) -(\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop O O +(\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop n0 n0 (CHead c4 (Flat f) u) (CHead e0 (Flat f0) w)))))) (\lambda (_: F).(\lambda -(_: C).(\lambda (u0: T).(\lambda (w: T).(subst0 O v0 u0 w)))))) (ex3_4 F C C +(_: C).(\lambda (u0: T).(\lambda (w: T).(subst0 n0 v0 u0 w)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u0: T).(eq C (CHead c3 (Flat f) u) (CHead e1 (Flat f0) u0)))))) (\lambda (f0: F).(\lambda -(_: C).(\lambda (e2: C).(\lambda (u0: T).(drop O O (CHead c4 (Flat f) u) +(_: C).(\lambda (e2: C).(\lambda (u0: T).(drop n0 n0 (CHead c4 (Flat f) u) (CHead e2 (Flat f0) u0)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: -C).(\lambda (_: T).(csubst0 O v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: +C).(\lambda (_: T).(csubst0 n0 v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u0: T).(\lambda (_: T).(eq C (CHead c3 (Flat f) u) (CHead e1 (Flat f0) u0))))))) (\lambda (f0: F).(\lambda -(_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop O O (CHead c4 +(_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop n0 n0 (CHead c4 (Flat f) u) (CHead e2 (Flat f0) w))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u0: T).(\lambda (w: T).(subst0 O v0 u0 w)))))) +C).(\lambda (_: C).(\lambda (u0: T).(\lambda (w: T).(subst0 n0 v0 u0 w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v0 e1 e2))))))) (ex3_4_intro F C C T (\lambda (f0: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u0: T).(eq C (CHead c3 (Flat f) -u) (CHead e1 (Flat f0) u0)))))) (\lambda (f0: F).(\lambda (_: C).(\lambda -(e2: C).(\lambda (u0: T).(drop O O (CHead c4 (Flat f) u) (CHead e2 (Flat f0) -u0)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(csubst0 O v0 e1 e2))))) f c3 c4 u (refl_equal C (CHead c3 (Flat f) u)) -(drop_refl (CHead c4 (Flat f) u)) H6)) i H4)))))))))))) k)) (\lambda (k: -K).(K_ind (\lambda (k0: K).(\forall (i: nat).(\forall (v0: T).(\forall (u1: -T).(\forall (u2: T).((subst0 i v0 u1 u2) \to (\forall (c3: C).(\forall (c4: -C).((csubst0 i v0 c3 c4) \to ((((eq nat i O) \to (or4 (drop i i c4 c3) (ex3_4 -F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq -C c3 (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: -T).(\lambda (w: T).(drop i i c4 (CHead e0 (Flat f) w)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 i v0 u w)))))) -(ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(eq C c3 (CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(drop i i c4 (CHead e2 (Flat f) u)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i -v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u: T).(\lambda (_: T).(eq C c3 (CHead e1 (Flat f) u))))))) +(_: T).(csubst0 n0 v0 e1 e2))))))))) (or4_intro2 (drop O O (CHead c4 (Flat f) +u) (CHead c3 (Flat f) u)) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: +C).(\lambda (u0: T).(\lambda (_: T).(eq C (CHead c3 (Flat f) u) (CHead e0 +(Flat f0) u0)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda +(w: T).(drop O O (CHead c4 (Flat f) u) (CHead e0 (Flat f0) w)))))) (\lambda +(_: F).(\lambda (_: C).(\lambda (u0: T).(\lambda (w: T).(subst0 O v0 u0 +w)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u0: T).(eq C (CHead c3 (Flat f) u) (CHead e1 (Flat f0) u0)))))) +(\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u0: T).(drop O O +(CHead c4 (Flat f) u) (CHead e2 (Flat f0) u0)))))) (\lambda (_: F).(\lambda +(e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v0 e1 e2)))))) (ex4_5 F C +C T T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u0: +T).(\lambda (_: T).(eq C (CHead c3 (Flat f) u) (CHead e1 (Flat f0) u0))))))) +(\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda +(w: T).(drop O O (CHead c4 (Flat f) u) (CHead e2 (Flat f0) w))))))) (\lambda +(_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u0: T).(\lambda (w: +T).(subst0 O v0 u0 w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v0 e1 e2))))))) (ex3_4_intro F +C C T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u0: T).(eq +C (CHead c3 (Flat f) u) (CHead e1 (Flat f0) u0)))))) (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u0: T).(drop O O (CHead c4 +(Flat f) u) (CHead e2 (Flat f0) u0)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v0 e1 e2))))) f c3 c4 u +(refl_equal C (CHead c3 (Flat f) u)) (drop_refl (CHead c4 (Flat f) u)) H6)) i +H4)))))))))))) k)) (\lambda (k: K).(K_ind (\lambda (k0: K).(\forall (i: +nat).(\forall (v0: T).(\forall (u1: T).(\forall (u2: T).((subst0 i v0 u1 u2) +\to (\forall (c3: C).(\forall (c4: C).((csubst0 i v0 c3 c4) \to ((((eq nat i +O) \to (or4 (drop i i c4 c3) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: +C).(\lambda (u: T).(\lambda (_: T).(eq C c3 (CHead e0 (Flat f) u)))))) +(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop i i c4 +(CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: +T).(\lambda (w: T).(subst0 i v0 u w)))))) (ex3_4 F C C T (\lambda (f: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C c3 (CHead e1 (Flat +f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: +T).(drop i i c4 (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i v0 e1 e2)))))) (ex4_5 F C C T +T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda +(_: T).(eq C c3 (CHead e1 (Flat f) u))))))) (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop i i c4 (CHead e2 +(Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda +(u: T).(\lambda (w: T).(subst0 i v0 u w)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v0 e1 +e2)))))))))) \to ((eq nat (s k0 i) O) \to (or4 (drop (s k0 i) (s k0 i) (CHead +c4 k0 u2) (CHead c3 k0 u1)) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: +C).(\lambda (u: T).(\lambda (_: T).(eq C (CHead c3 k0 u1) (CHead e0 (Flat f) +u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: +T).(drop (s k0 i) (s k0 i) (CHead c4 k0 u2) (CHead e0 (Flat f) w)))))) +(\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (s k0 +i) v0 u w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u: T).(eq C (CHead c3 k0 u1) (CHead e1 (Flat f) u)))))) (\lambda +(f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (s k0 i) (s k0 +i) (CHead c4 k0 u2) (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (s k0 i) v0 e1 e2)))))) (ex4_5 F +C C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: +T).(\lambda (_: T).(eq C (CHead c3 k0 u1) (CHead e1 (Flat f) u))))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: -T).(drop i i c4 (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 i v0 u w)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 i v0 e1 e2)))))))))) \to ((eq nat (s k0 i) O) \to (or4 (drop -(s k0 i) (s k0 i) (CHead c4 k0 u2) (CHead c3 k0 u1)) (ex3_4 F C T T (\lambda -(f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C (CHead c3 k0 -u1) (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: -T).(\lambda (w: T).(drop (s k0 i) (s k0 i) (CHead c4 k0 u2) (CHead e0 (Flat -f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: -T).(subst0 (s k0 i) v0 u w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(eq C (CHead c3 k0 u1) (CHead e1 (Flat f) -u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: -T).(drop (s k0 i) (s k0 i) (CHead c4 k0 u2) (CHead e2 (Flat f) u)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (s -k0 i) v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C (CHead c3 k0 u1) -(CHead e1 (Flat f) u))))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (w: T).(drop (s k0 i) (s k0 i) (CHead c4 k0 u2) -(CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: -C).(\lambda (u: T).(\lambda (w: T).(subst0 (s k0 i) v0 u w)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -(s k0 i) v0 e1 e2))))))))))))))))))) (\lambda (b: B).(\lambda (i: -nat).(\lambda (v0: T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (subst0 -i v0 u1 u2)).(\lambda (c3: C).(\lambda (c4: C).(\lambda (_: (csubst0 i v0 c3 +T).(drop (s k0 i) (s k0 i) (CHead c4 k0 u2) (CHead e2 (Flat f) w))))))) +(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: +T).(subst0 (s k0 i) v0 u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda +(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (s k0 i) v0 e1 +e2))))))))))))))))))) (\lambda (b: B).(\lambda (i: nat).(\lambda (v0: +T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (subst0 i v0 u1 +u2)).(\lambda (c3: C).(\lambda (c4: C).(\lambda (_: (csubst0 i v0 c3 c4)).(\lambda (_: (((eq nat i O) \to (or4 (drop i i c4 c3) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c3 (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: @@ -2679,65 +2668,64 @@ T).(drop i i c4 (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 i v0 u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v0 e1 e2))))))))))).(\lambda (H5: (eq nat (S i) O)).(let H6 -\def (eq_ind nat (S i) (\lambda (ee: nat).(match ee in nat return (\lambda -(_: nat).Prop) with [O \Rightarrow False | (S _) \Rightarrow True])) I O H5) -in (False_ind (or4 (drop (S i) (S i) (CHead c4 (Bind b) u2) (CHead c3 (Bind -b) u1)) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: -T).(\lambda (_: T).(eq C (CHead c3 (Bind b) u1) (CHead e0 (Flat f) u)))))) -(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S i) -(S i) (CHead c4 (Bind b) u2) (CHead e0 (Flat f) w)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (S i) v0 u w)))))) -(ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(eq C (CHead c3 (Bind b) u1) (CHead e1 (Flat f) u)))))) (\lambda (f: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S i) (S i) (CHead -c4 (Bind b) u2) (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (S i) v0 e1 e2)))))) (ex4_5 F C -C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(\lambda (_: T).(eq C (CHead c3 (Bind b) u1) (CHead e1 (Flat f) u))))))) -(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: -T).(drop (S i) (S i) (CHead c4 (Bind b) u2) (CHead e2 (Flat f) w))))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: -T).(subst0 (S i) v0 u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (_: T).(csubst0 (S i) v0 e1 e2)))))))) -H6))))))))))))) (\lambda (f: F).(\lambda (i: nat).(\lambda (v0: T).(\lambda -(u1: T).(\lambda (u2: T).(\lambda (H2: (subst0 i v0 u1 u2)).(\lambda (c3: -C).(\lambda (c4: C).(\lambda (H3: (csubst0 i v0 c3 c4)).(\lambda (H4: (((eq -nat i O) \to (or4 (drop i i c4 c3) (ex3_4 F C T T (\lambda (f0: F).(\lambda -(e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c3 (CHead e0 (Flat f0) u)))))) -(\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop i i -c4 (CHead e0 (Flat f0) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: -T).(\lambda (w: T).(subst0 i v0 u w)))))) (ex3_4 F C C T (\lambda (f0: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C c3 (CHead e1 (Flat -f0) u)))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: -T).(drop i i c4 (CHead e2 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i v0 e1 e2)))))) (ex4_5 F C C T -T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda -(_: T).(eq C c3 (CHead e1 (Flat f0) u))))))) (\lambda (f0: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop i i c4 (CHead e2 -(Flat f0) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda -(u: T).(\lambda (w: T).(subst0 i v0 u w)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v0 e1 -e2))))))))))).(\lambda (H5: (eq nat i O)).(let H6 \def (eq_ind nat i (\lambda -(n0: nat).((eq nat n0 O) \to (or4 (drop n0 n0 c4 c3) (ex3_4 F C T T (\lambda -(f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c3 (CHead e0 -(Flat f0) u)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda -(w: T).(drop n0 n0 c4 (CHead e0 (Flat f0) w)))))) (\lambda (_: F).(\lambda -(_: C).(\lambda (u: T).(\lambda (w: T).(subst0 n0 v0 u w)))))) (ex3_4 F C C T -(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C c3 -(CHead e1 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(drop n0 n0 c4 (CHead e2 (Flat f0) u)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 n0 v0 e1 -e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u: T).(\lambda (_: T).(eq C c3 (CHead e1 (Flat f0) u))))))) +\def (eq_ind nat (S i) (\lambda (ee: nat).(match ee with [O \Rightarrow False +| (S _) \Rightarrow True])) I O H5) in (False_ind (or4 (drop (S i) (S i) +(CHead c4 (Bind b) u2) (CHead c3 (Bind b) u1)) (ex3_4 F C T T (\lambda (f: +F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C (CHead c3 (Bind b) +u1) (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: +T).(\lambda (w: T).(drop (S i) (S i) (CHead c4 (Bind b) u2) (CHead e0 (Flat +f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: +T).(subst0 (S i) v0 u w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u: T).(eq C (CHead c3 (Bind b) u1) (CHead e1 +(Flat f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda +(u: T).(drop (S i) (S i) (CHead c4 (Bind b) u2) (CHead e2 (Flat f) u)))))) +(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (S +i) v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: C).(\lambda +(_: C).(\lambda (u: T).(\lambda (_: T).(eq C (CHead c3 (Bind b) u1) (CHead e1 +(Flat f) u))))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (w: T).(drop (S i) (S i) (CHead c4 (Bind b) u2) (CHead e2 +(Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda +(u: T).(\lambda (w: T).(subst0 (S i) v0 u w)))))) (\lambda (_: F).(\lambda +(e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 (S i) v0 e1 +e2)))))))) H6))))))))))))) (\lambda (f: F).(\lambda (i: nat).(\lambda (v0: +T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H2: (subst0 i v0 u1 +u2)).(\lambda (c3: C).(\lambda (c4: C).(\lambda (H3: (csubst0 i v0 c3 +c4)).(\lambda (H4: (((eq nat i O) \to (or4 (drop i i c4 c3) (ex3_4 F C T T +(\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c3 +(CHead e0 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: +T).(\lambda (w: T).(drop i i c4 (CHead e0 (Flat f0) w)))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 i v0 u w)))))) +(ex3_4 F C C T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: +T).(eq C c3 (CHead e1 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(drop i i c4 (CHead e2 (Flat f0) u)))))) +(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i +v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (e1: C).(\lambda +(_: C).(\lambda (u: T).(\lambda (_: T).(eq C c3 (CHead e1 (Flat f0) u))))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(w: T).(drop n0 n0 c4 (CHead e2 (Flat f0) w))))))) (\lambda (_: F).(\lambda -(_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 n0 v0 u -w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (_: T).(csubst0 n0 v0 e1 e2)))))))))) H4 O H5) in (let H7 \def -(eq_ind nat i (\lambda (n0: nat).(csubst0 n0 v0 c3 c4)) H3 O H5) in (let H8 -\def (eq_ind nat i (\lambda (n0: nat).(subst0 n0 v0 u1 u2)) H2 O H5) in -(eq_ind_r nat O (\lambda (n0: nat).(or4 (drop n0 n0 (CHead c4 (Flat f) u2) -(CHead c3 (Flat f) u1)) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: +(w: T).(drop i i c4 (CHead e2 (Flat f0) w))))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 i v0 u w)))))) +(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda +(_: T).(csubst0 i v0 e1 e2))))))))))).(\lambda (H5: (eq nat i O)).(let H6 +\def (eq_ind nat i (\lambda (n0: nat).((eq nat n0 O) \to (or4 (drop n0 n0 c4 +c3) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda +(_: T).(eq C c3 (CHead e0 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e0: +C).(\lambda (_: T).(\lambda (w: T).(drop n0 n0 c4 (CHead e0 (Flat f0) w)))))) +(\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 n0 v0 +u w)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u: T).(eq C c3 (CHead e1 (Flat f0) u)))))) (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop n0 n0 c4 (CHead e2 +(Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(csubst0 n0 v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda +(e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C c3 (CHead e1 +(Flat f0) u))))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (w: T).(drop n0 n0 c4 (CHead e2 (Flat f0) w))))))) (\lambda +(_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: +T).(subst0 n0 v0 u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (_: T).(csubst0 n0 v0 e1 e2)))))))))) H4 O H5) in +(let H7 \def (eq_ind nat i (\lambda (n0: nat).(csubst0 n0 v0 c3 c4)) H3 O H5) +in (let H8 \def (eq_ind nat i (\lambda (n0: nat).(subst0 n0 v0 u1 u2)) H2 O +H5) in (eq_ind_r nat O (\lambda (n0: nat).(or4 (drop n0 n0 (CHead c4 (Flat f) +u2) (CHead c3 (Flat f) u1)) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C (CHead c3 (Flat f) u1) (CHead e0 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop n0 n0 (CHead c4 (Flat f) u2) (CHead e0 (Flat f0) w)))))) @@ -2850,56 +2838,28 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 -e2))))))))) (let H4 \def (eq_ind nat (S n0) (\lambda (ee: nat).(match ee in -nat return (\lambda (_: nat).Prop) with [O \Rightarrow False | (S _) -\Rightarrow True])) I O H2) in (False_ind (or4 (drop (S n0) O c2 (CSort n1)) -(ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: -T).(eq C (CSort n1) (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead e0 (Flat f) -w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: -T).(subst0 O v u w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(eq C (CSort n1) (CHead e1 (Flat f) -u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: -T).(drop (S n0) O c2 (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T -(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: -T).(eq C (CSort n1) (CHead e1 (Flat f) u))))))) (\lambda (f: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead -e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda -(u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 -e2)))))))) H4)) e H1)))) (drop_gen_sort n1 (S n0) O e H0)))))))) (\lambda (c: -C).(\lambda (H: ((\forall (c2: C).(\forall (v: T).((csubst0 (S n0) v c c2) -\to (\forall (e: C).((drop (S n0) O c e) \to (or4 (drop (S n0) O c2 e) (ex3_4 -F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq -C e (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: -T).(\lambda (w: T).(drop (S n0) O c2 (CHead e0 (Flat f) w)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) -(ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(eq C e (CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O c2 (CHead e2 (Flat f) -u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f) -u))))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (w: T).(drop (S n0) O c2 (CHead e2 (Flat f) w))))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O -v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (_: T).(csubst0 O v e1 e2))))))))))))))).(\lambda (k: K).(\lambda -(t: T).(\lambda (c2: C).(\lambda (v: T).(\lambda (H0: (csubst0 (S n0) v -(CHead c k t) c2)).(\lambda (e: C).(\lambda (H1: (drop (S n0) O (CHead c k t) -e)).(or3_ind (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat (S n0) (s -k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) -(\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2)))) (ex3_2 C nat (\lambda -(_: C).(\lambda (j: nat).(eq nat (S n0) (s k j)))) (\lambda (c3: C).(\lambda -(_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: -nat).(csubst0 j v c c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: -C).(\lambda (j: nat).(eq nat (S n0) (s k j))))) (\lambda (u2: T).(\lambda -(c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: -T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: -T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))) (or4 (drop (S -n0) O c2 e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: -T).(\lambda (_: T).(eq C e (CHead e0 (Flat f) u)))))) (\lambda (f: +e2))))))))) (let H4 \def (eq_ind nat (S n0) (\lambda (ee: nat).(match ee with +[O \Rightarrow False | (S _) \Rightarrow True])) I O H2) in (False_ind (or4 +(drop (S n0) O c2 (CSort n1)) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: +C).(\lambda (u: T).(\lambda (_: T).(eq C (CSort n1) (CHead e0 (Flat f) +u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: +T).(drop (S n0) O c2 (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T +(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C (CSort +n1) (CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (u: T).(drop (S n0) O c2 (CHead e2 (Flat f) u)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) +(ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda +(u: T).(\lambda (_: T).(eq C (CSort n1) (CHead e1 (Flat f) u))))))) (\lambda +(f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop +(S n0) O c2 (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) +(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda +(_: T).(csubst0 O v e1 e2)))))))) H4)) e H1)))) (drop_gen_sort n1 (S n0) O e +H0)))))))) (\lambda (c: C).(\lambda (H: ((\forall (c2: C).(\forall (v: +T).((csubst0 (S n0) v c c2) \to (\forall (e: C).((drop (S n0) O c e) \to (or4 +(drop (S n0) O c2 e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda +(u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: @@ -2913,19 +2873,47 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 -e2)))))))) (\lambda (H2: (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq -nat (S n0) (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k -u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2))))).(ex3_2_ind T -nat (\lambda (_: T).(\lambda (j: nat).(eq nat (S n0) (s k j)))) (\lambda (u2: -T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: -nat).(subst0 j v t u2))) (or4 (drop (S n0) O c2 e) (ex3_4 F C T T (\lambda -(f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 -(Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda -(w: T).(drop (S n0) O c2 (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda -(_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T -(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e -(CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(drop (S n0) O c2 (CHead e2 (Flat f) u)))))) (\lambda (_: +e2))))))))))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (c2: C).(\lambda +(v: T).(\lambda (H0: (csubst0 (S n0) v (CHead c k t) c2)).(\lambda (e: +C).(\lambda (H1: (drop (S n0) O (CHead c k t) e)).(let H2 \def +(csubst0_gen_head k c c2 t v (S n0) H0) in (or3_ind (ex3_2 T nat (\lambda (_: +T).(\lambda (j: nat).(eq nat (S n0) (s k j)))) (\lambda (u2: T).(\lambda (_: +nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j +v t u2)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat (S n0) (s k +j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda +(c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (ex4_3 T C nat (\lambda (_: +T).(\lambda (_: C).(\lambda (j: nat).(eq nat (S n0) (s k j))))) (\lambda (u2: +T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda +(u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: +T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))) (or4 (drop (S +n0) O c2 e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: +T).(\lambda (_: T).(eq C e (CHead e0 (Flat f) u)))))) (\lambda (f: +F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead +e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda +(w: T).(subst0 O v u w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 (Flat f) u)))))) +(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) +O c2 (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda +(e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda +(f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C +e (CHead e1 (Flat f) u))))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead e2 (Flat f) +w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: +T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 +e2)))))))) (\lambda (H3: (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq +nat (S n0) (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k +u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2))))).(ex3_2_ind T +nat (\lambda (_: T).(\lambda (j: nat).(eq nat (S n0) (s k j)))) (\lambda (u2: +T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: +nat).(subst0 j v t u2))) (or4 (drop (S n0) O c2 e) (ex3_4 F C T T (\lambda +(f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 +(Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda +(w: T).(drop (S n0) O c2 (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda +(_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T +(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e +(CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (u: T).(drop (S n0) O c2 (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f) u))))))) (\lambda (f: @@ -2933,8 +2921,8 @@ F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -O v e1 e2)))))))) (\lambda (x0: T).(\lambda (x1: nat).(\lambda (H3: (eq nat -(S n0) (s k x1))).(\lambda (H4: (eq C c2 (CHead c k x0))).(\lambda (H5: +O v e1 e2)))))))) (\lambda (x0: T).(\lambda (x1: nat).(\lambda (H4: (eq nat +(S n0) (s k x1))).(\lambda (H5: (eq C c2 (CHead c k x0))).(\lambda (H6: (subst0 x1 v t x0)).(eq_ind_r C (CHead c k x0) (\lambda (c0: C).(or4 (drop (S n0) O c0 e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f) u)))))) (\lambda (f: @@ -2968,72 +2956,71 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead c k0 x0) (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 -e2))))))))))) (\lambda (b: B).(\lambda (H6: (drop (r (Bind b) n0) O c -e)).(\lambda (H7: (eq nat (S n0) (s (Bind b) x1))).(let H8 \def (f_equal nat -nat (\lambda (e0: nat).(match e0 in nat return (\lambda (_: nat).nat) with [O -\Rightarrow n0 | (S n1) \Rightarrow n1])) (S n0) (S x1) H7) in (let H9 \def -(eq_ind_r nat x1 (\lambda (n1: nat).(subst0 n1 v t x0)) H5 n0 H8) in -(or4_intro0 (drop (S n0) O (CHead c (Bind b) x0) e) (ex3_4 F C T T (\lambda -(f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 -(Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda -(w: T).(drop (S n0) O (CHead c (Bind b) x0) (CHead e0 (Flat f) w)))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u -w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u: T).(eq C e (CHead e1 (Flat f) u)))))) (\lambda (f: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O (CHead c -(Bind b) x0) (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T -(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: -T).(eq C e (CHead e1 (Flat f) u))))))) (\lambda (f: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead c -(Bind b) x0) (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2))))))) (drop_drop (Bind b) n0 c e H6 x0))))))) -(\lambda (f: F).(\lambda (H6: (drop (r (Flat f) n0) O c e)).(\lambda (H7: (eq -nat (S n0) (s (Flat f) x1))).(let H8 \def (f_equal nat nat (\lambda (e0: -nat).e0) (S n0) (s (Flat f) x1) H7) in (let H9 \def (eq_ind_r nat x1 (\lambda -(n1: nat).(subst0 n1 v t x0)) H5 (S n0) H8) in (or4_intro0 (drop (S n0) O -(CHead c (Flat f) x0) e) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: -C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f0) u)))))) -(\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S -n0) O (CHead c (Flat f) x0) (CHead e0 (Flat f0) w)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) -(ex3_4 F C C T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(eq C e (CHead e1 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O (CHead c (Flat f) x0) -(CHead e2 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: -C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e -(CHead e1 (Flat f0) u))))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead c (Flat f) x0) -(CHead e2 (Flat f0) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: -C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -O v e1 e2))))))) (drop_drop (Flat f) n0 c e H6 x0))))))) k (drop_gen_drop k c -e t n0 H1) H3) c2 H4)))))) H2)) (\lambda (H2: (ex3_2 C nat (\lambda (_: -C).(\lambda (j: nat).(eq nat (S n0) (s k j)))) (\lambda (c3: C).(\lambda (_: -nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j -v c c3))))).(ex3_2_ind C nat (\lambda (_: C).(\lambda (j: nat).(eq nat (S n0) -(s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) -(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))) (or4 (drop (S n0) O -c2 e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: +e2))))))))))) (\lambda (b: B).(\lambda (H7: (drop (r (Bind b) n0) O c +e)).(\lambda (H8: (eq nat (S n0) (s (Bind b) x1))).(let H9 \def (f_equal nat +nat (\lambda (e0: nat).(match e0 with [O \Rightarrow n0 | (S n1) \Rightarrow +n1])) (S n0) (S x1) H8) in (let H10 \def (eq_ind_r nat x1 (\lambda (n1: +nat).(subst0 n1 v t x0)) H6 n0 H9) in (or4_intro0 (drop (S n0) O (CHead c +(Bind b) x0) e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f) u)))))) (\lambda (f: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead -e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda -(w: T).(subst0 O v u w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 (Flat f) u)))))) -(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) -O c2 (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda -(f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C -e (CHead e1 (Flat f) u))))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead e2 (Flat f) +F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead c +(Bind b) x0) (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T +(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e +(CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (u: T).(drop (S n0) O (CHead c (Bind b) x0) (CHead e2 (Flat f) +u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f) +u))))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (w: T).(drop (S n0) O (CHead c (Bind b) x0) (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) +(drop_drop (Bind b) n0 c e H7 x0))))))) (\lambda (f: F).(\lambda (H7: (drop +(r (Flat f) n0) O c e)).(\lambda (H8: (eq nat (S n0) (s (Flat f) x1))).(let +H9 \def (f_equal nat nat (\lambda (e0: nat).e0) (S n0) (s (Flat f) x1) H8) in +(let H10 \def (eq_ind_r nat x1 (\lambda (n1: nat).(subst0 n1 v t x0)) H6 (S +n0) H9) in (or4_intro0 (drop (S n0) O (CHead c (Flat f) x0) e) (ex3_4 F C T T +(\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e +(CHead e0 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: +T).(\lambda (w: T).(drop (S n0) O (CHead c (Flat f) x0) (CHead e0 (Flat f0) +w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: +T).(subst0 O v u w)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 (Flat f0) u)))))) +(\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S +n0) O (CHead c (Flat f) x0) (CHead e2 (Flat f0) u)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) +(ex4_5 F C C T T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda +(u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f0) u))))))) (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S +n0) O (CHead c (Flat f) x0) (CHead e2 (Flat f0) w))))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O +v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop (Flat f) n0 c e H7 +x0))))))) k (drop_gen_drop k c e t n0 H1) H4) c2 H5)))))) H3)) (\lambda (H3: +(ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat (S n0) (s k j)))) +(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: +C).(\lambda (j: nat).(csubst0 j v c c3))))).(ex3_2_ind C nat (\lambda (_: +C).(\lambda (j: nat).(eq nat (S n0) (s k j)))) (\lambda (c3: C).(\lambda (_: +nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j +v c c3))) (or4 (drop (S n0) O c2 e) (ex3_4 F C T T (\lambda (f: F).(\lambda +(e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f) u)))))) +(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) +O c2 (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: +T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T (\lambda (f: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 (Flat +f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: +T).(drop (S n0) O c2 (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T +(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: +T).(eq C e (CHead e1 (Flat f) u))))))) (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O c2 (CHead +e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda +(u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 -e2)))))))) (\lambda (x0: C).(\lambda (x1: nat).(\lambda (H3: (eq nat (S n0) -(s k x1))).(\lambda (H4: (eq C c2 (CHead x0 k t))).(\lambda (H5: (csubst0 x1 +e2)))))))) (\lambda (x0: C).(\lambda (x1: nat).(\lambda (H4: (eq nat (S n0) +(s k x1))).(\lambda (H5: (eq C c2 (CHead x0 k t))).(\lambda (H6: (csubst0 x1 v c x0)).(eq_ind_r C (CHead x0 k t) (\lambda (c0: C).(or4 (drop (S n0) O c0 e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: @@ -3067,74 +3054,48 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 k0 t) (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 -e2))))))))))) (\lambda (b: B).(\lambda (H6: (drop (r (Bind b) n0) O c -e)).(\lambda (H7: (eq nat (S n0) (s (Bind b) x1))).(let H8 \def (f_equal nat -nat (\lambda (e0: nat).(match e0 in nat return (\lambda (_: nat).nat) with [O -\Rightarrow n0 | (S n1) \Rightarrow n1])) (S n0) (S x1) H7) in (let H9 \def -(eq_ind_r nat x1 (\lambda (n1: nat).(csubst0 n1 v c x0)) H5 n0 H8) in (let -H10 \def (IHn c x0 v H9 e H6) in (or4_ind (drop n0 O x0 e) (ex3_4 F C T T -(\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e -(CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: -T).(\lambda (w: T).(drop n0 O x0 (CHead e0 (Flat f) w)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) -(ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(eq C e (CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(drop n0 O x0 (CHead e2 (Flat f) u)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O -v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f) u))))))) -(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: -T).(drop n0 O x0 (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2))))))) (or4 (drop (S n0) O (CHead x0 (Bind b) t) e) -(ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: -T).(eq C e (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 (Bind b) t) -(CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: +e2))))))))))) (\lambda (b: B).(\lambda (H7: (drop (r (Bind b) n0) O c +e)).(\lambda (H8: (eq nat (S n0) (s (Bind b) x1))).(let H9 \def (f_equal nat +nat (\lambda (e0: nat).(match e0 with [O \Rightarrow n0 | (S n1) \Rightarrow +n1])) (S n0) (S x1) H8) in (let H10 \def (eq_ind_r nat x1 (\lambda (n1: +nat).(csubst0 n1 v c x0)) H6 n0 H9) in (let H11 \def (IHn c x0 v H10 e H7) in +(or4_ind (drop n0 O x0 e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: +C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f) u)))))) +(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop n0 O +x0 (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: -T).(drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 (Flat f) u)))))) (\lambda -(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 -e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f) u))))))) -(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: -T).(drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 (Flat f) w))))))) (\lambda -(_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: -T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (H11: -(drop n0 O x0 e)).(or4_intro0 (drop (S n0) O (CHead x0 (Bind b) t) e) (ex3_4 -F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq -C e (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: -T).(\lambda (w: T).(drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 (Flat f) -w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: -T).(subst0 O v u w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 (Flat f) u)))))) -(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) -O (CHead x0 (Bind b) t) (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda -(e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C -C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(\lambda (_: T).(eq C e (CHead e1 (Flat f) u))))))) (\lambda (f: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S -n0) O (CHead x0 (Bind b) t) (CHead e2 (Flat f) w))))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O -v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop (Bind b) n0 x0 e H11 -t))) (\lambda (H11: (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda -(u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f) u)))))) (\lambda (f: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop n0 O x0 (CHead e0 -(Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: -T).(subst0 O v u w))))))).(ex3_4_ind F C T T (\lambda (f: F).(\lambda (e0: +T).(drop n0 O x0 (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T +(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: +T).(eq C e (CHead e1 (Flat f) u))))))) (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop n0 O x0 (CHead e2 +(Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda +(u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) +(or4 (drop (S n0) O (CHead x0 (Bind b) t) e) (ex3_4 F C T T (\lambda (f: +F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat +f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: +T).(drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 (Flat f) w)))))) (\lambda +(_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) +(ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: +T).(eq C e (CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O (CHead x0 (Bind b) t) +(CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e +(CHead e1 (Flat f) u))))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 (Bind b) t) +(CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: +C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 +O v e1 e2)))))))) (\lambda (H12: (drop n0 O x0 e)).(or4_intro0 (drop (S n0) O +(CHead x0 (Bind b) t) e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f) u)))))) -(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop n0 O -x0 (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: -T).(\lambda (w: T).(subst0 O v u w))))) (or4 (drop (S n0) O (CHead x0 (Bind -b) t) e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: -T).(\lambda (_: T).(eq C e (CHead e0 (Flat f) u)))))) (\lambda (f: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 -(Bind b) t) (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T +(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) +O (CHead x0 (Bind b) t) (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda +(_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 (Flat f) @@ -3145,16 +3106,41 @@ u))))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 -e2)))))))) (\lambda (x2: F).(\lambda (x3: C).(\lambda (x4: T).(\lambda (x5: -T).(\lambda (H12: (eq C e (CHead x3 (Flat x2) x4))).(\lambda (H13: (drop n0 O -x0 (CHead x3 (Flat x2) x5))).(\lambda (H14: (subst0 O v x4 x5)).(eq_ind_r C -(CHead x3 (Flat x2) x4) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x0 (Bind -b) t) c0) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: -T).(\lambda (_: T).(eq C c0 (CHead e0 (Flat f) u)))))) (\lambda (f: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 -(Bind b) t) (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) +(drop_drop (Bind b) n0 x0 e H12 t))) (\lambda (H12: (ex3_4 F C T T (\lambda +(f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 +(Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda +(w: T).(drop n0 O x0 (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w))))))).(ex3_4_ind F C T T +(\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e +(CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: +T).(\lambda (w: T).(drop n0 O x0 (CHead e0 (Flat f) w)))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w))))) (or4 +(drop (S n0) O (CHead x0 (Bind b) t) e) (ex3_4 F C T T (\lambda (f: +F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat +f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: +T).(drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 (Flat f) w)))))) (\lambda +(_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) +(ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: +T).(eq C e (CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O (CHead x0 (Bind b) t) +(CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e +(CHead e1 (Flat f) u))))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 (Bind b) t) +(CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: +C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 +O v e1 e2)))))))) (\lambda (x2: F).(\lambda (x3: C).(\lambda (x4: T).(\lambda +(x5: T).(\lambda (H13: (eq C e (CHead x3 (Flat x2) x4))).(\lambda (H14: (drop +n0 O x0 (CHead x3 (Flat x2) x5))).(\lambda (H15: (subst0 O v x4 +x5)).(eq_ind_r C (CHead x3 (Flat x2) x4) (\lambda (c0: C).(or4 (drop (S n0) O +(CHead x0 (Bind b) t) c0) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: +C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 (Flat f) u)))))) +(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) +O (CHead x0 (Bind b) t) (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda +(_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C c0 (CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 (Flat f) @@ -3189,8 +3175,8 @@ x4) (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 (Bind b) t) (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w))))) x2 x3 x4 x5 (refl_equal C (CHead x3 (Flat x2) x4)) -(drop_drop (Bind b) n0 x0 (CHead x3 (Flat x2) x5) H13 t) H14)) e H12)))))))) -H11)) (\lambda (H11: (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda +(drop_drop (Bind b) n0 x0 (CHead x3 (Flat x2) x5) H14 t) H15)) e H13)))))))) +H12)) (\lambda (H12: (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop n0 O x0 (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda @@ -3216,8 +3202,8 @@ w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x2: F).(\lambda (x3: C).(\lambda (x4: C).(\lambda (x5: -T).(\lambda (H12: (eq C e (CHead x3 (Flat x2) x5))).(\lambda (H13: (drop n0 O -x0 (CHead x4 (Flat x2) x5))).(\lambda (H14: (csubst0 O v x3 x4)).(eq_ind_r C +T).(\lambda (H13: (eq C e (CHead x3 (Flat x2) x5))).(\lambda (H14: (drop n0 O +x0 (CHead x4 (Flat x2) x5))).(\lambda (H15: (csubst0 O v x3 x4)).(eq_ind_r C (CHead x3 (Flat x2) x5) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x0 (Bind b) t) c0) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 (Flat f) u)))))) (\lambda (f: @@ -3258,8 +3244,8 @@ x5) (CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O (CHead x0 (Bind b) t) (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2))))) x2 x3 x4 x5 (refl_equal C (CHead x3 (Flat x2) x5)) -(drop_drop (Bind b) n0 x0 (CHead x4 (Flat x2) x5) H13 t) H14)) e H12)))))))) -H11)) (\lambda (H11: (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: +(drop_drop (Bind b) n0 x0 (CHead x4 (Flat x2) x5) H14 t) H15)) e H13)))))))) +H12)) (\lambda (H12: (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f) u))))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop n0 O x0 (CHead e2 (Flat f) w))))))) (\lambda (_: @@ -3289,9 +3275,9 @@ w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x2: F).(\lambda (x3: C).(\lambda (x4: C).(\lambda (x5: -T).(\lambda (x6: T).(\lambda (H12: (eq C e (CHead x3 (Flat x2) x5))).(\lambda -(H13: (drop n0 O x0 (CHead x4 (Flat x2) x6))).(\lambda (H14: (subst0 O v x5 -x6)).(\lambda (H15: (csubst0 O v x3 x4)).(eq_ind_r C (CHead x3 (Flat x2) x5) +T).(\lambda (x6: T).(\lambda (H13: (eq C e (CHead x3 (Flat x2) x5))).(\lambda +(H14: (drop n0 O x0 (CHead x4 (Flat x2) x6))).(\lambda (H15: (subst0 O v x5 +x6)).(\lambda (H16: (csubst0 O v x3 x4)).(eq_ind_r C (CHead x3 (Flat x2) x5) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x0 (Bind b) t) c0) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: @@ -3334,22 +3320,22 @@ f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))) x2 x3 x4 x5 x6 (refl_equal C (CHead x3 (Flat x2) x5)) (drop_drop (Bind b) n0 -x0 (CHead x4 (Flat x2) x6) H13 t) H14 H15)) e H12)))))))))) H11)) H10))))))) -(\lambda (f: F).(\lambda (H6: (drop (r (Flat f) n0) O c e)).(\lambda (H7: (eq -nat (S n0) (s (Flat f) x1))).(let H8 \def (f_equal nat nat (\lambda (e0: -nat).e0) (S n0) (s (Flat f) x1) H7) in (let H9 \def (eq_ind_r nat x1 (\lambda -(n1: nat).(csubst0 n1 v c x0)) H5 (S n0) H8) in (let H10 \def (H x0 v H9 e -H6) in (or4_ind (drop (S n0) O x0 e) (ex3_4 F C T T (\lambda (f0: F).(\lambda -(e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f0) u)))))) -(\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S -n0) O x0 (CHead e0 (Flat f0) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda -(u: T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T (\lambda (f0: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 (Flat -f0) u)))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: -T).(drop (S n0) O x0 (CHead e2 (Flat f0) u)))))) (\lambda (_: F).(\lambda -(e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C -C T T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(\lambda (_: T).(eq C e (CHead e1 (Flat f0) u))))))) (\lambda (f0: +x0 (CHead x4 (Flat x2) x6) H14 t) H15 H16)) e H13)))))))))) H12)) H11))))))) +(\lambda (f: F).(\lambda (H7: (drop (r (Flat f) n0) O c e)).(\lambda (H8: (eq +nat (S n0) (s (Flat f) x1))).(let H9 \def (f_equal nat nat (\lambda (e0: +nat).e0) (S n0) (s (Flat f) x1) H8) in (let H10 \def (eq_ind_r nat x1 +(\lambda (n1: nat).(csubst0 n1 v c x0)) H6 (S n0) H9) in (let H11 \def (H x0 +v H10 e H7) in (or4_ind (drop (S n0) O x0 e) (ex3_4 F C T T (\lambda (f0: +F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat +f0) u)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: +T).(drop (S n0) O x0 (CHead e0 (Flat f0) w)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T +(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e +(CHead e1 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (u: T).(drop (S n0) O x0 (CHead e2 (Flat f0) u)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) +(ex4_5 F C C T T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda +(u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f0) u))))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O x0 (CHead e2 (Flat f0) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) @@ -3370,7 +3356,7 @@ C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f0) u))))))) (w: T).(drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 (Flat f0) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (H11: +C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (H12: (drop (S n0) O x0 e)).(or4_intro0 (drop (S n0) O (CHead x0 (Flat f) t) e) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e0: @@ -3388,7 +3374,7 @@ C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f0) u))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop (Flat -f) n0 x0 e H11 t))) (\lambda (H11: (ex3_4 F C T T (\lambda (f0: F).(\lambda +f) n0 x0 e H12 t))) (\lambda (H12: (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O x0 (CHead e0 (Flat f0) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda @@ -3414,8 +3400,8 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 (Flat f) t) C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x2: F).(\lambda (x3: C).(\lambda (x4: T).(\lambda -(x5: T).(\lambda (H12: (eq C e (CHead x3 (Flat x2) x4))).(\lambda (H13: (drop -(S n0) O x0 (CHead x3 (Flat x2) x5))).(\lambda (H14: (subst0 O v x4 +(x5: T).(\lambda (H13: (eq C e (CHead x3 (Flat x2) x4))).(\lambda (H14: (drop +(S n0) O x0 (CHead x3 (Flat x2) x5))).(\lambda (H15: (subst0 O v x4 x5)).(eq_ind_r C (CHead x3 (Flat x2) x4) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x0 (Flat f) t) c0) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 (Flat f0) u)))))) @@ -3456,8 +3442,8 @@ T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 (Flat f) t) (CHead e0 (Flat f0) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w))))) x2 x3 x4 x5 (refl_equal C (CHead x3 -(Flat x2) x4)) (drop_drop (Flat f) n0 x0 (CHead x3 (Flat x2) x5) H13 t) H14)) -e H12)))))))) H11)) (\lambda (H11: (ex3_4 F C C T (\lambda (f0: F).(\lambda +(Flat x2) x4)) (drop_drop (Flat f) n0 x0 (CHead x3 (Flat x2) x5) H14 t) H15)) +e H13)))))))) H12)) (\lambda (H12: (ex3_4 F C C T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O x0 (CHead e2 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: @@ -3483,8 +3469,8 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x0 (Flat f) t) C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x2: F).(\lambda (x3: C).(\lambda (x4: C).(\lambda -(x5: T).(\lambda (H12: (eq C e (CHead x3 (Flat x2) x5))).(\lambda (H13: (drop -(S n0) O x0 (CHead x4 (Flat x2) x5))).(\lambda (H14: (csubst0 O v x3 +(x5: T).(\lambda (H13: (eq C e (CHead x3 (Flat x2) x5))).(\lambda (H14: (drop +(S n0) O x0 (CHead x4 (Flat x2) x5))).(\lambda (H15: (csubst0 O v x3 x4)).(eq_ind_r C (CHead x3 (Flat x2) x5) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x0 (Flat f) t) c0) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 (Flat f0) u)))))) @@ -3525,8 +3511,8 @@ C T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O (CHead x0 (Flat f) t) (CHead e2 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2))))) x2 x3 x4 x5 (refl_equal C (CHead -x3 (Flat x2) x5)) (drop_drop (Flat f) n0 x0 (CHead x4 (Flat x2) x5) H13 t) -H14)) e H12)))))))) H11)) (\lambda (H11: (ex4_5 F C C T T (\lambda (f0: +x3 (Flat x2) x5)) (drop_drop (Flat f) n0 x0 (CHead x4 (Flat x2) x5) H14 t) +H15)) e H13)))))))) H12)) (\lambda (H12: (ex4_5 F C C T T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f0) u))))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O x0 (CHead e2 (Flat f0) @@ -3557,9 +3543,9 @@ w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x2: F).(\lambda (x3: C).(\lambda (x4: C).(\lambda (x5: -T).(\lambda (x6: T).(\lambda (H12: (eq C e (CHead x3 (Flat x2) x5))).(\lambda -(H13: (drop (S n0) O x0 (CHead x4 (Flat x2) x6))).(\lambda (H14: (subst0 O v -x5 x6)).(\lambda (H15: (csubst0 O v x3 x4)).(eq_ind_r C (CHead x3 (Flat x2) +T).(\lambda (x6: T).(\lambda (H13: (eq C e (CHead x3 (Flat x2) x5))).(\lambda +(H14: (drop (S n0) O x0 (CHead x4 (Flat x2) x6))).(\lambda (H15: (subst0 O v +x5 x6)).(\lambda (H16: (csubst0 O v x3 x4)).(eq_ind_r C (CHead x3 (Flat x2) x5) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x0 (Flat f) t) c0) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: @@ -3602,8 +3588,8 @@ f0) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))) x2 x3 x4 x5 x6 (refl_equal C (CHead x3 (Flat x2) x5)) (drop_drop (Flat f) n0 -x0 (CHead x4 (Flat x2) x6) H13 t) H14 H15)) e H12)))))))))) H11)) H10))))))) -k (drop_gen_drop k c e t n0 H1) H3) c2 H4)))))) H2)) (\lambda (H2: (ex4_3 T C +x0 (CHead x4 (Flat x2) x6) H14 t) H15 H16)) e H13)))))))))) H12)) H11))))))) +k (drop_gen_drop k c e t n0 H1) H4) c2 H5)))))) H3)) (\lambda (H3: (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat (S n0) (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t @@ -3628,8 +3614,8 @@ T).(\lambda (w: T).(drop (S n0) O c2 (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x0: T).(\lambda (x1: -C).(\lambda (x2: nat).(\lambda (H3: (eq nat (S n0) (s k x2))).(\lambda (H4: -(eq C c2 (CHead x1 k x0))).(\lambda (H5: (subst0 x2 v t x0)).(\lambda (H6: +C).(\lambda (x2: nat).(\lambda (H4: (eq nat (S n0) (s k x2))).(\lambda (H5: +(eq C c2 (CHead x1 k x0))).(\lambda (H6: (subst0 x2 v t x0)).(\lambda (H7: (csubst0 x2 v c x1)).(eq_ind_r C (CHead x1 k x0) (\lambda (c0: C).(or4 (drop (S n0) O c0 e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f) u)))))) (\lambda (f: @@ -3663,47 +3649,47 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 k0 x0) (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 -e2))))))))))) (\lambda (b: B).(\lambda (H7: (drop (r (Bind b) n0) O c -e)).(\lambda (H8: (eq nat (S n0) (s (Bind b) x2))).(let H9 \def (f_equal nat -nat (\lambda (e0: nat).(match e0 in nat return (\lambda (_: nat).nat) with [O -\Rightarrow n0 | (S n1) \Rightarrow n1])) (S n0) (S x2) H8) in (let H10 \def -(eq_ind_r nat x2 (\lambda (n1: nat).(csubst0 n1 v c x1)) H6 n0 H9) in (let -H11 \def (eq_ind_r nat x2 (\lambda (n1: nat).(subst0 n1 v t x0)) H5 n0 H9) in -(let H12 \def (IHn c x1 v H10 e H7) in (or4_ind (drop n0 O x1 e) (ex3_4 F C T -T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e +e2))))))))))) (\lambda (b: B).(\lambda (H8: (drop (r (Bind b) n0) O c +e)).(\lambda (H9: (eq nat (S n0) (s (Bind b) x2))).(let H10 \def (f_equal nat +nat (\lambda (e0: nat).(match e0 with [O \Rightarrow n0 | (S n1) \Rightarrow +n1])) (S n0) (S x2) H9) in (let H11 \def (eq_ind_r nat x2 (\lambda (n1: +nat).(csubst0 n1 v c x1)) H7 n0 H10) in (let H12 \def (eq_ind_r nat x2 +(\lambda (n1: nat).(subst0 n1 v t x0)) H6 n0 H10) in (let H13 \def (IHn c x1 +v H11 e H8) in (or4_ind (drop n0 O x1 e) (ex3_4 F C T T (\lambda (f: +F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat +f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: +T).(drop n0 O x1 (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T +(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e +(CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (u: T).(drop n0 O x1 (CHead e2 (Flat f) u)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) +(ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda +(u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f) u))))))) (\lambda (f: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop n0 +O x1 (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: +C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 +O v e1 e2))))))) (or4 (drop (S n0) O (CHead x1 (Bind b) x0) e) (ex3_4 F C T T +(\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e +(CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: +T).(\lambda (w: T).(drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 (Flat f) +w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: +T).(subst0 O v u w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 (Flat f) u)))))) +(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) +O (CHead x1 (Bind b) x0) (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda +(e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C +C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: +T).(\lambda (_: T).(eq C e (CHead e1 (Flat f) u))))))) (\lambda (f: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S +n0) O (CHead x1 (Bind b) x0) (CHead e2 (Flat f) w))))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O +v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (H14: (drop n0 O x1 +e)).(or4_intro0 (drop (S n0) O (CHead x1 (Bind b) x0) e) (ex3_4 F C T T +(\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: -T).(\lambda (w: T).(drop n0 O x1 (CHead e0 (Flat f) w)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) -(ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(eq C e (CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(drop n0 O x1 (CHead e2 (Flat f) u)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O -v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f) u))))))) -(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: -T).(drop n0 O x1 (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2))))))) (or4 (drop (S n0) O (CHead x1 (Bind b) x0) -e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda -(_: T).(eq C e (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 (Bind b) x0) -(CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: -T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T (\lambda (f: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 (Flat -f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: -T).(drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 (Flat f) u)))))) (\lambda -(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 -e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f) u))))))) -(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: -T).(drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 (Flat f) w))))))) (\lambda -(_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: -T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (H13: -(drop n0 O x1 e)).(or4_intro0 (drop (S n0) O (CHead x1 (Bind b) x0) e) (ex3_4 -F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq -C e (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: @@ -3717,8 +3703,8 @@ F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 (Flat f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop (Bind b) n0 x1 e H13 -x0))) (\lambda (H13: (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda +T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop (Bind b) n0 x1 e H14 +x0))) (\lambda (H14: (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop n0 O x1 (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: @@ -3744,8 +3730,8 @@ w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x3: F).(\lambda (x4: C).(\lambda (x5: T).(\lambda (x6: -T).(\lambda (H14: (eq C e (CHead x4 (Flat x3) x5))).(\lambda (H15: (drop n0 O -x1 (CHead x4 (Flat x3) x6))).(\lambda (H16: (subst0 O v x5 x6)).(eq_ind_r C +T).(\lambda (H15: (eq C e (CHead x4 (Flat x3) x5))).(\lambda (H16: (drop n0 O +x1 (CHead x4 (Flat x3) x6))).(\lambda (H17: (subst0 O v x5 x6)).(eq_ind_r C (CHead x4 (Flat x3) x5) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x1 (Bind b) x0) c0) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 (Flat f) u)))))) (\lambda (f: @@ -3786,8 +3772,8 @@ x5) (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 (Bind b) x0) (CHead e0 (Flat f) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w))))) x3 x4 x5 x6 (refl_equal C (CHead x4 (Flat x3) x5)) -(drop_drop (Bind b) n0 x1 (CHead x4 (Flat x3) x6) H15 x0) H16)) e H14)))))))) -H13)) (\lambda (H13: (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda +(drop_drop (Bind b) n0 x1 (CHead x4 (Flat x3) x6) H16 x0) H17)) e H15)))))))) +H14)) (\lambda (H14: (ex3_4 F C C T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop n0 O x1 (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda @@ -3813,8 +3799,8 @@ w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x3: F).(\lambda (x4: C).(\lambda (x5: C).(\lambda (x6: -T).(\lambda (H14: (eq C e (CHead x4 (Flat x3) x6))).(\lambda (H15: (drop n0 O -x1 (CHead x5 (Flat x3) x6))).(\lambda (H16: (csubst0 O v x4 x5)).(eq_ind_r C +T).(\lambda (H15: (eq C e (CHead x4 (Flat x3) x6))).(\lambda (H16: (drop n0 O +x1 (CHead x5 (Flat x3) x6))).(\lambda (H17: (csubst0 O v x4 x5)).(eq_ind_r C (CHead x4 (Flat x3) x6) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x1 (Bind b) x0) c0) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 (Flat f) u)))))) (\lambda (f: @@ -3855,8 +3841,8 @@ x6) (CHead e1 (Flat f) u)))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O (CHead x1 (Bind b) x0) (CHead e2 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2))))) x3 x4 x5 x6 (refl_equal C (CHead x4 (Flat x3) x6)) -(drop_drop (Bind b) n0 x1 (CHead x5 (Flat x3) x6) H15 x0) H16)) e H14)))))))) -H13)) (\lambda (H13: (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: +(drop_drop (Bind b) n0 x1 (CHead x5 (Flat x3) x6) H16 x0) H17)) e H15)))))))) +H14)) (\lambda (H14: (ex4_5 F C C T T (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f) u))))))) (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop n0 O x1 (CHead e2 (Flat f) w))))))) (\lambda (_: @@ -3886,9 +3872,9 @@ w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x3: F).(\lambda (x4: C).(\lambda (x5: C).(\lambda (x6: -T).(\lambda (x7: T).(\lambda (H14: (eq C e (CHead x4 (Flat x3) x6))).(\lambda -(H15: (drop n0 O x1 (CHead x5 (Flat x3) x7))).(\lambda (H16: (subst0 O v x6 -x7)).(\lambda (H17: (csubst0 O v x4 x5)).(eq_ind_r C (CHead x4 (Flat x3) x6) +T).(\lambda (x7: T).(\lambda (H15: (eq C e (CHead x4 (Flat x3) x6))).(\lambda +(H16: (drop n0 O x1 (CHead x5 (Flat x3) x7))).(\lambda (H17: (subst0 O v x6 +x7)).(\lambda (H18: (csubst0 O v x4 x5)).(eq_ind_r C (CHead x4 (Flat x3) x6) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x1 (Bind b) x0) c0) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 (Flat f) u)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (_: @@ -3931,13 +3917,13 @@ f) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))) x3 x4 x5 x6 x7 (refl_equal C (CHead x4 (Flat x3) x6)) (drop_drop (Bind b) n0 -x1 (CHead x5 (Flat x3) x7) H15 x0) H16 H17)) e H14)))))))))) H13)) -H12)))))))) (\lambda (f: F).(\lambda (H7: (drop (r (Flat f) n0) O c -e)).(\lambda (H8: (eq nat (S n0) (s (Flat f) x2))).(let H9 \def (f_equal nat -nat (\lambda (e0: nat).e0) (S n0) (s (Flat f) x2) H8) in (let H10 \def -(eq_ind_r nat x2 (\lambda (n1: nat).(csubst0 n1 v c x1)) H6 (S n0) H9) in -(let H11 \def (eq_ind_r nat x2 (\lambda (n1: nat).(subst0 n1 v t x0)) H5 (S -n0) H9) in (let H12 \def (H x1 v H10 e H7) in (or4_ind (drop (S n0) O x1 e) +x1 (CHead x5 (Flat x3) x7) H16 x0) H17 H18)) e H15)))))))))) H14)) +H13)))))))) (\lambda (f: F).(\lambda (H8: (drop (r (Flat f) n0) O c +e)).(\lambda (H9: (eq nat (S n0) (s (Flat f) x2))).(let H10 \def (f_equal nat +nat (\lambda (e0: nat).e0) (S n0) (s (Flat f) x2) H9) in (let H11 \def +(eq_ind_r nat x2 (\lambda (n1: nat).(csubst0 n1 v c x1)) H7 (S n0) H10) in +(let H12 \def (eq_ind_r nat x2 (\lambda (n1: nat).(subst0 n1 v t x0)) H6 (S +n0) H10) in (let H13 \def (H x1 v H11 e H8) in (or4_ind (drop (S n0) O x1 e) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O x1 (CHead e0 (Flat f0) @@ -3969,7 +3955,7 @@ F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 (Flat f0) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (H13: (drop (S n0) O +T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (H14: (drop (S n0) O x1 e)).(or4_intro0 (drop (S n0) O (CHead x1 (Flat f) x0) e) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: @@ -3986,8 +3972,8 @@ F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 (Flat f) x0) (CHead e2 (Flat f0) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop (Flat f) n0 x1 e H13 -x0))) (\lambda (H13: (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: +T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop (Flat f) n0 x1 e H14 +x0))) (\lambda (H14: (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e0 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O x1 (CHead e0 (Flat f0) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda @@ -4013,8 +3999,8 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 (Flat f) x0) C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x3: F).(\lambda (x4: C).(\lambda (x5: T).(\lambda -(x6: T).(\lambda (H14: (eq C e (CHead x4 (Flat x3) x5))).(\lambda (H15: (drop -(S n0) O x1 (CHead x4 (Flat x3) x6))).(\lambda (H16: (subst0 O v x5 +(x6: T).(\lambda (H15: (eq C e (CHead x4 (Flat x3) x5))).(\lambda (H16: (drop +(S n0) O x1 (CHead x4 (Flat x3) x6))).(\lambda (H17: (subst0 O v x5 x6)).(eq_ind_r C (CHead x4 (Flat x3) x5) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x1 (Flat f) x0) c0) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 (Flat f0) u)))))) @@ -4055,8 +4041,8 @@ T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C (e0: C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 (Flat f) x0) (CHead e0 (Flat f0) w)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w))))) x3 x4 x5 x6 (refl_equal C (CHead x4 -(Flat x3) x5)) (drop_drop (Flat f) n0 x1 (CHead x4 (Flat x3) x6) H15 x0) -H16)) e H14)))))))) H13)) (\lambda (H13: (ex3_4 F C C T (\lambda (f0: +(Flat x3) x5)) (drop_drop (Flat f) n0 x1 (CHead x4 (Flat x3) x6) H16 x0) +H17)) e H15)))))))) H14)) (\lambda (H14: (ex3_4 F C C T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(eq C e (CHead e1 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(drop (S n0) O x1 (CHead e2 (Flat f0) u)))))) (\lambda (_: F).(\lambda @@ -4082,9 +4068,9 @@ n0) O (CHead x1 (Flat f) x0) (CHead e2 (Flat f0) w))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x3: F).(\lambda (x4: -C).(\lambda (x5: C).(\lambda (x6: T).(\lambda (H14: (eq C e (CHead x4 (Flat -x3) x6))).(\lambda (H15: (drop (S n0) O x1 (CHead x5 (Flat x3) x6))).(\lambda -(H16: (csubst0 O v x4 x5)).(eq_ind_r C (CHead x4 (Flat x3) x6) (\lambda (c0: +C).(\lambda (x5: C).(\lambda (x6: T).(\lambda (H15: (eq C e (CHead x4 (Flat +x3) x6))).(\lambda (H16: (drop (S n0) O x1 (CHead x5 (Flat x3) x6))).(\lambda +(H17: (csubst0 O v x4 x5)).(eq_ind_r C (CHead x4 (Flat x3) x6) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x1 (Flat f) x0) c0) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda @@ -4125,7 +4111,7 @@ C).(\lambda (u: T).(eq C (CHead x4 (Flat x3) x6) (CHead e1 (Flat f0) u)))))) n0) O (CHead x1 (Flat f) x0) (CHead e2 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2))))) x3 x4 x5 x6 (refl_equal C (CHead x4 (Flat x3) x6)) (drop_drop (Flat f) n0 x1 -(CHead x5 (Flat x3) x6) H15 x0) H16)) e H14)))))))) H13)) (\lambda (H13: +(CHead x5 (Flat x3) x6) H16 x0) H17)) e H15)))))))) H14)) (\lambda (H14: (ex4_5 F C C T T (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e (CHead e1 (Flat f0) u))))))) (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (w: T).(drop (S @@ -4156,9 +4142,9 @@ C).(\lambda (_: T).(\lambda (w: T).(drop (S n0) O (CHead x1 (Flat f) x0) C).(\lambda (u: T).(\lambda (w: T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x3: F).(\lambda (x4: C).(\lambda (x5: C).(\lambda -(x6: T).(\lambda (x7: T).(\lambda (H14: (eq C e (CHead x4 (Flat x3) -x6))).(\lambda (H15: (drop (S n0) O x1 (CHead x5 (Flat x3) x7))).(\lambda -(H16: (subst0 O v x6 x7)).(\lambda (H17: (csubst0 O v x4 x5)).(eq_ind_r C +(x6: T).(\lambda (x7: T).(\lambda (H15: (eq C e (CHead x4 (Flat x3) +x6))).(\lambda (H16: (drop (S n0) O x1 (CHead x5 (Flat x3) x7))).(\lambda +(H17: (subst0 O v x6 x7)).(\lambda (H18: (csubst0 O v x4 x5)).(eq_ind_r C (CHead x4 (Flat x3) x6) (\lambda (c0: C).(or4 (drop (S n0) O (CHead x1 (Flat f) x0) c0) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C c0 (CHead e0 (Flat f0) u)))))) (\lambda (f0: @@ -4202,12 +4188,8 @@ T).(\lambda (_: T).(eq C (CHead x4 (Flat x3) x6) (CHead e1 (Flat f0) u))))))) T).(subst0 O v u w)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))) x3 x4 x5 x6 x7 (refl_equal C (CHead x4 (Flat x3) x6)) (drop_drop (Flat f) n0 x1 (CHead x5 -(Flat x3) x7) H15 x0) H16 H17)) e H14)))))))))) H13)) H12)))))))) k -(drop_gen_drop k c e t n0 H1) H3) c2 H4)))))))) H2)) (csubst0_gen_head k c c2 -t v (S n0) H0))))))))))) c1)))) n). -(* COMMENTS -Initial nodes: 36162 -END *) +(Flat x3) x7) H16 x0) H17 H18)) e H15)))))))))) H14)) H13)))))))) k +(drop_gen_drop k c e t n0 H1) H4) c2 H5)))))))) H3)) H2))))))))))) c1)))) n). theorem csubst0_drop_eq_back: \forall (n: nat).(\forall (c1: C).(\forall (c2: C).(\forall (v: T).((csubst0 @@ -4318,68 +4300,68 @@ C).(\lambda (u3: T).(\lambda (u4: T).(subst0 (s k0 i) v0 u3 u4)))))) (\lambda T).(csubst0 (s k0 i) v0 e1 e2)))))))))))))))) (\lambda (b: B).(\lambda (i: nat).(\lambda (v0: T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (subst0 i v0 u1 u2)).(\lambda (c: C).(\lambda (H3: (eq nat (S i) O)).(let H4 \def -(eq_ind nat (S i) (\lambda (ee: nat).(match ee in nat return (\lambda (_: -nat).Prop) with [O \Rightarrow False | (S _) \Rightarrow True])) I O H3) in -(False_ind (or4 (drop (S i) (S i) (CHead c (Bind b) u1) (CHead c (Bind b) -u2)) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda -(u4: T).(eq C (CHead c (Bind b) u2) (CHead e0 (Flat f) u4)))))) (\lambda (f: -F).(\lambda (e0: C).(\lambda (u3: T).(\lambda (_: T).(drop (S i) (S i) (CHead -c (Bind b) u1) (CHead e0 (Flat f) u3)))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (u3: T).(\lambda (u4: T).(subst0 (S i) v0 u3 u4)))))) (ex3_4 F C -C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C -(CHead c (Bind b) u2) (CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda -(e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S i) (S i) (CHead c (Bind b) -u1) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: -C).(\lambda (_: T).(csubst0 (S i) v0 e1 e2)))))) (ex4_5 F C C T T (\lambda -(f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u4: T).(eq -C (CHead c (Bind b) u2) (CHead e2 (Flat f) u4))))))) (\lambda (f: F).(\lambda -(e1: C).(\lambda (_: C).(\lambda (u3: T).(\lambda (_: T).(drop (S i) (S i) -(CHead c (Bind b) u1) (CHead e1 (Flat f) u3))))))) (\lambda (_: F).(\lambda -(_: C).(\lambda (_: C).(\lambda (u3: T).(\lambda (u4: T).(subst0 (S i) v0 u3 -u4)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (_: T).(csubst0 (S i) v0 e1 e2)))))))) H4)))))))))) (\lambda (f: -F).(\lambda (i: nat).(\lambda (v0: T).(\lambda (u1: T).(\lambda (u2: -T).(\lambda (H2: (subst0 i v0 u1 u2)).(\lambda (c: C).(\lambda (H3: (eq nat i -O)).(let H4 \def (eq_ind nat i (\lambda (n0: nat).(subst0 n0 v0 u1 u2)) H2 O -H3) in (eq_ind_r nat O (\lambda (n0: nat).(or4 (drop n0 n0 (CHead c (Flat f) -u1) (CHead c (Flat f) u2)) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (u4: T).(eq C (CHead c (Flat f) u2) (CHead e0 -(Flat f0) u4)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u3: -T).(\lambda (_: T).(drop n0 n0 (CHead c (Flat f) u1) (CHead e0 (Flat f0) +(eq_ind nat (S i) (\lambda (ee: nat).(match ee with [O \Rightarrow False | (S +_) \Rightarrow True])) I O H3) in (False_ind (or4 (drop (S i) (S i) (CHead c +(Bind b) u1) (CHead c (Bind b) u2)) (ex3_4 F C T T (\lambda (f: F).(\lambda +(e0: C).(\lambda (_: T).(\lambda (u4: T).(eq C (CHead c (Bind b) u2) (CHead +e0 (Flat f) u4)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u3: +T).(\lambda (_: T).(drop (S i) (S i) (CHead c (Bind b) u1) (CHead e0 (Flat f) u3)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u3: T).(\lambda (u4: -T).(subst0 n0 v0 u3 u4)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(eq C (CHead c (Flat f) u2) (CHead e2 -(Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda -(u: T).(drop n0 n0 (CHead c (Flat f) u1) (CHead e1 (Flat f0) u)))))) (\lambda -(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 n0 v0 e1 -e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u4: T).(eq C (CHead c (Flat f) u2) (CHead e2 -(Flat f0) u4))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u3: T).(\lambda (_: T).(drop n0 n0 (CHead c (Flat f) u1) (CHead -e1 (Flat f0) u3))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: -C).(\lambda (u3: T).(\lambda (u4: T).(subst0 n0 v0 u3 u4)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -n0 v0 e1 e2))))))))) (or4_intro1 (drop O O (CHead c (Flat f) u1) (CHead c -(Flat f) u2)) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: +T).(subst0 (S i) v0 u3 u4)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(eq C (CHead c (Bind b) u2) (CHead e2 +(Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda +(u: T).(drop (S i) (S i) (CHead c (Bind b) u1) (CHead e1 (Flat f) u)))))) +(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (S +i) v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda +(e2: C).(\lambda (_: T).(\lambda (u4: T).(eq C (CHead c (Bind b) u2) (CHead +e2 (Flat f) u4))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u3: T).(\lambda (_: T).(drop (S i) (S i) (CHead c (Bind b) u1) +(CHead e1 (Flat f) u3))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: +C).(\lambda (u3: T).(\lambda (u4: T).(subst0 (S i) v0 u3 u4)))))) (\lambda +(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: +T).(csubst0 (S i) v0 e1 e2)))))))) H4)))))))))) (\lambda (f: F).(\lambda (i: +nat).(\lambda (v0: T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H2: (subst0 +i v0 u1 u2)).(\lambda (c: C).(\lambda (H3: (eq nat i O)).(let H4 \def (eq_ind +nat i (\lambda (n0: nat).(subst0 n0 v0 u1 u2)) H2 O H3) in (eq_ind_r nat O +(\lambda (n0: nat).(or4 (drop n0 n0 (CHead c (Flat f) u1) (CHead c (Flat f) +u2)) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u4: T).(eq C (CHead c (Flat f) u2) (CHead e0 (Flat f0) u4)))))) -(\lambda (f0: F).(\lambda (e0: C).(\lambda (u3: T).(\lambda (_: T).(drop O O -(CHead c (Flat f) u1) (CHead e0 (Flat f0) u3)))))) (\lambda (_: F).(\lambda -(_: C).(\lambda (u3: T).(\lambda (u4: T).(subst0 O v0 u3 u4)))))) (ex3_4 F C -C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C -(CHead c (Flat f) u2) (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda -(e1: C).(\lambda (_: C).(\lambda (u: T).(drop O O (CHead c (Flat f) u1) -(CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: -C).(\lambda (_: T).(csubst0 O v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u4: T).(eq C -(CHead c (Flat f) u2) (CHead e2 (Flat f0) u4))))))) (\lambda (f0: F).(\lambda -(e1: C).(\lambda (_: C).(\lambda (u3: T).(\lambda (_: T).(drop O O (CHead c -(Flat f) u1) (CHead e1 (Flat f0) u3))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u3: T).(\lambda (u4: T).(subst0 O v0 u3 u4)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v0 e1 e2))))))) (ex3_4_intro F C T T (\lambda (f0: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u4: T).(eq C (CHead c (Flat f) -u2) (CHead e0 (Flat f0) u4)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda -(u3: T).(\lambda (_: T).(drop O O (CHead c (Flat f) u1) (CHead e0 (Flat f0) +(\lambda (f0: F).(\lambda (e0: C).(\lambda (u3: T).(\lambda (_: T).(drop n0 +n0 (CHead c (Flat f) u1) (CHead e0 (Flat f0) u3)))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (u3: T).(\lambda (u4: T).(subst0 n0 v0 u3 +u4)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (u: T).(eq C (CHead c (Flat f) u2) (CHead e2 (Flat f0) u)))))) +(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop n0 n0 +(CHead c (Flat f) u1) (CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda +(e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 n0 v0 e1 e2)))))) (ex4_5 F +C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (u4: T).(eq C (CHead c (Flat f) u2) (CHead e2 (Flat f0) u4))))))) +(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u3: T).(\lambda +(_: T).(drop n0 n0 (CHead c (Flat f) u1) (CHead e1 (Flat f0) u3))))))) +(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u3: T).(\lambda +(u4: T).(subst0 n0 v0 u3 u4)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda +(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 n0 v0 e1 e2))))))))) +(or4_intro1 (drop O O (CHead c (Flat f) u1) (CHead c (Flat f) u2)) (ex3_4 F C +T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u4: T).(eq C +(CHead c (Flat f) u2) (CHead e0 (Flat f0) u4)))))) (\lambda (f0: F).(\lambda +(e0: C).(\lambda (u3: T).(\lambda (_: T).(drop O O (CHead c (Flat f) u1) +(CHead e0 (Flat f0) u3)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u3: +T).(\lambda (u4: T).(subst0 O v0 u3 u4)))))) (ex3_4 F C C T (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C (CHead c (Flat f) +u2) (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda +(_: C).(\lambda (u: T).(drop O O (CHead c (Flat f) u1) (CHead e1 (Flat f0) +u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(csubst0 O v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u4: T).(eq C (CHead c (Flat f) +u2) (CHead e2 (Flat f0) u4))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda +(_: C).(\lambda (u3: T).(\lambda (_: T).(drop O O (CHead c (Flat f) u1) +(CHead e1 (Flat f0) u3))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: +C).(\lambda (u3: T).(\lambda (u4: T).(subst0 O v0 u3 u4)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 +O v0 e1 e2))))))) (ex3_4_intro F C T T (\lambda (f0: F).(\lambda (e0: +C).(\lambda (_: T).(\lambda (u4: T).(eq C (CHead c (Flat f) u2) (CHead e0 +(Flat f0) u4)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u3: +T).(\lambda (_: T).(drop O O (CHead c (Flat f) u1) (CHead e0 (Flat f0) u3)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u3: T).(\lambda (u4: T).(subst0 O v0 u3 u4))))) f c u1 u2 (refl_equal C (CHead c (Flat f) u2)) (drop_refl (CHead c (Flat f) u1)) H4)) i H3)))))))))) k)) (\lambda (k: @@ -4436,40 +4418,39 @@ C).(\lambda (_: T).(\lambda (u2: T).(eq C c4 (CHead e2 (Flat f) u2))))))) C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v0 u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v0 e1 e2))))))))))).(\lambda (u: T).(\lambda (H4: (eq nat -(S i) O)).(let H5 \def (eq_ind nat (S i) (\lambda (ee: nat).(match ee in nat -return (\lambda (_: nat).Prop) with [O \Rightarrow False | (S _) \Rightarrow -True])) I O H4) in (False_ind (or4 (drop (S i) (S i) (CHead c3 (Bind b) u) -(CHead c4 (Bind b) u)) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead c4 (Bind b) u) (CHead e0 -(Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda -(_: T).(drop (S i) (S i) (CHead c3 (Bind b) u) (CHead e0 (Flat f) u1)))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 (S -i) v0 u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda -(e2: C).(\lambda (u0: T).(eq C (CHead c4 (Bind b) u) (CHead e2 (Flat f) -u0)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u0: -T).(drop (S i) (S i) (CHead c3 (Bind b) u) (CHead e1 (Flat f) u0)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (S -i) v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead c4 (Bind b) u) (CHead -e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S i) (S i) (CHead c3 (Bind b) u) -(CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (u2: T).(subst0 (S i) v0 u1 u2)))))) (\lambda -(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: -T).(csubst0 (S i) v0 e1 e2)))))))) H5))))))))))) (\lambda (f: F).(\lambda (i: -nat).(\lambda (c3: C).(\lambda (c4: C).(\lambda (v0: T).(\lambda (H2: -(csubst0 i v0 c3 c4)).(\lambda (H3: (((eq nat i O) \to (or4 (drop i i c3 c4) -(ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda -(u2: T).(eq C c4 (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: -C).(\lambda (u1: T).(\lambda (_: T).(drop i i c3 (CHead e0 (Flat f0) u1)))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i -v0 u1 u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C c4 (CHead e2 (Flat f0) u)))))) (\lambda (f0: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop i i c3 (CHead e1 -(Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda -(_: T).(csubst0 i v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda -(_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C c4 (CHead e2 -(Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: +(S i) O)).(let H5 \def (eq_ind nat (S i) (\lambda (ee: nat).(match ee with [O +\Rightarrow False | (S _) \Rightarrow True])) I O H4) in (False_ind (or4 +(drop (S i) (S i) (CHead c3 (Bind b) u) (CHead c4 (Bind b) u)) (ex3_4 F C T T +(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C +(CHead c4 (Bind b) u) (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda +(e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S i) (S i) (CHead c3 (Bind b) +u) (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 (S i) v0 u1 u2)))))) (ex3_4 F C C T (\lambda (f: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u0: T).(eq C (CHead c4 (Bind b) +u) (CHead e2 (Flat f) u0)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u0: T).(drop (S i) (S i) (CHead c3 (Bind b) u) (CHead e1 (Flat +f) u0)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(csubst0 (S i) v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda +(_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead c4 +(Bind b) u) (CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S i) (S i) (CHead +c3 (Bind b) u) (CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 (S i) v0 u1 +u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (_: T).(csubst0 (S i) v0 e1 e2)))))))) H5))))))))))) (\lambda (f: +F).(\lambda (i: nat).(\lambda (c3: C).(\lambda (c4: C).(\lambda (v0: +T).(\lambda (H2: (csubst0 i v0 c3 c4)).(\lambda (H3: (((eq nat i O) \to (or4 +(drop i i c3 c4) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda +(_: T).(\lambda (u2: T).(eq C c4 (CHead e0 (Flat f0) u2)))))) (\lambda (f0: +F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop i i c3 (CHead e0 +(Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda +(u2: T).(subst0 i v0 u1 u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(eq C c4 (CHead e2 (Flat f0) u)))))) +(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop i i +c3 (CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 i v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C c4 +(CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop i i c3 (CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 i v0 u1 u2)))))) (\lambda (_: F).(\lambda (e1: @@ -4588,57 +4569,57 @@ C).(\lambda (_: T).(\lambda (u4: T).(eq C c4 (CHead e2 (Flat f) u4))))))) C).(\lambda (_: C).(\lambda (u3: T).(\lambda (u4: T).(subst0 i v0 u3 u4)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v0 e1 e2))))))))))).(\lambda (H5: (eq nat (S i) O)).(let H6 -\def (eq_ind nat (S i) (\lambda (ee: nat).(match ee in nat return (\lambda -(_: nat).Prop) with [O \Rightarrow False | (S _) \Rightarrow True])) I O H5) -in (False_ind (or4 (drop (S i) (S i) (CHead c3 (Bind b) u1) (CHead c4 (Bind -b) u2)) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: -T).(\lambda (u4: T).(eq C (CHead c4 (Bind b) u2) (CHead e0 (Flat f) u4)))))) -(\lambda (f: F).(\lambda (e0: C).(\lambda (u3: T).(\lambda (_: T).(drop (S i) -(S i) (CHead c3 (Bind b) u1) (CHead e0 (Flat f) u3)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u3: T).(\lambda (u4: T).(subst0 (S i) v0 u3 -u4)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C (CHead c4 (Bind b) u2) (CHead e2 (Flat f) u)))))) -(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S i) -(S i) (CHead c3 (Bind b) u1) (CHead e1 (Flat f) u)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (S i) v0 e1 -e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u4: T).(eq C (CHead c4 (Bind b) u2) (CHead e2 -(Flat f) u4))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda -(u3: T).(\lambda (_: T).(drop (S i) (S i) (CHead c3 (Bind b) u1) (CHead e1 -(Flat f) u3))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda -(u3: T).(\lambda (u4: T).(subst0 (S i) v0 u3 u4)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -(S i) v0 e1 e2)))))))) H6))))))))))))) (\lambda (f: F).(\lambda (i: -nat).(\lambda (v0: T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H2: (subst0 -i v0 u1 u2)).(\lambda (c3: C).(\lambda (c4: C).(\lambda (H3: (csubst0 i v0 c3 -c4)).(\lambda (H4: (((eq nat i O) \to (or4 (drop i i c3 c4) (ex3_4 F C T T -(\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u4: T).(eq C c4 -(CHead e0 (Flat f0) u4)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u3: -T).(\lambda (_: T).(drop i i c3 (CHead e0 (Flat f0) u3)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u3: T).(\lambda (u4: T).(subst0 i v0 u3 u4)))))) -(ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: -T).(eq C c4 (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(drop i i c3 (CHead e1 (Flat f0) u)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 i -v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (u4: T).(eq C c4 (CHead e2 (Flat f0) -u4))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u3: -T).(\lambda (_: T).(drop i i c3 (CHead e1 (Flat f0) u3))))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (_: C).(\lambda (u3: T).(\lambda (u4: T).(subst0 -i v0 u3 u4)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (_: T).(csubst0 i v0 e1 e2))))))))))).(\lambda (H5: (eq nat i -O)).(let H6 \def (eq_ind nat i (\lambda (n0: nat).((eq nat n0 O) \to (or4 -(drop n0 n0 c3 c4) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda -(_: T).(\lambda (u4: T).(eq C c4 (CHead e0 (Flat f0) u4)))))) (\lambda (f0: -F).(\lambda (e0: C).(\lambda (u3: T).(\lambda (_: T).(drop n0 n0 c3 (CHead e0 -(Flat f0) u3)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u3: T).(\lambda -(u4: T).(subst0 n0 v0 u3 u4)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda -(_: C).(\lambda (e2: C).(\lambda (u: T).(eq C c4 (CHead e2 (Flat f0) u)))))) -(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop n0 n0 -c3 (CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: -C).(\lambda (_: T).(csubst0 n0 v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u4: T).(eq C c4 -(CHead e2 (Flat f0) u4))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: +\def (eq_ind nat (S i) (\lambda (ee: nat).(match ee with [O \Rightarrow False +| (S _) \Rightarrow True])) I O H5) in (False_ind (or4 (drop (S i) (S i) +(CHead c3 (Bind b) u1) (CHead c4 (Bind b) u2)) (ex3_4 F C T T (\lambda (f: +F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u4: T).(eq C (CHead c4 (Bind b) +u2) (CHead e0 (Flat f) u4)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda +(u3: T).(\lambda (_: T).(drop (S i) (S i) (CHead c3 (Bind b) u1) (CHead e0 +(Flat f) u3)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u3: T).(\lambda +(u4: T).(subst0 (S i) v0 u3 u4)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda +(_: C).(\lambda (e2: C).(\lambda (u: T).(eq C (CHead c4 (Bind b) u2) (CHead +e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda +(u: T).(drop (S i) (S i) (CHead c3 (Bind b) u1) (CHead e1 (Flat f) u)))))) +(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 (S +i) v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda +(e2: C).(\lambda (_: T).(\lambda (u4: T).(eq C (CHead c4 (Bind b) u2) (CHead +e2 (Flat f) u4))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u3: T).(\lambda (_: T).(drop (S i) (S i) (CHead c3 (Bind b) u1) +(CHead e1 (Flat f) u3))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: +C).(\lambda (u3: T).(\lambda (u4: T).(subst0 (S i) v0 u3 u4)))))) (\lambda +(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: +T).(csubst0 (S i) v0 e1 e2)))))))) H6))))))))))))) (\lambda (f: F).(\lambda +(i: nat).(\lambda (v0: T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H2: +(subst0 i v0 u1 u2)).(\lambda (c3: C).(\lambda (c4: C).(\lambda (H3: (csubst0 +i v0 c3 c4)).(\lambda (H4: (((eq nat i O) \to (or4 (drop i i c3 c4) (ex3_4 F +C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u4: T).(eq +C c4 (CHead e0 (Flat f0) u4)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda +(u3: T).(\lambda (_: T).(drop i i c3 (CHead e0 (Flat f0) u3)))))) (\lambda +(_: F).(\lambda (_: C).(\lambda (u3: T).(\lambda (u4: T).(subst0 i v0 u3 +u4)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (u: T).(eq C c4 (CHead e2 (Flat f0) u)))))) (\lambda (f0: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop i i c3 (CHead e1 +(Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(csubst0 i v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda +(_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u4: T).(eq C c4 (CHead e2 +(Flat f0) u4))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u3: T).(\lambda (_: T).(drop i i c3 (CHead e1 (Flat f0) +u3))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u3: +T).(\lambda (u4: T).(subst0 i v0 u3 u4)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 i v0 e1 +e2))))))))))).(\lambda (H5: (eq nat i O)).(let H6 \def (eq_ind nat i (\lambda +(n0: nat).((eq nat n0 O) \to (or4 (drop n0 n0 c3 c4) (ex3_4 F C T T (\lambda +(f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u4: T).(eq C c4 (CHead e0 +(Flat f0) u4)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u3: +T).(\lambda (_: T).(drop n0 n0 c3 (CHead e0 (Flat f0) u3)))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (u3: T).(\lambda (u4: T).(subst0 n0 v0 u3 +u4)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (u: T).(eq C c4 (CHead e2 (Flat f0) u)))))) (\lambda (f0: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop n0 n0 c3 (CHead e1 +(Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(csubst0 n0 v0 e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda +(_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u4: T).(eq C c4 (CHead e2 +(Flat f0) u4))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u3: T).(\lambda (_: T).(drop n0 n0 c3 (CHead e1 (Flat f0) u3))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u3: T).(\lambda (u4: T).(subst0 n0 v0 u3 u4)))))) (\lambda (_: F).(\lambda (e1: @@ -4762,15 +4743,16 @@ T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))))))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (c2: C).(\lambda (v: T).(\lambda (H0: (csubst0 (S n0) v (CHead c k t) c2)).(\lambda (e: -C).(\lambda (H1: (drop (S n0) O c2 e)).(or3_ind (ex3_2 T nat (\lambda (_: -T).(\lambda (j: nat).(eq nat (S n0) (s k j)))) (\lambda (u2: T).(\lambda (_: -nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j -v t u2)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat (S n0) (s k -j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda -(c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (ex4_3 T C nat (\lambda (_: -T).(\lambda (_: C).(\lambda (j: nat).(eq nat (S n0) (s k j))))) (\lambda (u2: -T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda -(u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: +C).(\lambda (H1: (drop (S n0) O c2 e)).(let H2 \def (csubst0_gen_head k c c2 +t v (S n0) H0) in (or3_ind (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq +nat (S n0) (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k +u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2)))) (ex3_2 C nat +(\lambda (_: C).(\lambda (j: nat).(eq nat (S n0) (s k j)))) (\lambda (c3: +C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: +nat).(csubst0 j v c c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: +C).(\lambda (j: nat).(eq nat (S n0) (s k j))))) (\lambda (u2: T).(\lambda +(c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: +T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))) (or4 (drop (S n0) O (CHead c k t) e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f) u2)))))) @@ -4787,7 +4769,7 @@ C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) (_: T).(drop (S n0) O (CHead c k t) (CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (H2: (ex3_2 T nat +(_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (H3: (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat (S n0) (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2))))).(ex3_2_ind T nat (\lambda (_: T).(\lambda (j: @@ -4809,9 +4791,9 @@ C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x0: T).(\lambda -(x1: nat).(\lambda (H3: (eq nat (S n0) (s k x1))).(\lambda (H4: (eq C c2 -(CHead c k x0))).(\lambda (H5: (subst0 x1 v t x0)).(let H6 \def (eq_ind C c2 -(\lambda (c0: C).(drop (S n0) O c0 e)) H1 (CHead c k x0) H4) in (K_ind +(x1: nat).(\lambda (H4: (eq nat (S n0) (s k x1))).(\lambda (H5: (eq C c2 +(CHead c k x0))).(\lambda (H6: (subst0 x1 v t x0)).(let H7 \def (eq_ind C c2 +(\lambda (c0: C).(drop (S n0) O c0 e)) H1 (CHead c k x0) H5) in (K_ind (\lambda (k0: K).((eq nat (S n0) (s k0 x1)) \to ((drop (r k0 n0) O c e) \to (or4 (drop (S n0) O (CHead c k0 t) e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f) u2)))))) @@ -4829,159 +4811,158 @@ C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))))))) (\lambda (b: -B).(\lambda (H7: (eq nat (S n0) (s (Bind b) x1))).(\lambda (H8: (drop (r -(Bind b) n0) O c e)).(let H9 \def (f_equal nat nat (\lambda (e0: nat).(match -e0 in nat return (\lambda (_: nat).nat) with [O \Rightarrow n0 | (S n1) -\Rightarrow n1])) (S n0) (S x1) H7) in (let H10 \def (eq_ind_r nat x1 -(\lambda (n1: nat).(subst0 n1 v t x0)) H5 n0 H9) in (or4_intro0 (drop (S n0) -O (CHead c (Bind b) t) e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f) u2)))))) -(\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S -n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda (_: +B).(\lambda (H8: (eq nat (S n0) (s (Bind b) x1))).(\lambda (H9: (drop (r +(Bind b) n0) O c e)).(let H10 \def (f_equal nat nat (\lambda (e0: nat).(match +e0 with [O \Rightarrow n0 | (S n1) \Rightarrow n1])) (S n0) (S x1) H8) in +(let H11 \def (eq_ind_r nat x1 (\lambda (n1: nat).(subst0 n1 v t x0)) H6 n0 +H10) in (or4_intro0 (drop (S n0) O (CHead c (Bind b) t) e) (ex3_4 F C T T +(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e +(CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) +u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f) u)))))) +(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) +O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda +(e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C +C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) (\lambda (f: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u1))))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 +O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop (Bind b) n0 c e +H9 t))))))) (\lambda (f: F).(\lambda (H8: (eq nat (S n0) (s (Flat f) +x1))).(\lambda (H9: (drop (r (Flat f) n0) O c e)).(let H10 \def (f_equal nat +nat (\lambda (e0: nat).e0) (S n0) (s (Flat f) x1) H8) in (let H11 \def +(eq_ind_r nat x1 (\lambda (n1: nat).(subst0 n1 v t x0)) H6 (S n0) H10) in +(or4_intro0 (drop (S n0) O (CHead c (Flat f) t) e) (ex3_4 F C T T (\lambda +(f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 +(Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) +u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f0) u)))))) +(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S +n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) +(ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) (\lambda (f0: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 +O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop (Flat f) n0 c e +H9 t))))))) k H4 (drop_gen_drop k c e x0 n0 H7)))))))) H3)) (\lambda (H3: +(ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat (S n0) (s k j)))) +(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: +C).(\lambda (j: nat).(csubst0 j v c c3))))).(ex3_2_ind C nat (\lambda (_: +C).(\lambda (j: nat).(eq nat (S n0) (s k j)))) (\lambda (c3: C).(\lambda (_: +nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j +v c c3))) (or4 (drop (S n0) O (CHead c k t) e) (ex3_4 F C T T (\lambda (f: +F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat +f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: +T).(drop (S n0) O (CHead c k t) (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Bind b) t) (CHead -e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: -C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e -(CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) -(CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -O v e1 e2))))))) (drop_drop (Bind b) n0 c e H8 t))))))) (\lambda (f: -F).(\lambda (H7: (eq nat (S n0) (s (Flat f) x1))).(\lambda (H8: (drop (r -(Flat f) n0) O c e)).(let H9 \def (f_equal nat nat (\lambda (e0: nat).e0) (S -n0) x1 H7) in (let H10 \def (eq_ind_r nat x1 (\lambda (n1: nat).(subst0 n1 v -t x0)) H5 (S n0) H9) in (or4_intro0 (drop (S n0) O (CHead c (Flat f) t) e) -(ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda -(u2: T).(eq C e (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) -(CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat -f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda -(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 -e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) -(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) +C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c k t) (CHead e1 +(Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat +f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c k t) (CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop -(Flat f) n0 c e H8 t))))))) k H3 (drop_gen_drop k c e x0 n0 H6)))))))) H2)) -(\lambda (H2: (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat (S n0) -(s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) -(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))).(ex3_2_ind C nat -(\lambda (_: C).(\lambda (j: nat).(eq nat (S n0) (s k j)))) (\lambda (c3: -C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: -nat).(csubst0 j v c c3))) (or4 (drop (S n0) O (CHead c k t) e) (ex3_4 F C T T -(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e -(CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: -T).(\lambda (_: T).(drop (S n0) O (CHead c k t) (CHead e0 (Flat f) u1)))))) +(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda +(x0: C).(\lambda (x1: nat).(\lambda (H4: (eq nat (S n0) (s k x1))).(\lambda +(H5: (eq C c2 (CHead x0 k t))).(\lambda (H6: (csubst0 x1 v c x0)).(let H7 +\def (eq_ind C c2 (\lambda (c0: C).(drop (S n0) O c0 e)) H1 (CHead x0 k t) +H5) in (K_ind (\lambda (k0: K).((eq nat (S n0) (s k0 x1)) \to ((drop (r k0 +n0) O x0 e) \to (or4 (drop (S n0) O (CHead c k0 t) e) (ex3_4 F C T T (\lambda +(f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 +(Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda +(_: T).(drop (S n0) O (CHead c k0 t) (CHead e0 (Flat f) u1)))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) +(ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: +T).(eq C e (CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c k0 t) (CHead e1 +(Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat +f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c k0 t) (CHead e1 (Flat f) u1))))))) +(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda +(u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda +(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))))))) +(\lambda (b: B).(\lambda (H8: (eq nat (S n0) (s (Bind b) x1))).(\lambda (H9: +(drop (r (Bind b) n0) O x0 e)).(let H10 \def (f_equal nat nat (\lambda (e0: +nat).(match e0 with [O \Rightarrow n0 | (S n1) \Rightarrow n1])) (S n0) (S +x1) H8) in (let H11 \def (eq_ind_r nat x1 (\lambda (n1: nat).(csubst0 n1 v c +x0)) H6 n0 H10) in (let H12 \def (IHn c x0 v H11 e H9) in (or4_ind (drop n0 O +c e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda +(u2: T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: +C).(\lambda (u1: T).(\lambda (_: T).(drop n0 O c (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f) u)))))) (\lambda (f: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c k -t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: -C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e -(CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c k t) (CHead e1 -(Flat f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda -(u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda -(e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 -e2)))))))) (\lambda (x0: C).(\lambda (x1: nat).(\lambda (H3: (eq nat (S n0) -(s k x1))).(\lambda (H4: (eq C c2 (CHead x0 k t))).(\lambda (H5: (csubst0 x1 -v c x0)).(let H6 \def (eq_ind C c2 (\lambda (c0: C).(drop (S n0) O c0 e)) H1 -(CHead x0 k t) H4) in (K_ind (\lambda (k0: K).((eq nat (S n0) (s k0 x1)) \to -((drop (r k0 n0) O x0 e) \to (or4 (drop (S n0) O (CHead c k0 t) e) (ex3_4 F C +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop n0 O c (CHead e1 +(Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat +f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (_: T).(drop n0 O c (CHead e1 (Flat f) u1))))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 +O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (or4 (drop (S n0) O (CHead c +(Bind b) t) e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: +T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: +F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c +(Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T +(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e +(CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) +u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat +f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) +u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 +e2)))))))) (\lambda (H13: (drop n0 O c e)).(or4_intro0 (drop (S n0) O (CHead +c (Bind b) t) e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: +T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: +F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c +(Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T +(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e +(CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) +u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat +f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) +u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) +(drop_drop (Bind b) n0 c e H13 t))) (\lambda (H13: (ex3_4 F C T T (\lambda +(f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 +(Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda +(_: T).(drop n0 O c (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2))))))).(ex3_4_ind F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: -T).(\lambda (_: T).(drop (S n0) O (CHead c k0 t) (CHead e0 (Flat f) u1)))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v -u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C e (CHead e2 (Flat f) u)))))) (\lambda (f: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c -k0 t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda -(f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq -C e (CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda -(_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c k0 t) (CHead -e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -O v e1 e2))))))))))) (\lambda (b: B).(\lambda (H7: (eq nat (S n0) (s (Bind b) -x1))).(\lambda (H8: (drop (r (Bind b) n0) O x0 e)).(let H9 \def (f_equal nat -nat (\lambda (e0: nat).(match e0 in nat return (\lambda (_: nat).nat) with [O -\Rightarrow n0 | (S n1) \Rightarrow n1])) (S n0) (S x1) H7) in (let H10 \def -(eq_ind_r nat x1 (\lambda (n1: nat).(csubst0 n1 v c x0)) H5 n0 H9) in (let -H11 \def (IHn c x0 v H10 e H8) in (or4_ind (drop n0 O c e) (ex3_4 F C T T -(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e -(CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: -T).(\lambda (_: T).(drop n0 O c (CHead e0 (Flat f) u1)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) -(ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: -T).(eq C e (CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(drop n0 O c (CHead e1 (Flat f) u)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O -v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) -(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(_: T).(drop n0 O c (CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2))))))) (or4 (drop (S n0) O (CHead c (Bind b) t) e) -(ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: -T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) -(CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat -f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda -(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 -e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) -(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u1))))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda -(H12: (drop n0 O c e)).(or4_intro0 (drop (S n0) O (CHead c (Bind b) t) e) -(ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: -T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) -(CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat -f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda -(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 -e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) -(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u1))))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop -(Bind b) n0 c e H12 t))) (\lambda (H12: (ex3_4 F C T T (\lambda (f: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat -f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: -T).(drop n0 O c (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2))))))).(ex3_4_ind F C -T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e -(CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: -T).(\lambda (_: T).(drop n0 O c (CHead e0 (Flat f) u1)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2))))) -(or4 (drop (S n0) O (CHead c (Bind b) t) e) (ex3_4 F C T T (\lambda (f: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat -f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: -T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda -(_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 -u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: +T).(\lambda (_: T).(drop n0 O c (CHead e0 (Flat f) u1)))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2))))) +(or4 (drop (S n0) O (CHead c (Bind b) t) e) (ex3_4 F C T T (\lambda (f: +F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat +f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: +T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda +(_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 +u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: @@ -4993,41 +4974,42 @@ C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x2: F).(\lambda (x3: C).(\lambda -(x4: T).(\lambda (x5: T).(\lambda (H13: (eq C e (CHead x3 (Flat x2) -x5))).(\lambda (H14: (drop n0 O c (CHead x3 (Flat x2) x4))).(\lambda (H15: -(subst0 O v x4 x5)).(eq_ind_r C (CHead x3 (Flat x2) x5) (\lambda (c0: C).(or4 -(drop (S n0) O (CHead c (Bind b) t) c0) (ex3_4 F C T T (\lambda (f: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e0 (Flat -f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: -T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda -(_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 -u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C c0 (CHead e2 (Flat f) u)))))) (\lambda (f: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c -(Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T -(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(u2: T).(eq C c0 (CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c -(Bind b) t) (CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2))))))))) (or4_intro1 (drop (S n0) O (CHead c (Bind -b) t) (CHead x3 (Flat x2) x5)) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x3 (Flat x2) x5) (CHead e0 -(Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda -(_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v -u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C (CHead x3 (Flat x2) x5) (CHead e2 (Flat f) u)))))) +(x4: T).(\lambda (x5: T).(\lambda (H14: (eq C e (CHead x3 (Flat x2) +x5))).(\lambda (H15: (drop n0 O c (CHead x3 (Flat x2) x4))).(\lambda (H16: +(subst0 O v x4 x5)).(let H17 \def (eq_ind C e (\lambda (c0: C).(drop n0 O x0 +c0)) H9 (CHead x3 (Flat x2) x5) H14) in (eq_ind_r C (CHead x3 (Flat x2) x5) +(\lambda (c0: C).(or4 (drop (S n0) O (CHead c (Bind b) t) c0) (ex3_4 F C T T +(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 +(CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) +u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(eq C c0 (CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (u2: T).(eq C (CHead x3 (Flat x2) x5) (CHead e2 (Flat f) -u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: -T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) -u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(eq C c0 (CHead e2 (Flat f) u2))))))) (\lambda (f: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u1))))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 +O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))))) (or4_intro1 (drop (S n0) O +(CHead c (Bind b) t) (CHead x3 (Flat x2) x5)) (ex3_4 F C T T (\lambda (f: +F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x3 (Flat +x2) x5) (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda +(u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat +f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(eq C (CHead x3 (Flat x2) x5) (CHead e2 +(Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda +(u: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) +(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O +v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x3 (Flat x2) x5) (CHead e2 +(Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda +(u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat +f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (ex3_4_intro F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: @@ -5036,7 +5018,7 @@ T).(\lambda (u2: T).(eq C (CHead x3 (Flat x2) x5) (CHead e0 (Flat f) u2)))))) n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2))))) x2 x3 x4 x5 (refl_equal C (CHead x3 (Flat x2) x5)) (drop_drop (Bind b) n0 c -(CHead x3 (Flat x2) x4) H14 t) H15)) e H13)))))))) H12)) (\lambda (H12: +(CHead x3 (Flat x2) x4) H15 t) H16)) e H14))))))))) H13)) (\lambda (H13: (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop n0 O c (CHead e1 (Flat f) u)))))) @@ -5062,83 +5044,86 @@ C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda -(x2: F).(\lambda (x3: C).(\lambda (x4: C).(\lambda (x5: T).(\lambda (H13: (eq -C e (CHead x4 (Flat x2) x5))).(\lambda (H14: (drop n0 O c (CHead x3 (Flat x2) -x5))).(\lambda (H15: (csubst0 O v x3 x4)).(eq_ind_r C (CHead x4 (Flat x2) x5) -(\lambda (c0: C).(or4 (drop (S n0) O (CHead c (Bind b) t) c0) (ex3_4 F C T T -(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 +(x2: F).(\lambda (x3: C).(\lambda (x4: C).(\lambda (x5: T).(\lambda (H14: (eq +C e (CHead x4 (Flat x2) x5))).(\lambda (H15: (drop n0 O c (CHead x3 (Flat x2) +x5))).(\lambda (H16: (csubst0 O v x3 x4)).(let H17 \def (eq_ind C e (\lambda +(c0: C).(drop n0 O x0 c0)) H9 (CHead x4 (Flat x2) x5) H14) in (eq_ind_r C +(CHead x4 (Flat x2) x5) (\lambda (c0: C).(or4 (drop (S n0) O (CHead c (Bind +b) t) c0) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: +T).(\lambda (u2: T).(eq C c0 (CHead e0 (Flat f) u2)))))) (\lambda (f: +F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c +(Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T +(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C c0 +(CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) +u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e2 (Flat +f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) +u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 +e2))))))))) (or4_intro2 (drop (S n0) O (CHead c (Bind b) t) (CHead x4 (Flat +x2) x5)) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: +T).(\lambda (u2: T).(eq C (CHead x4 (Flat x2) x5) (CHead e0 (Flat f) u2)))))) +(\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) +(ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: +T).(eq C (CHead x4 (Flat x2) x5) (CHead e2 (Flat f) u)))))) (\lambda (f: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c +(Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T +(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda +(u2: T).(eq C (CHead x4 (Flat x2) x5) (CHead e2 (Flat f) u2))))))) (\lambda +(f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: +T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u1))))))) (\lambda +(_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (ex3_4_intro F C +C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C +(CHead x4 (Flat x2) x5) (CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda +(e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Bind b) t) +(CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 O v e1 e2))))) x2 x3 x4 x5 (refl_equal C (CHead +x4 (Flat x2) x5)) (drop_drop (Bind b) n0 c (CHead x3 (Flat x2) x5) H15 t) +H16)) e H14))))))))) H13)) (\lambda (H13: (ex4_5 F C C T T (\lambda (f: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e +(CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u1: T).(\lambda (_: T).(drop n0 O c (CHead e1 (Flat f) u1))))))) +(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda +(u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda +(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))).(ex4_5_ind +F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) (\lambda (f: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop n0 +O c (CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 +O v e1 e2)))))) (or4 (drop (S n0) O (CHead c (Bind b) t) e) (ex3_4 F C T T +(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(eq C c0 (CHead e2 (Flat f) u)))))) +C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (u2: T).(eq C c0 (CHead e2 (Flat f) u2))))))) (\lambda (f: +T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))))) (or4_intro2 (drop (S n0) O -(CHead c (Bind b) t) (CHead x4 (Flat x2) x5)) (ex3_4 F C T T (\lambda (f: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x4 (Flat -x2) x5) (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda -(u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat -f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: -T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(eq C (CHead x4 (Flat x2) x5) (CHead e2 -(Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda -(u: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O -v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x4 (Flat x2) x5) (CHead e2 -(Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda -(u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat -f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) -(ex3_4_intro F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C (CHead x4 (Flat x2) x5) (CHead e2 (Flat f) u)))))) -(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) -O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda -(e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2))))) x2 x3 x4 x5 -(refl_equal C (CHead x4 (Flat x2) x5)) (drop_drop (Bind b) n0 c (CHead x3 -(Flat x2) x5) H14 t) H15)) e H13)))))))) H12)) (\lambda (H12: (ex4_5 F C C T -T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(u2: T).(eq C e (CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop n0 O c (CHead e1 -(Flat f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda -(u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda -(e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 -e2)))))))).(ex4_5_ind F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) -(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(_: T).(drop n0 O c (CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2)))))) (or4 (drop (S n0) O (CHead c (Bind b) t) e) -(ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: -T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) -(CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat -f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda -(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 -e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) -(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u1))))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda -(x2: F).(\lambda (x3: C).(\lambda (x4: C).(\lambda (x5: T).(\lambda (x6: -T).(\lambda (H13: (eq C e (CHead x4 (Flat x2) x6))).(\lambda (H14: (drop n0 O -c (CHead x3 (Flat x2) x5))).(\lambda (H15: (subst0 O v x5 x6)).(\lambda (H16: -(csubst0 O v x3 x4)).(eq_ind_r C (CHead x4 (Flat x2) x6) (\lambda (c0: +(_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x2: F).(\lambda +(x3: C).(\lambda (x4: C).(\lambda (x5: T).(\lambda (x6: T).(\lambda (H14: (eq +C e (CHead x4 (Flat x2) x6))).(\lambda (H15: (drop n0 O c (CHead x3 (Flat x2) +x5))).(\lambda (H16: (subst0 O v x5 x6)).(\lambda (H17: (csubst0 O v x3 +x4)).(let H18 \def (eq_ind C e (\lambda (c0: C).(drop n0 O x0 c0)) H9 (CHead +x4 (Flat x2) x6) H14) in (eq_ind_r C (CHead x4 (Flat x2) x6) (\lambda (c0: C).(or4 (drop (S n0) O (CHead c (Bind b) t) c0) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: @@ -5181,132 +5166,134 @@ f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))) x2 x3 x4 x5 x6 (refl_equal C (CHead x4 (Flat x2) x6)) (drop_drop (Bind b) n0 -c (CHead x3 (Flat x2) x5) H14 t) H15 H16)) e H13)))))))))) H12)) H11))))))) -(\lambda (f: F).(\lambda (H7: (eq nat (S n0) (s (Flat f) x1))).(\lambda (H8: -(drop (r (Flat f) n0) O x0 e)).(let H9 \def (f_equal nat nat (\lambda (e0: -nat).e0) (S n0) x1 H7) in (let H10 \def (eq_ind_r nat x1 (\lambda (n1: -nat).(csubst0 n1 v c x0)) H5 (S n0) H9) in (let H11 \def (H x0 v H10 e H8) in -(or4_ind (drop (S n0) O c e) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f0) u2)))))) -(\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S -n0) O c (CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda -(u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat -f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(drop (S n0) O c (CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T -(\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O c (CHead -e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -O v e1 e2))))))) (or4 (drop (S n0) O (CHead c (Flat f) t) e) (ex3_4 F C T T -(\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e -(CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: -T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) -u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: -T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f0) u)))))) -(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S -n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) -(ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) (\lambda (f0: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S -n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 -O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (H12: (drop (S n0) -O c e)).(or4_intro0 (drop (S n0) O (CHead c (Flat f) t) e) (ex3_4 F C T T -(\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e -(CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: -T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) -u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: -T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f0) u)))))) -(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S -n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: +c (CHead x3 (Flat x2) x5) H15 t) H16 H17)) e H14))))))))))) H13)) H12))))))) +(\lambda (f: F).(\lambda (H8: (eq nat (S n0) (s (Flat f) x1))).(\lambda (H9: +(drop (r (Flat f) n0) O x0 e)).(let H10 \def (f_equal nat nat (\lambda (e0: +nat).e0) (S n0) (s (Flat f) x1) H8) in (let H11 \def (eq_ind_r nat x1 +(\lambda (n1: nat).(csubst0 n1 v c x0)) H6 (S n0) H10) in (let H12 \def (H x0 +v H11 e H9) in (or4_ind (drop (S n0) O c e) (ex3_4 F C T T (\lambda (f0: +F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat +f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: +T).(drop (S n0) O c (CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T +(\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e +(CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u: T).(drop (S n0) O c (CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S -n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 -O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop (Flat f) n0 c e -H12 t))) (\lambda (H12: (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f0) u2)))))) -(\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S -n0) O c (CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda -(u1: T).(\lambda (u2: T).(subst0 O v u1 u2))))))).(ex3_4_ind F C T T (\lambda -(f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 -(Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: -T).(\lambda (_: T).(drop (S n0) O c (CHead e0 (Flat f0) u1)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2))))) -(or4 (drop (S n0) O (CHead c (Flat f) t) e) (ex3_4 F C T T (\lambda (f0: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat -f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: -T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda -(_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 -u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C e (CHead e2 (Flat f0) u)))))) (\lambda (f0: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c -(Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T -(\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c -(Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: +n0) O c (CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2)))))))) (\lambda (x2: F).(\lambda (x3: C).(\lambda -(x4: T).(\lambda (x5: T).(\lambda (H13: (eq C e (CHead x3 (Flat x2) -x5))).(\lambda (H14: (drop (S n0) O c (CHead x3 (Flat x2) x4))).(\lambda -(H15: (subst0 O v x4 x5)).(eq_ind_r C (CHead x3 (Flat x2) x5) (\lambda (c0: -C).(or4 (drop (S n0) O (CHead c (Flat f) t) c0) (ex3_4 F C T T (\lambda (f0: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e0 (Flat +(_: T).(csubst0 O v e1 e2))))))) (or4 (drop (S n0) O (CHead c (Flat f) t) e) +(ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda +(u2: T).(eq C e (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: +C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) +(CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat +f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: +T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda +(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 +e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) +(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda +(_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) +(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda +(u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda +(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda +(H13: (drop (S n0) O c e)).(or4_intro0 (drop (S n0) O (CHead c (Flat f) t) e) +(ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda +(u2: T).(eq C e (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: +C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) +(CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat +f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: +T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda +(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 +e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) +(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda +(_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) +(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda +(u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda +(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop +(Flat f) n0 c e H13 t))) (\lambda (H13: (ex3_4 F C T T (\lambda (f0: +F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: -T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda -(_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 -u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C c0 (CHead e2 (Flat f0) u)))))) (\lambda (f0: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c -(Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T -(\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(u2: T).(eq C c0 (CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c -(Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2))))))))) (or4_intro1 (drop (S n0) O (CHead c (Flat -f) t) (CHead x3 (Flat x2) x5)) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x3 (Flat x2) x5) (CHead e0 -(Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: +T).(drop (S n0) O c (CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2))))))).(ex3_4_ind F C +T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C +e (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda +(u1: T).(\lambda (_: T).(drop (S n0) O c (CHead e0 (Flat f0) u1)))))) +(\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v +u1 u2))))) (or4 (drop (S n0) O (CHead c (Flat f) t) e) (ex3_4 F C T T +(\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e +(CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(eq C (CHead x3 (Flat x2) x5) (CHead e2 -(Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda -(u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O -v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x3 (Flat x2) x5) (CHead e2 -(Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) -(CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -O v e1 e2))))))) (ex3_4_intro F C T T (\lambda (f0: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x3 (Flat x2) x5) (CHead e0 -(Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: -T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) -u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: -T).(subst0 O v u1 u2))))) x2 x3 x4 x5 (refl_equal C (CHead x3 (Flat x2) x5)) -(drop_drop (Flat f) n0 c (CHead x3 (Flat x2) x4) H14 t) H15)) e H13)))))))) -H12)) (\lambda (H12: (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda -(e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f0) u)))))) (\lambda (f0: +C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f0) u)))))) +(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S +n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) +(ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) (\lambda (f0: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 +O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x2: F).(\lambda +(x3: C).(\lambda (x4: T).(\lambda (x5: T).(\lambda (H14: (eq C e (CHead x3 +(Flat x2) x5))).(\lambda (H15: (drop (S n0) O c (CHead x3 (Flat x2) +x4))).(\lambda (H16: (subst0 O v x4 x5)).(let H17 \def (eq_ind C e (\lambda +(c0: C).(drop (S n0) O x0 c0)) H9 (CHead x3 (Flat x2) x5) H14) in (eq_ind_r C +(CHead x3 (Flat x2) x5) (\lambda (c0: C).(or4 (drop (S n0) O (CHead c (Flat +f) t) c0) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: +T).(\lambda (u2: T).(eq C c0 (CHead e0 (Flat f0) u2)))))) (\lambda (f0: +F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c +(Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T +(\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C c0 +(CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) +u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e2 (Flat +f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) +u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 +e2))))))))) (or4_intro1 (drop (S n0) O (CHead c (Flat f) t) (CHead x3 (Flat +x2) x5)) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: +T).(\lambda (u2: T).(eq C (CHead x3 (Flat x2) x5) (CHead e0 (Flat f0) +u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: +T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda +(_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 +u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (u: T).(eq C (CHead x3 (Flat x2) x5) (CHead e2 (Flat f0) u)))))) +(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S +n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) +(ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (u2: T).(eq C (CHead x3 (Flat x2) x5) (CHead e2 (Flat f0) +u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) +u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) +(ex3_4_intro F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: +T).(\lambda (u2: T).(eq C (CHead x3 (Flat x2) x5) (CHead e0 (Flat f0) +u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: +T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda +(_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 +u2))))) x2 x3 x4 x5 (refl_equal C (CHead x3 (Flat x2) x5)) (drop_drop (Flat +f) n0 c (CHead x3 (Flat x2) x4) H15 t) H16)) e H14))))))))) H13)) (\lambda +(H13: (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (u: T).(eq C e (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O c (CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2))))))).(ex3_4_ind F C C T (\lambda (f0: @@ -5331,157 +5318,160 @@ C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x2: F).(\lambda (x3: C).(\lambda (x4: C).(\lambda -(x5: T).(\lambda (H13: (eq C e (CHead x4 (Flat x2) x5))).(\lambda (H14: (drop -(S n0) O c (CHead x3 (Flat x2) x5))).(\lambda (H15: (csubst0 O v x3 -x4)).(eq_ind_r C (CHead x4 (Flat x2) x5) (\lambda (c0: C).(or4 (drop (S n0) O -(CHead c (Flat f) t) c0) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e0 (Flat f0) u2)))))) -(\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S -n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) -(ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: -T).(eq C c0 (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead -e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: -C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 -(CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) -(CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -O v e1 e2))))))))) (or4_intro2 (drop (S n0) O (CHead c (Flat f) t) (CHead x4 -(Flat x2) x5)) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: -T).(\lambda (u2: T).(eq C (CHead x4 (Flat x2) x5) (CHead e0 (Flat f0) -u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: -T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda -(_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 -u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C (CHead x4 (Flat x2) x5) (CHead e2 (Flat f0) u)))))) -(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S -n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) -(ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (u2: T).(eq C (CHead x4 (Flat x2) x5) (CHead e2 (Flat f0) -u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: -T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) -u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) -(ex3_4_intro F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C (CHead x4 (Flat x2) x5) (CHead e2 (Flat f0) u)))))) -(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S -n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2))))) -x2 x3 x4 x5 (refl_equal C (CHead x4 (Flat x2) x5)) (drop_drop (Flat f) n0 c -(CHead x3 (Flat x2) x5) H14 t) H15)) e H13)))))))) H12)) (\lambda (H12: -(ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) (\lambda (f0: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S -n0) O c (CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2)))))))).(ex4_5_ind F C C T T (\lambda (f0: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e -(CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O c (CHead e1 (Flat f0) -u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))) -(or4 (drop (S n0) O (CHead c (Flat f) t) e) (ex3_4 F C T T (\lambda (f0: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat +(x5: T).(\lambda (H14: (eq C e (CHead x4 (Flat x2) x5))).(\lambda (H15: (drop +(S n0) O c (CHead x3 (Flat x2) x5))).(\lambda (H16: (csubst0 O v x3 x4)).(let +H17 \def (eq_ind C e (\lambda (c0: C).(drop (S n0) O x0 c0)) H9 (CHead x4 +(Flat x2) x5) H14) in (eq_ind_r C (CHead x4 (Flat x2) x5) (\lambda (c0: +C).(or4 (drop (S n0) O (CHead c (Flat f) t) c0) (ex3_4 F C T T (\lambda (f0: +F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C e (CHead e2 (Flat f0) u)))))) (\lambda (f0: +C).(\lambda (u: T).(eq C c0 (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: +(u2: T).(eq C c0 (CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2)))))))) (\lambda (x2: F).(\lambda (x3: C).(\lambda -(x4: C).(\lambda (x5: T).(\lambda (x6: T).(\lambda (H13: (eq C e (CHead x4 -(Flat x2) x6))).(\lambda (H14: (drop (S n0) O c (CHead x3 (Flat x2) -x5))).(\lambda (H15: (subst0 O v x5 x6)).(\lambda (H16: (csubst0 O v x3 -x4)).(eq_ind_r C (CHead x4 (Flat x2) x6) (\lambda (c0: C).(or4 (drop (S n0) O -(CHead c (Flat f) t) c0) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e0 (Flat f0) u2)))))) -(\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S -n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) -(ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: -T).(eq C c0 (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead -e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: -C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 -(CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) -(CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -O v e1 e2))))))))) (or4_intro3 (drop (S n0) O (CHead c (Flat f) t) (CHead x4 -(Flat x2) x6)) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: -T).(\lambda (u2: T).(eq C (CHead x4 (Flat x2) x6) (CHead e0 (Flat f0) -u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: -T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda -(_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 -u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C (CHead x4 (Flat x2) x6) (CHead e2 (Flat f0) u)))))) -(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S -n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) -(ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (u2: T).(eq C (CHead x4 (Flat x2) x6) (CHead e2 (Flat f0) -u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: -T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) -u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) -(ex4_5_intro F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x4 (Flat x2) x6) (CHead e2 +(_: T).(csubst0 O v e1 e2))))))))) (or4_intro2 (drop (S n0) O (CHead c (Flat +f) t) (CHead x4 (Flat x2) x5)) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: +C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x4 (Flat x2) x5) (CHead e0 +(Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) +u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(eq C (CHead x4 (Flat x2) x5) (CHead e2 +(Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda +(u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) +(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O +v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x4 (Flat x2) x5) (CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -O v e1 e2)))))) x2 x3 x4 x5 x6 (refl_equal C (CHead x4 (Flat x2) x6)) -(drop_drop (Flat f) n0 c (CHead x3 (Flat x2) x5) H14 t) H15 H16)) e -H13)))))))))) H12)) H11))))))) k H3 (drop_gen_drop k x0 e t n0 H6)))))))) -H2)) (\lambda (H2: (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda -(j: nat).(eq nat (S n0) (s k j))))) (\lambda (u2: T).(\lambda (c3: -C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda -(_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: -C).(\lambda (j: nat).(csubst0 j v c c3)))))).(ex4_3_ind T C nat (\lambda (_: -T).(\lambda (_: C).(\lambda (j: nat).(eq nat (S n0) (s k j))))) (\lambda (u2: -T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda -(u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: -T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (or4 (drop (S n0) -O (CHead c k t) e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda -(_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: -F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c -k t) (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda -(u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat -f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(drop (S n0) O (CHead c k t) (CHead e1 (Flat f) u)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) -(ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) (\lambda (f: +O v e1 e2))))))) (ex3_4_intro F C C T (\lambda (f0: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(eq C (CHead x4 (Flat x2) x5) (CHead e2 +(Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda +(u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) +(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O +v e1 e2))))) x2 x3 x4 x5 (refl_equal C (CHead x4 (Flat x2) x5)) (drop_drop +(Flat f) n0 c (CHead x3 (Flat x2) x5) H15 t) H16)) e H14))))))))) H13)) +(\lambda (H13: (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda +(e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) +u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O c (CHead e1 (Flat f0) u1))))))) (\lambda +(_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))).(ex4_5_ind F C +C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S -n0) O (CHead c k t) (CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: +n0) O c (CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2)))))))) (\lambda (x0: T).(\lambda (x1: C).(\lambda -(x2: nat).(\lambda (H3: (eq nat (S n0) (s k x2))).(\lambda (H4: (eq C c2 -(CHead x1 k x0))).(\lambda (H5: (subst0 x2 v t x0)).(\lambda (H6: (csubst0 x2 -v c x1)).(let H7 \def (eq_ind C c2 (\lambda (c0: C).(drop (S n0) O c0 e)) H1 -(CHead x1 k x0) H4) in (K_ind (\lambda (k0: K).((eq nat (S n0) (s k0 x2)) \to +(_: T).(csubst0 O v e1 e2)))))) (or4 (drop (S n0) O (CHead c (Flat f) t) e) +(ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda +(u2: T).(eq C e (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: +C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) +(CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat +f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: +T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda +(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 +e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) +(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda +(_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) +(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda +(u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda +(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda +(x2: F).(\lambda (x3: C).(\lambda (x4: C).(\lambda (x5: T).(\lambda (x6: +T).(\lambda (H14: (eq C e (CHead x4 (Flat x2) x6))).(\lambda (H15: (drop (S +n0) O c (CHead x3 (Flat x2) x5))).(\lambda (H16: (subst0 O v x5 x6)).(\lambda +(H17: (csubst0 O v x3 x4)).(let H18 \def (eq_ind C e (\lambda (c0: C).(drop +(S n0) O x0 c0)) H9 (CHead x4 (Flat x2) x6) H14) in (eq_ind_r C (CHead x4 +(Flat x2) x6) (\lambda (c0: C).(or4 (drop (S n0) O (CHead c (Flat f) t) c0) +(ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda +(u2: T).(eq C c0 (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: +C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) +(CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C c0 (CHead e2 (Flat +f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: +T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda +(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 +e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e2 (Flat f0) u2))))))) +(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda +(_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) +(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda +(u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda +(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))))) +(or4_intro3 (drop (S n0) O (CHead c (Flat f) t) (CHead x4 (Flat x2) x6)) +(ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda +(u2: T).(eq C (CHead x4 (Flat x2) x6) (CHead e0 (Flat f0) u2)))))) (\lambda +(f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O +(CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda +(_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C +T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C +(CHead x4 (Flat x2) x6) (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda +(e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Flat f) t) +(CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C +(CHead x4 (Flat x2) x6) (CHead e2 (Flat f0) u2))))))) (\lambda (f0: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 +O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (ex4_5_intro F C C T T +(\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda +(u2: T).(eq C (CHead x4 (Flat x2) x6) (CHead e2 (Flat f0) u2))))))) (\lambda +(f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: +T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda +(_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))) x2 x3 x4 x5 x6 +(refl_equal C (CHead x4 (Flat x2) x6)) (drop_drop (Flat f) n0 c (CHead x3 +(Flat x2) x5) H15 t) H16 H17)) e H14))))))))))) H13)) H12))))))) k H4 +(drop_gen_drop k x0 e t n0 H7)))))))) H3)) (\lambda (H3: (ex4_3 T C nat +(\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat (S n0) (s k j))))) +(\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k +u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t +u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c +c3)))))).(ex4_3_ind T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: +nat).(eq nat (S n0) (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda +(_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: +C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: +C).(\lambda (j: nat).(csubst0 j v c c3)))) (or4 (drop (S n0) O (CHead c k t) +e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda +(u2: T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: +C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c k t) (CHead e0 +(Flat f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda +(u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f) u)))))) +(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) +O (CHead c k t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T +(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda +(u2: T).(eq C e (CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c k +t) (CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 +O v e1 e2)))))))) (\lambda (x0: T).(\lambda (x1: C).(\lambda (x2: +nat).(\lambda (H4: (eq nat (S n0) (s k x2))).(\lambda (H5: (eq C c2 (CHead x1 +k x0))).(\lambda (H6: (subst0 x2 v t x0)).(\lambda (H7: (csubst0 x2 v c +x1)).(let H8 \def (eq_ind C c2 (\lambda (c0: C).(drop (S n0) O c0 e)) H1 +(CHead x1 k x0) H5) in (K_ind (\lambda (k0: K).((eq nat (S n0) (s k0 x2)) \to ((drop (r k0 n0) O x1 e) \to (or4 (drop (S n0) O (CHead c k0 t) e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: @@ -5498,70 +5488,140 @@ C e (CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -O v e1 e2))))))))))) (\lambda (b: B).(\lambda (H8: (eq nat (S n0) (s (Bind b) -x2))).(\lambda (H9: (drop (r (Bind b) n0) O x1 e)).(let H10 \def (f_equal nat -nat (\lambda (e0: nat).(match e0 in nat return (\lambda (_: nat).nat) with [O -\Rightarrow n0 | (S n1) \Rightarrow n1])) (S n0) (S x2) H8) in (let H11 \def -(eq_ind_r nat x2 (\lambda (n1: nat).(csubst0 n1 v c x1)) H6 n0 H10) in (let -H12 \def (eq_ind_r nat x2 (\lambda (n1: nat).(subst0 n1 v t x0)) H5 n0 H10) -in (let H13 \def (IHn c x1 v H11 e H9) in (or4_ind (drop n0 O c e) (ex3_4 F C -T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e +O v e1 e2))))))))))) (\lambda (b: B).(\lambda (H9: (eq nat (S n0) (s (Bind b) +x2))).(\lambda (H10: (drop (r (Bind b) n0) O x1 e)).(let H11 \def (f_equal +nat nat (\lambda (e0: nat).(match e0 with [O \Rightarrow n0 | (S n1) +\Rightarrow n1])) (S n0) (S x2) H9) in (let H12 \def (eq_ind_r nat x2 +(\lambda (n1: nat).(csubst0 n1 v c x1)) H7 n0 H11) in (let H13 \def (eq_ind_r +nat x2 (\lambda (n1: nat).(subst0 n1 v t x0)) H6 n0 H11) in (let H14 \def +(IHn c x1 v H12 e H10) in (or4_ind (drop n0 O c e) (ex3_4 F C T T (\lambda +(f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 +(Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda +(_: T).(drop n0 O c (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T +(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e +(CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u: T).(drop n0 O c (CHead e1 (Flat f) u)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) +(ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) (\lambda (f: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop n0 +O c (CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 +O v e1 e2))))))) (or4 (drop (S n0) O (CHead c (Bind b) t) e) (ex3_4 F C T T +(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: -T).(\lambda (_: T).(drop n0 O c (CHead e0 (Flat f) u1)))))) (\lambda (_: +T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) +u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f) u)))))) +(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) +O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda +(e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C +C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) (\lambda (f: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u1))))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 +O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (H15: (drop n0 O c +e)).(or4_intro0 (drop (S n0) O (CHead c (Bind b) t) e) (ex3_4 F C T T +(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e +(CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) +u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f) u)))))) +(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) +O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda +(e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C +C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) (\lambda (f: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u1))))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 +O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop (Bind b) n0 c e +H15 t))) (\lambda (H15: (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: +C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f) u2)))))) +(\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop n0 O +c (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 O v u1 u2))))))).(ex3_4_ind F C T T (\lambda (f: +F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat +f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: +T).(drop n0 O c (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2))))) (or4 (drop (S n0) +O (CHead c (Bind b) t) e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: +C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f) u2)))))) +(\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) +(ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: +T).(eq C e (CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Bind b) t) (CHead +e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e +(CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) +(CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 +O v e1 e2)))))))) (\lambda (x3: F).(\lambda (x4: C).(\lambda (x5: T).(\lambda +(x6: T).(\lambda (H16: (eq C e (CHead x4 (Flat x3) x6))).(\lambda (H17: (drop +n0 O c (CHead x4 (Flat x3) x5))).(\lambda (H18: (subst0 O v x5 x6)).(let H19 +\def (eq_ind C e (\lambda (c0: C).(drop n0 O x1 c0)) H10 (CHead x4 (Flat x3) +x6) H16) in (eq_ind_r C (CHead x4 (Flat x3) x6) (\lambda (c0: C).(or4 (drop +(S n0) O (CHead c (Bind b) t) c0) (ex3_4 F C T T (\lambda (f: F).(\lambda +(e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e0 (Flat f) u2)))))) +(\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) +(ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: +T).(eq C c0 (CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Bind b) t) (CHead +e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 +(CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) +(CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 +O v e1 e2))))))))) (or4_intro1 (drop (S n0) O (CHead c (Bind b) t) (CHead x4 +(Flat x3) x6)) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: +T).(\lambda (u2: T).(eq C (CHead x4 (Flat x3) x6) (CHead e0 (Flat f) u2)))))) +(\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: -T).(eq C e (CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(drop n0 O c (CHead e1 (Flat f) u)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O -v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) -(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(_: T).(drop n0 O c (CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2))))))) (or4 (drop (S n0) O (CHead c (Bind b) t) e) -(ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: -T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) -(CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat -f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda -(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 -e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) -(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u1))))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda -(H14: (drop n0 O c e)).(or4_intro0 (drop (S n0) O (CHead c (Bind b) t) e) -(ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: -T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) +T).(eq C (CHead x4 (Flat x3) x6) (CHead e2 (Flat f) u)))))) (\lambda (f: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c +(Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T +(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda +(u2: T).(eq C (CHead x4 (Flat x3) x6) (CHead e2 (Flat f) u2))))))) (\lambda +(f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: +T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u1))))))) (\lambda +(_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (ex3_4_intro F C +T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C +(CHead x4 (Flat x3) x6) (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda +(e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: +T).(\lambda (u2: T).(subst0 O v u1 u2))))) x3 x4 x5 x6 (refl_equal C (CHead +x4 (Flat x3) x6)) (drop_drop (Bind b) n0 c (CHead x4 (Flat x3) x5) H17 t) +H18)) e H16))))))))) H15)) (\lambda (H15: (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda -(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 -e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) -(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u1))))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop -(Bind b) n0 c e H14 t))) (\lambda (H14: (ex3_4 F C T T (\lambda (f: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat -f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: -T).(drop n0 O c (CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2))))))).(ex3_4_ind F C -T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e -(CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: -T).(\lambda (_: T).(drop n0 O c (CHead e0 (Flat f) u1)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2))))) +T).(drop n0 O c (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2))))))).(ex3_4_ind F C +C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e +(CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u: T).(drop n0 O c (CHead e1 (Flat f) u)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2))))) (or4 (drop (S n0) O (CHead c (Bind b) t) e) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: @@ -5579,78 +5639,10 @@ C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x3: F).(\lambda (x4: C).(\lambda -(x5: T).(\lambda (x6: T).(\lambda (H15: (eq C e (CHead x4 (Flat x3) -x6))).(\lambda (H16: (drop n0 O c (CHead x4 (Flat x3) x5))).(\lambda (H17: -(subst0 O v x5 x6)).(eq_ind_r C (CHead x4 (Flat x3) x6) (\lambda (c0: C).(or4 -(drop (S n0) O (CHead c (Bind b) t) c0) (ex3_4 F C T T (\lambda (f: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e0 (Flat -f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: -T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda -(_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 -u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C c0 (CHead e2 (Flat f) u)))))) (\lambda (f: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c -(Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T -(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(u2: T).(eq C c0 (CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c -(Bind b) t) (CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2))))))))) (or4_intro1 (drop (S n0) O (CHead c (Bind -b) t) (CHead x4 (Flat x3) x6)) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x4 (Flat x3) x6) (CHead e0 -(Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda -(_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v -u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C (CHead x4 (Flat x3) x6) (CHead e2 (Flat f) u)))))) -(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) -O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda -(e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C -C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (u2: T).(eq C (CHead x4 (Flat x3) x6) (CHead e2 (Flat f) -u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: -T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) -u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) -(ex3_4_intro F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: -T).(\lambda (u2: T).(eq C (CHead x4 (Flat x3) x6) (CHead e0 (Flat f) u2)))))) -(\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S -n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2))))) -x3 x4 x5 x6 (refl_equal C (CHead x4 (Flat x3) x6)) (drop_drop (Bind b) n0 c -(CHead x4 (Flat x3) x5) H16 t) H17)) e H15)))))))) H14)) (\lambda (H14: -(ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: -T).(eq C e (CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u: T).(drop n0 O c (CHead e1 (Flat f) u)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O -v e1 e2))))))).(ex3_4_ind F C C T (\lambda (f: F).(\lambda (_: C).(\lambda -(e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f) u)))))) (\lambda (f: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop n0 O c (CHead e1 -(Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda -(_: T).(csubst0 O v e1 e2))))) (or4 (drop (S n0) O (CHead c (Bind b) t) e) -(ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: -T).(eq C e (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) -(CHead e0 (Flat f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat -f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda -(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 -e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) -(\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u1))))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda -(x3: F).(\lambda (x4: C).(\lambda (x5: C).(\lambda (x6: T).(\lambda (H15: (eq -C e (CHead x5 (Flat x3) x6))).(\lambda (H16: (drop n0 O c (CHead x4 (Flat x3) -x6))).(\lambda (H17: (csubst0 O v x4 x5)).(eq_ind_r C (CHead x5 (Flat x3) x6) +(x5: C).(\lambda (x6: T).(\lambda (H16: (eq C e (CHead x5 (Flat x3) +x6))).(\lambda (H17: (drop n0 O c (CHead x4 (Flat x3) x6))).(\lambda (H18: +(csubst0 O v x4 x5)).(let H19 \def (eq_ind C e (\lambda (c0: C).(drop n0 O x1 +c0)) H10 (CHead x5 (Flat x3) x6) H16) in (eq_ind_r C (CHead x5 (Flat x3) x6) (\lambda (c0: C).(or4 (drop (S n0) O (CHead c (Bind b) t) c0) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: @@ -5691,7 +5683,7 @@ C).(\lambda (u: T).(eq C (CHead x5 (Flat x3) x6) (CHead e2 (Flat f) u)))))) O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2))))) x3 x4 x5 x6 (refl_equal C (CHead x5 (Flat x3) x6)) (drop_drop (Bind b) n0 c (CHead x4 -(Flat x3) x6) H16 t) H17)) e H15)))))))) H14)) (\lambda (H14: (ex4_5 F C C T +(Flat x3) x6) H17 t) H18)) e H16))))))))) H15)) (\lambda (H15: (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop n0 O c (CHead e1 @@ -5722,41 +5714,42 @@ C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f) u2))))))) (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x3: F).(\lambda (x4: C).(\lambda (x5: C).(\lambda (x6: T).(\lambda (x7: -T).(\lambda (H15: (eq C e (CHead x5 (Flat x3) x7))).(\lambda (H16: (drop n0 O -c (CHead x4 (Flat x3) x6))).(\lambda (H17: (subst0 O v x6 x7)).(\lambda (H18: -(csubst0 O v x4 x5)).(eq_ind_r C (CHead x5 (Flat x3) x7) (\lambda (c0: -C).(or4 (drop (S n0) O (CHead c (Bind b) t) c0) (ex3_4 F C T T (\lambda (f: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e0 (Flat -f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: -T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) (\lambda -(_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 -u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C c0 (CHead e2 (Flat f) u)))))) (\lambda (f: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c -(Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T -(\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(u2: T).(eq C c0 (CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c -(Bind b) t) (CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2))))))))) (or4_intro3 (drop (S n0) O (CHead c (Bind -b) t) (CHead x5 (Flat x3) x7)) (ex3_4 F C T T (\lambda (f: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x5 (Flat x3) x7) (CHead e0 -(Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda -(_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) u1)))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v -u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C (CHead x5 (Flat x3) x7) (CHead e2 (Flat f) u)))))) +T).(\lambda (H16: (eq C e (CHead x5 (Flat x3) x7))).(\lambda (H17: (drop n0 O +c (CHead x4 (Flat x3) x6))).(\lambda (H18: (subst0 O v x6 x7)).(\lambda (H19: +(csubst0 O v x4 x5)).(let H20 \def (eq_ind C e (\lambda (c0: C).(drop n0 O x1 +c0)) H10 (CHead x5 (Flat x3) x7) H16) in (eq_ind_r C (CHead x5 (Flat x3) x7) +(\lambda (c0: C).(or4 (drop (S n0) O (CHead c (Bind b) t) c0) (ex3_4 F C T T +(\lambda (f: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 +(CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat f) +u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(eq C c0 (CHead e2 (Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: -T).(\lambda (u2: T).(eq C (CHead x5 (Flat x3) x7) (CHead e2 (Flat f) -u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: -T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) -u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(eq C c0 (CHead e2 (Flat f) u2))))))) (\lambda (f: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u1))))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 +O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))))) (or4_intro3 (drop (S n0) O +(CHead c (Bind b) t) (CHead x5 (Flat x3) x7)) (ex3_4 F C T T (\lambda (f: +F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x5 (Flat +x3) x7) (CHead e0 (Flat f) u2)))))) (\lambda (f: F).(\lambda (e0: C).(\lambda +(u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e0 (Flat +f) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(eq C (CHead x5 (Flat x3) x7) (CHead e2 +(Flat f) u)))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda +(u: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u)))))) +(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O +v e1 e2)))))) (ex4_5 F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x5 (Flat x3) x7) (CHead e2 +(Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda +(u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat +f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (ex4_5_intro F C C T T (\lambda (f: F).(\lambda (_: C).(\lambda (e2: @@ -5764,163 +5757,166 @@ C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x5 (Flat x3) x7) (CHead e2 (Flat f) u2))))))) (\lambda (f: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Bind b) t) (CHead e1 (Flat f) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))) -x3 x4 x5 x6 x7 (refl_equal C (CHead x5 (Flat x3) x7)) (drop_drop (Bind b) n0 -c (CHead x4 (Flat x3) x6) H16 t) H17 H18)) e H15)))))))))) H14)) H13)))))))) -(\lambda (f: F).(\lambda (H8: (eq nat (S n0) (s (Flat f) x2))).(\lambda (H9: -(drop (r (Flat f) n0) O x1 e)).(let H10 \def (f_equal nat nat (\lambda (e0: -nat).e0) (S n0) x2 H8) in (let H11 \def (eq_ind_r nat x2 (\lambda (n1: -nat).(csubst0 n1 v c x1)) H6 (S n0) H10) in (let H12 \def (eq_ind_r nat x2 -(\lambda (n1: nat).(subst0 n1 v t x0)) H5 (S n0) H10) in (let H13 \def (H x1 -v H11 e H9) in (or4_ind (drop (S n0) O c e) (ex3_4 F C T T (\lambda (f0: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat -f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: -T).(drop (S n0) O c (CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T -(\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e -(CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u: T).(drop (S n0) O c (CHead e1 (Flat f0) u)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) -(ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) (\lambda (f0: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S -n0) O c (CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2))))))) (or4 (drop (S n0) O (CHead c (Flat f) t) e) -(ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda -(u2: T).(eq C e (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) -(CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat -f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda -(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 -e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) -(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda -(H14: (drop (S n0) O c e)).(or4_intro0 (drop (S n0) O (CHead c (Flat f) t) e) -(ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda -(u2: T).(eq C e (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) -(CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat -f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda -(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 -e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) -(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda -(u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda -(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (drop_drop -(Flat f) n0 c e H14 t))) (\lambda (H14: (ex3_4 F C T T (\lambda (f0: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat -f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: -T).(drop (S n0) O c (CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2))))))).(ex3_4_ind F C -T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C -e (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda -(u1: T).(\lambda (_: T).(drop (S n0) O c (CHead e0 (Flat f0) u1)))))) -(\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v -u1 u2))))) (or4 (drop (S n0) O (CHead c (Flat f) t) e) (ex3_4 F C T T -(\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e -(CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: -T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) -u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: -T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f0) u)))))) -(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S -n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) -(ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) (\lambda (f0: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S -n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 -O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x3: F).(\lambda -(x4: C).(\lambda (x5: T).(\lambda (x6: T).(\lambda (H15: (eq C e (CHead x4 -(Flat x3) x6))).(\lambda (H16: (drop (S n0) O c (CHead x4 (Flat x3) -x5))).(\lambda (H17: (subst0 O v x5 x6)).(eq_ind_r C (CHead x4 (Flat x3) x6) -(\lambda (c0: C).(or4 (drop (S n0) O (CHead c (Flat f) t) c0) (ex3_4 F C T T -(\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 -(CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: -T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) -u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: -T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(eq C c0 (CHead e2 (Flat f0) u)))))) -(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S -n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) -(ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (u2: T).(eq C c0 (CHead e2 (Flat f0) u2))))))) (\lambda (f0: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S -n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: -F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 -O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda -(_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))))) (or4_intro1 (drop (S n0) O -(CHead c (Flat f) t) (CHead x4 (Flat x3) x6)) (ex3_4 F C T T (\lambda (f0: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x4 (Flat -x3) x6) (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: -C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) -(CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C (CHead x4 (Flat x3) -x6) (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda -(_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat -f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))) +x3 x4 x5 x6 x7 (refl_equal C (CHead x5 (Flat x3) x7)) (drop_drop (Bind b) n0 +c (CHead x4 (Flat x3) x6) H17 t) H18 H19)) e H16))))))))))) H15)) H14)))))))) +(\lambda (f: F).(\lambda (H9: (eq nat (S n0) (s (Flat f) x2))).(\lambda (H10: +(drop (r (Flat f) n0) O x1 e)).(let H11 \def (f_equal nat nat (\lambda (e0: +nat).e0) (S n0) (s (Flat f) x2) H9) in (let H12 \def (eq_ind_r nat x2 +(\lambda (n1: nat).(csubst0 n1 v c x1)) H7 (S n0) H11) in (let H13 \def +(eq_ind_r nat x2 (\lambda (n1: nat).(subst0 n1 v t x0)) H6 (S n0) H11) in +(let H14 \def (H x1 v H12 e H10) in (or4_ind (drop (S n0) O c e) (ex3_4 F C T +T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e +(CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O c (CHead e0 (Flat f0) u1)))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) +(ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: +T).(eq C e (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O c (CHead e1 (Flat f0) +u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x4 (Flat -x3) x6) (CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c -(Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2))))))) (ex3_4_intro F C T T (\lambda (f0: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x4 (Flat -x3) x6) (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat +f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O c (CHead e1 (Flat f0) u1))))))) (\lambda +(_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (or4 (drop (S +n0) O (CHead c (Flat f) t) e) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: +C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f0) u2)))))) +(\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) +(ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: +T).(eq C e (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead +e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e +(CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) -(CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: -T).(\lambda (u2: T).(subst0 O v u1 u2))))) x3 x4 x5 x6 (refl_equal C (CHead -x4 (Flat x3) x6)) (drop_drop (Flat f) n0 c (CHead x4 (Flat x3) x5) H16 t) -H17)) e H15)))))))) H14)) (\lambda (H14: (ex3_4 F C C T (\lambda (f0: -F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat -f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: -T).(drop (S n0) O c (CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2))))))).(ex3_4_ind F C -C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e +(CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 +O v e1 e2)))))))) (\lambda (H15: (drop (S n0) O c e)).(or4_intro0 (drop (S +n0) O (CHead c (Flat f) t) e) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: +C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f0) u2)))))) +(\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) +(ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: +T).(eq C e (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead +e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e +(CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) +(CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 +O v e1 e2))))))) (drop_drop (Flat f) n0 c e H15 t))) (\lambda (H15: (ex3_4 F +C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq +C e (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda +(u1: T).(\lambda (_: T).(drop (S n0) O c (CHead e0 (Flat f0) u1)))))) +(\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v +u1 u2))))))).(ex3_4_ind F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda +(_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f0) u2)))))) (\lambda (f0: +F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O c (CHead +e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 O v u1 u2))))) (or4 (drop (S n0) O (CHead c (Flat +f) t) e) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: +T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f0) u2)))))) (\lambda (f0: +F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c +(Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T +(\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: -C).(\lambda (u: T).(drop (S n0) O c (CHead e1 (Flat f0) u)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2))))) -(or4 (drop (S n0) O (CHead c (Flat f) t) e) (ex3_4 F C T T (\lambda (f0: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat +C).(\lambda (u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) +u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: +T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat +f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) +u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 +e2)))))))) (\lambda (x3: F).(\lambda (x4: C).(\lambda (x5: T).(\lambda (x6: +T).(\lambda (H16: (eq C e (CHead x4 (Flat x3) x6))).(\lambda (H17: (drop (S +n0) O c (CHead x4 (Flat x3) x5))).(\lambda (H18: (subst0 O v x5 x6)).(let H19 +\def (eq_ind C e (\lambda (c0: C).(drop (S n0) O x1 c0)) H10 (CHead x4 (Flat +x3) x6) H16) in (eq_ind_r C (CHead x4 (Flat x3) x6) (\lambda (c0: C).(or4 +(drop (S n0) O (CHead c (Flat f) t) c0) (ex3_4 F C T T (\lambda (f0: +F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C e (CHead e2 (Flat f0) u)))))) (\lambda (f0: +C).(\lambda (u: T).(eq C c0 (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: +(u2: T).(eq C c0 (CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2)))))))) (\lambda (x3: F).(\lambda (x4: C).(\lambda -(x5: C).(\lambda (x6: T).(\lambda (H15: (eq C e (CHead x5 (Flat x3) -x6))).(\lambda (H16: (drop (S n0) O c (CHead x4 (Flat x3) x6))).(\lambda -(H17: (csubst0 O v x4 x5)).(eq_ind_r C (CHead x5 (Flat x3) x6) (\lambda (c0: +(_: T).(csubst0 O v e1 e2))))))))) (or4_intro1 (drop (S n0) O (CHead c (Flat +f) t) (CHead x4 (Flat x3) x6)) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: +C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x4 (Flat x3) x6) (CHead e0 +(Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) +u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: +C).(\lambda (e2: C).(\lambda (u: T).(eq C (CHead x4 (Flat x3) x6) (CHead e2 +(Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda +(u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) +(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O +v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x4 (Flat x3) x6) (CHead e2 +(Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) +(CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 +O v e1 e2))))))) (ex3_4_intro F C T T (\lambda (f0: F).(\lambda (e0: +C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x4 (Flat x3) x6) (CHead e0 +(Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: +T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) +u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2))))) x3 x4 x5 x6 (refl_equal C (CHead x4 (Flat x3) x6)) +(drop_drop (Flat f) n0 c (CHead x4 (Flat x3) x5) H17 t) H18)) e H16))))))))) +H15)) (\lambda (H15: (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda +(e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat f0) u)))))) (\lambda (f0: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O c (CHead +e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 O v e1 e2))))))).(ex3_4_ind F C C T (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C e (CHead e2 (Flat +f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: +T).(drop (S n0) O c (CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: +C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2))))) (or4 (drop (S n0) +O (CHead c (Flat f) t) e) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: +C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e0 (Flat f0) u2)))))) +(\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) +(ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: +T).(eq C e (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: +C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead +e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e +(CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: +C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) +(CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: +C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: +F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 +O v e1 e2)))))))) (\lambda (x3: F).(\lambda (x4: C).(\lambda (x5: C).(\lambda +(x6: T).(\lambda (H16: (eq C e (CHead x5 (Flat x3) x6))).(\lambda (H17: (drop +(S n0) O c (CHead x4 (Flat x3) x6))).(\lambda (H18: (csubst0 O v x4 x5)).(let +H19 \def (eq_ind C e (\lambda (c0: C).(drop (S n0) O x1 c0)) H10 (CHead x5 +(Flat x3) x6) H16) in (eq_ind_r C (CHead x5 (Flat x3) x6) (\lambda (c0: C).(or4 (drop (S n0) O (CHead c (Flat f) t) c0) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: @@ -5961,8 +5957,8 @@ C).(\lambda (e2: C).(\lambda (u: T).(eq C (CHead x5 (Flat x3) x6) (CHead e2 (u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2))))) x3 x4 x5 x6 (refl_equal C (CHead x5 (Flat x3) x6)) (drop_drop -(Flat f) n0 c (CHead x4 (Flat x3) x6) H16 t) H17)) e H15)))))))) H14)) -(\lambda (H14: (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda +(Flat f) n0 c (CHead x4 (Flat x3) x6) H17 t) H18)) e H16))))))))) H15)) +(\lambda (H15: (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O c (CHead e1 (Flat f0) u1))))))) (\lambda @@ -5993,57 +5989,55 @@ C).(\lambda (_: T).(\lambda (u2: T).(eq C e (CHead e2 (Flat f0) u2))))))) (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))))) (\lambda (x3: F).(\lambda (x4: C).(\lambda (x5: C).(\lambda (x6: T).(\lambda (x7: -T).(\lambda (H15: (eq C e (CHead x5 (Flat x3) x7))).(\lambda (H16: (drop (S -n0) O c (CHead x4 (Flat x3) x6))).(\lambda (H17: (subst0 O v x6 x7)).(\lambda -(H18: (csubst0 O v x4 x5)).(eq_ind_r C (CHead x5 (Flat x3) x7) (\lambda (c0: -C).(or4 (drop (S n0) O (CHead c (Flat f) t) c0) (ex3_4 F C T T (\lambda (f0: -F).(\lambda (e0: C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e0 (Flat -f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: -T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda -(_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 -u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (u: T).(eq C c0 (CHead e2 (Flat f0) u)))))) (\lambda (f0: -F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c -(Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: -C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T -(\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(u2: T).(eq C c0 (CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c -(Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2))))))))) (or4_intro3 (drop (S n0) O (CHead c (Flat -f) t) (CHead x5 (Flat x3) x7)) (ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: -C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x5 (Flat x3) x7) (CHead e0 -(Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: -T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e0 (Flat f0) -u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: -T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (u: T).(eq C (CHead x5 (Flat x3) x7) (CHead e2 -(Flat f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda -(u: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O -v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: -C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x5 (Flat x3) x7) (CHead e2 -(Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: +T).(\lambda (H16: (eq C e (CHead x5 (Flat x3) x7))).(\lambda (H17: (drop (S +n0) O c (CHead x4 (Flat x3) x6))).(\lambda (H18: (subst0 O v x6 x7)).(\lambda +(H19: (csubst0 O v x4 x5)).(let H20 \def (eq_ind C e (\lambda (c0: C).(drop +(S n0) O x1 c0)) H10 (CHead x5 (Flat x3) x7) H16) in (eq_ind_r C (CHead x5 +(Flat x3) x7) (\lambda (c0: C).(or4 (drop (S n0) O (CHead c (Flat f) t) c0) +(ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda +(u2: T).(eq C c0 (CHead e0 (Flat f0) u2)))))) (\lambda (f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c (Flat f) t) -(CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: C).(\lambda (_: -C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (\lambda (_: -F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -O v e1 e2))))))) (ex4_5_intro F C C T T (\lambda (f0: F).(\lambda (_: -C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C (CHead x5 (Flat -x3) x7) (CHead e2 (Flat f0) u2))))))) (\lambda (f0: F).(\lambda (e1: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O (CHead c -(Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: F).(\lambda (_: -C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) -(\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 O v e1 e2)))))) x3 x4 x5 x6 x7 (refl_equal C (CHead x5 (Flat -x3) x7)) (drop_drop (Flat f) n0 c (CHead x4 (Flat x3) x6) H16 t) H17 H18)) e -H15)))))))))) H14)) H13)))))))) k H3 (drop_gen_drop k x1 e x0 n0 H7)))))))))) -H2)) (csubst0_gen_head k c c2 t v (S n0) H0))))))))))) c1)))) n). -(* COMMENTS -Initial nodes: 34765 -END *) +(CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda (_: C).(\lambda (u1: +T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C T (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C c0 (CHead e2 (Flat +f0) u)))))) (\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u: +T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u)))))) (\lambda +(_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda (_: T).(csubst0 O v e1 +e2)))))) (ex4_5 F C C T T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (u2: T).(eq C c0 (CHead e2 (Flat f0) u2))))))) +(\lambda (f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda +(_: T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) +(\lambda (_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda +(u2: T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda +(e2: C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))))) +(or4_intro3 (drop (S n0) O (CHead c (Flat f) t) (CHead x5 (Flat x3) x7)) +(ex3_4 F C T T (\lambda (f0: F).(\lambda (e0: C).(\lambda (_: T).(\lambda +(u2: T).(eq C (CHead x5 (Flat x3) x7) (CHead e0 (Flat f0) u2)))))) (\lambda +(f0: F).(\lambda (e0: C).(\lambda (u1: T).(\lambda (_: T).(drop (S n0) O +(CHead c (Flat f) t) (CHead e0 (Flat f0) u1)))))) (\lambda (_: F).(\lambda +(_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 O v u1 u2)))))) (ex3_4 F C C +T (\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (u: T).(eq C +(CHead x5 (Flat x3) x7) (CHead e2 (Flat f0) u)))))) (\lambda (f0: F).(\lambda +(e1: C).(\lambda (_: C).(\lambda (u: T).(drop (S n0) O (CHead c (Flat f) t) +(CHead e1 (Flat f0) u)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(csubst0 O v e1 e2)))))) (ex4_5 F C C T T (\lambda (f0: +F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda (u2: T).(eq C +(CHead x5 (Flat x3) x7) (CHead e2 (Flat f0) u2))))))) (\lambda (f0: +F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: T).(drop (S +n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda (_: +F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: T).(subst0 +O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: C).(\lambda +(_: T).(\lambda (_: T).(csubst0 O v e1 e2))))))) (ex4_5_intro F C C T T +(\lambda (f0: F).(\lambda (_: C).(\lambda (e2: C).(\lambda (_: T).(\lambda +(u2: T).(eq C (CHead x5 (Flat x3) x7) (CHead e2 (Flat f0) u2))))))) (\lambda +(f0: F).(\lambda (e1: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (_: +T).(drop (S n0) O (CHead c (Flat f) t) (CHead e1 (Flat f0) u1))))))) (\lambda +(_: F).(\lambda (_: C).(\lambda (_: C).(\lambda (u1: T).(\lambda (u2: +T).(subst0 O v u1 u2)))))) (\lambda (_: F).(\lambda (e1: C).(\lambda (e2: +C).(\lambda (_: T).(\lambda (_: T).(csubst0 O v e1 e2)))))) x3 x4 x5 x6 x7 +(refl_equal C (CHead x5 (Flat x3) x7)) (drop_drop (Flat f) n0 c (CHead x4 +(Flat x3) x6) H17 t) H18 H19)) e H16))))))))))) H15)) H14)))))))) k H4 +(drop_gen_drop k x1 e x0 n0 H8)))))))))) H3)) H2))))))))))) c1)))) n). theorem csubst0_drop_lt_back: \forall (n: nat).(\forall (i: nat).((lt n i) \to (\forall (c1: C).(\forall @@ -6083,78 +6077,79 @@ C).(\lambda (H0: ((\forall (c2: C).(\forall (v: T).((csubst0 i v c c2) \to (\lambda (e1: C).(csubst0 (minus i (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O c e1))))))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (c2: C).(\lambda (v: T).(\lambda (H1: (csubst0 i v (CHead c k t) c2)).(\lambda -(e2: C).(\lambda (H2: (drop (S n0) O c2 e2)).(or3_ind (ex3_2 T nat (\lambda +(e2: C).(\lambda (H2: (drop (S n0) O c2 e2)).(let H3 \def (csubst0_gen_head k +c c2 t v i H1) in (or3_ind (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq +nat i (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k +u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2)))) (ex3_2 C nat +(\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (c3: +C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: +nat).(csubst0 j v c c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: +C).(\lambda (j: nat).(eq nat i (s k j))))) (\lambda (u2: T).(\lambda (c3: +C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda +(_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: +C).(\lambda (j: nat).(csubst0 j v c c3))))) (or (drop (S n0) O (CHead c k t) +e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i (S n0)) v e1 e2)) (\lambda (e1: +C).(drop (S n0) O (CHead c k t) e1)))) (\lambda (H4: (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j -v t u2)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i (s k -j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda -(c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (ex4_3 T C nat (\lambda (_: -T).(\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j))))) (\lambda (u2: -T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda -(u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: -T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))) (or (drop (S n0) -O (CHead c k t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i (S n0)) v e1 -e2)) (\lambda (e1: C).(drop (S n0) O (CHead c k t) e1)))) (\lambda (H3: -(ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda -(u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: -T).(\lambda (j: nat).(subst0 j v t u2))))).(ex3_2_ind T nat (\lambda (_: -T).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (u2: T).(\lambda (_: -nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j -v t u2))) (or (drop (S n0) O (CHead c k t) e2) (ex2 C (\lambda (e1: -C).(csubst0 (minus i (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead -c k t) e1)))) (\lambda (x0: T).(\lambda (x1: nat).(\lambda (H4: (eq nat i (s -k x1))).(\lambda (H5: (eq C c2 (CHead c k x0))).(\lambda (_: (subst0 x1 v t -x0)).(let H7 \def (eq_ind C c2 (\lambda (c0: C).(drop (S n0) O c0 e2)) H2 -(CHead c k x0) H5) in (let H8 \def (eq_ind nat i (\lambda (n1: nat).(\forall -(c3: C).(\forall (v0: T).((csubst0 n1 v0 c c3) \to (\forall (e3: C).((drop (S -n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1: C).(csubst0 -(minus n1 (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop (S n0) O c e1)))))))))) -H0 (s k x1) H4) in (let H9 \def (eq_ind nat i (\lambda (n1: nat).(lt (S n0) -n1)) H (s k x1) H4) in (eq_ind_r nat (s k x1) (\lambda (n1: nat).(or (drop (S -n0) O (CHead c k t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus n1 (S n0)) v -e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c k t) e1))))) (K_ind (\lambda -(k0: K).(((\forall (c3: C).(\forall (v0: T).((csubst0 (s k0 x1) v0 c c3) \to -(\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C -(\lambda (e1: C).(csubst0 (minus (s k0 x1) (S n0)) v0 e1 e3)) (\lambda (e1: -C).(drop (S n0) O c e1)))))))))) \to ((lt (S n0) (s k0 x1)) \to ((drop (r k0 -n0) O c e2) \to (or (drop (S n0) O (CHead c k0 t) e2) (ex2 C (\lambda (e1: -C).(csubst0 (minus (s k0 x1) (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) -O (CHead c k0 t) e1)))))))) (\lambda (b: B).(\lambda (_: ((\forall (c3: -C).(\forall (v0: T).((csubst0 (s (Bind b) x1) v0 c c3) \to (\forall (e3: -C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1: -C).(csubst0 (minus (s (Bind b) x1) (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop -(S n0) O c e1))))))))))).(\lambda (_: (lt (S n0) (s (Bind b) x1))).(\lambda -(H12: (drop (r (Bind b) n0) O c e2)).(or_introl (drop (S n0) O (CHead c (Bind -b) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x1 n0) v e1 e2)) (\lambda -(e1: C).(drop (S n0) O (CHead c (Bind b) t) e1))) (drop_drop (Bind b) n0 c e2 -H12 t)))))) (\lambda (f: F).(\lambda (_: ((\forall (c3: C).(\forall (v0: -T).((csubst0 (s (Flat f) x1) v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3 +v t u2))))).(ex3_2_ind T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i (s k +j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda +(u2: T).(\lambda (j: nat).(subst0 j v t u2))) (or (drop (S n0) O (CHead c k +t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i (S n0)) v e1 e2)) (\lambda +(e1: C).(drop (S n0) O (CHead c k t) e1)))) (\lambda (x0: T).(\lambda (x1: +nat).(\lambda (H5: (eq nat i (s k x1))).(\lambda (H6: (eq C c2 (CHead c k +x0))).(\lambda (_: (subst0 x1 v t x0)).(let H8 \def (eq_ind C c2 (\lambda +(c0: C).(drop (S n0) O c0 e2)) H2 (CHead c k x0) H6) in (let H9 \def (eq_ind +nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: T).((csubst0 n1 v0 c +c3) \to (\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) +(ex2 C (\lambda (e1: C).(csubst0 (minus n1 (S n0)) v0 e1 e3)) (\lambda (e1: +C).(drop (S n0) O c e1)))))))))) H0 (s k x1) H5) in (let H10 \def (eq_ind nat +i (\lambda (n1: nat).(lt (S n0) n1)) H (s k x1) H5) in (eq_ind_r nat (s k x1) +(\lambda (n1: nat).(or (drop (S n0) O (CHead c k t) e2) (ex2 C (\lambda (e1: +C).(csubst0 (minus n1 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O +(CHead c k t) e1))))) (K_ind (\lambda (k0: K).(((\forall (c3: C).(\forall +(v0: T).((csubst0 (s k0 x1) v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1: C).(csubst0 (minus (s -(Flat f) x1) (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop (S n0) O c -e1))))))))))).(\lambda (_: (lt (S n0) (s (Flat f) x1))).(\lambda (H12: (drop -(r (Flat f) n0) O c e2)).(or_introl (drop (S n0) O (CHead c (Flat f) t) e2) -(ex2 C (\lambda (e1: C).(csubst0 (minus x1 (S n0)) v e1 e2)) (\lambda (e1: -C).(drop (S n0) O (CHead c (Flat f) t) e1))) (drop_drop (Flat f) n0 c e2 H12 -t)))))) k H8 H9 (drop_gen_drop k c e2 x0 n0 H7)) i H4))))))))) H3)) (\lambda -(H3: (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j)))) -(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: -C).(\lambda (j: nat).(csubst0 j v c c3))))).(ex3_2_ind C nat (\lambda (_: -C).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (c3: C).(\lambda (_: -nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j -v c c3))) (or (drop (S n0) O (CHead c k t) e2) (ex2 C (\lambda (e1: -C).(csubst0 (minus i (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead -c k t) e1)))) (\lambda (x0: C).(\lambda (x1: nat).(\lambda (H4: (eq nat i (s -k x1))).(\lambda (H5: (eq C c2 (CHead x0 k t))).(\lambda (H6: (csubst0 x1 v c -x0)).(let H7 \def (eq_ind C c2 (\lambda (c0: C).(drop (S n0) O c0 e2)) H2 -(CHead x0 k t) H5) in (let H8 \def (eq_ind nat i (\lambda (n1: nat).(\forall -(c3: C).(\forall (v0: T).((csubst0 n1 v0 c c3) \to (\forall (e3: C).((drop (S -n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1: C).(csubst0 -(minus n1 (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop (S n0) O c e1)))))))))) -H0 (s k x1) H4) in (let H9 \def (eq_ind nat i (\lambda (n1: nat).(lt (S n0) -n1)) H (s k x1) H4) in (eq_ind_r nat (s k x1) (\lambda (n1: nat).(or (drop (S -n0) O (CHead c k t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus n1 (S n0)) v -e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c k t) e1))))) (K_ind (\lambda -(k0: K).(((\forall (c3: C).(\forall (v0: T).((csubst0 (s k0 x1) v0 c c3) \to +k0 x1) (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop (S n0) O c e1)))))))))) \to +((lt (S n0) (s k0 x1)) \to ((drop (r k0 n0) O c e2) \to (or (drop (S n0) O +(CHead c k0 t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus (s k0 x1) (S n0)) +v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c k0 t) e1)))))))) (\lambda +(b: B).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Bind b) +x1) v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0) +O c e3) (ex2 C (\lambda (e1: C).(csubst0 (minus (s (Bind b) x1) (S n0)) v0 e1 +e3)) (\lambda (e1: C).(drop (S n0) O c e1))))))))))).(\lambda (_: (lt (S n0) +(s (Bind b) x1))).(\lambda (H13: (drop (r (Bind b) n0) O c e2)).(or_introl +(drop (S n0) O (CHead c (Bind b) t) e2) (ex2 C (\lambda (e1: C).(csubst0 +(minus (s (Bind b) x1) (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O +(CHead c (Bind b) t) e1))) (drop_drop (Bind b) n0 c e2 H13 t)))))) (\lambda +(f: F).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Flat f) +x1) v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0) +O c e3) (ex2 C (\lambda (e1: C).(csubst0 (minus (s (Flat f) x1) (S n0)) v0 e1 +e3)) (\lambda (e1: C).(drop (S n0) O c e1))))))))))).(\lambda (_: (lt (S n0) +(s (Flat f) x1))).(\lambda (H13: (drop (r (Flat f) n0) O c e2)).(or_introl +(drop (S n0) O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: C).(csubst0 +(minus (s (Flat f) x1) (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O +(CHead c (Flat f) t) e1))) (drop_drop (Flat f) n0 c e2 H13 t)))))) k H9 H10 +(drop_gen_drop k c e2 x0 n0 H8)) i H5))))))))) H4)) (\lambda (H4: (ex3_2 C +nat (\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (c3: +C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: +nat).(csubst0 j v c c3))))).(ex3_2_ind C nat (\lambda (_: C).(\lambda (j: +nat).(eq nat i (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead +c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))) (or (drop +(S n0) O (CHead c k t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i (S n0)) +v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c k t) e1)))) (\lambda (x0: +C).(\lambda (x1: nat).(\lambda (H5: (eq nat i (s k x1))).(\lambda (H6: (eq C +c2 (CHead x0 k t))).(\lambda (H7: (csubst0 x1 v c x0)).(let H8 \def (eq_ind C +c2 (\lambda (c0: C).(drop (S n0) O c0 e2)) H2 (CHead x0 k t) H6) in (let H9 +\def (eq_ind nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: +T).((csubst0 n1 v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3 e3) \to (or +(drop (S n0) O c e3) (ex2 C (\lambda (e1: C).(csubst0 (minus n1 (S n0)) v0 e1 +e3)) (\lambda (e1: C).(drop (S n0) O c e1)))))))))) H0 (s k x1) H5) in (let +H10 \def (eq_ind nat i (\lambda (n1: nat).(lt (S n0) n1)) H (s k x1) H5) in +(eq_ind_r nat (s k x1) (\lambda (n1: nat).(or (drop (S n0) O (CHead c k t) +e2) (ex2 C (\lambda (e1: C).(csubst0 (minus n1 (S n0)) v e1 e2)) (\lambda +(e1: C).(drop (S n0) O (CHead c k t) e1))))) (K_ind (\lambda (k0: +K).(((\forall (c3: C).(\forall (v0: T).((csubst0 (s k0 x1) v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1: C).(csubst0 (minus (s k0 x1) (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop (S n0) O c e1)))))))))) \to ((lt (S n0) (s k0 x1)) \to ((drop (r k0 @@ -6164,131 +6159,133 @@ O (CHead c k0 t) e1)))))))) (\lambda (b: B).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Bind b) x1) v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1: C).(csubst0 (minus (s (Bind b) x1) (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop -(S n0) O c e1))))))))))).(\lambda (H11: (lt (S n0) (s (Bind b) x1))).(\lambda -(H12: (drop (r (Bind b) n0) O x0 e2)).(let H_x \def (IHn x1 (lt_S_n n0 x1 -H11) c x0 v H6 e2 H12) in (let H13 \def H_x in (or_ind (drop n0 O c e2) (ex2 +(S n0) O c e1))))))))))).(\lambda (H12: (lt (S n0) (s (Bind b) x1))).(\lambda +(H13: (drop (r (Bind b) n0) O x0 e2)).(let H_x \def (IHn x1 (lt_S_n n0 x1 +H12) c x0 v H7 e2 H13) in (let H14 \def H_x in (or_ind (drop n0 O c e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x1 n0) v e1 e2)) (\lambda (e1: C).(drop n0 O c e1))) (or (drop (S n0) O (CHead c (Bind b) t) e2) (ex2 C (\lambda (e1: -C).(csubst0 (minus x1 n0) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c -(Bind b) t) e1)))) (\lambda (H14: (drop n0 O c e2)).(or_introl (drop (S n0) O -(CHead c (Bind b) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x1 n0) v e1 -e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Bind b) t) e1))) (drop_drop -(Bind b) n0 c e2 H14 t))) (\lambda (H14: (ex2 C (\lambda (e1: C).(csubst0 -(minus x1 n0) v e1 e2)) (\lambda (e1: C).(drop n0 O c e1)))).(ex2_ind C -(\lambda (e1: C).(csubst0 (minus x1 n0) v e1 e2)) (\lambda (e1: C).(drop n0 O -c e1)) (or (drop (S n0) O (CHead c (Bind b) t) e2) (ex2 C (\lambda (e1: -C).(csubst0 (minus x1 n0) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c -(Bind b) t) e1)))) (\lambda (x: C).(\lambda (H15: (csubst0 (minus x1 n0) v x -e2)).(\lambda (H16: (drop n0 O c x)).(or_intror (drop (S n0) O (CHead c (Bind -b) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x1 n0) v e1 e2)) (\lambda -(e1: C).(drop (S n0) O (CHead c (Bind b) t) e1))) (ex_intro2 C (\lambda (e1: -C).(csubst0 (minus x1 n0) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c -(Bind b) t) e1)) x H15 (drop_drop (Bind b) n0 c x H16 t)))))) H14)) -H13))))))) (\lambda (f: F).(\lambda (H10: ((\forall (c3: C).(\forall (v0: -T).((csubst0 (s (Flat f) x1) v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3 -e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1: C).(csubst0 (minus (s -(Flat f) x1) (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop (S n0) O c -e1))))))))))).(\lambda (_: (lt (S n0) (s (Flat f) x1))).(\lambda (H12: (drop -(r (Flat f) n0) O x0 e2)).(let H_x \def (H10 x0 v H6 e2 H12) in (let H13 \def -H_x in (or_ind (drop (S n0) O c e2) (ex2 C (\lambda (e1: C).(csubst0 (minus -x1 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O c e1))) (or (drop (S n0) -O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x1 (S n0)) -v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Flat f) t) e1)))) -(\lambda (H14: (drop (S n0) O c e2)).(or_introl (drop (S n0) O (CHead c (Flat -f) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x1 (S n0)) v e1 e2)) -(\lambda (e1: C).(drop (S n0) O (CHead c (Flat f) t) e1))) (drop_drop (Flat -f) n0 c e2 H14 t))) (\lambda (H14: (ex2 C (\lambda (e1: C).(csubst0 (minus x1 -(S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O c e1)))).(ex2_ind C -(\lambda (e1: C).(csubst0 (minus x1 (S n0)) v e1 e2)) (\lambda (e1: C).(drop -(S n0) O c e1)) (or (drop (S n0) O (CHead c (Flat f) t) e2) (ex2 C (\lambda -(e1: C).(csubst0 (minus x1 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O -(CHead c (Flat f) t) e1)))) (\lambda (x: C).(\lambda (H15: (csubst0 (minus x1 -(S n0)) v x e2)).(\lambda (H16: (drop (S n0) O c x)).(or_intror (drop (S n0) -O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x1 (S n0)) -v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Flat f) t) e1))) -(ex_intro2 C (\lambda (e1: C).(csubst0 (minus x1 (S n0)) v e1 e2)) (\lambda -(e1: C).(drop (S n0) O (CHead c (Flat f) t) e1)) x H15 (drop_drop (Flat f) n0 -c x H16 t)))))) H14)) H13))))))) k H8 H9 (drop_gen_drop k x0 e2 t n0 H7)) i -H4))))))))) H3)) (\lambda (H3: (ex4_3 T C nat (\lambda (_: T).(\lambda (_: -C).(\lambda (j: nat).(eq nat i (s k j))))) (\lambda (u2: T).(\lambda (c3: -C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda -(_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: -C).(\lambda (j: nat).(csubst0 j v c c3)))))).(ex4_3_ind T C nat (\lambda (_: -T).(\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j))))) (\lambda (u2: -T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda -(u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: -T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (or (drop (S n0) -O (CHead c k t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i (S n0)) v e1 -e2)) (\lambda (e1: C).(drop (S n0) O (CHead c k t) e1)))) (\lambda (x0: -T).(\lambda (x1: C).(\lambda (x2: nat).(\lambda (H4: (eq nat i (s k -x2))).(\lambda (H5: (eq C c2 (CHead x1 k x0))).(\lambda (_: (subst0 x2 v t -x0)).(\lambda (H7: (csubst0 x2 v c x1)).(let H8 \def (eq_ind C c2 (\lambda -(c0: C).(drop (S n0) O c0 e2)) H2 (CHead x1 k x0) H5) in (let H9 \def (eq_ind -nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: T).((csubst0 n1 v0 c -c3) \to (\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) -(ex2 C (\lambda (e1: C).(csubst0 (minus n1 (S n0)) v0 e1 e3)) (\lambda (e1: -C).(drop (S n0) O c e1)))))))))) H0 (s k x2) H4) in (let H10 \def (eq_ind nat -i (\lambda (n1: nat).(lt (S n0) n1)) H (s k x2) H4) in (eq_ind_r nat (s k x2) -(\lambda (n1: nat).(or (drop (S n0) O (CHead c k t) e2) (ex2 C (\lambda (e1: -C).(csubst0 (minus n1 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O -(CHead c k t) e1))))) (K_ind (\lambda (k0: K).(((\forall (c3: C).(\forall -(v0: T).((csubst0 (s k0 x2) v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3 -e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1: C).(csubst0 (minus (s -k0 x2) (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop (S n0) O c e1)))))))))) \to -((lt (S n0) (s k0 x2)) \to ((drop (r k0 n0) O x1 e2) \to (or (drop (S n0) O -(CHead c k0 t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus (s k0 x2) (S n0)) -v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c k0 t) e1)))))))) (\lambda -(b: B).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Bind b) -x2) v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0) -O c e3) (ex2 C (\lambda (e1: C).(csubst0 (minus (s (Bind b) x2) (S n0)) v0 e1 -e3)) (\lambda (e1: C).(drop (S n0) O c e1))))))))))).(\lambda (H12: (lt (S -n0) (s (Bind b) x2))).(\lambda (H13: (drop (r (Bind b) n0) O x1 e2)).(let H_x -\def (IHn x2 (lt_S_n n0 x2 H12) c x1 v H7 e2 H13) in (let H14 \def H_x in -(or_ind (drop n0 O c e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x2 n0) v e1 -e2)) (\lambda (e1: C).(drop n0 O c e1))) (or (drop (S n0) O (CHead c (Bind b) -t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x2 n0) v e1 e2)) (\lambda (e1: -C).(drop (S n0) O (CHead c (Bind b) t) e1)))) (\lambda (H15: (drop n0 O c +C).(csubst0 (minus (s (Bind b) x1) (S n0)) v e1 e2)) (\lambda (e1: C).(drop +(S n0) O (CHead c (Bind b) t) e1)))) (\lambda (H15: (drop n0 O c e2)).(or_introl (drop (S n0) O (CHead c (Bind b) t) e2) (ex2 C (\lambda (e1: -C).(csubst0 (minus x2 n0) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c -(Bind b) t) e1))) (drop_drop (Bind b) n0 c e2 H15 t))) (\lambda (H15: (ex2 C -(\lambda (e1: C).(csubst0 (minus x2 n0) v e1 e2)) (\lambda (e1: C).(drop n0 O -c e1)))).(ex2_ind C (\lambda (e1: C).(csubst0 (minus x2 n0) v e1 e2)) -(\lambda (e1: C).(drop n0 O c e1)) (or (drop (S n0) O (CHead c (Bind b) t) -e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x2 n0) v e1 e2)) (\lambda (e1: -C).(drop (S n0) O (CHead c (Bind b) t) e1)))) (\lambda (x: C).(\lambda (H16: -(csubst0 (minus x2 n0) v x e2)).(\lambda (H17: (drop n0 O c x)).(or_intror -(drop (S n0) O (CHead c (Bind b) t) e2) (ex2 C (\lambda (e1: C).(csubst0 -(minus x2 n0) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Bind b) t) -e1))) (ex_intro2 C (\lambda (e1: C).(csubst0 (minus x2 n0) v e1 e2)) (\lambda +C).(csubst0 (minus (s (Bind b) x1) (S n0)) v e1 e2)) (\lambda (e1: C).(drop +(S n0) O (CHead c (Bind b) t) e1))) (drop_drop (Bind b) n0 c e2 H15 t))) +(\lambda (H15: (ex2 C (\lambda (e1: C).(csubst0 (minus x1 n0) v e1 e2)) +(\lambda (e1: C).(drop n0 O c e1)))).(ex2_ind C (\lambda (e1: C).(csubst0 +(minus x1 n0) v e1 e2)) (\lambda (e1: C).(drop n0 O c e1)) (or (drop (S n0) O +(CHead c (Bind b) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus (s (Bind b) +x1) (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Bind b) t) +e1)))) (\lambda (x: C).(\lambda (H16: (csubst0 (minus x1 n0) v x +e2)).(\lambda (H17: (drop n0 O c x)).(or_intror (drop (S n0) O (CHead c (Bind +b) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus (s (Bind b) x1) (S n0)) v +e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Bind b) t) e1))) (ex_intro2 +C (\lambda (e1: C).(csubst0 (minus (s (Bind b) x1) (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Bind b) t) e1)) x H16 (drop_drop (Bind b) n0 c x H17 t)))))) H15)) H14))))))) (\lambda (f: F).(\lambda (H11: ((\forall +(c3: C).(\forall (v0: T).((csubst0 (s (Flat f) x1) v0 c c3) \to (\forall (e3: +C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1: +C).(csubst0 (minus (s (Flat f) x1) (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop +(S n0) O c e1))))))))))).(\lambda (_: (lt (S n0) (s (Flat f) x1))).(\lambda +(H13: (drop (r (Flat f) n0) O x0 e2)).(let H_x \def (H11 x0 v H7 e2 H13) in +(let H14 \def H_x in (or_ind (drop (S n0) O c e2) (ex2 C (\lambda (e1: +C).(csubst0 (minus x1 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O c +e1))) (or (drop (S n0) O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: +C).(csubst0 (minus (s (Flat f) x1) (S n0)) v e1 e2)) (\lambda (e1: C).(drop +(S n0) O (CHead c (Flat f) t) e1)))) (\lambda (H15: (drop (S n0) O c +e2)).(or_introl (drop (S n0) O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: +C).(csubst0 (minus (s (Flat f) x1) (S n0)) v e1 e2)) (\lambda (e1: C).(drop +(S n0) O (CHead c (Flat f) t) e1))) (drop_drop (Flat f) n0 c e2 H15 t))) +(\lambda (H15: (ex2 C (\lambda (e1: C).(csubst0 (minus x1 (S n0)) v e1 e2)) +(\lambda (e1: C).(drop (S n0) O c e1)))).(ex2_ind C (\lambda (e1: C).(csubst0 +(minus x1 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O c e1)) (or (drop +(S n0) O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus (s +(Flat f) x1) (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Flat +f) t) e1)))) (\lambda (x: C).(\lambda (H16: (csubst0 (minus x1 (S n0)) v x +e2)).(\lambda (H17: (drop (S n0) O c x)).(or_intror (drop (S n0) O (CHead c +(Flat f) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus (s (Flat f) x1) (S +n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Flat f) t) e1))) +(ex_intro2 C (\lambda (e1: C).(csubst0 (minus (s (Flat f) x1) (S n0)) v e1 +e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Flat f) t) e1)) x H16 +(drop_drop (Flat f) n0 c x H17 t)))))) H15)) H14))))))) k H9 H10 +(drop_gen_drop k x0 e2 t n0 H8)) i H5))))))))) H4)) (\lambda (H4: (ex4_3 T C +nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j))))) +(\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k +u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t +u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c +c3)))))).(ex4_3_ind T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: +nat).(eq nat i (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: +nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda +(j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: +nat).(csubst0 j v c c3)))) (or (drop (S n0) O (CHead c k t) e2) (ex2 C +(\lambda (e1: C).(csubst0 (minus i (S n0)) v e1 e2)) (\lambda (e1: C).(drop +(S n0) O (CHead c k t) e1)))) (\lambda (x0: T).(\lambda (x1: C).(\lambda (x2: +nat).(\lambda (H5: (eq nat i (s k x2))).(\lambda (H6: (eq C c2 (CHead x1 k +x0))).(\lambda (_: (subst0 x2 v t x0)).(\lambda (H8: (csubst0 x2 v c +x1)).(let H9 \def (eq_ind C c2 (\lambda (c0: C).(drop (S n0) O c0 e2)) H2 +(CHead x1 k x0) H6) in (let H10 \def (eq_ind nat i (\lambda (n1: +nat).(\forall (c3: C).(\forall (v0: T).((csubst0 n1 v0 c c3) \to (\forall +(e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda +(e1: C).(csubst0 (minus n1 (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop (S n0) O +c e1)))))))))) H0 (s k x2) H5) in (let H11 \def (eq_ind nat i (\lambda (n1: +nat).(lt (S n0) n1)) H (s k x2) H5) in (eq_ind_r nat (s k x2) (\lambda (n1: +nat).(or (drop (S n0) O (CHead c k t) e2) (ex2 C (\lambda (e1: C).(csubst0 +(minus n1 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c k t) +e1))))) (K_ind (\lambda (k0: K).(((\forall (c3: C).(\forall (v0: T).((csubst0 +(s k0 x2) v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop +(S n0) O c e3) (ex2 C (\lambda (e1: C).(csubst0 (minus (s k0 x2) (S n0)) v0 +e1 e3)) (\lambda (e1: C).(drop (S n0) O c e1)))))))))) \to ((lt (S n0) (s k0 +x2)) \to ((drop (r k0 n0) O x1 e2) \to (or (drop (S n0) O (CHead c k0 t) e2) +(ex2 C (\lambda (e1: C).(csubst0 (minus (s k0 x2) (S n0)) v e1 e2)) (\lambda +(e1: C).(drop (S n0) O (CHead c k0 t) e1)))))))) (\lambda (b: B).(\lambda (_: +((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Bind b) x2) v0 c c3) \to +(\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C +(\lambda (e1: C).(csubst0 (minus (s (Bind b) x2) (S n0)) v0 e1 e3)) (\lambda +(e1: C).(drop (S n0) O c e1))))))))))).(\lambda (H13: (lt (S n0) (s (Bind b) +x2))).(\lambda (H14: (drop (r (Bind b) n0) O x1 e2)).(let H_x \def (IHn x2 +(lt_S_n n0 x2 H13) c x1 v H8 e2 H14) in (let H15 \def H_x in (or_ind (drop n0 +O c e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x2 n0) v e1 e2)) (\lambda +(e1: C).(drop n0 O c e1))) (or (drop (S n0) O (CHead c (Bind b) t) e2) (ex2 C +(\lambda (e1: C).(csubst0 (minus (s (Bind b) x2) (S n0)) v e1 e2)) (\lambda +(e1: C).(drop (S n0) O (CHead c (Bind b) t) e1)))) (\lambda (H16: (drop n0 O +c e2)).(or_introl (drop (S n0) O (CHead c (Bind b) t) e2) (ex2 C (\lambda +(e1: C).(csubst0 (minus (s (Bind b) x2) (S n0)) v e1 e2)) (\lambda (e1: +C).(drop (S n0) O (CHead c (Bind b) t) e1))) (drop_drop (Bind b) n0 c e2 H16 +t))) (\lambda (H16: (ex2 C (\lambda (e1: C).(csubst0 (minus x2 n0) v e1 e2)) +(\lambda (e1: C).(drop n0 O c e1)))).(ex2_ind C (\lambda (e1: C).(csubst0 +(minus x2 n0) v e1 e2)) (\lambda (e1: C).(drop n0 O c e1)) (or (drop (S n0) O +(CHead c (Bind b) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus (s (Bind b) +x2) (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Bind b) t) +e1)))) (\lambda (x: C).(\lambda (H17: (csubst0 (minus x2 n0) v x +e2)).(\lambda (H18: (drop n0 O c x)).(or_intror (drop (S n0) O (CHead c (Bind +b) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus (s (Bind b) x2) (S n0)) v +e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Bind b) t) e1))) (ex_intro2 +C (\lambda (e1: C).(csubst0 (minus (s (Bind b) x2) (S n0)) v e1 e2)) (\lambda +(e1: C).(drop (S n0) O (CHead c (Bind b) t) e1)) x H17 (drop_drop (Bind b) n0 +c x H18 t)))))) H16)) H15))))))) (\lambda (f: F).(\lambda (H12: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Flat f) x2) v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1: C).(csubst0 (minus (s (Flat f) x2) (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop (S n0) O c e1))))))))))).(\lambda (_: (lt (S n0) (s (Flat f) x2))).(\lambda -(H13: (drop (r (Flat f) n0) O x1 e2)).(let H_x \def (H11 x1 v H7 e2 H13) in -(let H14 \def H_x in (or_ind (drop (S n0) O c e2) (ex2 C (\lambda (e1: +(H14: (drop (r (Flat f) n0) O x1 e2)).(let H_x \def (H12 x1 v H8 e2 H14) in +(let H15 \def H_x in (or_ind (drop (S n0) O c e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x2 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O c e1))) (or (drop (S n0) O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: -C).(csubst0 (minus x2 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O -(CHead c (Flat f) t) e1)))) (\lambda (H15: (drop (S n0) O c e2)).(or_introl -(drop (S n0) O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: C).(csubst0 -(minus x2 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Flat f) -t) e1))) (drop_drop (Flat f) n0 c e2 H15 t))) (\lambda (H15: (ex2 C (\lambda -(e1: C).(csubst0 (minus x2 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O -c e1)))).(ex2_ind C (\lambda (e1: C).(csubst0 (minus x2 (S n0)) v e1 e2)) -(\lambda (e1: C).(drop (S n0) O c e1)) (or (drop (S n0) O (CHead c (Flat f) -t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x2 (S n0)) v e1 e2)) (\lambda -(e1: C).(drop (S n0) O (CHead c (Flat f) t) e1)))) (\lambda (x: C).(\lambda -(H16: (csubst0 (minus x2 (S n0)) v x e2)).(\lambda (H17: (drop (S n0) O c -x)).(or_intror (drop (S n0) O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: -C).(csubst0 (minus x2 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O -(CHead c (Flat f) t) e1))) (ex_intro2 C (\lambda (e1: C).(csubst0 (minus x2 -(S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Flat f) t) e1)) x -H16 (drop_drop (Flat f) n0 c x H17 t)))))) H15)) H14))))))) k H9 H10 -(drop_gen_drop k x1 e2 x0 n0 H8)) i H4))))))))))) H3)) (csubst0_gen_head k c -c2 t v i H1))))))))))) c1)))))) n). -(* COMMENTS -Initial nodes: 5939 -END *) +C).(csubst0 (minus (s (Flat f) x2) (S n0)) v e1 e2)) (\lambda (e1: C).(drop +(S n0) O (CHead c (Flat f) t) e1)))) (\lambda (H16: (drop (S n0) O c +e2)).(or_introl (drop (S n0) O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: +C).(csubst0 (minus (s (Flat f) x2) (S n0)) v e1 e2)) (\lambda (e1: C).(drop +(S n0) O (CHead c (Flat f) t) e1))) (drop_drop (Flat f) n0 c e2 H16 t))) +(\lambda (H16: (ex2 C (\lambda (e1: C).(csubst0 (minus x2 (S n0)) v e1 e2)) +(\lambda (e1: C).(drop (S n0) O c e1)))).(ex2_ind C (\lambda (e1: C).(csubst0 +(minus x2 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O c e1)) (or (drop +(S n0) O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus (s +(Flat f) x2) (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Flat +f) t) e1)))) (\lambda (x: C).(\lambda (H17: (csubst0 (minus x2 (S n0)) v x +e2)).(\lambda (H18: (drop (S n0) O c x)).(or_intror (drop (S n0) O (CHead c +(Flat f) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus (s (Flat f) x2) (S +n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Flat f) t) e1))) +(ex_intro2 C (\lambda (e1: C).(csubst0 (minus (s (Flat f) x2) (S n0)) v e1 +e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Flat f) t) e1)) x H17 +(drop_drop (Flat f) n0 c x H18 t)))))) H16)) H15))))))) k H10 H11 +(drop_gen_drop k x1 e2 x0 n0 H9)) i H5))))))))))) H4)) H3))))))))))) c1)))))) +n). diff --git a/matita/matita/contribs/lambdadelta/basic_1/csubst0/fwd.ma b/matita/matita/contribs/lambdadelta/basic_1/csubst0/fwd.ma index 9b3de2983..022e06fa4 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/csubst0/fwd.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/csubst0/fwd.ma @@ -14,7 +14,25 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/csubst0/defs.ma". +include "basic_1/csubst0/defs.ma". + +include "basic_1/C/fwd.ma". + +let rec csubst0_ind (P: (nat \to (T \to (C \to (C \to Prop))))) (f: (\forall +(k: K).(\forall (i: nat).(\forall (v: T).(\forall (u1: T).(\forall (u2: +T).((subst0 i v u1 u2) \to (\forall (c: C).(P (s k i) v (CHead c k u1) (CHead +c k u2)))))))))) (f0: (\forall (k: K).(\forall (i: nat).(\forall (c1: +C).(\forall (c2: C).(\forall (v: T).((csubst0 i v c1 c2) \to ((P i v c1 c2) +\to (\forall (u: T).(P (s k i) v (CHead c1 k u) (CHead c2 k u))))))))))) (f1: +(\forall (k: K).(\forall (i: nat).(\forall (v: T).(\forall (u1: T).(\forall +(u2: T).((subst0 i v u1 u2) \to (\forall (c1: C).(\forall (c2: C).((csubst0 i +v c1 c2) \to ((P i v c1 c2) \to (P (s k i) v (CHead c1 k u1) (CHead c2 k +u2))))))))))))) (n: nat) (t: T) (c: C) (c0: C) (c1: csubst0 n t c c0) on c1: +P n t c c0 \def match c1 with [(csubst0_snd k i v u1 u2 s0 c2) \Rightarrow (f +k i v u1 u2 s0 c2) | (csubst0_fst k i c2 c3 v c4 u) \Rightarrow (f0 k i c2 c3 +v c4 ((csubst0_ind P f f0 f1) i v c2 c3 c4) u) | (csubst0_both k i v u1 u2 s0 +c2 c3 c4) \Rightarrow (f1 k i v u1 u2 s0 c2 c3 c4 ((csubst0_ind P f f0 f1) i +v c2 c3 c4))]. theorem csubst0_gen_sort: \forall (x: C).(\forall (v: T).(\forall (i: nat).(\forall (n: nat).((csubst0 @@ -28,25 +46,20 @@ C).(\lambda (H0: (csubst0 i v y x)).(csubst0_ind (\lambda (_: nat).(\lambda (\lambda (k: K).(\lambda (i0: nat).(\lambda (v0: T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (subst0 i0 v0 u1 u2)).(\lambda (c: C).(\lambda (H2: (eq C (CHead c k u1) (CSort n))).(let H3 \def (eq_ind C (CHead c k u1) (\lambda -(ee: C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _) -\Rightarrow False | (CHead _ _ _) \Rightarrow True])) I (CSort n) H2) in -(False_ind P H3)))))))))) (\lambda (k: K).(\lambda (i0: nat).(\lambda (c1: -C).(\lambda (c2: C).(\lambda (v0: T).(\lambda (_: (csubst0 i0 v0 c1 -c2)).(\lambda (_: (((eq C c1 (CSort n)) \to P))).(\lambda (u: T).(\lambda -(H3: (eq C (CHead c1 k u) (CSort n))).(let H4 \def (eq_ind C (CHead c1 k u) -(\lambda (ee: C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _) +(ee: C).(match ee with [(CSort _) \Rightarrow False | (CHead _ _ _) +\Rightarrow True])) I (CSort n) H2) in (False_ind P H3)))))))))) (\lambda (k: +K).(\lambda (i0: nat).(\lambda (c1: C).(\lambda (c2: C).(\lambda (v0: +T).(\lambda (_: (csubst0 i0 v0 c1 c2)).(\lambda (_: (((eq C c1 (CSort n)) \to +P))).(\lambda (u: T).(\lambda (H3: (eq C (CHead c1 k u) (CSort n))).(let H4 +\def (eq_ind C (CHead c1 k u) (\lambda (ee: C).(match ee with [(CSort _) \Rightarrow False | (CHead _ _ _) \Rightarrow True])) I (CSort n) H3) in (False_ind P H4))))))))))) (\lambda (k: K).(\lambda (i0: nat).(\lambda (v0: T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (subst0 i0 v0 u1 u2)).(\lambda (c1: C).(\lambda (c2: C).(\lambda (_: (csubst0 i0 v0 c1 c2)).(\lambda (_: (((eq C c1 (CSort n)) \to P))).(\lambda (H4: (eq C (CHead c1 k u1) (CSort n))).(let H5 \def (eq_ind C (CHead c1 k u1) (\lambda (ee: -C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow -False | (CHead _ _ _) \Rightarrow True])) I (CSort n) H4) in (False_ind P -H5))))))))))))) i v y x H0))) H)))))). -(* COMMENTS -Initial nodes: 355 -END *) +C).(match ee with [(CSort _) \Rightarrow False | (CHead _ _ _) \Rightarrow +True])) I (CSort n) H4) in (False_ind P H5))))))))))))) i v y x H0))) H)))))). theorem csubst0_gen_head: \forall (k: K).(\forall (c1: C).(\forall (x: C).(\forall (u1: T).(\forall @@ -89,100 +102,98 @@ T).(\lambda (c2: C).(\lambda (j: nat).(csubst0 j t c1 c2))))))))))) (\lambda (k0: K).(\lambda (i0: nat).(\lambda (v0: T).(\lambda (u0: T).(\lambda (u2: T).(\lambda (H1: (subst0 i0 v0 u0 u2)).(\lambda (c: C).(\lambda (H2: (eq C (CHead c k0 u0) (CHead c1 k u1))).(let H3 \def (f_equal C C (\lambda (e: -C).(match e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c | -(CHead c0 _ _) \Rightarrow c0])) (CHead c k0 u0) (CHead c1 k u1) H2) in ((let -H4 \def (f_equal C K (\lambda (e: C).(match e in C return (\lambda (_: C).K) -with [(CSort _) \Rightarrow k0 | (CHead _ k1 _) \Rightarrow k1])) (CHead c k0 -u0) (CHead c1 k u1) H2) in ((let H5 \def (f_equal C T (\lambda (e: C).(match -e in C return (\lambda (_: C).T) with [(CSort _) \Rightarrow u0 | (CHead _ _ -t) \Rightarrow t])) (CHead c k0 u0) (CHead c1 k u1) H2) in (\lambda (H6: (eq -K k0 k)).(\lambda (H7: (eq C c c1)).(eq_ind_r C c1 (\lambda (c0: C).(or3 -(ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat (s k0 i0) (s k j)))) -(\lambda (u3: T).(\lambda (_: nat).(eq C (CHead c0 k0 u2) (CHead c1 k u3)))) -(\lambda (u3: T).(\lambda (j: nat).(subst0 j v0 u1 u3)))) (ex3_2 C nat -(\lambda (_: C).(\lambda (j: nat).(eq nat (s k0 i0) (s k j)))) (\lambda (c2: -C).(\lambda (_: nat).(eq C (CHead c0 k0 u2) (CHead c2 k u1)))) (\lambda (c2: -C).(\lambda (j: nat).(csubst0 j v0 c1 c2)))) (ex4_3 T C nat (\lambda (_: -T).(\lambda (_: C).(\lambda (j: nat).(eq nat (s k0 i0) (s k j))))) (\lambda -(u3: T).(\lambda (c2: C).(\lambda (_: nat).(eq C (CHead c0 k0 u2) (CHead c2 k -u3))))) (\lambda (u3: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v0 u1 -u3)))) (\lambda (_: T).(\lambda (c2: C).(\lambda (j: nat).(csubst0 j v0 c1 -c2))))))) (let H8 \def (eq_ind T u0 (\lambda (t: T).(subst0 i0 v0 t u2)) H1 -u1 H5) in (eq_ind_r K k (\lambda (k1: K).(or3 (ex3_2 T nat (\lambda (_: -T).(\lambda (j: nat).(eq nat (s k1 i0) (s k j)))) (\lambda (u3: T).(\lambda -(_: nat).(eq C (CHead c1 k1 u2) (CHead c1 k u3)))) (\lambda (u3: T).(\lambda +C).(match e with [(CSort _) \Rightarrow c | (CHead c0 _ _) \Rightarrow c0])) +(CHead c k0 u0) (CHead c1 k u1) H2) in ((let H4 \def (f_equal C K (\lambda +(e: C).(match e with [(CSort _) \Rightarrow k0 | (CHead _ k1 _) \Rightarrow +k1])) (CHead c k0 u0) (CHead c1 k u1) H2) in ((let H5 \def (f_equal C T +(\lambda (e: C).(match e with [(CSort _) \Rightarrow u0 | (CHead _ _ t) +\Rightarrow t])) (CHead c k0 u0) (CHead c1 k u1) H2) in (\lambda (H6: (eq K +k0 k)).(\lambda (H7: (eq C c c1)).(eq_ind_r C c1 (\lambda (c0: C).(or3 (ex3_2 +T nat (\lambda (_: T).(\lambda (j: nat).(eq nat (s k0 i0) (s k j)))) (\lambda +(u3: T).(\lambda (_: nat).(eq C (CHead c0 k0 u2) (CHead c1 k u3)))) (\lambda +(u3: T).(\lambda (j: nat).(subst0 j v0 u1 u3)))) (ex3_2 C nat (\lambda (_: +C).(\lambda (j: nat).(eq nat (s k0 i0) (s k j)))) (\lambda (c2: C).(\lambda +(_: nat).(eq C (CHead c0 k0 u2) (CHead c2 k u1)))) (\lambda (c2: C).(\lambda +(j: nat).(csubst0 j v0 c1 c2)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: +C).(\lambda (j: nat).(eq nat (s k0 i0) (s k j))))) (\lambda (u3: T).(\lambda +(c2: C).(\lambda (_: nat).(eq C (CHead c0 k0 u2) (CHead c2 k u3))))) (\lambda +(u3: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v0 u1 u3)))) (\lambda (_: +T).(\lambda (c2: C).(\lambda (j: nat).(csubst0 j v0 c1 c2))))))) (let H8 \def +(eq_ind T u0 (\lambda (t: T).(subst0 i0 v0 t u2)) H1 u1 H5) in (eq_ind_r K k +(\lambda (k1: K).(or3 (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat +(s k1 i0) (s k j)))) (\lambda (u3: T).(\lambda (_: nat).(eq C (CHead c1 k1 +u2) (CHead c1 k u3)))) (\lambda (u3: T).(\lambda (j: nat).(subst0 j v0 u1 +u3)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat (s k1 i0) (s k +j)))) (\lambda (c2: C).(\lambda (_: nat).(eq C (CHead c1 k1 u2) (CHead c2 k +u1)))) (\lambda (c2: C).(\lambda (j: nat).(csubst0 j v0 c1 c2)))) (ex4_3 T C +nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat (s k1 i0) (s k +j))))) (\lambda (u3: T).(\lambda (c2: C).(\lambda (_: nat).(eq C (CHead c1 k1 +u2) (CHead c2 k u3))))) (\lambda (u3: T).(\lambda (_: C).(\lambda (j: +nat).(subst0 j v0 u1 u3)))) (\lambda (_: T).(\lambda (c2: C).(\lambda (j: +nat).(csubst0 j v0 c1 c2))))))) (or3_intro0 (ex3_2 T nat (\lambda (_: +T).(\lambda (j: nat).(eq nat (s k i0) (s k j)))) (\lambda (u3: T).(\lambda +(_: nat).(eq C (CHead c1 k u2) (CHead c1 k u3)))) (\lambda (u3: T).(\lambda (j: nat).(subst0 j v0 u1 u3)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: -nat).(eq nat (s k1 i0) (s k j)))) (\lambda (c2: C).(\lambda (_: nat).(eq C -(CHead c1 k1 u2) (CHead c2 k u1)))) (\lambda (c2: C).(\lambda (j: +nat).(eq nat (s k i0) (s k j)))) (\lambda (c2: C).(\lambda (_: nat).(eq C +(CHead c1 k u2) (CHead c2 k u1)))) (\lambda (c2: C).(\lambda (j: nat).(csubst0 j v0 c1 c2)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: -C).(\lambda (j: nat).(eq nat (s k1 i0) (s k j))))) (\lambda (u3: T).(\lambda -(c2: C).(\lambda (_: nat).(eq C (CHead c1 k1 u2) (CHead c2 k u3))))) (\lambda +C).(\lambda (j: nat).(eq nat (s k i0) (s k j))))) (\lambda (u3: T).(\lambda +(c2: C).(\lambda (_: nat).(eq C (CHead c1 k u2) (CHead c2 k u3))))) (\lambda (u3: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v0 u1 u3)))) (\lambda (_: -T).(\lambda (c2: C).(\lambda (j: nat).(csubst0 j v0 c1 c2))))))) (or3_intro0 -(ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat (s k i0) (s k j)))) -(\lambda (u3: T).(\lambda (_: nat).(eq C (CHead c1 k u2) (CHead c1 k u3)))) -(\lambda (u3: T).(\lambda (j: nat).(subst0 j v0 u1 u3)))) (ex3_2 C nat -(\lambda (_: C).(\lambda (j: nat).(eq nat (s k i0) (s k j)))) (\lambda (c2: -C).(\lambda (_: nat).(eq C (CHead c1 k u2) (CHead c2 k u1)))) (\lambda (c2: -C).(\lambda (j: nat).(csubst0 j v0 c1 c2)))) (ex4_3 T C nat (\lambda (_: -T).(\lambda (_: C).(\lambda (j: nat).(eq nat (s k i0) (s k j))))) (\lambda -(u3: T).(\lambda (c2: C).(\lambda (_: nat).(eq C (CHead c1 k u2) (CHead c2 k -u3))))) (\lambda (u3: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v0 u1 -u3)))) (\lambda (_: T).(\lambda (c2: C).(\lambda (j: nat).(csubst0 j v0 c1 -c2))))) (ex3_2_intro T nat (\lambda (_: T).(\lambda (j: nat).(eq nat (s k i0) -(s k j)))) (\lambda (u3: T).(\lambda (_: nat).(eq C (CHead c1 k u2) (CHead c1 -k u3)))) (\lambda (u3: T).(\lambda (j: nat).(subst0 j v0 u1 u3))) u2 i0 -(refl_equal nat (s k i0)) (refl_equal C (CHead c1 k u2)) H8)) k0 H6)) c -H7)))) H4)) H3)))))))))) (\lambda (k0: K).(\lambda (i0: nat).(\lambda (c0: -C).(\lambda (c2: C).(\lambda (v0: T).(\lambda (H1: (csubst0 i0 v0 c0 -c2)).(\lambda (H2: (((eq C c0 (CHead c1 k u1)) \to (or3 (ex3_2 T nat (\lambda -(_: T).(\lambda (j: nat).(eq nat i0 (s k j)))) (\lambda (u2: T).(\lambda (_: -nat).(eq C c2 (CHead c1 k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j -v0 u1 u2)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i0 (s k -j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u1)))) (\lambda -(c3: C).(\lambda (j: nat).(csubst0 j v0 c1 c3)))) (ex4_3 T C nat (\lambda (_: +T).(\lambda (c2: C).(\lambda (j: nat).(csubst0 j v0 c1 c2))))) (ex3_2_intro T +nat (\lambda (_: T).(\lambda (j: nat).(eq nat (s k i0) (s k j)))) (\lambda +(u3: T).(\lambda (_: nat).(eq C (CHead c1 k u2) (CHead c1 k u3)))) (\lambda +(u3: T).(\lambda (j: nat).(subst0 j v0 u1 u3))) u2 i0 (refl_equal nat (s k +i0)) (refl_equal C (CHead c1 k u2)) H8)) k0 H6)) c H7)))) H4)) H3)))))))))) +(\lambda (k0: K).(\lambda (i0: nat).(\lambda (c0: C).(\lambda (c2: +C).(\lambda (v0: T).(\lambda (H1: (csubst0 i0 v0 c0 c2)).(\lambda (H2: (((eq +C c0 (CHead c1 k u1)) \to (or3 (ex3_2 T nat (\lambda (_: T).(\lambda (j: +nat).(eq nat i0 (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead +c1 k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v0 u1 u2)))) (ex3_2 +C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i0 (s k j)))) (\lambda (c3: +C).(\lambda (_: nat).(eq C c2 (CHead c3 k u1)))) (\lambda (c3: C).(\lambda +(j: nat).(csubst0 j v0 c1 c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: +C).(\lambda (j: nat).(eq nat i0 (s k j))))) (\lambda (u2: T).(\lambda (c3: +C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda +(_: C).(\lambda (j: nat).(subst0 j v0 u1 u2)))) (\lambda (_: T).(\lambda (c3: +C).(\lambda (j: nat).(csubst0 j v0 c1 c3))))))))).(\lambda (u: T).(\lambda +(H3: (eq C (CHead c0 k0 u) (CHead c1 k u1))).(let H4 \def (f_equal C C +(\lambda (e: C).(match e with [(CSort _) \Rightarrow c0 | (CHead c _ _) +\Rightarrow c])) (CHead c0 k0 u) (CHead c1 k u1) H3) in ((let H5 \def +(f_equal C K (\lambda (e: C).(match e with [(CSort _) \Rightarrow k0 | (CHead +_ k1 _) \Rightarrow k1])) (CHead c0 k0 u) (CHead c1 k u1) H3) in ((let H6 +\def (f_equal C T (\lambda (e: C).(match e with [(CSort _) \Rightarrow u | +(CHead _ _ t) \Rightarrow t])) (CHead c0 k0 u) (CHead c1 k u1) H3) in +(\lambda (H7: (eq K k0 k)).(\lambda (H8: (eq C c0 c1)).(eq_ind_r T u1 +(\lambda (t: T).(or3 (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat +(s k0 i0) (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C (CHead c2 k0 t) +(CHead c1 k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v0 u1 u2)))) +(ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat (s k0 i0) (s k j)))) +(\lambda (c3: C).(\lambda (_: nat).(eq C (CHead c2 k0 t) (CHead c3 k u1)))) +(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v0 c1 c3)))) (ex4_3 T C nat +(\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat (s k0 i0) (s k +j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C (CHead c2 k0 +t) (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: +nat).(subst0 j v0 u1 u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: +nat).(csubst0 j v0 c1 c3))))))) (let H9 \def (eq_ind C c0 (\lambda (c: +C).((eq C c (CHead c1 k u1)) \to (or3 (ex3_2 T nat (\lambda (_: T).(\lambda +(j: nat).(eq nat i0 (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 +(CHead c1 k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v0 u1 u2)))) +(ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i0 (s k j)))) (\lambda +(c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u1)))) (\lambda (c3: +C).(\lambda (j: nat).(csubst0 j v0 c1 c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat i0 (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v0 u1 u2)))) (\lambda (_: -T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v0 c1 c3))))))))).(\lambda -(u: T).(\lambda (H3: (eq C (CHead c0 k0 u) (CHead c1 k u1))).(let H4 \def -(f_equal C C (\lambda (e: C).(match e in C return (\lambda (_: C).C) with -[(CSort _) \Rightarrow c0 | (CHead c _ _) \Rightarrow c])) (CHead c0 k0 u) -(CHead c1 k u1) H3) in ((let H5 \def (f_equal C K (\lambda (e: C).(match e in -C return (\lambda (_: C).K) with [(CSort _) \Rightarrow k0 | (CHead _ k1 _) -\Rightarrow k1])) (CHead c0 k0 u) (CHead c1 k u1) H3) in ((let H6 \def -(f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T) with -[(CSort _) \Rightarrow u | (CHead _ _ t) \Rightarrow t])) (CHead c0 k0 u) -(CHead c1 k u1) H3) in (\lambda (H7: (eq K k0 k)).(\lambda (H8: (eq C c0 -c1)).(eq_ind_r T u1 (\lambda (t: T).(or3 (ex3_2 T nat (\lambda (_: -T).(\lambda (j: nat).(eq nat (s k0 i0) (s k j)))) (\lambda (u2: T).(\lambda -(_: nat).(eq C (CHead c2 k0 t) (CHead c1 k u2)))) (\lambda (u2: T).(\lambda -(j: nat).(subst0 j v0 u1 u2)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: -nat).(eq nat (s k0 i0) (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C -(CHead c2 k0 t) (CHead c3 k u1)))) (\lambda (c3: C).(\lambda (j: +T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v0 c1 c3)))))))) H2 c1 H8) +in (let H10 \def (eq_ind C c0 (\lambda (c: C).(csubst0 i0 v0 c c2)) H1 c1 H8) +in (eq_ind_r K k (\lambda (k1: K).(or3 (ex3_2 T nat (\lambda (_: T).(\lambda +(j: nat).(eq nat (s k1 i0) (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq +C (CHead c2 k1 u1) (CHead c1 k u2)))) (\lambda (u2: T).(\lambda (j: +nat).(subst0 j v0 u1 u2)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: +nat).(eq nat (s k1 i0) (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C +(CHead c2 k1 u1) (CHead c3 k u1)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v0 c1 c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: -C).(\lambda (j: nat).(eq nat (s k0 i0) (s k j))))) (\lambda (u2: T).(\lambda -(c3: C).(\lambda (_: nat).(eq C (CHead c2 k0 t) (CHead c3 k u2))))) (\lambda -(u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v0 u1 u2)))) (\lambda (_: -T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v0 c1 c3))))))) (let H9 \def -(eq_ind C c0 (\lambda (c: C).((eq C c (CHead c1 k u1)) \to (or3 (ex3_2 T nat -(\lambda (_: T).(\lambda (j: nat).(eq nat i0 (s k j)))) (\lambda (u2: -T).(\lambda (_: nat).(eq C c2 (CHead c1 k u2)))) (\lambda (u2: T).(\lambda -(j: nat).(subst0 j v0 u1 u2)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: -nat).(eq nat i0 (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead -c3 k u1)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v0 c1 c3)))) (ex4_3 -T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat i0 (s k -j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 -k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v0 u1 -u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v0 c1 -c3)))))))) H2 c1 H8) in (let H10 \def (eq_ind C c0 (\lambda (c: C).(csubst0 -i0 v0 c c2)) H1 c1 H8) in (eq_ind_r K k (\lambda (k1: K).(or3 (ex3_2 T nat -(\lambda (_: T).(\lambda (j: nat).(eq nat (s k1 i0) (s k j)))) (\lambda (u2: -T).(\lambda (_: nat).(eq C (CHead c2 k1 u1) (CHead c1 k u2)))) (\lambda (u2: -T).(\lambda (j: nat).(subst0 j v0 u1 u2)))) (ex3_2 C nat (\lambda (_: -C).(\lambda (j: nat).(eq nat (s k1 i0) (s k j)))) (\lambda (c3: C).(\lambda -(_: nat).(eq C (CHead c2 k1 u1) (CHead c3 k u1)))) (\lambda (c3: C).(\lambda -(j: nat).(csubst0 j v0 c1 c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat (s k1 i0) (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C (CHead c2 k1 u1) (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v0 u1 u2)))) (\lambda (_: @@ -215,57 +226,53 @@ T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u3))))) (\lambda (u3: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v0 u1 u3)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v0 c1 c3))))))))).(\lambda (H4: (eq C (CHead c0 k0 u0) (CHead c1 k u1))).(let H5 \def (f_equal C C -(\lambda (e: C).(match e in C return (\lambda (_: C).C) with [(CSort _) -\Rightarrow c0 | (CHead c _ _) \Rightarrow c])) (CHead c0 k0 u0) (CHead c1 k -u1) H4) in ((let H6 \def (f_equal C K (\lambda (e: C).(match e in C return -(\lambda (_: C).K) with [(CSort _) \Rightarrow k0 | (CHead _ k1 _) -\Rightarrow k1])) (CHead c0 k0 u0) (CHead c1 k u1) H4) in ((let H7 \def -(f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T) with -[(CSort _) \Rightarrow u0 | (CHead _ _ t) \Rightarrow t])) (CHead c0 k0 u0) -(CHead c1 k u1) H4) in (\lambda (H8: (eq K k0 k)).(\lambda (H9: (eq C c0 -c1)).(let H10 \def (eq_ind C c0 (\lambda (c: C).((eq C c (CHead c1 k u1)) \to -(or3 (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i0 (s k j)))) -(\lambda (u3: T).(\lambda (_: nat).(eq C c2 (CHead c1 k u3)))) (\lambda (u3: -T).(\lambda (j: nat).(subst0 j v0 u1 u3)))) (ex3_2 C nat (\lambda (_: -C).(\lambda (j: nat).(eq nat i0 (s k j)))) (\lambda (c3: C).(\lambda (_: -nat).(eq C c2 (CHead c3 k u1)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 -j v0 c1 c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: -nat).(eq nat i0 (s k j))))) (\lambda (u3: T).(\lambda (c3: C).(\lambda (_: -nat).(eq C c2 (CHead c3 k u3))))) (\lambda (u3: T).(\lambda (_: C).(\lambda -(j: nat).(subst0 j v0 u1 u3)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: -nat).(csubst0 j v0 c1 c3)))))))) H3 c1 H9) in (let H11 \def (eq_ind C c0 -(\lambda (c: C).(csubst0 i0 v0 c c2)) H2 c1 H9) in (let H12 \def (eq_ind T u0 -(\lambda (t: T).(subst0 i0 v0 t u2)) H1 u1 H7) in (eq_ind_r K k (\lambda (k1: -K).(or3 (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat (s k1 i0) (s k -j)))) (\lambda (u3: T).(\lambda (_: nat).(eq C (CHead c2 k1 u2) (CHead c1 k -u3)))) (\lambda (u3: T).(\lambda (j: nat).(subst0 j v0 u1 u3)))) (ex3_2 C nat -(\lambda (_: C).(\lambda (j: nat).(eq nat (s k1 i0) (s k j)))) (\lambda (c3: -C).(\lambda (_: nat).(eq C (CHead c2 k1 u2) (CHead c3 k u1)))) (\lambda (c3: +(\lambda (e: C).(match e with [(CSort _) \Rightarrow c0 | (CHead c _ _) +\Rightarrow c])) (CHead c0 k0 u0) (CHead c1 k u1) H4) in ((let H6 \def +(f_equal C K (\lambda (e: C).(match e with [(CSort _) \Rightarrow k0 | (CHead +_ k1 _) \Rightarrow k1])) (CHead c0 k0 u0) (CHead c1 k u1) H4) in ((let H7 +\def (f_equal C T (\lambda (e: C).(match e with [(CSort _) \Rightarrow u0 | +(CHead _ _ t) \Rightarrow t])) (CHead c0 k0 u0) (CHead c1 k u1) H4) in +(\lambda (H8: (eq K k0 k)).(\lambda (H9: (eq C c0 c1)).(let H10 \def (eq_ind +C c0 (\lambda (c: C).((eq C c (CHead c1 k u1)) \to (or3 (ex3_2 T nat (\lambda +(_: T).(\lambda (j: nat).(eq nat i0 (s k j)))) (\lambda (u3: T).(\lambda (_: +nat).(eq C c2 (CHead c1 k u3)))) (\lambda (u3: T).(\lambda (j: nat).(subst0 j +v0 u1 u3)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i0 (s k +j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u1)))) (\lambda +(c3: C).(\lambda (j: nat).(csubst0 j v0 c1 c3)))) (ex4_3 T C nat (\lambda (_: +T).(\lambda (_: C).(\lambda (j: nat).(eq nat i0 (s k j))))) (\lambda (u3: +T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u3))))) (\lambda +(u3: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v0 u1 u3)))) (\lambda (_: +T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v0 c1 c3)))))))) H3 c1 H9) +in (let H11 \def (eq_ind C c0 (\lambda (c: C).(csubst0 i0 v0 c c2)) H2 c1 H9) +in (let H12 \def (eq_ind T u0 (\lambda (t: T).(subst0 i0 v0 t u2)) H1 u1 H7) +in (eq_ind_r K k (\lambda (k1: K).(or3 (ex3_2 T nat (\lambda (_: T).(\lambda +(j: nat).(eq nat (s k1 i0) (s k j)))) (\lambda (u3: T).(\lambda (_: nat).(eq +C (CHead c2 k1 u2) (CHead c1 k u3)))) (\lambda (u3: T).(\lambda (j: +nat).(subst0 j v0 u1 u3)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: +nat).(eq nat (s k1 i0) (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C +(CHead c2 k1 u2) (CHead c3 k u1)))) (\lambda (c3: C).(\lambda (j: +nat).(csubst0 j v0 c1 c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: +C).(\lambda (j: nat).(eq nat (s k1 i0) (s k j))))) (\lambda (u3: T).(\lambda +(c3: C).(\lambda (_: nat).(eq C (CHead c2 k1 u2) (CHead c3 k u3))))) (\lambda +(u3: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v0 u1 u3)))) (\lambda (_: +T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v0 c1 c3))))))) (or3_intro2 +(ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat (s k i0) (s k j)))) +(\lambda (u3: T).(\lambda (_: nat).(eq C (CHead c2 k u2) (CHead c1 k u3)))) +(\lambda (u3: T).(\lambda (j: nat).(subst0 j v0 u1 u3)))) (ex3_2 C nat +(\lambda (_: C).(\lambda (j: nat).(eq nat (s k i0) (s k j)))) (\lambda (c3: +C).(\lambda (_: nat).(eq C (CHead c2 k u2) (CHead c3 k u1)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v0 c1 c3)))) (ex4_3 T C nat (\lambda (_: -T).(\lambda (_: C).(\lambda (j: nat).(eq nat (s k1 i0) (s k j))))) (\lambda -(u3: T).(\lambda (c3: C).(\lambda (_: nat).(eq C (CHead c2 k1 u2) (CHead c3 k -u3))))) (\lambda (u3: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v0 u1 -u3)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v0 c1 -c3))))))) (or3_intro2 (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat -(s k i0) (s k j)))) (\lambda (u3: T).(\lambda (_: nat).(eq C (CHead c2 k u2) -(CHead c1 k u3)))) (\lambda (u3: T).(\lambda (j: nat).(subst0 j v0 u1 u3)))) -(ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat (s k i0) (s k j)))) -(\lambda (c3: C).(\lambda (_: nat).(eq C (CHead c2 k u2) (CHead c3 k u1)))) -(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v0 c1 c3)))) (ex4_3 T C nat -(\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat (s k i0) (s k -j))))) (\lambda (u3: T).(\lambda (c3: C).(\lambda (_: nat).(eq C (CHead c2 k -u2) (CHead c3 k u3))))) (\lambda (u3: T).(\lambda (_: C).(\lambda (j: -nat).(subst0 j v0 u1 u3)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: -nat).(csubst0 j v0 c1 c3))))) (ex4_3_intro T C nat (\lambda (_: T).(\lambda -(_: C).(\lambda (j: nat).(eq nat (s k i0) (s k j))))) (\lambda (u3: -T).(\lambda (c3: C).(\lambda (_: nat).(eq C (CHead c2 k u2) (CHead c3 k +T).(\lambda (_: C).(\lambda (j: nat).(eq nat (s k i0) (s k j))))) (\lambda +(u3: T).(\lambda (c3: C).(\lambda (_: nat).(eq C (CHead c2 k u2) (CHead c3 k u3))))) (\lambda (u3: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v0 u1 u3)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v0 c1 -c3)))) u2 c2 i0 (refl_equal nat (s k i0)) (refl_equal C (CHead c2 k u2)) H12 -H11)) k0 H8))))))) H6)) H5))))))))))))) i v y x H0))) H))))))). -(* COMMENTS -Initial nodes: 4039 -END *) +c3))))) (ex4_3_intro T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: +nat).(eq nat (s k i0) (s k j))))) (\lambda (u3: T).(\lambda (c3: C).(\lambda +(_: nat).(eq C (CHead c2 k u2) (CHead c3 k u3))))) (\lambda (u3: T).(\lambda +(_: C).(\lambda (j: nat).(subst0 j v0 u1 u3)))) (\lambda (_: T).(\lambda (c3: +C).(\lambda (j: nat).(csubst0 j v0 c1 c3)))) u2 c2 i0 (refl_equal nat (s k +i0)) (refl_equal C (CHead c2 k u2)) H12 H11)) k0 H8))))))) H6)) +H5))))))))))))) i v y x H0))) H))))))). theorem csubst0_gen_S_bind_2: \forall (b: B).(\forall (x: C).(\forall (c2: C).(\forall (v: T).(\forall @@ -277,186 +284,190 @@ C).(\lambda (v1: T).(subst0 i v v1 v2))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i v c1 c2))) (\lambda (c1: C).(\lambda (v1: T).(eq C x (CHead c1 (Bind b) v1)))))))))))) \def - \lambda (b: B).(\lambda (x: C).(\lambda (c2: C).(\lambda (v: T).(\lambda -(v2: T).(\lambda (i: nat).(\lambda (H: (csubst0 (S i) v x (CHead c2 (Bind b) -v2))).(insert_eq C (CHead c2 (Bind b) v2) (\lambda (c: C).(csubst0 (S i) v x -c)) (\lambda (_: C).(or3 (ex2 T (\lambda (v1: T).(subst0 i v v1 v2)) (\lambda -(v1: T).(eq C x (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i -v c1 c2)) (\lambda (c1: C).(eq C x (CHead c1 (Bind b) v2)))) (ex3_2 C T + \lambda (b: B).(\lambda (x: C).(C_ind (\lambda (c: C).(\forall (c2: +C).(\forall (v: T).(\forall (v2: T).(\forall (i: nat).((csubst0 (S i) v c +(CHead c2 (Bind b) v2)) \to (or3 (ex2 T (\lambda (v1: T).(subst0 i v v1 v2)) +(\lambda (v1: T).(eq C c (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c1: +C).(csubst0 i v c1 c2)) (\lambda (c1: C).(eq C c (CHead c1 (Bind b) v2)))) +(ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v v1 v2))) (\lambda +(c1: C).(\lambda (_: T).(csubst0 i v c1 c2))) (\lambda (c1: C).(\lambda (v1: +T).(eq C c (CHead c1 (Bind b) v1)))))))))))) (\lambda (n: nat).(\lambda (c2: +C).(\lambda (v: T).(\lambda (v2: T).(\lambda (i: nat).(\lambda (H: (csubst0 +(S i) v (CSort n) (CHead c2 (Bind b) v2))).(csubst0_gen_sort (CHead c2 (Bind +b) v2) v (S i) n H (or3 (ex2 T (\lambda (v1: T).(subst0 i v v1 v2)) (\lambda +(v1: T).(eq C (CSort n) (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c1: +C).(csubst0 i v c1 c2)) (\lambda (c1: C).(eq C (CSort n) (CHead c1 (Bind b) +v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v v1 v2))) +(\lambda (c1: C).(\lambda (_: T).(csubst0 i v c1 c2))) (\lambda (c1: +C).(\lambda (v1: T).(eq C (CSort n) (CHead c1 (Bind b) v1))))))))))))) +(\lambda (c: C).(\lambda (_: ((\forall (c2: C).(\forall (v: T).(\forall (v2: +T).(\forall (i: nat).((csubst0 (S i) v c (CHead c2 (Bind b) v2)) \to (or3 +(ex2 T (\lambda (v1: T).(subst0 i v v1 v2)) (\lambda (v1: T).(eq C c (CHead +c2 (Bind b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i v c1 c2)) (\lambda (c1: +C).(eq C c (CHead c1 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: +T).(subst0 i v v1 v2))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i v c1 +c2))) (\lambda (c1: C).(\lambda (v1: T).(eq C c (CHead c1 (Bind b) +v1))))))))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (c2: C).(\lambda (v: +T).(\lambda (v2: T).(\lambda (i: nat).(\lambda (H0: (csubst0 (S i) v (CHead c +k t) (CHead c2 (Bind b) v2))).(let H1 \def (csubst0_gen_head k c (CHead c2 +(Bind b) v2) t v (S i) H0) in (or3_ind (ex3_2 T nat (\lambda (_: T).(\lambda +(j: nat).(eq nat (S i) (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C +(CHead c2 (Bind b) v2) (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: +nat).(subst0 j v t u2)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq +nat (S i) (s k j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C (CHead c2 (Bind +b) v2) (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c +c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq +nat (S i) (s k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq +C (CHead c2 (Bind b) v2) (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: +C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: +C).(\lambda (j: nat).(csubst0 j v c c3))))) (or3 (ex2 T (\lambda (v1: +T).(subst0 i v v1 v2)) (\lambda (v1: T).(eq C (CHead c k t) (CHead c2 (Bind +b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i v c1 c2)) (\lambda (c1: C).(eq C +(CHead c k t) (CHead c1 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda +(v1: T).(subst0 i v v1 v2))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i v c1 +c2))) (\lambda (c1: C).(\lambda (v1: T).(eq C (CHead c k t) (CHead c1 (Bind +b) v1)))))) (\lambda (H2: (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq +nat (S i) (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C (CHead c2 (Bind +b) v2) (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t +u2))))).(ex3_2_ind T nat (\lambda (_: T).(\lambda (j: nat).(eq nat (S i) (s k +j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C (CHead c2 (Bind b) v2) (CHead +c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v t u2))) (or3 (ex2 T +(\lambda (v1: T).(subst0 i v v1 v2)) (\lambda (v1: T).(eq C (CHead c k t) +(CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i v c1 c2)) +(\lambda (c1: C).(eq C (CHead c k t) (CHead c1 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v v1 v2))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i v c1 c2))) (\lambda (c1: C).(\lambda (v1: -T).(eq C x (CHead c1 (Bind b) v1))))))) (\lambda (y: C).(\lambda (H0: -(csubst0 (S i) v x y)).(insert_eq nat (S i) (\lambda (n: nat).(csubst0 n v x -y)) (\lambda (_: nat).((eq C y (CHead c2 (Bind b) v2)) \to (or3 (ex2 T -(\lambda (v1: T).(subst0 i v v1 v2)) (\lambda (v1: T).(eq C x (CHead c2 (Bind +T).(eq C (CHead c k t) (CHead c1 (Bind b) v1)))))) (\lambda (x0: T).(\lambda +(x1: nat).(\lambda (H3: (eq nat (S i) (s k x1))).(\lambda (H4: (eq C (CHead +c2 (Bind b) v2) (CHead c k x0))).(\lambda (H5: (subst0 x1 v t x0)).(let H6 +\def (f_equal C C (\lambda (e: C).(match e with [(CSort _) \Rightarrow c2 | +(CHead c0 _ _) \Rightarrow c0])) (CHead c2 (Bind b) v2) (CHead c k x0) H4) in +((let H7 \def (f_equal C K (\lambda (e: C).(match e with [(CSort _) +\Rightarrow (Bind b) | (CHead _ k0 _) \Rightarrow k0])) (CHead c2 (Bind b) +v2) (CHead c k x0) H4) in ((let H8 \def (f_equal C T (\lambda (e: C).(match e +with [(CSort _) \Rightarrow v2 | (CHead _ _ t0) \Rightarrow t0])) (CHead c2 +(Bind b) v2) (CHead c k x0) H4) in (\lambda (H9: (eq K (Bind b) k)).(\lambda +(H10: (eq C c2 c)).(let H11 \def (eq_ind_r T x0 (\lambda (t0: T).(subst0 x1 v +t t0)) H5 v2 H8) in (eq_ind_r C c (\lambda (c0: C).(or3 (ex2 T (\lambda (v1: +T).(subst0 i v v1 v2)) (\lambda (v1: T).(eq C (CHead c k t) (CHead c0 (Bind +b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i v c1 c0)) (\lambda (c1: C).(eq C +(CHead c k t) (CHead c1 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda +(v1: T).(subst0 i v v1 v2))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i v c1 +c0))) (\lambda (c1: C).(\lambda (v1: T).(eq C (CHead c k t) (CHead c1 (Bind +b) v1))))))) (let H12 \def (eq_ind_r K k (\lambda (k0: K).(eq nat (S i) (s k0 +x1))) H3 (Bind b) H9) in (eq_ind K (Bind b) (\lambda (k0: K).(or3 (ex2 T +(\lambda (v1: T).(subst0 i v v1 v2)) (\lambda (v1: T).(eq C (CHead c k0 t) +(CHead c (Bind b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i v c1 c)) (\lambda +(c1: C).(eq C (CHead c k0 t) (CHead c1 (Bind b) v2)))) (ex3_2 C T (\lambda +(_: C).(\lambda (v1: T).(subst0 i v v1 v2))) (\lambda (c1: C).(\lambda (_: +T).(csubst0 i v c1 c))) (\lambda (c1: C).(\lambda (v1: T).(eq C (CHead c k0 +t) (CHead c1 (Bind b) v1))))))) (let H13 \def (f_equal nat nat (\lambda (e: +nat).(match e with [O \Rightarrow i | (S n) \Rightarrow n])) (S i) (S x1) +H12) in (let H14 \def (eq_ind_r nat x1 (\lambda (n: nat).(subst0 n v t v2)) +H11 i H13) in (or3_intro0 (ex2 T (\lambda (v1: T).(subst0 i v v1 v2)) +(\lambda (v1: T).(eq C (CHead c (Bind b) t) (CHead c (Bind b) v1)))) (ex2 C +(\lambda (c1: C).(csubst0 i v c1 c)) (\lambda (c1: C).(eq C (CHead c (Bind b) +t) (CHead c1 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: +T).(subst0 i v v1 v2))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i v c1 c))) +(\lambda (c1: C).(\lambda (v1: T).(eq C (CHead c (Bind b) t) (CHead c1 (Bind +b) v1))))) (ex_intro2 T (\lambda (v1: T).(subst0 i v v1 v2)) (\lambda (v1: +T).(eq C (CHead c (Bind b) t) (CHead c (Bind b) v1))) t H14 (refl_equal C +(CHead c (Bind b) t)))))) k H9)) c2 H10))))) H7)) H6))))))) H2)) (\lambda +(H2: (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat (S i) (s k j)))) +(\lambda (c3: C).(\lambda (_: nat).(eq C (CHead c2 (Bind b) v2) (CHead c3 k +t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))).(ex3_2_ind C +nat (\lambda (_: C).(\lambda (j: nat).(eq nat (S i) (s k j)))) (\lambda (c3: +C).(\lambda (_: nat).(eq C (CHead c2 (Bind b) v2) (CHead c3 k t)))) (\lambda +(c3: C).(\lambda (j: nat).(csubst0 j v c c3))) (or3 (ex2 T (\lambda (v1: +T).(subst0 i v v1 v2)) (\lambda (v1: T).(eq C (CHead c k t) (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i v c1 c2)) (\lambda (c1: C).(eq C -x (CHead c1 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: -T).(subst0 i v v1 v2))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i v c1 -c2))) (\lambda (c1: C).(\lambda (v1: T).(eq C x (CHead c1 (Bind b) v1)))))))) -(\lambda (y0: nat).(\lambda (H1: (csubst0 y0 v x y)).(csubst0_ind (\lambda -(n: nat).(\lambda (t: T).(\lambda (c: C).(\lambda (c0: C).((eq nat n (S i)) -\to ((eq C c0 (CHead c2 (Bind b) v2)) \to (or3 (ex2 T (\lambda (v1: -T).(subst0 i t v1 v2)) (\lambda (v1: T).(eq C c (CHead c2 (Bind b) v1)))) -(ex2 C (\lambda (c1: C).(csubst0 i t c1 c2)) (\lambda (c1: C).(eq C c (CHead -c1 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i t v1 -v2))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i t c1 c2))) (\lambda (c1: -C).(\lambda (v1: T).(eq C c (CHead c1 (Bind b) v1)))))))))))) (\lambda (k: -K).(\lambda (i0: nat).(\lambda (v0: T).(\lambda (u1: T).(\lambda (u2: -T).(\lambda (H2: (subst0 i0 v0 u1 u2)).(\lambda (c: C).(\lambda (H3: (eq nat -(s k i0) (S i))).(\lambda (H4: (eq C (CHead c k u2) (CHead c2 (Bind b) -v2))).(let H5 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda -(_: C).C) with [(CSort _) \Rightarrow c | (CHead c0 _ _) \Rightarrow c0])) -(CHead c k u2) (CHead c2 (Bind b) v2) H4) in ((let H6 \def (f_equal C K -(\lambda (e: C).(match e in C return (\lambda (_: C).K) with [(CSort _) -\Rightarrow k | (CHead _ k0 _) \Rightarrow k0])) (CHead c k u2) (CHead c2 -(Bind b) v2) H4) in ((let H7 \def (f_equal C T (\lambda (e: C).(match e in C -return (\lambda (_: C).T) with [(CSort _) \Rightarrow u2 | (CHead _ _ t) -\Rightarrow t])) (CHead c k u2) (CHead c2 (Bind b) v2) H4) in (\lambda (H8: -(eq K k (Bind b))).(\lambda (H9: (eq C c c2)).(eq_ind_r C c2 (\lambda (c0: -C).(or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C -(CHead c0 k u1) (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i -v0 c1 c2)) (\lambda (c1: C).(eq C (CHead c0 k u1) (CHead c1 (Bind b) v2)))) -(ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda -(c1: C).(\lambda (_: T).(csubst0 i v0 c1 c2))) (\lambda (c1: C).(\lambda (v1: -T).(eq C (CHead c0 k u1) (CHead c1 (Bind b) v1))))))) (let H10 \def (eq_ind T -u2 (\lambda (t: T).(subst0 i0 v0 u1 t)) H2 v2 H7) in (let H11 \def (eq_ind K -k (\lambda (k0: K).(eq nat (s k0 i0) (S i))) H3 (Bind b) H8) in (eq_ind_r K -(Bind b) (\lambda (k0: K).(or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2)) -(\lambda (v1: T).(eq C (CHead c2 k0 u1) (CHead c2 (Bind b) v1)))) (ex2 C -(\lambda (c1: C).(csubst0 i v0 c1 c2)) (\lambda (c1: C).(eq C (CHead c2 k0 -u1) (CHead c1 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: -T).(subst0 i v0 v1 v2))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i v0 c1 -c2))) (\lambda (c1: C).(\lambda (v1: T).(eq C (CHead c2 k0 u1) (CHead c1 -(Bind b) v1))))))) (let H12 \def (f_equal nat nat (\lambda (e: nat).(match e -in nat return (\lambda (_: nat).nat) with [O \Rightarrow i0 | (S n) -\Rightarrow n])) (S i0) (S i) H11) in (let H13 \def (eq_ind nat i0 (\lambda -(n: nat).(subst0 n v0 u1 v2)) H10 i H12) in (or3_intro0 (ex2 T (\lambda (v1: -T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C (CHead c2 (Bind b) u1) (CHead -c2 (Bind b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i v0 c1 c2)) (\lambda -(c1: C).(eq C (CHead c2 (Bind b) u1) (CHead c1 (Bind b) v2)))) (ex3_2 C T -(\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda (c1: -C).(\lambda (_: T).(csubst0 i v0 c1 c2))) (\lambda (c1: C).(\lambda (v1: -T).(eq C (CHead c2 (Bind b) u1) (CHead c1 (Bind b) v1))))) (ex_intro2 T -(\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C (CHead c2 (Bind -b) u1) (CHead c2 (Bind b) v1))) u1 H13 (refl_equal C (CHead c2 (Bind b) -u1)))))) k H8))) c H9)))) H6)) H5))))))))))) (\lambda (k: K).(\lambda (i0: -nat).(\lambda (c1: C).(\lambda (c0: C).(\lambda (v0: T).(\lambda (H2: -(csubst0 i0 v0 c1 c0)).(\lambda (H3: (((eq nat i0 (S i)) \to ((eq C c0 (CHead -c2 (Bind b) v2)) \to (or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2)) -(\lambda (v1: T).(eq C c1 (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c3: -C).(csubst0 i v0 c3 c2)) (\lambda (c3: C).(eq C c1 (CHead c3 (Bind b) v2)))) -(ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda -(c3: C).(\lambda (_: T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1: -T).(eq C c1 (CHead c3 (Bind b) v1)))))))))).(\lambda (u: T).(\lambda (H4: (eq -nat (s k i0) (S i))).(\lambda (H5: (eq C (CHead c0 k u) (CHead c2 (Bind b) -v2))).(let H6 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda -(_: C).C) with [(CSort _) \Rightarrow c0 | (CHead c _ _) \Rightarrow c])) -(CHead c0 k u) (CHead c2 (Bind b) v2) H5) in ((let H7 \def (f_equal C K -(\lambda (e: C).(match e in C return (\lambda (_: C).K) with [(CSort _) -\Rightarrow k | (CHead _ k0 _) \Rightarrow k0])) (CHead c0 k u) (CHead c2 -(Bind b) v2) H5) in ((let H8 \def (f_equal C T (\lambda (e: C).(match e in C -return (\lambda (_: C).T) with [(CSort _) \Rightarrow u | (CHead _ _ t) -\Rightarrow t])) (CHead c0 k u) (CHead c2 (Bind b) v2) H5) in (\lambda (H9: -(eq K k (Bind b))).(\lambda (H10: (eq C c0 c2)).(eq_ind_r T v2 (\lambda (t: -T).(or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C -(CHead c1 k t) (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c3: C).(csubst0 i -v0 c3 c2)) (\lambda (c3: C).(eq C (CHead c1 k t) (CHead c3 (Bind b) v2)))) -(ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda -(c3: C).(\lambda (_: T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1: -T).(eq C (CHead c1 k t) (CHead c3 (Bind b) v1))))))) (let H11 \def (eq_ind C -c0 (\lambda (c: C).((eq nat i0 (S i)) \to ((eq C c (CHead c2 (Bind b) v2)) -\to (or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C -c1 (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c3: C).(csubst0 i v0 c3 c2)) -(\lambda (c3: C).(eq C c1 (CHead c3 (Bind b) v2)))) (ex3_2 C T (\lambda (_: -C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda (c3: C).(\lambda (_: -T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1: T).(eq C c1 (CHead -c3 (Bind b) v1))))))))) H3 c2 H10) in (let H12 \def (eq_ind C c0 (\lambda (c: -C).(csubst0 i0 v0 c1 c)) H2 c2 H10) in (let H13 \def (eq_ind K k (\lambda -(k0: K).(eq nat (s k0 i0) (S i))) H4 (Bind b) H9) in (eq_ind_r K (Bind b) -(\lambda (k0: K).(or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda -(v1: T).(eq C (CHead c1 k0 v2) (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c3: -C).(csubst0 i v0 c3 c2)) (\lambda (c3: C).(eq C (CHead c1 k0 v2) (CHead c3 -(Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 -v2))) (\lambda (c3: C).(\lambda (_: T).(csubst0 i v0 c3 c2))) (\lambda (c3: -C).(\lambda (v1: T).(eq C (CHead c1 k0 v2) (CHead c3 (Bind b) v1))))))) (let -H14 \def (f_equal nat nat (\lambda (e: nat).(match e in nat return (\lambda -(_: nat).nat) with [O \Rightarrow i0 | (S n) \Rightarrow n])) (S i0) (S i) -H13) in (let H15 \def (eq_ind nat i0 (\lambda (n: nat).((eq nat n (S i)) \to -((eq C c2 (CHead c2 (Bind b) v2)) \to (or3 (ex2 T (\lambda (v1: T).(subst0 i -v0 v1 v2)) (\lambda (v1: T).(eq C c1 (CHead c2 (Bind b) v1)))) (ex2 C -(\lambda (c3: C).(csubst0 i v0 c3 c2)) (\lambda (c3: C).(eq C c1 (CHead c3 -(Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 -v2))) (\lambda (c3: C).(\lambda (_: T).(csubst0 i v0 c3 c2))) (\lambda (c3: -C).(\lambda (v1: T).(eq C c1 (CHead c3 (Bind b) v1))))))))) H11 i H14) in -(let H16 \def (eq_ind nat i0 (\lambda (n: nat).(csubst0 n v0 c1 c2)) H12 i -H14) in (or3_intro1 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda -(v1: T).(eq C (CHead c1 (Bind b) v2) (CHead c2 (Bind b) v1)))) (ex2 C -(\lambda (c3: C).(csubst0 i v0 c3 c2)) (\lambda (c3: C).(eq C (CHead c1 (Bind -b) v2) (CHead c3 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: -T).(subst0 i v0 v1 v2))) (\lambda (c3: C).(\lambda (_: T).(csubst0 i v0 c3 -c2))) (\lambda (c3: C).(\lambda (v1: T).(eq C (CHead c1 (Bind b) v2) (CHead -c3 (Bind b) v1))))) (ex_intro2 C (\lambda (c3: C).(csubst0 i v0 c3 c2)) -(\lambda (c3: C).(eq C (CHead c1 (Bind b) v2) (CHead c3 (Bind b) v2))) c1 H16 -(refl_equal C (CHead c1 (Bind b) v2))))))) k H9)))) u H8)))) H7)) -H6)))))))))))) (\lambda (k: K).(\lambda (i0: nat).(\lambda (v0: T).(\lambda -(u1: T).(\lambda (u2: T).(\lambda (H2: (subst0 i0 v0 u1 u2)).(\lambda (c1: -C).(\lambda (c0: C).(\lambda (H3: (csubst0 i0 v0 c1 c0)).(\lambda (H4: (((eq -nat i0 (S i)) \to ((eq C c0 (CHead c2 (Bind b) v2)) \to (or3 (ex2 T (\lambda -(v1: T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C c1 (CHead c2 (Bind b) -v1)))) (ex2 C (\lambda (c3: C).(csubst0 i v0 c3 c2)) (\lambda (c3: C).(eq C -c1 (CHead c3 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: -T).(subst0 i v0 v1 v2))) (\lambda (c3: C).(\lambda (_: T).(csubst0 i v0 c3 -c2))) (\lambda (c3: C).(\lambda (v1: T).(eq C c1 (CHead c3 (Bind b) -v1)))))))))).(\lambda (H5: (eq nat (s k i0) (S i))).(\lambda (H6: (eq C -(CHead c0 k u2) (CHead c2 (Bind b) v2))).(let H7 \def (f_equal C C (\lambda -(e: C).(match e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c0 -| (CHead c _ _) \Rightarrow c])) (CHead c0 k u2) (CHead c2 (Bind b) v2) H6) -in ((let H8 \def (f_equal C K (\lambda (e: C).(match e in C return (\lambda -(_: C).K) with [(CSort _) \Rightarrow k | (CHead _ k0 _) \Rightarrow k0])) -(CHead c0 k u2) (CHead c2 (Bind b) v2) H6) in ((let H9 \def (f_equal C T -(\lambda (e: C).(match e in C return (\lambda (_: C).T) with [(CSort _) -\Rightarrow u2 | (CHead _ _ t) \Rightarrow t])) (CHead c0 k u2) (CHead c2 -(Bind b) v2) H6) in (\lambda (H10: (eq K k (Bind b))).(\lambda (H11: (eq C c0 -c2)).(let H12 \def (eq_ind C c0 (\lambda (c: C).((eq nat i0 (S i)) \to ((eq C -c (CHead c2 (Bind b) v2)) \to (or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 -v2)) (\lambda (v1: T).(eq C c1 (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c3: -C).(csubst0 i v0 c3 c2)) (\lambda (c3: C).(eq C c1 (CHead c3 (Bind b) v2)))) -(ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda -(c3: C).(\lambda (_: T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1: -T).(eq C c1 (CHead c3 (Bind b) v1))))))))) H4 c2 H11) in (let H13 \def -(eq_ind C c0 (\lambda (c: C).(csubst0 i0 v0 c1 c)) H3 c2 H11) in (let H14 -\def (eq_ind T u2 (\lambda (t: T).(subst0 i0 v0 u1 t)) H2 v2 H9) in (let H15 -\def (eq_ind K k (\lambda (k0: K).(eq nat (s k0 i0) (S i))) H5 (Bind b) H10) -in (eq_ind_r K (Bind b) (\lambda (k0: K).(or3 (ex2 T (\lambda (v1: T).(subst0 -i v0 v1 v2)) (\lambda (v1: T).(eq C (CHead c1 k0 u1) (CHead c2 (Bind b) -v1)))) (ex2 C (\lambda (c3: C).(csubst0 i v0 c3 c2)) (\lambda (c3: C).(eq C -(CHead c1 k0 u1) (CHead c3 (Bind b) v2)))) (ex3_2 C T (\lambda (_: -C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda (c3: C).(\lambda (_: -T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1: T).(eq C (CHead c1 -k0 u1) (CHead c3 (Bind b) v1))))))) (let H16 \def (f_equal nat nat (\lambda -(e: nat).(match e in nat return (\lambda (_: nat).nat) with [O \Rightarrow i0 -| (S n) \Rightarrow n])) (S i0) (S i) H15) in (let H17 \def (eq_ind nat i0 -(\lambda (n: nat).((eq nat n (S i)) \to ((eq C c2 (CHead c2 (Bind b) v2)) \to -(or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C c1 -(CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c3: C).(csubst0 i v0 c3 c2)) -(\lambda (c3: C).(eq C c1 (CHead c3 (Bind b) v2)))) (ex3_2 C T (\lambda (_: -C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda (c3: C).(\lambda (_: -T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1: T).(eq C c1 (CHead -c3 (Bind b) v1))))))))) H12 i H16) in (let H18 \def (eq_ind nat i0 (\lambda -(n: nat).(csubst0 n v0 c1 c2)) H13 i H16) in (let H19 \def (eq_ind nat i0 -(\lambda (n: nat).(subst0 n v0 u1 v2)) H14 i H16) in (or3_intro2 (ex2 T -(\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C (CHead c1 (Bind -b) u1) (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c3: C).(csubst0 i v0 c3 -c2)) (\lambda (c3: C).(eq C (CHead c1 (Bind b) u1) (CHead c3 (Bind b) v2)))) -(ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda -(c3: C).(\lambda (_: T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1: -T).(eq C (CHead c1 (Bind b) u1) (CHead c3 (Bind b) v1))))) (ex3_2_intro C T -(\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda (c3: -C).(\lambda (_: T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1: -T).(eq C (CHead c1 (Bind b) u1) (CHead c3 (Bind b) v1)))) c1 u1 H19 H18 -(refl_equal C (CHead c1 (Bind b) u1)))))))) k H10)))))))) H8)) -H7)))))))))))))) y0 v x y H1))) H0))) H))))))). -(* COMMENTS -Initial nodes: 3878 -END *) +(CHead c k t) (CHead c1 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda +(v1: T).(subst0 i v v1 v2))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i v c1 +c2))) (\lambda (c1: C).(\lambda (v1: T).(eq C (CHead c k t) (CHead c1 (Bind +b) v1)))))) (\lambda (x0: C).(\lambda (x1: nat).(\lambda (H3: (eq nat (S i) +(s k x1))).(\lambda (H4: (eq C (CHead c2 (Bind b) v2) (CHead x0 k +t))).(\lambda (H5: (csubst0 x1 v c x0)).(let H6 \def (f_equal C C (\lambda +(e: C).(match e with [(CSort _) \Rightarrow c2 | (CHead c0 _ _) \Rightarrow +c0])) (CHead c2 (Bind b) v2) (CHead x0 k t) H4) in ((let H7 \def (f_equal C K +(\lambda (e: C).(match e with [(CSort _) \Rightarrow (Bind b) | (CHead _ k0 +_) \Rightarrow k0])) (CHead c2 (Bind b) v2) (CHead x0 k t) H4) in ((let H8 +\def (f_equal C T (\lambda (e: C).(match e with [(CSort _) \Rightarrow v2 | +(CHead _ _ t0) \Rightarrow t0])) (CHead c2 (Bind b) v2) (CHead x0 k t) H4) in +(\lambda (H9: (eq K (Bind b) k)).(\lambda (H10: (eq C c2 x0)).(let H11 \def +(eq_ind_r C x0 (\lambda (c0: C).(csubst0 x1 v c c0)) H5 c2 H10) in (eq_ind_r +T t (\lambda (t0: T).(or3 (ex2 T (\lambda (v1: T).(subst0 i v v1 t0)) +(\lambda (v1: T).(eq C (CHead c k t) (CHead c2 (Bind b) v1)))) (ex2 C +(\lambda (c1: C).(csubst0 i v c1 c2)) (\lambda (c1: C).(eq C (CHead c k t) +(CHead c1 (Bind b) t0)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 +i v v1 t0))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i v c1 c2))) (\lambda +(c1: C).(\lambda (v1: T).(eq C (CHead c k t) (CHead c1 (Bind b) v1))))))) +(let H12 \def (eq_ind_r K k (\lambda (k0: K).(eq nat (S i) (s k0 x1))) H3 +(Bind b) H9) in (eq_ind K (Bind b) (\lambda (k0: K).(or3 (ex2 T (\lambda (v1: +T).(subst0 i v v1 t)) (\lambda (v1: T).(eq C (CHead c k0 t) (CHead c2 (Bind +b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i v c1 c2)) (\lambda (c1: C).(eq C +(CHead c k0 t) (CHead c1 (Bind b) t)))) (ex3_2 C T (\lambda (_: C).(\lambda +(v1: T).(subst0 i v v1 t))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i v c1 +c2))) (\lambda (c1: C).(\lambda (v1: T).(eq C (CHead c k0 t) (CHead c1 (Bind +b) v1))))))) (let H13 \def (f_equal nat nat (\lambda (e: nat).(match e with +[O \Rightarrow i | (S n) \Rightarrow n])) (S i) (S x1) H12) in (let H14 \def +(eq_ind_r nat x1 (\lambda (n: nat).(csubst0 n v c c2)) H11 i H13) in +(or3_intro1 (ex2 T (\lambda (v1: T).(subst0 i v v1 t)) (\lambda (v1: T).(eq C +(CHead c (Bind b) t) (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c1: +C).(csubst0 i v c1 c2)) (\lambda (c1: C).(eq C (CHead c (Bind b) t) (CHead c1 +(Bind b) t)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v v1 +t))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i v c1 c2))) (\lambda (c1: +C).(\lambda (v1: T).(eq C (CHead c (Bind b) t) (CHead c1 (Bind b) v1))))) +(ex_intro2 C (\lambda (c1: C).(csubst0 i v c1 c2)) (\lambda (c1: C).(eq C +(CHead c (Bind b) t) (CHead c1 (Bind b) t))) c H14 (refl_equal C (CHead c +(Bind b) t)))))) k H9)) v2 H8))))) H7)) H6))))))) H2)) (\lambda (H2: (ex4_3 T +C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat (S i) (s k +j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C (CHead c2 +(Bind b) v2) (CHead c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda +(j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: +nat).(csubst0 j v c c3)))))).(ex4_3_ind T C nat (\lambda (_: T).(\lambda (_: +C).(\lambda (j: nat).(eq nat (S i) (s k j))))) (\lambda (u2: T).(\lambda (c3: +C).(\lambda (_: nat).(eq C (CHead c2 (Bind b) v2) (CHead c3 k u2))))) +(\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) +(\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (or3 +(ex2 T (\lambda (v1: T).(subst0 i v v1 v2)) (\lambda (v1: T).(eq C (CHead c k +t) (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i v c1 c2)) +(\lambda (c1: C).(eq C (CHead c k t) (CHead c1 (Bind b) v2)))) (ex3_2 C T +(\lambda (_: C).(\lambda (v1: T).(subst0 i v v1 v2))) (\lambda (c1: +C).(\lambda (_: T).(csubst0 i v c1 c2))) (\lambda (c1: C).(\lambda (v1: +T).(eq C (CHead c k t) (CHead c1 (Bind b) v1)))))) (\lambda (x0: T).(\lambda +(x1: C).(\lambda (x2: nat).(\lambda (H3: (eq nat (S i) (s k x2))).(\lambda +(H4: (eq C (CHead c2 (Bind b) v2) (CHead x1 k x0))).(\lambda (H5: (subst0 x2 +v t x0)).(\lambda (H6: (csubst0 x2 v c x1)).(let H7 \def (f_equal C C +(\lambda (e: C).(match e with [(CSort _) \Rightarrow c2 | (CHead c0 _ _) +\Rightarrow c0])) (CHead c2 (Bind b) v2) (CHead x1 k x0) H4) in ((let H8 \def +(f_equal C K (\lambda (e: C).(match e with [(CSort _) \Rightarrow (Bind b) | +(CHead _ k0 _) \Rightarrow k0])) (CHead c2 (Bind b) v2) (CHead x1 k x0) H4) +in ((let H9 \def (f_equal C T (\lambda (e: C).(match e with [(CSort _) +\Rightarrow v2 | (CHead _ _ t0) \Rightarrow t0])) (CHead c2 (Bind b) v2) +(CHead x1 k x0) H4) in (\lambda (H10: (eq K (Bind b) k)).(\lambda (H11: (eq C +c2 x1)).(let H12 \def (eq_ind_r C x1 (\lambda (c0: C).(csubst0 x2 v c c0)) H6 +c2 H11) in (let H13 \def (eq_ind_r T x0 (\lambda (t0: T).(subst0 x2 v t t0)) +H5 v2 H9) in (let H14 \def (eq_ind_r K k (\lambda (k0: K).(eq nat (S i) (s k0 +x2))) H3 (Bind b) H10) in (eq_ind K (Bind b) (\lambda (k0: K).(or3 (ex2 T +(\lambda (v1: T).(subst0 i v v1 v2)) (\lambda (v1: T).(eq C (CHead c k0 t) +(CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i v c1 c2)) +(\lambda (c1: C).(eq C (CHead c k0 t) (CHead c1 (Bind b) v2)))) (ex3_2 C T +(\lambda (_: C).(\lambda (v1: T).(subst0 i v v1 v2))) (\lambda (c1: +C).(\lambda (_: T).(csubst0 i v c1 c2))) (\lambda (c1: C).(\lambda (v1: +T).(eq C (CHead c k0 t) (CHead c1 (Bind b) v1))))))) (let H15 \def (f_equal +nat nat (\lambda (e: nat).(match e with [O \Rightarrow i | (S n) \Rightarrow +n])) (S i) (S x2) H14) in (let H16 \def (eq_ind_r nat x2 (\lambda (n: +nat).(csubst0 n v c c2)) H12 i H15) in (let H17 \def (eq_ind_r nat x2 +(\lambda (n: nat).(subst0 n v t v2)) H13 i H15) in (or3_intro2 (ex2 T +(\lambda (v1: T).(subst0 i v v1 v2)) (\lambda (v1: T).(eq C (CHead c (Bind b) +t) (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i v c1 c2)) +(\lambda (c1: C).(eq C (CHead c (Bind b) t) (CHead c1 (Bind b) v2)))) (ex3_2 +C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v v1 v2))) (\lambda (c1: +C).(\lambda (_: T).(csubst0 i v c1 c2))) (\lambda (c1: C).(\lambda (v1: +T).(eq C (CHead c (Bind b) t) (CHead c1 (Bind b) v1))))) (ex3_2_intro C T +(\lambda (_: C).(\lambda (v1: T).(subst0 i v v1 v2))) (\lambda (c1: +C).(\lambda (_: T).(csubst0 i v c1 c2))) (\lambda (c1: C).(\lambda (v1: +T).(eq C (CHead c (Bind b) t) (CHead c1 (Bind b) v1)))) c t H17 H16 +(refl_equal C (CHead c (Bind b) t))))))) k H10))))))) H8)) H7))))))))) H2)) +H1))))))))))) x)). diff --git a/matita/matita/contribs/lambdadelta/basic_1/csubst0/getl.ma b/matita/matita/contribs/lambdadelta/basic_1/csubst0/getl.ma index 2701af000..8fb0fcb2c 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/csubst0/getl.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/csubst0/getl.ma @@ -14,11 +14,11 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/csubst0/clear.ma". +include "basic_1/csubst0/clear.ma". -include "Basic-1/csubst0/drop.ma". +include "basic_1/csubst0/drop.ma". -include "Basic-1/getl/fwd.ma". +include "basic_1/getl/fwd.ma". theorem csubst0_getl_ge: \forall (i: nat).(\forall (n: nat).((le i n) \to (\forall (c1: C).(\forall @@ -102,9 +102,6 @@ H4 (CHead x1 (Flat x0) x3) H10) in (getl_intro i c2 e (CHead x2 (Flat x0) x4) H11 (clear_flat x2 e (csubst0_clear_O x1 x2 v H13 e (clear_gen_flat x0 x1 e x3 H14)) x0 x4)))))))))))) H9)) H8)) n H5)))) (\lambda (H5: (lt n i)).(le_lt_false i n H H5 (getl n c2 e))))))) H2)))))))))). -(* COMMENTS -Initial nodes: 1525 -END *) theorem csubst0_getl_lt: \forall (i: nat).(\forall (n: nat).((lt n i) \to (\forall (c1: C).(\forall @@ -1020,9 +1017,6 @@ v e1 e2)))))) x5 x6 x7 x8 x9 (refl_equal C (CHead x6 (Bind x5) x8)) (getl_intro n c2 (CHead x7 (Bind x5) x9) (CHead x2 (Flat f) x4) H12 (clear_flat x2 (CHead x7 (Bind x5) x9) H20 f x4)) H21 H22)) e H19)))))))))) H18)) H17)))))))) x0 H8 H9 H10 H11))))))))))) H6)) H5))))) H2)))))))))). -(* COMMENTS -Initial nodes: 17179 -END *) theorem csubst0_getl_ge_back: \forall (i: nat).(\forall (n: nat).((le i n) \to (\forall (c1: C).(\forall @@ -1106,9 +1100,6 @@ H4 (CHead x2 (Flat x0) x4) H10) in (getl_intro i c1 e (CHead x1 (Flat x0) x3) H11 (clear_flat x1 e (csubst0_clear_O_back x1 x2 v H13 e (clear_gen_flat x0 x2 e x4 H14)) x0 x3)))))))))))) H9)) H8)) n H5)))) (\lambda (H5: (lt n i)).(le_lt_false i n H H5 (getl n c1 e))))))) H2)))))))))). -(* COMMENTS -Initial nodes: 1525 -END *) theorem csubst0_getl_lt_back: \forall (n: nat).(\forall (i: nat).((lt n i) \to (\forall (c1: C).(\forall @@ -1151,7 +1142,4 @@ n c1 e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i n) v e1 e2)) (\lambda (e1: C).(getl n c1 e1))) (ex_intro2 C (\lambda (e1: C).(csubst0 (minus i n) v e1 e2)) (\lambda (e1: C).(getl n c1 e1)) x1 H11 (getl_intro n c1 x1 x0 H8 H12)))))) H10)) H9)))))) H6)) H5)))))) H2)))))))))). -(* COMMENTS -Initial nodes: 801 -END *) diff --git a/matita/matita/contribs/lambdadelta/basic_1/csubst0/props.ma b/matita/matita/contribs/lambdadelta/basic_1/csubst0/props.ma index 28b75ec37..40f7fd4a7 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/csubst0/props.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/csubst0/props.ma @@ -14,7 +14,7 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/csubst0/defs.ma". +include "basic_1/csubst0/defs.ma". theorem csubst0_snd_bind: \forall (b: B).(\forall (i: nat).(\forall (v: T).(\forall (u1: T).(\forall @@ -22,13 +22,14 @@ theorem csubst0_snd_bind: (Bind b) u1) (CHead c (Bind b) u2)))))))) \def \lambda (b: B).(\lambda (i: nat).(\lambda (v: T).(\lambda (u1: T).(\lambda -(u2: T).(\lambda (H: (subst0 i v u1 u2)).(\lambda (c: C).(eq_ind nat (s (Bind -b) i) (\lambda (n: nat).(csubst0 n v (CHead c (Bind b) u1) (CHead c (Bind b) -u2))) (csubst0_snd (Bind b) i v u1 u2 H c) (S i) (refl_equal nat (S -i))))))))). -(* COMMENTS -Initial nodes: 91 -END *) +(u2: T).(\lambda (H: (subst0 i v u1 u2)).(\lambda (c: C).(let TMP_1 \def +(Bind b) in (let TMP_2 \def (s TMP_1 i) in (let TMP_7 \def (\lambda (n: +nat).(let TMP_3 \def (Bind b) in (let TMP_4 \def (CHead c TMP_3 u1) in (let +TMP_5 \def (Bind b) in (let TMP_6 \def (CHead c TMP_5 u2) in (csubst0 n v +TMP_4 TMP_6)))))) in (let TMP_8 \def (Bind b) in (let TMP_9 \def (csubst0_snd +TMP_8 i v u1 u2 H c) in (let TMP_10 \def (S i) in (let TMP_11 \def (S i) in +(let TMP_12 \def (refl_equal nat TMP_11) in (eq_ind nat TMP_2 TMP_7 TMP_9 +TMP_10 TMP_12))))))))))))))). theorem csubst0_fst_bind: \forall (b: B).(\forall (i: nat).(\forall (c1: C).(\forall (c2: C).(\forall @@ -36,12 +37,14 @@ theorem csubst0_fst_bind: (Bind b) u) (CHead c2 (Bind b) u)))))))) \def \lambda (b: B).(\lambda (i: nat).(\lambda (c1: C).(\lambda (c2: C).(\lambda -(v: T).(\lambda (H: (csubst0 i v c1 c2)).(\lambda (u: T).(eq_ind nat (s (Bind -b) i) (\lambda (n: nat).(csubst0 n v (CHead c1 (Bind b) u) (CHead c2 (Bind b) -u))) (csubst0_fst (Bind b) i c1 c2 v H u) (S i) (refl_equal nat (S i))))))))). -(* COMMENTS -Initial nodes: 91 -END *) +(v: T).(\lambda (H: (csubst0 i v c1 c2)).(\lambda (u: T).(let TMP_1 \def +(Bind b) in (let TMP_2 \def (s TMP_1 i) in (let TMP_7 \def (\lambda (n: +nat).(let TMP_3 \def (Bind b) in (let TMP_4 \def (CHead c1 TMP_3 u) in (let +TMP_5 \def (Bind b) in (let TMP_6 \def (CHead c2 TMP_5 u) in (csubst0 n v +TMP_4 TMP_6)))))) in (let TMP_8 \def (Bind b) in (let TMP_9 \def (csubst0_fst +TMP_8 i c1 c2 v H u) in (let TMP_10 \def (S i) in (let TMP_11 \def (S i) in +(let TMP_12 \def (refl_equal nat TMP_11) in (eq_ind nat TMP_2 TMP_7 TMP_9 +TMP_10 TMP_12))))))))))))))). theorem csubst0_both_bind: \forall (b: B).(\forall (i: nat).(\forall (v: T).(\forall (u1: T).(\forall @@ -51,11 +54,12 @@ u2)))))))))) \def \lambda (b: B).(\lambda (i: nat).(\lambda (v: T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H: (subst0 i v u1 u2)).(\lambda (c1: C).(\lambda (c2: -C).(\lambda (H0: (csubst0 i v c1 c2)).(eq_ind nat (s (Bind b) i) (\lambda (n: -nat).(csubst0 n v (CHead c1 (Bind b) u1) (CHead c2 (Bind b) u2))) -(csubst0_both (Bind b) i v u1 u2 H c1 c2 H0) (S i) (refl_equal nat (S -i))))))))))). -(* COMMENTS -Initial nodes: 107 -END *) +C).(\lambda (H0: (csubst0 i v c1 c2)).(let TMP_1 \def (Bind b) in (let TMP_2 +\def (s TMP_1 i) in (let TMP_7 \def (\lambda (n: nat).(let TMP_3 \def (Bind +b) in (let TMP_4 \def (CHead c1 TMP_3 u1) in (let TMP_5 \def (Bind b) in (let +TMP_6 \def (CHead c2 TMP_5 u2) in (csubst0 n v TMP_4 TMP_6)))))) in (let +TMP_8 \def (Bind b) in (let TMP_9 \def (csubst0_both TMP_8 i v u1 u2 H c1 c2 +H0) in (let TMP_10 \def (S i) in (let TMP_11 \def (S i) in (let TMP_12 \def +(refl_equal nat TMP_11) in (eq_ind nat TMP_2 TMP_7 TMP_9 TMP_10 +TMP_12))))))))))))))))). diff --git a/matita/matita/contribs/lambdadelta/basic_1/csubst1/defs.ma b/matita/matita/contribs/lambdadelta/basic_1/csubst1/defs.ma index d6ba0a942..dcfa78456 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/csubst1/defs.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/csubst1/defs.ma @@ -14,7 +14,7 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/csubst0/defs.ma". +include "basic_1/csubst0/defs.ma". inductive csubst1 (i: nat) (v: T) (c1: C): C \to Prop \def | csubst1_refl: csubst1 i v c1 c1 diff --git a/matita/matita/contribs/lambdadelta/basic_1/csubst1/fwd.ma b/matita/matita/contribs/lambdadelta/basic_1/csubst1/fwd.ma index fe71a56fd..283b48325 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/csubst1/fwd.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/csubst1/fwd.ma @@ -14,11 +14,24 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/csubst1/defs.ma". +include "basic_1/csubst1/defs.ma". -include "Basic-1/csubst0/fwd.ma". +include "basic_1/csubst0/fwd.ma". -include "Basic-1/subst1/props.ma". +include "basic_1/subst1/defs.ma". + +include "basic_1/s/fwd.ma". + +theorem csubst1_ind: + \forall (i: nat).(\forall (v: T).(\forall (c1: C).(\forall (P: ((C \to +Prop))).((P c1) \to (((\forall (c2: C).((csubst0 i v c1 c2) \to (P c2)))) \to +(\forall (c: C).((csubst1 i v c1 c) \to (P c)))))))) +\def + \lambda (i: nat).(\lambda (v: T).(\lambda (c1: C).(\lambda (P: ((C \to +Prop))).(\lambda (f: (P c1)).(\lambda (f0: ((\forall (c2: C).((csubst0 i v c1 +c2) \to (P c2))))).(\lambda (c: C).(\lambda (c0: (csubst1 i v c1 c)).(match +c0 with [csubst1_refl \Rightarrow f | (csubst1_sing x x0) \Rightarrow (f0 x +x0)])))))))). theorem csubst1_gen_head: \forall (k: K).(\forall (c1: C).(\forall (x: C).(\forall (u1: T).(\forall @@ -29,89 +42,139 @@ C).(csubst1 i v c1 c2)))))))))) \def \lambda (k: K).(\lambda (c1: C).(\lambda (x: C).(\lambda (u1: T).(\lambda (v: T).(\lambda (i: nat).(\lambda (H: (csubst1 (s k i) v (CHead c1 k u1) -x)).(csubst1_ind (s k i) v (CHead c1 k u1) (\lambda (c: C).(ex3_2 T C -(\lambda (u2: T).(\lambda (c2: C).(eq C c (CHead c2 k u2)))) (\lambda (u2: -T).(\lambda (_: C).(subst1 i v u1 u2))) (\lambda (_: T).(\lambda (c2: -C).(csubst1 i v c1 c2))))) (ex3_2_intro T C (\lambda (u2: T).(\lambda (c2: -C).(eq C (CHead c1 k u1) (CHead c2 k u2)))) (\lambda (u2: T).(\lambda (_: -C).(subst1 i v u1 u2))) (\lambda (_: T).(\lambda (c2: C).(csubst1 i v c1 -c2))) u1 c1 (refl_equal C (CHead c1 k u1)) (subst1_refl i v u1) (csubst1_refl -i v c1)) (\lambda (c2: C).(\lambda (H0: (csubst0 (s k i) v (CHead c1 k u1) -c2)).(or3_ind (ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat (s k i) -(s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c1 k u2)))) -(\lambda (u2: T).(\lambda (j: nat).(subst0 j v u1 u2)))) (ex3_2 C nat -(\lambda (_: C).(\lambda (j: nat).(eq nat (s k i) (s k j)))) (\lambda (c3: -C).(\lambda (_: nat).(eq C c2 (CHead c3 k u1)))) (\lambda (c3: C).(\lambda -(j: nat).(csubst0 j v c1 c3)))) (ex4_3 T C nat (\lambda (_: T).(\lambda (_: -C).(\lambda (j: nat).(eq nat (s k i) (s k j))))) (\lambda (u2: T).(\lambda -(c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: -T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v u1 u2)))) (\lambda (_: -T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c1 c3))))) (ex3_2 T C -(\lambda (u2: T).(\lambda (c3: C).(eq C c2 (CHead c3 k u2)))) (\lambda (u2: -T).(\lambda (_: C).(subst1 i v u1 u2))) (\lambda (_: T).(\lambda (c3: -C).(csubst1 i v c1 c3)))) (\lambda (H1: (ex3_2 T nat (\lambda (_: T).(\lambda -(j: nat).(eq nat (s k i) (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C -c2 (CHead c1 k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v u1 -u2))))).(ex3_2_ind T nat (\lambda (_: T).(\lambda (j: nat).(eq nat (s k i) (s -k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 (CHead c1 k u2)))) -(\lambda (u2: T).(\lambda (j: nat).(subst0 j v u1 u2))) (ex3_2 T C (\lambda -(u2: T).(\lambda (c3: C).(eq C c2 (CHead c3 k u2)))) (\lambda (u2: -T).(\lambda (_: C).(subst1 i v u1 u2))) (\lambda (_: T).(\lambda (c3: -C).(csubst1 i v c1 c3)))) (\lambda (x0: T).(\lambda (x1: nat).(\lambda (H2: -(eq nat (s k i) (s k x1))).(\lambda (H3: (eq C c2 (CHead c1 k x0))).(\lambda -(H4: (subst0 x1 v u1 x0)).(eq_ind_r C (CHead c1 k x0) (\lambda (c: C).(ex3_2 -T C (\lambda (u2: T).(\lambda (c3: C).(eq C c (CHead c3 k u2)))) (\lambda -(u2: T).(\lambda (_: C).(subst1 i v u1 u2))) (\lambda (_: T).(\lambda (c3: -C).(csubst1 i v c1 c3))))) (let H5 \def (eq_ind_r nat x1 (\lambda (n: -nat).(subst0 n v u1 x0)) H4 i (s_inj k i x1 H2)) in (ex3_2_intro T C (\lambda -(u2: T).(\lambda (c3: C).(eq C (CHead c1 k x0) (CHead c3 k u2)))) (\lambda -(u2: T).(\lambda (_: C).(subst1 i v u1 u2))) (\lambda (_: T).(\lambda (c3: -C).(csubst1 i v c1 c3))) x0 c1 (refl_equal C (CHead c1 k x0)) (subst1_single -i v u1 x0 H5) (csubst1_refl i v c1))) c2 H3)))))) H1)) (\lambda (H1: (ex3_2 C -nat (\lambda (_: C).(\lambda (j: nat).(eq nat (s k i) (s k j)))) (\lambda -(c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u1)))) (\lambda (c3: -C).(\lambda (j: nat).(csubst0 j v c1 c3))))).(ex3_2_ind C nat (\lambda (_: -C).(\lambda (j: nat).(eq nat (s k i) (s k j)))) (\lambda (c3: C).(\lambda (_: -nat).(eq C c2 (CHead c3 k u1)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 -j v c1 c3))) (ex3_2 T C (\lambda (u2: T).(\lambda (c3: C).(eq C c2 (CHead c3 -k u2)))) (\lambda (u2: T).(\lambda (_: C).(subst1 i v u1 u2))) (\lambda (_: -T).(\lambda (c3: C).(csubst1 i v c1 c3)))) (\lambda (x0: C).(\lambda (x1: -nat).(\lambda (H2: (eq nat (s k i) (s k x1))).(\lambda (H3: (eq C c2 (CHead -x0 k u1))).(\lambda (H4: (csubst0 x1 v c1 x0)).(eq_ind_r C (CHead x0 k u1) -(\lambda (c: C).(ex3_2 T C (\lambda (u2: T).(\lambda (c3: C).(eq C c (CHead -c3 k u2)))) (\lambda (u2: T).(\lambda (_: C).(subst1 i v u1 u2))) (\lambda -(_: T).(\lambda (c3: C).(csubst1 i v c1 c3))))) (let H5 \def (eq_ind_r nat x1 -(\lambda (n: nat).(csubst0 n v c1 x0)) H4 i (s_inj k i x1 H2)) in -(ex3_2_intro T C (\lambda (u2: T).(\lambda (c3: C).(eq C (CHead x0 k u1) -(CHead c3 k u2)))) (\lambda (u2: T).(\lambda (_: C).(subst1 i v u1 u2))) -(\lambda (_: T).(\lambda (c3: C).(csubst1 i v c1 c3))) u1 x0 (refl_equal C -(CHead x0 k u1)) (subst1_refl i v u1) (csubst1_sing i v c1 x0 H5))) c2 -H3)))))) H1)) (\lambda (H1: (ex4_3 T C nat (\lambda (_: T).(\lambda (_: -C).(\lambda (j: nat).(eq nat (s k i) (s k j))))) (\lambda (u2: T).(\lambda -(c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: -T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v u1 u2)))) (\lambda (_: -T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c1 c3)))))).(ex4_3_ind T C -nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat (s k i) (s k -j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 -k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v u1 -u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c1 -c3)))) (ex3_2 T C (\lambda (u2: T).(\lambda (c3: C).(eq C c2 (CHead c3 k -u2)))) (\lambda (u2: T).(\lambda (_: C).(subst1 i v u1 u2))) (\lambda (_: -T).(\lambda (c3: C).(csubst1 i v c1 c3)))) (\lambda (x0: T).(\lambda (x1: -C).(\lambda (x2: nat).(\lambda (H2: (eq nat (s k i) (s k x2))).(\lambda (H3: -(eq C c2 (CHead x1 k x0))).(\lambda (H4: (subst0 x2 v u1 x0)).(\lambda (H5: -(csubst0 x2 v c1 x1)).(eq_ind_r C (CHead x1 k x0) (\lambda (c: C).(ex3_2 T C -(\lambda (u2: T).(\lambda (c3: C).(eq C c (CHead c3 k u2)))) (\lambda (u2: -T).(\lambda (_: C).(subst1 i v u1 u2))) (\lambda (_: T).(\lambda (c3: -C).(csubst1 i v c1 c3))))) (let H6 \def (eq_ind_r nat x2 (\lambda (n: -nat).(csubst0 n v c1 x1)) H5 i (s_inj k i x2 H2)) in (let H7 \def (eq_ind_r -nat x2 (\lambda (n: nat).(subst0 n v u1 x0)) H4 i (s_inj k i x2 H2)) in -(ex3_2_intro T C (\lambda (u2: T).(\lambda (c3: C).(eq C (CHead x1 k x0) -(CHead c3 k u2)))) (\lambda (u2: T).(\lambda (_: C).(subst1 i v u1 u2))) -(\lambda (_: T).(\lambda (c3: C).(csubst1 i v c1 c3))) x0 x1 (refl_equal C -(CHead x1 k x0)) (subst1_single i v u1 x0 H7) (csubst1_sing i v c1 x1 H6)))) -c2 H3)))))))) H1)) (csubst0_gen_head k c1 c2 u1 v (s k i) H0)))) x H))))))). -(* COMMENTS -Initial nodes: 1817 -END *) +x)).(let TMP_1 \def (s k i) in (let TMP_2 \def (CHead c1 k u1) in (let TMP_7 +\def (\lambda (c: C).(let TMP_4 \def (\lambda (u2: T).(\lambda (c2: C).(let +TMP_3 \def (CHead c2 k u2) in (eq C c TMP_3)))) in (let TMP_5 \def (\lambda +(u2: T).(\lambda (_: C).(subst1 i v u1 u2))) in (let TMP_6 \def (\lambda (_: +T).(\lambda (c2: C).(csubst1 i v c1 c2))) in (ex3_2 T C TMP_4 TMP_5 +TMP_6))))) in (let TMP_10 \def (\lambda (u2: T).(\lambda (c2: C).(let TMP_8 +\def (CHead c1 k u1) in (let TMP_9 \def (CHead c2 k u2) in (eq C TMP_8 +TMP_9))))) in (let TMP_11 \def (\lambda (u2: T).(\lambda (_: C).(subst1 i v +u1 u2))) in (let TMP_12 \def (\lambda (_: T).(\lambda (c2: C).(csubst1 i v c1 +c2))) in (let TMP_13 \def (CHead c1 k u1) in (let TMP_14 \def (refl_equal C +TMP_13) in (let TMP_15 \def (subst1_refl i v u1) in (let TMP_16 \def +(csubst1_refl i v c1) in (let TMP_17 \def (ex3_2_intro T C TMP_10 TMP_11 +TMP_12 u1 c1 TMP_14 TMP_15 TMP_16) in (let TMP_138 \def (\lambda (c2: +C).(\lambda (H0: (csubst0 (s k i) v (CHead c1 k u1) c2)).(let TMP_18 \def (s +k i) in (let H1 \def (csubst0_gen_head k c1 c2 u1 v TMP_18 H0) in (let TMP_21 +\def (\lambda (_: T).(\lambda (j: nat).(let TMP_19 \def (s k i) in (let +TMP_20 \def (s k j) in (eq nat TMP_19 TMP_20))))) in (let TMP_23 \def +(\lambda (u2: T).(\lambda (_: nat).(let TMP_22 \def (CHead c1 k u2) in (eq C +c2 TMP_22)))) in (let TMP_24 \def (\lambda (u2: T).(\lambda (j: nat).(subst0 +j v u1 u2))) in (let TMP_25 \def (ex3_2 T nat TMP_21 TMP_23 TMP_24) in (let +TMP_28 \def (\lambda (_: C).(\lambda (j: nat).(let TMP_26 \def (s k i) in +(let TMP_27 \def (s k j) in (eq nat TMP_26 TMP_27))))) in (let TMP_30 \def +(\lambda (c3: C).(\lambda (_: nat).(let TMP_29 \def (CHead c3 k u1) in (eq C +c2 TMP_29)))) in (let TMP_31 \def (\lambda (c3: C).(\lambda (j: nat).(csubst0 +j v c1 c3))) in (let TMP_32 \def (ex3_2 C nat TMP_28 TMP_30 TMP_31) in (let +TMP_35 \def (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(let TMP_33 +\def (s k i) in (let TMP_34 \def (s k j) in (eq nat TMP_33 TMP_34)))))) in +(let TMP_37 \def (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(let +TMP_36 \def (CHead c3 k u2) in (eq C c2 TMP_36))))) in (let TMP_38 \def +(\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v u1 u2)))) in +(let TMP_39 \def (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 +j v c1 c3)))) in (let TMP_40 \def (ex4_3 T C nat TMP_35 TMP_37 TMP_38 TMP_39) +in (let TMP_42 \def (\lambda (u2: T).(\lambda (c3: C).(let TMP_41 \def (CHead +c3 k u2) in (eq C c2 TMP_41)))) in (let TMP_43 \def (\lambda (u2: T).(\lambda +(_: C).(subst1 i v u1 u2))) in (let TMP_44 \def (\lambda (_: T).(\lambda (c3: +C).(csubst1 i v c1 c3))) in (let TMP_45 \def (ex3_2 T C TMP_42 TMP_43 TMP_44) +in (let TMP_75 \def (\lambda (H2: (ex3_2 T nat (\lambda (_: T).(\lambda (j: +nat).(eq nat (s k i) (s k j)))) (\lambda (u2: T).(\lambda (_: nat).(eq C c2 +(CHead c1 k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j v u1 +u2))))).(let TMP_48 \def (\lambda (_: T).(\lambda (j: nat).(let TMP_46 \def +(s k i) in (let TMP_47 \def (s k j) in (eq nat TMP_46 TMP_47))))) in (let +TMP_50 \def (\lambda (u2: T).(\lambda (_: nat).(let TMP_49 \def (CHead c1 k +u2) in (eq C c2 TMP_49)))) in (let TMP_51 \def (\lambda (u2: T).(\lambda (j: +nat).(subst0 j v u1 u2))) in (let TMP_53 \def (\lambda (u2: T).(\lambda (c3: +C).(let TMP_52 \def (CHead c3 k u2) in (eq C c2 TMP_52)))) in (let TMP_54 +\def (\lambda (u2: T).(\lambda (_: C).(subst1 i v u1 u2))) in (let TMP_55 +\def (\lambda (_: T).(\lambda (c3: C).(csubst1 i v c1 c3))) in (let TMP_56 +\def (ex3_2 T C TMP_53 TMP_54 TMP_55) in (let TMP_74 \def (\lambda (x0: +T).(\lambda (x1: nat).(\lambda (H3: (eq nat (s k i) (s k x1))).(\lambda (H4: +(eq C c2 (CHead c1 k x0))).(\lambda (H5: (subst0 x1 v u1 x0)).(let TMP_57 +\def (CHead c1 k x0) in (let TMP_62 \def (\lambda (c: C).(let TMP_59 \def +(\lambda (u2: T).(\lambda (c3: C).(let TMP_58 \def (CHead c3 k u2) in (eq C c +TMP_58)))) in (let TMP_60 \def (\lambda (u2: T).(\lambda (_: C).(subst1 i v +u1 u2))) in (let TMP_61 \def (\lambda (_: T).(\lambda (c3: C).(csubst1 i v c1 +c3))) in (ex3_2 T C TMP_59 TMP_60 TMP_61))))) in (let H_y \def (s_inj k i x1 +H3) in (let TMP_63 \def (\lambda (n: nat).(subst0 n v u1 x0)) in (let H6 \def +(eq_ind_r nat x1 TMP_63 H5 i H_y) in (let TMP_66 \def (\lambda (u2: +T).(\lambda (c3: C).(let TMP_64 \def (CHead c1 k x0) in (let TMP_65 \def +(CHead c3 k u2) in (eq C TMP_64 TMP_65))))) in (let TMP_67 \def (\lambda (u2: +T).(\lambda (_: C).(subst1 i v u1 u2))) in (let TMP_68 \def (\lambda (_: +T).(\lambda (c3: C).(csubst1 i v c1 c3))) in (let TMP_69 \def (CHead c1 k x0) +in (let TMP_70 \def (refl_equal C TMP_69) in (let TMP_71 \def (subst1_single +i v u1 x0 H6) in (let TMP_72 \def (csubst1_refl i v c1) in (let TMP_73 \def +(ex3_2_intro T C TMP_66 TMP_67 TMP_68 x0 c1 TMP_70 TMP_71 TMP_72) in +(eq_ind_r C TMP_57 TMP_62 TMP_73 c2 H4))))))))))))))))))) in (ex3_2_ind T nat +TMP_48 TMP_50 TMP_51 TMP_56 TMP_74 H2)))))))))) in (let TMP_105 \def (\lambda +(H2: (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat (s k i) (s k +j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u1)))) (\lambda +(c3: C).(\lambda (j: nat).(csubst0 j v c1 c3))))).(let TMP_78 \def (\lambda +(_: C).(\lambda (j: nat).(let TMP_76 \def (s k i) in (let TMP_77 \def (s k j) +in (eq nat TMP_76 TMP_77))))) in (let TMP_80 \def (\lambda (c3: C).(\lambda +(_: nat).(let TMP_79 \def (CHead c3 k u1) in (eq C c2 TMP_79)))) in (let +TMP_81 \def (\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c1 c3))) in (let +TMP_83 \def (\lambda (u2: T).(\lambda (c3: C).(let TMP_82 \def (CHead c3 k +u2) in (eq C c2 TMP_82)))) in (let TMP_84 \def (\lambda (u2: T).(\lambda (_: +C).(subst1 i v u1 u2))) in (let TMP_85 \def (\lambda (_: T).(\lambda (c3: +C).(csubst1 i v c1 c3))) in (let TMP_86 \def (ex3_2 T C TMP_83 TMP_84 TMP_85) +in (let TMP_104 \def (\lambda (x0: C).(\lambda (x1: nat).(\lambda (H3: (eq +nat (s k i) (s k x1))).(\lambda (H4: (eq C c2 (CHead x0 k u1))).(\lambda (H5: +(csubst0 x1 v c1 x0)).(let TMP_87 \def (CHead x0 k u1) in (let TMP_92 \def +(\lambda (c: C).(let TMP_89 \def (\lambda (u2: T).(\lambda (c3: C).(let +TMP_88 \def (CHead c3 k u2) in (eq C c TMP_88)))) in (let TMP_90 \def +(\lambda (u2: T).(\lambda (_: C).(subst1 i v u1 u2))) in (let TMP_91 \def +(\lambda (_: T).(\lambda (c3: C).(csubst1 i v c1 c3))) in (ex3_2 T C TMP_89 +TMP_90 TMP_91))))) in (let H_y \def (s_inj k i x1 H3) in (let TMP_93 \def +(\lambda (n: nat).(csubst0 n v c1 x0)) in (let H6 \def (eq_ind_r nat x1 +TMP_93 H5 i H_y) in (let TMP_96 \def (\lambda (u2: T).(\lambda (c3: C).(let +TMP_94 \def (CHead x0 k u1) in (let TMP_95 \def (CHead c3 k u2) in (eq C +TMP_94 TMP_95))))) in (let TMP_97 \def (\lambda (u2: T).(\lambda (_: +C).(subst1 i v u1 u2))) in (let TMP_98 \def (\lambda (_: T).(\lambda (c3: +C).(csubst1 i v c1 c3))) in (let TMP_99 \def (CHead x0 k u1) in (let TMP_100 +\def (refl_equal C TMP_99) in (let TMP_101 \def (subst1_refl i v u1) in (let +TMP_102 \def (csubst1_sing i v c1 x0 H6) in (let TMP_103 \def (ex3_2_intro T +C TMP_96 TMP_97 TMP_98 u1 x0 TMP_100 TMP_101 TMP_102) in (eq_ind_r C TMP_87 +TMP_92 TMP_103 c2 H4))))))))))))))))))) in (ex3_2_ind C nat TMP_78 TMP_80 +TMP_81 TMP_86 TMP_104 H2)))))))))) in (let TMP_137 \def (\lambda (H2: (ex4_3 +T C nat (\lambda (_: T).(\lambda (_: C).(\lambda (j: nat).(eq nat (s k i) (s +k j))))) (\lambda (u2: T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead +c3 k u2))))) (\lambda (u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v +u1 u2)))) (\lambda (_: T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c1 +c3)))))).(let TMP_108 \def (\lambda (_: T).(\lambda (_: C).(\lambda (j: +nat).(let TMP_106 \def (s k i) in (let TMP_107 \def (s k j) in (eq nat +TMP_106 TMP_107)))))) in (let TMP_110 \def (\lambda (u2: T).(\lambda (c3: +C).(\lambda (_: nat).(let TMP_109 \def (CHead c3 k u2) in (eq C c2 +TMP_109))))) in (let TMP_111 \def (\lambda (u2: T).(\lambda (_: C).(\lambda +(j: nat).(subst0 j v u1 u2)))) in (let TMP_112 \def (\lambda (_: T).(\lambda +(c3: C).(\lambda (j: nat).(csubst0 j v c1 c3)))) in (let TMP_114 \def +(\lambda (u2: T).(\lambda (c3: C).(let TMP_113 \def (CHead c3 k u2) in (eq C +c2 TMP_113)))) in (let TMP_115 \def (\lambda (u2: T).(\lambda (_: C).(subst1 +i v u1 u2))) in (let TMP_116 \def (\lambda (_: T).(\lambda (c3: C).(csubst1 i +v c1 c3))) in (let TMP_117 \def (ex3_2 T C TMP_114 TMP_115 TMP_116) in (let +TMP_136 \def (\lambda (x0: T).(\lambda (x1: C).(\lambda (x2: nat).(\lambda +(H3: (eq nat (s k i) (s k x2))).(\lambda (H4: (eq C c2 (CHead x1 k +x0))).(\lambda (H5: (subst0 x2 v u1 x0)).(\lambda (H6: (csubst0 x2 v c1 +x1)).(let TMP_118 \def (CHead x1 k x0) in (let TMP_123 \def (\lambda (c: +C).(let TMP_120 \def (\lambda (u2: T).(\lambda (c3: C).(let TMP_119 \def +(CHead c3 k u2) in (eq C c TMP_119)))) in (let TMP_121 \def (\lambda (u2: +T).(\lambda (_: C).(subst1 i v u1 u2))) in (let TMP_122 \def (\lambda (_: +T).(\lambda (c3: C).(csubst1 i v c1 c3))) in (ex3_2 T C TMP_120 TMP_121 +TMP_122))))) in (let H_y \def (s_inj k i x2 H3) in (let TMP_124 \def (\lambda +(n: nat).(csubst0 n v c1 x1)) in (let H7 \def (eq_ind_r nat x2 TMP_124 H6 i +H_y) in (let TMP_125 \def (\lambda (n: nat).(subst0 n v u1 x0)) in (let H8 +\def (eq_ind_r nat x2 TMP_125 H5 i H_y) in (let TMP_128 \def (\lambda (u2: +T).(\lambda (c3: C).(let TMP_126 \def (CHead x1 k x0) in (let TMP_127 \def +(CHead c3 k u2) in (eq C TMP_126 TMP_127))))) in (let TMP_129 \def (\lambda +(u2: T).(\lambda (_: C).(subst1 i v u1 u2))) in (let TMP_130 \def (\lambda +(_: T).(\lambda (c3: C).(csubst1 i v c1 c3))) in (let TMP_131 \def (CHead x1 +k x0) in (let TMP_132 \def (refl_equal C TMP_131) in (let TMP_133 \def +(subst1_single i v u1 x0 H8) in (let TMP_134 \def (csubst1_sing i v c1 x1 H7) +in (let TMP_135 \def (ex3_2_intro T C TMP_128 TMP_129 TMP_130 x0 x1 TMP_132 +TMP_133 TMP_134) in (eq_ind_r C TMP_118 TMP_123 TMP_135 c2 +H4))))))))))))))))))))))) in (ex4_3_ind T C nat TMP_108 TMP_110 TMP_111 +TMP_112 TMP_117 TMP_136 H2))))))))))) in (or3_ind TMP_25 TMP_32 TMP_40 TMP_45 +TMP_75 TMP_105 TMP_137 H1))))))))))))))))))))))))) in (csubst1_ind TMP_1 v +TMP_2 TMP_7 TMP_17 TMP_138 x H))))))))))))))))))). diff --git a/matita/matita/contribs/lambdadelta/basic_1/csubst1/getl.ma b/matita/matita/contribs/lambdadelta/basic_1/csubst1/getl.ma index e24ba9533..8c737fc03 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/csubst1/getl.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/csubst1/getl.ma @@ -14,13 +14,13 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/csubst1/props.ma". +include "basic_1/csubst1/props.ma". -include "Basic-1/csubst0/getl.ma". +include "basic_1/csubst0/getl.ma". -include "Basic-1/subst1/props.ma". +include "basic_1/subst1/props.ma". -include "Basic-1/drop/props.ma". +include "basic_1/drop/props.ma". theorem csubst1_getl_ge: \forall (i: nat).(\forall (n: nat).((le i n) \to (\forall (c1: C).(\forall @@ -28,14 +28,12 @@ theorem csubst1_getl_ge: e) \to (getl n c2 e))))))))) \def \lambda (i: nat).(\lambda (n: nat).(\lambda (H: (le i n)).(\lambda (c1: -C).(\lambda (c2: C).(\lambda (v: T).(\lambda (H0: (csubst1 i v c1 -c2)).(csubst1_ind i v c1 (\lambda (c: C).(\forall (e: C).((getl n c1 e) \to -(getl n c e)))) (\lambda (e: C).(\lambda (H1: (getl n c1 e)).H1)) (\lambda -(c3: C).(\lambda (H1: (csubst0 i v c1 c3)).(\lambda (e: C).(\lambda (H2: -(getl n c1 e)).(csubst0_getl_ge i n H c1 c3 v H1 e H2))))) c2 H0))))))). -(* COMMENTS -Initial nodes: 111 -END *) +C).(\lambda (c2: C).(\lambda (v: T).(\lambda (H0: (csubst1 i v c1 c2)).(let +TMP_1 \def (\lambda (c: C).(\forall (e: C).((getl n c1 e) \to (getl n c e)))) +in (let TMP_2 \def (\lambda (e: C).(\lambda (H1: (getl n c1 e)).H1)) in (let +TMP_3 \def (\lambda (c3: C).(\lambda (H1: (csubst0 i v c1 c3)).(\lambda (e: +C).(\lambda (H2: (getl n c1 e)).(csubst0_getl_ge i n H c1 c3 v H1 e H2))))) +in (csubst1_ind i v c1 TMP_1 TMP_2 TMP_3 c2 H0)))))))))). theorem csubst1_getl_lt: \forall (i: nat).(\forall (n: nat).((lt n i) \to (\forall (c1: C).(\forall @@ -44,104 +42,189 @@ e1) \to (ex2 C (\lambda (e2: C).(csubst1 (minus i n) v e1 e2)) (\lambda (e2: C).(getl n c2 e2))))))))))) \def \lambda (i: nat).(\lambda (n: nat).(\lambda (H: (lt n i)).(\lambda (c1: -C).(\lambda (c2: C).(\lambda (v: T).(\lambda (H0: (csubst1 i v c1 -c2)).(csubst1_ind i v c1 (\lambda (c: C).(\forall (e1: C).((getl n c1 e1) \to -(ex2 C (\lambda (e2: C).(csubst1 (minus i n) v e1 e2)) (\lambda (e2: C).(getl -n c e2)))))) (\lambda (e1: C).(\lambda (H1: (getl n c1 e1)).(eq_ind_r nat (S -(minus i (S n))) (\lambda (n0: nat).(ex2 C (\lambda (e2: C).(csubst1 n0 v e1 -e2)) (\lambda (e2: C).(getl n c1 e2)))) (ex_intro2 C (\lambda (e2: -C).(csubst1 (S (minus i (S n))) v e1 e2)) (\lambda (e2: C).(getl n c1 e2)) e1 -(csubst1_refl (S (minus i (S n))) v e1) H1) (minus i n) (minus_x_Sy i n H)))) -(\lambda (c3: C).(\lambda (H1: (csubst0 i v c1 c3)).(\lambda (e1: C).(\lambda -(H2: (getl n c1 e1)).(eq_ind_r nat (S (minus i (S n))) (\lambda (n0: -nat).(ex2 C (\lambda (e2: C).(csubst1 n0 v e1 e2)) (\lambda (e2: C).(getl n -c3 e2)))) (let H3 \def (csubst0_getl_lt i n H c1 c3 v H1 e1 H2) in (or4_ind -(getl n c3 e1) (ex3_4 B C T T (\lambda (b: B).(\lambda (e0: C).(\lambda (u: -T).(\lambda (_: T).(eq C e1 (CHead e0 (Bind b) u)))))) (\lambda (b: -B).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(getl n c3 (CHead e0 -(Bind b) w)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u: T).(\lambda (w: -T).(subst0 (minus i (S n)) v u w)))))) (ex3_4 B C C T (\lambda (b: -B).(\lambda (e2: C).(\lambda (_: C).(\lambda (u: T).(eq C e1 (CHead e2 (Bind -b) u)))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e3: C).(\lambda (u: -T).(getl n c3 (CHead e3 (Bind b) u)))))) (\lambda (_: B).(\lambda (e2: -C).(\lambda (e3: C).(\lambda (_: T).(csubst0 (minus i (S n)) v e2 e3)))))) -(ex4_5 B C C T T (\lambda (b: B).(\lambda (e2: C).(\lambda (_: C).(\lambda -(u: T).(\lambda (_: T).(eq C e1 (CHead e2 (Bind b) u))))))) (\lambda (b: -B).(\lambda (_: C).(\lambda (e3: C).(\lambda (_: T).(\lambda (w: T).(getl n -c3 (CHead e3 (Bind b) w))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: -C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus i (S n)) v u w)))))) -(\lambda (_: B).(\lambda (e2: C).(\lambda (e3: C).(\lambda (_: T).(\lambda -(_: T).(csubst0 (minus i (S n)) v e2 e3))))))) (ex2 C (\lambda (e2: -C).(csubst1 (S (minus i (S n))) v e1 e2)) (\lambda (e2: C).(getl n c3 e2))) -(\lambda (H4: (getl n c3 e1)).(ex_intro2 C (\lambda (e2: C).(csubst1 (S -(minus i (S n))) v e1 e2)) (\lambda (e2: C).(getl n c3 e2)) e1 (csubst1_refl -(S (minus i (S n))) v e1) H4)) (\lambda (H4: (ex3_4 B C T T (\lambda (b: -B).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(eq C e1 (CHead e0 (Bind -b) u)))))) (\lambda (b: B).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: -T).(getl n c3 (CHead e0 (Bind b) w)))))) (\lambda (_: B).(\lambda (_: -C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus i (S n)) v u -w))))))).(ex3_4_ind B C T T (\lambda (b: B).(\lambda (e0: C).(\lambda (u: -T).(\lambda (_: T).(eq C e1 (CHead e0 (Bind b) u)))))) (\lambda (b: -B).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(getl n c3 (CHead e0 -(Bind b) w)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u: T).(\lambda (w: -T).(subst0 (minus i (S n)) v u w))))) (ex2 C (\lambda (e2: C).(csubst1 (S -(minus i (S n))) v e1 e2)) (\lambda (e2: C).(getl n c3 e2))) (\lambda (x0: -B).(\lambda (x1: C).(\lambda (x2: T).(\lambda (x3: T).(\lambda (H5: (eq C e1 -(CHead x1 (Bind x0) x2))).(\lambda (H6: (getl n c3 (CHead x1 (Bind x0) -x3))).(\lambda (H7: (subst0 (minus i (S n)) v x2 x3)).(eq_ind_r C (CHead x1 -(Bind x0) x2) (\lambda (c: C).(ex2 C (\lambda (e2: C).(csubst1 (S (minus i (S -n))) v c e2)) (\lambda (e2: C).(getl n c3 e2)))) (ex_intro2 C (\lambda (e2: -C).(csubst1 (S (minus i (S n))) v (CHead x1 (Bind x0) x2) e2)) (\lambda (e2: -C).(getl n c3 e2)) (CHead x1 (Bind x0) x3) (csubst1_sing (S (minus i (S n))) -v (CHead x1 (Bind x0) x2) (CHead x1 (Bind x0) x3) (csubst0_snd_bind x0 (minus -i (S n)) v x2 x3 H7 x1)) H6) e1 H5)))))))) H4)) (\lambda (H4: (ex3_4 B C C T +C).(\lambda (c2: C).(\lambda (v: T).(\lambda (H0: (csubst1 i v c1 c2)).(let +TMP_4 \def (\lambda (c: C).(\forall (e1: C).((getl n c1 e1) \to (let TMP_2 +\def (\lambda (e2: C).(let TMP_1 \def (minus i n) in (csubst1 TMP_1 v e1 +e2))) in (let TMP_3 \def (\lambda (e2: C).(getl n c e2)) in (ex2 C TMP_2 +TMP_3)))))) in (let TMP_23 \def (\lambda (e1: C).(\lambda (H1: (getl n c1 +e1)).(let TMP_5 \def (S n) in (let TMP_6 \def (minus i TMP_5) in (let TMP_7 +\def (S TMP_6) in (let TMP_10 \def (\lambda (n0: nat).(let TMP_8 \def +(\lambda (e2: C).(csubst1 n0 v e1 e2)) in (let TMP_9 \def (\lambda (e2: +C).(getl n c1 e2)) in (ex2 C TMP_8 TMP_9)))) in (let TMP_14 \def (\lambda +(e2: C).(let TMP_11 \def (S n) in (let TMP_12 \def (minus i TMP_11) in (let +TMP_13 \def (S TMP_12) in (csubst1 TMP_13 v e1 e2))))) in (let TMP_15 \def +(\lambda (e2: C).(getl n c1 e2)) in (let TMP_16 \def (S n) in (let TMP_17 +\def (minus i TMP_16) in (let TMP_18 \def (S TMP_17) in (let TMP_19 \def +(csubst1_refl TMP_18 v e1) in (let TMP_20 \def (ex_intro2 C TMP_14 TMP_15 e1 +TMP_19 H1) in (let TMP_21 \def (minus i n) in (let TMP_22 \def (minus_x_Sy i +n H) in (eq_ind_r nat TMP_7 TMP_10 TMP_20 TMP_21 TMP_22)))))))))))))))) in +(let TMP_224 \def (\lambda (c3: C).(\lambda (H1: (csubst0 i v c1 +c3)).(\lambda (e1: C).(\lambda (H2: (getl n c1 e1)).(let TMP_24 \def (S n) in +(let TMP_25 \def (minus i TMP_24) in (let TMP_26 \def (S TMP_25) in (let +TMP_29 \def (\lambda (n0: nat).(let TMP_27 \def (\lambda (e2: C).(csubst1 n0 +v e1 e2)) in (let TMP_28 \def (\lambda (e2: C).(getl n c3 e2)) in (ex2 C +TMP_27 TMP_28)))) in (let H3 \def (csubst0_getl_lt i n H c1 c3 v H1 e1 H2) in +(let TMP_30 \def (getl n c3 e1) in (let TMP_33 \def (\lambda (b: B).(\lambda +(e0: C).(\lambda (u: T).(\lambda (_: T).(let TMP_31 \def (Bind b) in (let +TMP_32 \def (CHead e0 TMP_31 u) in (eq C e1 TMP_32))))))) in (let TMP_36 \def +(\lambda (b: B).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(let TMP_34 +\def (Bind b) in (let TMP_35 \def (CHead e0 TMP_34 w) in (getl n c3 +TMP_35))))))) in (let TMP_39 \def (\lambda (_: B).(\lambda (_: C).(\lambda +(u: T).(\lambda (w: T).(let TMP_37 \def (S n) in (let TMP_38 \def (minus i +TMP_37) in (subst0 TMP_38 v u w))))))) in (let TMP_40 \def (ex3_4 B C T T +TMP_33 TMP_36 TMP_39) in (let TMP_43 \def (\lambda (b: B).(\lambda (e2: +C).(\lambda (_: C).(\lambda (u: T).(let TMP_41 \def (Bind b) in (let TMP_42 +\def (CHead e2 TMP_41 u) in (eq C e1 TMP_42))))))) in (let TMP_46 \def +(\lambda (b: B).(\lambda (_: C).(\lambda (e3: C).(\lambda (u: T).(let TMP_44 +\def (Bind b) in (let TMP_45 \def (CHead e3 TMP_44 u) in (getl n c3 +TMP_45))))))) in (let TMP_49 \def (\lambda (_: B).(\lambda (e2: C).(\lambda +(e3: C).(\lambda (_: T).(let TMP_47 \def (S n) in (let TMP_48 \def (minus i +TMP_47) in (csubst0 TMP_48 v e2 e3))))))) in (let TMP_50 \def (ex3_4 B C C T +TMP_43 TMP_46 TMP_49) in (let TMP_53 \def (\lambda (b: B).(\lambda (e2: +C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(let TMP_51 \def (Bind b) +in (let TMP_52 \def (CHead e2 TMP_51 u) in (eq C e1 TMP_52)))))))) in (let +TMP_56 \def (\lambda (b: B).(\lambda (_: C).(\lambda (e3: C).(\lambda (_: +T).(\lambda (w: T).(let TMP_54 \def (Bind b) in (let TMP_55 \def (CHead e3 +TMP_54 w) in (getl n c3 TMP_55)))))))) in (let TMP_59 \def (\lambda (_: +B).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(let +TMP_57 \def (S n) in (let TMP_58 \def (minus i TMP_57) in (subst0 TMP_58 v u +w)))))))) in (let TMP_62 \def (\lambda (_: B).(\lambda (e2: C).(\lambda (e3: +C).(\lambda (_: T).(\lambda (_: T).(let TMP_60 \def (S n) in (let TMP_61 \def +(minus i TMP_60) in (csubst0 TMP_61 v e2 e3)))))))) in (let TMP_63 \def +(ex4_5 B C C T T TMP_53 TMP_56 TMP_59 TMP_62) in (let TMP_67 \def (\lambda +(e2: C).(let TMP_64 \def (S n) in (let TMP_65 \def (minus i TMP_64) in (let +TMP_66 \def (S TMP_65) in (csubst1 TMP_66 v e1 e2))))) in (let TMP_68 \def +(\lambda (e2: C).(getl n c3 e2)) in (let TMP_69 \def (ex2 C TMP_67 TMP_68) in +(let TMP_79 \def (\lambda (H4: (getl n c3 e1)).(let TMP_73 \def (\lambda (e2: +C).(let TMP_70 \def (S n) in (let TMP_71 \def (minus i TMP_70) in (let TMP_72 +\def (S TMP_71) in (csubst1 TMP_72 v e1 e2))))) in (let TMP_74 \def (\lambda +(e2: C).(getl n c3 e2)) in (let TMP_75 \def (S n) in (let TMP_76 \def (minus +i TMP_75) in (let TMP_77 \def (S TMP_76) in (let TMP_78 \def (csubst1_refl +TMP_77 v e1) in (ex_intro2 C TMP_73 TMP_74 e1 TMP_78 H4)))))))) in (let +TMP_125 \def (\lambda (H4: (ex3_4 B C T T (\lambda (b: B).(\lambda (e0: +C).(\lambda (u: T).(\lambda (_: T).(eq C e1 (CHead e0 (Bind b) u)))))) +(\lambda (b: B).(\lambda (e0: C).(\lambda (_: T).(\lambda (w: T).(getl n c3 +(CHead e0 (Bind b) w)))))) (\lambda (_: B).(\lambda (_: C).(\lambda (u: +T).(\lambda (w: T).(subst0 (minus i (S n)) v u w))))))).(let TMP_82 \def +(\lambda (b: B).(\lambda (e0: C).(\lambda (u: T).(\lambda (_: T).(let TMP_80 +\def (Bind b) in (let TMP_81 \def (CHead e0 TMP_80 u) in (eq C e1 +TMP_81))))))) in (let TMP_85 \def (\lambda (b: B).(\lambda (e0: C).(\lambda +(_: T).(\lambda (w: T).(let TMP_83 \def (Bind b) in (let TMP_84 \def (CHead +e0 TMP_83 w) in (getl n c3 TMP_84))))))) in (let TMP_88 \def (\lambda (_: +B).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(let TMP_86 \def (S n) in +(let TMP_87 \def (minus i TMP_86) in (subst0 TMP_87 v u w))))))) in (let +TMP_92 \def (\lambda (e2: C).(let TMP_89 \def (S n) in (let TMP_90 \def +(minus i TMP_89) in (let TMP_91 \def (S TMP_90) in (csubst1 TMP_91 v e1 +e2))))) in (let TMP_93 \def (\lambda (e2: C).(getl n c3 e2)) in (let TMP_94 +\def (ex2 C TMP_92 TMP_93) in (let TMP_124 \def (\lambda (x0: B).(\lambda +(x1: C).(\lambda (x2: T).(\lambda (x3: T).(\lambda (H5: (eq C e1 (CHead x1 +(Bind x0) x2))).(\lambda (H6: (getl n c3 (CHead x1 (Bind x0) x3))).(\lambda +(H7: (subst0 (minus i (S n)) v x2 x3)).(let TMP_95 \def (Bind x0) in (let +TMP_96 \def (CHead x1 TMP_95 x2) in (let TMP_102 \def (\lambda (c: C).(let +TMP_100 \def (\lambda (e2: C).(let TMP_97 \def (S n) in (let TMP_98 \def +(minus i TMP_97) in (let TMP_99 \def (S TMP_98) in (csubst1 TMP_99 v c +e2))))) in (let TMP_101 \def (\lambda (e2: C).(getl n c3 e2)) in (ex2 C +TMP_100 TMP_101)))) in (let TMP_108 \def (\lambda (e2: C).(let TMP_103 \def +(S n) in (let TMP_104 \def (minus i TMP_103) in (let TMP_105 \def (S TMP_104) +in (let TMP_106 \def (Bind x0) in (let TMP_107 \def (CHead x1 TMP_106 x2) in +(csubst1 TMP_105 v TMP_107 e2))))))) in (let TMP_109 \def (\lambda (e2: +C).(getl n c3 e2)) in (let TMP_110 \def (Bind x0) in (let TMP_111 \def (CHead +x1 TMP_110 x3) in (let TMP_112 \def (S n) in (let TMP_113 \def (minus i +TMP_112) in (let TMP_114 \def (S TMP_113) in (let TMP_115 \def (Bind x0) in +(let TMP_116 \def (CHead x1 TMP_115 x2) in (let TMP_117 \def (Bind x0) in +(let TMP_118 \def (CHead x1 TMP_117 x3) in (let TMP_119 \def (S n) in (let +TMP_120 \def (minus i TMP_119) in (let TMP_121 \def (csubst0_snd_bind x0 +TMP_120 v x2 x3 H7 x1) in (let TMP_122 \def (csubst1_sing TMP_114 v TMP_116 +TMP_118 TMP_121) in (let TMP_123 \def (ex_intro2 C TMP_108 TMP_109 TMP_111 +TMP_122 H6) in (eq_ind_r C TMP_96 TMP_102 TMP_123 e1 +H5))))))))))))))))))))))))))) in (ex3_4_ind B C T T TMP_82 TMP_85 TMP_88 +TMP_94 TMP_124 H4))))))))) in (let TMP_171 \def (\lambda (H4: (ex3_4 B C C T (\lambda (b: B).(\lambda (e2: C).(\lambda (_: C).(\lambda (u: T).(eq C e1 (CHead e2 (Bind b) u)))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e3: C).(\lambda (u: T).(getl n c3 (CHead e3 (Bind b) u)))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (e3: C).(\lambda (_: T).(csubst0 (minus i (S n)) -v e2 e3))))))).(ex3_4_ind B C C T (\lambda (b: B).(\lambda (e2: C).(\lambda -(_: C).(\lambda (u: T).(eq C e1 (CHead e2 (Bind b) u)))))) (\lambda (b: -B).(\lambda (_: C).(\lambda (e3: C).(\lambda (u: T).(getl n c3 (CHead e3 -(Bind b) u)))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (e3: C).(\lambda -(_: T).(csubst0 (minus i (S n)) v e2 e3))))) (ex2 C (\lambda (e2: C).(csubst1 -(S (minus i (S n))) v e1 e2)) (\lambda (e2: C).(getl n c3 e2))) (\lambda (x0: -B).(\lambda (x1: C).(\lambda (x2: C).(\lambda (x3: T).(\lambda (H5: (eq C e1 -(CHead x1 (Bind x0) x3))).(\lambda (H6: (getl n c3 (CHead x2 (Bind x0) -x3))).(\lambda (H7: (csubst0 (minus i (S n)) v x1 x2)).(eq_ind_r C (CHead x1 -(Bind x0) x3) (\lambda (c: C).(ex2 C (\lambda (e2: C).(csubst1 (S (minus i (S -n))) v c e2)) (\lambda (e2: C).(getl n c3 e2)))) (ex_intro2 C (\lambda (e2: -C).(csubst1 (S (minus i (S n))) v (CHead x1 (Bind x0) x3) e2)) (\lambda (e2: -C).(getl n c3 e2)) (CHead x2 (Bind x0) x3) (csubst1_sing (S (minus i (S n))) -v (CHead x1 (Bind x0) x3) (CHead x2 (Bind x0) x3) (csubst0_fst_bind x0 (minus -i (S n)) x1 x2 v H7 x3)) H6) e1 H5)))))))) H4)) (\lambda (H4: (ex4_5 B C C T -T (\lambda (b: B).(\lambda (e2: C).(\lambda (_: C).(\lambda (u: T).(\lambda -(_: T).(eq C e1 (CHead e2 (Bind b) u))))))) (\lambda (b: B).(\lambda (_: -C).(\lambda (e3: C).(\lambda (_: T).(\lambda (w: T).(getl n c3 (CHead e3 -(Bind b) w))))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda -(u: T).(\lambda (w: T).(subst0 (minus i (S n)) v u w)))))) (\lambda (_: -B).(\lambda (e2: C).(\lambda (e3: C).(\lambda (_: T).(\lambda (_: T).(csubst0 -(minus i (S n)) v e2 e3)))))))).(ex4_5_ind B C C T T (\lambda (b: B).(\lambda -(e2: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq C e1 (CHead e2 -(Bind b) u))))))) (\lambda (b: B).(\lambda (_: C).(\lambda (e3: C).(\lambda -(_: T).(\lambda (w: T).(getl n c3 (CHead e3 (Bind b) w))))))) (\lambda (_: -B).(\lambda (_: C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 -(minus i (S n)) v u w)))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (e3: -C).(\lambda (_: T).(\lambda (_: T).(csubst0 (minus i (S n)) v e2 e3)))))) -(ex2 C (\lambda (e2: C).(csubst1 (S (minus i (S n))) v e1 e2)) (\lambda (e2: -C).(getl n c3 e2))) (\lambda (x0: B).(\lambda (x1: C).(\lambda (x2: -C).(\lambda (x3: T).(\lambda (x4: T).(\lambda (H5: (eq C e1 (CHead x1 (Bind -x0) x3))).(\lambda (H6: (getl n c3 (CHead x2 (Bind x0) x4))).(\lambda (H7: -(subst0 (minus i (S n)) v x3 x4)).(\lambda (H8: (csubst0 (minus i (S n)) v x1 -x2)).(eq_ind_r C (CHead x1 (Bind x0) x3) (\lambda (c: C).(ex2 C (\lambda (e2: -C).(csubst1 (S (minus i (S n))) v c e2)) (\lambda (e2: C).(getl n c3 e2)))) -(ex_intro2 C (\lambda (e2: C).(csubst1 (S (minus i (S n))) v (CHead x1 (Bind -x0) x3) e2)) (\lambda (e2: C).(getl n c3 e2)) (CHead x2 (Bind x0) x4) -(csubst1_sing (S (minus i (S n))) v (CHead x1 (Bind x0) x3) (CHead x2 (Bind -x0) x4) (csubst0_both_bind x0 (minus i (S n)) v x3 x4 H7 x1 x2 H8)) H6) e1 -H5)))))))))) H4)) H3)) (minus i n) (minus_x_Sy i n H)))))) c2 H0))))))). -(* COMMENTS -Initial nodes: 2035 -END *) +v e2 e3))))))).(let TMP_128 \def (\lambda (b: B).(\lambda (e2: C).(\lambda +(_: C).(\lambda (u: T).(let TMP_126 \def (Bind b) in (let TMP_127 \def (CHead +e2 TMP_126 u) in (eq C e1 TMP_127))))))) in (let TMP_131 \def (\lambda (b: +B).(\lambda (_: C).(\lambda (e3: C).(\lambda (u: T).(let TMP_129 \def (Bind +b) in (let TMP_130 \def (CHead e3 TMP_129 u) in (getl n c3 TMP_130))))))) in +(let TMP_134 \def (\lambda (_: B).(\lambda (e2: C).(\lambda (e3: C).(\lambda +(_: T).(let TMP_132 \def (S n) in (let TMP_133 \def (minus i TMP_132) in +(csubst0 TMP_133 v e2 e3))))))) in (let TMP_138 \def (\lambda (e2: C).(let +TMP_135 \def (S n) in (let TMP_136 \def (minus i TMP_135) in (let TMP_137 +\def (S TMP_136) in (csubst1 TMP_137 v e1 e2))))) in (let TMP_139 \def +(\lambda (e2: C).(getl n c3 e2)) in (let TMP_140 \def (ex2 C TMP_138 TMP_139) +in (let TMP_170 \def (\lambda (x0: B).(\lambda (x1: C).(\lambda (x2: +C).(\lambda (x3: T).(\lambda (H5: (eq C e1 (CHead x1 (Bind x0) x3))).(\lambda +(H6: (getl n c3 (CHead x2 (Bind x0) x3))).(\lambda (H7: (csubst0 (minus i (S +n)) v x1 x2)).(let TMP_141 \def (Bind x0) in (let TMP_142 \def (CHead x1 +TMP_141 x3) in (let TMP_148 \def (\lambda (c: C).(let TMP_146 \def (\lambda +(e2: C).(let TMP_143 \def (S n) in (let TMP_144 \def (minus i TMP_143) in +(let TMP_145 \def (S TMP_144) in (csubst1 TMP_145 v c e2))))) in (let TMP_147 +\def (\lambda (e2: C).(getl n c3 e2)) in (ex2 C TMP_146 TMP_147)))) in (let +TMP_154 \def (\lambda (e2: C).(let TMP_149 \def (S n) in (let TMP_150 \def +(minus i TMP_149) in (let TMP_151 \def (S TMP_150) in (let TMP_152 \def (Bind +x0) in (let TMP_153 \def (CHead x1 TMP_152 x3) in (csubst1 TMP_151 v TMP_153 +e2))))))) in (let TMP_155 \def (\lambda (e2: C).(getl n c3 e2)) in (let +TMP_156 \def (Bind x0) in (let TMP_157 \def (CHead x2 TMP_156 x3) in (let +TMP_158 \def (S n) in (let TMP_159 \def (minus i TMP_158) in (let TMP_160 +\def (S TMP_159) in (let TMP_161 \def (Bind x0) in (let TMP_162 \def (CHead +x1 TMP_161 x3) in (let TMP_163 \def (Bind x0) in (let TMP_164 \def (CHead x2 +TMP_163 x3) in (let TMP_165 \def (S n) in (let TMP_166 \def (minus i TMP_165) +in (let TMP_167 \def (csubst0_fst_bind x0 TMP_166 x1 x2 v H7 x3) in (let +TMP_168 \def (csubst1_sing TMP_160 v TMP_162 TMP_164 TMP_167) in (let TMP_169 +\def (ex_intro2 C TMP_154 TMP_155 TMP_157 TMP_168 H6) in (eq_ind_r C TMP_142 +TMP_148 TMP_169 e1 H5))))))))))))))))))))))))))) in (ex3_4_ind B C C T +TMP_128 TMP_131 TMP_134 TMP_140 TMP_170 H4))))))))) in (let TMP_220 \def +(\lambda (H4: (ex4_5 B C C T T (\lambda (b: B).(\lambda (e2: C).(\lambda (_: +C).(\lambda (u: T).(\lambda (_: T).(eq C e1 (CHead e2 (Bind b) u))))))) +(\lambda (b: B).(\lambda (_: C).(\lambda (e3: C).(\lambda (_: T).(\lambda (w: +T).(getl n c3 (CHead e3 (Bind b) w))))))) (\lambda (_: B).(\lambda (_: +C).(\lambda (_: C).(\lambda (u: T).(\lambda (w: T).(subst0 (minus i (S n)) v +u w)))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (e3: C).(\lambda (_: +T).(\lambda (_: T).(csubst0 (minus i (S n)) v e2 e3)))))))).(let TMP_174 \def +(\lambda (b: B).(\lambda (e2: C).(\lambda (_: C).(\lambda (u: T).(\lambda (_: +T).(let TMP_172 \def (Bind b) in (let TMP_173 \def (CHead e2 TMP_172 u) in +(eq C e1 TMP_173)))))))) in (let TMP_177 \def (\lambda (b: B).(\lambda (_: +C).(\lambda (e3: C).(\lambda (_: T).(\lambda (w: T).(let TMP_175 \def (Bind +b) in (let TMP_176 \def (CHead e3 TMP_175 w) in (getl n c3 TMP_176)))))))) in +(let TMP_180 \def (\lambda (_: B).(\lambda (_: C).(\lambda (_: C).(\lambda +(u: T).(\lambda (w: T).(let TMP_178 \def (S n) in (let TMP_179 \def (minus i +TMP_178) in (subst0 TMP_179 v u w)))))))) in (let TMP_183 \def (\lambda (_: +B).(\lambda (e2: C).(\lambda (e3: C).(\lambda (_: T).(\lambda (_: T).(let +TMP_181 \def (S n) in (let TMP_182 \def (minus i TMP_181) in (csubst0 TMP_182 +v e2 e3)))))))) in (let TMP_187 \def (\lambda (e2: C).(let TMP_184 \def (S n) +in (let TMP_185 \def (minus i TMP_184) in (let TMP_186 \def (S TMP_185) in +(csubst1 TMP_186 v e1 e2))))) in (let TMP_188 \def (\lambda (e2: C).(getl n +c3 e2)) in (let TMP_189 \def (ex2 C TMP_187 TMP_188) in (let TMP_219 \def +(\lambda (x0: B).(\lambda (x1: C).(\lambda (x2: C).(\lambda (x3: T).(\lambda +(x4: T).(\lambda (H5: (eq C e1 (CHead x1 (Bind x0) x3))).(\lambda (H6: (getl +n c3 (CHead x2 (Bind x0) x4))).(\lambda (H7: (subst0 (minus i (S n)) v x3 +x4)).(\lambda (H8: (csubst0 (minus i (S n)) v x1 x2)).(let TMP_190 \def (Bind +x0) in (let TMP_191 \def (CHead x1 TMP_190 x3) in (let TMP_197 \def (\lambda +(c: C).(let TMP_195 \def (\lambda (e2: C).(let TMP_192 \def (S n) in (let +TMP_193 \def (minus i TMP_192) in (let TMP_194 \def (S TMP_193) in (csubst1 +TMP_194 v c e2))))) in (let TMP_196 \def (\lambda (e2: C).(getl n c3 e2)) in +(ex2 C TMP_195 TMP_196)))) in (let TMP_203 \def (\lambda (e2: C).(let TMP_198 +\def (S n) in (let TMP_199 \def (minus i TMP_198) in (let TMP_200 \def (S +TMP_199) in (let TMP_201 \def (Bind x0) in (let TMP_202 \def (CHead x1 +TMP_201 x3) in (csubst1 TMP_200 v TMP_202 e2))))))) in (let TMP_204 \def +(\lambda (e2: C).(getl n c3 e2)) in (let TMP_205 \def (Bind x0) in (let +TMP_206 \def (CHead x2 TMP_205 x4) in (let TMP_207 \def (S n) in (let TMP_208 +\def (minus i TMP_207) in (let TMP_209 \def (S TMP_208) in (let TMP_210 \def +(Bind x0) in (let TMP_211 \def (CHead x1 TMP_210 x3) in (let TMP_212 \def +(Bind x0) in (let TMP_213 \def (CHead x2 TMP_212 x4) in (let TMP_214 \def (S +n) in (let TMP_215 \def (minus i TMP_214) in (let TMP_216 \def +(csubst0_both_bind x0 TMP_215 v x3 x4 H7 x1 x2 H8) in (let TMP_217 \def +(csubst1_sing TMP_209 v TMP_211 TMP_213 TMP_216) in (let TMP_218 \def +(ex_intro2 C TMP_203 TMP_204 TMP_206 TMP_217 H6) in (eq_ind_r C TMP_191 +TMP_197 TMP_218 e1 H5))))))))))))))))))))))))))))) in (ex4_5_ind B C C T T +TMP_174 TMP_177 TMP_180 TMP_183 TMP_189 TMP_219 H4)))))))))) in (let TMP_221 +\def (or4_ind TMP_30 TMP_40 TMP_50 TMP_63 TMP_69 TMP_79 TMP_125 TMP_171 +TMP_220 H3) in (let TMP_222 \def (minus i n) in (let TMP_223 \def (minus_x_Sy +i n H) in (eq_ind_r nat TMP_26 TMP_29 TMP_221 TMP_222 +TMP_223)))))))))))))))))))))))))))))))))) in (csubst1_ind i v c1 TMP_4 TMP_23 +TMP_224 c2 H0)))))))))). theorem csubst1_getl_ge_back: \forall (i: nat).(\forall (n: nat).((le i n) \to (\forall (c1: C).(\forall @@ -149,14 +232,12 @@ theorem csubst1_getl_ge_back: e) \to (getl n c1 e))))))))) \def \lambda (i: nat).(\lambda (n: nat).(\lambda (H: (le i n)).(\lambda (c1: -C).(\lambda (c2: C).(\lambda (v: T).(\lambda (H0: (csubst1 i v c1 -c2)).(csubst1_ind i v c1 (\lambda (c: C).(\forall (e: C).((getl n c e) \to -(getl n c1 e)))) (\lambda (e: C).(\lambda (H1: (getl n c1 e)).H1)) (\lambda -(c3: C).(\lambda (H1: (csubst0 i v c1 c3)).(\lambda (e: C).(\lambda (H2: -(getl n c3 e)).(csubst0_getl_ge_back i n H c1 c3 v H1 e H2))))) c2 H0))))))). -(* COMMENTS -Initial nodes: 111 -END *) +C).(\lambda (c2: C).(\lambda (v: T).(\lambda (H0: (csubst1 i v c1 c2)).(let +TMP_1 \def (\lambda (c: C).(\forall (e: C).((getl n c e) \to (getl n c1 e)))) +in (let TMP_2 \def (\lambda (e: C).(\lambda (H1: (getl n c1 e)).H1)) in (let +TMP_3 \def (\lambda (c3: C).(\lambda (H1: (csubst0 i v c1 c3)).(\lambda (e: +C).(\lambda (H2: (getl n c3 e)).(csubst0_getl_ge_back i n H c1 c3 v H1 e +H2))))) in (csubst1_ind i v c1 TMP_1 TMP_2 TMP_3 c2 H0)))))))))). theorem getl_csubst1: \forall (d: nat).(\forall (c: C).(\forall (e: C).(\forall (u: T).((getl d c @@ -164,120 +245,219 @@ theorem getl_csubst1: C).(csubst1 d u c a0))) (\lambda (a0: C).(\lambda (a: C).(drop (S O) d a0 a)))))))) \def - \lambda (d: nat).(nat_ind (\lambda (n: nat).(\forall (c: C).(\forall (e: -C).(\forall (u: T).((getl n c (CHead e (Bind Abbr) u)) \to (ex2_2 C C -(\lambda (a0: C).(\lambda (_: C).(csubst1 n u c a0))) (\lambda (a0: -C).(\lambda (a: C).(drop (S O) n a0 a))))))))) (\lambda (c: C).(C_ind -(\lambda (c0: C).(\forall (e: C).(\forall (u: T).((getl O c0 (CHead e (Bind -Abbr) u)) \to (ex2_2 C C (\lambda (a0: C).(\lambda (_: C).(csubst1 O u c0 -a0))) (\lambda (a0: C).(\lambda (a: C).(drop (S O) O a0 a)))))))) (\lambda -(n: nat).(\lambda (e: C).(\lambda (u: T).(\lambda (H: (getl O (CSort n) -(CHead e (Bind Abbr) u))).(getl_gen_sort n O (CHead e (Bind Abbr) u) H (ex2_2 -C C (\lambda (a0: C).(\lambda (_: C).(csubst1 O u (CSort n) a0))) (\lambda -(a0: C).(\lambda (a: C).(drop (S O) O a0 a))))))))) (\lambda (c0: C).(\lambda -(H: ((\forall (e: C).(\forall (u: T).((getl O c0 (CHead e (Bind Abbr) u)) \to -(ex2_2 C C (\lambda (a0: C).(\lambda (_: C).(csubst1 O u c0 a0))) (\lambda -(a0: C).(\lambda (a: C).(drop (S O) O a0 a))))))))).(\lambda (k: K).(K_ind -(\lambda (k0: K).(\forall (t: T).(\forall (e: C).(\forall (u: T).((getl O -(CHead c0 k0 t) (CHead e (Bind Abbr) u)) \to (ex2_2 C C (\lambda (a0: -C).(\lambda (_: C).(csubst1 O u (CHead c0 k0 t) a0))) (\lambda (a0: -C).(\lambda (a: C).(drop (S O) O a0 a))))))))) (\lambda (b: B).(\lambda (t: -T).(\lambda (e: C).(\lambda (u: T).(\lambda (H0: (getl O (CHead c0 (Bind b) -t) (CHead e (Bind Abbr) u))).(let H1 \def (f_equal C C (\lambda (e0: -C).(match e0 in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow e | -(CHead c1 _ _) \Rightarrow c1])) (CHead e (Bind Abbr) u) (CHead c0 (Bind b) -t) (clear_gen_bind b c0 (CHead e (Bind Abbr) u) t (getl_gen_O (CHead c0 (Bind -b) t) (CHead e (Bind Abbr) u) H0))) in ((let H2 \def (f_equal C B (\lambda -(e0: C).(match e0 in C return (\lambda (_: C).B) with [(CSort _) \Rightarrow -Abbr | (CHead _ k0 _) \Rightarrow (match k0 in K return (\lambda (_: K).B) -with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow Abbr])])) (CHead e -(Bind Abbr) u) (CHead c0 (Bind b) t) (clear_gen_bind b c0 (CHead e (Bind -Abbr) u) t (getl_gen_O (CHead c0 (Bind b) t) (CHead e (Bind Abbr) u) H0))) in -((let H3 \def (f_equal C T (\lambda (e0: C).(match e0 in C return (\lambda -(_: C).T) with [(CSort _) \Rightarrow u | (CHead _ _ t0) \Rightarrow t0])) -(CHead e (Bind Abbr) u) (CHead c0 (Bind b) t) (clear_gen_bind b c0 (CHead e -(Bind Abbr) u) t (getl_gen_O (CHead c0 (Bind b) t) (CHead e (Bind Abbr) u) -H0))) in (\lambda (H4: (eq B Abbr b)).(\lambda (_: (eq C e c0)).(eq_ind_r T t -(\lambda (t0: T).(ex2_2 C C (\lambda (a0: C).(\lambda (_: C).(csubst1 O t0 -(CHead c0 (Bind b) t) a0))) (\lambda (a0: C).(\lambda (a: C).(drop (S O) O a0 -a))))) (eq_ind B Abbr (\lambda (b0: B).(ex2_2 C C (\lambda (a0: C).(\lambda -(_: C).(csubst1 O t (CHead c0 (Bind b0) t) a0))) (\lambda (a0: C).(\lambda -(a: C).(drop (S O) O a0 a))))) (ex2_2_intro C C (\lambda (a0: C).(\lambda (_: -C).(csubst1 O t (CHead c0 (Bind Abbr) t) a0))) (\lambda (a0: C).(\lambda (a: -C).(drop (S O) O a0 a))) (CHead c0 (Bind Abbr) t) c0 (csubst1_refl O t (CHead -c0 (Bind Abbr) t)) (drop_drop (Bind Abbr) O c0 c0 (drop_refl c0) t)) b H4) u -H3)))) H2)) H1))))))) (\lambda (f: F).(\lambda (t: T).(\lambda (e: -C).(\lambda (u: T).(\lambda (H0: (getl O (CHead c0 (Flat f) t) (CHead e (Bind -Abbr) u))).(let H_x \def (subst1_ex u t O) in (let H1 \def H_x in (ex_ind T -(\lambda (t2: T).(subst1 O u t (lift (S O) O t2))) (ex2_2 C C (\lambda (a0: -C).(\lambda (_: C).(csubst1 O u (CHead c0 (Flat f) t) a0))) (\lambda (a0: -C).(\lambda (a: C).(drop (S O) O a0 a)))) (\lambda (x: T).(\lambda (H2: -(subst1 O u t (lift (S O) O x))).(let H3 \def (H e u (getl_intro O c0 (CHead -e (Bind Abbr) u) c0 (drop_refl c0) (clear_gen_flat f c0 (CHead e (Bind Abbr) -u) t (getl_gen_O (CHead c0 (Flat f) t) (CHead e (Bind Abbr) u) H0)))) in -(ex2_2_ind C C (\lambda (a0: C).(\lambda (_: C).(csubst1 O u c0 a0))) -(\lambda (a0: C).(\lambda (a: C).(drop (S O) O a0 a))) (ex2_2 C C (\lambda -(a0: C).(\lambda (_: C).(csubst1 O u (CHead c0 (Flat f) t) a0))) (\lambda -(a0: C).(\lambda (a: C).(drop (S O) O a0 a)))) (\lambda (x0: C).(\lambda (x1: -C).(\lambda (H4: (csubst1 O u c0 x0)).(\lambda (H5: (drop (S O) O x0 -x1)).(ex2_2_intro C C (\lambda (a0: C).(\lambda (_: C).(csubst1 O u (CHead c0 -(Flat f) t) a0))) (\lambda (a0: C).(\lambda (a: C).(drop (S O) O a0 a))) -(CHead x0 (Flat f) (lift (S O) O x)) x1 (csubst1_flat f O u t (lift (S O) O -x) H2 c0 x0 H4) (drop_drop (Flat f) O x0 x1 H5 (lift (S O) O x))))))) H3)))) -H1)))))))) k)))) c)) (\lambda (n: nat).(\lambda (H: ((\forall (c: C).(\forall -(e: C).(\forall (u: T).((getl n c (CHead e (Bind Abbr) u)) \to (ex2_2 C C -(\lambda (a0: C).(\lambda (_: C).(csubst1 n u c a0))) (\lambda (a0: -C).(\lambda (a: C).(drop (S O) n a0 a)))))))))).(\lambda (c: C).(C_ind -(\lambda (c0: C).(\forall (e: C).(\forall (u: T).((getl (S n) c0 (CHead e -(Bind Abbr) u)) \to (ex2_2 C C (\lambda (a0: C).(\lambda (_: C).(csubst1 (S -n) u c0 a0))) (\lambda (a0: C).(\lambda (a: C).(drop (S O) (S n) a0 a)))))))) + \lambda (d: nat).(let TMP_4 \def (\lambda (n: nat).(\forall (c: C).(\forall +(e: C).(\forall (u: T).((getl n c (CHead e (Bind Abbr) u)) \to (let TMP_1 +\def (\lambda (a0: C).(\lambda (_: C).(csubst1 n u c a0))) in (let TMP_3 \def +(\lambda (a0: C).(\lambda (a: C).(let TMP_2 \def (S O) in (drop TMP_2 n a0 +a)))) in (ex2_2 C C TMP_1 TMP_3)))))))) in (let TMP_141 \def (\lambda (c: +C).(let TMP_8 \def (\lambda (c0: C).(\forall (e: C).(\forall (u: T).((getl O +c0 (CHead e (Bind Abbr) u)) \to (let TMP_5 \def (\lambda (a0: C).(\lambda (_: +C).(csubst1 O u c0 a0))) in (let TMP_7 \def (\lambda (a0: C).(\lambda (a: +C).(let TMP_6 \def (S O) in (drop TMP_6 O a0 a)))) in (ex2_2 C C TMP_5 +TMP_7))))))) in (let TMP_16 \def (\lambda (n: nat).(\lambda (e: C).(\lambda +(u: T).(\lambda (H: (getl O (CSort n) (CHead e (Bind Abbr) u))).(let TMP_9 +\def (Bind Abbr) in (let TMP_10 \def (CHead e TMP_9 u) in (let TMP_12 \def +(\lambda (a0: C).(\lambda (_: C).(let TMP_11 \def (CSort n) in (csubst1 O u +TMP_11 a0)))) in (let TMP_14 \def (\lambda (a0: C).(\lambda (a: C).(let +TMP_13 \def (S O) in (drop TMP_13 O a0 a)))) in (let TMP_15 \def (ex2_2 C C +TMP_12 TMP_14) in (getl_gen_sort n O TMP_10 H TMP_15)))))))))) in (let +TMP_140 \def (\lambda (c0: C).(\lambda (H: ((\forall (e: C).(\forall (u: +T).((getl O c0 (CHead e (Bind Abbr) u)) \to (ex2_2 C C (\lambda (a0: +C).(\lambda (_: C).(csubst1 O u c0 a0))) (\lambda (a0: C).(\lambda (a: +C).(drop (S O) O a0 a))))))))).(\lambda (k: K).(let TMP_21 \def (\lambda (k0: +K).(\forall (t: T).(\forall (e: C).(\forall (u: T).((getl O (CHead c0 k0 t) +(CHead e (Bind Abbr) u)) \to (let TMP_18 \def (\lambda (a0: C).(\lambda (_: +C).(let TMP_17 \def (CHead c0 k0 t) in (csubst1 O u TMP_17 a0)))) in (let +TMP_20 \def (\lambda (a0: C).(\lambda (a: C).(let TMP_19 \def (S O) in (drop +TMP_19 O a0 a)))) in (ex2_2 C C TMP_18 TMP_20)))))))) in (let TMP_90 \def +(\lambda (b: B).(\lambda (t: T).(\lambda (e: C).(\lambda (u: T).(\lambda (H0: +(getl O (CHead c0 (Bind b) t) (CHead e (Bind Abbr) u))).(let TMP_22 \def +(\lambda (e0: C).(match e0 with [(CSort _) \Rightarrow e | (CHead c1 _ _) +\Rightarrow c1])) in (let TMP_23 \def (Bind Abbr) in (let TMP_24 \def (CHead +e TMP_23 u) in (let TMP_25 \def (Bind b) in (let TMP_26 \def (CHead c0 TMP_25 +t) in (let TMP_27 \def (Bind Abbr) in (let TMP_28 \def (CHead e TMP_27 u) in +(let TMP_29 \def (Bind b) in (let TMP_30 \def (CHead c0 TMP_29 t) in (let +TMP_31 \def (Bind Abbr) in (let TMP_32 \def (CHead e TMP_31 u) in (let TMP_33 +\def (getl_gen_O TMP_30 TMP_32 H0) in (let TMP_34 \def (clear_gen_bind b c0 +TMP_28 t TMP_33) in (let H1 \def (f_equal C C TMP_22 TMP_24 TMP_26 TMP_34) in +(let TMP_35 \def (\lambda (e0: C).(match e0 with [(CSort _) \Rightarrow Abbr +| (CHead _ k0 _) \Rightarrow (match k0 with [(Bind b0) \Rightarrow b0 | (Flat +_) \Rightarrow Abbr])])) in (let TMP_36 \def (Bind Abbr) in (let TMP_37 \def +(CHead e TMP_36 u) in (let TMP_38 \def (Bind b) in (let TMP_39 \def (CHead c0 +TMP_38 t) in (let TMP_40 \def (Bind Abbr) in (let TMP_41 \def (CHead e TMP_40 +u) in (let TMP_42 \def (Bind b) in (let TMP_43 \def (CHead c0 TMP_42 t) in +(let TMP_44 \def (Bind Abbr) in (let TMP_45 \def (CHead e TMP_44 u) in (let +TMP_46 \def (getl_gen_O TMP_43 TMP_45 H0) in (let TMP_47 \def (clear_gen_bind +b c0 TMP_41 t TMP_46) in (let H2 \def (f_equal C B TMP_35 TMP_37 TMP_39 +TMP_47) in (let TMP_48 \def (\lambda (e0: C).(match e0 with [(CSort _) +\Rightarrow u | (CHead _ _ t0) \Rightarrow t0])) in (let TMP_49 \def (Bind +Abbr) in (let TMP_50 \def (CHead e TMP_49 u) in (let TMP_51 \def (Bind b) in +(let TMP_52 \def (CHead c0 TMP_51 t) in (let TMP_53 \def (Bind Abbr) in (let +TMP_54 \def (CHead e TMP_53 u) in (let TMP_55 \def (Bind b) in (let TMP_56 +\def (CHead c0 TMP_55 t) in (let TMP_57 \def (Bind Abbr) in (let TMP_58 \def +(CHead e TMP_57 u) in (let TMP_59 \def (getl_gen_O TMP_56 TMP_58 H0) in (let +TMP_60 \def (clear_gen_bind b c0 TMP_54 t TMP_59) in (let H3 \def (f_equal C +T TMP_48 TMP_50 TMP_52 TMP_60) in (let TMP_88 \def (\lambda (H4: (eq B Abbr +b)).(\lambda (_: (eq C e c0)).(let TMP_66 \def (\lambda (t0: T).(let TMP_63 +\def (\lambda (a0: C).(\lambda (_: C).(let TMP_61 \def (Bind b) in (let +TMP_62 \def (CHead c0 TMP_61 t) in (csubst1 O t0 TMP_62 a0))))) in (let +TMP_65 \def (\lambda (a0: C).(\lambda (a: C).(let TMP_64 \def (S O) in (drop +TMP_64 O a0 a)))) in (ex2_2 C C TMP_63 TMP_65)))) in (let TMP_72 \def +(\lambda (b0: B).(let TMP_69 \def (\lambda (a0: C).(\lambda (_: C).(let +TMP_67 \def (Bind b0) in (let TMP_68 \def (CHead c0 TMP_67 t) in (csubst1 O t +TMP_68 a0))))) in (let TMP_71 \def (\lambda (a0: C).(\lambda (a: C).(let +TMP_70 \def (S O) in (drop TMP_70 O a0 a)))) in (ex2_2 C C TMP_69 TMP_71)))) +in (let TMP_75 \def (\lambda (a0: C).(\lambda (_: C).(let TMP_73 \def (Bind +Abbr) in (let TMP_74 \def (CHead c0 TMP_73 t) in (csubst1 O t TMP_74 a0))))) +in (let TMP_77 \def (\lambda (a0: C).(\lambda (a: C).(let TMP_76 \def (S O) +in (drop TMP_76 O a0 a)))) in (let TMP_78 \def (Bind Abbr) in (let TMP_79 +\def (CHead c0 TMP_78 t) in (let TMP_80 \def (Bind Abbr) in (let TMP_81 \def +(CHead c0 TMP_80 t) in (let TMP_82 \def (csubst1_refl O t TMP_81) in (let +TMP_83 \def (Bind Abbr) in (let TMP_84 \def (drop_refl c0) in (let TMP_85 +\def (drop_drop TMP_83 O c0 c0 TMP_84 t) in (let TMP_86 \def (ex2_2_intro C C +TMP_75 TMP_77 TMP_79 c0 TMP_82 TMP_85) in (let TMP_87 \def (eq_ind B Abbr +TMP_72 TMP_86 b H4) in (eq_ind_r T t TMP_66 TMP_87 u H3))))))))))))))))) in +(let TMP_89 \def (TMP_88 H2) in (TMP_89 +H1)))))))))))))))))))))))))))))))))))))))))))))))))) in (let TMP_139 \def +(\lambda (f: F).(\lambda (t: T).(\lambda (e: C).(\lambda (u: T).(\lambda (H0: +(getl O (CHead c0 (Flat f) t) (CHead e (Bind Abbr) u))).(let H_x \def +(subst1_ex u t O) in (let H1 \def H_x in (let TMP_93 \def (\lambda (t2: +T).(let TMP_91 \def (S O) in (let TMP_92 \def (lift TMP_91 O t2) in (subst1 O +u t TMP_92)))) in (let TMP_96 \def (\lambda (a0: C).(\lambda (_: C).(let +TMP_94 \def (Flat f) in (let TMP_95 \def (CHead c0 TMP_94 t) in (csubst1 O u +TMP_95 a0))))) in (let TMP_98 \def (\lambda (a0: C).(\lambda (a: C).(let +TMP_97 \def (S O) in (drop TMP_97 O a0 a)))) in (let TMP_99 \def (ex2_2 C C +TMP_96 TMP_98) in (let TMP_138 \def (\lambda (x: T).(\lambda (H2: (subst1 O u +t (lift (S O) O x))).(let TMP_100 \def (Bind Abbr) in (let TMP_101 \def +(CHead e TMP_100 u) in (let TMP_102 \def (drop_refl c0) in (let TMP_103 \def +(Bind Abbr) in (let TMP_104 \def (CHead e TMP_103 u) in (let TMP_105 \def +(Flat f) in (let TMP_106 \def (CHead c0 TMP_105 t) in (let TMP_107 \def (Bind +Abbr) in (let TMP_108 \def (CHead e TMP_107 u) in (let TMP_109 \def +(getl_gen_O TMP_106 TMP_108 H0) in (let TMP_110 \def (clear_gen_flat f c0 +TMP_104 t TMP_109) in (let TMP_111 \def (getl_intro O c0 TMP_101 c0 TMP_102 +TMP_110) in (let H3 \def (H e u TMP_111) in (let TMP_112 \def (\lambda (a0: +C).(\lambda (_: C).(csubst1 O u c0 a0))) in (let TMP_114 \def (\lambda (a0: +C).(\lambda (a: C).(let TMP_113 \def (S O) in (drop TMP_113 O a0 a)))) in +(let TMP_117 \def (\lambda (a0: C).(\lambda (_: C).(let TMP_115 \def (Flat f) +in (let TMP_116 \def (CHead c0 TMP_115 t) in (csubst1 O u TMP_116 a0))))) in +(let TMP_119 \def (\lambda (a0: C).(\lambda (a: C).(let TMP_118 \def (S O) in +(drop TMP_118 O a0 a)))) in (let TMP_120 \def (ex2_2 C C TMP_117 TMP_119) in +(let TMP_137 \def (\lambda (x0: C).(\lambda (x1: C).(\lambda (H4: (csubst1 O +u c0 x0)).(\lambda (H5: (drop (S O) O x0 x1)).(let TMP_123 \def (\lambda (a0: +C).(\lambda (_: C).(let TMP_121 \def (Flat f) in (let TMP_122 \def (CHead c0 +TMP_121 t) in (csubst1 O u TMP_122 a0))))) in (let TMP_125 \def (\lambda (a0: +C).(\lambda (a: C).(let TMP_124 \def (S O) in (drop TMP_124 O a0 a)))) in +(let TMP_126 \def (Flat f) in (let TMP_127 \def (S O) in (let TMP_128 \def +(lift TMP_127 O x) in (let TMP_129 \def (CHead x0 TMP_126 TMP_128) in (let +TMP_130 \def (S O) in (let TMP_131 \def (lift TMP_130 O x) in (let TMP_132 +\def (csubst1_flat f O u t TMP_131 H2 c0 x0 H4) in (let TMP_133 \def (Flat f) +in (let TMP_134 \def (S O) in (let TMP_135 \def (lift TMP_134 O x) in (let +TMP_136 \def (drop_drop TMP_133 O x0 x1 H5 TMP_135) in (ex2_2_intro C C +TMP_123 TMP_125 TMP_129 x1 TMP_132 TMP_136)))))))))))))))))) in (ex2_2_ind C +C TMP_112 TMP_114 TMP_120 TMP_137 H3)))))))))))))))))))))) in (ex_ind T +TMP_93 TMP_99 TMP_138 H1))))))))))))) in (K_ind TMP_21 TMP_90 TMP_139 +k))))))) in (C_ind TMP_8 TMP_16 TMP_140 c))))) in (let TMP_269 \def (\lambda +(n: nat).(\lambda (H: ((\forall (c: C).(\forall (e: C).(\forall (u: T).((getl +n c (CHead e (Bind Abbr) u)) \to (ex2_2 C C (\lambda (a0: C).(\lambda (_: +C).(csubst1 n u c a0))) (\lambda (a0: C).(\lambda (a: C).(drop (S O) n a0 +a)))))))))).(\lambda (c: C).(let TMP_147 \def (\lambda (c0: C).(\forall (e: +C).(\forall (u: T).((getl (S n) c0 (CHead e (Bind Abbr) u)) \to (let TMP_143 +\def (\lambda (a0: C).(\lambda (_: C).(let TMP_142 \def (S n) in (csubst1 +TMP_142 u c0 a0)))) in (let TMP_146 \def (\lambda (a0: C).(\lambda (a: +C).(let TMP_144 \def (S O) in (let TMP_145 \def (S n) in (drop TMP_144 +TMP_145 a0 a))))) in (ex2_2 C C TMP_143 TMP_146))))))) in (let TMP_158 \def (\lambda (n0: nat).(\lambda (e: C).(\lambda (u: T).(\lambda (H0: (getl (S n) -(CSort n0) (CHead e (Bind Abbr) u))).(getl_gen_sort n0 (S n) (CHead e (Bind -Abbr) u) H0 (ex2_2 C C (\lambda (a0: C).(\lambda (_: C).(csubst1 (S n) u -(CSort n0) a0))) (\lambda (a0: C).(\lambda (a: C).(drop (S O) (S n) a0 -a))))))))) (\lambda (c0: C).(\lambda (H0: ((\forall (e: C).(\forall (u: -T).((getl (S n) c0 (CHead e (Bind Abbr) u)) \to (ex2_2 C C (\lambda (a0: +(CSort n0) (CHead e (Bind Abbr) u))).(let TMP_148 \def (S n) in (let TMP_149 +\def (Bind Abbr) in (let TMP_150 \def (CHead e TMP_149 u) in (let TMP_153 +\def (\lambda (a0: C).(\lambda (_: C).(let TMP_151 \def (S n) in (let TMP_152 +\def (CSort n0) in (csubst1 TMP_151 u TMP_152 a0))))) in (let TMP_156 \def +(\lambda (a0: C).(\lambda (a: C).(let TMP_154 \def (S O) in (let TMP_155 \def +(S n) in (drop TMP_154 TMP_155 a0 a))))) in (let TMP_157 \def (ex2_2 C C +TMP_153 TMP_156) in (getl_gen_sort n0 TMP_148 TMP_150 H0 TMP_157))))))))))) +in (let TMP_268 \def (\lambda (c0: C).(\lambda (H0: ((\forall (e: C).(\forall +(u: T).((getl (S n) c0 (CHead e (Bind Abbr) u)) \to (ex2_2 C C (\lambda (a0: C).(\lambda (_: C).(csubst1 (S n) u c0 a0))) (\lambda (a0: C).(\lambda (a: -C).(drop (S O) (S n) a0 a))))))))).(\lambda (k: K).(K_ind (\lambda (k0: -K).(\forall (t: T).(\forall (e: C).(\forall (u: T).((getl (S n) (CHead c0 k0 -t) (CHead e (Bind Abbr) u)) \to (ex2_2 C C (\lambda (a0: C).(\lambda (_: -C).(csubst1 (S n) u (CHead c0 k0 t) a0))) (\lambda (a0: C).(\lambda (a: -C).(drop (S O) (S n) a0 a))))))))) (\lambda (b: B).(\lambda (t: T).(\lambda -(e: C).(\lambda (u: T).(\lambda (H1: (getl (S n) (CHead c0 (Bind b) t) (CHead -e (Bind Abbr) u))).(let H_x \def (subst1_ex u t n) in (let H2 \def H_x in -(ex_ind T (\lambda (t2: T).(subst1 n u t (lift (S O) n t2))) (ex2_2 C C -(\lambda (a0: C).(\lambda (_: C).(csubst1 (S n) u (CHead c0 (Bind b) t) a0))) -(\lambda (a0: C).(\lambda (a: C).(drop (S O) (S n) a0 a)))) (\lambda (x: -T).(\lambda (H3: (subst1 n u t (lift (S O) n x))).(let H4 \def (H c0 e u -(getl_gen_S (Bind b) c0 (CHead e (Bind Abbr) u) t n H1)) in (ex2_2_ind C C -(\lambda (a0: C).(\lambda (_: C).(csubst1 n u c0 a0))) (\lambda (a0: -C).(\lambda (a: C).(drop (S O) n a0 a))) (ex2_2 C C (\lambda (a0: C).(\lambda -(_: C).(csubst1 (S n) u (CHead c0 (Bind b) t) a0))) (\lambda (a0: C).(\lambda -(a: C).(drop (S O) (S n) a0 a)))) (\lambda (x0: C).(\lambda (x1: C).(\lambda -(H5: (csubst1 n u c0 x0)).(\lambda (H6: (drop (S O) n x0 x1)).(ex2_2_intro C -C (\lambda (a0: C).(\lambda (_: C).(csubst1 (S n) u (CHead c0 (Bind b) t) -a0))) (\lambda (a0: C).(\lambda (a: C).(drop (S O) (S n) a0 a))) (CHead x0 -(Bind b) (lift (S O) n x)) (CHead x1 (Bind b) x) (csubst1_bind b n u t (lift -(S O) n x) H3 c0 x0 H5) (drop_skip_bind (S O) n x0 x1 H6 b x)))))) H4)))) -H2)))))))) (\lambda (f: F).(\lambda (t: T).(\lambda (e: C).(\lambda (u: -T).(\lambda (H1: (getl (S n) (CHead c0 (Flat f) t) (CHead e (Bind Abbr) -u))).(let H_x \def (subst1_ex u t (S n)) in (let H2 \def H_x in (ex_ind T -(\lambda (t2: T).(subst1 (S n) u t (lift (S O) (S n) t2))) (ex2_2 C C -(\lambda (a0: C).(\lambda (_: C).(csubst1 (S n) u (CHead c0 (Flat f) t) a0))) -(\lambda (a0: C).(\lambda (a: C).(drop (S O) (S n) a0 a)))) (\lambda (x: -T).(\lambda (H3: (subst1 (S n) u t (lift (S O) (S n) x))).(let H4 \def (H0 e -u (getl_gen_S (Flat f) c0 (CHead e (Bind Abbr) u) t n H1)) in (ex2_2_ind C C -(\lambda (a0: C).(\lambda (_: C).(csubst1 (S n) u c0 a0))) (\lambda (a0: -C).(\lambda (a: C).(drop (S O) (S n) a0 a))) (ex2_2 C C (\lambda (a0: -C).(\lambda (_: C).(csubst1 (S n) u (CHead c0 (Flat f) t) a0))) (\lambda (a0: -C).(\lambda (a: C).(drop (S O) (S n) a0 a)))) (\lambda (x0: C).(\lambda (x1: -C).(\lambda (H5: (csubst1 (S n) u c0 x0)).(\lambda (H6: (drop (S O) (S n) x0 -x1)).(ex2_2_intro C C (\lambda (a0: C).(\lambda (_: C).(csubst1 (S n) u -(CHead c0 (Flat f) t) a0))) (\lambda (a0: C).(\lambda (a: C).(drop (S O) (S -n) a0 a))) (CHead x0 (Flat f) (lift (S O) (S n) x)) (CHead x1 (Flat f) x) -(csubst1_flat f (S n) u t (lift (S O) (S n) x) H3 c0 x0 H5) (drop_skip_flat -(S O) n x0 x1 H6 f x)))))) H4)))) H2)))))))) k)))) c)))) d). -(* COMMENTS -Initial nodes: 2467 -END *) +C).(drop (S O) (S n) a0 a))))))))).(\lambda (k: K).(let TMP_165 \def (\lambda +(k0: K).(\forall (t: T).(\forall (e: C).(\forall (u: T).((getl (S n) (CHead +c0 k0 t) (CHead e (Bind Abbr) u)) \to (let TMP_161 \def (\lambda (a0: +C).(\lambda (_: C).(let TMP_159 \def (S n) in (let TMP_160 \def (CHead c0 k0 +t) in (csubst1 TMP_159 u TMP_160 a0))))) in (let TMP_164 \def (\lambda (a0: +C).(\lambda (a: C).(let TMP_162 \def (S O) in (let TMP_163 \def (S n) in +(drop TMP_162 TMP_163 a0 a))))) in (ex2_2 C C TMP_161 TMP_164)))))))) in (let +TMP_212 \def (\lambda (b: B).(\lambda (t: T).(\lambda (e: C).(\lambda (u: +T).(\lambda (H1: (getl (S n) (CHead c0 (Bind b) t) (CHead e (Bind Abbr) +u))).(let H_x \def (subst1_ex u t n) in (let H2 \def H_x in (let TMP_168 \def +(\lambda (t2: T).(let TMP_166 \def (S O) in (let TMP_167 \def (lift TMP_166 n +t2) in (subst1 n u t TMP_167)))) in (let TMP_172 \def (\lambda (a0: +C).(\lambda (_: C).(let TMP_169 \def (S n) in (let TMP_170 \def (Bind b) in +(let TMP_171 \def (CHead c0 TMP_170 t) in (csubst1 TMP_169 u TMP_171 a0)))))) +in (let TMP_175 \def (\lambda (a0: C).(\lambda (a: C).(let TMP_173 \def (S O) +in (let TMP_174 \def (S n) in (drop TMP_173 TMP_174 a0 a))))) in (let TMP_176 +\def (ex2_2 C C TMP_172 TMP_175) in (let TMP_211 \def (\lambda (x: +T).(\lambda (H3: (subst1 n u t (lift (S O) n x))).(let TMP_177 \def (Bind b) +in (let TMP_178 \def (Bind Abbr) in (let TMP_179 \def (CHead e TMP_178 u) in +(let TMP_180 \def (getl_gen_S TMP_177 c0 TMP_179 t n H1) in (let H4 \def (H +c0 e u TMP_180) in (let TMP_181 \def (\lambda (a0: C).(\lambda (_: +C).(csubst1 n u c0 a0))) in (let TMP_183 \def (\lambda (a0: C).(\lambda (a: +C).(let TMP_182 \def (S O) in (drop TMP_182 n a0 a)))) in (let TMP_187 \def +(\lambda (a0: C).(\lambda (_: C).(let TMP_184 \def (S n) in (let TMP_185 \def +(Bind b) in (let TMP_186 \def (CHead c0 TMP_185 t) in (csubst1 TMP_184 u +TMP_186 a0)))))) in (let TMP_190 \def (\lambda (a0: C).(\lambda (a: C).(let +TMP_188 \def (S O) in (let TMP_189 \def (S n) in (drop TMP_188 TMP_189 a0 +a))))) in (let TMP_191 \def (ex2_2 C C TMP_187 TMP_190) in (let TMP_210 \def +(\lambda (x0: C).(\lambda (x1: C).(\lambda (H5: (csubst1 n u c0 x0)).(\lambda +(H6: (drop (S O) n x0 x1)).(let TMP_195 \def (\lambda (a0: C).(\lambda (_: +C).(let TMP_192 \def (S n) in (let TMP_193 \def (Bind b) in (let TMP_194 \def +(CHead c0 TMP_193 t) in (csubst1 TMP_192 u TMP_194 a0)))))) in (let TMP_198 +\def (\lambda (a0: C).(\lambda (a: C).(let TMP_196 \def (S O) in (let TMP_197 +\def (S n) in (drop TMP_196 TMP_197 a0 a))))) in (let TMP_199 \def (Bind b) +in (let TMP_200 \def (S O) in (let TMP_201 \def (lift TMP_200 n x) in (let +TMP_202 \def (CHead x0 TMP_199 TMP_201) in (let TMP_203 \def (Bind b) in (let +TMP_204 \def (CHead x1 TMP_203 x) in (let TMP_205 \def (S O) in (let TMP_206 +\def (lift TMP_205 n x) in (let TMP_207 \def (csubst1_bind b n u t TMP_206 H3 +c0 x0 H5) in (let TMP_208 \def (S O) in (let TMP_209 \def (drop_skip_bind +TMP_208 n x0 x1 H6 b x) in (ex2_2_intro C C TMP_195 TMP_198 TMP_202 TMP_204 +TMP_207 TMP_209)))))))))))))))))) in (ex2_2_ind C C TMP_181 TMP_183 TMP_191 +TMP_210 H4)))))))))))))) in (ex_ind T TMP_168 TMP_176 TMP_211 H2))))))))))))) +in (let TMP_267 \def (\lambda (f: F).(\lambda (t: T).(\lambda (e: C).(\lambda +(u: T).(\lambda (H1: (getl (S n) (CHead c0 (Flat f) t) (CHead e (Bind Abbr) +u))).(let TMP_213 \def (S n) in (let H_x \def (subst1_ex u t TMP_213) in (let +H2 \def H_x in (let TMP_218 \def (\lambda (t2: T).(let TMP_214 \def (S n) in +(let TMP_215 \def (S O) in (let TMP_216 \def (S n) in (let TMP_217 \def (lift +TMP_215 TMP_216 t2) in (subst1 TMP_214 u t TMP_217)))))) in (let TMP_222 \def +(\lambda (a0: C).(\lambda (_: C).(let TMP_219 \def (S n) in (let TMP_220 \def +(Flat f) in (let TMP_221 \def (CHead c0 TMP_220 t) in (csubst1 TMP_219 u +TMP_221 a0)))))) in (let TMP_225 \def (\lambda (a0: C).(\lambda (a: C).(let +TMP_223 \def (S O) in (let TMP_224 \def (S n) in (drop TMP_223 TMP_224 a0 +a))))) in (let TMP_226 \def (ex2_2 C C TMP_222 TMP_225) in (let TMP_266 \def +(\lambda (x: T).(\lambda (H3: (subst1 (S n) u t (lift (S O) (S n) x))).(let +TMP_227 \def (Flat f) in (let TMP_228 \def (Bind Abbr) in (let TMP_229 \def +(CHead e TMP_228 u) in (let TMP_230 \def (getl_gen_S TMP_227 c0 TMP_229 t n +H1) in (let H4 \def (H0 e u TMP_230) in (let TMP_232 \def (\lambda (a0: +C).(\lambda (_: C).(let TMP_231 \def (S n) in (csubst1 TMP_231 u c0 a0)))) in +(let TMP_235 \def (\lambda (a0: C).(\lambda (a: C).(let TMP_233 \def (S O) in +(let TMP_234 \def (S n) in (drop TMP_233 TMP_234 a0 a))))) in (let TMP_239 +\def (\lambda (a0: C).(\lambda (_: C).(let TMP_236 \def (S n) in (let TMP_237 +\def (Flat f) in (let TMP_238 \def (CHead c0 TMP_237 t) in (csubst1 TMP_236 u +TMP_238 a0)))))) in (let TMP_242 \def (\lambda (a0: C).(\lambda (a: C).(let +TMP_240 \def (S O) in (let TMP_241 \def (S n) in (drop TMP_240 TMP_241 a0 +a))))) in (let TMP_243 \def (ex2_2 C C TMP_239 TMP_242) in (let TMP_265 \def +(\lambda (x0: C).(\lambda (x1: C).(\lambda (H5: (csubst1 (S n) u c0 +x0)).(\lambda (H6: (drop (S O) (S n) x0 x1)).(let TMP_247 \def (\lambda (a0: +C).(\lambda (_: C).(let TMP_244 \def (S n) in (let TMP_245 \def (Flat f) in +(let TMP_246 \def (CHead c0 TMP_245 t) in (csubst1 TMP_244 u TMP_246 a0)))))) +in (let TMP_250 \def (\lambda (a0: C).(\lambda (a: C).(let TMP_248 \def (S O) +in (let TMP_249 \def (S n) in (drop TMP_248 TMP_249 a0 a))))) in (let TMP_251 +\def (Flat f) in (let TMP_252 \def (S O) in (let TMP_253 \def (S n) in (let +TMP_254 \def (lift TMP_252 TMP_253 x) in (let TMP_255 \def (CHead x0 TMP_251 +TMP_254) in (let TMP_256 \def (Flat f) in (let TMP_257 \def (CHead x1 TMP_256 +x) in (let TMP_258 \def (S n) in (let TMP_259 \def (S O) in (let TMP_260 \def +(S n) in (let TMP_261 \def (lift TMP_259 TMP_260 x) in (let TMP_262 \def +(csubst1_flat f TMP_258 u t TMP_261 H3 c0 x0 H5) in (let TMP_263 \def (S O) +in (let TMP_264 \def (drop_skip_flat TMP_263 n x0 x1 H6 f x) in (ex2_2_intro +C C TMP_247 TMP_250 TMP_255 TMP_257 TMP_262 TMP_264))))))))))))))))))))) in +(ex2_2_ind C C TMP_232 TMP_235 TMP_243 TMP_265 H4)))))))))))))) in (ex_ind T +TMP_218 TMP_226 TMP_266 H2)))))))))))))) in (K_ind TMP_165 TMP_212 TMP_267 +k))))))) in (C_ind TMP_147 TMP_158 TMP_268 c))))))) in (nat_ind TMP_4 TMP_141 +TMP_269 d)))). diff --git a/matita/matita/contribs/lambdadelta/basic_1/csubst1/props.ma b/matita/matita/contribs/lambdadelta/basic_1/csubst1/props.ma index 518a86564..30200e34b 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/csubst1/props.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/csubst1/props.ma @@ -14,9 +14,9 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/csubst1/defs.ma". +include "basic_1/csubst1/fwd.ma". -include "Basic-1/subst1/defs.ma". +include "basic_1/subst1/fwd.ma". theorem csubst1_head: \forall (k: K).(\forall (i: nat).(\forall (v: T).(\forall (u1: T).(\forall @@ -24,23 +24,32 @@ theorem csubst1_head: v c1 c2) \to (csubst1 (s k i) v (CHead c1 k u1) (CHead c2 k u2)))))))))) \def \lambda (k: K).(\lambda (i: nat).(\lambda (v: T).(\lambda (u1: T).(\lambda -(u2: T).(\lambda (H: (subst1 i v u1 u2)).(subst1_ind i v u1 (\lambda (t: -T).(\forall (c1: C).(\forall (c2: C).((csubst1 i v c1 c2) \to (csubst1 (s k -i) v (CHead c1 k u1) (CHead c2 k t)))))) (\lambda (c1: C).(\lambda (c2: -C).(\lambda (H0: (csubst1 i v c1 c2)).(csubst1_ind i v c1 (\lambda (c: -C).(csubst1 (s k i) v (CHead c1 k u1) (CHead c k u1))) (csubst1_refl (s k i) -v (CHead c1 k u1)) (\lambda (c3: C).(\lambda (H1: (csubst0 i v c1 -c3)).(csubst1_sing (s k i) v (CHead c1 k u1) (CHead c3 k u1) (csubst0_fst k i -c1 c3 v H1 u1)))) c2 H0)))) (\lambda (t2: T).(\lambda (H0: (subst0 i v u1 -t2)).(\lambda (c1: C).(\lambda (c2: C).(\lambda (H1: (csubst1 i v c1 -c2)).(csubst1_ind i v c1 (\lambda (c: C).(csubst1 (s k i) v (CHead c1 k u1) -(CHead c k t2))) (csubst1_sing (s k i) v (CHead c1 k u1) (CHead c1 k t2) -(csubst0_snd k i v u1 t2 H0 c1)) (\lambda (c3: C).(\lambda (H2: (csubst0 i v -c1 c3)).(csubst1_sing (s k i) v (CHead c1 k u1) (CHead c3 k t2) (csubst0_both -k i v u1 t2 H0 c1 c3 H2)))) c2 H1)))))) u2 H)))))). -(* COMMENTS -Initial nodes: 365 -END *) +(u2: T).(\lambda (H: (subst1 i v u1 u2)).(let TMP_4 \def (\lambda (t: +T).(\forall (c1: C).(\forall (c2: C).((csubst1 i v c1 c2) \to (let TMP_1 \def +(s k i) in (let TMP_2 \def (CHead c1 k u1) in (let TMP_3 \def (CHead c2 k t) +in (csubst1 TMP_1 v TMP_2 TMP_3)))))))) in (let TMP_17 \def (\lambda (c1: +C).(\lambda (c2: C).(\lambda (H0: (csubst1 i v c1 c2)).(let TMP_8 \def +(\lambda (c: C).(let TMP_5 \def (s k i) in (let TMP_6 \def (CHead c1 k u1) in +(let TMP_7 \def (CHead c k u1) in (csubst1 TMP_5 v TMP_6 TMP_7))))) in (let +TMP_9 \def (s k i) in (let TMP_10 \def (CHead c1 k u1) in (let TMP_11 \def +(csubst1_refl TMP_9 v TMP_10) in (let TMP_16 \def (\lambda (c3: C).(\lambda +(H1: (csubst0 i v c1 c3)).(let TMP_12 \def (s k i) in (let TMP_13 \def (CHead +c1 k u1) in (let TMP_14 \def (CHead c3 k u1) in (let TMP_15 \def (csubst0_fst +k i c1 c3 v H1 u1) in (csubst1_sing TMP_12 v TMP_13 TMP_14 TMP_15))))))) in +(csubst1_ind i v c1 TMP_8 TMP_11 TMP_16 c2 H0))))))))) in (let TMP_32 \def +(\lambda (t2: T).(\lambda (H0: (subst0 i v u1 t2)).(\lambda (c1: C).(\lambda +(c2: C).(\lambda (H1: (csubst1 i v c1 c2)).(let TMP_21 \def (\lambda (c: +C).(let TMP_18 \def (s k i) in (let TMP_19 \def (CHead c1 k u1) in (let +TMP_20 \def (CHead c k t2) in (csubst1 TMP_18 v TMP_19 TMP_20))))) in (let +TMP_22 \def (s k i) in (let TMP_23 \def (CHead c1 k u1) in (let TMP_24 \def +(CHead c1 k t2) in (let TMP_25 \def (csubst0_snd k i v u1 t2 H0 c1) in (let +TMP_26 \def (csubst1_sing TMP_22 v TMP_23 TMP_24 TMP_25) in (let TMP_31 \def +(\lambda (c3: C).(\lambda (H2: (csubst0 i v c1 c3)).(let TMP_27 \def (s k i) +in (let TMP_28 \def (CHead c1 k u1) in (let TMP_29 \def (CHead c3 k t2) in +(let TMP_30 \def (csubst0_both k i v u1 t2 H0 c1 c3 H2) in (csubst1_sing +TMP_27 v TMP_28 TMP_29 TMP_30))))))) in (csubst1_ind i v c1 TMP_21 TMP_26 +TMP_31 c2 H1))))))))))))) in (subst1_ind i v u1 TMP_4 TMP_17 TMP_32 u2 +H))))))))). theorem csubst1_bind: \forall (b: B).(\forall (i: nat).(\forall (v: T).(\forall (u1: T).(\forall @@ -50,13 +59,14 @@ u2)))))))))) \def \lambda (b: B).(\lambda (i: nat).(\lambda (v: T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H: (subst1 i v u1 u2)).(\lambda (c1: C).(\lambda (c2: -C).(\lambda (H0: (csubst1 i v c1 c2)).(eq_ind nat (s (Bind b) i) (\lambda (n: -nat).(csubst1 n v (CHead c1 (Bind b) u1) (CHead c2 (Bind b) u2))) -(csubst1_head (Bind b) i v u1 u2 H c1 c2 H0) (S i) (refl_equal nat (S -i))))))))))). -(* COMMENTS -Initial nodes: 107 -END *) +C).(\lambda (H0: (csubst1 i v c1 c2)).(let TMP_1 \def (Bind b) in (let TMP_2 +\def (s TMP_1 i) in (let TMP_7 \def (\lambda (n: nat).(let TMP_3 \def (Bind +b) in (let TMP_4 \def (CHead c1 TMP_3 u1) in (let TMP_5 \def (Bind b) in (let +TMP_6 \def (CHead c2 TMP_5 u2) in (csubst1 n v TMP_4 TMP_6)))))) in (let +TMP_8 \def (Bind b) in (let TMP_9 \def (csubst1_head TMP_8 i v u1 u2 H c1 c2 +H0) in (let TMP_10 \def (S i) in (let TMP_11 \def (S i) in (let TMP_12 \def +(refl_equal nat TMP_11) in (eq_ind nat TMP_2 TMP_7 TMP_9 TMP_10 +TMP_12))))))))))))))))). theorem csubst1_flat: \forall (f: F).(\forall (i: nat).(\forall (v: T).(\forall (u1: T).(\forall @@ -66,10 +76,11 @@ u2)))))))))) \def \lambda (f: F).(\lambda (i: nat).(\lambda (v: T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H: (subst1 i v u1 u2)).(\lambda (c1: C).(\lambda (c2: -C).(\lambda (H0: (csubst1 i v c1 c2)).(eq_ind nat (s (Flat f) i) (\lambda (n: -nat).(csubst1 n v (CHead c1 (Flat f) u1) (CHead c2 (Flat f) u2))) -(csubst1_head (Flat f) i v u1 u2 H c1 c2 H0) i (refl_equal nat i)))))))))). -(* COMMENTS -Initial nodes: 103 -END *) +C).(\lambda (H0: (csubst1 i v c1 c2)).(let TMP_1 \def (Flat f) in (let TMP_2 +\def (s TMP_1 i) in (let TMP_7 \def (\lambda (n: nat).(let TMP_3 \def (Flat +f) in (let TMP_4 \def (CHead c1 TMP_3 u1) in (let TMP_5 \def (Flat f) in (let +TMP_6 \def (CHead c2 TMP_5 u2) in (csubst1 n v TMP_4 TMP_6)))))) in (let +TMP_8 \def (Flat f) in (let TMP_9 \def (csubst1_head TMP_8 i v u1 u2 H c1 c2 +H0) in (let TMP_10 \def (refl_equal nat i) in (eq_ind nat TMP_2 TMP_7 TMP_9 i +TMP_10))))))))))))))). diff --git a/matita/matita/contribs/lambdadelta/basic_1/fsubst0/defs.ma b/matita/matita/contribs/lambdadelta/basic_1/fsubst0/defs.ma index f39baebf7..8d5cc21e0 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/fsubst0/defs.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/fsubst0/defs.ma @@ -14,7 +14,7 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/csubst0/defs.ma". +include "basic_1/csubst0/defs.ma". inductive fsubst0 (i: nat) (v: T) (c1: C) (t1: T): C \to (T \to Prop) \def | fsubst0_snd: \forall (t2: T).((subst0 i v t1 t2) \to (fsubst0 i v c1 t1 c1 diff --git a/matita/matita/contribs/lambdadelta/basic_1/fsubst0/fwd.ma b/matita/matita/contribs/lambdadelta/basic_1/fsubst0/fwd.ma index 3c1212510..f43d06c94 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/fsubst0/fwd.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/fsubst0/fwd.ma @@ -14,7 +14,24 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/fsubst0/defs.ma". +include "basic_1/fsubst0/defs.ma". + +theorem fsubst0_ind: + \forall (i: nat).(\forall (v: T).(\forall (c1: C).(\forall (t1: T).(\forall +(P: ((C \to (T \to Prop)))).(((\forall (t2: T).((subst0 i v t1 t2) \to (P c1 +t2)))) \to (((\forall (c2: C).((csubst0 i v c1 c2) \to (P c2 t1)))) \to +(((\forall (t2: T).((subst0 i v t1 t2) \to (\forall (c2: C).((csubst0 i v c1 +c2) \to (P c2 t2)))))) \to (\forall (c: C).(\forall (t: T).((fsubst0 i v c1 +t1 c t) \to (P c t))))))))))) +\def + \lambda (i: nat).(\lambda (v: T).(\lambda (c1: C).(\lambda (t1: T).(\lambda +(P: ((C \to (T \to Prop)))).(\lambda (f: ((\forall (t2: T).((subst0 i v t1 +t2) \to (P c1 t2))))).(\lambda (f0: ((\forall (c2: C).((csubst0 i v c1 c2) +\to (P c2 t1))))).(\lambda (f1: ((\forall (t2: T).((subst0 i v t1 t2) \to +(\forall (c2: C).((csubst0 i v c1 c2) \to (P c2 t2))))))).(\lambda (c: +C).(\lambda (t: T).(\lambda (f2: (fsubst0 i v c1 t1 c t)).(match f2 with +[(fsubst0_snd x x0) \Rightarrow (f x x0) | (fsubst0_fst x x0) \Rightarrow (f0 +x x0) | (fsubst0_both x x0 x1 x2) \Rightarrow (f1 x x0 x1 x2)]))))))))))). theorem fsubst0_gen_base: \forall (c1: C).(\forall (c2: C).(\forall (t1: T).(\forall (t2: T).(\forall @@ -23,21 +40,37 @@ c2) (subst0 i v t1 t2)) (land (eq T t1 t2) (csubst0 i v c1 c2)) (land (subst0 i v t1 t2) (csubst0 i v c1 c2))))))))) \def \lambda (c1: C).(\lambda (c2: C).(\lambda (t1: T).(\lambda (t2: T).(\lambda -(v: T).(\lambda (i: nat).(\lambda (H: (fsubst0 i v c1 t1 c2 t2)).(fsubst0_ind -i v c1 t1 (\lambda (c: C).(\lambda (t: T).(or3 (land (eq C c1 c) (subst0 i v -t1 t)) (land (eq T t1 t) (csubst0 i v c1 c)) (land (subst0 i v t1 t) (csubst0 -i v c1 c))))) (\lambda (t0: T).(\lambda (H0: (subst0 i v t1 t0)).(or3_intro0 -(land (eq C c1 c1) (subst0 i v t1 t0)) (land (eq T t1 t0) (csubst0 i v c1 -c1)) (land (subst0 i v t1 t0) (csubst0 i v c1 c1)) (conj (eq C c1 c1) (subst0 -i v t1 t0) (refl_equal C c1) H0)))) (\lambda (c0: C).(\lambda (H0: (csubst0 i -v c1 c0)).(or3_intro1 (land (eq C c1 c0) (subst0 i v t1 t1)) (land (eq T t1 -t1) (csubst0 i v c1 c0)) (land (subst0 i v t1 t1) (csubst0 i v c1 c0)) (conj -(eq T t1 t1) (csubst0 i v c1 c0) (refl_equal T t1) H0)))) (\lambda (t0: -T).(\lambda (H0: (subst0 i v t1 t0)).(\lambda (c0: C).(\lambda (H1: (csubst0 -i v c1 c0)).(or3_intro2 (land (eq C c1 c0) (subst0 i v t1 t0)) (land (eq T t1 -t0) (csubst0 i v c1 c0)) (land (subst0 i v t1 t0) (csubst0 i v c1 c0)) (conj -(subst0 i v t1 t0) (csubst0 i v c1 c0) H0 H1)))))) c2 t2 H))))))). -(* COMMENTS -Initial nodes: 431 -END *) +(v: T).(\lambda (i: nat).(\lambda (H: (fsubst0 i v c1 t1 c2 t2)).(let TMP_10 +\def (\lambda (c: C).(\lambda (t: T).(let TMP_1 \def (eq C c1 c) in (let +TMP_2 \def (subst0 i v t1 t) in (let TMP_3 \def (land TMP_1 TMP_2) in (let +TMP_4 \def (eq T t1 t) in (let TMP_5 \def (csubst0 i v c1 c) in (let TMP_6 +\def (land TMP_4 TMP_5) in (let TMP_7 \def (subst0 i v t1 t) in (let TMP_8 +\def (csubst0 i v c1 c) in (let TMP_9 \def (land TMP_7 TMP_8) in (or3 TMP_3 +TMP_6 TMP_9)))))))))))) in (let TMP_24 \def (\lambda (t0: T).(\lambda (H0: +(subst0 i v t1 t0)).(let TMP_11 \def (eq C c1 c1) in (let TMP_12 \def (subst0 +i v t1 t0) in (let TMP_13 \def (land TMP_11 TMP_12) in (let TMP_14 \def (eq T +t1 t0) in (let TMP_15 \def (csubst0 i v c1 c1) in (let TMP_16 \def (land +TMP_14 TMP_15) in (let TMP_17 \def (subst0 i v t1 t0) in (let TMP_18 \def +(csubst0 i v c1 c1) in (let TMP_19 \def (land TMP_17 TMP_18) in (let TMP_20 +\def (eq C c1 c1) in (let TMP_21 \def (subst0 i v t1 t0) in (let TMP_22 \def +(refl_equal C c1) in (let TMP_23 \def (conj TMP_20 TMP_21 TMP_22 H0) in +(or3_intro0 TMP_13 TMP_16 TMP_19 TMP_23)))))))))))))))) in (let TMP_38 \def +(\lambda (c0: C).(\lambda (H0: (csubst0 i v c1 c0)).(let TMP_25 \def (eq C c1 +c0) in (let TMP_26 \def (subst0 i v t1 t1) in (let TMP_27 \def (land TMP_25 +TMP_26) in (let TMP_28 \def (eq T t1 t1) in (let TMP_29 \def (csubst0 i v c1 +c0) in (let TMP_30 \def (land TMP_28 TMP_29) in (let TMP_31 \def (subst0 i v +t1 t1) in (let TMP_32 \def (csubst0 i v c1 c0) in (let TMP_33 \def (land +TMP_31 TMP_32) in (let TMP_34 \def (eq T t1 t1) in (let TMP_35 \def (csubst0 +i v c1 c0) in (let TMP_36 \def (refl_equal T t1) in (let TMP_37 \def (conj +TMP_34 TMP_35 TMP_36 H0) in (or3_intro1 TMP_27 TMP_30 TMP_33 +TMP_37)))))))))))))))) in (let TMP_51 \def (\lambda (t0: T).(\lambda (H0: +(subst0 i v t1 t0)).(\lambda (c0: C).(\lambda (H1: (csubst0 i v c1 c0)).(let +TMP_39 \def (eq C c1 c0) in (let TMP_40 \def (subst0 i v t1 t0) in (let +TMP_41 \def (land TMP_39 TMP_40) in (let TMP_42 \def (eq T t1 t0) in (let +TMP_43 \def (csubst0 i v c1 c0) in (let TMP_44 \def (land TMP_42 TMP_43) in +(let TMP_45 \def (subst0 i v t1 t0) in (let TMP_46 \def (csubst0 i v c1 c0) +in (let TMP_47 \def (land TMP_45 TMP_46) in (let TMP_48 \def (subst0 i v t1 +t0) in (let TMP_49 \def (csubst0 i v c1 c0) in (let TMP_50 \def (conj TMP_48 +TMP_49 H0 H1) in (or3_intro2 TMP_41 TMP_44 TMP_47 TMP_50))))))))))))))))) in +(fsubst0_ind i v c1 t1 TMP_10 TMP_24 TMP_38 TMP_51 c2 t2 H))))))))))). diff --git a/matita/matita/contribs/lambdadelta/basic_1/subst1/defs.ma b/matita/matita/contribs/lambdadelta/basic_1/subst1/defs.ma index 6a51bcfb5..e54fcfcd3 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/subst1/defs.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/subst1/defs.ma @@ -14,7 +14,7 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/subst0/defs.ma". +include "basic_1/subst0/defs.ma". inductive subst1 (i: nat) (v: T) (t1: T): T \to Prop \def | subst1_refl: subst1 i v t1 t1 diff --git a/matita/matita/contribs/lambdadelta/basic_1/subst1/fwd.ma b/matita/matita/contribs/lambdadelta/basic_1/subst1/fwd.ma index a2bc1edd6..4d7489cb1 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/subst1/fwd.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/subst1/fwd.ma @@ -14,22 +14,32 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/subst1/defs.ma". +include "basic_1/subst1/defs.ma". -include "Basic-1/subst0/props.ma". +include "basic_1/subst0/fwd.ma". + +theorem subst1_ind: + \forall (i: nat).(\forall (v: T).(\forall (t1: T).(\forall (P: ((T \to +Prop))).((P t1) \to (((\forall (t2: T).((subst0 i v t1 t2) \to (P t2)))) \to +(\forall (t: T).((subst1 i v t1 t) \to (P t)))))))) +\def + \lambda (i: nat).(\lambda (v: T).(\lambda (t1: T).(\lambda (P: ((T \to +Prop))).(\lambda (f: (P t1)).(\lambda (f0: ((\forall (t2: T).((subst0 i v t1 +t2) \to (P t2))))).(\lambda (t: T).(\lambda (s0: (subst1 i v t1 t)).(match s0 +with [subst1_refl \Rightarrow f | (subst1_single x x0) \Rightarrow (f0 x +x0)])))))))). theorem subst1_gen_sort: \forall (v: T).(\forall (x: T).(\forall (i: nat).(\forall (n: nat).((subst1 i v (TSort n) x) \to (eq T x (TSort n)))))) \def \lambda (v: T).(\lambda (x: T).(\lambda (i: nat).(\lambda (n: nat).(\lambda -(H: (subst1 i v (TSort n) x)).(subst1_ind i v (TSort n) (\lambda (t: T).(eq T -t (TSort n))) (refl_equal T (TSort n)) (\lambda (t2: T).(\lambda (H0: (subst0 -i v (TSort n) t2)).(subst0_gen_sort v t2 i n H0 (eq T t2 (TSort n))))) x -H))))). -(* COMMENTS -Initial nodes: 89 -END *) +(H: (subst1 i v (TSort n) x)).(let TMP_1 \def (TSort n) in (let TMP_3 \def +(\lambda (t: T).(let TMP_2 \def (TSort n) in (eq T t TMP_2))) in (let TMP_4 +\def (TSort n) in (let TMP_5 \def (refl_equal T TMP_4) in (let TMP_8 \def +(\lambda (t2: T).(\lambda (H0: (subst0 i v (TSort n) t2)).(let TMP_6 \def +(TSort n) in (let TMP_7 \def (eq T t2 TMP_6) in (subst0_gen_sort v t2 i n H0 +TMP_7))))) in (subst1_ind i v TMP_1 TMP_3 TMP_5 TMP_8 x H)))))))))). theorem subst1_gen_lref: \forall (v: T).(\forall (x: T).(\forall (i: nat).(\forall (n: nat).((subst1 @@ -37,19 +47,33 @@ i v (TLRef n) x) \to (or (eq T x (TLRef n)) (land (eq nat n i) (eq T x (lift (S n) O v)))))))) \def \lambda (v: T).(\lambda (x: T).(\lambda (i: nat).(\lambda (n: nat).(\lambda -(H: (subst1 i v (TLRef n) x)).(subst1_ind i v (TLRef n) (\lambda (t: T).(or -(eq T t (TLRef n)) (land (eq nat n i) (eq T t (lift (S n) O v))))) (or_introl -(eq T (TLRef n) (TLRef n)) (land (eq nat n i) (eq T (TLRef n) (lift (S n) O -v))) (refl_equal T (TLRef n))) (\lambda (t2: T).(\lambda (H0: (subst0 i v -(TLRef n) t2)).(land_ind (eq nat n i) (eq T t2 (lift (S n) O v)) (or (eq T t2 -(TLRef n)) (land (eq nat n i) (eq T t2 (lift (S n) O v)))) (\lambda (H1: (eq -nat n i)).(\lambda (H2: (eq T t2 (lift (S n) O v))).(or_intror (eq T t2 -(TLRef n)) (land (eq nat n i) (eq T t2 (lift (S n) O v))) (conj (eq nat n i) -(eq T t2 (lift (S n) O v)) H1 H2)))) (subst0_gen_lref v t2 i n H0)))) x -H))))). -(* COMMENTS -Initial nodes: 305 -END *) +(H: (subst1 i v (TLRef n) x)).(let TMP_1 \def (TLRef n) in (let TMP_9 \def +(\lambda (t: T).(let TMP_2 \def (TLRef n) in (let TMP_3 \def (eq T t TMP_2) +in (let TMP_4 \def (eq nat n i) in (let TMP_5 \def (S n) in (let TMP_6 \def +(lift TMP_5 O v) in (let TMP_7 \def (eq T t TMP_6) in (let TMP_8 \def (land +TMP_4 TMP_7) in (or TMP_3 TMP_8))))))))) in (let TMP_10 \def (TLRef n) in +(let TMP_11 \def (TLRef n) in (let TMP_12 \def (eq T TMP_10 TMP_11) in (let +TMP_13 \def (eq nat n i) in (let TMP_14 \def (TLRef n) in (let TMP_15 \def (S +n) in (let TMP_16 \def (lift TMP_15 O v) in (let TMP_17 \def (eq T TMP_14 +TMP_16) in (let TMP_18 \def (land TMP_13 TMP_17) in (let TMP_19 \def (TLRef +n) in (let TMP_20 \def (refl_equal T TMP_19) in (let TMP_21 \def (or_introl +TMP_12 TMP_18 TMP_20) in (let TMP_48 \def (\lambda (t2: T).(\lambda (H0: +(subst0 i v (TLRef n) t2)).(let TMP_22 \def (eq nat n i) in (let TMP_23 \def +(S n) in (let TMP_24 \def (lift TMP_23 O v) in (let TMP_25 \def (eq T t2 +TMP_24) in (let TMP_26 \def (TLRef n) in (let TMP_27 \def (eq T t2 TMP_26) in +(let TMP_28 \def (eq nat n i) in (let TMP_29 \def (S n) in (let TMP_30 \def +(lift TMP_29 O v) in (let TMP_31 \def (eq T t2 TMP_30) in (let TMP_32 \def +(land TMP_28 TMP_31) in (let TMP_33 \def (or TMP_27 TMP_32) in (let TMP_46 +\def (\lambda (H1: (eq nat n i)).(\lambda (H2: (eq T t2 (lift (S n) O +v))).(let TMP_34 \def (TLRef n) in (let TMP_35 \def (eq T t2 TMP_34) in (let +TMP_36 \def (eq nat n i) in (let TMP_37 \def (S n) in (let TMP_38 \def (lift +TMP_37 O v) in (let TMP_39 \def (eq T t2 TMP_38) in (let TMP_40 \def (land +TMP_36 TMP_39) in (let TMP_41 \def (eq nat n i) in (let TMP_42 \def (S n) in +(let TMP_43 \def (lift TMP_42 O v) in (let TMP_44 \def (eq T t2 TMP_43) in +(let TMP_45 \def (conj TMP_41 TMP_44 H1 H2) in (or_intror TMP_35 TMP_40 +TMP_45))))))))))))))) in (let TMP_47 \def (subst0_gen_lref v t2 i n H0) in +(land_ind TMP_22 TMP_25 TMP_33 TMP_46 TMP_47))))))))))))))))) in (subst1_ind +i v TMP_1 TMP_9 TMP_21 TMP_48 x H)))))))))))))))))))). theorem subst1_gen_head: \forall (k: K).(\forall (v: T).(\forall (u1: T).(\forall (t1: T).(\forall @@ -59,60 +83,95 @@ T).(\lambda (_: T).(subst1 i v u1 u2))) (\lambda (_: T).(\lambda (t2: T).(subst1 (s k i) v t1 t2)))))))))) \def \lambda (k: K).(\lambda (v: T).(\lambda (u1: T).(\lambda (t1: T).(\lambda -(x: T).(\lambda (i: nat).(\lambda (H: (subst1 i v (THead k u1 t1) -x)).(subst1_ind i v (THead k u1 t1) (\lambda (t: T).(ex3_2 T T (\lambda (u2: -T).(\lambda (t2: T).(eq T t (THead k u2 t2)))) (\lambda (u2: T).(\lambda (_: -T).(subst1 i v u1 u2))) (\lambda (_: T).(\lambda (t2: T).(subst1 (s k i) v t1 -t2))))) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t2: T).(eq T (THead k u1 -t1) (THead k u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(subst1 i v u1 u2))) -(\lambda (_: T).(\lambda (t2: T).(subst1 (s k i) v t1 t2))) u1 t1 (refl_equal -T (THead k u1 t1)) (subst1_refl i v u1) (subst1_refl (s k i) v t1)) (\lambda -(t2: T).(\lambda (H0: (subst0 i v (THead k u1 t1) t2)).(or3_ind (ex2 T -(\lambda (u2: T).(eq T t2 (THead k u2 t1))) (\lambda (u2: T).(subst0 i v u1 -u2))) (ex2 T (\lambda (t3: T).(eq T t2 (THead k u1 t3))) (\lambda (t3: -T).(subst0 (s k i) v t1 t3))) (ex3_2 T T (\lambda (u2: T).(\lambda (t3: -T).(eq T t2 (THead k u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v -u1 u2))) (\lambda (_: T).(\lambda (t3: T).(subst0 (s k i) v t1 t3)))) (ex3_2 -T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead k u2 t3)))) (\lambda -(u2: T).(\lambda (_: T).(subst1 i v u1 u2))) (\lambda (_: T).(\lambda (t3: -T).(subst1 (s k i) v t1 t3)))) (\lambda (H1: (ex2 T (\lambda (u2: T).(eq T t2 -(THead k u2 t1))) (\lambda (u2: T).(subst0 i v u1 u2)))).(ex2_ind T (\lambda -(u2: T).(eq T t2 (THead k u2 t1))) (\lambda (u2: T).(subst0 i v u1 u2)) -(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead k u2 t3)))) -(\lambda (u2: T).(\lambda (_: T).(subst1 i v u1 u2))) (\lambda (_: -T).(\lambda (t3: T).(subst1 (s k i) v t1 t3)))) (\lambda (x0: T).(\lambda -(H2: (eq T t2 (THead k x0 t1))).(\lambda (H3: (subst0 i v u1 -x0)).(ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead k u2 -t3)))) (\lambda (u2: T).(\lambda (_: T).(subst1 i v u1 u2))) (\lambda (_: -T).(\lambda (t3: T).(subst1 (s k i) v t1 t3))) x0 t1 H2 (subst1_single i v u1 -x0 H3) (subst1_refl (s k i) v t1))))) H1)) (\lambda (H1: (ex2 T (\lambda (t3: -T).(eq T t2 (THead k u1 t3))) (\lambda (t3: T).(subst0 (s k i) v t1 -t3)))).(ex2_ind T (\lambda (t3: T).(eq T t2 (THead k u1 t3))) (\lambda (t3: -T).(subst0 (s k i) v t1 t3)) (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq -T t2 (THead k u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst1 i v u1 u2))) -(\lambda (_: T).(\lambda (t3: T).(subst1 (s k i) v t1 t3)))) (\lambda (x0: +(x: T).(\lambda (i: nat).(\lambda (H: (subst1 i v (THead k u1 t1) x)).(let +TMP_1 \def (THead k u1 t1) in (let TMP_7 \def (\lambda (t: T).(let TMP_3 \def +(\lambda (u2: T).(\lambda (t2: T).(let TMP_2 \def (THead k u2 t2) in (eq T t +TMP_2)))) in (let TMP_4 \def (\lambda (u2: T).(\lambda (_: T).(subst1 i v u1 +u2))) in (let TMP_6 \def (\lambda (_: T).(\lambda (t2: T).(let TMP_5 \def (s +k i) in (subst1 TMP_5 v t1 t2)))) in (ex3_2 T T TMP_3 TMP_4 TMP_6))))) in +(let TMP_10 \def (\lambda (u2: T).(\lambda (t2: T).(let TMP_8 \def (THead k +u1 t1) in (let TMP_9 \def (THead k u2 t2) in (eq T TMP_8 TMP_9))))) in (let +TMP_11 \def (\lambda (u2: T).(\lambda (_: T).(subst1 i v u1 u2))) in (let +TMP_13 \def (\lambda (_: T).(\lambda (t2: T).(let TMP_12 \def (s k i) in +(subst1 TMP_12 v t1 t2)))) in (let TMP_14 \def (THead k u1 t1) in (let TMP_15 +\def (refl_equal T TMP_14) in (let TMP_16 \def (subst1_refl i v u1) in (let +TMP_17 \def (s k i) in (let TMP_18 \def (subst1_refl TMP_17 v t1) in (let +TMP_19 \def (ex3_2_intro T T TMP_10 TMP_11 TMP_13 u1 t1 TMP_15 TMP_16 TMP_18) +in (let TMP_102 \def (\lambda (t2: T).(\lambda (H0: (subst0 i v (THead k u1 +t1) t2)).(let TMP_21 \def (\lambda (u2: T).(let TMP_20 \def (THead k u2 t1) +in (eq T t2 TMP_20))) in (let TMP_22 \def (\lambda (u2: T).(subst0 i v u1 +u2)) in (let TMP_23 \def (ex2 T TMP_21 TMP_22) in (let TMP_25 \def (\lambda +(t3: T).(let TMP_24 \def (THead k u1 t3) in (eq T t2 TMP_24))) in (let TMP_27 +\def (\lambda (t3: T).(let TMP_26 \def (s k i) in (subst0 TMP_26 v t1 t3))) +in (let TMP_28 \def (ex2 T TMP_25 TMP_27) in (let TMP_30 \def (\lambda (u2: +T).(\lambda (t3: T).(let TMP_29 \def (THead k u2 t3) in (eq T t2 TMP_29)))) +in (let TMP_31 \def (\lambda (u2: T).(\lambda (_: T).(subst0 i v u1 u2))) in +(let TMP_33 \def (\lambda (_: T).(\lambda (t3: T).(let TMP_32 \def (s k i) in +(subst0 TMP_32 v t1 t3)))) in (let TMP_34 \def (ex3_2 T T TMP_30 TMP_31 +TMP_33) in (let TMP_36 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_35 +\def (THead k u2 t3) in (eq T t2 TMP_35)))) in (let TMP_37 \def (\lambda (u2: +T).(\lambda (_: T).(subst1 i v u1 u2))) in (let TMP_39 \def (\lambda (_: +T).(\lambda (t3: T).(let TMP_38 \def (s k i) in (subst1 TMP_38 v t1 t3)))) in +(let TMP_40 \def (ex3_2 T T TMP_36 TMP_37 TMP_39) in (let TMP_59 \def +(\lambda (H1: (ex2 T (\lambda (u2: T).(eq T t2 (THead k u2 t1))) (\lambda +(u2: T).(subst0 i v u1 u2)))).(let TMP_42 \def (\lambda (u2: T).(let TMP_41 +\def (THead k u2 t1) in (eq T t2 TMP_41))) in (let TMP_43 \def (\lambda (u2: +T).(subst0 i v u1 u2)) in (let TMP_45 \def (\lambda (u2: T).(\lambda (t3: +T).(let TMP_44 \def (THead k u2 t3) in (eq T t2 TMP_44)))) in (let TMP_46 +\def (\lambda (u2: T).(\lambda (_: T).(subst1 i v u1 u2))) in (let TMP_48 +\def (\lambda (_: T).(\lambda (t3: T).(let TMP_47 \def (s k i) in (subst1 +TMP_47 v t1 t3)))) in (let TMP_49 \def (ex3_2 T T TMP_45 TMP_46 TMP_48) in +(let TMP_58 \def (\lambda (x0: T).(\lambda (H2: (eq T t2 (THead k x0 +t1))).(\lambda (H3: (subst0 i v u1 x0)).(let TMP_51 \def (\lambda (u2: +T).(\lambda (t3: T).(let TMP_50 \def (THead k u2 t3) in (eq T t2 TMP_50)))) +in (let TMP_52 \def (\lambda (u2: T).(\lambda (_: T).(subst1 i v u1 u2))) in +(let TMP_54 \def (\lambda (_: T).(\lambda (t3: T).(let TMP_53 \def (s k i) in +(subst1 TMP_53 v t1 t3)))) in (let TMP_55 \def (subst1_single i v u1 x0 H3) +in (let TMP_56 \def (s k i) in (let TMP_57 \def (subst1_refl TMP_56 v t1) in +(ex3_2_intro T T TMP_51 TMP_52 TMP_54 x0 t1 H2 TMP_55 TMP_57)))))))))) in +(ex2_ind T TMP_42 TMP_43 TMP_49 TMP_58 H1))))))))) in (let TMP_79 \def +(\lambda (H1: (ex2 T (\lambda (t3: T).(eq T t2 (THead k u1 t3))) (\lambda +(t3: T).(subst0 (s k i) v t1 t3)))).(let TMP_61 \def (\lambda (t3: T).(let +TMP_60 \def (THead k u1 t3) in (eq T t2 TMP_60))) in (let TMP_63 \def +(\lambda (t3: T).(let TMP_62 \def (s k i) in (subst0 TMP_62 v t1 t3))) in +(let TMP_65 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_64 \def (THead k +u2 t3) in (eq T t2 TMP_64)))) in (let TMP_66 \def (\lambda (u2: T).(\lambda +(_: T).(subst1 i v u1 u2))) in (let TMP_68 \def (\lambda (_: T).(\lambda (t3: +T).(let TMP_67 \def (s k i) in (subst1 TMP_67 v t1 t3)))) in (let TMP_69 \def +(ex3_2 T T TMP_65 TMP_66 TMP_68) in (let TMP_78 \def (\lambda (x0: T).(\lambda (H2: (eq T t2 (THead k u1 x0))).(\lambda (H3: (subst0 (s k i) v -t1 x0)).(ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead k -u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst1 i v u1 u2))) (\lambda (_: -T).(\lambda (t3: T).(subst1 (s k i) v t1 t3))) u1 x0 H2 (subst1_refl i v u1) -(subst1_single (s k i) v t1 x0 H3))))) H1)) (\lambda (H1: (ex3_2 T T (\lambda -(u2: T).(\lambda (t3: T).(eq T t2 (THead k u2 t3)))) (\lambda (u2: +t1 x0)).(let TMP_71 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_70 \def +(THead k u2 t3) in (eq T t2 TMP_70)))) in (let TMP_72 \def (\lambda (u2: +T).(\lambda (_: T).(subst1 i v u1 u2))) in (let TMP_74 \def (\lambda (_: +T).(\lambda (t3: T).(let TMP_73 \def (s k i) in (subst1 TMP_73 v t1 t3)))) in +(let TMP_75 \def (subst1_refl i v u1) in (let TMP_76 \def (s k i) in (let +TMP_77 \def (subst1_single TMP_76 v t1 x0 H3) in (ex3_2_intro T T TMP_71 +TMP_72 TMP_74 u1 x0 H2 TMP_75 TMP_77)))))))))) in (ex2_ind T TMP_61 TMP_63 +TMP_69 TMP_78 H1))))))))) in (let TMP_100 \def (\lambda (H1: (ex3_2 T T +(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead k u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v u1 u2))) (\lambda (_: T).(\lambda (t3: -T).(subst0 (s k i) v t1 t3))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t3: -T).(eq T t2 (THead k u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v -u1 u2))) (\lambda (_: T).(\lambda (t3: T).(subst0 (s k i) v t1 t3))) (ex3_2 T -T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead k u2 t3)))) (\lambda (u2: -T).(\lambda (_: T).(subst1 i v u1 u2))) (\lambda (_: T).(\lambda (t3: -T).(subst1 (s k i) v t1 t3)))) (\lambda (x0: T).(\lambda (x1: T).(\lambda -(H2: (eq T t2 (THead k x0 x1))).(\lambda (H3: (subst0 i v u1 x0)).(\lambda -(H4: (subst0 (s k i) v t1 x1)).(ex3_2_intro T T (\lambda (u2: T).(\lambda -(t3: T).(eq T t2 (THead k u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst1 -i v u1 u2))) (\lambda (_: T).(\lambda (t3: T).(subst1 (s k i) v t1 t3))) x0 -x1 H2 (subst1_single i v u1 x0 H3) (subst1_single (s k i) v t1 x1 H4))))))) -H1)) (subst0_gen_head k v u1 t1 t2 i H0)))) x H))))))). -(* COMMENTS -Initial nodes: 1199 -END *) +T).(subst0 (s k i) v t1 t3))))).(let TMP_81 \def (\lambda (u2: T).(\lambda +(t3: T).(let TMP_80 \def (THead k u2 t3) in (eq T t2 TMP_80)))) in (let +TMP_82 \def (\lambda (u2: T).(\lambda (_: T).(subst0 i v u1 u2))) in (let +TMP_84 \def (\lambda (_: T).(\lambda (t3: T).(let TMP_83 \def (s k i) in +(subst0 TMP_83 v t1 t3)))) in (let TMP_86 \def (\lambda (u2: T).(\lambda (t3: +T).(let TMP_85 \def (THead k u2 t3) in (eq T t2 TMP_85)))) in (let TMP_87 +\def (\lambda (u2: T).(\lambda (_: T).(subst1 i v u1 u2))) in (let TMP_89 +\def (\lambda (_: T).(\lambda (t3: T).(let TMP_88 \def (s k i) in (subst1 +TMP_88 v t1 t3)))) in (let TMP_90 \def (ex3_2 T T TMP_86 TMP_87 TMP_89) in +(let TMP_99 \def (\lambda (x0: T).(\lambda (x1: T).(\lambda (H2: (eq T t2 +(THead k x0 x1))).(\lambda (H3: (subst0 i v u1 x0)).(\lambda (H4: (subst0 (s +k i) v t1 x1)).(let TMP_92 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_91 +\def (THead k u2 t3) in (eq T t2 TMP_91)))) in (let TMP_93 \def (\lambda (u2: +T).(\lambda (_: T).(subst1 i v u1 u2))) in (let TMP_95 \def (\lambda (_: +T).(\lambda (t3: T).(let TMP_94 \def (s k i) in (subst1 TMP_94 v t1 t3)))) in +(let TMP_96 \def (subst1_single i v u1 x0 H3) in (let TMP_97 \def (s k i) in +(let TMP_98 \def (subst1_single TMP_97 v t1 x1 H4) in (ex3_2_intro T T TMP_92 +TMP_93 TMP_95 x0 x1 H2 TMP_96 TMP_98)))))))))))) in (ex3_2_ind T T TMP_81 +TMP_82 TMP_84 TMP_90 TMP_99 H1)))))))))) in (let TMP_101 \def +(subst0_gen_head k v u1 t1 t2 i H0) in (or3_ind TMP_23 TMP_28 TMP_34 TMP_40 +TMP_59 TMP_79 TMP_100 TMP_101))))))))))))))))))))) in (subst1_ind i v TMP_1 +TMP_7 TMP_19 TMP_102 x H))))))))))))))))))). theorem subst1_gen_lift_lt: \forall (u: T).(\forall (t1: T).(\forall (x: T).(\forall (i: nat).(\forall @@ -122,23 +181,35 @@ x) \to (ex2 T (\lambda (t2: T).(eq T x (lift h (S (plus i d)) t2))) (\lambda \def \lambda (u: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (i: nat).(\lambda (h: nat).(\lambda (d: nat).(\lambda (H: (subst1 i (lift h d u) (lift h (S -(plus i d)) t1) x)).(subst1_ind i (lift h d u) (lift h (S (plus i d)) t1) -(\lambda (t: T).(ex2 T (\lambda (t2: T).(eq T t (lift h (S (plus i d)) t2))) -(\lambda (t2: T).(subst1 i u t1 t2)))) (ex_intro2 T (\lambda (t2: T).(eq T -(lift h (S (plus i d)) t1) (lift h (S (plus i d)) t2))) (\lambda (t2: -T).(subst1 i u t1 t2)) t1 (refl_equal T (lift h (S (plus i d)) t1)) -(subst1_refl i u t1)) (\lambda (t2: T).(\lambda (H0: (subst0 i (lift h d u) -(lift h (S (plus i d)) t1) t2)).(ex2_ind T (\lambda (t3: T).(eq T t2 (lift h -(S (plus i d)) t3))) (\lambda (t3: T).(subst0 i u t1 t3)) (ex2 T (\lambda -(t3: T).(eq T t2 (lift h (S (plus i d)) t3))) (\lambda (t3: T).(subst1 i u t1 -t3))) (\lambda (x0: T).(\lambda (H1: (eq T t2 (lift h (S (plus i d)) -x0))).(\lambda (H2: (subst0 i u t1 x0)).(ex_intro2 T (\lambda (t3: T).(eq T -t2 (lift h (S (plus i d)) t3))) (\lambda (t3: T).(subst1 i u t1 t3)) x0 H1 -(subst1_single i u t1 x0 H2))))) (subst0_gen_lift_lt u t1 t2 i h d H0)))) x -H))))))). -(* COMMENTS -Initial nodes: 395 -END *) +(plus i d)) t1) x)).(let TMP_1 \def (lift h d u) in (let TMP_2 \def (plus i +d) in (let TMP_3 \def (S TMP_2) in (let TMP_4 \def (lift h TMP_3 t1) in (let +TMP_10 \def (\lambda (t: T).(let TMP_8 \def (\lambda (t2: T).(let TMP_5 \def +(plus i d) in (let TMP_6 \def (S TMP_5) in (let TMP_7 \def (lift h TMP_6 t2) +in (eq T t TMP_7))))) in (let TMP_9 \def (\lambda (t2: T).(subst1 i u t1 t2)) +in (ex2 T TMP_8 TMP_9)))) in (let TMP_17 \def (\lambda (t2: T).(let TMP_11 +\def (plus i d) in (let TMP_12 \def (S TMP_11) in (let TMP_13 \def (lift h +TMP_12 t1) in (let TMP_14 \def (plus i d) in (let TMP_15 \def (S TMP_14) in +(let TMP_16 \def (lift h TMP_15 t2) in (eq T TMP_13 TMP_16)))))))) in (let +TMP_18 \def (\lambda (t2: T).(subst1 i u t1 t2)) in (let TMP_19 \def (plus i +d) in (let TMP_20 \def (S TMP_19) in (let TMP_21 \def (lift h TMP_20 t1) in +(let TMP_22 \def (refl_equal T TMP_21) in (let TMP_23 \def (subst1_refl i u +t1) in (let TMP_24 \def (ex_intro2 T TMP_17 TMP_18 t1 TMP_22 TMP_23) in (let +TMP_44 \def (\lambda (t2: T).(\lambda (H0: (subst0 i (lift h d u) (lift h (S +(plus i d)) t1) t2)).(let TMP_28 \def (\lambda (t3: T).(let TMP_25 \def (plus +i d) in (let TMP_26 \def (S TMP_25) in (let TMP_27 \def (lift h TMP_26 t3) in +(eq T t2 TMP_27))))) in (let TMP_29 \def (\lambda (t3: T).(subst0 i u t1 t3)) +in (let TMP_33 \def (\lambda (t3: T).(let TMP_30 \def (plus i d) in (let +TMP_31 \def (S TMP_30) in (let TMP_32 \def (lift h TMP_31 t3) in (eq T t2 +TMP_32))))) in (let TMP_34 \def (\lambda (t3: T).(subst1 i u t1 t3)) in (let +TMP_35 \def (ex2 T TMP_33 TMP_34) in (let TMP_42 \def (\lambda (x0: +T).(\lambda (H1: (eq T t2 (lift h (S (plus i d)) x0))).(\lambda (H2: (subst0 +i u t1 x0)).(let TMP_39 \def (\lambda (t3: T).(let TMP_36 \def (plus i d) in +(let TMP_37 \def (S TMP_36) in (let TMP_38 \def (lift h TMP_37 t3) in (eq T +t2 TMP_38))))) in (let TMP_40 \def (\lambda (t3: T).(subst1 i u t1 t3)) in +(let TMP_41 \def (subst1_single i u t1 x0 H2) in (ex_intro2 T TMP_39 TMP_40 +x0 H1 TMP_41))))))) in (let TMP_43 \def (subst0_gen_lift_lt u t1 t2 i h d H0) +in (ex2_ind T TMP_28 TMP_29 TMP_35 TMP_42 TMP_43)))))))))) in (subst1_ind i +TMP_1 TMP_4 TMP_10 TMP_24 TMP_44 x H))))))))))))))))))))). theorem subst1_gen_lift_eq: \forall (t: T).(\forall (u: T).(\forall (x: T).(\forall (h: nat).(\forall @@ -147,13 +218,13 @@ theorem subst1_gen_lift_eq: \def \lambda (t: T).(\lambda (u: T).(\lambda (x: T).(\lambda (h: nat).(\lambda (d: nat).(\lambda (i: nat).(\lambda (H: (le d i)).(\lambda (H0: (lt i (plus d -h))).(\lambda (H1: (subst1 i u (lift h d t) x)).(subst1_ind i u (lift h d t) -(\lambda (t0: T).(eq T t0 (lift h d t))) (refl_equal T (lift h d t)) (\lambda -(t2: T).(\lambda (H2: (subst0 i u (lift h d t) t2)).(subst0_gen_lift_false t -u t2 h d i H H0 H2 (eq T t2 (lift h d t))))) x H1))))))))). -(* COMMENTS -Initial nodes: 141 -END *) +h))).(\lambda (H1: (subst1 i u (lift h d t) x)).(let TMP_1 \def (lift h d t) +in (let TMP_3 \def (\lambda (t0: T).(let TMP_2 \def (lift h d t) in (eq T t0 +TMP_2))) in (let TMP_4 \def (lift h d t) in (let TMP_5 \def (refl_equal T +TMP_4) in (let TMP_8 \def (\lambda (t2: T).(\lambda (H2: (subst0 i u (lift h +d t) t2)).(let TMP_6 \def (lift h d t) in (let TMP_7 \def (eq T t2 TMP_6) in +(subst0_gen_lift_false t u t2 h d i H H0 H2 TMP_7))))) in (subst1_ind i u +TMP_1 TMP_3 TMP_5 TMP_8 x H1)))))))))))))). theorem subst1_gen_lift_ge: \forall (u: T).(\forall (t1: T).(\forall (x: T).(\forall (i: nat).(\forall @@ -163,20 +234,29 @@ T).(subst1 (minus i h) u t1 t2)))))))))) \def \lambda (u: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (i: nat).(\lambda (h: nat).(\lambda (d: nat).(\lambda (H: (subst1 i u (lift h d t1) -x)).(\lambda (H0: (le (plus d h) i)).(subst1_ind i u (lift h d t1) (\lambda -(t: T).(ex2 T (\lambda (t2: T).(eq T t (lift h d t2))) (\lambda (t2: -T).(subst1 (minus i h) u t1 t2)))) (ex_intro2 T (\lambda (t2: T).(eq T (lift -h d t1) (lift h d t2))) (\lambda (t2: T).(subst1 (minus i h) u t1 t2)) t1 -(refl_equal T (lift h d t1)) (subst1_refl (minus i h) u t1)) (\lambda (t2: -T).(\lambda (H1: (subst0 i u (lift h d t1) t2)).(ex2_ind T (\lambda (t3: -T).(eq T t2 (lift h d t3))) (\lambda (t3: T).(subst0 (minus i h) u t1 t3)) -(ex2 T (\lambda (t3: T).(eq T t2 (lift h d t3))) (\lambda (t3: T).(subst1 -(minus i h) u t1 t3))) (\lambda (x0: T).(\lambda (H2: (eq T t2 (lift h d -x0))).(\lambda (H3: (subst0 (minus i h) u t1 x0)).(ex_intro2 T (\lambda (t3: -T).(eq T t2 (lift h d t3))) (\lambda (t3: T).(subst1 (minus i h) u t1 t3)) x0 -H2 (subst1_single (minus i h) u t1 x0 H3))))) (subst0_gen_lift_ge u t1 t2 i h -d H1 H0)))) x H)))))))). -(* COMMENTS -Initial nodes: 355 -END *) +x)).(\lambda (H0: (le (plus d h) i)).(let TMP_1 \def (lift h d t1) in (let +TMP_6 \def (\lambda (t: T).(let TMP_3 \def (\lambda (t2: T).(let TMP_2 \def +(lift h d t2) in (eq T t TMP_2))) in (let TMP_5 \def (\lambda (t2: T).(let +TMP_4 \def (minus i h) in (subst1 TMP_4 u t1 t2))) in (ex2 T TMP_3 TMP_5)))) +in (let TMP_9 \def (\lambda (t2: T).(let TMP_7 \def (lift h d t1) in (let +TMP_8 \def (lift h d t2) in (eq T TMP_7 TMP_8)))) in (let TMP_11 \def +(\lambda (t2: T).(let TMP_10 \def (minus i h) in (subst1 TMP_10 u t1 t2))) in +(let TMP_12 \def (lift h d t1) in (let TMP_13 \def (refl_equal T TMP_12) in +(let TMP_14 \def (minus i h) in (let TMP_15 \def (subst1_refl TMP_14 u t1) in +(let TMP_16 \def (ex_intro2 T TMP_9 TMP_11 t1 TMP_13 TMP_15) in (let TMP_34 +\def (\lambda (t2: T).(\lambda (H1: (subst0 i u (lift h d t1) t2)).(let +TMP_18 \def (\lambda (t3: T).(let TMP_17 \def (lift h d t3) in (eq T t2 +TMP_17))) in (let TMP_20 \def (\lambda (t3: T).(let TMP_19 \def (minus i h) +in (subst0 TMP_19 u t1 t3))) in (let TMP_22 \def (\lambda (t3: T).(let TMP_21 +\def (lift h d t3) in (eq T t2 TMP_21))) in (let TMP_24 \def (\lambda (t3: +T).(let TMP_23 \def (minus i h) in (subst1 TMP_23 u t1 t3))) in (let TMP_25 +\def (ex2 T TMP_22 TMP_24) in (let TMP_32 \def (\lambda (x0: T).(\lambda (H2: +(eq T t2 (lift h d x0))).(\lambda (H3: (subst0 (minus i h) u t1 x0)).(let +TMP_27 \def (\lambda (t3: T).(let TMP_26 \def (lift h d t3) in (eq T t2 +TMP_26))) in (let TMP_29 \def (\lambda (t3: T).(let TMP_28 \def (minus i h) +in (subst1 TMP_28 u t1 t3))) in (let TMP_30 \def (minus i h) in (let TMP_31 +\def (subst1_single TMP_30 u t1 x0 H3) in (ex_intro2 T TMP_27 TMP_29 x0 H2 +TMP_31)))))))) in (let TMP_33 \def (subst0_gen_lift_ge u t1 t2 i h d H1 H0) +in (ex2_ind T TMP_18 TMP_20 TMP_25 TMP_32 TMP_33)))))))))) in (subst1_ind i u +TMP_1 TMP_6 TMP_16 TMP_34 x H)))))))))))))))))). diff --git a/matita/matita/contribs/lambdadelta/basic_1/subst1/props.ma b/matita/matita/contribs/lambdadelta/basic_1/subst1/props.ma index ac8dea954..637b5017f 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/subst1/props.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/subst1/props.ma @@ -14,9 +14,9 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/subst1/defs.ma". +include "basic_1/subst1/fwd.ma". -include "Basic-1/subst0/props.ma". +include "basic_1/subst0/props.ma". theorem subst1_head: \forall (v: T).(\forall (u1: T).(\forall (u2: T).(\forall (i: nat).((subst1 @@ -24,23 +24,30 @@ i v u1 u2) \to (\forall (k: K).(\forall (t1: T).(\forall (t2: T).((subst1 (s k i) v t1 t2) \to (subst1 i v (THead k u1 t1) (THead k u2 t2)))))))))) \def \lambda (v: T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (i: nat).(\lambda -(H: (subst1 i v u1 u2)).(subst1_ind i v u1 (\lambda (t: T).(\forall (k: -K).(\forall (t1: T).(\forall (t2: T).((subst1 (s k i) v t1 t2) \to (subst1 i -v (THead k u1 t1) (THead k t t2))))))) (\lambda (k: K).(\lambda (t1: -T).(\lambda (t2: T).(\lambda (H0: (subst1 (s k i) v t1 t2)).(subst1_ind (s k -i) v t1 (\lambda (t: T).(subst1 i v (THead k u1 t1) (THead k u1 t))) -(subst1_refl i v (THead k u1 t1)) (\lambda (t3: T).(\lambda (H1: (subst0 (s k -i) v t1 t3)).(subst1_single i v (THead k u1 t1) (THead k u1 t3) (subst0_snd k -v t3 t1 i H1 u1)))) t2 H0))))) (\lambda (t2: T).(\lambda (H0: (subst0 i v u1 -t2)).(\lambda (k: K).(\lambda (t1: T).(\lambda (t0: T).(\lambda (H1: (subst1 -(s k i) v t1 t0)).(subst1_ind (s k i) v t1 (\lambda (t: T).(subst1 i v (THead -k u1 t1) (THead k t2 t))) (subst1_single i v (THead k u1 t1) (THead k t2 t1) -(subst0_fst v t2 u1 i H0 t1 k)) (\lambda (t3: T).(\lambda (H2: (subst0 (s k -i) v t1 t3)).(subst1_single i v (THead k u1 t1) (THead k t2 t3) (subst0_both -v u1 t2 i H0 k t1 t3 H2)))) t0 H1))))))) u2 H))))). -(* COMMENTS -Initial nodes: 369 -END *) +(H: (subst1 i v u1 u2)).(let TMP_3 \def (\lambda (t: T).(\forall (k: +K).(\forall (t1: T).(\forall (t2: T).((subst1 (s k i) v t1 t2) \to (let TMP_1 +\def (THead k u1 t1) in (let TMP_2 \def (THead k t t2) in (subst1 i v TMP_1 +TMP_2)))))))) in (let TMP_14 \def (\lambda (k: K).(\lambda (t1: T).(\lambda +(t2: T).(\lambda (H0: (subst1 (s k i) v t1 t2)).(let TMP_4 \def (s k i) in +(let TMP_7 \def (\lambda (t: T).(let TMP_5 \def (THead k u1 t1) in (let TMP_6 +\def (THead k u1 t) in (subst1 i v TMP_5 TMP_6)))) in (let TMP_8 \def (THead +k u1 t1) in (let TMP_9 \def (subst1_refl i v TMP_8) in (let TMP_13 \def +(\lambda (t3: T).(\lambda (H1: (subst0 (s k i) v t1 t3)).(let TMP_10 \def +(THead k u1 t1) in (let TMP_11 \def (THead k u1 t3) in (let TMP_12 \def +(subst0_snd k v t3 t1 i H1 u1) in (subst1_single i v TMP_10 TMP_11 +TMP_12)))))) in (subst1_ind TMP_4 v t1 TMP_7 TMP_9 TMP_13 t2 H0)))))))))) in +(let TMP_27 \def (\lambda (t2: T).(\lambda (H0: (subst0 i v u1 t2)).(\lambda +(k: K).(\lambda (t1: T).(\lambda (t0: T).(\lambda (H1: (subst1 (s k i) v t1 +t0)).(let TMP_15 \def (s k i) in (let TMP_18 \def (\lambda (t: T).(let TMP_16 +\def (THead k u1 t1) in (let TMP_17 \def (THead k t2 t) in (subst1 i v TMP_16 +TMP_17)))) in (let TMP_19 \def (THead k u1 t1) in (let TMP_20 \def (THead k +t2 t1) in (let TMP_21 \def (subst0_fst v t2 u1 i H0 t1 k) in (let TMP_22 \def +(subst1_single i v TMP_19 TMP_20 TMP_21) in (let TMP_26 \def (\lambda (t3: +T).(\lambda (H2: (subst0 (s k i) v t1 t3)).(let TMP_23 \def (THead k u1 t1) +in (let TMP_24 \def (THead k t2 t3) in (let TMP_25 \def (subst0_both v u1 t2 +i H0 k t1 t3 H2) in (subst1_single i v TMP_23 TMP_24 TMP_25)))))) in +(subst1_ind TMP_15 v t1 TMP_18 TMP_22 TMP_26 t0 H1)))))))))))))) in +(subst1_ind i v u1 TMP_3 TMP_14 TMP_27 u2 H)))))))). theorem subst1_lift_lt: \forall (t1: T).(\forall (t2: T).(\forall (u: T).(\forall (i: nat).((subst1 @@ -48,17 +55,20 @@ i u t1 t2) \to (\forall (d: nat).((lt i d) \to (\forall (h: nat).(subst1 i (lift h (minus d (S i)) u) (lift h d t1) (lift h d t2))))))))) \def \lambda (t1: T).(\lambda (t2: T).(\lambda (u: T).(\lambda (i: nat).(\lambda -(H: (subst1 i u t1 t2)).(subst1_ind i u t1 (\lambda (t: T).(\forall (d: -nat).((lt i d) \to (\forall (h: nat).(subst1 i (lift h (minus d (S i)) u) -(lift h d t1) (lift h d t)))))) (\lambda (d: nat).(\lambda (_: (lt i -d)).(\lambda (h: nat).(subst1_refl i (lift h (minus d (S i)) u) (lift h d -t1))))) (\lambda (t3: T).(\lambda (H0: (subst0 i u t1 t3)).(\lambda (d: -nat).(\lambda (H1: (lt i d)).(\lambda (h: nat).(subst1_single i (lift h -(minus d (S i)) u) (lift h d t1) (lift h d t3) (subst0_lift_lt t1 t3 u i H0 d -H1 h))))))) t2 H))))). -(* COMMENTS -Initial nodes: 185 -END *) +(H: (subst1 i u t1 t2)).(let TMP_6 \def (\lambda (t: T).(\forall (d: +nat).((lt i d) \to (\forall (h: nat).(let TMP_1 \def (S i) in (let TMP_2 \def +(minus d TMP_1) in (let TMP_3 \def (lift h TMP_2 u) in (let TMP_4 \def (lift +h d t1) in (let TMP_5 \def (lift h d t) in (subst1 i TMP_3 TMP_4 +TMP_5)))))))))) in (let TMP_11 \def (\lambda (d: nat).(\lambda (_: (lt i +d)).(\lambda (h: nat).(let TMP_7 \def (S i) in (let TMP_8 \def (minus d +TMP_7) in (let TMP_9 \def (lift h TMP_8 u) in (let TMP_10 \def (lift h d t1) +in (subst1_refl i TMP_9 TMP_10)))))))) in (let TMP_18 \def (\lambda (t3: +T).(\lambda (H0: (subst0 i u t1 t3)).(\lambda (d: nat).(\lambda (H1: (lt i +d)).(\lambda (h: nat).(let TMP_12 \def (S i) in (let TMP_13 \def (minus d +TMP_12) in (let TMP_14 \def (lift h TMP_13 u) in (let TMP_15 \def (lift h d +t1) in (let TMP_16 \def (lift h d t3) in (let TMP_17 \def (subst0_lift_lt t1 +t3 u i H0 d H1 h) in (subst1_single i TMP_14 TMP_15 TMP_16 TMP_17)))))))))))) +in (subst1_ind i u t1 TMP_6 TMP_11 TMP_18 t2 H)))))))). theorem subst1_lift_ge: \forall (t1: T).(\forall (t2: T).(\forall (u: T).(\forall (i: nat).(\forall @@ -66,114 +76,281 @@ theorem subst1_lift_ge: (plus i h) u (lift h d t1) (lift h d t2))))))))) \def \lambda (t1: T).(\lambda (t2: T).(\lambda (u: T).(\lambda (i: nat).(\lambda -(h: nat).(\lambda (H: (subst1 i u t1 t2)).(subst1_ind i u t1 (\lambda (t: -T).(\forall (d: nat).((le d i) \to (subst1 (plus i h) u (lift h d t1) (lift h -d t))))) (\lambda (d: nat).(\lambda (_: (le d i)).(subst1_refl (plus i h) u -(lift h d t1)))) (\lambda (t3: T).(\lambda (H0: (subst0 i u t1 t3)).(\lambda -(d: nat).(\lambda (H1: (le d i)).(subst1_single (plus i h) u (lift h d t1) -(lift h d t3) (subst0_lift_ge t1 t3 u i h H0 d H1)))))) t2 H)))))). -(* COMMENTS -Initial nodes: 157 -END *) +(h: nat).(\lambda (H: (subst1 i u t1 t2)).(let TMP_4 \def (\lambda (t: +T).(\forall (d: nat).((le d i) \to (let TMP_1 \def (plus i h) in (let TMP_2 +\def (lift h d t1) in (let TMP_3 \def (lift h d t) in (subst1 TMP_1 u TMP_2 +TMP_3))))))) in (let TMP_7 \def (\lambda (d: nat).(\lambda (_: (le d i)).(let +TMP_5 \def (plus i h) in (let TMP_6 \def (lift h d t1) in (subst1_refl TMP_5 +u TMP_6))))) in (let TMP_12 \def (\lambda (t3: T).(\lambda (H0: (subst0 i u +t1 t3)).(\lambda (d: nat).(\lambda (H1: (le d i)).(let TMP_8 \def (plus i h) +in (let TMP_9 \def (lift h d t1) in (let TMP_10 \def (lift h d t3) in (let +TMP_11 \def (subst0_lift_ge t1 t3 u i h H0 d H1) in (subst1_single TMP_8 u +TMP_9 TMP_10 TMP_11))))))))) in (subst1_ind i u t1 TMP_4 TMP_7 TMP_12 t2 +H))))))))). theorem subst1_ex: \forall (u: T).(\forall (t1: T).(\forall (d: nat).(ex T (\lambda (t2: T).(subst1 d u t1 (lift (S O) d t2)))))) \def - \lambda (u: T).(\lambda (t1: T).(T_ind (\lambda (t: T).(\forall (d: nat).(ex -T (\lambda (t2: T).(subst1 d u t (lift (S O) d t2)))))) (\lambda (n: -nat).(\lambda (d: nat).(ex_intro T (\lambda (t2: T).(subst1 d u (TSort n) -(lift (S O) d t2))) (TSort n) (eq_ind_r T (TSort n) (\lambda (t: T).(subst1 d -u (TSort n) t)) (subst1_refl d u (TSort n)) (lift (S O) d (TSort n)) -(lift_sort n (S O) d))))) (\lambda (n: nat).(\lambda (d: nat).(lt_eq_gt_e n d -(ex T (\lambda (t2: T).(subst1 d u (TLRef n) (lift (S O) d t2)))) (\lambda -(H: (lt n d)).(ex_intro T (\lambda (t2: T).(subst1 d u (TLRef n) (lift (S O) -d t2))) (TLRef n) (eq_ind_r T (TLRef n) (\lambda (t: T).(subst1 d u (TLRef n) -t)) (subst1_refl d u (TLRef n)) (lift (S O) d (TLRef n)) (lift_lref_lt n (S -O) d H)))) (\lambda (H: (eq nat n d)).(eq_ind nat n (\lambda (n0: nat).(ex T -(\lambda (t2: T).(subst1 n0 u (TLRef n) (lift (S O) n0 t2))))) (ex_intro T -(\lambda (t2: T).(subst1 n u (TLRef n) (lift (S O) n t2))) (lift n O u) -(eq_ind_r T (lift (plus (S O) n) O u) (\lambda (t: T).(subst1 n u (TLRef n) -t)) (subst1_single n u (TLRef n) (lift (S n) O u) (subst0_lref u n)) (lift (S -O) n (lift n O u)) (lift_free u n (S O) O n (le_n (plus O n)) (le_O_n n)))) d -H)) (\lambda (H: (lt d n)).(ex_intro T (\lambda (t2: T).(subst1 d u (TLRef n) -(lift (S O) d t2))) (TLRef (pred n)) (eq_ind_r T (TLRef n) (\lambda (t: -T).(subst1 d u (TLRef n) t)) (subst1_refl d u (TLRef n)) (lift (S O) d (TLRef -(pred n))) (lift_lref_gt d n H))))))) (\lambda (k: K).(\lambda (t: -T).(\lambda (H: ((\forall (d: nat).(ex T (\lambda (t2: T).(subst1 d u t (lift -(S O) d t2))))))).(\lambda (t0: T).(\lambda (H0: ((\forall (d: nat).(ex T -(\lambda (t2: T).(subst1 d u t0 (lift (S O) d t2))))))).(\lambda (d: -nat).(let H_x \def (H d) in (let H1 \def H_x in (ex_ind T (\lambda (t2: -T).(subst1 d u t (lift (S O) d t2))) (ex T (\lambda (t2: T).(subst1 d u -(THead k t t0) (lift (S O) d t2)))) (\lambda (x: T).(\lambda (H2: (subst1 d u -t (lift (S O) d x))).(let H_x0 \def (H0 (s k d)) in (let H3 \def H_x0 in -(ex_ind T (\lambda (t2: T).(subst1 (s k d) u t0 (lift (S O) (s k d) t2))) (ex -T (\lambda (t2: T).(subst1 d u (THead k t t0) (lift (S O) d t2)))) (\lambda -(x0: T).(\lambda (H4: (subst1 (s k d) u t0 (lift (S O) (s k d) -x0))).(ex_intro T (\lambda (t2: T).(subst1 d u (THead k t t0) (lift (S O) d -t2))) (THead k x x0) (eq_ind_r T (THead k (lift (S O) d x) (lift (S O) (s k -d) x0)) (\lambda (t2: T).(subst1 d u (THead k t t0) t2)) (subst1_head u t -(lift (S O) d x) d H2 k t0 (lift (S O) (s k d) x0) H4) (lift (S O) d (THead k -x x0)) (lift_head k x x0 (S O) d))))) H3))))) H1))))))))) t1)). -(* COMMENTS -Initial nodes: 925 -END *) + \lambda (u: T).(\lambda (t1: T).(let TMP_4 \def (\lambda (t: T).(\forall (d: +nat).(let TMP_3 \def (\lambda (t2: T).(let TMP_1 \def (S O) in (let TMP_2 +\def (lift TMP_1 d t2) in (subst1 d u t TMP_2)))) in (ex T TMP_3)))) in (let +TMP_21 \def (\lambda (n: nat).(\lambda (d: nat).(let TMP_8 \def (\lambda (t2: +T).(let TMP_5 \def (TSort n) in (let TMP_6 \def (S O) in (let TMP_7 \def +(lift TMP_6 d t2) in (subst1 d u TMP_5 TMP_7))))) in (let TMP_9 \def (TSort +n) in (let TMP_10 \def (TSort n) in (let TMP_12 \def (\lambda (t: T).(let +TMP_11 \def (TSort n) in (subst1 d u TMP_11 t))) in (let TMP_13 \def (TSort +n) in (let TMP_14 \def (subst1_refl d u TMP_13) in (let TMP_15 \def (S O) in +(let TMP_16 \def (TSort n) in (let TMP_17 \def (lift TMP_15 d TMP_16) in (let +TMP_18 \def (S O) in (let TMP_19 \def (lift_sort n TMP_18 d) in (let TMP_20 +\def (eq_ind_r T TMP_10 TMP_12 TMP_14 TMP_17 TMP_19) in (ex_intro T TMP_8 +TMP_9 TMP_20))))))))))))))) in (let TMP_92 \def (\lambda (n: nat).(\lambda +(d: nat).(let TMP_25 \def (\lambda (t2: T).(let TMP_22 \def (TLRef n) in (let +TMP_23 \def (S O) in (let TMP_24 \def (lift TMP_23 d t2) in (subst1 d u +TMP_22 TMP_24))))) in (let TMP_26 \def (ex T TMP_25) in (let TMP_43 \def +(\lambda (H: (lt n d)).(let TMP_30 \def (\lambda (t2: T).(let TMP_27 \def +(TLRef n) in (let TMP_28 \def (S O) in (let TMP_29 \def (lift TMP_28 d t2) in +(subst1 d u TMP_27 TMP_29))))) in (let TMP_31 \def (TLRef n) in (let TMP_32 +\def (TLRef n) in (let TMP_34 \def (\lambda (t: T).(let TMP_33 \def (TLRef n) +in (subst1 d u TMP_33 t))) in (let TMP_35 \def (TLRef n) in (let TMP_36 \def +(subst1_refl d u TMP_35) in (let TMP_37 \def (S O) in (let TMP_38 \def (TLRef +n) in (let TMP_39 \def (lift TMP_37 d TMP_38) in (let TMP_40 \def (S O) in +(let TMP_41 \def (lift_lref_lt n TMP_40 d H) in (let TMP_42 \def (eq_ind_r T +TMP_32 TMP_34 TMP_36 TMP_39 TMP_41) in (ex_intro T TMP_30 TMP_31 +TMP_42)))))))))))))) in (let TMP_73 \def (\lambda (H: (eq nat n d)).(let +TMP_48 \def (\lambda (n0: nat).(let TMP_47 \def (\lambda (t2: T).(let TMP_44 +\def (TLRef n) in (let TMP_45 \def (S O) in (let TMP_46 \def (lift TMP_45 n0 +t2) in (subst1 n0 u TMP_44 TMP_46))))) in (ex T TMP_47))) in (let TMP_52 \def +(\lambda (t2: T).(let TMP_49 \def (TLRef n) in (let TMP_50 \def (S O) in (let +TMP_51 \def (lift TMP_50 n t2) in (subst1 n u TMP_49 TMP_51))))) in (let +TMP_53 \def (lift n O u) in (let TMP_54 \def (S O) in (let TMP_55 \def (plus +TMP_54 n) in (let TMP_56 \def (lift TMP_55 O u) in (let TMP_58 \def (\lambda +(t: T).(let TMP_57 \def (TLRef n) in (subst1 n u TMP_57 t))) in (let TMP_59 +\def (TLRef n) in (let TMP_60 \def (S n) in (let TMP_61 \def (lift TMP_60 O +u) in (let TMP_62 \def (subst0_lref u n) in (let TMP_63 \def (subst1_single n +u TMP_59 TMP_61 TMP_62) in (let TMP_64 \def (S O) in (let TMP_65 \def (lift n +O u) in (let TMP_66 \def (lift TMP_64 n TMP_65) in (let TMP_67 \def (S O) in +(let TMP_68 \def (le_plus_r O n) in (let TMP_69 \def (le_O_n n) in (let +TMP_70 \def (lift_free u n TMP_67 O n TMP_68 TMP_69) in (let TMP_71 \def +(eq_ind_r T TMP_56 TMP_58 TMP_63 TMP_66 TMP_70) in (let TMP_72 \def (ex_intro +T TMP_52 TMP_53 TMP_71) in (eq_ind nat n TMP_48 TMP_72 d +H))))))))))))))))))))))) in (let TMP_91 \def (\lambda (H: (lt d n)).(let +TMP_77 \def (\lambda (t2: T).(let TMP_74 \def (TLRef n) in (let TMP_75 \def +(S O) in (let TMP_76 \def (lift TMP_75 d t2) in (subst1 d u TMP_74 +TMP_76))))) in (let TMP_78 \def (pred n) in (let TMP_79 \def (TLRef TMP_78) +in (let TMP_80 \def (TLRef n) in (let TMP_82 \def (\lambda (t: T).(let TMP_81 +\def (TLRef n) in (subst1 d u TMP_81 t))) in (let TMP_83 \def (TLRef n) in +(let TMP_84 \def (subst1_refl d u TMP_83) in (let TMP_85 \def (S O) in (let +TMP_86 \def (pred n) in (let TMP_87 \def (TLRef TMP_86) in (let TMP_88 \def +(lift TMP_85 d TMP_87) in (let TMP_89 \def (lift_lref_gt d n H) in (let +TMP_90 \def (eq_ind_r T TMP_80 TMP_82 TMP_84 TMP_88 TMP_89) in (ex_intro T +TMP_77 TMP_79 TMP_90))))))))))))))) in (lt_eq_gt_e n d TMP_26 TMP_43 TMP_73 +TMP_91)))))))) in (let TMP_139 \def (\lambda (k: K).(\lambda (t: T).(\lambda +(H: ((\forall (d: nat).(ex T (\lambda (t2: T).(subst1 d u t (lift (S O) d +t2))))))).(\lambda (t0: T).(\lambda (H0: ((\forall (d: nat).(ex T (\lambda +(t2: T).(subst1 d u t0 (lift (S O) d t2))))))).(\lambda (d: nat).(let H_x +\def (H d) in (let H1 \def H_x in (let TMP_95 \def (\lambda (t2: T).(let +TMP_93 \def (S O) in (let TMP_94 \def (lift TMP_93 d t2) in (subst1 d u t +TMP_94)))) in (let TMP_99 \def (\lambda (t2: T).(let TMP_96 \def (THead k t +t0) in (let TMP_97 \def (S O) in (let TMP_98 \def (lift TMP_97 d t2) in +(subst1 d u TMP_96 TMP_98))))) in (let TMP_100 \def (ex T TMP_99) in (let +TMP_138 \def (\lambda (x: T).(\lambda (H2: (subst1 d u t (lift (S O) d +x))).(let TMP_101 \def (s k d) in (let H_x0 \def (H0 TMP_101) in (let H3 \def +H_x0 in (let TMP_106 \def (\lambda (t2: T).(let TMP_102 \def (s k d) in (let +TMP_103 \def (S O) in (let TMP_104 \def (s k d) in (let TMP_105 \def (lift +TMP_103 TMP_104 t2) in (subst1 TMP_102 u t0 TMP_105)))))) in (let TMP_110 +\def (\lambda (t2: T).(let TMP_107 \def (THead k t t0) in (let TMP_108 \def +(S O) in (let TMP_109 \def (lift TMP_108 d t2) in (subst1 d u TMP_107 +TMP_109))))) in (let TMP_111 \def (ex T TMP_110) in (let TMP_137 \def +(\lambda (x0: T).(\lambda (H4: (subst1 (s k d) u t0 (lift (S O) (s k d) +x0))).(let TMP_115 \def (\lambda (t2: T).(let TMP_112 \def (THead k t t0) in +(let TMP_113 \def (S O) in (let TMP_114 \def (lift TMP_113 d t2) in (subst1 d +u TMP_112 TMP_114))))) in (let TMP_116 \def (THead k x x0) in (let TMP_117 +\def (S O) in (let TMP_118 \def (lift TMP_117 d x) in (let TMP_119 \def (S O) +in (let TMP_120 \def (s k d) in (let TMP_121 \def (lift TMP_119 TMP_120 x0) +in (let TMP_122 \def (THead k TMP_118 TMP_121) in (let TMP_124 \def (\lambda +(t2: T).(let TMP_123 \def (THead k t t0) in (subst1 d u TMP_123 t2))) in (let +TMP_125 \def (S O) in (let TMP_126 \def (lift TMP_125 d x) in (let TMP_127 +\def (S O) in (let TMP_128 \def (s k d) in (let TMP_129 \def (lift TMP_127 +TMP_128 x0) in (let TMP_130 \def (subst1_head u t TMP_126 d H2 k t0 TMP_129 +H4) in (let TMP_131 \def (S O) in (let TMP_132 \def (THead k x x0) in (let +TMP_133 \def (lift TMP_131 d TMP_132) in (let TMP_134 \def (S O) in (let +TMP_135 \def (lift_head k x x0 TMP_134 d) in (let TMP_136 \def (eq_ind_r T +TMP_122 TMP_124 TMP_130 TMP_133 TMP_135) in (ex_intro T TMP_115 TMP_116 +TMP_136)))))))))))))))))))))))) in (ex_ind T TMP_106 TMP_111 TMP_137 +H3)))))))))) in (ex_ind T TMP_95 TMP_100 TMP_138 H1))))))))))))) in (T_ind +TMP_4 TMP_21 TMP_92 TMP_139 t1)))))). theorem subst1_lift_S: \forall (u: T).(\forall (i: nat).(\forall (h: nat).((le h i) \to (subst1 i (TLRef h) (lift (S h) (S i) u) (lift (S h) i u))))) \def - \lambda (u: T).(T_ind (\lambda (t: T).(\forall (i: nat).(\forall (h: -nat).((le h i) \to (subst1 i (TLRef h) (lift (S h) (S i) t) (lift (S h) i -t)))))) (\lambda (n: nat).(\lambda (i: nat).(\lambda (h: nat).(\lambda (_: -(le h i)).(eq_ind_r T (TSort n) (\lambda (t: T).(subst1 i (TLRef h) t (lift -(S h) i (TSort n)))) (eq_ind_r T (TSort n) (\lambda (t: T).(subst1 i (TLRef -h) (TSort n) t)) (subst1_refl i (TLRef h) (TSort n)) (lift (S h) i (TSort n)) -(lift_sort n (S h) i)) (lift (S h) (S i) (TSort n)) (lift_sort n (S h) (S -i))))))) (\lambda (n: nat).(\lambda (i: nat).(\lambda (h: nat).(\lambda (H: -(le h i)).(lt_eq_gt_e n i (subst1 i (TLRef h) (lift (S h) (S i) (TLRef n)) -(lift (S h) i (TLRef n))) (\lambda (H0: (lt n i)).(eq_ind_r T (TLRef n) -(\lambda (t: T).(subst1 i (TLRef h) t (lift (S h) i (TLRef n)))) (eq_ind_r T -(TLRef n) (\lambda (t: T).(subst1 i (TLRef h) (TLRef n) t)) (subst1_refl i -(TLRef h) (TLRef n)) (lift (S h) i (TLRef n)) (lift_lref_lt n (S h) i H0)) -(lift (S h) (S i) (TLRef n)) (lift_lref_lt n (S h) (S i) (le_S (S n) i H0)))) -(\lambda (H0: (eq nat n i)).(let H1 \def (eq_ind_r nat i (\lambda (n0: -nat).(le h n0)) H n H0) in (eq_ind nat n (\lambda (n0: nat).(subst1 n0 (TLRef -h) (lift (S h) (S n0) (TLRef n)) (lift (S h) n0 (TLRef n)))) (eq_ind_r T -(TLRef n) (\lambda (t: T).(subst1 n (TLRef h) t (lift (S h) n (TLRef n)))) -(eq_ind_r T (TLRef (plus n (S h))) (\lambda (t: T).(subst1 n (TLRef h) (TLRef -n) t)) (eq_ind nat (S (plus n h)) (\lambda (n0: nat).(subst1 n (TLRef h) -(TLRef n) (TLRef n0))) (eq_ind_r nat (plus h n) (\lambda (n0: nat).(subst1 n -(TLRef h) (TLRef n) (TLRef (S n0)))) (eq_ind nat (plus h (S n)) (\lambda (n0: -nat).(subst1 n (TLRef h) (TLRef n) (TLRef n0))) (eq_ind T (lift (S n) O -(TLRef h)) (\lambda (t: T).(subst1 n (TLRef h) (TLRef n) t)) (subst1_single n -(TLRef h) (TLRef n) (lift (S n) O (TLRef h)) (subst0_lref (TLRef h) n)) -(TLRef (plus h (S n))) (lift_lref_ge h (S n) O (le_O_n h))) (S (plus h n)) -(sym_eq nat (S (plus h n)) (plus h (S n)) (plus_n_Sm h n))) (plus n h) -(plus_sym n h)) (plus n (S h)) (plus_n_Sm n h)) (lift (S h) n (TLRef n)) -(lift_lref_ge n (S h) n (le_n n))) (lift (S h) (S n) (TLRef n)) (lift_lref_lt -n (S h) (S n) (le_n (S n)))) i H0))) (\lambda (H0: (lt i n)).(eq_ind_r T -(TLRef (plus n (S h))) (\lambda (t: T).(subst1 i (TLRef h) t (lift (S h) i -(TLRef n)))) (eq_ind_r T (TLRef (plus n (S h))) (\lambda (t: T).(subst1 i -(TLRef h) (TLRef (plus n (S h))) t)) (subst1_refl i (TLRef h) (TLRef (plus n -(S h)))) (lift (S h) i (TLRef n)) (lift_lref_ge n (S h) i (le_S_n i n (le_S -(S i) n H0)))) (lift (S h) (S i) (TLRef n)) (lift_lref_ge n (S h) (S i) -H0)))))))) (\lambda (k: K).(\lambda (t: T).(\lambda (H: ((\forall (i: + \lambda (u: T).(let TMP_7 \def (\lambda (t: T).(\forall (i: nat).(\forall +(h: nat).((le h i) \to (let TMP_1 \def (TLRef h) in (let TMP_2 \def (S h) in +(let TMP_3 \def (S i) in (let TMP_4 \def (lift TMP_2 TMP_3 t) in (let TMP_5 +\def (S h) in (let TMP_6 \def (lift TMP_5 i t) in (subst1 i TMP_1 TMP_4 +TMP_6))))))))))) in (let TMP_34 \def (\lambda (n: nat).(\lambda (i: +nat).(\lambda (h: nat).(\lambda (_: (le h i)).(let TMP_8 \def (TSort n) in +(let TMP_13 \def (\lambda (t: T).(let TMP_9 \def (TLRef h) in (let TMP_10 +\def (S h) in (let TMP_11 \def (TSort n) in (let TMP_12 \def (lift TMP_10 i +TMP_11) in (subst1 i TMP_9 t TMP_12)))))) in (let TMP_14 \def (TSort n) in +(let TMP_17 \def (\lambda (t: T).(let TMP_15 \def (TLRef h) in (let TMP_16 +\def (TSort n) in (subst1 i TMP_15 TMP_16 t)))) in (let TMP_18 \def (TLRef h) +in (let TMP_19 \def (TSort n) in (let TMP_20 \def (subst1_refl i TMP_18 +TMP_19) in (let TMP_21 \def (S h) in (let TMP_22 \def (TSort n) in (let +TMP_23 \def (lift TMP_21 i TMP_22) in (let TMP_24 \def (S h) in (let TMP_25 +\def (lift_sort n TMP_24 i) in (let TMP_26 \def (eq_ind_r T TMP_14 TMP_17 +TMP_20 TMP_23 TMP_25) in (let TMP_27 \def (S h) in (let TMP_28 \def (S i) in +(let TMP_29 \def (TSort n) in (let TMP_30 \def (lift TMP_27 TMP_28 TMP_29) in +(let TMP_31 \def (S h) in (let TMP_32 \def (S i) in (let TMP_33 \def +(lift_sort n TMP_31 TMP_32) in (eq_ind_r T TMP_8 TMP_13 TMP_26 TMP_30 +TMP_33))))))))))))))))))))))))) in (let TMP_220 \def (\lambda (n: +nat).(\lambda (i: nat).(\lambda (h: nat).(\lambda (H: (le h i)).(let TMP_35 +\def (TLRef h) in (let TMP_36 \def (S h) in (let TMP_37 \def (S i) in (let +TMP_38 \def (TLRef n) in (let TMP_39 \def (lift TMP_36 TMP_37 TMP_38) in (let +TMP_40 \def (S h) in (let TMP_41 \def (TLRef n) in (let TMP_42 \def (lift +TMP_40 i TMP_41) in (let TMP_43 \def (subst1 i TMP_35 TMP_39 TMP_42) in (let +TMP_79 \def (\lambda (H0: (lt n i)).(let TMP_44 \def (TLRef n) in (let TMP_49 +\def (\lambda (t: T).(let TMP_45 \def (TLRef h) in (let TMP_46 \def (S h) in +(let TMP_47 \def (TLRef n) in (let TMP_48 \def (lift TMP_46 i TMP_47) in +(subst1 i TMP_45 t TMP_48)))))) in (let TMP_50 \def (TLRef n) in (let TMP_53 +\def (\lambda (t: T).(let TMP_51 \def (TLRef h) in (let TMP_52 \def (TLRef n) +in (subst1 i TMP_51 TMP_52 t)))) in (let TMP_54 \def (TLRef h) in (let TMP_55 +\def (TLRef n) in (let TMP_56 \def (subst1_refl i TMP_54 TMP_55) in (let +TMP_57 \def (S h) in (let TMP_58 \def (TLRef n) in (let TMP_59 \def (lift +TMP_57 i TMP_58) in (let TMP_60 \def (S h) in (let TMP_61 \def (lift_lref_lt +n TMP_60 i H0) in (let TMP_62 \def (eq_ind_r T TMP_50 TMP_53 TMP_56 TMP_59 +TMP_61) in (let TMP_63 \def (S h) in (let TMP_64 \def (S i) in (let TMP_65 +\def (TLRef n) in (let TMP_66 \def (lift TMP_63 TMP_64 TMP_65) in (let TMP_67 +\def (S h) in (let TMP_68 \def (S i) in (let TMP_69 \def (S n) in (let TMP_70 +\def (S i) in (let TMP_71 \def (S n) in (let TMP_72 \def (S TMP_71) in (let +TMP_73 \def (S i) in (let TMP_74 \def (S n) in (let TMP_75 \def (le_n_S +TMP_74 i H0) in (let TMP_76 \def (le_S TMP_72 TMP_73 TMP_75) in (let TMP_77 +\def (le_S_n TMP_69 TMP_70 TMP_76) in (let TMP_78 \def (lift_lref_lt n TMP_67 +TMP_68 TMP_77) in (eq_ind_r T TMP_44 TMP_49 TMP_62 TMP_66 +TMP_78))))))))))))))))))))))))))))))) in (let TMP_174 \def (\lambda (H0: (eq +nat n i)).(let TMP_80 \def (\lambda (n0: nat).(le h n0)) in (let H1 \def +(eq_ind_r nat i TMP_80 H n H0) in (let TMP_89 \def (\lambda (n0: nat).(let +TMP_81 \def (TLRef h) in (let TMP_82 \def (S h) in (let TMP_83 \def (S n0) in +(let TMP_84 \def (TLRef n) in (let TMP_85 \def (lift TMP_82 TMP_83 TMP_84) in +(let TMP_86 \def (S h) in (let TMP_87 \def (TLRef n) in (let TMP_88 \def +(lift TMP_86 n0 TMP_87) in (subst1 n0 TMP_81 TMP_85 TMP_88)))))))))) in (let +TMP_90 \def (TLRef n) in (let TMP_95 \def (\lambda (t: T).(let TMP_91 \def +(TLRef h) in (let TMP_92 \def (S h) in (let TMP_93 \def (TLRef n) in (let +TMP_94 \def (lift TMP_92 n TMP_93) in (subst1 n TMP_91 t TMP_94)))))) in (let +TMP_96 \def (S h) in (let TMP_97 \def (plus n TMP_96) in (let TMP_98 \def +(TLRef TMP_97) in (let TMP_101 \def (\lambda (t: T).(let TMP_99 \def (TLRef +h) in (let TMP_100 \def (TLRef n) in (subst1 n TMP_99 TMP_100 t)))) in (let +TMP_102 \def (plus n h) in (let TMP_103 \def (S TMP_102) in (let TMP_107 \def +(\lambda (n0: nat).(let TMP_104 \def (TLRef h) in (let TMP_105 \def (TLRef n) +in (let TMP_106 \def (TLRef n0) in (subst1 n TMP_104 TMP_105 TMP_106))))) in +(let TMP_108 \def (plus h n) in (let TMP_113 \def (\lambda (n0: nat).(let +TMP_109 \def (TLRef h) in (let TMP_110 \def (TLRef n) in (let TMP_111 \def (S +n0) in (let TMP_112 \def (TLRef TMP_111) in (subst1 n TMP_109 TMP_110 +TMP_112)))))) in (let TMP_114 \def (S n) in (let TMP_115 \def (plus h +TMP_114) in (let TMP_119 \def (\lambda (n0: nat).(let TMP_116 \def (TLRef h) +in (let TMP_117 \def (TLRef n) in (let TMP_118 \def (TLRef n0) in (subst1 n +TMP_116 TMP_117 TMP_118))))) in (let TMP_120 \def (S n) in (let TMP_121 \def +(TLRef h) in (let TMP_122 \def (lift TMP_120 O TMP_121) in (let TMP_125 \def +(\lambda (t: T).(let TMP_123 \def (TLRef h) in (let TMP_124 \def (TLRef n) in +(subst1 n TMP_123 TMP_124 t)))) in (let TMP_126 \def (TLRef h) in (let +TMP_127 \def (TLRef n) in (let TMP_128 \def (S n) in (let TMP_129 \def (TLRef +h) in (let TMP_130 \def (lift TMP_128 O TMP_129) in (let TMP_131 \def (TLRef +h) in (let TMP_132 \def (subst0_lref TMP_131 n) in (let TMP_133 \def +(subst1_single n TMP_126 TMP_127 TMP_130 TMP_132) in (let TMP_134 \def (S n) +in (let TMP_135 \def (plus h TMP_134) in (let TMP_136 \def (TLRef TMP_135) in +(let TMP_137 \def (S n) in (let TMP_138 \def (le_O_n h) in (let TMP_139 \def +(lift_lref_ge h TMP_137 O TMP_138) in (let TMP_140 \def (eq_ind T TMP_122 +TMP_125 TMP_133 TMP_136 TMP_139) in (let TMP_141 \def (plus h n) in (let +TMP_142 \def (S TMP_141) in (let TMP_143 \def (plus h n) in (let TMP_144 \def +(S TMP_143) in (let TMP_145 \def (S n) in (let TMP_146 \def (plus h TMP_145) +in (let TMP_147 \def (plus_n_Sm h n) in (let TMP_148 \def (sym_eq nat TMP_144 +TMP_146 TMP_147) in (let TMP_149 \def (eq_ind nat TMP_115 TMP_119 TMP_140 +TMP_142 TMP_148) in (let TMP_150 \def (plus n h) in (let TMP_151 \def +(plus_sym n h) in (let TMP_152 \def (eq_ind_r nat TMP_108 TMP_113 TMP_149 +TMP_150 TMP_151) in (let TMP_153 \def (S h) in (let TMP_154 \def (plus n +TMP_153) in (let TMP_155 \def (plus_n_Sm n h) in (let TMP_156 \def (eq_ind +nat TMP_103 TMP_107 TMP_152 TMP_154 TMP_155) in (let TMP_157 \def (S h) in +(let TMP_158 \def (TLRef n) in (let TMP_159 \def (lift TMP_157 n TMP_158) in +(let TMP_160 \def (S h) in (let TMP_161 \def (le_n n) in (let TMP_162 \def +(lift_lref_ge n TMP_160 n TMP_161) in (let TMP_163 \def (eq_ind_r T TMP_98 +TMP_101 TMP_156 TMP_159 TMP_162) in (let TMP_164 \def (S h) in (let TMP_165 +\def (S n) in (let TMP_166 \def (TLRef n) in (let TMP_167 \def (lift TMP_164 +TMP_165 TMP_166) in (let TMP_168 \def (S h) in (let TMP_169 \def (S n) in +(let TMP_170 \def (S n) in (let TMP_171 \def (le_n TMP_170) in (let TMP_172 +\def (lift_lref_lt n TMP_168 TMP_169 TMP_171) in (let TMP_173 \def (eq_ind_r +T TMP_90 TMP_95 TMP_163 TMP_167 TMP_172) in (eq_ind nat n TMP_89 TMP_173 i +H0))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) in +(let TMP_219 \def (\lambda (H0: (lt i n)).(let TMP_175 \def (S h) in (let +TMP_176 \def (plus n TMP_175) in (let TMP_177 \def (TLRef TMP_176) in (let +TMP_182 \def (\lambda (t: T).(let TMP_178 \def (TLRef h) in (let TMP_179 \def +(S h) in (let TMP_180 \def (TLRef n) in (let TMP_181 \def (lift TMP_179 i +TMP_180) in (subst1 i TMP_178 t TMP_181)))))) in (let TMP_183 \def (S h) in +(let TMP_184 \def (plus n TMP_183) in (let TMP_185 \def (TLRef TMP_184) in +(let TMP_190 \def (\lambda (t: T).(let TMP_186 \def (TLRef h) in (let TMP_187 +\def (S h) in (let TMP_188 \def (plus n TMP_187) in (let TMP_189 \def (TLRef +TMP_188) in (subst1 i TMP_186 TMP_189 t)))))) in (let TMP_191 \def (TLRef h) +in (let TMP_192 \def (S h) in (let TMP_193 \def (plus n TMP_192) in (let +TMP_194 \def (TLRef TMP_193) in (let TMP_195 \def (subst1_refl i TMP_191 +TMP_194) in (let TMP_196 \def (S h) in (let TMP_197 \def (TLRef n) in (let +TMP_198 \def (lift TMP_196 i TMP_197) in (let TMP_199 \def (S h) in (let +TMP_200 \def (S i) in (let TMP_201 \def (S n) in (let TMP_202 \def (S i) in +(let TMP_203 \def (S TMP_202) in (let TMP_204 \def (S n) in (let TMP_205 \def +(S i) in (let TMP_206 \def (le_n_S TMP_205 n H0) in (let TMP_207 \def (le_S +TMP_203 TMP_204 TMP_206) in (let TMP_208 \def (le_S_n TMP_200 TMP_201 +TMP_207) in (let TMP_209 \def (le_S_n i n TMP_208) in (let TMP_210 \def +(lift_lref_ge n TMP_199 i TMP_209) in (let TMP_211 \def (eq_ind_r T TMP_185 +TMP_190 TMP_195 TMP_198 TMP_210) in (let TMP_212 \def (S h) in (let TMP_213 +\def (S i) in (let TMP_214 \def (TLRef n) in (let TMP_215 \def (lift TMP_212 +TMP_213 TMP_214) in (let TMP_216 \def (S h) in (let TMP_217 \def (S i) in +(let TMP_218 \def (lift_lref_ge n TMP_216 TMP_217 H0) in (eq_ind_r T TMP_177 +TMP_182 TMP_211 TMP_215 TMP_218)))))))))))))))))))))))))))))))))))))) in +(lt_eq_gt_e n i TMP_43 TMP_79 TMP_174 TMP_219))))))))))))))))) in (let +TMP_297 \def (\lambda (k: K).(\lambda (t: T).(\lambda (H: ((\forall (i: nat).(\forall (h: nat).((le h i) \to (subst1 i (TLRef h) (lift (S h) (S i) t) (lift (S h) i t))))))).(\lambda (t0: T).(\lambda (H0: ((\forall (i: nat).(\forall (h: nat).((le h i) \to (subst1 i (TLRef h) (lift (S h) (S i) t0) (lift (S h) i t0))))))).(\lambda (i: nat).(\lambda (h: nat).(\lambda (H1: -(le h i)).(eq_ind_r T (THead k (lift (S h) (S i) t) (lift (S h) (s k (S i)) -t0)) (\lambda (t1: T).(subst1 i (TLRef h) t1 (lift (S h) i (THead k t t0)))) -(eq_ind_r T (THead k (lift (S h) i t) (lift (S h) (s k i) t0)) (\lambda (t1: -T).(subst1 i (TLRef h) (THead k (lift (S h) (S i) t) (lift (S h) (s k (S i)) -t0)) t1)) (subst1_head (TLRef h) (lift (S h) (S i) t) (lift (S h) i t) i (H i -h H1) k (lift (S h) (s k (S i)) t0) (lift (S h) (s k i) t0) (eq_ind_r nat (S -(s k i)) (\lambda (n: nat).(subst1 (s k i) (TLRef h) (lift (S h) n t0) (lift -(S h) (s k i) t0))) (H0 (s k i) h (le_trans h i (s k i) H1 (s_inc k i))) (s k -(S i)) (s_S k i))) (lift (S h) i (THead k t t0)) (lift_head k t t0 (S h) i)) -(lift (S h) (S i) (THead k t t0)) (lift_head k t t0 (S h) (S i))))))))))) u). -(* COMMENTS -Initial nodes: 1421 -END *) +(le h i)).(let TMP_221 \def (S h) in (let TMP_222 \def (S i) in (let TMP_223 +\def (lift TMP_221 TMP_222 t) in (let TMP_224 \def (S h) in (let TMP_225 \def +(S i) in (let TMP_226 \def (s k TMP_225) in (let TMP_227 \def (lift TMP_224 +TMP_226 t0) in (let TMP_228 \def (THead k TMP_223 TMP_227) in (let TMP_233 +\def (\lambda (t1: T).(let TMP_229 \def (TLRef h) in (let TMP_230 \def (S h) +in (let TMP_231 \def (THead k t t0) in (let TMP_232 \def (lift TMP_230 i +TMP_231) in (subst1 i TMP_229 t1 TMP_232)))))) in (let TMP_234 \def (S h) in +(let TMP_235 \def (lift TMP_234 i t) in (let TMP_236 \def (S h) in (let +TMP_237 \def (s k i) in (let TMP_238 \def (lift TMP_236 TMP_237 t0) in (let +TMP_239 \def (THead k TMP_235 TMP_238) in (let TMP_249 \def (\lambda (t1: +T).(let TMP_240 \def (TLRef h) in (let TMP_241 \def (S h) in (let TMP_242 +\def (S i) in (let TMP_243 \def (lift TMP_241 TMP_242 t) in (let TMP_244 \def +(S h) in (let TMP_245 \def (S i) in (let TMP_246 \def (s k TMP_245) in (let +TMP_247 \def (lift TMP_244 TMP_246 t0) in (let TMP_248 \def (THead k TMP_243 +TMP_247) in (subst1 i TMP_240 TMP_248 t1))))))))))) in (let TMP_250 \def +(TLRef h) in (let TMP_251 \def (S h) in (let TMP_252 \def (S i) in (let +TMP_253 \def (lift TMP_251 TMP_252 t) in (let TMP_254 \def (S h) in (let +TMP_255 \def (lift TMP_254 i t) in (let TMP_256 \def (H i h H1) in (let +TMP_257 \def (S h) in (let TMP_258 \def (S i) in (let TMP_259 \def (s k +TMP_258) in (let TMP_260 \def (lift TMP_257 TMP_259 t0) in (let TMP_261 \def +(S h) in (let TMP_262 \def (s k i) in (let TMP_263 \def (lift TMP_261 TMP_262 +t0) in (let TMP_264 \def (s k i) in (let TMP_265 \def (S TMP_264) in (let +TMP_273 \def (\lambda (n: nat).(let TMP_266 \def (s k i) in (let TMP_267 \def +(TLRef h) in (let TMP_268 \def (S h) in (let TMP_269 \def (lift TMP_268 n t0) +in (let TMP_270 \def (S h) in (let TMP_271 \def (s k i) in (let TMP_272 \def +(lift TMP_270 TMP_271 t0) in (subst1 TMP_266 TMP_267 TMP_269 TMP_272))))))))) +in (let TMP_274 \def (s k i) in (let TMP_275 \def (s k i) in (let TMP_276 +\def (s_inc k i) in (let TMP_277 \def (le_trans h i TMP_275 H1 TMP_276) in +(let TMP_278 \def (H0 TMP_274 h TMP_277) in (let TMP_279 \def (S i) in (let +TMP_280 \def (s k TMP_279) in (let TMP_281 \def (s_S k i) in (let TMP_282 +\def (eq_ind_r nat TMP_265 TMP_273 TMP_278 TMP_280 TMP_281) in (let TMP_283 +\def (subst1_head TMP_250 TMP_253 TMP_255 i TMP_256 k TMP_260 TMP_263 +TMP_282) in (let TMP_284 \def (S h) in (let TMP_285 \def (THead k t t0) in +(let TMP_286 \def (lift TMP_284 i TMP_285) in (let TMP_287 \def (S h) in (let +TMP_288 \def (lift_head k t t0 TMP_287 i) in (let TMP_289 \def (eq_ind_r T +TMP_239 TMP_249 TMP_283 TMP_286 TMP_288) in (let TMP_290 \def (S h) in (let +TMP_291 \def (S i) in (let TMP_292 \def (THead k t t0) in (let TMP_293 \def +(lift TMP_290 TMP_291 TMP_292) in (let TMP_294 \def (S h) in (let TMP_295 +\def (S i) in (let TMP_296 \def (lift_head k t t0 TMP_294 TMP_295) in +(eq_ind_r T TMP_228 TMP_233 TMP_289 TMP_293 +TMP_296))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) in +(T_ind TMP_7 TMP_34 TMP_220 TMP_297 u))))). diff --git a/matita/matita/contribs/lambdadelta/basic_1/subst1/subst1.ma b/matita/matita/contribs/lambdadelta/basic_1/subst1/subst1.ma index e6dae0dc9..3338dcad9 100644 --- a/matita/matita/contribs/lambdadelta/basic_1/subst1/subst1.ma +++ b/matita/matita/contribs/lambdadelta/basic_1/subst1/subst1.ma @@ -14,9 +14,9 @@ (* This file was automatically generated: do not edit *********************) -include "Basic-1/subst1/fwd.ma". +include "basic_1/subst1/fwd.ma". -include "Basic-1/subst0/subst0.ma". +include "basic_1/subst0/subst0.ma". theorem subst1_subst1: \forall (t1: T).(\forall (t2: T).(\forall (u2: T).(\forall (j: nat).((subst1 @@ -25,36 +25,56 @@ u u1 u2) \to (ex2 T (\lambda (t: T).(subst1 j u1 t1 t)) (\lambda (t: T).(subst1 (S (plus i j)) u t t2))))))))))) \def \lambda (t1: T).(\lambda (t2: T).(\lambda (u2: T).(\lambda (j: nat).(\lambda -(H: (subst1 j u2 t1 t2)).(subst1_ind j u2 t1 (\lambda (t: T).(\forall (u1: -T).(\forall (u: T).(\forall (i: nat).((subst1 i u u1 u2) \to (ex2 T (\lambda -(t0: T).(subst1 j u1 t1 t0)) (\lambda (t0: T).(subst1 (S (plus i j)) u t0 -t)))))))) (\lambda (u1: T).(\lambda (u: T).(\lambda (i: nat).(\lambda (_: -(subst1 i u u1 u2)).(ex_intro2 T (\lambda (t: T).(subst1 j u1 t1 t)) (\lambda -(t: T).(subst1 (S (plus i j)) u t t1)) t1 (subst1_refl j u1 t1) (subst1_refl -(S (plus i j)) u t1)))))) (\lambda (t3: T).(\lambda (H0: (subst0 j u2 t1 -t3)).(\lambda (u1: T).(\lambda (u: T).(\lambda (i: nat).(\lambda (H1: (subst1 -i u u1 u2)).(insert_eq T u2 (\lambda (t: T).(subst1 i u u1 t)) (\lambda (_: -T).(ex2 T (\lambda (t0: T).(subst1 j u1 t1 t0)) (\lambda (t0: T).(subst1 (S -(plus i j)) u t0 t3)))) (\lambda (y: T).(\lambda (H2: (subst1 i u u1 -y)).(subst1_ind i u u1 (\lambda (t: T).((eq T t u2) \to (ex2 T (\lambda (t0: -T).(subst1 j u1 t1 t0)) (\lambda (t0: T).(subst1 (S (plus i j)) u t0 t3))))) -(\lambda (H3: (eq T u1 u2)).(eq_ind_r T u2 (\lambda (t: T).(ex2 T (\lambda -(t0: T).(subst1 j t t1 t0)) (\lambda (t0: T).(subst1 (S (plus i j)) u t0 -t3)))) (ex_intro2 T (\lambda (t: T).(subst1 j u2 t1 t)) (\lambda (t: -T).(subst1 (S (plus i j)) u t t3)) t3 (subst1_single j u2 t1 t3 H0) -(subst1_refl (S (plus i j)) u t3)) u1 H3)) (\lambda (t0: T).(\lambda (H3: -(subst0 i u u1 t0)).(\lambda (H4: (eq T t0 u2)).(let H5 \def (eq_ind T t0 -(\lambda (t: T).(subst0 i u u1 t)) H3 u2 H4) in (ex2_ind T (\lambda (t: -T).(subst0 j u1 t1 t)) (\lambda (t: T).(subst0 (S (plus i j)) u t t3)) (ex2 T -(\lambda (t: T).(subst1 j u1 t1 t)) (\lambda (t: T).(subst1 (S (plus i j)) u -t t3))) (\lambda (x: T).(\lambda (H6: (subst0 j u1 t1 x)).(\lambda (H7: -(subst0 (S (plus i j)) u x t3)).(ex_intro2 T (\lambda (t: T).(subst1 j u1 t1 -t)) (\lambda (t: T).(subst1 (S (plus i j)) u t t3)) x (subst1_single j u1 t1 -x H6) (subst1_single (S (plus i j)) u x t3 H7))))) (subst0_subst0 t1 t3 u2 j -H0 u1 u i H5)))))) y H2))) H1))))))) t2 H))))). -(* COMMENTS -Initial nodes: 649 -END *) +(H: (subst1 j u2 t1 t2)).(let TMP_5 \def (\lambda (t: T).(\forall (u1: +T).(\forall (u: T).(\forall (i: nat).((subst1 i u u1 u2) \to (let TMP_1 \def +(\lambda (t0: T).(subst1 j u1 t1 t0)) in (let TMP_4 \def (\lambda (t0: +T).(let TMP_2 \def (plus i j) in (let TMP_3 \def (S TMP_2) in (subst1 TMP_3 u +t0 t)))) in (ex2 T TMP_1 TMP_4)))))))) in (let TMP_14 \def (\lambda (u1: +T).(\lambda (u: T).(\lambda (i: nat).(\lambda (_: (subst1 i u u1 u2)).(let +TMP_6 \def (\lambda (t: T).(subst1 j u1 t1 t)) in (let TMP_9 \def (\lambda +(t: T).(let TMP_7 \def (plus i j) in (let TMP_8 \def (S TMP_7) in (subst1 +TMP_8 u t t1)))) in (let TMP_10 \def (subst1_refl j u1 t1) in (let TMP_11 +\def (plus i j) in (let TMP_12 \def (S TMP_11) in (let TMP_13 \def +(subst1_refl TMP_12 u t1) in (ex_intro2 T TMP_6 TMP_9 t1 TMP_10 +TMP_13))))))))))) in (let TMP_63 \def (\lambda (t3: T).(\lambda (H0: (subst0 +j u2 t1 t3)).(\lambda (u1: T).(\lambda (u: T).(\lambda (i: nat).(\lambda (H1: +(subst1 i u u1 u2)).(let TMP_15 \def (\lambda (t: T).(subst1 i u u1 t)) in +(let TMP_20 \def (\lambda (_: T).(let TMP_16 \def (\lambda (t0: T).(subst1 j +u1 t1 t0)) in (let TMP_19 \def (\lambda (t0: T).(let TMP_17 \def (plus i j) +in (let TMP_18 \def (S TMP_17) in (subst1 TMP_18 u t0 t3)))) in (ex2 T TMP_16 +TMP_19)))) in (let TMP_62 \def (\lambda (y: T).(\lambda (H2: (subst1 i u u1 +y)).(let TMP_25 \def (\lambda (t: T).((eq T t u2) \to (let TMP_21 \def +(\lambda (t0: T).(subst1 j u1 t1 t0)) in (let TMP_24 \def (\lambda (t0: +T).(let TMP_22 \def (plus i j) in (let TMP_23 \def (S TMP_22) in (subst1 +TMP_23 u t0 t3)))) in (ex2 T TMP_21 TMP_24))))) in (let TMP_40 \def (\lambda +(H3: (eq T u1 u2)).(let TMP_30 \def (\lambda (t: T).(let TMP_26 \def (\lambda +(t0: T).(subst1 j t t1 t0)) in (let TMP_29 \def (\lambda (t0: T).(let TMP_27 +\def (plus i j) in (let TMP_28 \def (S TMP_27) in (subst1 TMP_28 u t0 t3)))) +in (ex2 T TMP_26 TMP_29)))) in (let TMP_31 \def (\lambda (t: T).(subst1 j u2 +t1 t)) in (let TMP_34 \def (\lambda (t: T).(let TMP_32 \def (plus i j) in +(let TMP_33 \def (S TMP_32) in (subst1 TMP_33 u t t3)))) in (let TMP_35 \def +(subst1_single j u2 t1 t3 H0) in (let TMP_36 \def (plus i j) in (let TMP_37 +\def (S TMP_36) in (let TMP_38 \def (subst1_refl TMP_37 u t3) in (let TMP_39 +\def (ex_intro2 T TMP_31 TMP_34 t3 TMP_35 TMP_38) in (eq_ind_r T u2 TMP_30 +TMP_39 u1 H3)))))))))) in (let TMP_61 \def (\lambda (t0: T).(\lambda (H3: +(subst0 i u u1 t0)).(\lambda (H4: (eq T t0 u2)).(let TMP_41 \def (\lambda (t: +T).(subst0 i u u1 t)) in (let H5 \def (eq_ind T t0 TMP_41 H3 u2 H4) in (let +TMP_42 \def (\lambda (t: T).(subst0 j u1 t1 t)) in (let TMP_45 \def (\lambda +(t: T).(let TMP_43 \def (plus i j) in (let TMP_44 \def (S TMP_43) in (subst0 +TMP_44 u t t3)))) in (let TMP_46 \def (\lambda (t: T).(subst1 j u1 t1 t)) in +(let TMP_49 \def (\lambda (t: T).(let TMP_47 \def (plus i j) in (let TMP_48 +\def (S TMP_47) in (subst1 TMP_48 u t t3)))) in (let TMP_50 \def (ex2 T +TMP_46 TMP_49) in (let TMP_59 \def (\lambda (x: T).(\lambda (H6: (subst0 j u1 +t1 x)).(\lambda (H7: (subst0 (S (plus i j)) u x t3)).(let TMP_51 \def +(\lambda (t: T).(subst1 j u1 t1 t)) in (let TMP_54 \def (\lambda (t: T).(let +TMP_52 \def (plus i j) in (let TMP_53 \def (S TMP_52) in (subst1 TMP_53 u t +t3)))) in (let TMP_55 \def (subst1_single j u1 t1 x H6) in (let TMP_56 \def +(plus i j) in (let TMP_57 \def (S TMP_56) in (let TMP_58 \def (subst1_single +TMP_57 u x t3 H7) in (ex_intro2 T TMP_51 TMP_54 x TMP_55 TMP_58)))))))))) in +(let TMP_60 \def (subst0_subst0 t1 t3 u2 j H0 u1 u i H5) in (ex2_ind T TMP_42 +TMP_45 TMP_50 TMP_59 TMP_60))))))))))))) in (subst1_ind i u u1 TMP_25 TMP_40 +TMP_61 y H2)))))) in (insert_eq T u2 TMP_15 TMP_20 TMP_62 H1)))))))))) in +(subst1_ind j u2 t1 TMP_5 TMP_14 TMP_63 t2 H)))))))). theorem subst1_subst1_back: \forall (t1: T).(\forall (t2: T).(\forall (u2: T).(\forall (j: nat).((subst1 @@ -63,29 +83,45 @@ u u2 u1) \to (ex2 T (\lambda (t: T).(subst1 j u1 t1 t)) (\lambda (t: T).(subst1 (S (plus i j)) u t2 t))))))))))) \def \lambda (t1: T).(\lambda (t2: T).(\lambda (u2: T).(\lambda (j: nat).(\lambda -(H: (subst1 j u2 t1 t2)).(subst1_ind j u2 t1 (\lambda (t: T).(\forall (u1: -T).(\forall (u: T).(\forall (i: nat).((subst1 i u u2 u1) \to (ex2 T (\lambda -(t0: T).(subst1 j u1 t1 t0)) (\lambda (t0: T).(subst1 (S (plus i j)) u t -t0)))))))) (\lambda (u1: T).(\lambda (u: T).(\lambda (i: nat).(\lambda (_: -(subst1 i u u2 u1)).(ex_intro2 T (\lambda (t: T).(subst1 j u1 t1 t)) (\lambda -(t: T).(subst1 (S (plus i j)) u t1 t)) t1 (subst1_refl j u1 t1) (subst1_refl -(S (plus i j)) u t1)))))) (\lambda (t3: T).(\lambda (H0: (subst0 j u2 t1 -t3)).(\lambda (u1: T).(\lambda (u: T).(\lambda (i: nat).(\lambda (H1: (subst1 -i u u2 u1)).(subst1_ind i u u2 (\lambda (t: T).(ex2 T (\lambda (t0: -T).(subst1 j t t1 t0)) (\lambda (t0: T).(subst1 (S (plus i j)) u t3 t0)))) -(ex_intro2 T (\lambda (t: T).(subst1 j u2 t1 t)) (\lambda (t: T).(subst1 (S -(plus i j)) u t3 t)) t3 (subst1_single j u2 t1 t3 H0) (subst1_refl (S (plus i -j)) u t3)) (\lambda (t0: T).(\lambda (H2: (subst0 i u u2 t0)).(ex2_ind T -(\lambda (t: T).(subst0 j t0 t1 t)) (\lambda (t: T).(subst0 (S (plus i j)) u -t3 t)) (ex2 T (\lambda (t: T).(subst1 j t0 t1 t)) (\lambda (t: T).(subst1 (S -(plus i j)) u t3 t))) (\lambda (x: T).(\lambda (H3: (subst0 j t0 t1 -x)).(\lambda (H4: (subst0 (S (plus i j)) u t3 x)).(ex_intro2 T (\lambda (t: -T).(subst1 j t0 t1 t)) (\lambda (t: T).(subst1 (S (plus i j)) u t3 t)) x -(subst1_single j t0 t1 x H3) (subst1_single (S (plus i j)) u t3 x H4))))) -(subst0_subst0_back t1 t3 u2 j H0 t0 u i H2)))) u1 H1))))))) t2 H))))). -(* COMMENTS -Initial nodes: 487 -END *) +(H: (subst1 j u2 t1 t2)).(let TMP_5 \def (\lambda (t: T).(\forall (u1: +T).(\forall (u: T).(\forall (i: nat).((subst1 i u u2 u1) \to (let TMP_1 \def +(\lambda (t0: T).(subst1 j u1 t1 t0)) in (let TMP_4 \def (\lambda (t0: +T).(let TMP_2 \def (plus i j) in (let TMP_3 \def (S TMP_2) in (subst1 TMP_3 u +t t0)))) in (ex2 T TMP_1 TMP_4)))))))) in (let TMP_14 \def (\lambda (u1: +T).(\lambda (u: T).(\lambda (i: nat).(\lambda (_: (subst1 i u u2 u1)).(let +TMP_6 \def (\lambda (t: T).(subst1 j u1 t1 t)) in (let TMP_9 \def (\lambda +(t: T).(let TMP_7 \def (plus i j) in (let TMP_8 \def (S TMP_7) in (subst1 +TMP_8 u t1 t)))) in (let TMP_10 \def (subst1_refl j u1 t1) in (let TMP_11 +\def (plus i j) in (let TMP_12 \def (S TMP_11) in (let TMP_13 \def +(subst1_refl TMP_12 u t1) in (ex_intro2 T TMP_6 TMP_9 t1 TMP_10 +TMP_13))))))))))) in (let TMP_49 \def (\lambda (t3: T).(\lambda (H0: (subst0 +j u2 t1 t3)).(\lambda (u1: T).(\lambda (u: T).(\lambda (i: nat).(\lambda (H1: +(subst1 i u u2 u1)).(let TMP_19 \def (\lambda (t: T).(let TMP_15 \def +(\lambda (t0: T).(subst1 j t t1 t0)) in (let TMP_18 \def (\lambda (t0: +T).(let TMP_16 \def (plus i j) in (let TMP_17 \def (S TMP_16) in (subst1 +TMP_17 u t3 t0)))) in (ex2 T TMP_15 TMP_18)))) in (let TMP_20 \def (\lambda +(t: T).(subst1 j u2 t1 t)) in (let TMP_23 \def (\lambda (t: T).(let TMP_21 +\def (plus i j) in (let TMP_22 \def (S TMP_21) in (subst1 TMP_22 u t3 t)))) +in (let TMP_24 \def (subst1_single j u2 t1 t3 H0) in (let TMP_25 \def (plus i +j) in (let TMP_26 \def (S TMP_25) in (let TMP_27 \def (subst1_refl TMP_26 u +t3) in (let TMP_28 \def (ex_intro2 T TMP_20 TMP_23 t3 TMP_24 TMP_27) in (let +TMP_48 \def (\lambda (t0: T).(\lambda (H2: (subst0 i u u2 t0)).(let TMP_29 +\def (\lambda (t: T).(subst0 j t0 t1 t)) in (let TMP_32 \def (\lambda (t: +T).(let TMP_30 \def (plus i j) in (let TMP_31 \def (S TMP_30) in (subst0 +TMP_31 u t3 t)))) in (let TMP_33 \def (\lambda (t: T).(subst1 j t0 t1 t)) in +(let TMP_36 \def (\lambda (t: T).(let TMP_34 \def (plus i j) in (let TMP_35 +\def (S TMP_34) in (subst1 TMP_35 u t3 t)))) in (let TMP_37 \def (ex2 T +TMP_33 TMP_36) in (let TMP_46 \def (\lambda (x: T).(\lambda (H3: (subst0 j t0 +t1 x)).(\lambda (H4: (subst0 (S (plus i j)) u t3 x)).(let TMP_38 \def +(\lambda (t: T).(subst1 j t0 t1 t)) in (let TMP_41 \def (\lambda (t: T).(let +TMP_39 \def (plus i j) in (let TMP_40 \def (S TMP_39) in (subst1 TMP_40 u t3 +t)))) in (let TMP_42 \def (subst1_single j t0 t1 x H3) in (let TMP_43 \def +(plus i j) in (let TMP_44 \def (S TMP_43) in (let TMP_45 \def (subst1_single +TMP_44 u t3 x H4) in (ex_intro2 T TMP_38 TMP_41 x TMP_42 TMP_45)))))))))) in +(let TMP_47 \def (subst0_subst0_back t1 t3 u2 j H0 t0 u i H2) in (ex2_ind T +TMP_29 TMP_32 TMP_37 TMP_46 TMP_47)))))))))) in (subst1_ind i u u2 TMP_19 +TMP_28 TMP_48 u1 H1)))))))))))))))) in (subst1_ind j u2 t1 TMP_5 TMP_14 +TMP_49 t2 H)))))))). theorem subst1_trans: \forall (t2: T).(\forall (t1: T).(\forall (v: T).(\forall (i: nat).((subst1 @@ -93,16 +129,16 @@ i v t1 t2) \to (\forall (t3: T).((subst1 i v t2 t3) \to (subst1 i v t1 t3))))))) \def \lambda (t2: T).(\lambda (t1: T).(\lambda (v: T).(\lambda (i: nat).(\lambda -(H: (subst1 i v t1 t2)).(subst1_ind i v t1 (\lambda (t: T).(\forall (t3: -T).((subst1 i v t t3) \to (subst1 i v t1 t3)))) (\lambda (t3: T).(\lambda -(H0: (subst1 i v t1 t3)).H0)) (\lambda (t3: T).(\lambda (H0: (subst0 i v t1 -t3)).(\lambda (t4: T).(\lambda (H1: (subst1 i v t3 t4)).(subst1_ind i v t3 -(\lambda (t: T).(subst1 i v t1 t)) (subst1_single i v t1 t3 H0) (\lambda (t0: -T).(\lambda (H2: (subst0 i v t3 t0)).(subst1_single i v t1 t0 (subst0_trans -t3 t1 v i H0 t0 H2)))) t4 H1))))) t2 H))))). -(* COMMENTS -Initial nodes: 165 -END *) +(H: (subst1 i v t1 t2)).(let TMP_1 \def (\lambda (t: T).(\forall (t3: +T).((subst1 i v t t3) \to (subst1 i v t1 t3)))) in (let TMP_2 \def (\lambda +(t3: T).(\lambda (H0: (subst1 i v t1 t3)).H0)) in (let TMP_7 \def (\lambda +(t3: T).(\lambda (H0: (subst0 i v t1 t3)).(\lambda (t4: T).(\lambda (H1: +(subst1 i v t3 t4)).(let TMP_3 \def (\lambda (t: T).(subst1 i v t1 t)) in +(let TMP_4 \def (subst1_single i v t1 t3 H0) in (let TMP_6 \def (\lambda (t0: +T).(\lambda (H2: (subst0 i v t3 t0)).(let TMP_5 \def (subst0_trans t3 t1 v i +H0 t0 H2) in (subst1_single i v t1 t0 TMP_5)))) in (subst1_ind i v t3 TMP_3 +TMP_4 TMP_6 t4 H1)))))))) in (subst1_ind i v t1 TMP_1 TMP_2 TMP_7 t2 +H)))))))). theorem subst1_confluence_neq: \forall (t0: T).(\forall (t1: T).(\forall (u1: T).(\forall (i1: @@ -111,30 +147,38 @@ nat).((subst1 i1 u1 t0 t1) \to (\forall (t2: T).(\forall (u2: T).(\forall (t: T).(subst1 i2 u2 t1 t)) (\lambda (t: T).(subst1 i1 u1 t2 t)))))))))))) \def \lambda (t0: T).(\lambda (t1: T).(\lambda (u1: T).(\lambda (i1: -nat).(\lambda (H: (subst1 i1 u1 t0 t1)).(subst1_ind i1 u1 t0 (\lambda (t: +nat).(\lambda (H: (subst1 i1 u1 t0 t1)).(let TMP_3 \def (\lambda (t: T).(\forall (t2: T).(\forall (u2: T).(\forall (i2: nat).((subst1 i2 u2 t0 t2) -\to ((not (eq nat i1 i2)) \to (ex2 T (\lambda (t3: T).(subst1 i2 u2 t t3)) -(\lambda (t3: T).(subst1 i1 u1 t2 t3))))))))) (\lambda (t2: T).(\lambda (u2: +\to ((not (eq nat i1 i2)) \to (let TMP_1 \def (\lambda (t3: T).(subst1 i2 u2 +t t3)) in (let TMP_2 \def (\lambda (t3: T).(subst1 i1 u1 t2 t3)) in (ex2 T +TMP_1 TMP_2))))))))) in (let TMP_7 \def (\lambda (t2: T).(\lambda (u2: T).(\lambda (i2: nat).(\lambda (H0: (subst1 i2 u2 t0 t2)).(\lambda (_: (not -(eq nat i1 i2))).(ex_intro2 T (\lambda (t: T).(subst1 i2 u2 t0 t)) (\lambda -(t: T).(subst1 i1 u1 t2 t)) t2 H0 (subst1_refl i1 u1 t2))))))) (\lambda (t2: -T).(\lambda (H0: (subst0 i1 u1 t0 t2)).(\lambda (t3: T).(\lambda (u2: -T).(\lambda (i2: nat).(\lambda (H1: (subst1 i2 u2 t0 t3)).(\lambda (H2: (not -(eq nat i1 i2))).(subst1_ind i2 u2 t0 (\lambda (t: T).(ex2 T (\lambda (t4: -T).(subst1 i2 u2 t2 t4)) (\lambda (t4: T).(subst1 i1 u1 t t4)))) (ex_intro2 T -(\lambda (t: T).(subst1 i2 u2 t2 t)) (\lambda (t: T).(subst1 i1 u1 t0 t)) t2 -(subst1_refl i2 u2 t2) (subst1_single i1 u1 t0 t2 H0)) (\lambda (t4: -T).(\lambda (H3: (subst0 i2 u2 t0 t4)).(ex2_ind T (\lambda (t: T).(subst0 i1 -u1 t4 t)) (\lambda (t: T).(subst0 i2 u2 t2 t)) (ex2 T (\lambda (t: T).(subst1 -i2 u2 t2 t)) (\lambda (t: T).(subst1 i1 u1 t4 t))) (\lambda (x: T).(\lambda -(H4: (subst0 i1 u1 t4 x)).(\lambda (H5: (subst0 i2 u2 t2 x)).(ex_intro2 T -(\lambda (t: T).(subst1 i2 u2 t2 t)) (\lambda (t: T).(subst1 i1 u1 t4 t)) x -(subst1_single i2 u2 t2 x H5) (subst1_single i1 u1 t4 x H4))))) -(subst0_confluence_neq t0 t4 u2 i2 H3 t2 u1 i1 H0 (sym_not_eq nat i1 i2 -H2))))) t3 H1)))))))) t1 H))))). -(* COMMENTS -Initial nodes: 455 -END *) +(eq nat i1 i2))).(let TMP_4 \def (\lambda (t: T).(subst1 i2 u2 t0 t)) in (let +TMP_5 \def (\lambda (t: T).(subst1 i1 u1 t2 t)) in (let TMP_6 \def +(subst1_refl i1 u1 t2) in (ex_intro2 T TMP_4 TMP_5 t2 H0 TMP_6))))))))) in +(let TMP_29 \def (\lambda (t2: T).(\lambda (H0: (subst0 i1 u1 t0 +t2)).(\lambda (t3: T).(\lambda (u2: T).(\lambda (i2: nat).(\lambda (H1: +(subst1 i2 u2 t0 t3)).(\lambda (H2: (not (eq nat i1 i2))).(let TMP_10 \def +(\lambda (t: T).(let TMP_8 \def (\lambda (t4: T).(subst1 i2 u2 t2 t4)) in +(let TMP_9 \def (\lambda (t4: T).(subst1 i1 u1 t t4)) in (ex2 T TMP_8 +TMP_9)))) in (let TMP_11 \def (\lambda (t: T).(subst1 i2 u2 t2 t)) in (let +TMP_12 \def (\lambda (t: T).(subst1 i1 u1 t0 t)) in (let TMP_13 \def +(subst1_refl i2 u2 t2) in (let TMP_14 \def (subst1_single i1 u1 t0 t2 H0) in +(let TMP_15 \def (ex_intro2 T TMP_11 TMP_12 t2 TMP_13 TMP_14) in (let TMP_28 +\def (\lambda (t4: T).(\lambda (H3: (subst0 i2 u2 t0 t4)).(let TMP_16 \def +(\lambda (t: T).(subst0 i1 u1 t4 t)) in (let TMP_17 \def (\lambda (t: +T).(subst0 i2 u2 t2 t)) in (let TMP_18 \def (\lambda (t: T).(subst1 i2 u2 t2 +t)) in (let TMP_19 \def (\lambda (t: T).(subst1 i1 u1 t4 t)) in (let TMP_20 +\def (ex2 T TMP_18 TMP_19) in (let TMP_25 \def (\lambda (x: T).(\lambda (H4: +(subst0 i1 u1 t4 x)).(\lambda (H5: (subst0 i2 u2 t2 x)).(let TMP_21 \def +(\lambda (t: T).(subst1 i2 u2 t2 t)) in (let TMP_22 \def (\lambda (t: +T).(subst1 i1 u1 t4 t)) in (let TMP_23 \def (subst1_single i2 u2 t2 x H5) in +(let TMP_24 \def (subst1_single i1 u1 t4 x H4) in (ex_intro2 T TMP_21 TMP_22 +x TMP_23 TMP_24)))))))) in (let TMP_26 \def (sym_not_eq nat i1 i2 H2) in (let +TMP_27 \def (subst0_confluence_neq t0 t4 u2 i2 H3 t2 u1 i1 H0 TMP_26) in +(ex2_ind T TMP_16 TMP_17 TMP_20 TMP_25 TMP_27))))))))))) in (subst1_ind i2 u2 +t0 TMP_10 TMP_15 TMP_28 t3 H1))))))))))))))) in (subst1_ind i1 u1 t0 TMP_3 +TMP_7 TMP_29 t1 H)))))))). theorem subst1_confluence_eq: \forall (t0: T).(\forall (t1: T).(\forall (u: T).(\forall (i: nat).((subst1 @@ -142,38 +186,56 @@ i u t0 t1) \to (\forall (t2: T).((subst1 i u t0 t2) \to (ex2 T (\lambda (t: T).(subst1 i u t1 t)) (\lambda (t: T).(subst1 i u t2 t))))))))) \def \lambda (t0: T).(\lambda (t1: T).(\lambda (u: T).(\lambda (i: nat).(\lambda -(H: (subst1 i u t0 t1)).(subst1_ind i u t0 (\lambda (t: T).(\forall (t2: -T).((subst1 i u t0 t2) \to (ex2 T (\lambda (t3: T).(subst1 i u t t3)) -(\lambda (t3: T).(subst1 i u t2 t3)))))) (\lambda (t2: T).(\lambda (H0: -(subst1 i u t0 t2)).(ex_intro2 T (\lambda (t: T).(subst1 i u t0 t)) (\lambda -(t: T).(subst1 i u t2 t)) t2 H0 (subst1_refl i u t2)))) (\lambda (t2: +(H: (subst1 i u t0 t1)).(let TMP_3 \def (\lambda (t: T).(\forall (t2: +T).((subst1 i u t0 t2) \to (let TMP_1 \def (\lambda (t3: T).(subst1 i u t +t3)) in (let TMP_2 \def (\lambda (t3: T).(subst1 i u t2 t3)) in (ex2 T TMP_1 +TMP_2)))))) in (let TMP_7 \def (\lambda (t2: T).(\lambda (H0: (subst1 i u t0 +t2)).(let TMP_4 \def (\lambda (t: T).(subst1 i u t0 t)) in (let TMP_5 \def +(\lambda (t: T).(subst1 i u t2 t)) in (let TMP_6 \def (subst1_refl i u t2) in +(ex_intro2 T TMP_4 TMP_5 t2 H0 TMP_6)))))) in (let TMP_57 \def (\lambda (t2: T).(\lambda (H0: (subst0 i u t0 t2)).(\lambda (t3: T).(\lambda (H1: (subst1 i -u t0 t3)).(subst1_ind i u t0 (\lambda (t: T).(ex2 T (\lambda (t4: T).(subst1 -i u t2 t4)) (\lambda (t4: T).(subst1 i u t t4)))) (ex_intro2 T (\lambda (t: -T).(subst1 i u t2 t)) (\lambda (t: T).(subst1 i u t0 t)) t2 (subst1_refl i u -t2) (subst1_single i u t0 t2 H0)) (\lambda (t4: T).(\lambda (H2: (subst0 i u -t0 t4)).(or4_ind (eq T t4 t2) (ex2 T (\lambda (t: T).(subst0 i u t4 t)) -(\lambda (t: T).(subst0 i u t2 t))) (subst0 i u t4 t2) (subst0 i u t2 t4) -(ex2 T (\lambda (t: T).(subst1 i u t2 t)) (\lambda (t: T).(subst1 i u t4 t))) -(\lambda (H3: (eq T t4 t2)).(eq_ind_r T t2 (\lambda (t: T).(ex2 T (\lambda -(t5: T).(subst1 i u t2 t5)) (\lambda (t5: T).(subst1 i u t t5)))) (ex_intro2 -T (\lambda (t: T).(subst1 i u t2 t)) (\lambda (t: T).(subst1 i u t2 t)) t2 -(subst1_refl i u t2) (subst1_refl i u t2)) t4 H3)) (\lambda (H3: (ex2 T -(\lambda (t: T).(subst0 i u t4 t)) (\lambda (t: T).(subst0 i u t2 -t)))).(ex2_ind T (\lambda (t: T).(subst0 i u t4 t)) (\lambda (t: T).(subst0 i -u t2 t)) (ex2 T (\lambda (t: T).(subst1 i u t2 t)) (\lambda (t: T).(subst1 i -u t4 t))) (\lambda (x: T).(\lambda (H4: (subst0 i u t4 x)).(\lambda (H5: -(subst0 i u t2 x)).(ex_intro2 T (\lambda (t: T).(subst1 i u t2 t)) (\lambda -(t: T).(subst1 i u t4 t)) x (subst1_single i u t2 x H5) (subst1_single i u t4 -x H4))))) H3)) (\lambda (H3: (subst0 i u t4 t2)).(ex_intro2 T (\lambda (t: -T).(subst1 i u t2 t)) (\lambda (t: T).(subst1 i u t4 t)) t2 (subst1_refl i u -t2) (subst1_single i u t4 t2 H3))) (\lambda (H3: (subst0 i u t2 -t4)).(ex_intro2 T (\lambda (t: T).(subst1 i u t2 t)) (\lambda (t: T).(subst1 -i u t4 t)) t4 (subst1_single i u t2 t4 H3) (subst1_refl i u t4))) -(subst0_confluence_eq t0 t4 u i H2 t2 H0)))) t3 H1))))) t1 H))))). -(* COMMENTS -Initial nodes: 729 -END *) +u t0 t3)).(let TMP_10 \def (\lambda (t: T).(let TMP_8 \def (\lambda (t4: +T).(subst1 i u t2 t4)) in (let TMP_9 \def (\lambda (t4: T).(subst1 i u t t4)) +in (ex2 T TMP_8 TMP_9)))) in (let TMP_11 \def (\lambda (t: T).(subst1 i u t2 +t)) in (let TMP_12 \def (\lambda (t: T).(subst1 i u t0 t)) in (let TMP_13 +\def (subst1_refl i u t2) in (let TMP_14 \def (subst1_single i u t0 t2 H0) in +(let TMP_15 \def (ex_intro2 T TMP_11 TMP_12 t2 TMP_13 TMP_14) in (let TMP_56 +\def (\lambda (t4: T).(\lambda (H2: (subst0 i u t0 t4)).(let TMP_16 \def (eq +T t4 t2) in (let TMP_17 \def (\lambda (t: T).(subst0 i u t4 t)) in (let +TMP_18 \def (\lambda (t: T).(subst0 i u t2 t)) in (let TMP_19 \def (ex2 T +TMP_17 TMP_18) in (let TMP_20 \def (subst0 i u t4 t2) in (let TMP_21 \def +(subst0 i u t2 t4) in (let TMP_22 \def (\lambda (t: T).(subst1 i u t2 t)) in +(let TMP_23 \def (\lambda (t: T).(subst1 i u t4 t)) in (let TMP_24 \def (ex2 +T TMP_22 TMP_23) in (let TMP_33 \def (\lambda (H3: (eq T t4 t2)).(let TMP_27 +\def (\lambda (t: T).(let TMP_25 \def (\lambda (t5: T).(subst1 i u t2 t5)) in +(let TMP_26 \def (\lambda (t5: T).(subst1 i u t t5)) in (ex2 T TMP_25 +TMP_26)))) in (let TMP_28 \def (\lambda (t: T).(subst1 i u t2 t)) in (let +TMP_29 \def (\lambda (t: T).(subst1 i u t2 t)) in (let TMP_30 \def +(subst1_refl i u t2) in (let TMP_31 \def (subst1_refl i u t2) in (let TMP_32 +\def (ex_intro2 T TMP_28 TMP_29 t2 TMP_30 TMP_31) in (eq_ind_r T t2 TMP_27 +TMP_32 t4 H3)))))))) in (let TMP_44 \def (\lambda (H3: (ex2 T (\lambda (t: +T).(subst0 i u t4 t)) (\lambda (t: T).(subst0 i u t2 t)))).(let TMP_34 \def +(\lambda (t: T).(subst0 i u t4 t)) in (let TMP_35 \def (\lambda (t: +T).(subst0 i u t2 t)) in (let TMP_36 \def (\lambda (t: T).(subst1 i u t2 t)) +in (let TMP_37 \def (\lambda (t: T).(subst1 i u t4 t)) in (let TMP_38 \def +(ex2 T TMP_36 TMP_37) in (let TMP_43 \def (\lambda (x: T).(\lambda (H4: +(subst0 i u t4 x)).(\lambda (H5: (subst0 i u t2 x)).(let TMP_39 \def (\lambda +(t: T).(subst1 i u t2 t)) in (let TMP_40 \def (\lambda (t: T).(subst1 i u t4 +t)) in (let TMP_41 \def (subst1_single i u t2 x H5) in (let TMP_42 \def +(subst1_single i u t4 x H4) in (ex_intro2 T TMP_39 TMP_40 x TMP_41 +TMP_42)))))))) in (ex2_ind T TMP_34 TMP_35 TMP_38 TMP_43 H3)))))))) in (let +TMP_49 \def (\lambda (H3: (subst0 i u t4 t2)).(let TMP_45 \def (\lambda (t: +T).(subst1 i u t2 t)) in (let TMP_46 \def (\lambda (t: T).(subst1 i u t4 t)) +in (let TMP_47 \def (subst1_refl i u t2) in (let TMP_48 \def (subst1_single i +u t4 t2 H3) in (ex_intro2 T TMP_45 TMP_46 t2 TMP_47 TMP_48)))))) in (let +TMP_54 \def (\lambda (H3: (subst0 i u t2 t4)).(let TMP_50 \def (\lambda (t: +T).(subst1 i u t2 t)) in (let TMP_51 \def (\lambda (t: T).(subst1 i u t4 t)) +in (let TMP_52 \def (subst1_single i u t2 t4 H3) in (let TMP_53 \def +(subst1_refl i u t4) in (ex_intro2 T TMP_50 TMP_51 t4 TMP_52 TMP_53)))))) in +(let TMP_55 \def (subst0_confluence_eq t0 t4 u i H2 t2 H0) in (or4_ind TMP_16 +TMP_19 TMP_20 TMP_21 TMP_24 TMP_33 TMP_44 TMP_49 TMP_54 +TMP_55))))))))))))))))) in (subst1_ind i u t0 TMP_10 TMP_15 TMP_56 t3 +H1)))))))))))) in (subst1_ind i u t0 TMP_3 TMP_7 TMP_57 t1 H)))))))). theorem subst1_confluence_lift: \forall (t0: T).(\forall (t1: T).(\forall (u: T).(\forall (i: nat).((subst1 @@ -181,34 +243,57 @@ i u t0 (lift (S O) i t1)) \to (\forall (t2: T).((subst1 i u t0 (lift (S O) i t2)) \to (eq T t1 t2))))))) \def \lambda (t0: T).(\lambda (t1: T).(\lambda (u: T).(\lambda (i: nat).(\lambda -(H: (subst1 i u t0 (lift (S O) i t1))).(insert_eq T (lift (S O) i t1) -(\lambda (t: T).(subst1 i u t0 t)) (\lambda (_: T).(\forall (t2: T).((subst1 -i u t0 (lift (S O) i t2)) \to (eq T t1 t2)))) (\lambda (y: T).(\lambda (H0: -(subst1 i u t0 y)).(subst1_ind i u t0 (\lambda (t: T).((eq T t (lift (S O) i -t1)) \to (\forall (t2: T).((subst1 i u t0 (lift (S O) i t2)) \to (eq T t1 -t2))))) (\lambda (H1: (eq T t0 (lift (S O) i t1))).(\lambda (t2: T).(\lambda -(H2: (subst1 i u t0 (lift (S O) i t2))).(let H3 \def (eq_ind T t0 (\lambda -(t: T).(subst1 i u t (lift (S O) i t2))) H2 (lift (S O) i t1) H1) in (let H4 -\def (sym_eq T (lift (S O) i t2) (lift (S O) i t1) (subst1_gen_lift_eq t1 u -(lift (S O) i t2) (S O) i i (le_n i) (eq_ind_r nat (plus (S O) i) (\lambda -(n: nat).(lt i n)) (le_n (plus (S O) i)) (plus i (S O)) (plus_sym i (S O))) -H3)) in (lift_inj t1 t2 (S O) i H4)))))) (\lambda (t2: T).(\lambda (H1: -(subst0 i u t0 t2)).(\lambda (H2: (eq T t2 (lift (S O) i t1))).(\lambda (t3: -T).(\lambda (H3: (subst1 i u t0 (lift (S O) i t3))).(let H4 \def (eq_ind T t2 -(\lambda (t: T).(subst0 i u t0 t)) H1 (lift (S O) i t1) H2) in (insert_eq T -(lift (S O) i t3) (\lambda (t: T).(subst1 i u t0 t)) (\lambda (_: T).(eq T t1 -t3)) (\lambda (y0: T).(\lambda (H5: (subst1 i u t0 y0)).(subst1_ind i u t0 -(\lambda (t: T).((eq T t (lift (S O) i t3)) \to (eq T t1 t3))) (\lambda (H6: -(eq T t0 (lift (S O) i t3))).(let H7 \def (eq_ind T t0 (\lambda (t: -T).(subst0 i u t (lift (S O) i t1))) H4 (lift (S O) i t3) H6) in -(subst0_gen_lift_false t3 u (lift (S O) i t1) (S O) i i (le_n i) (eq_ind_r -nat (plus (S O) i) (\lambda (n: nat).(lt i n)) (le_n (plus (S O) i)) (plus i -(S O)) (plus_sym i (S O))) H7 (eq T t1 t3)))) (\lambda (t4: T).(\lambda (H6: -(subst0 i u t0 t4)).(\lambda (H7: (eq T t4 (lift (S O) i t3))).(let H8 \def -(eq_ind T t4 (\lambda (t: T).(subst0 i u t0 t)) H6 (lift (S O) i t3) H7) in -(sym_eq T t3 t1 (subst0_confluence_lift t0 t3 u i H8 t1 H4)))))) y0 H5))) -H3))))))) y H0))) H))))). -(* COMMENTS -Initial nodes: 735 -END *) +(H: (subst1 i u t0 (lift (S O) i t1))).(let TMP_1 \def (S O) in (let TMP_2 +\def (lift TMP_1 i t1) in (let TMP_3 \def (\lambda (t: T).(subst1 i u t0 t)) +in (let TMP_4 \def (\lambda (_: T).(\forall (t2: T).((subst1 i u t0 (lift (S +O) i t2)) \to (eq T t1 t2)))) in (let TMP_70 \def (\lambda (y: T).(\lambda +(H0: (subst1 i u t0 y)).(let TMP_5 \def (\lambda (t: T).((eq T t (lift (S O) +i t1)) \to (\forall (t2: T).((subst1 i u t0 (lift (S O) i t2)) \to (eq T t1 +t2))))) in (let TMP_32 \def (\lambda (H1: (eq T t0 (lift (S O) i +t1))).(\lambda (t2: T).(\lambda (H2: (subst1 i u t0 (lift (S O) i t2))).(let +TMP_8 \def (\lambda (t: T).(let TMP_6 \def (S O) in (let TMP_7 \def (lift +TMP_6 i t2) in (subst1 i u t TMP_7)))) in (let TMP_9 \def (S O) in (let +TMP_10 \def (lift TMP_9 i t1) in (let H3 \def (eq_ind T t0 TMP_8 H2 TMP_10 +H1) in (let TMP_11 \def (S O) in (let TMP_12 \def (lift TMP_11 i t2) in (let +TMP_13 \def (S O) in (let TMP_14 \def (lift TMP_13 i t1) in (let TMP_15 \def +(S O) in (let TMP_16 \def (lift TMP_15 i t2) in (let TMP_17 \def (S O) in +(let TMP_18 \def (le_n i) in (let TMP_19 \def (S O) in (let TMP_20 \def (plus +TMP_19 i) in (let TMP_21 \def (\lambda (n: nat).(lt i n)) in (let TMP_22 \def +(S O) in (let TMP_23 \def (plus TMP_22 i) in (let TMP_24 \def (le_n TMP_23) +in (let TMP_25 \def (S O) in (let TMP_26 \def (plus i TMP_25) in (let TMP_27 +\def (S O) in (let TMP_28 \def (plus_sym i TMP_27) in (let TMP_29 \def +(eq_ind_r nat TMP_20 TMP_21 TMP_24 TMP_26 TMP_28) in (let TMP_30 \def +(subst1_gen_lift_eq t1 u TMP_16 TMP_17 i i TMP_18 TMP_29 H3) in (let H4 \def +(sym_eq T TMP_12 TMP_14 TMP_30) in (let TMP_31 \def (S O) in (lift_inj t1 t2 +TMP_31 i H4)))))))))))))))))))))))))))))) in (let TMP_69 \def (\lambda (t2: +T).(\lambda (H1: (subst0 i u t0 t2)).(\lambda (H2: (eq T t2 (lift (S O) i +t1))).(\lambda (t3: T).(\lambda (H3: (subst1 i u t0 (lift (S O) i t3))).(let +TMP_33 \def (\lambda (t: T).(subst0 i u t0 t)) in (let TMP_34 \def (S O) in +(let TMP_35 \def (lift TMP_34 i t1) in (let H4 \def (eq_ind T t2 TMP_33 H1 +TMP_35 H2) in (let TMP_36 \def (S O) in (let TMP_37 \def (lift TMP_36 i t3) +in (let TMP_38 \def (\lambda (t: T).(subst1 i u t0 t)) in (let TMP_39 \def +(\lambda (_: T).(eq T t1 t3)) in (let TMP_68 \def (\lambda (y0: T).(\lambda +(H5: (subst1 i u t0 y0)).(let TMP_40 \def (\lambda (t: T).((eq T t (lift (S +O) i t3)) \to (eq T t1 t3))) in (let TMP_62 \def (\lambda (H6: (eq T t0 (lift +(S O) i t3))).(let TMP_43 \def (\lambda (t: T).(let TMP_41 \def (S O) in (let +TMP_42 \def (lift TMP_41 i t1) in (subst0 i u t TMP_42)))) in (let TMP_44 +\def (S O) in (let TMP_45 \def (lift TMP_44 i t3) in (let H7 \def (eq_ind T +t0 TMP_43 H4 TMP_45 H6) in (let TMP_46 \def (S O) in (let TMP_47 \def (lift +TMP_46 i t1) in (let TMP_48 \def (S O) in (let TMP_49 \def (le_n i) in (let +TMP_50 \def (S O) in (let TMP_51 \def (plus TMP_50 i) in (let TMP_52 \def +(\lambda (n: nat).(lt i n)) in (let TMP_53 \def (S O) in (let TMP_54 \def +(plus TMP_53 i) in (let TMP_55 \def (le_n TMP_54) in (let TMP_56 \def (S O) +in (let TMP_57 \def (plus i TMP_56) in (let TMP_58 \def (S O) in (let TMP_59 +\def (plus_sym i TMP_58) in (let TMP_60 \def (eq_ind_r nat TMP_51 TMP_52 +TMP_55 TMP_57 TMP_59) in (let TMP_61 \def (eq T t1 t3) in +(subst0_gen_lift_false t3 u TMP_47 TMP_48 i i TMP_49 TMP_60 H7 +TMP_61)))))))))))))))))))))) in (let TMP_67 \def (\lambda (t4: T).(\lambda +(H6: (subst0 i u t0 t4)).(\lambda (H7: (eq T t4 (lift (S O) i t3))).(let +TMP_63 \def (\lambda (t: T).(subst0 i u t0 t)) in (let TMP_64 \def (S O) in +(let TMP_65 \def (lift TMP_64 i t3) in (let H8 \def (eq_ind T t4 TMP_63 H6 +TMP_65 H7) in (let TMP_66 \def (subst0_confluence_lift t0 t3 u i H8 t1 H4) in +(sym_eq T t3 t1 TMP_66))))))))) in (subst1_ind i u t0 TMP_40 TMP_62 TMP_67 y0 +H5)))))) in (insert_eq T TMP_37 TMP_38 TMP_39 TMP_68 H3))))))))))))))) in +(subst1_ind i u t0 TMP_5 TMP_32 TMP_69 y H0)))))) in (insert_eq T TMP_2 TMP_3 +TMP_4 TMP_70 H)))))))))).