From: Andrea Asperti Date: Wed, 10 Feb 2010 09:23:29 +0000 (+0000) Subject: addenda X-Git-Tag: make_still_working~3047 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=68710656f43bcc362a14df381cc03dc92feab73d;p=helm.git addenda --- diff --git a/helm/software/matita/nlibrary/arithmetics/nat.ma b/helm/software/matita/nlibrary/arithmetics/nat.ma index d1e401ae5..d8ac55049 100644 --- a/helm/software/matita/nlibrary/arithmetics/nat.ma +++ b/helm/software/matita/nlibrary/arithmetics/nat.ma @@ -78,7 +78,7 @@ ntheorem nat_elim2 : ntheorem decidable_eq_nat : ∀n,m:nat.decidable (n=m). napply nat_elim2; #n; - ##[ ncases n; /2/; + ##[ ncases n; /3/; ##| /3/; ##| #m; #Hind; ncases Hind; /3/; ##] @@ -285,14 +285,14 @@ ntheorem not_le_S_S_to_not_le: ∀ n,m:nat. S n ≰ S m → n ≰ m. /3/; nqed. ntheorem decidable_le: ∀n,m. decidable (n≤m). -napply nat_elim2; #n; /2/; -#m; #dec; ncases dec;/3/; nqed. +napply nat_elim2; #n; /3/; +#m; #dec; ncases dec;/4/; nqed. ntheorem decidable_lt: ∀n,m. decidable (n < m). #n; #m; napply decidable_le ; nqed. ntheorem not_le_Sn_n: ∀n:nat. S n ≰ n. -#n; nelim n; /2/; nqed. +#n; nelim n; /3/; nqed. ntheorem lt_S_to_le: ∀n,m:nat. n < S m → n ≤ m. /2/; nqed. @@ -301,7 +301,7 @@ ntheorem not_le_to_lt: ∀n,m. n ≰ m → m < n. napply nat_elim2; #n; ##[#abs; napply False_ind;/2/; ##|/2/; - ##|#m;#Hind;#HnotleSS; napply lt_to_lt_S_S;/3/; + ##|#m;#Hind;#HnotleSS; napply lt_to_lt_S_S;/4/; ##] nqed. @@ -568,9 +568,10 @@ ntheorem le_plus_to_le_r: ∀a,n,m. n + a ≤ m +a → n ≤ m. /2/; nqed. (* plus & lt *) + ntheorem monotonic_lt_plus_r: ∀n:nat.monotonic nat lt (λm.n+m). -/2/; nqed. +/2/; nqed. (* variant lt_plus_r: \forall n,p,q:nat. p < q \to n + p < n + q \def @@ -749,8 +750,7 @@ ntheorem lt_times_n_to_lt_l: nelim (decidable_lt p q);//; #nltpq;napply False_ind; napply (lt_to_not_le ? ? Hlt); -napply monotonic_le_times_l. -napply not_lt_to_le; //; +napply monotonic_le_times_l;/3/; nqed. ntheorem lt_times_n_to_lt_r: @@ -840,6 +840,13 @@ napply nat_elim2; ##] nqed. +ntheorem not_eq_to_le_to_le_minus: + ∀n,m.n ≠ m → n ≤ m → n ≤ m - 1. +#n; #m; ncases m;//; #m; nnormalize; +#H; #H1; napply le_S_S_to_le; +napplyS (not_eq_to_le_to_lt n (S m) H H1); +nqed. + ntheorem eq_minus_S_pred: ∀n,m. n - (S m) = pred(n -m). napply nat_elim2; //; nqed. @@ -1013,43 +1020,28 @@ elim ((eqb n1 m1)). simplify.apply eq_f.apply H1. simplify.unfold Not.intro.apply H1.apply inj_S.assumption. qed. - -theorem eqb_elim : \forall n,m:nat.\forall P:bool \to Prop. -(n=m \to (P true)) \to (n \neq m \to (P false)) \to (P (eqb n m)). -intros. -cut -(match (eqb n m) with -[ true \Rightarrow n = m -| false \Rightarrow n \neq m] \to (P (eqb n m))). -apply Hcut.apply eqb_to_Prop. -elim (eqb n m). -apply ((H H2)). -apply ((H1 H2)). -qed. - *) +ntheorem eqb_elim : ∀ n,m:nat.∀ P:bool → Prop. +(n=m → (P true)) → (n ≠ m → (P false)) → (P (eqb n m)). +napply nat_elim2; + ##[#n; ncases n; nnormalize; /3/; + ##|nnormalize; /3/; + ##|nnormalize; /4/; + ##] +nqed. + ntheorem eqb_n_n: ∀n. eqb n n = true. #n; nelim n; nnormalize; //. nqed. ntheorem eqb_true_to_eq: ∀n,m:nat. eqb n m = true → n = m. -napply nat_elim2; - ##[#n; ncases n; nnormalize; //; - #m; #abs; napply False_ind;/2/; - ##|nnormalize; #m; #abs; napply False_ind;/2/; - ##|nnormalize; - #n; #m; #Hind; #eqnm; napply eq_f; napply Hind; //; - ##] +#n; #m; napply (eqb_elim n m);//; +#_; #abs; napply False_ind;/2/; nqed. -ntheorem eqb_false_to_not_eq: ∀n,m:nat. - eqb n m = false → n ≠ m. -napply nat_elim2; - ##[#n; ncases n; nnormalize; /2/; - ##|/2/; - ##|nnormalize;/2/; - ##] +ntheorem eqb_false_to_not_eq: ∀n,m:nat. eqb n m = false → n ≠ m. +#n; #m; napply (eqb_elim n m);/2/; nqed. ntheorem eq_to_eqb_true: ∀n,m:nat. @@ -1094,7 +1086,7 @@ ntheorem leb_false_to_not_le:∀n,m. leb n m = false → n ≰ m. #n; #m; napply leb_elim; ##[#_; #abs; napply False_ind; /2/; - ##|//; + ##|/2/; ##] nqed.