From: Andrea Asperti Date: Mon, 30 Apr 2012 10:44:36 +0000 (+0000) Subject: Le configurazioni sono definite non su macchine ma su stati. X-Git-Tag: make_still_working~1790 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=74d4ef0ea9a72ecec47419c776ac05c51114d8a0;p=helm.git Le configurazioni sono definite non su macchine ma su stati. Idem per alcune funzioni di lift. --- diff --git a/matita/matita/lib/turing/if_machine.ma b/matita/matita/lib/turing/if_machine.ma index 0fe4a4f11..80598d29b 100644 --- a/matita/matita/lib/turing/if_machine.ma +++ b/matita/matita/lib/turing/if_machine.ma @@ -44,7 +44,29 @@ definition ifTM ≝ λsig. λcondM,thenM,elseM : TM sig. theorem sem_if: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,acc. accRealize sig M1 acc Rtrue Rfalse → Realize sig M2 R2 → Realize sig M3 R3 → Realize sig (ifTM sig M1 M2 M3 acc) (λt1,t2. (Rtrue ∘ R2) t1 t2 ∨ (Rfalse ∘ R3) t1 t2). - +#sig #M1 #M2 #M3 #Rtrue #Rfalse #R2 #R3 #acc #HaccR #HR2 #HR3 #t +cases (HaccR t) #k1 * #outc1 * * #Hloop1 #HMtrue #HMfalse +cases (true_or_false (cstate ?? outc1 == acc)) #Hacc + [cases (HR2 (ctape sig ? outc1)) #k2 * #outc2 * #Hloop2 #HM2 + @(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … (lift_confL … outc2))) +% +[@(loop_split ??????????? (loop_liftL … Hloop1)) + [* * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + ||4:cases outc1 #s1 #t1 % + |5:@(loop_liftR … Hloop2) + |whd in ⊢ (??(???%)?);whd in ⊢ (??%?); + generalize in match Hloop1; cases outc1 #sc1 #tc1 #Hloop10 + >(trans_liftL_true sig M1 M2 ??) + [ whd in ⊢ (??%?); whd in ⊢ (???%); + @config_eq // + | @(loop_Some ?????? Hloop10) ] + ] +| @(ex_intro … (ctape ? (seq sig M1 M2) (lift_confL … outc1))) + % // +] +qed. (* We do not distinuish an input tape *) record TM (sig:FinSet): Type[1] ≝ diff --git a/matita/matita/lib/turing/mono.ma b/matita/matita/lib/turing/mono.ma index 4078c4483..4927c5806 100644 --- a/matita/matita/lib/turing/mono.ma +++ b/matita/matita/lib/turing/mono.ma @@ -31,8 +31,8 @@ record TM (sig:FinSet): Type[1] ≝ halt : states → bool }. -record config (sig:FinSet) (M:TM sig): Type[0] ≝ -{ cstate : states sig M; +record config (sig,states:FinSet): Type[0] ≝ +{ cstate : states; ctape: tape sig }. @@ -52,7 +52,7 @@ definition tape_move ≝ λsig.λt: tape sig.λm:option (sig × move). ] ]. -definition step ≝ λsig.λM:TM sig.λc:config sig M. +definition step ≝ λsig.λM:TM sig.λc:config sig (states sig M). let current_char ≝ option_hd ? (right ? (ctape ?? c)) in let 〈news,mv〉 ≝ trans sig M 〈cstate ?? c,current_char〉 in mk_config ?? news (tape_move sig (ctape ?? c) mv). @@ -111,7 +111,7 @@ qed. *) definition initc ≝ λsig.λM:TM sig.λt. - mk_config sig M (start sig M) t. + mk_config sig (states sig M) (start sig M) t. definition Realize ≝ λsig.λM:TM sig.λR:relation (tape sig). ∀t.∃i.∃outc. @@ -176,28 +176,29 @@ definition Rlink ≝ λsig.λM1,M2.λc1,c2. interpretation "relation composition" 'compose R1 R2 = (Rcomp ? R1 R2). definition lift_confL ≝ - λsig,M1,M2,c.match c with - [ mk_config s t ⇒ mk_config ? (seq sig M1 M2) (inl … s) t ]. + λsig,S1,S2,c.match c with + [ mk_config s t ⇒ mk_config sig (FinSum S1 S2) (inl … s) t ]. + definition lift_confR ≝ - λsig,M1,M2,c.match c with - [ mk_config s t ⇒ mk_config ? (seq sig M1 M2) (inr … s) t ]. + λsig,S1,S2,c.match c with + [ mk_config s t ⇒ mk_config sig (FinSum S1 S2) (inr … s) t ]. definition halt_liftL ≝ - λsig.λM1,M2:TM sig.λs:FinSum (states ? M1) (states ? M2). + λS1,S2,halt.λs:FinSum S1 S2. match s with - [ inl s1 ⇒ halt sig M1 s1 + [ inl s1 ⇒ halt s1 | inr _ ⇒ true ]. (* should be vacuous in all cases we use halt_liftL *) definition halt_liftR ≝ - λsig.λM1,M2:TM sig.λs:FinSum (states ? M1) (states ? M2). + λS1,S2,halt.λs:FinSum S1 S2. match s with [ inl _ ⇒ false - | inr s2 ⇒ halt sig M2 s2 ]. + | inr s2 ⇒ halt s2 ]. -lemma p_halt_liftL : ∀sig,M1,M2,c. - halt sig M1 (cstate … c) = - halt_liftL sig M1 M2 (cstate … (lift_confL … c)). -#sig #M1 #M2 #c cases c #s #t % +lemma p_halt_liftL : ∀sig,S1,S2,halt,c. + halt (cstate sig S1 c) = + halt_liftL S1 S2 halt (cstate … (lift_confL … c)). +#sig #S1 #S2 #halt #c cases c #s #t % qed. lemma trans_liftL : ∀sig,M1,M2,s,a,news,move. @@ -225,8 +226,8 @@ qed. lemma step_lift_confR : ∀sig,M1,M2,c0. halt ? M2 (cstate ?? c0) = false → - step sig (seq sig M1 M2) (lift_confR sig M1 M2 c0) = - lift_confR sig M1 M2 (step sig M2 c0). + step sig (seq sig M1 M2) (lift_confR sig (states ? M1) (states ? M2) c0) = + lift_confR sig (states ? M1) (states ? M2) (step sig M2 c0). #sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s * #lt #rs #Hhalt whd in ⊢ (???(????%));whd in ⊢ (???%); @@ -240,8 +241,8 @@ qed. lemma step_lift_confL : ∀sig,M1,M2,c0. halt ? M1 (cstate ?? c0) = false → - step sig (seq sig M1 M2) (lift_confL sig M1 M2 c0) = - lift_confL sig M1 M2 (step sig M1 c0). + step sig (seq sig M1 M2) (lift_confL sig (states ? M1) (states ? M2) c0) = + lift_confL sig ?? (step sig M1 c0). #sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s * #lt #rs #Hhalt whd in ⊢ (???(????%));whd in ⊢ (???%); @@ -256,21 +257,20 @@ qed. lemma loop_liftL : ∀sig,k,M1,M2,c1,c2. loop ? k (step sig M1) (λc.halt sig M1 (cstate ?? c)) c1 = Some ? c2 → loop ? k (step sig (seq sig M1 M2)) - (λc.halt_liftL sig M1 M2 (cstate ?? c)) (lift_confL … c1) = + (λc.halt_liftL ?? (halt sig M1) (cstate ?? c)) (lift_confL … c1) = Some ? (lift_confL … c2). #sig #k #M1 #M2 #c1 #c2 generalize in match c1; elim k [#c0 normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse) |#k0 #IH #c0 whd in ⊢ (??%? → ??%?); - lapply (refl ? (halt ?? (cstate sig M1 c0))) - cases (halt ?? (cstate sig M1 c0)) in ⊢ (???% → ?); #Hc0 >Hc0 - [ >(?: halt_liftL ??? (cstate sig (seq ? M1 M2) (lift_confL … c0)) = true) + cases (true_or_false (halt ?? (cstate sig (states ? M1) c0))) #Hc0 >Hc0 + [ >(?: halt_liftL ?? (halt sig M1) (cstate sig ? (lift_confL … c0)) = true) [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) % - | // ] - | >(?: halt_liftL ??? (cstate sig (seq ? M1 M2) (lift_confL … c0)) = false) + | (?: halt_liftL ?? (halt sig M1) (cstate ?? (lift_confL … c0)) = false) [whd in ⊢ (??%? → ??%?); #Hc2 <(IH ? Hc2) @eq_f @step_lift_confL // - | // ] + | Hc0 - [ >(?: halt ?? (cstate sig (seq ? M1 M2) (lift_confR … c0)) = true) + cases (true_or_false (halt ?? (cstate sig ? c0))) #Hc0 >Hc0 + [ >(?: halt ? (seq sig M1 M2) (cstate sig ? (lift_confR … c0)) = true) [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) % | (?: halt ?? (cstate sig (seq ? M1 M2) (lift_confR … c0)) = false) + | >(?: halt ? (seq sig M1 M2) (cstate sig ? (lift_confR … c0)) = false) [whd in ⊢ (??%? → ??%?); #Hc2 <(IH ? Hc2) @eq_f @step_lift_confR // | Hhalt % qed. -lemma eq_ctape_lift_conf_L : ∀sig,M1,M2,outc. - ctape sig (seq sig M1 M2) (lift_confL … outc) = ctape … outc. -#sig #M1 #M2 #outc cases outc #s #t % +lemma eq_ctape_lift_conf_L : ∀sig,S1,S2,outc. + ctape sig (FinSum S1 S2) (lift_confL … outc) = ctape … outc. +#sig #S1 #S2 #outc cases outc #s #t % qed. -lemma eq_ctape_lift_conf_R : ∀sig,M1,M2,outc. - ctape sig (seq sig M1 M2) (lift_confR … outc) = ctape … outc. -#sig #M1 #M2 #outc cases outc #s #t % +lemma eq_ctape_lift_conf_R : ∀sig,S1,S2,outc. + ctape sig (FinSum S1 S2) (lift_confR … outc) = ctape … outc. +#sig #S1 #S2 #outc cases outc #s #t % qed. theorem sem_seq: ∀sig,M1,M2,R1,R2. @@ -327,7 +326,7 @@ theorem sem_seq: ∀sig,M1,M2,R1,R2. Realize sig (seq sig M1 M2) (R1 ∘ R2). #sig #M1 #M2 #R1 #R2 #HR1 #HR2 #t cases (HR1 t) #k1 * #outc1 * #Hloop1 #HM1 -cases (HR2 (ctape sig M1 outc1)) #k2 * #outc2 * #Hloop2 #HM2 +cases (HR2 (ctape sig (states ? M1) outc1)) #k2 * #outc2 * #Hloop2 #HM2 @(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2)) % [@(loop_split ??????????? (loop_liftL … Hloop1)) @@ -343,8 +342,8 @@ cases (HR2 (ctape sig M1 outc1)) #k2 * #outc2 * #Hloop2 #HM2 @config_eq // | @(loop_Some ?????? Hloop10) ] ] -| @(ex_intro … (ctape ? (seq sig M1 M2) (lift_confL … outc1))) - % // +| @(ex_intro … (ctape ? (FinSum (states ? M1) (states ? M2)) (lift_confL … outc1))) + % // >eq_ctape_lift_conf_L >eq_ctape_lift_conf_R // ] qed.