From: Ferruccio Guidi Date: Mon, 30 May 2016 18:57:34 +0000 (+0000) Subject: some results on co-composition ... X-Git-Tag: make_still_working~573 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=756e320c149ae141dffbf5d75202c8e46c4a49b9;p=helm.git some results on co-composition ... --- diff --git a/matita/matita/contribs/lambdadelta/ground_2/notation/relations/rcoafter_3.ma b/matita/matita/contribs/lambdadelta/ground_2/notation/relations/rcoafter_3.ma new file mode 100644 index 000000000..015407166 --- /dev/null +++ b/matita/matita/contribs/lambdadelta/ground_2/notation/relations/rcoafter_3.ma @@ -0,0 +1,19 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +(* GENERAL NOTATION USED BY THE FORMAL SYSTEM λδ ****************************) + +notation "hvbox( f1 ~ ⊚ break term 46 f2 ≡ break term 46 f )" + non associative with precedence 45 + for @{ 'RCoAfter $f1 $f2 $f }. diff --git a/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_after.ma b/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_after.ma index fef085189..f202aa02b 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_after.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_after.ma @@ -13,7 +13,6 @@ (**************************************************************************) include "ground_2/notation/relations/rafter_3.ma". -include "ground_2/relocation/rtmap_sor.ma". include "ground_2/relocation/rtmap_istot.ma". (* RELOCATION MAP ***********************************************************) @@ -339,32 +338,6 @@ lemma after_uni: ∀n1,n2. 𝐔❴n1❵ ⊚ 𝐔❴n2❵ ≡ 𝐔❴n1+n2❵. /4 width=5 by after_uni_next2, after_isid_sn, after_isid_dx, after_next/ qed. -(* Inversion lemmas on sor **************************************************) - -lemma sor_isid: ∀f1,f2,f. 𝐈⦃f1⦄ → 𝐈⦃f2⦄ → 𝐈⦃f⦄ → f1 ⋓ f2 ≡ f. -/4 width=3 by sor_eq_repl_back2, sor_eq_repl_back1, isid_inv_eq_repl/ qed. -(* -lemma after_inv_sor: ∀f. 𝐅⦃f⦄ → ∀f2,f1. f2 ⊚ f1 ≡ f → ∀fa,fb. fa ⋓ fb ≡ f → - ∃∃f1a,f1b. f2 ⊚ f1a ≡ fa & f2 ⊚ f1b ≡ fb & f1a ⋓ f1b ≡ f1. -@isfin_ind -[ #f #Hf #f2 #f1 #H1f #fa #fb #H2f - elim (after_inv_isid3 … H1f) -H1f // - elim (sor_inv_isid3 … H2f) -H2f // - /3 width=5 by ex3_2_intro, after_isid_sn, sor_isid/ -| #f #_ #IH #f2 #f1 #H1 #fa #fb #H2 - elim (after_inv_xxp … H1) -H1 [ |*: // ] #g2 #g1 #H1f - elim (sor_inv_xxp … H2) -H2 [ |*: // ] #ga #gb #H2f - elim (IH … H1f … H2f) -f /3 width=11 by sor_pp, after_refl, ex3_2_intro/ -| #f #_ #IH #f2 #f1 #H1 #fa #fb #H2 - elim (sor_inv_xxn … H2) -H2 [1,3,4: * |*: // ] #ga #gb #H2f - elim (after_inv_xxn … H1) -H1 [1,3,5,7,9,11: * |*: // ] #g2 [1,3,5: #g1 ] #H1f - elim (IH … H1f … H2f) -f - /3 width=11 by sor_np, sor_pn, sor_nn, after_refl, after_push, after_next, ex3_2_intro/ - #x1a #x1b #H39 #H40 #H41 #H42 #H43 #H44 - [ @ex3_2_intro - [3: /2 width=7 by after_next/ | skip - |5: @H41 | skip -*) (* Forward lemmas on at *****************************************************) lemma after_at_fwd: ∀i,i1,f. @⦃i1, f⦄ ≡ i → ∀f2,f1. f2 ⊚ f1 ≡ f → diff --git a/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_coafter.ma b/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_coafter.ma new file mode 100644 index 000000000..ad5242bb6 --- /dev/null +++ b/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_coafter.ma @@ -0,0 +1,599 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "ground_2/notation/relations/rcoafter_3.ma". +include "ground_2/relocation/rtmap_sor.ma". +include "ground_2/relocation/rtmap_istot.ma". + +(* RELOCATION MAP ***********************************************************) + +coinductive coafter: relation3 rtmap rtmap rtmap ≝ +| coafter_refl: ∀f1,f2,f,g1,g2,g. coafter f1 f2 f → + ↑f1 = g1 → ↑f2 = g2 → ↑f = g → coafter g1 g2 g +| coafter_push: ∀f1,f2,f,g1,g2,g. coafter f1 f2 f → + ↑f1 = g1 → ⫯f2 = g2 → ⫯f = g → coafter g1 g2 g +| coafter_next: ∀f1,f2,f,g1,g. coafter f1 f2 f → + ⫯f1 = g1 → ↑f = g → coafter g1 f2 g +. + +interpretation "relational co-composition (rtmap)" + 'RCoAfter f1 f2 f = (coafter f1 f2 f). + +definition H_coafter_inj: predicate rtmap ≝ + λf1. 𝐓⦃f1⦄ → + ∀f,f21,f22. f1 ~⊚ f21 ≡ f → f1 ~⊚ f22 ≡ f → f21 ≗ f22. + +definition H_coafter_fwd_isid2: predicate rtmap ≝ + λf1. ∀f2,f. f1 ~⊚ f2 ≡ f → 𝐓⦃f1⦄ → 𝐈⦃f⦄ → 𝐈⦃f2⦄. + +(* Basic inversion lemmas ***************************************************) + +lemma coafter_inv_ppx: ∀g1,g2,g. g1 ~⊚ g2 ≡ g → ∀f1,f2. ↑f1 = g1 → ↑f2 = g2 → + ∃∃f. f1 ~⊚ f2 ≡ f & ↑f = g. +#g1 #g2 #g * -g1 -g2 -g #f1 #f2 #f #g1 +[ #g2 #g #Hf #H1 #H2 #H #x1 #x2 #Hx1 #Hx2 destruct + >(injective_push … Hx1) >(injective_push … Hx2) -x2 -x1 + /2 width=3 by ex2_intro/ +| #g2 #g #_ #_ #H2 #_ #x1 #x2 #_ #Hx2 destruct + elim (discr_push_next … Hx2) +| #g #_ #H1 #_ #x1 #x2 #Hx1 #_ destruct + elim (discr_push_next … Hx1) +] +qed-. + +lemma coafter_inv_pnx: ∀g1,g2,g. g1 ~⊚ g2 ≡ g → ∀f1,f2. ↑f1 = g1 → ⫯f2 = g2 → + ∃∃f. f1 ~⊚ f2 ≡ f & ⫯f = g. +#g1 #g2 #g * -g1 -g2 -g #f1 #f2 #f #g1 +[ #g2 #g #_ #_ #H2 #_ #x1 #x2 #_ #Hx2 destruct + elim (discr_next_push … Hx2) +| #g2 #g #Hf #H1 #H2 #H3 #x1 #x2 #Hx1 #Hx2 destruct + >(injective_push … Hx1) >(injective_next … Hx2) -x2 -x1 + /2 width=3 by ex2_intro/ +| #g #_ #H1 #_ #x1 #x2 #Hx1 #_ destruct + elim (discr_push_next … Hx1) +] +qed-. + +lemma coafter_inv_nxx: ∀g1,f2,g. g1 ~⊚ f2 ≡ g → ∀f1. ⫯f1 = g1 → + ∃∃f. f1 ~⊚ f2 ≡ f & ↑f = g. +#g1 #f2 #g * -g1 -f2 -g #f1 #f2 #f #g1 +[ #g2 #g #_ #H1 #_ #_ #x1 #Hx1 destruct + elim (discr_next_push … Hx1) +| #g2 #g #_ #H1 #_ #_ #x1 #Hx1 destruct + elim (discr_next_push … Hx1) +| #g #Hf #H1 #H #x1 #Hx1 destruct + >(injective_next … Hx1) -x1 + /2 width=3 by ex2_intro/ +] +qed-. + +(* Advanced inversion lemmas ************************************************) + +lemma coafter_inv_ppp: ∀g1,g2,g. g1 ~⊚ g2 ≡ g → + ∀f1,f2,f. ↑f1 = g1 → ↑f2 = g2 → ↑f = g → f1 ~⊚ f2 ≡ f. +#g1 #g2 #g #Hg #f1 #f2 #f #H1 #H2 #H +elim (coafter_inv_ppx … Hg … H1 H2) -g1 -g2 #x #Hf #Hx destruct +<(injective_push … Hx) -f // +qed-. + +lemma coafter_inv_ppn: ∀g1,g2,g. g1 ~⊚ g2 ≡ g → + ∀f1,f2,f. ↑f1 = g1 → ↑f2 = g2 → ⫯f = g → ⊥. +#g1 #g2 #g #Hg #f1 #f2 #f #H1 #H2 #H +elim (coafter_inv_ppx … Hg … H1 H2) -g1 -g2 #x #Hf #Hx destruct +elim (discr_push_next … Hx) +qed-. + +lemma coafter_inv_pnn: ∀g1,g2,g. g1 ~⊚ g2 ≡ g → + ∀f1,f2,f. ↑f1 = g1 → ⫯f2 = g2 → ⫯f = g → f1 ~⊚ f2 ≡ f. +#g1 #g2 #g #Hg #f1 #f2 #f #H1 #H2 #H +elim (coafter_inv_pnx … Hg … H1 H2) -g1 -g2 #x #Hf #Hx destruct +<(injective_next … Hx) -f // +qed-. + +lemma coafter_inv_pnp: ∀g1,g2,g. g1 ~⊚ g2 ≡ g → + ∀f1,f2,f. ↑f1 = g1 → ⫯f2 = g2 → ↑f = g → ⊥. +#g1 #g2 #g #Hg #f1 #f2 #f #H1 #H2 #H +elim (coafter_inv_pnx … Hg … H1 H2) -g1 -g2 #x #Hf #Hx destruct +elim (discr_next_push … Hx) +qed-. + +lemma coafter_inv_nxp: ∀g1,f2,g. g1 ~⊚ f2 ≡ g → + ∀f1,f. ⫯f1 = g1 → ↑f = g → f1 ~⊚ f2 ≡ f. +#g1 #f2 #g #Hg #f1 #f #H1 #H +elim (coafter_inv_nxx … Hg … H1) -g1 #x #Hf #Hx destruct +<(injective_push … Hx) -f // +qed-. + +lemma coafter_inv_nxn: ∀g1,f2,g. g1 ~⊚ f2 ≡ g → + ∀f1,f. ⫯f1 = g1 → ⫯f = g → ⊥. +#g1 #f2 #g #Hg #f1 #f #H1 #H +elim (coafter_inv_nxx … Hg … H1) -g1 #x #Hf #Hx destruct +elim (discr_push_next … Hx) +qed-. + +lemma coafter_inv_pxp: ∀g1,g2,g. g1 ~⊚ g2 ≡ g → + ∀f1,f. ↑f1 = g1 → ↑f = g → + ∃∃f2. f1 ~⊚ f2 ≡ f & ↑f2 = g2. +#g1 #g2 #g #Hg #f1 #f #H1 #H elim (pn_split g2) * #f2 #H2 +[ lapply (coafter_inv_ppp … Hg … H1 H2 H) -g1 -g /2 width=3 by ex2_intro/ +| elim (coafter_inv_pnp … Hg … H1 H2 H) +] +qed-. + +lemma coafter_inv_pxn: ∀g1,g2,g. g1 ~⊚ g2 ≡ g → + ∀f1,f. ↑f1 = g1 → ⫯f = g → + ∃∃f2. f1 ~⊚ f2 ≡ f & ⫯f2 = g2. +#g1 #g2 #g #Hg #f1 #f #H1 #H elim (pn_split g2) * #f2 #H2 +[ elim (coafter_inv_ppn … Hg … H1 H2 H) +| lapply (coafter_inv_pnn … Hg … H1 … H) -g1 -g /2 width=3 by ex2_intro/ +] +qed-. + +lemma coafter_inv_xxn: ∀g1,g2,g. g1 ~⊚ g2 ≡ g → ∀f. ⫯f = g → + ∃∃f1,f2. f1 ~⊚ f2 ≡ f & ↑f1 = g1 & ⫯f2 = g2. +#g1 #g2 #g #Hg #f #H elim (pn_split g1) * #f1 #H1 +[ elim (coafter_inv_pxn … Hg … H1 H) -g /2 width=5 by ex3_2_intro/ +| elim (coafter_inv_nxn … Hg … H1 H) +] +qed-. + +lemma coafter_inv_xxp: ∀g1,g2,g. g1 ~⊚ g2 ≡ g → ∀f. ↑f = g → + (∃∃f1,f2. f1 ~⊚ f2 ≡ f & ↑f1 = g1 & ↑f2 = g2) ∨ + ∃∃f1. f1 ~⊚ g2 ≡ f & ⫯f1 = g1. +#g1 #g2 #g #Hg #f #H elim (pn_split g1) * #f1 #H1 +[ elim (coafter_inv_pxp … Hg … H1 H) -g + /3 width=5 by or_introl, ex3_2_intro/ +| /4 width=5 by coafter_inv_nxp, or_intror, ex2_intro/ +] +qed-. + +lemma coafter_inv_pxx: ∀g1,g2,g. g1 ~⊚ g2 ≡ g → ∀f1. ↑f1 = g1 → + (∃∃f2,f. f1 ~⊚ f2 ≡ f & ↑f2 = g2 & ↑f = g) ∨ + (∃∃f2,f. f1 ~⊚ f2 ≡ f & ⫯f2 = g2 & ⫯f = g). +#g1 #g2 #g #Hg #f1 #H1 elim (pn_split g2) * #f2 #H2 +[ elim (coafter_inv_ppx … Hg … H1 H2) -g1 + /3 width=5 by or_introl, ex3_2_intro/ +| elim (coafter_inv_pnx … Hg … H1 H2) -g1 + /3 width=5 by or_intror, ex3_2_intro/ +] +qed-. + +(* Basic properties *********************************************************) + +corec lemma coafter_eq_repl_back2: ∀f1,f. eq_repl_back (λf2. f2 ~⊚ f1 ≡ f). +#f1 #f #f2 * -f2 -f1 -f +#f21 #f1 #f #g21 [1,2: #g1 ] #g #Hf #H21 [1,2: #H1 ] #H #g22 #H0 +[ cases (eq_inv_px … H0 … H21) -g21 /3 width=7 by coafter_refl/ +| cases (eq_inv_px … H0 … H21) -g21 /3 width=7 by coafter_push/ +| cases (eq_inv_nx … H0 … H21) -g21 /3 width=5 by coafter_next/ +] +qed-. + +lemma coafter_eq_repl_fwd2: ∀f1,f. eq_repl_fwd (λf2. f2 ~⊚ f1 ≡ f). +#f1 #f @eq_repl_sym /2 width=3 by coafter_eq_repl_back2/ +qed-. + +corec lemma coafter_eq_repl_back1: ∀f2,f. eq_repl_back (λf1. f2 ~⊚ f1 ≡ f). +#f2 #f #f1 * -f2 -f1 -f +#f2 #f11 #f #g2 [1,2: #g11 ] #g #Hf #H2 [1,2: #H11 ] #H #g2 #H0 +[ cases (eq_inv_px … H0 … H11) -g11 /3 width=7 by coafter_refl/ +| cases (eq_inv_nx … H0 … H11) -g11 /3 width=7 by coafter_push/ +| @(coafter_next … H2 H) /2 width=5 by/ +] +qed-. + +lemma coafter_eq_repl_fwd1: ∀f2,f. eq_repl_fwd (λf1. f2 ~⊚ f1 ≡ f). +#f2 #f @eq_repl_sym /2 width=3 by coafter_eq_repl_back1/ +qed-. + +corec lemma coafter_eq_repl_back0: ∀f1,f2. eq_repl_back (λf. f2 ~⊚ f1 ≡ f). +#f2 #f1 #f * -f2 -f1 -f +#f2 #f1 #f01 #g2 [1,2: #g1 ] #g01 #Hf01 #H2 [1,2: #H1 ] #H01 #g02 #H0 +[ cases (eq_inv_px … H0 … H01) -g01 /3 width=7 by coafter_refl/ +| cases (eq_inv_nx … H0 … H01) -g01 /3 width=7 by coafter_push/ +| cases (eq_inv_px … H0 … H01) -g01 /3 width=5 by coafter_next/ +] +qed-. + +lemma coafter_eq_repl_fwd0: ∀f2,f1. eq_repl_fwd (λf. f2 ~⊚ f1 ≡ f). +#f2 #f1 @eq_repl_sym /2 width=3 by coafter_eq_repl_back0/ +qed-. + +(* Main properties **********************************************************) +(* +corec theorem coafter_trans1: ∀f0,f3,f4. f0 ~⊚ f3 ≡ f4 → + ∀f1,f2. f1 ~⊚ f2 ≡ f0 → + ∀f. f2 ~⊚ f3 ≡ f → f1 ~⊚ f ≡ f4. +#f0 #f3 #f4 * -f0 -f3 -f4 #f0 #f3 #f4 #g0 [1,2: #g3 ] #g4 +[ #Hf4 #H0 #H3 #H4 #g1 #g2 #Hg0 #g #Hg + cases (coafter_inv_xxp … Hg0 … H0) -g0 + #f1 #f2 #Hf0 #H1 #H2 + cases (coafter_inv_ppx … Hg … H2 H3) -g2 -g3 + #f #Hf #H /3 width=7 by coafter_refl/ +| #Hf4 #H0 #H3 #H4 #g1 #g2 #Hg0 #g #Hg + cases (coafter_inv_xxp … Hg0 … H0) -g0 + #f1 #f2 #Hf0 #H1 #H2 + cases (coafter_inv_pnx … Hg … H2 H3) -g2 -g3 + #f #Hf #H /3 width=7 by coafter_push/ +| #Hf4 #H0 #H4 #g1 #g2 #Hg0 #g #Hg + cases (coafter_inv_xxn … Hg0 … H0) -g0 * + [ #f1 #f2 #Hf0 #H1 #H2 + cases (coafter_inv_nxx … Hg … H2) -g2 + #f #Hf #H /3 width=7 by coafter_push/ + | #f1 #Hf0 #H1 /3 width=6 by coafter_next/ + ] +] +qed-. + +corec theorem coafter_trans2: ∀f1,f0,f4. f1 ~⊚ f0 ≡ f4 → + ∀f2, f3. f2 ~⊚ f3 ≡ f0 → + ∀f. f1 ~⊚ f2 ≡ f → f ~⊚ f3 ≡ f4. +#f1 #f0 #f4 * -f1 -f0 -f4 #f1 #f0 #f4 #g1 [1,2: #g0 ] #g4 +[ #Hf4 #H1 #H0 #H4 #g2 #g3 #Hg0 #g #Hg + cases (coafter_inv_xxp … Hg0 … H0) -g0 + #f2 #f3 #Hf0 #H2 #H3 + cases (coafter_inv_ppx … Hg … H1 H2) -g1 -g2 + #f #Hf #H /3 width=7 by coafter_refl/ +| #Hf4 #H1 #H0 #H4 #g2 #g3 #Hg0 #g #Hg + cases (coafter_inv_xxn … Hg0 … H0) -g0 * + [ #f2 #f3 #Hf0 #H2 #H3 + cases (coafter_inv_ppx … Hg … H1 H2) -g1 -g2 + #f #Hf #H /3 width=7 by coafter_push/ + | #f2 #Hf0 #H2 + cases (coafter_inv_pnx … Hg … H1 H2) -g1 -g2 + #f #Hf #H /3 width=6 by coafter_next/ + ] +| #Hf4 #H1 #H4 #f2 #f3 #Hf0 #g #Hg + cases (coafter_inv_nxx … Hg … H1) -g1 + #f #Hg #H /3 width=6 by coafter_next/ +] +qed-. +*) +(* Main inversion lemmas ****************************************************) + +corec theorem coafter_mono: ∀f1,f2,x,y. f1 ~⊚ f2 ≡ x → f1 ~⊚ f2 ≡ y → x ≗ y. +#f1 #f2 #x #y * -f1 -f2 -x +#f1 #f2 #x #g1 [1,2: #g2 ] #g #Hx #H1 [1,2: #H2 ] #H0x #Hy +[ cases (coafter_inv_ppx … Hy … H1 H2) -g1 -g2 /3 width=8 by eq_push/ +| cases (coafter_inv_pnx … Hy … H1 H2) -g1 -g2 /3 width=8 by eq_next/ +| cases (coafter_inv_nxx … Hy … H1) -g1 /3 width=8 by eq_push/ +] +qed-. + +lemma coafter_mono_eq: ∀f1,f2,f. f1 ~⊚ f2 ≡ f → ∀g1,g2,g. g1 ~⊚ g2 ≡ g → + f1 ≗ g1 → f2 ≗ g2 → f ≗ g. +/4 width=4 by coafter_mono, coafter_eq_repl_back1, coafter_eq_repl_back2/ qed-. + +(* Properties on tls ********************************************************) + +lemma coafter_tls: ∀n,f1,f2,f. @⦃0, f1⦄ ≡ n → + f1 ~⊚ f2 ≡ f → ⫱*[n]f1 ~⊚ f2 ≡ ⫱*[n]f. +#n elim n -n // +#n #IH #f1 #f2 #f #Hf1 #Hf +cases (at_inv_pxn … Hf1) -Hf1 [ |*: // ] #g1 #Hg1 #H1 +cases (coafter_inv_nxx … Hf … H1) -Hf /2 width=1 by/ +qed. + +(* Properties on isid *******************************************************) + +corec lemma coafter_isid_sn: ∀f1. 𝐈⦃f1⦄ → ∀f2. f1 ~⊚ f2 ≡ f2. +#f1 * -f1 #f1 #g1 #Hf1 #H1 #f2 cases (pn_split f2) * #g2 #H2 +/3 width=7 by coafter_push, coafter_refl/ +qed. + +corec lemma coafter_isid_dx: ∀f2,f. 𝐈⦃f2⦄ → 𝐈⦃f⦄ → ∀f1. f1 ~⊚ f2 ≡ f. +#f2 #f * -f2 #f2 #g2 #Hf2 #H2 * -f #f #g #Hf #H #f1 cases (pn_split f1) * #g1 #H1 +[ /3 width=7 by coafter_refl/ +| @(coafter_next … H1 … H) /3 width=3 by isid_push/ +] +qed. + +(* Inversion lemmas on isid *************************************************) + +lemma coafter_isid_inv_sn: ∀f1,f2,f. f1 ~⊚ f2 ≡ f → 𝐈⦃f1⦄ → f2 ≗ f. +/3 width=6 by coafter_isid_sn, coafter_mono/ qed-. + +lemma coafter_isid_inv_dx: ∀f1,f2,f. f1 ~⊚ f2 ≡ f → 𝐈⦃f2⦄ → 𝐈⦃f⦄. +/4 width=4 by eq_id_isid, coafter_isid_dx, coafter_mono/ qed-. +(* +(* Properties on isuni ******************************************************) + +lemma coafter_isid_isuni: ∀f1,f2. 𝐈⦃f2⦄ → 𝐔⦃f1⦄ → f1 ~⊚ ⫯f2 ≡ ⫯f1. +#f1 #f2 #Hf2 #H elim H -H +/5 width=7 by coafter_isid_dx, coafter_eq_repl_back2, coafter_next, coafter_push, eq_push_inv_isid/ +qed. + +lemma coafter_uni_next2: ∀f2. 𝐔⦃f2⦄ → ∀f1,f. ⫯f2 ~⊚ f1 ≡ f → f2 ~⊚ ⫯f1 ≡ f. +#f2 #H elim H -f2 +[ #f2 #Hf2 #f1 #f #Hf + elim (coafter_inv_nxx … Hf) -Hf [2,3: // ] #g #Hg #H0 destruct + /4 width=7 by coafter_isid_inv_sn, coafter_isid_sn, coafter_eq_repl_back0, eq_next/ +| #f2 #_ #g2 #H2 #IH #f1 #f #Hf + elim (coafter_inv_nxx … Hf) -Hf [2,3: // ] #g #Hg #H0 destruct + /3 width=5 by coafter_next/ +] +qed. + +(* Properties on uni ********************************************************) + +lemma coafter_uni: ∀n1,n2. 𝐔❴n1❵ ~⊚ 𝐔❴n2❵ ≡ 𝐔❴n1+n2❵. +@nat_elim2 +/4 width=5 by coafter_uni_next2, coafter_isid_sn, coafter_isid_dx, coafter_next/ +qed. + +(* Forward lemmas on at *****************************************************) + +lemma coafter_at_fwd: ∀i,i1,f. @⦃i1, f⦄ ≡ i → ∀f2,f1. f2 ~⊚ f1 ≡ f → + ∃∃i2. @⦃i1, f1⦄ ≡ i2 & @⦃i2, f2⦄ ≡ i. +#i elim i -i [2: #i #IH ] #i1 #f #Hf #f2 #f1 #Hf21 +[ elim (at_inv_xxn … Hf) -Hf [1,3:* |*: // ] + [1: #g #j1 #Hg #H0 #H |2,4: #g #Hg #H ] +| elim (at_inv_xxp … Hf) -Hf // + #g #H1 #H +] +[2: elim (coafter_inv_xxn … Hf21 … H) -f * + [ #g2 #g1 #Hg21 #H2 #H1 | #g2 #Hg21 #H2 ] +|*: elim (coafter_inv_xxp … Hf21 … H) -f + #g2 #g1 #Hg21 #H2 #H1 +] +[4: -Hg21 |*: elim (IH … Hg … Hg21) -g -IH ] +/3 width=9 by at_refl, at_push, at_next, ex2_intro/ +qed-. + +lemma coafter_fwd_at: ∀i,i2,i1,f1,f2. @⦃i1, f1⦄ ≡ i2 → @⦃i2, f2⦄ ≡ i → + ∀f. f2 ~⊚ f1 ≡ f → @⦃i1, f⦄ ≡ i. +#i elim i -i [2: #i #IH ] #i2 #i1 #f1 #f2 #Hf1 #Hf2 #f #Hf +[ elim (at_inv_xxn … Hf2) -Hf2 [1,3: * |*: // ] + #g2 [ #j2 ] #Hg2 [ #H22 ] #H20 + [ elim (at_inv_xxn … Hf1 … H22) -i2 * + #g1 [ #j1 ] #Hg1 [ #H11 ] #H10 + [ elim (coafter_inv_ppx … Hf … H20 H10) -f1 -f2 /3 width=7 by at_push/ + | elim (coafter_inv_pnx … Hf … H20 H10) -f1 -f2 /3 width=6 by at_next/ + ] + | elim (coafter_inv_nxx … Hf … H20) -f2 /3 width=7 by at_next/ + ] +| elim (at_inv_xxp … Hf2) -Hf2 // #g2 #H22 #H20 + elim (at_inv_xxp … Hf1 … H22) -i2 #g1 #H11 #H10 + elim (coafter_inv_ppx … Hf … H20 H10) -f1 -f2 /2 width=2 by at_refl/ +] +qed-. + +lemma coafter_fwd_at2: ∀f,i1,i. @⦃i1, f⦄ ≡ i → ∀f1,i2. @⦃i1, f1⦄ ≡ i2 → + ∀f2. f2 ~⊚ f1 ≡ f → @⦃i2, f2⦄ ≡ i. +#f #i1 #i #Hf #f1 #i2 #Hf1 #f2 #H elim (coafter_at_fwd … Hf … H) -f +#j1 #H #Hf2 <(at_mono … Hf1 … H) -i1 -i2 // +qed-. + +lemma coafter_fwd_at1: ∀i,i2,i1,f,f2. @⦃i1, f⦄ ≡ i → @⦃i2, f2⦄ ≡ i → + ∀f1. f2 ~⊚ f1 ≡ f → @⦃i1, f1⦄ ≡ i2. +#i elim i -i [2: #i #IH ] #i2 #i1 #f #f2 #Hf #Hf2 #f1 #Hf1 +[ elim (at_inv_xxn … Hf) -Hf [1,3: * |*: // ] + #g [ #j1 ] #Hg [ #H01 ] #H00 + elim (at_inv_xxn … Hf2) -Hf2 [1,3,5,7: * |*: // ] + #g2 [1,3: #j2 ] #Hg2 [1,2: #H22 ] #H20 + [ elim (coafter_inv_pxp … Hf1 … H20 H00) -f2 -f /3 width=7 by at_push/ + | elim (coafter_inv_pxn … Hf1 … H20 H00) -f2 -f /3 width=5 by at_next/ + | elim (coafter_inv_nxp … Hf1 … H20 H00) + | /4 width=9 by coafter_inv_nxn, at_next/ + ] +| elim (at_inv_xxp … Hf) -Hf // #g #H01 #H00 + elim (at_inv_xxp … Hf2) -Hf2 // #g2 #H21 #H20 + elim (coafter_inv_pxp … Hf1 … H20 H00) -f2 -f /3 width=2 by at_refl/ +] +qed-. + +(* Properties with at *******************************************************) + +lemma coafter_uni_dx: ∀i2,i1,f2. @⦃i1, f2⦄ ≡ i2 → + ∀f. f2 ~⊚ 𝐔❴i1❵ ≡ f → 𝐔❴i2❵ ~⊚ ⫱*[i2] f2 ≡ f. +#i2 elim i2 -i2 +[ #i1 #f2 #Hf2 #f #Hf + elim (at_inv_xxp … Hf2) -Hf2 // #g2 #H1 #H2 destruct + lapply (coafter_isid_inv_dx … Hf ?) -Hf + /3 width=3 by coafter_isid_sn, coafter_eq_repl_back0/ +| #i2 #IH #i1 #f2 #Hf2 #f #Hf + elim (at_inv_xxn … Hf2) -Hf2 [1,3: * |*: // ] + [ #g2 #j1 #Hg2 #H1 #H2 destruct + elim (coafter_inv_pnx … Hf) -Hf [ |*: // ] #g #Hg #H destruct + /3 width=5 by coafter_next/ + | #g2 #Hg2 #H2 destruct + elim (coafter_inv_nxx … Hf) -Hf [2,3: // ] #g #Hg #H destruct + /3 width=5 by coafter_next/ + ] +] +qed. + +lemma coafter_uni_sn: ∀i2,i1,f2. @⦃i1, f2⦄ ≡ i2 → + ∀f. 𝐔❴i2❵ ~⊚ ⫱*[i2] f2 ≡ f → f2 ~⊚ 𝐔❴i1❵ ≡ f. +#i2 elim i2 -i2 +[ #i1 #f2 #Hf2 #f #Hf + elim (at_inv_xxp … Hf2) -Hf2 // #g2 #H1 #H2 destruct + lapply (coafter_isid_inv_sn … Hf ?) -Hf + /3 width=3 by coafter_isid_dx, coafter_eq_repl_back0/ +| #i2 #IH #i1 #f2 #Hf2 #f #Hf + elim (coafter_inv_nxx … Hf) -Hf [2,3: // ] #g #Hg #H destruct + elim (at_inv_xxn … Hf2) -Hf2 [1,3: * |*: // ] + [ #g2 #j1 #Hg2 #H1 #H2 destruct /3 width=7 by coafter_push/ + | #g2 #Hg2 #H2 destruct /3 width=5 by coafter_next/ + ] +] +qed-. + +lemma coafter_uni_succ_dx: ∀i2,i1,f2. @⦃i1, f2⦄ ≡ i2 → + ∀f. f2 ~⊚ 𝐔❴⫯i1❵ ≡ f → 𝐔❴⫯i2❵ ~⊚ ⫱*[⫯i2] f2 ≡ f. +#i2 elim i2 -i2 +[ #i1 #f2 #Hf2 #f #Hf + elim (at_inv_xxp … Hf2) -Hf2 // #g2 #H1 #H2 destruct + elim (coafter_inv_pnx … Hf) -Hf [ |*: // ] #g #Hg #H + lapply (coafter_isid_inv_dx … Hg ?) -Hg + /4 width=5 by coafter_isid_sn, coafter_eq_repl_back0, coafter_next/ +| #i2 #IH #i1 #f2 #Hf2 #f #Hf + elim (at_inv_xxn … Hf2) -Hf2 [1,3: * |*: // ] + [ #g2 #j1 #Hg2 #H1 #H2 destruct + elim (coafter_inv_pnx … Hf) -Hf [ |*: // ] #g #Hg #H destruct + /3 width=5 by coafter_next/ + | #g2 #Hg2 #H2 destruct + elim (coafter_inv_nxx … Hf) -Hf [2,3: // ] #g #Hg #H destruct + /3 width=5 by coafter_next/ + ] +] +qed. + +lemma coafter_uni_succ_sn: ∀i2,i1,f2. @⦃i1, f2⦄ ≡ i2 → + ∀f. 𝐔❴⫯i2❵ ~⊚ ⫱*[⫯i2] f2 ≡ f → f2 ~⊚ 𝐔❴⫯i1❵ ≡ f. +#i2 elim i2 -i2 +[ #i1 #f2 #Hf2 #f #Hf + elim (at_inv_xxp … Hf2) -Hf2 // #g2 #H1 #H2 destruct + elim (coafter_inv_nxx … Hf) -Hf [ |*: // ] #g #Hg #H destruct + lapply (coafter_isid_inv_sn … Hg ?) -Hg + /4 width=7 by coafter_isid_dx, coafter_eq_repl_back0, coafter_push/ +| #i2 #IH #i1 #f2 #Hf2 #f #Hf + elim (coafter_inv_nxx … Hf) -Hf [2,3: // ] #g #Hg #H destruct + elim (at_inv_xxn … Hf2) -Hf2 [1,3: * |*: // ] + [ #g2 #j1 #Hg2 #H1 #H2 destruct