From: Andrea Asperti Date: Mon, 4 Feb 2008 08:39:17 +0000 (+0000) Subject: Some improvement. X-Git-Tag: make_still_working~5639 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=789339cc1451af401ae8c2f8adad137568d8aa1d;p=helm.git Some improvement. --- diff --git a/helm/software/matita/library/nat/factorial2.ma b/helm/software/matita/library/nat/factorial2.ma index 1d375df88..594feb51f 100644 --- a/helm/software/matita/library/nat/factorial2.ma +++ b/helm/software/matita/library/nat/factorial2.ma @@ -197,6 +197,83 @@ elim H ] qed. +theorem le_fact_10: fact (2*5) \le (exp 2 ((2*5)-2))*(fact 5)*(fact 5). +simplify in \vdash (? (? %) ?). +rewrite > factS in \vdash (? % ?). +rewrite > factS in \vdash (? % ?).rewrite < assoc_times in \vdash(? % ?). +rewrite > factS in \vdash (? % ?).rewrite < assoc_times in \vdash (? % ?). +rewrite > factS in \vdash (? % ?).rewrite < assoc_times in \vdash (? % ?). +rewrite > factS in \vdash (? % ?).rewrite < assoc_times in \vdash (? % ?). +apply le_times_l. +apply leb_true_to_le.reflexivity. +qed. + +theorem ab_times_cd: \forall a,b,c,d.(a*b)*(c*d)=(a*c)*(b*d). +intros. +rewrite > assoc_times. +rewrite > assoc_times. +apply eq_f. +rewrite < assoc_times. +rewrite < assoc_times. +rewrite > sym_times in \vdash (? ? (? % ?) ?). +reflexivity. +qed. + +(* an even better result *) +theorem lt_SSSSO_to_fact: \forall n.4 times_SSO. + change in \vdash (? ? (? (? (? ? %) ?) ?)) with (2*n1 - O); + rewrite < minus_n_O. + rewrite > factS. + rewrite > factS. + rewrite < assoc_times. + rewrite > factS. + apply (trans_le ? ((2*(S n1))*(2*(S n1))*(fact (2*n1)))) + [apply le_times_l. + rewrite > times_SSO. + apply le_times_r. + apply le_n_Sn + |apply (trans_le ? (2*S n1*(2*S n1)*(2\sup(2*n1-2)*n1!*n1!))) + [apply le_times_r.assumption + |rewrite > assoc_times. + rewrite > ab_times_cd in \vdash (? (? ? %) ?). + rewrite < assoc_times. + apply le_times_l. + rewrite < assoc_times in \vdash (? (? ? %) ?). + rewrite > ab_times_cd. + apply le_times_l. + rewrite < exp_S. + rewrite < exp_S. + apply le_exp + [apply lt_O_S + |rewrite > eq_minus_S_pred. + rewrite < S_pred + [rewrite > eq_minus_S_pred. + rewrite < S_pred + [rewrite < minus_n_O. + apply le_n + |elim H1;simplify + [apply lt_O_S + |apply lt_O_S + ] + ] + |elim H1;simplify + [apply lt_O_S + |rewrite < plus_n_Sm. + rewrite < minus_n_O. + apply lt_O_S + ] + ] + ] + ] + ] + ] +qed. + + (* theorem stirling: \forall n,k.k \le n \to log (fact n) < n*log n - n + k*log n.