From: Wilmer Ricciotti Date: Tue, 15 Jan 2013 12:29:35 +0000 (+0000) Subject: unistep_aux X-Git-Tag: make_still_working~1346 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=789726e7f992ff6a37b91799fb081f8013703b49;p=helm.git unistep_aux --- diff --git a/matita/matita/lib/turing/multi_universal/moves_2.ma b/matita/matita/lib/turing/multi_universal/moves_2.ma index 14f072b4e..d86b89a6a 100644 --- a/matita/matita/lib/turing/multi_universal/moves_2.ma +++ b/matita/matita/lib/turing/multi_universal/moves_2.ma @@ -12,6 +12,7 @@ include "turing/turing.ma". include "turing/inject.ma". include "turing/while_multi.ma". +include "turing/while_machine.ma". definition parmove_states ≝ initN 3. @@ -252,4 +253,91 @@ lemma sem_parmoveL : ∀src,dst,sig,n. parmove src dst sig n L ⊨ R_parmoveL src dst sig n. #src #dst #sig #n #Hneq #Hsrc #Hdst @WRealize_to_Realize [/2/ | @wsem_parmoveL //] +qed. + +(* while { + if current != null + then move_r + else nop + } + *) + +definition mte_states ≝ initN 3. +definition mte0 : mte_states ≝ mk_Sig ?? 0 (leb_true_to_le 1 3 (refl …)). +definition mte1 : mte_states ≝ mk_Sig ?? 1 (leb_true_to_le 2 3 (refl …)). +definition mte2 : mte_states ≝ mk_Sig ?? 2 (leb_true_to_le 3 3 (refl …)). + +definition mte_step ≝ + λalpha:FinSet.λD.mk_TM alpha mte_states + (λp.let 〈q,a〉 ≝ p in + match a with + [ None ⇒ 〈mte1,None ?,N〉 + | Some a' ⇒ match (pi1 … q) with + [ O ⇒ 〈mte2,Some ? a',D〉 + | S q ⇒ 〈mte2,None ?,N〉 ] ]) + mte0 (λq.q == mte1 ∨ q == mte2). + +definition R_mte_step_true ≝ λalpha,D,t1,t2. + ∃ls,c,rs. + t1 = midtape alpha ls c rs ∧ t2 = tape_move ? t1 D. + +definition R_mte_step_false ≝ λalpha.λt1,t2:tape alpha. + current ? t1 = None ? ∧ t1 = t2. + +lemma sem_mte_step : + ∀alpha,D.mte_step alpha D ⊨ [ mte2 : R_mte_step_true alpha D, R_mte_step_false alpha ] . +#alpha #D #intape @(ex_intro ?? 2) cases intape +[ @ex_intro + [| % [ % [ % | normalize #H destruct ] | #_ % // ] ] +|#a #al @ex_intro + [| % [ % [ % | normalize #H destruct ] | #_ % // ] ] +|#a #al @ex_intro + [| % [ % [ % | normalize #H destruct ] | #_ % // ] ] +| #ls #c #rs + @ex_intro [| % [ % [ % | #_ %{ls} %{c} %{rs} % // ] + | normalize in ⊢ (?(??%?)→?); * #H @False_ind /2/ ] ] ] +qed. + +definition move_to_end ≝ λsig,D.whileTM sig (mte_step sig D) mte2. + +definition R_move_to_end_r ≝ + λsig,int,outt. + (current ? int = None ? → outt = int) ∧ + ∀ls,c,rs.int = midtape sig ls c rs → outt = mk_tape ? (reverse ? rs@c::ls) (None ?) [ ]. + +lemma wsem_move_to_end_r : ∀sig. move_to_end sig R ⊫ R_move_to_end_r sig. +#sig #ta #k #outc #Hloop +lapply (sem_while … (sem_mte_step sig R) … Hloop) // +-Hloop * #tb * #Hstar @(star_ind_l ??????? Hstar) -Hstar +[ * #Hcurtb #Houtc % /2/ #ls #c #rs #Htb >Htb in Hcurtb; normalize in ⊢ (%→?); #H destruct (H) +| #tc #td * #ls * #c * #rs * #Htc >Htc cases rs + [ normalize in ⊢ (%→?); #Htd >Htd #Hstar #IH whd in ⊢ (%→?); #Hfalse + lapply (IH Hfalse) -IH * #Htd1 #_ % + [ normalize in ⊢ (%→?); #H destruct (H) + | #ls0 #c0 #rs0 #H destruct (H) >Htd1 // ] + | #r0 #rs0 whd in ⊢ (???%→?); #Htd >Htd #Hstar #IH whd in ⊢ (%→?); #Hfalse + lapply (IH Hfalse) -IH * #_ #IH % + [ normalize in ⊢ (%→?); #H destruct (H) + | #ls1 #c1 #rs1 #H destruct (H) >reverse_cons >associative_append @IH % ] ] ] +qed. + +definition R_move_to_end_l ≝ + λsig,int,outt. + (current ? int = None ? → outt = int) ∧ + ∀ls,c,rs.int = midtape sig ls c rs → outt = mk_tape ? [ ] (None ?) (reverse ? ls@c::rs). + +lemma wsem_move_to_end_l : ∀sig. move_to_end sig L ⊫ R_move_to_end_l sig. +#sig #ta #k #outc #Hloop +lapply (sem_while … (sem_mte_step sig L) … Hloop) // +-Hloop * #tb * #Hstar @(star_ind_l ??????? Hstar) -Hstar +[ * #Hcurtb #Houtc % /2/ #ls #c #rs #Htb >Htb in Hcurtb; normalize in ⊢ (%→?); #H destruct (H) +| #tc #td * #ls * #c * #rs * #Htc >Htc cases ls + [ normalize in ⊢ (%→?); #Htd >Htd #Hstar #IH whd in ⊢ (%→?); #Hfalse + lapply (IH Hfalse) -IH * #Htd1 #_ % + [ normalize in ⊢ (%→?); #H destruct (H) + | #ls0 #c0 #rs0 #H destruct (H) >Htd1 // ] + | #l0 #ls0 whd in ⊢ (???%→?); #Htd >Htd #Hstar #IH whd in ⊢ (%→?); #Hfalse + lapply (IH Hfalse) -IH * #_ #IH % + [ normalize in ⊢ (%→?); #H destruct (H) + | #ls1 #c1 #rs1 #H destruct (H) >reverse_cons >associative_append @IH % ] ] ] qed. \ No newline at end of file diff --git a/matita/matita/lib/turing/multi_universal/unistep_aux.ma b/matita/matita/lib/turing/multi_universal/unistep_aux.ma new file mode 100644 index 000000000..f240cea97 --- /dev/null +++ b/matita/matita/lib/turing/multi_universal/unistep_aux.ma @@ -0,0 +1,287 @@ +(* + ||M|| This file is part of HELM, an Hypertextual, Electronic + ||A|| Library of Mathematics, developed at the Computer Science + ||T|| Department of the University of Bologna, Italy. + ||I|| + ||T|| + ||A|| + \ / This file is distributed under the terms of the + \ / GNU General Public License Version 2 + V_____________________________________________________________*) + +include "turing/multi_universal/moves_2.ma". + +(* + + in.obj : ... x ... + ^ + in.cfg : ... ? ? ... + ^ + + out.cfg : ... 1 x ... + ^ + + --------------------- + current (in.obj) = None + + in.cfg : ... ? ? ... + ^ + + out.cfg : ... 0 0 ... + ^ + + obj_to_cfg ≝ + move_l(cfg); + move_l(cfg); + (if (current(in.obj)) == None + then write(0,cfg); + move_r(cfg); + write(0,cfg); + else write(1,cfg); + move_r(cfg); + copy_step(obj,cfg); + move_l(obj);) + move_to_end_l(cfg); + move_r(cfg); + + + cfg_to_obj +*) + +definition obj_to_cfg ≝ + mmove cfg unialpha 3 L · + mmove cfg unialpha 3 L · + if_TM ?? (inject_TM ? (test_null ?) 3 obj) + ( + + + + +definition o2c_states ≝ initN 3. + +definition copy0 : copy_states ≝ mk_Sig ?? 0 (leb_true_to_le 1 3 (refl …)). +definition copy1 : copy_states ≝ mk_Sig ?? 1 (leb_true_to_le 2 3 (refl …)). +definition copy2 : copy_states ≝ mk_Sig ?? 2 (leb_true_to_le 3 3 (refl …)). + + +definition trans_copy_step ≝ + λsrc,dst.λsig:FinSet.λn. + λp:copy_states × (Vector (option sig) (S n)). + let 〈q,a〉 ≝ p in + match pi1 … q with + [ O ⇒ match nth src ? a (None ?) with + [ None ⇒ 〈copy2,null_action sig n〉 + | Some ai ⇒ match nth dst ? a (None ?) with + [ None ⇒ 〈copy2,null_action ? n〉 + | Some aj ⇒ + 〈copy1,change_vec ? (S n) + (change_vec ? (S n) (null_action ? n) (〈None ?,R〉) src) + (〈Some ? ai,R〉) dst〉 + ] + ] + | S q ⇒ match q with + [ O ⇒ (* 1 *) 〈copy1,null_action ? n〉 + | S _ ⇒ (* 2 *) 〈copy2,null_action ? n〉 ] ]. + +definition copy_step ≝ + λsrc,dst,sig,n. + mk_mTM sig n copy_states (trans_copy_step src dst sig n) + copy0 (λq.q == copy1 ∨ q == copy2). + +definition R_comp_step_true ≝ + λsrc,dst,sig,n.λint,outt: Vector (tape sig) (S n). + ∃x,y. + current ? (nth src ? int (niltape ?)) = Some ? x ∧ + current ? (nth dst ? int (niltape ?)) = Some ? y ∧ + outt = change_vec ?? + (change_vec ?? int + (tape_move_mono ? (nth src ? int (niltape ?)) 〈None ?, R〉) src) + (tape_move_mono ? (nth dst ? int (niltape ?)) 〈Some ? x, R〉) dst. + +definition R_comp_step_false ≝ + λsrc,dst:nat.λsig,n.λint,outt: Vector (tape sig) (S n). + (current ? (nth src ? int (niltape ?)) = None ? ∨ + current ? (nth dst ? int (niltape ?)) = None ?) ∧ outt = int. + +lemma copy_q0_q2_null : + ∀src,dst,sig,n,v.src < S n → dst < S n → + (nth src ? (current_chars ?? v) (None ?) = None ? ∨ + nth dst ? (current_chars ?? v) (None ?) = None ?) → + step sig n (copy_step src dst sig n) (mk_mconfig ??? copy0 v) + = mk_mconfig ??? copy2 v. +#src #dst #sig #n #v #Hi #Hj +whd in ⊢ (? → ??%?); >(eq_pair_fst_snd … (trans ????)) whd in ⊢ (?→??%?); +* #Hcurrent +[ @eq_f2 + [ whd in ⊢ (??(???%)?); >Hcurrent % + | whd in ⊢ (??(????(???%))?); >Hcurrent @tape_move_null_action ] +| @eq_f2 + [ whd in ⊢ (??(???%)?); >Hcurrent cases (nth src ?? (None sig)) // + | whd in ⊢ (??(????(???%))?); >Hcurrent + cases (nth src ?? (None sig)) [|#x] @tape_move_null_action ] ] +qed. + +lemma copy_q0_q1 : + ∀src,dst,sig,n,v,a,b.src ≠ dst → src < S n → dst < S n → + nth src ? (current_chars ?? v) (None ?) = Some ? a → + nth dst ? (current_chars ?? v) (None ?) = Some ? b → + step sig n (copy_step src dst sig n) (mk_mconfig ??? copy0 v) = + mk_mconfig ??? copy1 + (change_vec ? (S n) + (change_vec ?? v + (tape_move_mono ? (nth src ? v (niltape ?)) 〈None ?, R〉) src) + (tape_move_mono ? (nth dst ? v (niltape ?)) 〈Some ? a, R〉) dst). +#src #dst #sig #n #v #a #b #Heq #Hsrc #Hdst #Ha1 #Ha2 +whd in ⊢ (??%?); >(eq_pair_fst_snd … (trans ????)) whd in ⊢ (??%?); @eq_f2 +[ whd in match (trans ????); + >Ha1 >Ha2 whd in ⊢ (??(???%)?); >(\b ?) // +| whd in match (trans ????); + >Ha1 >Ha2 whd in ⊢ (??(????(???%))?); >(\b ?) // + change with (change_vec ?????) in ⊢ (??(????%)?); + <(change_vec_same … v dst (niltape ?)) in ⊢ (??%?); + <(change_vec_same … v src (niltape ?)) in ⊢ (??%?); + >tape_move_multi_def + >pmap_change >pmap_change tape_move_null_action + @eq_f2 // >nth_change_vec_neq // +] +qed. + +lemma sem_copy_step : + ∀src,dst,sig,n.src ≠ dst → src < S n → dst < S n → + copy_step src dst sig n ⊨ + [ copy1: R_comp_step_true src dst sig n, + R_comp_step_false src dst sig n ]. +#src #dst #sig #n #Hneq #Hsrc #Hdst #int +lapply (refl ? (current ? (nth src ? int (niltape ?)))) +cases (current ? (nth src ? int (niltape ?))) in ⊢ (???%→?); +[ #Hcur_src %{2} % + [| % [ % + [ whd in ⊢ (??%?); >copy_q0_q2_null /2/ + | normalize in ⊢ (%→?); #H destruct (H) ] + | #_ % // % // ] ] +| #a #Ha lapply (refl ? (current ? (nth dst ? int (niltape ?)))) + cases (current ? (nth dst ? int (niltape ?))) in ⊢ (???%→?); + [ #Hcur_dst %{2} % + [| % [ % + [ whd in ⊢ (??%?); >copy_q0_q2_null /2/ + | normalize in ⊢ (%→?); #H destruct (H) ] + | #_ % // %2 >Hcur_dst % ] ] + | #b #Hb %{2} % + [| % [ % + [whd in ⊢ (??%?); >(copy_q0_q1 … a b Hneq Hsrc Hdst) // + | #_ %{a} %{b} % // % //] + | * #H @False_ind @H % + ] + ] + ] +] +qed. + +definition copy ≝ λsrc,dst,sig,n. + whileTM … (copy_step src dst sig n) copy1. + +definition R_copy ≝ + λsrc,dst,sig,n.λint,outt: Vector (tape sig) (S n). + ((current ? (nth src ? int (niltape ?)) = None ? ∨ + current ? (nth dst ? int (niltape ?)) = None ?) → outt = int) ∧ + (∀ls,x,x0,rs,ls0,rs0. + nth src ? int (niltape ?) = midtape sig ls x rs → + nth dst ? int (niltape ?) = midtape sig ls0 x0 rs0 → + (∃rs01,rs02.rs0 = rs01@rs02 ∧ |rs01| = |rs| ∧ + outt = change_vec ?? + (change_vec ?? int + (mk_tape sig (reverse sig rs@x::ls) (None sig) []) src) + (mk_tape sig (reverse sig rs@x::ls0) (option_hd sig rs02) + (tail sig rs02)) dst) ∨ + (∃rs1,rs2.rs = rs1@rs2 ∧ |rs1| = |rs0| ∧ + outt = change_vec ?? + (change_vec ?? int + (mk_tape sig (reverse sig rs1@x::ls) (option_hd sig rs2) + (tail sig rs2)) src) + (mk_tape sig (reverse sig rs1@x::ls0) (None sig) []) dst)). + +lemma wsem_copy : ∀src,dst,sig,n.src ≠ dst → src < S n → dst < S n → + copy src dst sig n ⊫ R_copy src dst sig n. +#src #dst #sig #n #Hneq #Hsrc #Hdst #ta #k #outc #Hloop +lapply (sem_while … (sem_copy_step src dst sig n Hneq Hsrc Hdst) … Hloop) // +-Hloop * #tb * #Hstar @(star_ind_l ??????? Hstar) -Hstar +[ whd in ⊢ (%→?); * #Hnone #Hout % + [#_ @Hout + |#ls #x #x0 #rs #ls0 #rs0 #Hsrc1 #Hdst1 @False_ind cases Hnone + [>Hsrc1 normalize #H destruct (H) | >Hdst1 normalize #H destruct (H)] + ] +|#tc #td * #x * #y * * #Hcx #Hcy #Htd #Hstar #IH #He lapply (IH He) -IH * + #IH1 #IH2 % + [* [>Hcx #H destruct (H) | >Hcy #H destruct (H)] + |#ls #x' #y' #rs #ls0 #rs0 #Hnth_src #Hnth_dst + >Hnth_src in Hcx; whd in ⊢ (??%?→?); #H destruct (H) + >Hnth_dst in Hcy; whd in ⊢ (??%?→?); #H destruct (H) + >Hnth_src in Htd; >Hnth_dst -Hnth_src -Hnth_dst + cases rs + [(* the source tape is empty after the move *) + #Htd lapply (IH1 ?) + [%1 >Htd >nth_change_vec_neq [2:@(not_to_not … Hneq) //] >nth_change_vec //] + #Hout (* whd in match (tape_move ???); *) %1 %{([])} %{rs0} % + [% [// | // ] + |whd in match (reverse ??); whd in match (reverse ??); + >Hout >Htd @eq_f2 // cases rs0 // + ] + |#c1 #tl1 cases rs0 + [(* the dst tape is empty after the move *) + #Htd lapply (IH1 ?) [%2 >Htd >nth_change_vec //] + #Hout (* whd in match (tape_move ???); *) %2 %{[ ]} %{(c1::tl1)} % + [% [// | // ] + |whd in match (reverse ??); whd in match (reverse ??); + >Hout >Htd @eq_f2 // + ] + |#c2 #tl2 whd in match (tape_move_mono ???); whd in match (tape_move_mono ???); + #Htd + cut (nth src (tape sig) td (niltape sig)=midtape sig (x::ls) c1 tl1) + [>Htd >nth_change_vec_neq [2:@(not_to_not … Hneq) //] @nth_change_vec //] + #Hsrc_td + cut (nth dst (tape sig) td (niltape sig)=midtape sig (x::ls0) c2 tl2) + [>Htd @nth_change_vec //] + #Hdst_td cases (IH2 … Hsrc_td Hdst_td) -Hsrc_td -Hdst_td + [* #rs01 * #rs02 * * #H1 #H2 #H3 %1 + %{(c2::rs01)} %{rs02} % [% [@eq_f //|normalize @eq_f @H2]] + >Htd in H3; >change_vec_commute // >change_vec_change_vec + >change_vec_commute [2:@(not_to_not … Hneq) //] >change_vec_change_vec + #H >reverse_cons >associative_append >associative_append @H + |* #rs11 * #rs12 * * #H1 #H2 #H3 %2 + %{(c1::rs11)} %{rs12} % [% [@eq_f //|normalize @eq_f @H2]] + >Htd in H3; >change_vec_commute // >change_vec_change_vec + >change_vec_commute [2:@(not_to_not … Hneq) //] >change_vec_change_vec + #H >reverse_cons >associative_append >associative_append @H + ] + ] + ] + ] +qed. + + +lemma terminate_copy : ∀src,dst,sig,n,t. + src ≠ dst → src < S n → dst < S n → copy src dst sig n ↓ t. +#src #dst #sig #n #t #Hneq #Hsrc #Hdts +@(terminate_while … (sem_copy_step …)) // +<(change_vec_same … t src (niltape ?)) +cases (nth src (tape sig) t (niltape ?)) +[ % #t1 * #x * #y * * >nth_change_vec // normalize in ⊢ (%→?); #Hx destruct +|2,3: #a0 #al0 % #t1 * #x * #y * * >nth_change_vec // normalize in ⊢ (%→?); #Hx destruct +| #ls #c #rs lapply c -c lapply ls -ls lapply t -t elim rs + [#t #ls #c % #t1 * #x * #y * * >nth_change_vec // normalize in ⊢ (%→?); + #H1 destruct (H1) #_ >change_vec_change_vec #Ht1 % + #t2 * #x0 * #y0 * * >Ht1 >nth_change_vec_neq [|@sym_not_eq //] + >nth_change_vec // normalize in ⊢ (%→?); #H destruct (H) + |#r0 #rs0 #IH #t #ls #c % #t1 * #x * #y * * >nth_change_vec // + normalize in ⊢ (%→?); #H destruct (H) #Hcur + >change_vec_change_vec >change_vec_commute // #Ht1 >Ht1 @IH + ] +] +qed. + +lemma sem_copy : ∀src,dst,sig,n. + src ≠ dst → src < S n → dst < S n → + copy src dst sig n ⊨ R_copy src dst sig n. +#i #j #sig #n #Hneq #Hi #Hj @WRealize_to_Realize [/2/| @wsem_copy // ] +qed.