From: Claudio Sacerdoti Coen Date: Tue, 13 Dec 2011 10:44:50 +0000 (+0000) Subject: More stuff integrated from CerCo on sigma types (that are now a record) X-Git-Tag: make_still_working~2017 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=7d6ce585b85cd390b7888a8debfeb1b8aaf93f72;p=helm.git More stuff integrated from CerCo on sigma types (that are now a record) and option. --- diff --git a/matita/matita/lib/basics/lists/list.ma b/matita/matita/lib/basics/lists/list.ma index 01766b9ec..fa9e8bfee 100644 --- a/matita/matita/lib/basics/lists/list.ma +++ b/matita/matita/lib/basics/lists/list.ma @@ -117,7 +117,7 @@ theorem eq_map : ∀A,B,f,g,l. (∀x.f x = g x) → map A B f l = map A B g l. let rec dprodl (A:Type[0]) (f:A→Type[0]) (l1:list A) (g:(∀a:A.list (f a))) on l1 ≝ match l1 with [ nil ⇒ nil ? - | cons a tl ⇒ (map ??(dp ?? a) (g a)) @ dprodl A f tl g + | cons a tl ⇒ (map ??(mk_Sig ?? a) (g a)) @ dprodl A f tl g ]. (**************************** length ******************************) diff --git a/matita/matita/lib/basics/types.ma b/matita/matita/lib/basics/types.ma index 060ebb06e..bfcf7731f 100644 --- a/matita/matita/lib/basics/types.ma +++ b/matita/matita/lib/basics/types.ma @@ -29,12 +29,45 @@ inductive option (A:Type[0]) : Type[0] ≝ None : option A | Some : A → option A. +definition option_map : ∀A,B:Type[0]. (A → B) → option A → option B ≝ +λA,B,f,o. match o with [ None ⇒ None B | Some a ⇒ Some B (f a) ]. + +lemma option_map_none : ∀A,B,f,x. + option_map A B f x = None B → x = None A. +#A #B #f * [ // | #a #E whd in E:(??%?); destruct ] +qed. + +lemma option_map_some : ∀A,B,f,x,v. + option_map A B f x = Some B v → ∃y. x = Some ? y ∧ f y = v. +#A #B #f * +[ #v normalize #E destruct +| #y #v normalize #E %{y} destruct % // +] qed. + +definition option_map_def : ∀A,B:Type[0]. (A → B) → B → option A → B ≝ +λA,B,f,d,o. match o with [ None ⇒ d | Some a ⇒ f a ]. + +lemma refute_none_by_refl : ∀A,B:Type[0]. ∀P:A → B. ∀Q:B → Type[0]. ∀x:option A. ∀H:x = None ? → False. + (∀v. x = Some ? v → Q (P v)) → + Q (match x return λy.x = y → ? with [ Some v ⇒ λ_. P v | None ⇒ λE. match H E in False with [ ] ] (refl ? x)). +#A #B #P #Q * +[ #H cases (H (refl ??)) +| #a #H #p normalize @p @refl +] qed. + (* sigma *) -inductive Sig (A:Type[0]) (f:A→Type[0]) : Type[0] ≝ - dp: ∀a:A.(f a)→Sig A f. +record Sig (A:Type[0]) (f:A→Type[0]) : Type[0] ≝ { + pi1: A + ; pi2: f pi1 + }. interpretation "Sigma" 'sigma x = (Sig ? x). +notation "hvbox(« term 19 a, break term 19 b»)" +with precedence 90 for @{ 'dp $a $b }. + +interpretation "mk_Sig" 'dp x y = (mk_Sig ?? x y). + (* Prod *) record Prod (A,B:Type[0]) : Type[0] ≝ {