From: Claudio Sacerdoti Coen Date: Mon, 9 Oct 2006 16:28:22 +0000 (+0000) Subject: auto => auto new and other minor changes to make it compile. X-Git-Tag: 0.4.95@7852~920 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=7f14769dcdb5467175ebf6b8463f59184aab69e3;p=helm.git auto => auto new and other minor changes to make it compile. --- diff --git a/matita/tests/fguidi.ma b/matita/tests/fguidi.ma index 44e344ab2..84d8cb408 100644 --- a/matita/tests/fguidi.ma +++ b/matita/tests/fguidi.ma @@ -63,7 +63,7 @@ inductive le: nat \to nat \to Prop \def | le_succ: \forall m, n. (le m n) \to (le (S m) (S n)). theorem le_refl: \forall x. (le x x). -intros. elim x. auto paramodulation. auto paramodulation. +intros. elim x; auto new. qed. theorem le_gen_x_O_aux: \forall x, y. (le x y) \to (y =O) \to @@ -76,14 +76,14 @@ intros. apply le_gen_x_O_aux. exact O. auto paramodulation. auto paramodulation. qed. theorem le_gen_x_O_cc: \forall x. (x = O) \to (le x O). -intros. elim H. auto paramodulation. +intros. elim H. auto new. qed. theorem le_gen_S_x_aux: \forall m,x,y. (le y x) \to (y = S m) \to (\exists n. x = (S n) \land (le m n)). intros 4. elim H. apply eq_gen_S_O. exact m. elim H1. auto paramodulation. -cut (n = m). elim Hcut. apply ex_intro. exact n1. auto paramodulation. auto new. (* paramodulation non trova la prova *) +cut (n = m). elim Hcut. apply ex_intro. exact n1. auto new.auto paramodulation. qed. theorem le_gen_S_x: \forall m,x. (le (S m) x) \to @@ -93,17 +93,18 @@ qed. theorem le_gen_S_x_cc: \forall m,x. (\exists n. x = (S n) \land (le m n)) \to (le (S m) x). -intros. elim H. elim H1. cut ((S x1) = x). elim Hcut. auto paramodulation. elim H2. auto paramodulation. +intros. elim H. elim H1. cut ((S x1) = x). elim Hcut. auto new. +elim H2. auto paramodulation. qed. theorem le_gen_S_S: \forall m,n. (le (S m) (S n)) \to (le m n). intros. -lapply le_gen_S_x to H using H0. elim H0. elim H1. -lapply eq_gen_S_S to H2 using H4. rewrite > H4. assumption. +lapply le_gen_S_x to H as H0. elim H0. elim H1. +lapply eq_gen_S_S to H2 as H4. rewrite > H4. assumption. qed. theorem le_gen_S_S_cc: \forall m,n. (le m n) \to (le (S m) (S n)). -intros. auto paramodulation. +intros. auto new. qed. (*