From: Enrico Tassi Date: Mon, 12 Nov 2007 15:22:43 +0000 (+0000) Subject: ordered set is over, much new stuff coming from a coreflexivee/cotransitive X-Git-Tag: 0.4.95@7852~24 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=80ce2b7d10578bf19408c9d98dd287a5b9d9c982;p=helm.git ordered set is over, much new stuff coming from a coreflexivee/cotransitive execedence relation. --- diff --git a/matita/dama/constructive_connectives.ma b/matita/dama/constructive_connectives.ma index b7f15e500..2cf0d8d58 100644 --- a/matita/dama/constructive_connectives.ma +++ b/matita/dama/constructive_connectives.ma @@ -14,14 +14,20 @@ set "baseuri" "cic:/matita/constructive_connectives/". -inductive or (A,B:Type) : Type \def - Left : A → or A B - | Right : B → or A B. +inductive Or (A,B:Type) : Type ≝ + Left : A → Or A B + | Right : B → Or A B. interpretation "constructive or" 'or x y = - (cic:/matita/constructive_connectives/or.ind#xpointer(1/1) x y). + (cic:/matita/constructive_connectives/Or.ind#xpointer(1/1) x y). -inductive ex (A:Type) (P:A→Prop) : Type \def +inductive And (A,B:Type) : Type ≝ + | Conj : A → B → And A B. + +interpretation "constructive and" 'and x y = + (cic:/matita/constructive_connectives/And.ind#xpointer(1/1) x y). + +inductive ex (A:Type) (P:A→Prop) : Type ≝ ex_intro: ∀w:A. P w → ex A P. notation < "hvbox(Σ ident i opt (: ty) break . p)" @@ -34,7 +40,7 @@ interpretation "constructive exists" 'sigma \eta.x = (cic:/matita/constructive_connectives/ex.ind#xpointer(1/1) _ x). alias id "False" = "cic:/matita/logic/connectives/False.ind#xpointer(1/1)". -definition Not ≝ λx:Type.False. +definition Not ≝ λx:Type.x → False. interpretation "constructive not" 'not x = (cic:/matita/constructive_connectives/Not.con x). \ No newline at end of file diff --git a/matita/dama/ordered_sets.ma b/matita/dama/ordered_sets.ma index dcae29e18..b8c6952c7 100644 --- a/matita/dama/ordered_sets.ma +++ b/matita/dama/ordered_sets.ma @@ -17,27 +17,132 @@ set "baseuri" "cic:/matita/ordered_sets/". include "higher_order_defs/relations.ma". include "nat/plus.ma". include "constructive_connectives.ma". +include "constructive_higher_order_relations.ma". -definition cotransitive ≝ - λC:Type.λle:C→C→Prop.∀x,y,z:C. le x y → le x z ∨ le z y. +record excedence : Type ≝ { + exc_carr:> Type; + exc_relation: exc_carr → exc_carr → Prop; + exc_coreflexive: coreflexive ? exc_relation; + exc_cotransitive: cotransitive ? exc_relation +}. -definition antisimmetric ≝ - λC:Type.λle:C→C→Prop.∀x,y:C. le x y → le y x → x=y. +interpretation "excedence" 'nleq a b = + (cic:/matita/ordered_sets/exc_relation.con _ a b). -record is_order_relation (C:Type) (le:C→C→Prop) : Type ≝ - { or_reflexive: reflexive ? le; - or_transitive: transitive ? le; - or_antisimmetric: antisimmetric ? le - }. +definition le ≝ λE:excedence.λa,b:E. ¬ (a ≰ b). -record ordered_set: Type ≝ - { os_carrier:> Type; - os_le: os_carrier → os_carrier → Prop; - os_order_relation_properties:> is_order_relation ? os_le - }. +interpretation "ordered sets less or equal than" 'leq a b = + (cic:/matita/ordered_sets/le.con _ a b). + +lemma le_reflexive: ∀E.reflexive ? (le E). +intros (E); unfold; cases E; simplify; intros (x); apply (H x); +qed. + +lemma le_transitive: ∀E.transitive ? (le E). +intros (E); unfold; cases E; simplify; unfold Not; intros (x y z Rxy Ryz H2); +cases (c x z y H2) (H4 H5); clear H2; [exact (Rxy H4)|exact (Ryz H5)] +qed. + +definition apart ≝ λE:excedence.λa,b:E. a ≰ b ∨ b ≰ a. + +notation "a # b" non associative with precedence 50 for @{ 'apart $a $b}. +interpretation "apartness" 'apart a b = (cic:/matita/ordered_sets/apart.con _ a b). + +lemma apart_coreflexive: ∀E.coreflexive ? (apart E). +intros (E); unfold; cases E; simplify; clear E; intros (x); unfold; +intros (H1); apply (H x); cases H1; assumption; +qed. + +lemma apart_symmetric: ∀E.symmetric ? (apart E). +intros (E); unfold; intros(x y H); cases H; clear H; [right|left] assumption; +qed. + +lemma apart_cotrans: ∀E. cotransitive ? (apart E). +intros (E); unfold; cases E (T f _ cTf); simplify; intros (x y z Axy); +cases Axy (H); lapply (cTf ? ? z H) as H1; cases H1; clear Axy H1; +[left; left|right; left|right; right|left; right] assumption. +qed. + +definition eq ≝ λE:excedence.λa,b:E. ¬ (a # b). + +notation "a ≈ b" non associative with precedence 50 for @{ 'napart $a $b}. +interpretation "alikeness" 'napart a b = + (cic:/matita/ordered_sets/eq.con _ a b). + +lemma eq_reflexive:∀E. reflexive ? (eq E). +intros (E); unfold; cases E (T f cRf _); simplify; unfold Not; intros (x H); +apply (cRf x); cases H; assumption; +qed. + +lemma eq_symmetric:∀E.symmetric ? (eq E). +intros (E); unfold; unfold eq; unfold Not; +intros (x y H1 H2); apply H1; cases H2; [right|left] assumption; +qed. + +lemma eq_transitive: ∀E.transitive ? (eq E). +intros (E); unfold; cases E (T f _ cTf); simplify; unfold Not; +intros (x y z H1 H2 H3); cases H3 (H4 H4); clear E H3; lapply (cTf ? ? y H4) as H5; +cases H5; clear H5 H4 cTf; [1,4: apply H1|*:apply H2] clear H1 H2; +[1,3:left|*:right] assumption; +qed. + +lemma le_antisymmetric: ∀E.antisymmetric ? (le E) (eq E). +intros (E); unfold; intros (x y Lxy Lyx); unfold; unfold; intros (H); +cases H; [apply Lxy;|apply Lyx] assumption; +qed. + +definition lt ≝ λE:excedence.λa,b:E. a ≤ b ∧ a # b. + +interpretation "ordered sets less than" 'lt a b = + (cic:/matita/ordered_sets/lt.con _ a b). + +lemma lt_coreflexive: ∀E.coreflexive ? (lt E). +intros (E); unfold; unfold Not; intros (x H); cases H (_ ABS); +apply (apart_coreflexive ? x ABS); +qed. + +lemma lt_transitive: ∀E.transitive ? (lt E). +intros (E); unfold; intros (x y z H1 H2); cases H1 (Lxy Axy); cases H2 (Lyz Ayz); +split; [apply (le_transitive ???? Lxy Lyz)] clear H1 H2; +cases Axy (H1 H1); cases Ayz (H2 H2); [1:cases (Lxy H1)|3:cases (Lyz H2)] +clear Axy Ayz;lapply (exc_cotransitive E) as c; unfold cotransitive in c; +lapply (exc_coreflexive E) as r; unfold coreflexive in r; +[1: lapply (c ?? y H1) as H3; cases H3 (H4 H4); [cases (Lxy H4)|cases (r ? H4)] +|2: lapply (c ?? x H2) as H3; cases H3 (H4 H4); [right; assumption|cases (Lxy H4)]] +qed. + +theorem mah: ∀E:excedence.∀a,b:E. (a < b) → (b ≰ a). +intros (E a b Lab); cases Lab (LEab Aab); +cases Aab (H H); [cases (LEab H)] fold normalize (b ≰ a); assumption; (* BUG *) +qed. + +-- altro file +opposto TH è assioma per ordine totale. + +-- + + + + + + + +record is_order_relation (C:Type) (le:C→C→Prop) (eq:C→C→Prop) : Type ≝ { + or_reflexive: reflexive ? le; + or_transitive: transitive ? le; + or_antisimmetric: antisymmetric ? le eq +}. + +record ordered_set: Type ≝ { + os_carr:> excedence; + os_order_relation_properties:> is_order_relation ? (le os_carr) (apart os_carr) +}. + +ordered_set. + +E -interpretation "Ordered Sets le" 'leq a b = - (cic:/matita/ordered_sets/os_le.con _ a b). +E theorem antisimmetric_to_cotransitive_to_transitive: ∀C.∀le:relation C. antisimmetric ? le → cotransitive ? le →