From: Claudio Sacerdoti Coen Date: Wed, 30 Dec 2009 17:33:30 +0000 (+0000) Subject: Porting of Sambin's stuff started. X-Git-Tag: make_still_working~3155 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=8300e0de4b379e9ab9f2ce00d3f9e3d93c8bd943;p=helm.git Porting of Sambin's stuff started. Everything is now automatically enriched using hints. It seems to work quite smoothly. --- diff --git a/helm/software/matita/nlibrary/overlap/o-algebra.ma b/helm/software/matita/nlibrary/overlap/o-algebra.ma new file mode 100644 index 000000000..eae842c44 --- /dev/null +++ b/helm/software/matita/nlibrary/overlap/o-algebra.ma @@ -0,0 +1,489 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "sets/categories2.ma". + +(* +interpretation "unary morphism comprehension with no proof" 'comprehension T P = + (mk_unary_morphism T ? P ?). +interpretation "unary morphism1 comprehension with no proof" 'comprehension T P = + (mk_unary_morphism1 T ? P ?). + +notation > "hvbox({ ident i ∈ s | term 19 p | by })" with precedence 90 +for @{ 'comprehension_by $s (λ${ident i}. $p) $by}. +notation < "hvbox({ ident i ∈ s | term 19 p })" with precedence 90 +for @{ 'comprehension_by $s (λ${ident i}:$_. $p) $by}. + +interpretation "unary morphism comprehension with proof" 'comprehension_by s \eta.f p = + (mk_unary_morphism s ? f p). +interpretation "unary morphism1 comprehension with proof" 'comprehension_by s \eta.f p = + (mk_unary_morphism1 s ? f p). +*) + +(* per il set-indexing vedere capitolo BPTools (foundational tools), Sect. 0.3.4 complete + lattices, Definizione 0.9 *) +(* USARE L'ESISTENZIALE DEBOLE *) +nrecord OAlgebra : Type[2] := { + oa_P :> setoid1; + oa_leq : binary_morphism1 oa_P oa_P CPROP; (*CSC: dovrebbe essere CProp bug refiner*) + oa_overlap: binary_morphism1 oa_P oa_P CPROP; + binary_meet: binary_morphism1 oa_P oa_P oa_P; +(*CSC: oa_join: ∀I:setoid.unary_morphism1 (setoid1_of_setoid … I ⇒ oa_P) oa_P;*) + oa_one: oa_P; + oa_zero: oa_P; + oa_leq_refl: ∀a:oa_P. oa_leq a a; + oa_leq_antisym: ∀a,b:oa_P.oa_leq a b → oa_leq b a → a = b; + oa_leq_trans: ∀a,b,c:oa_P.oa_leq a b → oa_leq b c → oa_leq a c; + oa_overlap_sym: ∀a,b:oa_P.oa_overlap a b → oa_overlap b a; +(*CSC: oa_join_sup: ∀I:setoid.∀p_i:I ⇒ oa_P.∀p:oa_P.oa_leq (oa_join I p_i) p = (∀i:I.oa_leq (p_i i) p);*) + oa_zero_bot: ∀p:oa_P.oa_leq oa_zero p; + oa_one_top: ∀p:oa_P.oa_leq p oa_one; + oa_overlap_preservers_meet: ∀p,q:oa_P.oa_overlap p q → oa_overlap p (binary_meet p q); +(*CSC: oa_join_split: + ∀I:SET.∀p.∀q:I ⇒ oa_P. + oa_overlap p (oa_join I q) = (∃i:I.oa_overlap p (q i));*) + (*oa_base : setoid; + 1) enum non e' il nome giusto perche' non e' suriettiva + 2) manca (vedere altro capitolo) la "suriettivita'" come immagine di insiemi di oa_base + oa_enum : ums oa_base oa_P; + oa_density: ∀p,q.(∀i.oa_overlap p (oa_enum i) → oa_overlap q (oa_enum i)) → oa_leq p q + *) + oa_density: + ∀p,q.(∀r.oa_overlap p r → oa_overlap q r) → oa_leq p q +}. + +interpretation "o-algebra leq" 'leq a b = (fun21 ??? (oa_leq ?) a b). + +notation "hovbox(a mpadded width -150% (>)< b)" non associative with precedence 45 +for @{ 'overlap $a $b}. +interpretation "o-algebra overlap" 'overlap a b = (fun21 ??? (oa_overlap ?) a b). + +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (\emsp) \nbsp term 90 p)" +non associative with precedence 50 for @{ 'oa_meet $p }. +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (ident i ∈  I) break term 90 p)" +non associative with precedence 50 for @{ 'oa_meet_mk (λ${ident i}:$I.$p) }. + +(*notation > "hovbox(∧ f)" non associative with precedence 60 +for @{ 'oa_meet $f }. +interpretation "o-algebra meet" 'oa_meet f = + (fun12 ?? (oa_meet ??) f). +interpretation "o-algebra meet with explicit function" 'oa_meet_mk f = + (fun12 ?? (oa_meet ??) (mk_unary_morphism ?? f ?)). +*) +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)" +non associative with precedence 50 for @{ 'oa_join $p }. +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (ident i ∈  I) break term 90 p)" +non associative with precedence 50 for @{ 'oa_join_mk (λ${ident i}:$I.$p) }. + +(*CSC +notation > "hovbox(∨ f)" non associative with precedence 60 +for @{ 'oa_join $f }. +interpretation "o-algebra join" 'oa_join f = + (fun12 ?? (oa_join ??) f). +interpretation "o-algebra join with explicit function" 'oa_join_mk f = + (fun12 ?? (oa_join ??) (mk_unary_morphism ?? f ?)). +*) +(*definition binary_meet : ∀O:OAlgebra. binary_morphism1 O O O. +intros; split; +[ intros (p q); + apply (∧ { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p ? p q }); +| intros; lapply (prop12 ? O (oa_meet O BOOL)); + [2: apply ({ x ∈ BOOL | match x with [ true ⇒ a | false ⇒ b ] | IF_THEN_ELSE_p ? a b }); + |3: apply ({ x ∈ BOOL | match x with [ true ⇒ a' | false ⇒ b' ] | IF_THEN_ELSE_p ? a' b' }); + | apply Hletin;] + intro x; simplify; cases x; simplify; assumption;] +qed.*) + +interpretation "o-algebra binary meet" 'and a b = + (fun21 ??? (binary_meet ?) a b). + +(* +prefer coercion Type1_OF_OAlgebra. + +definition binary_join : ∀O:OAlgebra. binary_morphism1 O O O. +intros; split; +[ intros (p q); + apply (∨ { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p ? p q }); +| intros; lapply (prop12 ? O (oa_join O BOOL)); + [2: apply ({ x ∈ BOOL | match x with [ true ⇒ a | false ⇒ b ] | IF_THEN_ELSE_p ? a b }); + |3: apply ({ x ∈ BOOL | match x with [ true ⇒ a' | false ⇒ b' ] | IF_THEN_ELSE_p ? a' b' }); + | apply Hletin;] + intro x; simplify; cases x; simplify; assumption;] +qed. + +interpretation "o-algebra binary join" 'or a b = + (fun21 ??? (binary_join ?) a b). +*) +(* +lemma oa_overlap_preservers_meet: ∀O:OAlgebra.∀p,q:O.p >< q → p >< (p ∧ q). +(* next change to avoid universe inconsistency *) +change in ⊢ (?→%→%→?) with (Type1_OF_OAlgebra O); +intros; lapply (oa_overlap_preserves_meet_ O p q f); +lapply (prop21 O O CPROP (oa_overlap O) p p ? (p ∧ q) # ?); +[3: apply (if ?? (Hletin1)); apply Hletin;|skip] apply refl1; +qed. +*) +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)" +non associative with precedence 49 for @{ 'oa_join $p }. +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (ident i ∈  I) break term 90 p)" +non associative with precedence 49 for @{ 'oa_join_mk (λ${ident i}:$I.$p) }. +notation < "hovbox(a ∨ b)" left associative with precedence 49 +for @{ 'oa_join_mk (λ${ident i}:$_.match $i with [ true ⇒ $a | false ⇒ $b ]) }. + +notation > "hovbox(∨ f)" non associative with precedence 59 +for @{ 'oa_join $f }. +notation > "hovbox(a ∨ b)" left associative with precedence 49 +for @{ 'oa_join (mk_unary_morphism BOOL ? (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) (IF_THEN_ELSE_p ? $a $b)) }. + +(*interpretation "o-algebra join" 'oa_join f = + (fun12 ?? (oa_join ??) f). +interpretation "o-algebra join with explicit function" 'oa_join_mk f = + (fun12 ?? (oa_join ??) (mk_unary_morphism ?? f ?)). +*) +nrecord ORelation (P,Q : OAlgebra) : Type[1] ≝ { + or_f :> P ⇒ Q; + or_f_minus_star : P ⇒ Q; + or_f_star : Q ⇒ P; + or_f_minus : Q ⇒ P; + or_prop1 : ∀p,q. (or_f p ≤ q) = (p ≤ or_f_star q); + or_prop2 : ∀p,q. (or_f_minus p ≤ q) = (p ≤ or_f_minus_star q); + or_prop3 : ∀p,q. (or_f p >< q) = (p >< or_f_minus q) +}. + +notation "r \sup *" non associative with precedence 90 for @{'OR_f_star $r}. +notation > "r *" non associative with precedence 90 for @{'OR_f_star $r}. + +notation "r \sup (⎻* )" non associative with precedence 90 for @{'OR_f_minus_star $r}. +notation > "r⎻*" non associative with precedence 90 for @{'OR_f_minus_star $r}. + +notation "r \sup ⎻" non associative with precedence 90 for @{'OR_f_minus $r}. +notation > "r⎻" non associative with precedence 90 for @{'OR_f_minus $r}. + +interpretation "o-relation f⎻*" 'OR_f_minus_star r = (or_f_minus_star ? ? r). +interpretation "o-relation f⎻" 'OR_f_minus r = (or_f_minus ? ? r). +interpretation "o-relation f*" 'OR_f_star r = (or_f_star ? ? r). + + +ndefinition ORelation_setoid : OAlgebra → OAlgebra → setoid1. +#P; #Q; @ (ORelation P Q); @ + [ napply (λp,q.p = q) + | #x; napply refl1 + | #x; #y; napply sym1 + | #x; #y; #z; napply trans1 ] +nqed. + +unification hint 0 ≔ P, Q ; + R ≟ (ORelation_setoid P Q) +(* -------------------------- *) ⊢ + carr1 R ≡ ORelation P Q. + +ndefinition or_f_morphism1: ∀P,Q:OAlgebra.unary_morphism1 (ORelation_setoid P Q) + (unary_morphism1_setoid1 P Q). + #P; #Q; @ + [ napply or_f + | #a; #a'; #e; nassumption] +nqed. + +unification hint 0 ≔ P, Q, r; + R ≟ (mk_unary_morphism1 … (or_f …) (prop11 … (or_f_morphism1 …))) +(* ------------------------ *) ⊢ + fun11 … R r ≡ or_f P Q r. + +nlemma ORelation_eq_respects_leq_or_f_minus_: + ∀P,Q:OAlgebra.∀r,r':ORelation P Q. + r=r' → ∀x. r⎻ x ≤ r'⎻ x. + #P; #Q; #a; #a'; #e; #x; + napply oa_density; #r; #H; + napply oa_overlap_sym; + napply (. (or_prop3 … a' …)^-1); (*CSC: why a'? *) + napply (. ?‡#) + [##2: napply (a r) + | ngeneralize in match r in ⊢ %; + nchange with (or_f … a' = or_f … a); + napply (.= †e^-1); + napply #] + napply (. (or_prop3 …)); + napply oa_overlap_sym; + nassumption. +nqed. + +nlemma ORelation_eq2: + ∀P,Q:OAlgebra.∀r,r':ORelation P Q. + r=r' → r⎻ = r'⎻. + #P; #Q; #a; #a'; #e; #x; + napply oa_leq_antisym; napply ORelation_eq_respects_leq_or_f_minus_ + [ napply e | napply e^-1] +nqed. + +ndefinition or_f_minus_morphism1: ∀P,Q:OAlgebra.unary_morphism1 (ORelation_setoid P Q) + (unary_morphism1_setoid1 Q P). + #P; #Q; @ + [ napply or_f_minus + | napply ORelation_eq2] +nqed. + +unification hint 0 ≔ P, Q, r; + R ≟ (mk_unary_morphism1 … (or_f_minus …) (prop11 … (or_f_minus_morphism1 …))) +(* ------------------------ *) ⊢ + fun11 … R r ≡ or_f_minus P Q r. + +nlemma ORelation_eq_respects_leq_or_f_star_: + ∀P,Q:OAlgebra.∀r,r':ORelation P Q. + r=r' → ∀x. r* x ≤ r'* x. + #P; #Q; #a; #a'; #e; #x; (*CSC: una schifezza *) + ngeneralize in match (. (or_prop1 P Q a' (a* x) x)^-1) in ⊢ %; #H; napply H; + nchange with (or_f P Q a' (a* x) ≤ x); + napply (. ?‡#) + [##2: napply (a (a* x)) + | ngeneralize in match (a* x); + nchange with (or_f P Q a' = or_f P Q a); + napply (.= †e^-1); napply #] + napply (. (or_prop1 …)); + napply oa_leq_refl. +nqed. + +nlemma ORelation_eq3: + ∀P,Q:OAlgebra.∀r,r':ORelation P Q. + r=r' → r* = r'*. + #P; #Q; #a; #a'; #e; #x; + napply oa_leq_antisym; napply ORelation_eq_respects_leq_or_f_star_ + [ napply e | napply e^-1] +nqed. + +ndefinition or_f_star_morphism1: ∀P,Q:OAlgebra.unary_morphism1 (ORelation_setoid P Q) + (unary_morphism1_setoid1 Q P). + #P; #Q; @ + [ napply or_f_star + | napply ORelation_eq3] +nqed. + +unification hint 0 ≔ P, Q, r; + R ≟ (mk_unary_morphism1 … (or_f_star …) (prop11 … (or_f_star_morphism1 …))) +(* ------------------------ *) ⊢ + fun11 … R r ≡ or_f_star P Q r. + +nlemma ORelation_eq_respects_leq_or_f_minus_star_: + ∀P,Q:OAlgebra.∀r,r':ORelation P Q. + r=r' → ∀x. r⎻* x ≤ r'⎻* x. + #P; #Q; #a; #a'; #e; #x; (*CSC: una schifezza *) + ngeneralize in match (. (or_prop2 P Q a' (a⎻* x) x)^-1) in ⊢ %; #H; napply H; + nchange with (or_f_minus P Q a' (a⎻* x) ≤ x); + napply (. ?‡#) + [##2: napply (a⎻ (a⎻* x)) + | ngeneralize in match (a⎻* x); + nchange with (a'⎻ = a⎻); + napply (.= †e^-1); napply #] + napply (. (or_prop2 …)); + napply oa_leq_refl. +nqed. + +nlemma ORelation_eq4: + ∀P,Q:OAlgebra.∀r,r':ORelation P Q. + r=r' → r⎻* = r'⎻*. + #P; #Q; #a; #a'; #e; #x; + napply oa_leq_antisym; napply ORelation_eq_respects_leq_or_f_minus_star_ + [ napply e | napply e^-1] +nqed. + +ndefinition or_f_minus_star_morphism1: + ∀P,Q:OAlgebra.unary_morphism1 (ORelation_setoid P Q) (unary_morphism1_setoid1 P Q). + #P; #Q; @ + [ napply or_f_minus_star + | napply ORelation_eq4] +nqed. + +unification hint 0 ≔ P, Q, r; + R ≟ (mk_unary_morphism1 … (or_f_minus_star …) (prop11 … (or_f_minus_star_morphism1 …))) +(* ------------------------ *) ⊢ + fun11 … R r ≡ or_f_minus_star P Q r. + +(*CSC: +ndefinition ORelation_composition : ∀P,Q,R. + binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). +#P; #Q; #R; @ +[ #F; #G; @ + [ napply (G ∘ F); + | apply rule (G⎻* ∘ F⎻* ); + | apply (F* ∘ G* ); + | apply (F⎻ ∘ G⎻); + | intros; + change with ((G (F p) ≤ q) = (p ≤ (F* (G* q)))); + apply (.= (or_prop1 :?)); + apply (or_prop1 :?); + | intros; + change with ((F⎻ (G⎻ p) ≤ q) = (p ≤ (G⎻* (F⎻* q)))); + apply (.= (or_prop2 :?)); + apply or_prop2 ; + | intros; change with ((G (F (p)) >< q) = (p >< (F⎻ (G⎻ q)))); + apply (.= (or_prop3 :?)); + apply or_prop3; + ] +| intros; split; simplify; + [3: unfold arrows1_of_ORelation_setoid; apply ((†e)‡(†e1)); + |1: apply ((†e)‡(†e1)); + |2,4: apply ((†e1)‡(†e));]] +qed. + +definition OA : category2. +split; +[ apply (OAlgebra); +| intros; apply (ORelation_setoid o o1); +| intro O; split; + [1,2,3,4: apply id2; + |5,6,7:intros; apply refl1;] +| apply ORelation_composition; +| intros (P Q R S F G H); split; + [ change with (H⎻* ∘ G⎻* ∘ F⎻* = H⎻* ∘ (G⎻* ∘ F⎻* )); + apply (comp_assoc2 ????? (F⎻* ) (G⎻* ) (H⎻* )); + | apply ((comp_assoc2 ????? (H⎻) (G⎻) (F⎻))^-1); + | apply ((comp_assoc2 ????? F G H)^-1); + | apply ((comp_assoc2 ????? H* G* F* ));] +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left2; +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right2;] +qed. + +definition OAlgebra_of_objs2_OA: objs2 OA → OAlgebra ≝ λx.x. +coercion OAlgebra_of_objs2_OA. + +definition ORelation_setoid_of_arrows2_OA: + ∀P,Q. arrows2 OA P Q → ORelation_setoid P Q ≝ λP,Q,c.c. +coercion ORelation_setoid_of_arrows2_OA. + +prefer coercion Type_OF_objs2. +*) +(* alias symbol "eq" = "setoid1 eq". *) + +(* qui la notazione non va *) +(*CSC +nlemma leq_to_eq_join: ∀S:OAlgebra.∀p,q:S. p ≤ q → q = (binary_join ? p q). + intros; + apply oa_leq_antisym; + [ apply oa_density; intros; + apply oa_overlap_sym; + unfold binary_join; simplify; + apply (. (oa_join_split : ?)); + exists; [ apply false ] + apply oa_overlap_sym; + assumption + | unfold binary_join; simplify; + apply (. (oa_join_sup : ?)); intro; + cases i; whd in ⊢ (? ? ? ? ? % ?); + [ assumption | apply oa_leq_refl ]] +qed. + +nlemma overlap_monotone_left: ∀S:OAlgebra.∀p,q,r:S. p ≤ q → p >< r → q >< r. + #S; #p; #q; #r; #H1; #H2; + apply (. (leq_to_eq_join : ?)‡#); + [ apply f; + | skip + | apply oa_overlap_sym; + unfold binary_join; simplify; + apply (. (oa_join_split : ?)); + exists [ apply true ] + apply oa_overlap_sym; + assumption; ] +qed.*) + +(* Part of proposition 9.9 *) +nlemma f_minus_image_monotone: ∀S,T.∀R:ORelation S T.∀p,q. p ≤ q → R⎻ p ≤ R⎻ q. + #S; #T; #R; #p; #q; #H; + napply (. (or_prop2 …)); + napply oa_leq_trans; ##[##2: napply H; ##| ##skip | + napply (. (or_prop2 … q …)^ -1);(*CSC: why q?*) napply oa_leq_refl] +nqed. + +(* Part of proposition 9.9 *) +nlemma f_minus_star_image_monotone: ∀S,T.∀R:ORelation S T.∀p,q. p ≤ q → R⎻* p ≤ R⎻* q. + #S; #T; #R; #p; #q; #H; + napply (. (or_prop2 … (R⎻* p) q)^ -1); (*CSC: why ?*) + napply oa_leq_trans; ##[##3: napply H; ##| ##skip | napply (. (or_prop2 …)); napply oa_leq_refl] +nqed. + +(* Part of proposition 9.9 *) +nlemma f_image_monotone: ∀S,T.∀R:ORelation S T.∀p,q. p ≤ q → R p ≤ R q. + #S; #T; #R; #p; #q; #H; + napply (. (or_prop1 …)); + napply oa_leq_trans; ##[##2: napply H; ##| ##skip | napply (. (or_prop1 … q …)^ -1); napply oa_leq_refl] +nqed. + +(* Part of proposition 9.9 *) +nlemma f_star_image_monotone: ∀S,T.∀R:ORelation S T.∀p,q. p ≤ q → R* p ≤ R* q. + #S; #T; #R; #p; #q; #H; + napply (. (or_prop1 … (R* p) q)^ -1); + napply oa_leq_trans; ##[##3: napply H; ##| ##skip | napply (. (or_prop1 …)); napply oa_leq_refl] +nqed. + +nlemma lemma_10_2_a: ∀S,T.∀R:ORelation S T.∀p. p ≤ R⎻* (R⎻ p). + #S; #T; #R; #p; + napply (. (or_prop2 … p …)^-1); + napply oa_leq_refl. +nqed. + +lemma lemma_10_2_b: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* p) ≤ p. + intros; + apply (. (or_prop2 : ?)); + apply oa_leq_refl. +qed. + +lemma lemma_10_2_c: ∀S,T.∀R:arrows2 OA S T.∀p. p ≤ R* (R p). + intros; + apply (. (or_prop1 : ?)^-1); + apply oa_leq_refl. +qed. + +lemma lemma_10_2_d: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* p) ≤ p. + intros; + apply (. (or_prop1 : ?)); + apply oa_leq_refl. +qed. + +lemma lemma_10_3_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* (R⎻ p)) = R⎻ p. + intros; apply oa_leq_antisym; + [ apply lemma_10_2_b; + | apply f_minus_image_monotone; + apply lemma_10_2_a; ] +qed. + +lemma lemma_10_3_b: ∀S,T.∀R:arrows2 OA S T.∀p. R* (R (R* p)) = R* p. + intros; apply oa_leq_antisym; + [ apply f_star_image_monotone; + apply (lemma_10_2_d ?? R p); + | apply lemma_10_2_c; ] +qed. + +lemma lemma_10_3_c: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R p)) = R p. + intros; apply oa_leq_antisym; + [ apply lemma_10_2_d; + | apply f_image_monotone; + apply (lemma_10_2_c ?? R p); ] +qed. + +lemma lemma_10_3_d: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* p)) = R⎻* p. + intros; apply oa_leq_antisym; + [ apply f_minus_star_image_monotone; + apply (lemma_10_2_b ?? R p); + | apply lemma_10_2_a; ] +qed. + +lemma lemma_10_4_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* (R⎻ p))) = R⎻* (R⎻ p). + intros; apply (†(lemma_10_3_a ?? R p)); +qed. + +lemma lemma_10_4_b: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R (R* p))) = R (R* p). +intros; unfold in ⊢ (? ? ? % %); apply (†(lemma_10_3_b ?? R p)); +qed. + +lemma oa_overlap_sym': ∀o:OA.∀U,V:o. (U >< V) = (V >< U). + intros; split; intro; apply oa_overlap_sym; assumption. +qed. \ No newline at end of file