From: Ferruccio Guidi Date: Sat, 21 Oct 2017 18:25:40 +0000 (+0000) Subject: - one conjecture closed on lsubf X-Git-Tag: make_still_working~429 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=86d7622f88247d83b2c366a722d2994a4af91929;p=helm.git - one conjecture closed on lsubf - some renaming in rtmap_sor --- diff --git a/matita/matita/contribs/lambdadelta/basic_2/static/frees_fqup.ma b/matita/matita/contribs/lambdadelta/basic_2/static/frees_fqup.ma index 8c89346f0..9bbc83a89 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/static/frees_fqup.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/static/frees_fqup.ma @@ -67,7 +67,7 @@ elim (pn_split f2) * #g2 #H destruct lapply (frees_mono … Hz1 … Hf1) -Hz1 #H1 lapply (sor_eq_repl_back1 … Hz … H02) -g0 #Hz lapply (sor_eq_repl_back2 … Hz … H1) -z1 #Hz - lapply (sor_sym … Hz) -Hz #Hz + lapply (sor_comm … Hz) -Hz #Hz lapply (sor_mono … f Hz ?) // -Hz #H lapply (sor_inv_sle_sn … Hf) -Hf #Hf lapply (frees_eq_repl_back … Hf0 (⫯f) ?) /2 width=5 by eq_next/ -z #Hf0 @@ -96,6 +96,6 @@ elim (pn_split f0) * #g0 #H destruct lapply (sor_eq_repl_back1 … Hg2 … H0) -z0 #Hg2 lapply (sor_eq_repl_back2 … Hg2 … H1) -z1 #Hg2 @(ex3_2_intro … Hf1 Hf0) -Hf1 -Hf0 (**) (* constructor needed *) - /2 width=3 by sor_trans2_idem/ + /2 width=3 by sor_comm_23_idem/ ] qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/static/lsubf.ma b/matita/matita/contribs/lambdadelta/basic_2/static/lsubf.ma index 72e63576e..b6d5abd56 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/static/lsubf.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/static/lsubf.ma @@ -13,6 +13,7 @@ (**************************************************************************) include "basic_2/notation/relations/lrsubeqf_4.ma". +include "ground_2/relocation/nstream_sor.ma". include "basic_2/static/frees.ma". (* RESTRICTED REFINEMENT FOR CONTEXT-SENSITIVE FREE VARIABLES ***************) @@ -311,3 +312,36 @@ elim (pn_split f2) * #g2 #H2 destruct @ex2_intro [1,2,4,5: /2 width=2 by lsubf_push, lsubf_bind/ ] // (**) (* constructor needed *) qed-. +lemma lsubf_inv_sor_dx: ∀f1,f2,L1,L2. ⦃L1, f1⦄ ⫃𝐅* ⦃L2, f2⦄ → + ∀f2l,f2r. f2l⋓f2r ≡ f2 → + ∃∃f1l,f1r. ⦃L1, f1l⦄ ⫃𝐅* ⦃L2, f2l⦄ & ⦃L1, f1r⦄ ⫃𝐅* ⦃L2, f2r⦄ & f1l⋓f1r ≡ f1. +#f1 #f2 #L1 #L2 #H elim H -f1 -f2 -L1 -L2 +[ /3 width=7 by sor_eq_repl_fwd3, ex3_2_intro/ +| #g1 #g2 #I1 #I2 #L1 #L2 #_ #IH #f2l #f2r #H + elim (sor_inv_xxp … H) -H [|*: // ] #g2l #g2r #Hg2 #Hl #Hr destruct + elim (IH … Hg2) -g2 /3 width=11 by lsubf_push, sor_pp, ex3_2_intro/ +| #g1 #g2 #I #L1 #L2 #_ #IH #f2l #f2r #H + elim (sor_inv_xxn … H) -H [1,3,4: * |*: // ] #g2l #g2r #Hg2 #Hl #Hr destruct + elim (IH … Hg2) -g2 /3 width=11 by lsubf_push, lsubf_bind, sor_np, sor_pn, sor_nn, ex3_2_intro/ +| #g #g0 #g1 #g2 #L1 #L2 #W #V #Hg #Hg1 #_ #IH #f2l #f2r #H + elim (sor_inv_xxn … H) -H [1,3,4: * |*: // ] #g2l #g2r #Hg2 #Hl #Hr destruct + elim (IH … Hg2) -g2 #g1l #g1r #Hl #Hr #Hg0 + [ lapply (sor_comm_23 … Hg0 Hg1 ?) -g0 [3: |*: // ] #Hg1 + /3 width=11 by lsubf_push, lsubf_beta, sor_np, ex3_2_intro/ + | lapply (sor_assoc_dx … Hg1 … Hg0 ??) -g0 [3: |*: // ] #Hg1 + /3 width=11 by lsubf_push, lsubf_beta, sor_pn, ex3_2_intro/ + | lapply (sor_distr_dx … Hg0 … Hg1) -g0 [5: |*: // ] #Hg1 + /3 width=11 by lsubf_beta, sor_nn, ex3_2_intro/ + ] +| #g #g0 #g1 #g2 #I1 #I2 #L1 #L2 #V #Hg #Hg1 #_ #IH #f2l #f2r #H + elim (sor_inv_xxn … H) -H [1,3,4: * |*: // ] #g2l #g2r #Hg2 #Hl #Hr destruct + elim (IH … Hg2) -g2 #g1l #g1r #Hl #Hr #Hg0 + [ lapply (sor_comm_23 … Hg0 Hg1 ?) -g0 [3: |*: // ] #Hg1 + /3 width=11 by lsubf_push, lsubf_unit, sor_np, ex3_2_intro/ + | lapply (sor_assoc_dx … Hg1 … Hg0 ??) -g0 [3: |*: // ] #Hg1 + /3 width=11 by lsubf_push, lsubf_unit, sor_pn, ex3_2_intro/ + | lapply (sor_distr_dx … Hg0 … Hg1) -g0 [5: |*: // ] #Hg1 + /3 width=11 by lsubf_unit, sor_nn, ex3_2_intro/ + ] +] +qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/static/lsubf_frees.ma b/matita/matita/contribs/lambdadelta/basic_2/static/lsubf_frees.ma index 700bb0bb0..09d8339d1 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/static/lsubf_frees.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/static/lsubf_frees.ma @@ -14,10 +14,6 @@ include "basic_2/static/lsubf.ma". -axiom lsubf_inv_sor_dx: ∀f1,f2,L1,L2. ⦃L1, f1⦄ ⫃𝐅* ⦃L2, f2⦄ → - ∀x2,y2. x2⋓y2 ≡ f2 → - ∃∃x1,y1. ⦃L1, x1⦄ ⫃𝐅* ⦃L2, x2⦄ & ⦃L1, y1⦄ ⫃𝐅* ⦃L2, y2⦄ & x1⋓y1 ≡ f1. - (* RESTRICTED REFINEMENT FOR CONTEXT-SENSITIVE FREE VARIABLES ***************) (* Properties with context-sensitive free variables *************************) diff --git a/matita/matita/contribs/lambdadelta/basic_2/static/lsubf_lsubf.ma b/matita/matita/contribs/lambdadelta/basic_2/static/lsubf_lsubf.ma index 6813b2a90..ff05e0107 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/static/lsubf_lsubf.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/static/lsubf_lsubf.ma @@ -12,7 +12,6 @@ (* *) (**************************************************************************) -include "ground_2/relocation/nstream_sor.ma". include "basic_2/static/frees_frees.ma". include "basic_2/static/lsubf.ma". @@ -47,7 +46,7 @@ theorem lsubf_sor: ∀K,L,g1,f1. ⦃K, g1⦄ ⫃𝐅* ⦃L, f1⦄ → ] ] elim (sor_inv_pnx … Hf) -Hf [1,6,11,16:|*: // ] #x #Hx #H destruct - /3 width=12 by lsubf_unit, lsubf_beta, lsubf_bind, sor_trans2/ + /3 width=12 by lsubf_unit, lsubf_beta, lsubf_bind, sor_assoc_sn/ | elim (sor_inv_npx … Hg) -Hg [|*: // ] #y #Hy #H destruct elim (lsubf_inv_push1 … H2) -H2 #x2 #Z2 #Y2 #H2 #H #H0 destruct generalize in match H1; -H1 cases J -J #J [| #V ] #H1 @@ -59,7 +58,7 @@ theorem lsubf_sor: ∀K,L,g1,f1. ⦃K, g1⦄ ⫃𝐅* ⦃L, f1⦄ → ] ] elim (sor_inv_npx … Hf) -Hf [1,6,11,16:|*: // ] #x #Hx #H destruct - /3 width=12 by lsubf_unit, lsubf_beta, lsubf_bind, sor_trans1_sym/ + /3 width=12 by lsubf_unit, lsubf_beta, lsubf_bind, sor_comm_23/ | elim (sor_inv_nnx … Hg) -Hg [|*: // ] #y #Hy #H destruct generalize in match H2; generalize in match H1; -H1 -H2 cases J -J #J [| #V ] #H1 #H2 [ elim (lsubf_inv_unit1 … H1) -H1 #x1 #Y1 #H1 #H #H0 destruct @@ -78,7 +77,7 @@ theorem lsubf_sor: ∀K,L,g1,f1. ⦃K, g1⦄ ⫃𝐅* ⦃L, f1⦄ → ] ] elim (sor_inv_nnx … Hf) -Hf [1,6,11,16:|*: // ] #x #Hx #H destruct - /3 width=12 by lsubf_unit, lsubf_beta, lsubf_bind, sor_distr_dx/ + /3 width=12 by lsubf_unit, lsubf_beta, lsubf_bind, sor_coll_dx/ ] ] qed-. diff --git a/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_coafter.ma b/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_coafter.ma index 44f491de5..2d1d860f9 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_coafter.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_coafter.ma @@ -694,7 +694,7 @@ lemma coafter_sor: ∀f. 𝐅⦃f⦄ → ∀f2. 𝐓⦃f2⦄ → ∀f1. f2 ~⊚ [ #f #Hf #f2 #Hf2 #f1 #Hf #f1a #f1b #Hf1 lapply (coafter_fwd_isid2 … Hf ??) -Hf // #H2f1 elim (sor_inv_isid3 … Hf1) -Hf1 // - /3 width=5 by coafter_isid_dx, sor_refl, ex3_2_intro/ + /3 width=5 by coafter_isid_dx, sor_idem, ex3_2_intro/ | #f #_ #IH #f2 #Hf2 #f1 #H1 #f1a #f1b #H2 elim (coafter_inv_xxp … H1) -H1 [1,3: * |*: // ] [ #g2 #g1 #Hf #Hgf2 #Hgf1 diff --git a/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_sor.ma b/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_sor.ma index 49d01728c..7c5dc5435 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_sor.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_sor.ma @@ -255,12 +255,12 @@ lemma sor_eq_repl_fwd3: ∀f1,f2. eq_repl_fwd … (λf. f1 ⋓ f2 ≡ f). #f1 #f2 @eq_repl_sym /2 width=3 by sor_eq_repl_back3/ qed-. -corec lemma sor_refl: ∀f. f ⋓ f ≡ f. +corec lemma sor_idem: ∀f. f ⋓ f ≡ f. #f cases (pn_split f) * #g #H [ @(sor_pp … H H H) | @(sor_nn … H H H) ] -H // qed. -corec lemma sor_sym: ∀f1,f2,f. f1 ⋓ f2 ≡ f → f2 ⋓ f1 ≡ f. +corec lemma sor_comm: ∀f1,f2,f. f1 ⋓ f2 ≡ f → f2 ⋓ f1 ≡ f. #f1 #f2 #f * -f1 -f2 -f #f1 #f2 #f #g1 #g2 #g #Hf * * * -g1 -g2 -g [ @sor_pp | @sor_pn | @sor_np | @sor_nn ] /2 width=7 by/ @@ -286,6 +286,13 @@ lemma sor_xxn_tl: ∀g1,g2,g. g1 ⋓ g2 ≡ g → ∀f. ⫯f = g → /3 width=5 by ex3_2_intro, or_introl, or_intror/ qed-. +lemma sor_xnx_tl: ∀g1,g2,g. g1 ⋓ g2 ≡ g → ∀f2. ⫯f2 = g2 → + ∃∃f1,f. f1 ⋓ f2 ≡ f & ⫱g1 = f1 & ⫯f = g. +#g1 elim (pn_split g1) * #f1 #H1 #g2 #g #H #f2 #H2 +[ elim (sor_inv_pnx … H … H1 H2) | elim (sor_inv_nnx … H … H1 H2) ] -g2 #f #Hf #H0 +/3 width=5 by ex3_2_intro/ +qed-. + (* Properties with iterated tail ********************************************) lemma sor_tls: ∀f1,f2,f. f1 ⋓ f2 ≡ f → @@ -386,7 +393,7 @@ qed-. lemma sor_fwd_fcla_dx_ex: ∀f,n. 𝐂⦃f⦄ ≡ n → ∀f1,f2. f1 ⋓ f2 ≡ f → ∃∃n2. 𝐂⦃f2⦄ ≡ n2 & n2 ≤ n. -/3 width=4 by sor_fwd_fcla_sn_ex, sor_sym/ qed-. +/3 width=4 by sor_fwd_fcla_sn_ex, sor_comm/ qed-. (* Properties with test for finite colength *********************************) @@ -454,20 +461,20 @@ qed. axiom monotonic_sle_sor: ∀f1,g1. f1 ⊆ g1 → ∀f2,g2. f2 ⊆ g2 → ∀f. f1 ⋓ f2 ≡ f → ∀g. g1 ⋓ g2 ≡ g → f ⊆ g. -axiom sor_trans1: ∀f0,f3,f4. f0 ⋓ f3 ≡ f4 → - ∀f1,f2. f1 ⋓ f2 ≡ f0 → - ∀f. f2 ⋓ f3 ≡ f → f1 ⋓ f ≡ f4. +axiom sor_assoc_dx: ∀f0,f3,f4. f0 ⋓ f3 ≡ f4 → + ∀f1,f2. f1 ⋓ f2 ≡ f0 → + ∀f. f2 ⋓ f3 ≡ f → f1 ⋓ f ≡ f4. -axiom sor_trans2: ∀f1,f0,f4. f1 ⋓ f0 ≡ f4 → - ∀f2, f3. f2 ⋓ f3 ≡ f0 → - ∀f. f1 ⋓ f2 ≡ f → f ⋓ f3 ≡ f4. +axiom sor_assoc_sn: ∀f1,f0,f4. f1 ⋓ f0 ≡ f4 → + ∀f2, f3. f2 ⋓ f3 ≡ f0 → + ∀f. f1 ⋓ f2 ≡ f → f ⋓ f3 ≡ f4. -lemma sor_trans1_sym: ∀f0,f1,f2,f3,f4,f. - f0⋓f4 ≡ f1 → f1⋓f2 ≡ f → f0⋓f2 ≡ f3 → f3⋓f4 ≡ f. -/4 width=6 by sor_sym, sor_trans1/ qed-. +lemma sor_comm_23: ∀f0,f1,f2,f3,f4,f. + f0⋓f4 ≡ f1 → f1⋓f2 ≡ f → f0⋓f2 ≡ f3 → f3⋓f4 ≡ f. +/4 width=6 by sor_comm, sor_assoc_dx/ qed-. -corec theorem sor_trans2_idem: ∀f0,f1,f2. f0 ⋓ f1 ≡ f2 → - ∀f. f1 ⋓ f2 ≡ f → f1 ⋓ f0 ≡ f. +corec theorem sor_comm_23_idem: ∀f0,f1,f2. f0 ⋓ f1 ≡ f2 → + ∀f. f1 ⋓ f2 ≡ f → f1 ⋓ f0 ≡ f. #f0 #f1 #f2 * -f0 -f1 -f2 #f0 #f1 #f2 #g0 #g1 #g2 #Hf2 #H0 #H1 #H2 #g #Hg [ cases (sor_inv_ppx … Hg … H1 H2) @@ -478,8 +485,8 @@ corec theorem sor_trans2_idem: ∀f0,f1,f2. f0 ⋓ f1 ≡ f2 → /3 width=7 by sor_nn, sor_np, sor_pn, sor_pp/ qed-. -corec theorem sor_distr_dx: ∀f1,f2,f. f1 ⋓ f2 ≡ f → ∀g1,g2,g. g1 ⋓ g2 ≡ g → - ∀g0. g1 ⋓ g0 ≡ f1 → g2 ⋓ g0 ≡ f2 → g ⋓ g0 ≡ f. +corec theorem sor_coll_dx: ∀f1,f2,f. f1 ⋓ f2 ≡ f → ∀g1,g2,g. g1 ⋓ g2 ≡ g → + ∀g0. g1 ⋓ g0 ≡ f1 → g2 ⋓ g0 ≡ f2 → g ⋓ g0 ≡ f. #f1 #f2 #f cases (pn_split f) * #x #Hx #Hf #g1 #g2 #g #Hg #g0 #Hf1 #Hf2 [ cases (sor_inv_xxp … Hf … Hx) -Hf #x1 #x2 #Hf #Hx1 #Hx2 cases (sor_inv_xxp … Hf1 … Hx1) -f1 #y1 #y0 #Hf1 #Hy1 #Hy0 @@ -508,3 +515,30 @@ corec theorem sor_distr_dx: ∀f1,f2,f. f1 ⋓ f2 ≡ f → ∀g1,g2,g. g1 ⋓ g ] qed-. +corec theorem sor_distr_dx: ∀g0,g1,g2,g. g1 ⋓ g2 ≡ g → + ∀f1,f2,f. g1 ⋓ g0 ≡ f1 → g2 ⋓ g0 ≡ f2 → g ⋓ g0 ≡ f → + f1 ⋓ f2 ≡ f. +#g0 cases (pn_split g0) * #y0 #H0 #g1 #g2 #g +[ * -g1 -g2 -g #y1 #y2 #y #g1 #g2 #g #Hy #Hy1 #Hy2 #Hy #f1 #f2 #f #Hf1 #Hf2 #Hf + [ cases (sor_inv_ppx … Hf1 … Hy1 H0) -g1 + cases (sor_inv_ppx … Hf2 … Hy2 H0) -g2 + cases (sor_inv_ppx … Hf … Hy H0) -g + | cases (sor_inv_npx … Hf1 … Hy1 H0) -g1 + cases (sor_inv_ppx … Hf2 … Hy2 H0) -g2 + cases (sor_inv_npx … Hf … Hy H0) -g + | cases (sor_inv_ppx … Hf1 … Hy1 H0) -g1 + cases (sor_inv_npx … Hf2 … Hy2 H0) -g2 + cases (sor_inv_npx … Hf … Hy H0) -g + | cases (sor_inv_npx … Hf1 … Hy1 H0) -g1 + cases (sor_inv_npx … Hf2 … Hy2 H0) -g2 + cases (sor_inv_npx … Hf … Hy H0) -g + ] -g0 #y #Hy #H #y2 #Hy2 #H2 #y1 #Hy1 #H1 + /3 width=8 by sor_nn, sor_np, sor_pn, sor_pp/ +| #H #f1 #f2 #f #Hf1 #Hf2 #Hf + cases (sor_xnx_tl … Hf1 … H0) -Hf1 + cases (sor_xnx_tl … Hf2 … H0) -Hf2 + cases (sor_xnx_tl … Hf … H0) -Hf + -g0 #y #x #Hx #Hy #H #y2 #x2 #Hx2 #Hy2 #H2 #y1 #x1 #Hx1 #Hy1 #H1 + /4 width=8 by sor_tl, sor_nn/ +] +qed-.