From: Enrico Tassi Date: Wed, 5 Apr 2006 12:10:15 +0000 (+0000) Subject: create directory paramodulation for tests for paramodulation X-Git-Tag: 0.4.95@7852~1531 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=8757b0018a6c031931152591f5c08185107f08c0;p=helm.git create directory paramodulation for tests for paramodulation --- diff --git a/matita/tests/group.ma b/matita/tests/group.ma deleted file mode 100644 index a9a55b9cf..000000000 --- a/matita/tests/group.ma +++ /dev/null @@ -1,51 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -set "baseuri" "cic:/matita/test/". - -include "legacy/coq.ma". - -alias id "nat" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1)". -alias id "eq" = "cic:/Coq/Init/Logic/eq.ind#xpointer(1/1)". -alias id "eq_ind" = "cic:/Coq/Init/Logic/eq_ind.con". -alias id "eq_ind_r" = "cic:/Coq/Init/Logic/eq_ind_r.con". -alias id "sym_eq" = "cic:/Coq/Init/Logic/sym_eq.con". - - -theorem self: - \forall A:Set. - \forall f,g:A \to A. - \forall H:(\forall x,y:A. x = y). - \forall H:(\forall x,y,z:A. f x = y). - \forall x,y:A. x=y. -intros.auto paramodulation. -qed. - -theorem GRP049_simple: - \forall A:Set. - \forall inv: A \to A. - \forall mult: A \to A \to A. - \forall H: (\forall x,y,z:A.mult z (inv (mult (inv (mult (inv (mult z y)) x)) (inv (mult y (mult (inv y) y))))) = x). - \forall a,b:A. mult (inv a) a = mult (inv b) b. -intros.auto paramodulation; exact a. -qed. - -theorem GRP049 : - \forall A:Set. - \forall inv: A \to A. - \forall mult: A \to A \to A. - \forall H: (\forall x,y,z:A.mult z (inv (mult (inv (mult (inv (mult z y)) x)) (inv (mult y (mult (inv y) y))))) = x). - \forall a,b:A. mult a (inv a)= mult b (inv b). -intros.auto paramodulation. -qed. diff --git a/matita/tests/paramodulation/boolean_algebra.ma b/matita/tests/paramodulation/boolean_algebra.ma new file mode 100644 index 000000000..0450a752c --- /dev/null +++ b/matita/tests/paramodulation/boolean_algebra.ma @@ -0,0 +1,521 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/SK/". + +include "legacy/coq.ma". + +alias id "nat" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1)". +alias id "eq" = "cic:/Coq/Init/Logic/eq.ind#xpointer(1/1)". +alias id "eq_ind" = "cic:/Coq/Init/Logic/eq_ind.con". +alias id "eq_ind_r" = "cic:/Coq/Init/Logic/eq_ind_r.con". +alias id "sym_eq" = "cic:/Coq/Init/Logic/sym_eq.con". + +definition bool_algebra \def + \lambda A:Set. + \lambda one:A. + \lambda zero:A. + \lambda add: A \to A \to A. + \lambda mult: A \to A \to A. + \lambda inv: A \to A. + (\forall x:A. (add x (inv x)) = one)\land + (\forall x:A. (mult x (inv x)) = zero)\land + (\forall x:A. (mult x one) = x)\land + (\forall x:A. (add x zero) = x)\land + (\forall x,y,z:A.(mult x (add y z)) = (add (mult x y) (mult x z)))\land + (\forall x,y,z:A.(add x (mult y z)) = (mult (add x y) (add x z)))\land + (\forall x,y:A.(mult x y) = (mult y x))\land + (\forall x,y:A.(add x y) = (add y x)). + +(* +theorem SKK: + \forall A:Set. + \forall app: A \to A \to A. + \forall K:A. + \forall S:A. + \forall H1: (\forall x,y:A.(app (app K x) y) = x). + \forall H2: (\forall x,y,z:A. + (app (app (app S x) y) z) = (app (app x z) (app y z))). + \forall x:A. + (app (app (app S K) K) x) = x. +intros.auto paramodulation. +qed. +*) +(* +theorem bool1: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + (inv zero) = one. +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool2: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x:A. (mult x zero) = zero. +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool3: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x:A. (inv (inv x)) = x. +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool266: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y:A. (mult x (add (inv x) y)) = (mult x y). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool507: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y:A. zero = (mult x (mult (inv x) y)). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool515: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y:A. zero = mult (inv x) (mult x y). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool304: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y:A. x = (mult (add y x) x). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool531: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y:A. zero = (mult (inv (add x y)) y). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool253: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y:A. (add (inv x) (mult y x)) = (add (inv x) y). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool557: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y:A. + inv x = (add (inv x) (inv (add y x))). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool609: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y:A. + inv x = (add (inv (add y x)) (inv x)). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool260: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y,z:A. + add x (mult x y) = mult x (add x y). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool276: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y,z,u:A. + (mult (add x y) (add z (add x u))) = (add (mult (add x y) z) (add x (mult y u))). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool250: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y,z:A. + add x (mult y z) = mult (add y x) (add x z). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool756minimal: + \forall A:Set. + \forall add: A \to A \to A. + \forall mult: A \to A \to A. + \forall c1:(\forall x,y:A.(add x y) = (add y x)). + \forall hint1: (\forall x,y,z,u:A. + add y (add x (mult x u)) = (add (mult (add x y) z) (add x (mult y u)))). + \forall hint2: (\forall x,y:A. x = (mult (add y x) x)). + \forall x,y,z:A. + add x (add y (mult y z)) = add x (add y (mult x z)). +intros. +auto paramodulation. +qed. +*) +(* +theorem bool756simplified: + \forall A:Set. + \forall add: A \to A \to A. + \forall mult: A \to A \to A. + \forall c1:(\forall x,y:A.(add x y) = (add y x)). + \forall c2:(\forall x,y:A.(mult x y) = (mult y x)). + \forall hint1: (\forall x,y,z,u:A. + (mult (add x y) (add z (add x u))) = (add (mult (add x y) z) (add x (mult y u)))). + \forall hint2: (\forall x,y:A. x = (mult (add y x) x)). + \forall hint3: (\forall x,y,z:A. + add x (mult y z) = mult (add y x) (add x z)). + \forall hint4: (\forall x,y:A. + add x (mult x y) = mult x (add x y)). + \forall x,y,z:A. + add x (add y (mult y z)) = add x (add y (mult x z)). +intros. +auto paramodulation. +qed. +*) +(* +theorem bool756: + \forall A:Set. + \forall one:A. + \forall zero:A. + \forall add: A \to A \to A. + \forall mult: A \to A \to A. + \forall inv: A \to A. + \forall c1:(\forall x,y:A.(add x y) = (add y x)). + \forall c2:(\forall x,y:A.(mult x y) = (mult y x)). + \forall d1: (\forall x,y,z:A. + (add x (mult y z)) = (mult (add x y) (add x z))). + \forall d2: (\forall x,y,z:A. + (mult x (add y z)) = (add (mult x y) (mult x z))). + \forall i1: (\forall x:A. (add x zero) = x). + \forall i2: (\forall x:A. (mult x one) = x). + \forall inv1: (\forall x:A. (add x (inv x)) = one). + \forall inv2: (\forall x:A. (mult x (inv x)) = zero). + \forall hint1: (\forall x,y,z,u:A. + (mult (add x y) (add z (add x u))) = (add (mult (add x y) z) (add x (mult y u)))). + \forall hint2: (\forall x,y:A. x = (mult (add y x) x)). + \forall hint3: (\forall x,y,z:A. + add x (mult y z) = mult (add y x) (add x z)). + \forall hint4: (\forall x,y:A. + add x (mult x y) = mult x (add x y)). + \forall x,y,z:A. + add x y = add x (add y (mult x z)). +intros; +cut (mult (add y x) (add x (add y z)) = add x (add y (mult x z))); +[auto paramodulation +|auto paramodulation] +qed. +*) +(* +theorem bool756full: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y,z:A. + add x y = add x (add y (mult x z)). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool1164: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y,z:A. + (add x y) = (add (add x (mult y z)) y). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool1230: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall A:Set. + \forall one:A. + \forall zero:A. + \forall add: A \to A \to A. + \forall mult: A \to A \to A. + \forall inv: A \to A. + \forall c1:(\forall x,y:A.(add x y) = (add y x)). + \forall c2:(\forall x,y:A.(mult x y) = (mult y x)). + \forall d1: (\forall x,y,z:A. + (add x (mult y z)) = (mult (add x y) (add x z))). + \forall d2: (\forall x,y,z:A. + (mult x (add y z)) = (add (mult x y) (mult x z))). + \forall i1: (\forall x:A. (add x zero) = x). + \forall i2: (\forall x:A. (mult x one) = x). + \forall inv1: (\forall x:A. (add x (inv x)) = one). + \forall inv2: (\forall x:A. (mult x (inv x)) = zero). + \forall x,y,z:A. + \forall c1z: (\forall x:A.(add x z) = (add z x)). + add (add x y) z = add (add x y) (add z y). +intros. +auto paramodulation. +qed. +*) +(* +theorem bool1230: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y,z:A. + add (add x y) z = add (add x y) (add z y). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool1372: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y,z:A. + add x (add y z) = add (add x z) y. +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool381: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y:A. + add (inv x) y = add (mult x y) (inv x). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. +*) +(* +theorem bool5hint1: + \forall A:Set. + \forall one:A. + \forall zero:A. + \forall add: A \to A \to A. + \forall mult: A \to A \to A. + \forall inv: A \to A. + \forall c1:(\forall x,y:A.(add x y) = (add y x)). + \forall c2:(\forall x,y:A.(mult x y) = (mult y x)). + \forall d1: (\forall x,y,z:A. + (add x (mult y z)) = (mult (add x y) (add x z))). + \forall d2: (\forall x,y,z:A. + (mult x (add y z)) = (add (mult x y) (mult x z))). + \forall i1: (\forall x:A. (add x zero) = x). + \forall i2: (\forall x:A. (mult x one) = x). + \forall inv1: (\forall x:A. (add x (inv x)) = one). + \forall inv2: (\forall x:A. (mult x (inv x)) = zero). + \forall hint1731:(\forall x,y:A. add (inv (add x y)) y = add y (inv x)). + \forall hint1735:(\forall x,y:A. add (inv (add x y)) x = add x (inv y)). + \forall hint623:(\forall x,y:A. inv (mult x y) = add (inv x) (inv (mult x y))). + \forall x,y:A. + (inv (mult x y)) = (add (inv x) (inv y)). +intros. +auto paramodulation. +qed. +*) +(* +theorem bool5hint2: + \forall A:Set. + \forall one:A. + \forall zero:A. + \forall add: A \to A \to A. + \forall mult: A \to A \to A. + \forall inv: A \to A. + \forall c1:(\forall x,y:A.(add x y) = (add y x)). + \forall c2:(\forall x,y:A.(mult x y) = (mult y x)). + \forall d1: (\forall x,y,z:A. + (add x (mult y z)) = (mult (add x y) (add x z))). + \forall d2: (\forall x,y,z:A. + (mult x (add y z)) = (add (mult x y) (mult x z))). + \forall i1: (\forall x:A. (add x zero) = x). + \forall i2: (\forall x:A. (mult x one) = x). + \forall inv1: (\forall x:A. (add x (inv x)) = one). + \forall inv2: (\forall x:A. (mult x (inv x)) = zero). + \forall hint1731:(\forall x,y:A. add (inv (add x y)) y = add y (inv x)). + \forall hint623:(\forall x,y:A. inv (mult x y) = add (inv x) (inv (mult x y))). + \forall x,y:A. + (inv (mult x y)) = (add (inv x) (inv y)). +intros. +auto paramodulation. +qed. +*) +(* +theorem bool5hint3: + \forall A:Set. + \forall one:A. + \forall zero:A. + \forall add: A \to A \to A. + \forall mult: A \to A \to A. + \forall inv: A \to A. + \forall c1:(\forall x,y:A.(add x y) = (add y x)). + \forall c2:(\forall x,y:A.(mult x y) = (mult y x)). + \forall d1: (\forall x,y,z:A. + (add x (mult y z)) = (mult (add x y) (add x z))). + \forall d2: (\forall x,y,z:A. + (mult x (add y z)) = (add (mult x y) (mult x z))). + \forall i1: (\forall x:A. (add x zero) = x). + \forall i2: (\forall x:A. (mult x one) = x). + \forall inv1: (\forall x:A. (add x (inv x)) = one). + \forall inv2: (\forall x:A. (mult x (inv x)) = zero). + \forall hint1731:(\forall x,y:A. add (inv (add x y)) y = add y (inv x)). + \forall hint609:(\forall x,y:A. inv x = add (inv (add y x)) (inv x)). + \forall x,y:A. + (inv (mult x y)) = (add (inv x) (inv y)). +intros. +auto paramodulation. +qed. +*) +theorem bool5: + \forall A: Set. + \forall one,zero: A. + \forall add,mult: A \to A \to A. + \forall inv: A \to A. + \forall H: bool_algebra A one zero add mult inv. + \forall x,y:A. + (inv (mult x y)) = (add (inv x) (inv y)). +intros. +unfold bool_algebra in H. +decompose H. +auto paramodulation. +qed. + diff --git a/matita/tests/paramodulation/group.ma b/matita/tests/paramodulation/group.ma new file mode 100644 index 000000000..a9a55b9cf --- /dev/null +++ b/matita/tests/paramodulation/group.ma @@ -0,0 +1,51 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/test/". + +include "legacy/coq.ma". + +alias id "nat" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1)". +alias id "eq" = "cic:/Coq/Init/Logic/eq.ind#xpointer(1/1)". +alias id "eq_ind" = "cic:/Coq/Init/Logic/eq_ind.con". +alias id "eq_ind_r" = "cic:/Coq/Init/Logic/eq_ind_r.con". +alias id "sym_eq" = "cic:/Coq/Init/Logic/sym_eq.con". + + +theorem self: + \forall A:Set. + \forall f,g:A \to A. + \forall H:(\forall x,y:A. x = y). + \forall H:(\forall x,y,z:A. f x = y). + \forall x,y:A. x=y. +intros.auto paramodulation. +qed. + +theorem GRP049_simple: + \forall A:Set. + \forall inv: A \to A. + \forall mult: A \to A \to A. + \forall H: (\forall x,y,z:A.mult z (inv (mult (inv (mult (inv (mult z y)) x)) (inv (mult y (mult (inv y) y))))) = x). + \forall a,b:A. mult (inv a) a = mult (inv b) b. +intros.auto paramodulation; exact a. +qed. + +theorem GRP049 : + \forall A:Set. + \forall inv: A \to A. + \forall mult: A \to A \to A. + \forall H: (\forall x,y,z:A.mult z (inv (mult (inv (mult (inv (mult z y)) x)) (inv (mult y (mult (inv y) y))))) = x). + \forall a,b:A. mult a (inv a)= mult b (inv b). +intros.auto paramodulation. +qed.