From: Enrico Tassi Date: Sat, 15 Nov 2008 12:52:22 +0000 (+0000) Subject: natural deduction palette X-Git-Tag: make_still_working~4563 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=88f24d23df67d88bf98c2ca32ac0d9854f3d9b00;p=helm.git natural deduction palette --- diff --git a/helm/software/matita/library/demo/natural_deduction.ma b/helm/software/matita/library/demo/natural_deduction.ma index ba0f565e4..64b3daccb 100644 --- a/helm/software/matita/library/demo/natural_deduction.ma +++ b/helm/software/matita/library/demo/natural_deduction.ma @@ -14,16 +14,68 @@ include "demo/natural_deduction_support.ma". -lemma ex1 : ΠA,B,C,E: CProp. +lemma RAA_to_EM : A ∨ ¬ A. - (A ⇒ E) ∨ B ⇒ A ∧ C ⇒ (E ∧ C) ∨ B. + apply (prove (A ∨ ¬ A)); + + apply (RAA [H] ⊥); + apply (¬_e (¬A) A); + [ apply (¬_i [H1] ⊥); + apply (¬_e (¬(A∨¬A)) (A∨¬A)); + [ apply [H]; + | apply (∨_i_l A); + apply [H1]; + ] + | apply (RAA [H2] ⊥); + apply (¬_e (¬(A∨¬A)) (A∨¬A)); + [ apply [H]; + | apply (∨_i_r (¬A)); + apply [H2]; + ] + ] +qed. + +lemma RA_to_EM1 : A ∨ ¬ A. + + apply (prove (A ∨ ¬ A)); + + apply (RAA [H] ⊥); + apply (¬_e (¬¬A) (¬A)); + [ apply (¬_i [H2] ⊥); + apply (¬_e (¬(A∨¬A)) (A∨¬A)); + [ apply [H]; + | apply (∨_i_r (¬A)); + apply [H2]; + ] + | apply (¬_i [H1] ⊥); + apply (¬_e (¬(A∨¬A)) (A∨¬A)); + [ apply [H]; + | apply (∨_i_l A); + apply [H1]; + ] + ] +qed. - intros 4 (A B C E);apply (prove ((A⇒E)∨B⇒A∧C⇒E∧C∨B)); +lemma ex0 : (A ⇒ ⊥) ⇒ A ⇒ B ∧ ⊤. - (*NICE: TRY THIS ERROR! - apply (⇒_i [H] (A∧C⇒E∧E∧C∨B)); - apply (⇒_i [K] (E∧E∧C∨B)); - OR DO THE RIGHT THING *) + apply (prove ((A ⇒ ⊥) ⇒ A ⇒ B∧⊤)); + + apply (⇒_i [H] (A ⇒ B∧⊤)); + apply (⇒_i [H1] (B∧⊤)); + apply (∧_i B ⊤); + [ apply (⊥_e ⊥); + apply (⇒_e (A ⇒ ⊥) A); + [ apply [H]; + | apply [H1]; + ] + | apply (⊤_i); + ] +qed. + +lemma ex1 : (A ⇒ E) ∨ B ⇒ A ∧ C ⇒ (E ∧ C) ∨ B. + + apply (prove ((A⇒E)∨B⇒A∧C⇒E∧C∨B)); + apply (⇒_i [H] (A∧C⇒E∧C∨B)); apply (⇒_i [K] (E∧C∨B)); apply (∨_e ((A⇒E)∨B) [C1] (E∧C∨B) [C2] (E∧C∨B)); @@ -40,6 +92,17 @@ lemma ex1 : ΠA,B,C,E: CProp. ] qed. +lemma dmg : ¬(A ∨ B) ⇒ ¬A ∧ ¬B. + + apply (prove (¬(A ∨ B) ⇒ ¬A ∧ ¬B)); + apply (⇒_i [H] (¬A ∧ ¬B)); + + apply (¬_e (¬A) A); + + + + +(* lemma ex2: ΠN:Type.ΠR:N→N→CProp. (∀a:N.∀b:N.R a b ⇒ R b a) ⇒ ∀z:N.(∃x.R x z) ⇒ ∃y. R z y. @@ -60,3 +123,4 @@ lemma ex2: ΠN:Type.ΠR:N→N→CProp. ] ] qed. +*) \ No newline at end of file diff --git a/helm/software/matita/library/demo/natural_deduction_support.ma b/helm/software/matita/library/demo/natural_deduction_support.ma index a3613e51d..3969197e9 100644 --- a/helm/software/matita/library/demo/natural_deduction_support.ma +++ b/helm/software/matita/library/demo/natural_deduction_support.ma @@ -1,158 +1,438 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) +(* Logic system *) -axiom cast: ∀A,B:CProp.B → A. - -notation > "'prove' p" non associative with precedence 19 for @{ cast ? $p}. +inductive Imply (A,B:CProp) : CProp ≝ +| Imply_intro: (A → B) → Imply A B. + +definition Imply_elim ≝ λA,B.λf:Imply A B. λa:A. + match f with [ Imply_intro g ⇒ g a]. -notation < "\infrule (t\atop ⋮) mstyle color #ff0000 (b) (? \ERROR)" with precedence 19 -for @{ 'caste $a $b $t }. +inductive And (A,B:CProp) : CProp ≝ +| And_intro: A → B → And A B. -interpretation "cast ERR" 'caste a b t = (cast a b t). +definition And_elim_l ≝ λA,B.λc:And A B. + match c with [ And_intro a b ⇒ a ]. -notation < "\infrule (t\atop ⋮) a ?" with precedence 19 for @{ 'cast $a $t }. +definition And_elim_r ≝ λA,B.λc:And A B. + match c with [ And_intro a b ⇒ b ]. -interpretation "cast OK" 'cast a t = (cast a a t). +inductive Or (A,B:CProp) : CProp ≝ +| Or_intro_l: A → Or A B +| Or_intro_r: B → Or A B. + +definition Or_elim ≝ λA,B,C:CProp.λc:Or A B.λfa: A → C.λfb: B → C. + match c with + [ Or_intro_l a ⇒ fa a + | Or_intro_r b ⇒ fb b]. -definition assumpt ≝ λA:CProp.λa:A.a. +inductive Top : CProp := +| Top_intro : Top. -notation < "[ a ] \sup mstyle color #ff0000 (H)" with precedence 19 for @{ 'asse $a $H }. -interpretation "assumption" 'asse a H = (cast _ _ (assumpt a (cast _ _ H))). +inductive Bot : CProp := . -notation < "[ a ] \sup H" with precedence 19 for @{ 'ass $a $H }. -interpretation "assumption" 'ass a H = (cast a a (assumpt a (cast a a H))). +definition Bot_elim ≝ λP:CProp.λx:Bot. + match x in Bot return λx.P with []. -inductive Imply (A,B:CProp) : CProp ≝ - Imply_intro: (A → B) → Imply A B. - -notation "hbox(a break ⇒ b)" right associative with precedence 20 for @{ 'Imply $a $b }. -interpretation "Imply" 'Imply a b = (Imply a b). +definition Not := λA:CProp.Imply A Bot. -notation < "\infrule hbox(\emsp b \emsp) mstyle color #ff0000(ab) (⇒\sub\i \emsp ident H \ERROR) " with precedence 19 -for @{ 'Imply_introe $xxx $ab (λ${ident H}:$p.$b) }. -interpretation "Imply_intro" 'Imply_introe xxx ab \eta.b = (cast xxx ab (Imply_intro _ _ b)). +definition Not_intro : ∀A.(A → Bot) → Not A ≝ λA. + Imply_intro A Bot. -notation < "\infrule hbox(\emsp b \emsp) ab (⇒\sub\i \emsp ident H) " with precedence 19 -for @{ 'Imply_intro $ab (λ${ident H}:$p.$b) }. -interpretation "Imply_intro" 'Imply_intro ab \eta.b = (cast ab ab (Imply_intro _ _ b)). +definition Not_elim : ∀A.Not A → A → Bot ≝ λA. + Imply_elim ? Bot. -definition Imply_elim ≝ λA,B.λf:Imply A B.λa:A.match f with [ Imply_intro g ⇒ g a]. +definition assumpt := λA:CProp.λa:A. + a. -notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp a\emsp) b (⇒\sub\e) " with precedence 19 for @{ 'Imply_elim $ab $a $b }. -interpretation "Imply_elim" 'Imply_elim ab a b = (cast _ b (Imply_elim _ _ ab a)). +axiom Raa : ∀A.(Not A → Bot) → A. -inductive And (A,B:CProp) : CProp ≝ - And_intro: A → B → And A B. +(* Dummy proposition *) +axiom unit : CProp. +(* Notations *) +notation "hbox(a break ⇒ b)" right associative with precedence 20 +for @{ 'Imply $a $b }. +interpretation "Imply" 'Imply a b = (Imply a b). +interpretation "constructive or" 'or x y = (Or x y). interpretation "constructive and" 'and x y = (And x y). +notation "⊤" non associative with precedence 90 for @{'Top}. +interpretation "Top" 'Top = Top. +notation "⊥" non associative with precedence 90 for @{'Bot}. +interpretation "Bot" 'Bot = Bot. +interpretation "Not" 'not a = (Not a). +notation "✶" non associative with precedence 90 for @{'unit}. +interpretation "dummy prop" 'unit = unit. + +(* Variables *) +axiom A : CProp. +axiom B : CProp. +axiom C : CProp. +axiom D : CProp. +axiom E : CProp. +axiom F : CProp. +axiom G : CProp. +axiom H : CProp. +axiom I : CProp. +axiom J : CProp. +axiom K : CProp. +axiom L : CProp. +axiom M : CProp. +axiom N : CProp. +axiom O : CProp. +axiom P : CProp. +axiom Q : CProp. +axiom R : CProp. +axiom S : CProp. +axiom T : CProp. +axiom U : CProp. +axiom V : CProp. +axiom W : CProp. +axiom X : CProp. +axiom Y : CProp. +axiom Z : CProp. + +(* Every formula user provided annotates its proof A becomes (show A ?) *) +definition show : ∀A.A→A ≝ λA:CProp.λa:A.a. + +(* When something does not fit, this daemon is used *) +axiom cast: ∀A,B:CProp.B → A. -notation < "\infrule hbox(\emsp a \emsp\emsp\emsp b \emsp) ab (∧\sub\i)" with precedence 19 for @{ 'And_intro $a $b $ab }. -interpretation "And_intro" 'And_intro a b ab = (cast _ ab (And_intro _ _ a b)). - -definition And_elim_l ≝ - λA,B.λc:A∧B.match c with [ And_intro a b ⇒ a ]. -notation < "\infrule hbox(\emsp ab \emsp) a (∧\sub(\e_\l))" with precedence 19 for @{ 'And_elim_l $ab $a }. -interpretation "And_elim_l" 'And_elim_l ab a = (cast _ a (And_elim_l _ _ ab)). +notation > "'prove' p" non associative with precedence 19 +for @{ 'prove $p }. +interpretation "prove KO" 'prove p = (cast _ _ (show p _)). +interpretation "prove OK" 'prove p = (show p _). -definition And_elim_r ≝ - λA,B.λc:A∧B.match c with [ And_intro a b ⇒ b ]. +notation < "\infrule (t\atop ⋮) a ?" with precedence 19 for @{ 'leaf_ok $a $t }. +interpretation "leaf OK" 'leaf_ok a t = (show a t). +notation < "\infrule (t\atop ⋮) mstyle color #ff0000 (a) ?" with precedence 19 for @{ 'leaf_ko $a $t }. +interpretation "leaf KO" 'leaf_ko a t = (cast _ a (show _ t)). -notation < "\infrule hbox(\emsp ab \emsp) b (∧\sub(\e_\r))" with precedence 19 for @{ 'And_elim_r $ab $b }. -interpretation "And_elim_r" 'And_elim_r ab b = (cast _ b (And_elim_r _ _ ab)). +notation < "[ a ] \sup mstyle color #ff0000 (H)" with precedence 19 for @{ 'assumpt_ko $a $H }. +interpretation "assumption_ko 1" 'assumpt_ko a H = (show a (cast _ _ (assumpt _ H))). +interpretation "assumption_ko 2" 'assumpt_ko a H = (cast _ _ (show a (cast _ _ (assumpt _ H)))). -inductive Or (A,B:CProp) : CProp ≝ - | Or_intro_l: A → Or A B - | Or_intro_r: B → Or A B. - -interpretation "constructive or" 'or x y = (Or x y). +notation < "[ a ] \sup H" with precedence 19 for @{ 'assumpt_ok $a $H }. +interpretation "assumption_ok 1" 'assumpt_ok a H = (show a (assumpt a H)). +notation < "[ mstyle color #ff0000 (a) ] \sup H" with precedence 19 for @{ 'assumpt_ok_2 $a $H }. +interpretation "assumption_ok 2" 'assumpt_ok_2 a H = (cast _ _ (show a (assumpt a H))). -notation < "\infrule hbox(\emsp a \emsp) ab (∨\sub(\i_\l))" with precedence 19 for @{ 'Or_intro_l $a $ab }. -interpretation "Or_intro_l" 'Or_intro_l a ab = (cast _ ab (Or_intro_l _ _ a)). +notation > "[H]" with precedence 90 for @{ 'assumpt $H }. +interpretation "assumpt KO" 'assumpt H = (cast _ _ (assumpt _ H)). +interpretation "assumpt OK" 'assumpt H = (assumpt _ H). -notation < "\infrule hbox(\emsp b \emsp) ab (∨\sub(\i_\r))" with precedence 19 for @{ 'Or_intro_r $b $ab }. -interpretation "Or_intro_r" 'Or_intro_r b ab = (cast _ ab (Or_intro_r _ _ b)). +notation < "\infrule hbox(\emsp b \emsp) ab (mstyle color #ff0000 (⇒\sub\i \emsp) ident H) " with precedence 19 +for @{ 'Imply_intro_ko_1 $ab (λ${ident H}:$p.$b) }. +interpretation "Imply_intro_ko_1" 'Imply_intro_ko_1 ab \eta.b = + (show ab (cast _ _ (Imply_intro _ _ b))). -definition Or_elim ≝ - λA,B,C:CProp.λc:A∨B.λfa: A → C.λfb: B → C. - match c with [ Or_intro_l a ⇒ fa a | Or_intro_r b ⇒ fb b]. +notation < "\infrule hbox(\emsp b \emsp) mstyle color #ff0000 (ab) (mstyle color #ff0000 (⇒\sub\i \emsp) ident H) " with precedence 19 +for @{ 'Imply_intro_ko_2 $ab (λ${ident H}:$p.$b) }. +interpretation "Imply_intro_ko_1" 'Imply_intro_ko_2 ab \eta.b = + (cast _ _ (show ab (cast _ _ (Imply_intro _ _ b)))). -notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp ac \emsp\emsp\emsp bc \emsp) c (∨\sub\e \emsp ident Ha \emsp ident Hb)" with precedence 19 -for @{ 'Or_elim $ab (λ${ident Ha}:$ta.$ac) (λ${ident Hb}:$tb.$bc) $c }. -interpretation "Or_elim" 'Or_elim ab \eta.ac \eta.bc c = (cast _ c (Or_elim _ _ _ ab ac bc)). +notation < "\infrule hbox(\emsp b \emsp) ab (⇒\sub\i \emsp ident H) " with precedence 19 +for @{ 'Imply_intro_ok_1 $ab (λ${ident H}:$p.$b) }. +interpretation "Imply_intro_ok_1" 'Imply_intro_ok_1 ab \eta.b = + (show ab (Imply_intro _ _ b)). -inductive Exists (A:Type) (P:A→CProp) : CProp ≝ - Exists_intro: ∀w:A. P w → Exists A P. +notation < "\infrule hbox(\emsp b \emsp) mstyle color #ff0000 (ab) (⇒\sub\i \emsp ident H) " with precedence 19 +for @{ 'Imply_intro_ok_2 $ab (λ${ident H}:$p.$b) }. +interpretation "Imply_intro_ok_2" 'Imply_intro_ok_2 ab \eta.b = + (cast _ _ (show ab (Imply_intro _ _ b))). -interpretation "constructive ex" 'exists \eta.x = (Exists _ x). +notation > "⇒_'i' [ident H] term 90 b" with precedence 19 +for @{ 'Imply_intro $b (λ${ident H}.show $b ?) }. +interpretation "Imply_intro KO" 'Imply_intro b pb = (cast _ (Imply unit b) (Imply_intro _ b pb)). +interpretation "Imply_intro OK" 'Imply_intro b pb = (Imply_intro _ b pb). + +notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp a\emsp) b mstyle color #ff0000 (⇒\sub\e) " with precedence 19 for @{ 'Imply_elim_ko_1 $ab $a $b }. +interpretation "Imply_elim_ko_1" 'Imply_elim_ko_1 ab a b = + (show b (cast _ _ (Imply_elim _ _ ab a))). +notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp a\emsp) mstyle color #ff0000 (b) mstyle color #ff0000 (⇒\sub\e) " with precedence 19 for @{ 'Imply_elim_ko_2 $ab $a $b }. +interpretation "Imply_elim_ko_2" 'Imply_elim_ko_2 ab a b = + (cast _ _ (show b (cast _ _ (Imply_elim _ _ ab a)))). + +notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp a\emsp) b (⇒\sub\e) " with precedence 19 +for @{ 'Imply_elim_ok_1 $ab $a $b }. +interpretation "Imply_elim_ok_1" 'Imply_elim_ok_1 ab a b = + (show b (Imply_elim _ _ ab a)). + +notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp a\emsp) mstyle color #ff0000 (b) (⇒\sub\e) " with precedence 19 +for @{ 'Imply_elim_ok_2 $ab $a $b }. +interpretation "Imply_elim_ok_2" 'Imply_elim_ok_2 ab a b = + (cast _ _ (show b (Imply_elim _ _ ab a))). + +notation > "⇒_'e' term 90 ab term 90 a" with precedence 19 for @{ 'Imply_elim (show $ab ?) (show $a ?) }. +interpretation "Imply_elim KO" 'Imply_elim ab a = (cast _ _ (Imply_elim _ _ (cast (Imply unit unit) _ ab) (cast unit _ a))). +interpretation "Imply_elim OK" 'Imply_elim ab a = (Imply_elim _ _ ab a). + +notation < "\infrule hbox(\emsp a \emsp\emsp\emsp b \emsp) ab mstyle color #ff0000 (∧\sub\i)" with precedence 19 for @{ 'And_intro_ko_1 $a $b $ab }. +interpretation "And_intro_ko_1" 'And_intro_ko_1 a b ab = + (show ab (cast _ _ (And_intro _ _ a b))). +notation < "\infrule hbox(\emsp a \emsp\emsp\emsp b \emsp) mstyle color #ff0000 (ab) mstyle color #ff0000 (∧\sub\i)" with precedence 19 for @{ 'And_intro_ko_2 $a $b $ab }. +interpretation "And_intro_ko_2" 'And_intro_ko_2 a b ab = + (cast _ _ (show ab (cast _ _ (And_intro _ _ a b)))). + +notation < "\infrule hbox(\emsp a \emsp\emsp\emsp b \emsp) ab (∧\sub\i)" with precedence 19 +for @{ 'And_intro_ok_1 $a $b $ab }. +interpretation "And_intro_ok_1" 'And_intro_ok_1 a b ab = + (show ab (And_intro _ _ a b)). + +notation < "\infrule hbox(\emsp a \emsp\emsp\emsp b \emsp) mstyle color #ff0000 (ab) (∧\sub\i)" with precedence 19 +for @{ 'And_intro_ok_2 $a $b $ab }. +interpretation "And_intro_ok_2" 'And_intro_ok_2 a b ab = + (cast _ _ (show ab (And_intro _ _ a b))). + +notation > "∧_'i' term 90 a term 90 b" with precedence 19 for @{ 'And_intro (show $a ?) (show $b ?) }. +interpretation "And_intro KO" 'And_intro a b = (cast _ _ (And_intro _ _ a b)). +interpretation "And_intro OK" 'And_intro a b = (And_intro _ _ a b). + +notation < "\infrule hbox(\emsp ab \emsp) a mstyle color #ff0000 (∧\sub(\e_\l))" with precedence 19 +for @{ 'And_elim_l_ko_1 $ab $a }. +interpretation "And_elim_l_ko_1" 'And_elim_l_ko_1 ab a = + (show a (cast _ _ (And_elim_l _ _ ab))). + +notation < "\infrule hbox(\emsp ab \emsp) mstyle color #ff0000 (a) mstyle color #ff0000 (∧\sub(\e_\l))" with precedence 19 +for @{ 'And_elim_l_ko_2 $ab $a }. +interpretation "And_elim_l_ko_2" 'And_elim_l_ko_2 ab a = + (cast _ _ (show a (cast _ _ (And_elim_l _ _ ab)))). + +notation < "\infrule hbox(\emsp ab \emsp) a (∧\sub(\e_\l))" with precedence 19 +for @{ 'And_elim_l_ok_1 $ab $a }. +interpretation "And_elim_l_ok_1" 'And_elim_l_ok_1 ab a = + (show a (And_elim_l _ _ ab)). + +notation < "\infrule hbox(\emsp ab \emsp) mstyle color #ff0000 (a) (∧\sub(\e_\l))" with precedence 19 +for @{ 'And_elim_l_ok_2 $ab $a }. +interpretation "And_elim_l_ok_2" 'And_elim_l_ok_2 ab a = + (cast _ _ (show a (And_elim_l _ _ ab))). -notation < "\infrule hbox(\emsp Pn \emsp) Px (∃\sub\i)" with precedence 19 -for @{ 'Exists_intro $Pn $Px }. -interpretation "Exists_intro" 'Exists_intro Pn Px = (cast _ Px (Exists_intro _ _ _ Pn)). +notation > "∧_'e_l' term 90 ab" with precedence 19 +for @{ 'And_elim_l (show $ab ?) }. +interpretation "And_elim_l KO" 'And_elim_l a = (And_elim_l _ _ (cast (And _ unit) _ a)). +interpretation "And_elim_l OK" 'And_elim_l a = (And_elim_l _ _ a). + +notation < "\infrule hbox(\emsp ab \emsp) a mstyle color #ff0000 (∧\sub(\e_\r))" with precedence 19 +for @{ 'And_elim_r_ko_1 $ab $a }. +interpretation "And_elim_r_ko_1" 'And_elim_r_ko_1 ab a = + (show a (cast _ _ (And_elim_r _ _ ab))). + +notation < "\infrule hbox(\emsp ab \emsp) mstyle color #ff0000 (a) mstyle color #ff0000 (∧\sub(\e_\r))" with precedence 19 +for @{ 'And_elim_r_ko_2 $ab $a }. +interpretation "And_elim_r_ko_2" 'And_elim_r_ko_2 ab a = + (cast _ _ (show a (cast _ _ (And_elim_r _ _ ab)))). + +notation < "\infrule hbox(\emsp ab \emsp) a (∧\sub(\e_\r))" with precedence 19 +for @{ 'And_elim_r_ok_1 $ab $a }. +interpretation "And_elim_r_ok_1" 'And_elim_r_ok_1 ab a = + (show a (And_elim_r _ _ ab)). + +notation < "\infrule hbox(\emsp ab \emsp) mstyle color #ff0000 (a) (∧\sub(\e_\r))" with precedence 19 +for @{ 'And_elim_r_ok_2 $ab $a }. +interpretation "And_elim_r_ok_2" 'And_elim_r_ok_2 ab a = + (cast _ _ (show a (And_elim_r _ _ ab))). -definition Exists_elim ≝ - λA:Type.λP:A→CProp.λC:CProp.λc:∃x:A.P x.λH:(∀x.P x → C). - match c with [ Exists_intro w p ⇒ H w p ]. +notation > "∧_'e_r' term 90 ab" with precedence 19 +for @{ 'And_elim_r (show $ab ?) }. +interpretation "And_elim_r KO" 'And_elim_r a = (And_elim_r _ _ (cast (And unit _) _ a)). +interpretation "And_elim_r OK" 'And_elim_r a = (And_elim_r _ _ a). + +notation < "\infrule hbox(\emsp a \emsp) ab (∨\sub(\i_\l))" with precedence 19 +for @{ 'Or_intro_l_ok_1 $a $ab }. +interpretation "Or_intro_l_ok_1" 'Or_intro_l_ok_1 a ab = + (show ab (Or_intro_l _ _ a)). + +notation < "\infrule hbox(\emsp a \emsp) mstyle color #ff0000 (ab) (∨\sub(\i_\l))" with precedence 19 +for @{ 'Or_intro_l_ok_1 $a $ab }. +interpretation "Or_intro_l_ok_2" 'Or_intro_l_ok_2 a ab = + (cast _ _ (show ab (Or_intro_l _ _ a))). + +notation < "\infrule hbox(\emsp a \emsp) ab mstyle color #ff0000 (∨\sub(\i_\l))" with precedence 19 +for @{ 'Or_intro_l_ko_1 $a $ab }. +interpretation "Or_intro_l_ko_1" 'Or_intro_l_ko_1 a ab = + (show ab (cast _ _ (Or_intro_l _ _ a))). + +notation < "\infrule hbox(\emsp a \emsp) mstyle color #ff0000 (ab) mstyle color #ff0000 (∨\sub(\i_\l))" with precedence 19 +for @{ 'Or_intro_l_ko_2 $a $ab }. +interpretation "Or_intro_l_ko_2" 'Or_intro_l_ko_2 a ab = + (cast _ _ (show ab (cast _ _ (Or_intro_l _ _ a)))). -notation < "\infrule hbox(\emsp ExPx \emsp\emsp\emsp Pc \emsp) c (∃\sub\e \emsp ident n \emsp ident HPn)" with precedence 19 -for @{ 'Exists_elim $ExPx (λ${ident n}:$tn.λ${ident HPn}:$Pn.$Pc) $c }. -interpretation "Exists_elim" 'Exists_elim ExPx Pc c = (cast _ c (Exists_elim _ _ _ ExPx Pc)). +notation > "∨_'i_l' term 90 a" with precedence 19 +for @{ 'Or_intro_l (show $a ?) }. +interpretation "Or_intro_l KO" 'Or_intro_l a = (cast _ (Or _ unit) (Or_intro_l _ _ a)). +interpretation "Or_intro_l OK" 'Or_intro_l a = (Or_intro_l _ _ a). + +notation < "\infrule hbox(\emsp a \emsp) ab (∨\sub(\i_\r))" with precedence 19 +for @{ 'Or_intro_r_ok_1 $a $ab }. +interpretation "Or_intro_r_ok_1" 'Or_intro_r_ok_1 a ab = + (show ab (Or_intro_r _ _ a)). + +notation < "\infrule hbox(\emsp a \emsp) mstyle color #ff0000 (ab) (∨\sub(\i_\r))" with precedence 19 +for @{ 'Or_intro_r_ok_1 $a $ab }. +interpretation "Or_intro_r_ok_2" 'Or_intro_r_ok_2 a ab = + (cast _ _ (show ab (Or_intro_r _ _ a))). + +notation < "\infrule hbox(\emsp a \emsp) ab mstyle color #ff0000 (∨\sub(\i_\r))" with precedence 19 +for @{ 'Or_intro_r_ko_1 $a $ab }. +interpretation "Or_intro_r_ko_1" 'Or_intro_r_ko_1 a ab = + (show ab (cast _ _ (Or_intro_r _ _ a))). + +notation < "\infrule hbox(\emsp a \emsp) mstyle color #ff0000 (ab) mstyle color #ff0000 (∨\sub(\i_\r))" with precedence 19 +for @{ 'Or_intro_r_ko_2 $a $ab }. +interpretation "Or_intro_r_ko_2" 'Or_intro_r_ko_2 a ab = + (cast _ _ (show ab (cast _ _ (Or_intro_r _ _ a)))). -inductive Forall (A:Type) (P:A→CProp) : CProp ≝ - Forall_intro: (∀n:A. P n) → Forall A P. +notation > "∨_'i_r' term 90 a" with precedence 19 +for @{ 'Or_intro_r (show $a ?) }. +interpretation "Or_intro_r KO" 'Or_intro_r a = (cast _ (Or unit _) (Or_intro_r _ _ a)). +interpretation "Or_intro_r OK" 'Or_intro_r a = (Or_intro_r _ _ a). -notation "\forall ident x:A.break term 19 Px" with precedence 20 -for @{ 'Forall (λ${ident x}:$A.$Px) }. -interpretation "Forall" 'Forall \eta.Px = (Forall _ Px). +notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp ac \emsp\emsp\emsp bc \emsp) c (∨\sub\e \emsp ident Ha \emsp ident Hb)" with precedence 19 +for @{ 'Or_elim_ok_1 $ab (λ${ident Ha}:$ta.$ac) (λ${ident Hb}:$tb.$bc) $c }. +interpretation "Or_elim_ok_1" 'Or_elim_ok_1 ab \eta.ac \eta.bc c = + (show c (Or_elim _ _ _ ab ac bc)). + +notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp ac \emsp\emsp\emsp bc \emsp) mstyle color #ff0000 (c) (∨\sub\e \emsp ident Ha \emsp ident Hb)" with precedence 19 +for @{ 'Or_elim_ok_2 $ab (λ${ident Ha}:$ta.$ac) (λ${ident Hb}:$tb.$bc) $c }. +interpretation "Or_elim_ok_2" 'Or_elim_ok_2 ab \eta.ac \eta.bc c = + (cast _ _ (show c (Or_elim _ _ _ ab ac bc))). + +notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp ac \emsp\emsp\emsp bc \emsp) c (mstyle color #ff0000 (∨\sub\e \emsp) ident Ha \emsp ident Hb)" with precedence 19 +for @{ 'Or_elim_ko_1 $ab $c (λ${ident Ha}:$ta.$ac) (λ${ident Hb}:$tb.$bc) }. +interpretation "Or_elim_ko_1" 'Or_elim_ko_1 ab c \eta.ac \eta.bc = + (show c (cast _ _ (Or_elim _ _ _ ab (cast _ _ ac) (cast _ _ bc)))). + +notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp ac \emsp\emsp\emsp bc \emsp) mstyle color #ff0000 (c) (mstyle color #ff0000 (∨\sub\e) \emsp ident Ha \emsp ident Hb)" with precedence 19 +for @{ 'Or_elim_ko_2 $ab (λ${ident Ha}:$ta.$ac) (λ${ident Hb}:$tb.$bc) $c }. +interpretation "Or_elim_ko_2" 'Or_elim_ko_2 ab \eta.ac \eta.bc c = + (cast _ _ (show c (cast _ _ (Or_elim _ _ _ ab (cast _ _ ac) (cast _ _ bc))))). + +definition unit_to ≝ λx:CProp.unit → x. + +notation > "∨_'e' term 90 ab [ident Ha] term 90 cl [ident Hb] term 90 cr" with precedence 19 +for @{ 'Or_elim (show $ab ?) (λ${ident Ha}.show $cl ?) (λ${ident Hb}.show $cr ?) $cl $cr }. +interpretation "Or_elim KO" 'Or_elim ab ac bc c1 c2 = + (cast _ _ (Or_elim _ _ _ (cast (Or unit unit) _ ab) (cast (unit_to unit) (unit_to _) ac) (cast (unit_to unit) (unit_to _) bc))). +interpretation "Or_elim OK" 'Or_elim ab ac bc c1 c2 = (Or_elim _ _ _ ab ac bc). + +notation < "\infrule \nbsp ⊤ mstyle color #ff0000 (⊤\sub\i)" with precedence 19 +for @{'Top_intro_ko_1}. +interpretation "Top_intro_ko_1" 'Top_intro_ko_1 = (show _ (cast _ _ Top_intro)). + +notation < "\infrule \nbsp ⊤ (⊤\sub\i)" with precedence 19 +for @{'Top_intro_ok_1}. +interpretation "Top_intro_ok_1" 'Top_intro_ok_1 = (show _ Top_intro). + +notation > "⊤_'i'" with precedence 19 for @{ 'Top_intro }. +interpretation "Top_intro KO" 'Top_intro = (cast _ _ Top_intro). +interpretation "Top_intro OK" 'Top_intro = Top_intro. + +notation < "\infrule b a (⊥\sub\e)" with precedence 19 for @{'Bot_elim_ok_1 $a $b}. +interpretation "Bot_elim_ok_1" 'Bot_elim_ok_1 a b = + (show a (Bot_elim a b)). + +notation < "\infrule b a mstyle color #ff0000 (⊥\sub\e)" with precedence 19 for @{'Bot_elim_ko_1 $a $b}. +interpretation "Bot_elim_ko_1" 'Bot_elim_ko_1 a b = + (show a (Bot_elim a (cast _ _ b))). + +notation > "⊥_'e' term 90 b" with precedence 19 +for @{ 'Bot_elim (show $b ?) }. +interpretation "Bot_elim KO" 'Bot_elim a = (Bot_elim _ (cast _ _ a)). +interpretation "Bot_elim OK" 'Bot_elim a = (Bot_elim _ a). + +notation < "\infrule hbox(\emsp b \emsp) ab (mstyle color #ff0000 (\lnot\sub\i) \emsp ident H)" with precedence 19 +for @{ 'Not_intro_ko_1 $ab (λ${ident H}:$p.$b) }. +interpretation "Not_intro_ko_1" 'Not_intro_ko_1 ab \eta.b = + (show ab (cast _ _ (Not_intro _ (cast _ _ b)))). + +notation < "\infrule hbox(\emsp b \emsp) mstyle color #ff0000 (ab) (mstyle color #ff0000 (\lnot\sub\i) \emsp ident H)" with precedence 19 +for @{ 'Not_intro_ko_2 $ab (λ${ident H}:$p.$b) }. +interpretation "Not_intro_ko_2" 'Not_intro_ko_2 ab \eta.b = + (cast _ _ (show ab (cast _ _ (Not_intro _ (cast _ _ b))))). + +notation < "\infrule hbox(\emsp b \emsp) ab (\lnot\sub\i \emsp ident H) " with precedence 19 +for @{ 'Not_intro_ok_1 $ab (λ${ident H}:$p.$b) }. +interpretation "Not_intro_ok_1" 'Not_intro_ok_1 ab \eta.b = + (show ab (Not_intro _ b)). + +notation < "\infrule hbox(\emsp b \emsp) mstyle color #ff0000 (ab) (\lnot\sub\i \emsp ident H) " with precedence 19 +for @{ 'Not_intro_ok_2 $ab (λ${ident H}:$p.$b) }. +interpretation "Not_intro_ok_2" 'Not_intro_ok_2 ab \eta.b = + (cast _ _ (show ab (Not_intro _ b))). + +notation > "¬_'i' [ident H] term 90 b" with precedence 19 +for @{ 'Not_intro (λ${ident H}.show $b ?) }. +interpretation "Not_intro KO" 'Not_intro a = (cast _ _ (Not_intro _ (cast _ _ a))). +interpretation "Not_intro OK" 'Not_intro a = (Not_intro _ a). + +notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp a\emsp) b (\lnot\sub\e) " with precedence 19 +for @{ 'Not_elim_ok_1 $ab $a $b }. +interpretation "Not_elim_ok_1" 'Not_elim_ok_1 ab a b = + (show b (Not_elim _ ab a)). + +notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp a\emsp) mstyle color #ff0000 (b) (\lnot\sub\e) " with precedence 19 +for @{ 'Not_elim_ok_2 $ab $a $b }. +interpretation "Not_elim_ok_2" 'Not_elim_ok_2 ab a b = + (cast _ _ (show b (Not_elim _ ab a))). + +notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp a\emsp) b mstyle color #ff0000 (\lnot\sub\e) " with precedence 19 +for @{ 'Not_elim_ko_1 $ab $a $b }. +interpretation "Not_elim_ko_1" 'Not_elim_ko_1 ab a b = + (show b (Not_elim _ (cast _ _ ab) a)). + +notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp a\emsp) mstyle color #ff0000 (b) mstyle color #ff0000 (\lnot\sub\e) " with precedence 19 +for @{ 'Not_elim_ko_2 $ab $a $b }. +interpretation "Not_elim_ko_2" 'Not_elim_ko_2 ab a b = + (cast _ _ (show b (Not_elim _ (cast _ _ ab) a))). + +notation > "¬_'e' term 90 ab term 90 a" with precedence 19 +for @{ 'Not_elim (show $ab ?) (show $a ?) }. +interpretation "Not_elim KO" 'Not_elim ab a = (Not_elim _ (cast _ _ ab) a). +interpretation "Not_elim OK" 'Not_elim ab a = (Not_elim _ ab a). + +notation < "\infrule hbox(\emsp Px \emsp) Pn (\RAA \emsp ident x)" with precedence 19 +for @{ 'RAA_ok_1 (λ${ident x}:$tx.$Px) $Pn }. +interpretation "RAA_ok_1" 'RAA_ok_1 Px Pn = + (show Pn (Raa _ Px)). + +notation < "\infrule hbox(\emsp Px \emsp) mstyle color #ff0000 (Pn) (\RAA \emsp ident x)" with precedence 19 +for @{ 'RAA_ok_2 (λ${ident x}:$tx.$Px) $Pn }. +interpretation "RAA_ok_2" 'RAA_ok_2 Px Pn = + (cast _ _ (show Pn (Raa _ Px))). + +notation < "\infrule hbox(\emsp Px \emsp) Pn (mstyle color #ff0000 (\RAA) \emsp ident x)" with precedence 19 +for @{ 'RAA_ko_1 (λ${ident x}:$tx.$Px) $Pn }. +interpretation "RAA_ko_1" 'RAA_ko_1 Px Pn = + (show Pn (Raa _ (cast _ _ Px))). + +notation < "\infrule hbox(\emsp Px \emsp) mstyle color #ff0000 (Pn) (mstyle color #ff0000 (\RAA) \emsp ident x)" with precedence 19 +for @{ 'RAA_ko_2 (λ${ident x}:$tx.$Px) $Pn }. +interpretation "RAA_ko_2" 'RAA_ko_2 Px Pn = + (cast _ _ (show Pn (Raa _ (cast _ _ Px)))). + +notation > "'RAA' [ident H] term 90 b" with precedence 19 +for @{ 'Raa (λ${ident H}.show $b ?) }. +interpretation "RAA KO" 'Raa p = (Raa _ (cast _ (unit_to _) p)). +interpretation "RAA OK" 'Raa p = (Raa _ p). + +(*DOCBEGIN +Templates for rules +⇒_i […] (…) +∧_i (…) (…) +∨_i_l (…) +∨_i_r (…) +¬_i […] (…) +⊤_i +⇒_e (…) (…) +∧_e_l (…) +∧_e_r (…) +∨_e (…) […] (…) […] (…) +¬_e (…) (…) +⊥_e (…) +prove (…) +RAA […] (…) +DOCEND*) -notation < "\infrule hbox(\emsp Px \emsp) Pn (∀\sub\i \emsp ident x)" with precedence 19 -for @{ 'Forall_intro (λ${ident x}:$tx.$Px) $Pn }. -interpretation "Forall_intro" 'Forall_intro Px Pn = (cast _ Pn (Forall_intro _ _ Px)). -definition Forall_elim ≝ - λA:Type.λP:A→CProp.λn:A.λf:∀x:A.P x.match f with [ Forall_intro g ⇒ g n ]. -notation < "\infrule hbox(\emsp Px \emsp) Pn (∀\sub\i)" with precedence 19 for @{ 'Forall_elim $Px $Pn }. -interpretation "Forall_elim" 'Forall_elim Px Pn = (cast _ Pn (Forall_elim _ _ _ Px)). -notation > "[H]" with precedence 90 -for @{ assumpt ? (cast ? ? $H)}. -notation > "⇒_'i' [ident H] term 90 b" with precedence 19 -for @{ Imply_intro ?? (λ${ident H}.cast ? $b ?) }. -notation > "⇒_'e' term 90 ab term 90 a" with precedence 19 -for @{ Imply_elim ?? (cast ? $ab ?) (cast $a $a ?) }. -notation > "∧_'i' term 90 a term 90 b" with precedence 19 -for @{ And_intro ?? (cast ? $a ?) (cast ? $b ?) }. -(*notation > "∧_'e_l' term 90 ab" with precedence 19 -for @{ And_elim_l ?? (cast (? ∧ False) $ab ?) }. -notation > "∧_'e_l' term 90 a ∧ term 90 b" with precedence 19 -for @{ And_elim_l ?? (cast (? ∧ $b) ($a ∧ $b) ?) }. *) -notation > "∧_'e_l' term 90 ab" with precedence 19 -for @{ And_elim_l ?? (cast $ab $ab ?) }. (* CSC: WRONG *) -notation > "∧_'e_r' term 90 ab" with precedence 19 -for @{ And_elim_r ?? (cast $ab $ab ?) }. (* CSC: WRONG *) -notation > "∨_'i_l' term 90 a" with precedence 19 -for @{ Or_intro_l ?? (cast ? $a ?) }. -notation > "∨_'i_r' term 90 a" with precedence 19 -for @{ Or_intro_r ?? (cast ? $a ?) }. -notation > "∨_'e' term 90 ab [ident Ha] term 90 c1 [ident Hb] term 90 c2" with precedence 19 -for @{ Or_elim ??? (cast $ab $ab ?) (λ${ident Ha}.cast ? $c1 ?) (λ${ident Hb}.cast ? $c2 ?) }. -notation > "∀_'i' [ident z] term 90 a" with precedence 19 -for @{ Forall_intro ?? (λ${ident z}.cast ? $a ?) }. -notation > "∀_'e' term 90 ab term 90 a" with precedence 19 -for @{ Forall_elim ?? $a (cast $ab $ab ?) }. -notation > "∃_'e' term 90 enpn [ident z] [ident pz] term 90 c" with precedence 19 -for @{ Exists_elim ??? (cast $enpn $enpn ?) (λ${ident z}.λ${ident pz}.cast ? $c ?) }. -notation > "∃_'i' term 90 n term 90 pn" with precedence 19 -for @{ Exists_intro ? (λ_.?) $n (cast ? $pn ?) }. diff --git a/helm/software/matita/matita.glade b/helm/software/matita/matita.glade index 5e39120a9..2b239b4e5 100644 --- a/helm/software/matita/matita.glade +++ b/helm/software/matita/matita.glade @@ -1160,15 +1160,6 @@ True - - - True - Show _tactics bar - True - True - - - True @@ -1190,6 +1181,15 @@ + + + True + Shows a palette with natural deduction rules + Natural deduction palette + True + + + True @@ -1396,13 +1396,234 @@ True - + + True + True + + + True + + + True + True + True + Implication (⇒_i) + 0 + + + + + True + True + True + Conjunction (∧_i) + 0 + + + 1 + + + + + True + True + True + Disjunction left (∨_i_l) + 0 + + + 2 + + + + + True + True + True + Disjunction right (∨_i_r) + 0 + + + 3 + + + + + True + True + True + Negaton (¬_i) + 0 + + + 4 + + + + + True + True + True + Top (⊤_i) + 0 + + + 5 + + + + + + + True + Introduction rules + + + label_item + + + + + False + - + + True + True + + + True + + + True + True + True + Implication (⇒_e) + 0 + + + + + True + True + True + Conjunction left (∧_e_l) + 0 + + + 1 + + + + + True + True + True + Conjunction right (∧_e_r) + 0 + + + 2 + + + + + True + True + True + Disjunction (∨_e) + 0 + + + 3 + + + + + True + True + True + Negaton (¬_e) + 0 + + + 4 + + + + + True + True + True + Bottom (⊥_e) + 0 + + + 5 + + + + + + + True + Elimination rules + + + label_item + + + + + False + 1 + - + + True + True + + + True + + + True + True + True + Reduction to Absurdity (RAA) + 0 + + + + + True + True + True + Prove (to start) + 0 + + + 1 + + + + + + + True + Misc rules + + + label_item + + + + + False + 2 + @@ -2116,59 +2337,6 @@ 3 2 5 - - - True - 0 - Find: - - - - - - - - - True - 0 - Replace with: - - - 1 - 2 - - - - - - - True - True - True - True - True - * - - - 1 - 2 - - - - - - True - True - * - - - 1 - 2 - 1 - 2 - - - True @@ -2267,6 +2435,59 @@ 5 + + + True + True + * + + + 1 + 2 + 1 + 2 + + + + + + True + True + True + True + True + * + + + 1 + 2 + + + + + + True + 0 + Replace with: + + + 1 + 2 + + + + + + + True + 0 + Find: + + + + + + diff --git a/helm/software/matita/matita.lang b/helm/software/matita/matita.lang index 6c0f4c8dc..c76046c75 100644 --- a/helm/software/matita/matita.lang +++ b/helm/software/matita/matita.lang @@ -158,6 +158,7 @@ obtain conclude done + rule diff --git a/helm/software/matita/matitaEngine.ml b/helm/software/matita/matitaEngine.ml index fa9a0d393..d0e1c1acb 100644 --- a/helm/software/matita/matitaEngine.ml +++ b/helm/software/matita/matitaEngine.ml @@ -35,7 +35,7 @@ let disambiguate_tactic text prefix_len lexicon_status_ref grafite_status goal t GrafiteDisambiguate.disambiguate_tactic lexicon_status_ref (GrafiteTypes.get_proof_context grafite_status goal) - (GrafiteTypes.get_proof_metasenv grafite_status) + (GrafiteTypes.get_proof_metasenv grafite_status) (Some goal) tac in GrafiteTypes.set_metasenv metasenv grafite_status,tac diff --git a/helm/software/matita/matitaGui.ml b/helm/software/matita/matitaGui.ml index 1fe78046e..393da7cef 100644 --- a/helm/software/matita/matitaGui.ml +++ b/helm/software/matita/matitaGui.ml @@ -754,9 +754,47 @@ class gui () = ignore (adj#connect#changed (fun _ -> adj#set_value (adj#upper -. adj#page_size))); console#message (sprintf "\tMatita version %s\n" BuildTimeConf.version); - (* TO BE REMOVED *) + (* natural deduction palette *) main#tacticsButtonsHandlebox#misc#hide (); - main#tacticsBarMenuItem#misc#hide (); + MatitaGtkMisc.toggle_callback + ~callback:(fun b -> + if b then main#tacticsButtonsHandlebox#misc#show () + else main#tacticsButtonsHandlebox#misc#hide ()) + ~check:main#menuitemPalette; + connect_button main#butImpl_intro + (fun () -> source_buffer#insert "apply rule (⇒_i […] (…));\n"); + connect_button main#butAnd_intro + (fun () -> source_buffer#insert + "apply rule (∧_i (…) (…));\n\t[\n\t|\n\t]\n"); + connect_button main#butOr_intro_left + (fun () -> source_buffer#insert "apply rule (∨_i_l (…));\n"); + connect_button main#butOr_intro_right + (fun () -> source_buffer#insert "apply rule (∨_i_r (…));\n"); + connect_button main#butNot_intro + (fun () -> source_buffer#insert "apply rule (¬_i […] (…));\n"); + connect_button main#butTop_intro + (fun () -> source_buffer#insert "apply rule (⊤_i);\n"); + connect_button main#butImpl_elim + (fun () -> source_buffer#insert + "apply rule (⇒_e (…) (…));\n\t[\n\t|\n\t]\n"); + connect_button main#butAnd_elim_left + (fun () -> source_buffer#insert "apply rule (∧_e_l (…));\n"); + connect_button main#butAnd_elim_right + (fun () -> source_buffer#insert "apply rule (∧_e_r (…));\n"); + connect_button main#butOr_elim + (fun () -> source_buffer#insert + "apply rule (∨_e (…) […] (…) […] (…));\n\t[\n\t|\n\t|\n\t]\n"); + connect_button main#butNot_elim + (fun () -> source_buffer#insert + "apply rule (¬_e (…) (…));\n\t[\n\t|\n\t]\n"); + connect_button main#butBot_elim + (fun () -> source_buffer#insert "apply rule (⊥_e (…));\n"); + connect_button main#butRAA + (fun () -> source_buffer#insert "apply rule (RAA […] (…));\n"); + connect_button main#butStart + (fun () -> source_buffer#insert "apply rule (prove (…));\n"); + + (* TO BE REMOVED *) main#scriptNotebook#remove_page 1; main#scriptNotebook#set_show_tabs false; (* / TO BE REMOVED *)