From: Claudio Sacerdoti Coen Date: Tue, 6 Feb 2007 18:50:23 +0000 (+0000) Subject: More stuff in technicalities/setoids.ma X-Git-Tag: 0.4.95@7852~625 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=8a074fd021ea693e3d3cacb9f6fce14a44489d0a;p=helm.git More stuff in technicalities/setoids.ma --- diff --git a/matita/library/technicalities/setoids.ma b/matita/library/technicalities/setoids.ma index 46c99eee6..c60b4d1ed 100644 --- a/matita/library/technicalities/setoids.ma +++ b/matita/library/technicalities/setoids.ma @@ -401,7 +401,7 @@ inductive Morphism_Context (Hole: Relation_Class) (dir:rewrite_direction) : Rela App : ∀In,Out,dir'. Morphism_Theory In Out → Morphism_Context_List Hole dir dir' In → - Morphism_Context Hole dir Out dir + Morphism_Context Hole dir Out dir' | ToReplace : Morphism_Context Hole dir Hole dir | ToKeep : ∀S,dir'. @@ -426,6 +426,62 @@ with Morphism_Context_List : Morphism_Context_List Hole dir dir'' L → Morphism_Context_List Hole dir dir'' (cons ? S L). +lemma Morphism_Context_rect2: + ∀Hole,dir. + ∀P: + ∀r:Relation_Class.∀r0:rewrite_direction.Morphism_Context Hole dir r r0 → Type. + ∀P0: + ∀r:rewrite_direction.∀a:Arguments.Morphism_Context_List Hole dir r a → Type. + (∀In,Out,dir'. + ∀m:Morphism_Theory In Out.∀m0:Morphism_Context_List Hole dir dir' In. + P0 dir' In m0 → P Out dir' (App Hole ? ? ? ? m m0)) → + P Hole dir (ToReplace Hole dir) → + (∀S:Reflexive_Relation_Class.∀dir'.∀c:carrier_of_reflexive_relation_class S. + P (relation_class_of_reflexive_relation_class S) dir' + (ToKeep Hole dir S dir' c)) → + (∀S:Areflexive_Relation_Class.∀dir'. + ∀x:carrier_of_areflexive_relation_class S. + ∀r:relation_of_areflexive_relation_class S x x. + P (relation_class_of_areflexive_relation_class S) dir' + (ProperElementToKeep Hole dir S dir' x r)) → + (∀S:Argument_Class.∀dir',dir''. + ∀c:check_if_variance_is_respected (variance_of_argument_class S) dir' dir''. + ∀m:Morphism_Context Hole dir (relation_class_of_argument_class S) dir'. + P (relation_class_of_argument_class S) dir' m -> + P0 dir'' (singl ? S) (fcl_singl ? ? S ? ? c m)) → + (∀S:Argument_Class.∀L:Arguments.∀dir',dir''. + ∀c:check_if_variance_is_respected (variance_of_argument_class S) dir' dir''. + ∀m:Morphism_Context Hole dir (relation_class_of_argument_class S) dir'. + P (relation_class_of_argument_class S) dir' m → + ∀m0:Morphism_Context_List Hole dir dir'' L. + P0 dir'' L m0 → P0 dir'' (cons ? S L) (fcl_cons ? ? S ? ? ? c m m0)) → + ∀r:Relation_Class.∀r0:rewrite_direction.∀m:Morphism_Context Hole dir r r0. + P r r0 m +≝ + λHole,dir,P,P0,f,f0,f1,f2,f3,f4. + let rec + F (rc:Relation_Class) (r0:rewrite_direction) + (m:Morphism_Context Hole dir rc r0) on m : P rc r0 m + ≝ + match m return λrc.λr0.λm0.P rc r0 m0 with + [ App In Out dir' m0 m1 ⇒ f In Out dir' m0 m1 (F0 dir' In m1) + | ToReplace ⇒ f0 + | ToKeep S dir' c ⇒ f1 S dir' c + | ProperElementToKeep S dir' x r1 ⇒ f2 S dir' x r1 + ] + and + F0 (r:rewrite_direction) (a:Arguments) + (m:Morphism_Context_List Hole dir r a) on m : P0 r a m + ≝ + match m return λr.λa.λm0.P0 r a m0 with + [ fcl_singl S dir' dir'' c m0 ⇒ + f3 S dir' dir'' c m0 (F (relation_class_of_argument_class S) dir' m0) + | fcl_cons S L dir' dir'' c m0 m1 ⇒ + f4 S L dir' dir'' c m0 (F (relation_class_of_argument_class S) dir' m0) + m1 (F0 dir'' L m1) + ] +in F. + definition product_of_arguments : Arguments → Type. intro; elim a; @@ -629,57 +685,139 @@ theorem apply_morphism_compatibility_Right2Left: ] qed. -(* -Theorem apply_morphism_compatibility_Left2Right: - ∀In Out (m1 m2: function_type_of_morphism_signature In Out) - (args1 args2: product_of_arguments In). +theorem apply_morphism_compatibility_Left2Right: + ∀In,Out.∀m1,m2: function_type_of_morphism_signature In Out. + ∀args1,args2: product_of_arguments In. make_compatibility_goal_aux ? ? m1 m2 → relation_of_product_of_arguments Left2Right ? args1 args2 → directed_relation_of_relation_class Left2Right ? (apply_morphism ? ? m1 args1) (apply_morphism ? ? m2 args2). - induction In; intros. - simpl in m1. m2. args1. args2. H0 |- *. - destruct a; simpl in H; hnf in H0. - apply H; exact H0. - destruct v; simpl in H0; apply H; exact H0. - apply H; exact H0. - destruct v; simpl in H0; apply H; exact H0. - rewrite H0; apply H; exact H0. - - simpl in m1. m2. args1. args2. H0 |- *. - destruct args1; destruct args2; simpl. - destruct H0. - simpl in H. - destruct a; simpl in H. - apply IHIn. - apply H; exact H0. - exact H1. - destruct v. - apply IHIn. - apply H; exact H0. - exact H1. - apply IHIn. - apply H; exact H0. - exact H1. - apply IHIn. - apply H; exact H0. - exact H1. - apply IHIn. - destruct v; simpl in H. H0; apply H; exact H0. - exact H1. - rewrite H0; apply IHIn. - apply H. - exact H1. -Qed. - + intro; + elim In; + [ simplify in m1 m2 args1 args2 ⊢ %; + change in H1 with + (directed_relation_of_argument_class + (get_rewrite_direction Left2Right t) t args1 args2); + generalize in match H1; clear H1; + generalize in match H; clear H; + generalize in match args2; clear args2; + generalize in match args1; clear args1; + generalize in match m2; clear m2; + generalize in match m1; clear m1; + elim t 0; + [ intros (T1 r Hs Hr m1 m2 args1 args2 H H1); + simplify in H; + simplify in H1; + simplify; + apply H; + exact H1 + | intros 8 (v T1 r Hr m1 m2 args1 args2); + cases v; + intros (H H1); + simplify in H1; + apply H; + exact H1 + | intros; + apply H1; + exact H2 + | intros 7 (v); + cases v; + intros (H H1); + simplify in H1; + apply H; + exact H1 + | intros; + simplify in H1; + rewrite > H1; + apply H; + exact H1 + ] + | change in m1 with + (carrier_of_relation_class variance t → + function_type_of_morphism_signature n Out); + change in m2 with + (carrier_of_relation_class variance t → + function_type_of_morphism_signature n Out); + change in args1 with + ((carrier_of_relation_class ? t) × (product_of_arguments n)); + change in args2 with + ((carrier_of_relation_class ? t) × (product_of_arguments n)); + generalize in match H2; clear H2; + elim args2 0; clear args2; + elim args1; clear args1; + elim H2; clear H2; + change in H4 with + (relation_of_product_of_arguments Left2Right n t2 t4); + change with + (relation_of_relation_class unit Out (apply_morphism n Out (m1 t1) t2) + (apply_morphism n Out (m2 t3) t4)); + generalize in match H3; clear H3; + generalize in match t3; clear t3; + generalize in match t1; clear t1; + generalize in match H1; clear H1; + generalize in match m2; clear m2; + generalize in match m1; clear m1; + elim t 0; + [ intros (T1 r Hs Hr m1 m2 H1 t1 t3 H3); + simplify in H3; + change in H1 with + (∀x1,x2:T1.r x1 x2 → make_compatibility_goal_aux n Out (m1 x1) (m2 x2)); + | intro v; + elim v 0; + [ intros (T1 r Hr m1 m2 H1 t1 t3 H3); + simplify in H3; + change in H1 with + (∀x1,x2:T1.r x1 x2 → make_compatibility_goal_aux n Out (m1 x1) (m2 x2)); + | intros (T1 r Hr m1 m2 H1 t1 t3 H3); + simplify in H3; + change in H1 with + (∀x1,x2:T1.r x2 x1 → make_compatibility_goal_aux n Out (m1 x1) (m2 x2)); + ] + | intros (T1 r Hs m1 m2 H1 t1 t3 H3); + simplify in H3; + change in H1 with + (∀x1,x2:T1.r x1 x2 → make_compatibility_goal_aux n Out (m1 x1) (m2 x2)); + | intro v; + elim v 0; + [ intros (T1 r m1 m2 H1 t1 t3 H3); + simplify in H3; + change in H1 with + (∀x1,x2:T1.r x1 x2 → make_compatibility_goal_aux n Out (m1 x1) (m2 x2)); + | intros (T1 r m1 m2 H1 t1 t3 H3); + simplify in H3; + change in H1 with + (∀x1,x2:T1.r x2 x1 → make_compatibility_goal_aux n Out (m1 x1) (m2 x2)); + ] + | intros (T m1 m2 H1 t1 t3 H3); + simplify in H3; + change in H1 with + (∀x:T. make_compatibility_goal_aux n Out (m1 x) (m2 x)); + rewrite > H3; + simplify in H; + apply H; + [ apply H1 + | assumption + ] + ] ; + simplify in H; + apply H; + [1,3,5,7,9,11: + apply H1; + assumption + |2,4,6,8,10,12: + assumption + ] + ] +qed. +(* definition interp : - ∀Hole dir Out dir'. carrier_of_relation_class Hole → - Morphism_Context Hole dir Out dir' → carrier_of_relation_class Out. - intros Hole dir Out dir' H t. - elim t using - (@Morphism_Context_rect2 Hole dir (fun S ? ? => carrier_of_relation_class S) - (fun ? L fcl => product_of_arguments L)); + ∀Hole,dir,Out,dir'. carrier_of_relation_class ? Hole → + Morphism_Context Hole dir Out dir' → carrier_of_relation_class ? Out. + intros (Hole dir Out dir' H t). + apply + (Morphism_Context_rect2 Hole dir (λS,xx,yy. carrier_of_relation_class S) + (λxx,L,fcl.product_of_arguments L)); intros. exact (apply_morphism ? ? (Function m) X). exact H.