From: Andrea Asperti Date: Mon, 20 Jun 2011 08:31:54 +0000 (+0000) Subject: Ported par_reduction X-Git-Tag: make_still_working~2427 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=8a5ffad045bf288811df34ab2d74b2d492efd701;p=helm.git Ported par_reduction --- diff --git a/matita/matita/lib/lambdaN/par_reduction.ma b/matita/matita/lib/lambdaN/par_reduction.ma index cea1e177b..260157d4c 100644 --- a/matita/matita/lib/lambdaN/par_reduction.ma +++ b/matita/matita/lib/lambdaN/par_reduction.ma @@ -9,7 +9,7 @@ \ / V_______________________________________________________________ *) -include "lambda/subterms.ma". +include "lambdaN/subterms.ma". (* inductive T : Type[0] ≝ @@ -18,7 +18,7 @@ inductive T : Type[0] ≝ | App: T → T → T | Lambda: T → T → T (* type, body *) | Prod: T → T → T (* type, body *) - | D: T →T + | D: T →T →T . *) (* @@ -46,7 +46,7 @@ qed.*) theorem is_lambda_to_exists: ∀M. is_lambda M = true → ∃P,N. M = Lambda P N. #M (cases M) normalize - [1,2,6: #n #H destruct|3,5: #P #Q #H destruct + [1,2: #n #H destruct|3,5,6: #P #Q #H destruct |#P #N #_ @(ex_intro … P) @(ex_intro … N) // ] qed. @@ -60,16 +60,13 @@ inductive pr : T →T → Prop ≝ pr (Lambda P M) (Lambda P1 M1) | prod: ∀P,P1,M,M1. pr P P1 → pr M M1 → pr (Prod P M) (Prod P1 M1) - | d: ∀M,M1. pr M M1 → pr (D M) (D M1). + | d: ∀M,M1,N,N1. pr M M1 → pr N N1 → pr (D M N) (D M1 N1). lemma prSort: ∀M,n. pr (Sort n) M → M = Sort n. #M #n #prH (inversion prH) [#P #M #N #M1 #N1 #_ #_ #_ #_ #H destruct |// - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct - |#M #N #_ #_ #H destruct + |3,4,5,6: #M #M1 #N #N1 #_ #_ #_ #_ #H destruct ] qed. @@ -77,21 +74,18 @@ lemma prRel: ∀M,n. pr (Rel n) M → M = Rel n. #M #n #prH (inversion prH) [#P #M #N #M1 #N1 #_ #_ #_ #_ #H destruct |// - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct - |#M #N #_ #_ #H destruct + |3,4,5,6: #M #M1 #N #N1 #_ #_ #_ #_ #H destruct ] qed. -lemma prD: ∀M,N. pr (D N) M → ∃P.M = D P ∧ pr N P. -#M #N #prH (inversion prH) +lemma prD: ∀M,N,P. pr (D M N) P → + ∃M1,N1.P = D M1 N1 ∧ pr M M1 ∧ pr N N1. +#M #N #P #prH (inversion prH) [#P #M #N #M1 #N1 #_ #_ #_ #_ #H destruct - |#M #eqM #_ @(ex_intro … N) /2/ - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct - |#M1 #N1 #pr #_ #H destruct #eqM @(ex_intro … N1) /2/ + |#Q #eqQ #_ @(ex_intro … M) @(ex_intro … N) /3/ + |3,4,5: #M #M1 #N #N1 #_ #_ #_ #_ #H destruct + |#M1 #M2 #N1 #N2 #pr1 #pr2 #_ #_ #H destruct #eqP + @(ex_intro … M2) @(ex_intro … N2) /3/ ] qed. @@ -103,9 +97,7 @@ lemma prApp_not_lambda: |#M1 #eqM1 #_ #_ @(ex_intro … M) @(ex_intro … N) /3/ |#M1 #N1 #M2 #N2 #pr1 #pr2 #_ #_ #H #H1 #_ destruct @(ex_intro … N1) @(ex_intro … N2) /3/ - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct - |#M #N #_ #_ #H destruct + |4,5,6: #M #M1 #N #N1 #_ #_ #_ #_ #H destruct ] qed. @@ -119,9 +111,7 @@ lemma prApp_lambda: |#M1 #eqM1 #_ @(ex_intro … (Lambda Q M)) @(ex_intro … N) /4/ |#M1 #N1 #M2 #N2 #pr1 #pr2 #_ #_ #H destruct #_ @(ex_intro … N1) @(ex_intro … N2) /4/ - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct - |#M #N #_ #_ #H destruct + |4,5,6: #M #M1 #N #N1 #_ #_ #_ #_ #H destruct ] qed. @@ -130,11 +120,9 @@ lemma prLambda: ∀M,N,P. pr (Lambda M N) P → #M #N #P #prH (inversion prH) [#P #M #N #M1 #N1 #_ #_ #_ #_ #H destruct |#Q #eqQ #_ @(ex_intro … M) @(ex_intro … N) /3/ - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct + |3,5,6: #M #M1 #N #N1 #_ #_ #_ #_ #H destruct |#Q #Q1 #S #S1 #pr1 #pr2 #_ #_ #H #H1 destruct @(ex_intro … Q1) @(ex_intro … S1) /3/ - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct - |#M #N #_ #_ #H destruct ] qed. @@ -143,11 +131,9 @@ lemma prProd: ∀M,N,P. pr (Prod M N) P → #M #N #P #prH (inversion prH) [#P #M #N #M1 #N1 #_ #_ #_ #_ #H destruct |#Q #eqQ #_ @(ex_intro … M) @(ex_intro … N) /3/ - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct - |#M #M1 #N #N1 #_ #_ #_ #_ #H destruct + |3,4,6: #M #M1 #N #N1 #_ #_ #_ #_ #H destruct |#Q #Q1 #S #S1 #pr1 #pr2 #_ #_ #H #H1 destruct @(ex_intro … Q1) @(ex_intro … S1) /3/ - |#M #N #_ #_ #H destruct ] qed. @@ -158,7 +144,7 @@ let rec full M ≝ | App P Q ⇒ full_app P (full Q) | Lambda P Q ⇒ Lambda (full P) (full Q) | Prod P Q ⇒ Prod (full P) (full Q) - | D P ⇒ D (full P) + | D P Q ⇒ D (full P) (full Q) ] and full_app M N ≝ match M with @@ -167,7 +153,7 @@ and full_app M N ≝ | App P Q ⇒ App (full_app P (full Q)) N | Lambda P Q ⇒ (full Q) [0 ≝ N] | Prod P Q ⇒ App (Prod (full P) (full Q)) N - | D P ⇒ App (D (full P)) N + | D P Q ⇒ App (D (full P) (full Q)) N ] . @@ -183,7 +169,8 @@ lemma pr_lift: ∀N,N1,n. pr N N1 → normalize @lam; [@Hind1 |@Hind2] |#M1 #N1 #M2 #N2 #pr2 #pr3 #Hind1 #Hind2 #k normalize @prod; [@Hind1 |@Hind2] - |#M1 #M2 #pr2 #Hind #k normalize @d // + |#M1 #N1 #M2 #N2 #pr2 #pr3 #Hind1 #Hind2 #k + normalize @d; [@Hind1 |@Hind2] ] qed. @@ -207,7 +194,7 @@ theorem pr_subst: ∀M,M1,N,N1,n. pr M M1 → pr N N1 → #M3 * #N3 * [* * #eqM1 #pr4 #pr5 >eqM1 >(plus_n_O n) in ⊢ (??%) >subst_lemma @beta; - [eqQ + [eqQ @(transitive_lt ? (size (Lambda M2 N2))) normalize // |@Hind // normalize // ] @@ -227,8 +214,9 @@ theorem pr_subst: ∀M,M1,N,N1,n. pr M M1 → pr N N1 → |#Q #M #Hind #M1 #N #N1 #n #pr1 #pr2 (cases (prProd … pr1)) #M2 * #N2 * * #eqM1 #pr3 #pr4 >eqM1 @prod; [@Hind // normalize // | @Hind // normalize // ] - |#Q #Hind #M1 #N #N1 #n #pr1 #pr2 (cases (prD … pr1)) - #M2 * #eqM1 #pr1 >eqM1 @d @Hind // normalize // + |#Q #M #Hind #M1 #N #N1 #n #pr1 #pr2 + (cases (prD … pr1)) #M2 * #N2 * * #eqM1 #pr3 #pr4 >eqM1 + @d; [@Hind // normalize // | @Hind // normalize // ] ] qed. @@ -239,7 +227,7 @@ lemma pr_full_app: ∀M,N,N1. pr N N1 → [#P #Q #Hind1 #Hind2 #N1 #N2 #prN #H @appl // @Hind1 /3/ |#P #Q #Hind1 #Hind2 #N1 #N2 #prN #H @beta /2/ |#P #Q #Hind1 #Hind2 #N1 #N2 #prN #H @appl // @prod /2/ - |#P #Hind #N1 #N2 #prN #H @appl // @d /2/ + |#P #Q #Hind1 #Hind2 #N1 #N2 #prN #H @appl // @d /2/ ] qed. @@ -250,7 +238,7 @@ theorem pr_full: ∀M. pr M (full M). |#M1 #N1 #H @pr_full_app /3/ |#M1 #N1 #H normalize /3/ |#M1 #N1 #H @prod /2/ - |#P #H @d /2/ + |#M1 #N1 #H @d /2/ ] qed. @@ -278,10 +266,10 @@ lemma complete_app: ∀M,N,P. cases (prApp_not_lambda … prH ?) // #M2 * #N2 * * #eqQ #pr1 #pr2 >eqQ @appl; [@(subH (Prod P Q)) // |@subH //] - |#P #Hind #N1 #N2 #subH #pr1 + |#P #Q #Hind1 #Hind2 #N1 #N2 #subH #pr1 cases (prApp_not_lambda … pr1 ?) // #M1 * #N1 * * #eqQ #pr2 #pr3 >eqQ @appl; - [@(subH (D P) M1) // |@subH //] + [@(subH (D P Q) M1) // |@subH //] ] qed. @@ -295,8 +283,8 @@ theorem complete: ∀M,N. pr M N → pr N (full M). (cases (prLambda …Hpr)) #M1 * #N1 * * #eqN >eqN normalize /3/ |#P #P1 #Hind #N #Hpr (cases (prProd …Hpr)) #M1 * #N1 * * #eqN >eqN normalize /3/ - |#N #Hind #P #prH normalize cases (prD … prH) - #Q * #eqP >eqP #prN @d @Hind // + |#P #P1 #Hind #N #Hpr + (cases (prD …Hpr)) #M1 * #N1 * * #eqN >eqN normalize /3/ ] qed. diff --git a/matita/matita/lib/lambdaN/subterms.ma b/matita/matita/lib/lambdaN/subterms.ma index 7773ddcf1..86a8507ed 100644 --- a/matita/matita/lib/lambdaN/subterms.ma +++ b/matita/matita/lib/lambdaN/subterms.ma @@ -19,7 +19,7 @@ inductive subterm : T → T → Prop ≝ | prodl : ∀M,N. subterm M (Prod M N) | prodr : ∀M,N. subterm N (Prod M N) | dl : ∀M,N. subterm M (D M N) - | dr : ∀M,N. subterm M (D M N) + | dr : ∀M,N. subterm N (D M N) | sub_trans : ∀M,N,P. subterm M N → subterm N P → subterm M P. inverter subterm_myinv for subterm (?%).