From: Andrea Asperti Date: Tue, 3 Jan 2012 16:00:01 +0000 (+0000) Subject: modified definition of memb X-Git-Tag: make_still_working~1992 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=927bda3b4b7fe5f521ae73eb008a746e8606a0b4;p=helm.git modified definition of memb --- diff --git a/matita/matita/lib/basics/lists/listb.ma b/matita/matita/lib/basics/lists/listb.ma index f74714956..c97232644 100644 --- a/matita/matita/lib/basics/lists/listb.ma +++ b/matita/matita/lib/basics/lists/listb.ma @@ -21,7 +21,7 @@ include "basics/deqsets.ma". let rec memb (S:DeqSet) (x:S) (l: list S) on l ≝ match l with [ nil ⇒ false - | cons a tl ⇒ (a == x) ∨ memb S x tl + | cons a tl ⇒ (x == a) ∨ memb S x tl ]. notation < "\memb x l" non associative with precedence 90 for @{'memb $x $l}. @@ -33,36 +33,40 @@ qed. lemma memb_cons: ∀S,a,b,l. memb S a l = true → memb S a (b::l) = true. -#S #a #b #l normalize cases (b==a) normalize // +#S #a #b #l normalize cases (a==b) normalize // +qed. + +lemma memb_single: ∀S,a,x. memb S a [x] = true → a = x. +#S #a #x normalize cases (true_or_false … (a==x)) #H + [#_ >(\P H) // |>H normalize #abs @False_ind /2/] qed. lemma memb_append: ∀S,a,l1,l2. memb S a (l1@l2) = true → memb S a l1= true ∨ memb S a l2 = true. #S #a #l1 elim l1 normalize [#l2 #H %2 //] -#b #tl #Hind #l2 cases (b==a) normalize /2/ +#b #tl #Hind #l2 cases (a==b) normalize /2/ qed. lemma memb_append_l1: ∀S,a,l1,l2. memb S a l1= true → memb S a (l1@l2) = true. #S #a #l1 elim l1 normalize [normalize #le #abs @False_ind /2/ - |#b #tl #Hind #l2 cases (b==a) normalize /2/ + |#b #tl #Hind #l2 cases (a==b) normalize /2/ ] qed. lemma memb_append_l2: ∀S,a,l1,l2. memb S a l2= true → memb S a (l1@l2) = true. #S #a #l1 elim l1 normalize // -#b #tl #Hind #l2 cases (b==a) normalize /2/ +#b #tl #Hind #l2 cases (a==b) normalize /2/ qed. lemma memb_exists: ∀S,a,l.memb S a l = true → ∃l1,l2.l=l1@(a::l2). #S #a #l elim l [normalize #abs @False_ind /2/] #b #tl #Hind #H cases (orb_true_l … H) - [#eqba @(ex_intro … (nil S)) @(ex_intro … tl) - >(proj1 … (eqb_true …) eqba) // + [#eqba @(ex_intro … (nil S)) @(ex_intro … tl) >(\P eqba) // |#mem_tl cases (Hind mem_tl) #l1 * #l2 #eqtl @(ex_intro … (b::l1)) @(ex_intro … l2) >eqtl // ] @@ -71,16 +75,15 @@ qed. lemma not_memb_to_not_eq: ∀S,a,b,l. memb S a l = false → memb S b l = true → a==b = false. #S #a #b #l cases (true_or_false (a==b)) // -#eqab >(proj1 … (eqb_true …) eqab) #H >H #abs @False_ind /2/ +#eqab >(\P eqab) #H >H #abs @False_ind /2/ qed. lemma memb_map: ∀S1,S2,f,a,l. memb S1 a l= true → memb S2 (f a) (map … f l) = true. #S1 #S2 #f #a #l elim l normalize [//] -#x #tl #memba cases (true_or_false (x==a)) - [#eqx >eqx >(proj1 … (eqb_true …) eqx) - >(proj2 … (eqb_true …) (refl … (f a))) normalize // - |#eqx >eqx cases (f x==f a) normalize /2/ +#x #tl #memba cases (true_or_false (a==x)) + [#eqx >eqx >(\P eqx) >(\b (refl … (f x))) normalize // + |#eqx >eqx cases (f a==f x) normalize /2/ ] qed. @@ -89,7 +92,7 @@ lemma memb_compose: ∀S1,S2,S3,op,a1,a2,l1,l2. memb S3 (op a1 a2) (compose S1 S2 S3 op l1 l2) = true. #S1 #S2 #S3 #op #a1 #a2 #l1 elim l1 [normalize //] #x #tl #Hind #l2 #memba1 #memba2 cases (orb_true_l … memba1) - [#eqa1 >(proj1 … (eqb_true …) eqa1) @memb_append_l1 @memb_map // + [#eqa1 >(\P eqa1) @memb_append_l1 @memb_map // |#membtl @memb_append_l2 @Hind // ] qed. @@ -138,9 +141,8 @@ applyS le_S_S (proj1 … (eqb_true …) eqax) >membx normalize /2/ - |#membxl4 @memb_append_l2 // + [#eqxa @False_ind lapply (andb_true_l … unique) + <(\P eqxa) >membx normalize /2/ |#membxl4 @memb_append_l2 // ] ] qed. @@ -149,11 +151,11 @@ lemma sublist_unique_append_l1: ∀S,l1,l2. sublist S l1 (unique_append S l1 l2). #S #l1 elim l1 normalize [#l2 #S #abs @False_ind /2/] #x #tl #Hind #l2 #a -normalize cases (true_or_false … (x==a)) #eqxa >eqxa -[>(proj1 … (eqb_true …) eqxa) cases (true_or_false (memb S a (unique_append S tl l2))) - [#H >H normalize // | #H >H normalize >(proj2 … (eqb_true …) (refl … a)) //] +normalize cases (true_or_false … (a==x)) #eqax >eqax +[<(\P eqax) cases (true_or_false (memb S a (unique_append S tl l2))) + [#H >H normalize // | #H >H normalize >(\b (refl … a)) //] |cases (memb S x (unique_append S tl l2)) normalize - [/2/ |>eqxa normalize /2/] + [/2/ |>eqax normalize /2/] ] qed. @@ -161,7 +163,22 @@ lemma sublist_unique_append_l2: ∀S,l1,l2. sublist S l2 (unique_append S l1 l2). #S #l1 elim l1 [normalize //] #x #tl #Hind normalize #l2 #a cases (memb S x (unique_append S tl l2)) normalize -[@Hind | cases (x==a) normalize // @Hind] +[@Hind | cases (a==x) normalize // @Hind] +qed. + +lemma decidable_sublist:∀S,l1,l2. + (sublist S l1 l2) ∨ ¬(sublist S l1 l2). +#S #l1 #l2 elim l1 + [%1 #a normalize in ⊢ (%→?); #abs @False_ind /2/ + |#a #tl * #subtl + [cases (true_or_false (memb S a l2)) #memba + [%1 whd #x #membx cases (orb_true_l … membx) + [#eqax >(\P eqax) // |@subtl] + |%2 @(not_to_not … (eqnot_to_noteq … true memba)) #H1 @H1 @memb_hd + ] + |%2 @(not_to_not … subtl) #H1 #x #H2 @H1 @memb_cons // + ] + ] qed. (********************* filtering *****************) @@ -171,15 +188,15 @@ lemma filter_true: ∀S,f,a,l. #S #f #a #l elim l [normalize #H @False_ind /2/] #b #tl #Hind cases (true_or_false (f b)) #H normalize >H normalize [2:@Hind] -cases (true_or_false (b==a)) #eqab - [#_ <(proj1 … (eqb_true …) eqab) // | >eqab normalize @Hind] +cases (true_or_false (a==b)) #eqab + [#_ >(\P eqab) // | >eqab normalize @Hind] qed. lemma memb_filter_memb: ∀S,f,a,l. memb S a (filter S f l) = true → memb S a l = true. #S #f #a #l elim l [normalize //] #b #tl #Hind normalize (cases (f b)) normalize -cases (b==a) normalize // @Hind +cases (a==b) normalize // @Hind qed. lemma memb_filter: ∀S,f,l,x. memb S x (filter ? f l) = true → @@ -189,10 +206,9 @@ memb S x l = true ∧ (f x = true). lemma memb_filter_l: ∀S,f,x,l. (f x = true) → memb S x l = true → memb S x (filter ? f l) = true. #S #f #x #l #fx elim l normalize // -#b #tl #Hind cases (true_or_false (b==x)) #eqbx - [>(proj1 … (eqb_true … ) eqbx) >(proj2 … (eqb_true …) (refl … x)) - >fx normalize >(proj2 … (eqb_true …) (refl … x)) normalize // - |>eqbx cases (f b) normalize [>eqbx normalize @Hind| @Hind] +#b #tl #Hind cases (true_or_false (x==b)) #eqxb + [<(\P eqxb) >(\b (refl … x)) >fx normalize >(\b (refl … x)) normalize // + |>eqxb cases (f b) normalize [>eqxb normalize @Hind| @Hind] ] qed.