From: Enrico Tassi Date: Wed, 23 Jan 2008 12:44:39 +0000 (+0000) Subject: snapshot with more duality, almost where we left without duality X-Git-Tag: make_still_working~5654 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=9483f7e6c85ec11f88bdb219b2cebad2039b1a74;p=helm.git snapshot with more duality, almost where we left without duality --- diff --git a/helm/software/matita/dama/depends b/helm/software/matita/dama/depends index e96472aa9..8334fa1a3 100644 --- a/helm/software/matita/dama/depends +++ b/helm/software/matita/dama/depends @@ -1,21 +1,23 @@ -metric_lattice.ma excess.ma lattice.ma metric_space.ma +metric_lattice.ma lattice.ma metric_space.ma metric_space.ma ordered_divisible_group.ma -sandwich.ma metric_lattice.ma nat/orders.ma nat/plus.ma sequence.ma +sandwich.ma nat/orders.ma nat/plus.ma tend.ma premetric_lattice.ma lattice.ma metric_space.ma ordered_group.ma group.ma divisible_group.ma group.ma nat/orders.ma ordered_divisible_group.ma divisible_group.ma nat/orders.ma nat/times.ma ordered_group.ma -sequence.ma excess.ma nat/orders.ma ordered_group.ma +sequence.ma excess.ma constructive_connectives.ma logic/connectives.ma lattice.TF.ma excess.ma lattice.ma nat/nat.ma group.ma excess.ma prevalued_lattice.ma ordered_group.ma excess.ma constructive_connectives.ma constructive_higher_order_relations.ma higher_order_defs/relations.ma nat/plus.ma -sandwich_corollary.ma metric_lattice.ma sandwich.ma +sandwich_corollary.ma sandwich.ma Q_is_orded_divisble_group.ma Q/q.ma ordered_divisible_group.ma +limit.ma excess.ma infsup.ma tend.ma lattice.ma excess.ma +tend.ma metric_lattice.ma nat/orders.ma sequence.ma constructive_higher_order_relations.ma constructive_connectives.ma higher_order_defs/relations.ma -infsup.ma sandwich_corollary.ma +infsup.ma excess.ma sequence.ma constructive_pointfree/lebesgue.ma constructive_connectives.ma metric_lattice.ma sequence.ma classical_pointwise/topology.ma classical_pointwise/sets.ma classical_pointwise/sigma_algebra.ma classical_pointwise/topology.ma diff --git a/helm/software/matita/dama/excess.ma b/helm/software/matita/dama/excess.ma index 959e866fd..826ae8c0b 100644 --- a/helm/software/matita/dama/excess.ma +++ b/helm/software/matita/dama/excess.ma @@ -51,18 +51,18 @@ qed. record excess_ : Type ≝ { exc_exc:> excess_base; - exc_ap: apartness; - exc_with: ap_carr exc_ap = exc_carr exc_exc + exc_ap_: apartness; + exc_with: ap_carr exc_ap_ = exc_carr exc_exc }. -definition apart_of_excess_: excess_ → apartness. +definition exc_ap: excess_ → apartness. intro E; apply (mk_apartness E); unfold Type_OF_excess_; cases (exc_with E); simplify; -[apply (ap_apart (exc_ap E)); +[apply (ap_apart (exc_ap_ E)); |apply ap_coreflexive;|apply ap_symmetric;|apply ap_cotransitive] qed. -coercion cic:/matita/excess/apart_of_excess_.con. +coercion cic:/matita/excess/exc_ap.con. record excess : Type ≝ { excess_carr:> excess_; @@ -245,7 +245,7 @@ intro E; apply mk_excess; [ apply (λx,y:E.y≰x);|apply exc_coreflexive; | unfold cotransitive; simplify; intros (x y z H); cases (exc_cotransitive E ??z H);[right|left]assumption] - |2: apply (exc_ap E); + |2: apply (exc_ap_ E); |3: apply (exc_with E);] |2: simplify; intros (y x H); fold simplify (y#x) in H; apply ap2exc; apply ap_symmetric; apply H; diff --git a/helm/software/matita/dama/infsup.ma b/helm/software/matita/dama/infsup.ma index b3babd1b5..60c4d2f81 100644 --- a/helm/software/matita/dama/infsup.ma +++ b/helm/software/matita/dama/infsup.ma @@ -12,190 +12,38 @@ (* *) (**************************************************************************) -include "sandwich_corollary.ma". +include "sequence.ma". -(* 3.19 *) -definition supremum ≝ - λR.λml:mlattice R.λxn:sequence ml.λx:ml. - increasing ? xn → upper_bound ? xn x ∧ xn ⇝ x. +definition upper_bound ≝ λO:excess.λa:sequence O.λu:O.∀n:nat.a n ≤ u. -definition infimum ≝ - λR.λml:mlattice R.λxn:sequence ml.λx:ml. - decreasing ? xn → lower_bound ? xn x ∧ xn ⇝ x. - -(* 3.20 *) -lemma supremum_uniq: - ∀R.∀ml:mlattice R.∀xn:sequence ml.increasing ? xn → - ∀x,y:ml.supremum ?? xn x → supremum ?? xn y → δ x y ≈ 0. -intros (R ml xn Hxn x y Sx Sy); -elim (Sx Hxn) (_ Hx); elim (Sy Hxn) (_ Hy); -apply (tends_uniq ?? xn ?? Hx Hy); -qed. +definition strong_sup ≝ + λO:excess.λs:sequence O.λx.upper_bound ? s x ∧ (∀y:O.x ≰ y → ∃n.s n ≰ y). -definition shift : ∀R.∀ml:mlattice R.∀xn:sequence ml.nat → sequence ml ≝ - λR.λml:mlattice R.λxn:sequence ml.λm:nat.λn.xn (n+m). - -definition ank ≝ - λR.λml:mlattice R.λxn:sequence ml.λk:nat. - let rec ank_aux (i : nat) ≝ - match i with - [ O ⇒ (shift ?? xn k) O - | S n1 ⇒ (shift ?? xn k) (S n1) ∧ ank_aux n1] - in ank_aux. - -notation < "'a'\sup k" non associative with precedence 50 for - @{ 'ank $x $k }. - -interpretation "ank" 'ank x k = - (cic:/matita/infsup/ank.con _ _ x k). +definition increasing ≝ λO:excess.λa:sequence O.∀n:nat.a n ≤ a (S n). -notation < "'a'(k \atop n)" non associative with precedence 50 for - @{ 'ank2 $x $k $n }. - -interpretation "ank2" 'ank2 x k n = - (cic:/matita/infsup/ank.con _ _ x k n). - -definition bnk ≝ - λR.λml:mlattice R.λxn:sequence ml.λk:nat. - let rec bnk_aux (i : nat) ≝ - match i with - [ O ⇒ (shift ?? xn k) O - | S n1 ⇒ (shift ?? xn k) (S n1) ∨ bnk_aux n1] - in bnk_aux. +notation < "x \nbsp 'is_upper_bound' \nbsp s" non associative with precedence 50 for @{'upper_bound $s $x}. +notation < "x \nbsp 'is_lower_bound' \nbsp s" non associative with precedence 50 for @{'lower_bound $s $x}. +notation < "s \nbsp 'is_increasing'" non associative with precedence 50 for @{'increasing $s}. +notation < "s \nbsp 'is_decreasing'" non associative with precedence 50 for @{'decreasing $s}. +notation < "x \nbsp 'is_strong_sup' \nbsp s" non associative with precedence 50 for @{'strong_sup $s $x}. +notation < "x \nbsp 'is_strong_inf' \nbsp s" non associative with precedence 50 for @{'strong_inf $s $x}. -notation < "'b'\sup k" non associative with precedence 50 for - @{ 'bnk $x $k }. - -interpretation "bnk" 'bnk x k = - (cic:/matita/infsup/bnk.con _ _ x k). +notation > "x 'is_upper_bound' s" non associative with precedence 50 for @{'upper_bound $s $x}. +notation > "x 'is_lower_bound' s" non associative with precedence 50 for @{'lower_bound $s $x}. +notation > "s 'is_increasing'" non associative with precedence 50 for @{'increasing $s}. +notation > "s 'is_decreasing'" non associative with precedence 50 for @{'decreasing $s}. +notation > "x 'is_strong_sup' s" non associative with precedence 50 for @{'strong_sup $s $x}. +notation > "x 'is_strong_inf' s" non associative with precedence 50 for @{'strong_inf $s $x}. -notation < "('b' \sup k) \sub n" non associative with precedence 50 for - @{ 'bnk2 $x $k $n }. - -interpretation "bnk2" 'bnk2 x k n = - (cic:/matita/infsup/bnk.con _ _ x k n). - -lemma ank_decreasing: - ∀R.∀ml:mlattice R.∀xn:sequence ml.∀k.decreasing ? (ank ?? xn k). -intros (R ml xn k); unfold; intro n; simplify; apply lem; -qed. +interpretation "Excess upper bound" 'upper_bound s x = (cic:/matita/infsup/upper_bound.con _ s x). +interpretation "Excess lower bound" 'lower_bound s x = (cic:/matita/infsup/upper_bound.con (cic:/matita/excess/dual_exc.con _) s x). +interpretation "Excess increasing" 'increasing s = (cic:/matita/infsup/increasing.con _ s). +interpretation "Excess decreasing" 'decreasing s = (cic:/matita/infsup/increasing.con (cic:/matita/excess/dual_exc.con _) s). +interpretation "Excess strong sup" 'strong_sup s x = (cic:/matita/infsup/strong_sup.con _ s x). +interpretation "Excess strong inf" 'strong_inf s x = (cic:/matita/infsup/strong_sup.con (cic:/matita/excess/dual_exc.con _) s x). -(* 3.26 *) -lemma ankS: - ∀R.∀ml:mlattice R.∀xn:sequence ml.∀k,n:nat. - ((ank ?? xn k) (S n)) ≈ (xn k ∧ ank ?? xn (S k) n). -intros (R ml xn k n); elim n; simplify; [apply meet_comm] -simplify in H; apply (Eq≈ ? (feq_ml ???? (H))); clear H; -apply (Eq≈ ? (meet_assoc ????)); -apply (Eq≈ ?? (eq_sym ??? (meet_assoc ????))); -apply feq_mr; rewrite > sym_plus in ⊢ (? ? ? (? ? ? (? (? %)))); -simplify; rewrite > sym_plus in ⊢ (? ? ? (? ? ? (? (? %)))); -apply meet_comm; -qed. +definition seq_dual_exc_hint: ∀E.sequence E → sequence (dual_exc E) ≝ λE.λx:sequence E.x. +definition seq_dual_exc_hint1: ∀E.sequence (dual_exc E) → sequence E ≝ λE.λx:sequence (dual_exc E).x. -lemma bnkS: - ∀R.∀ml:mlattice R.∀xn:sequence ml.∀k,n:nat. - ((bnk ?? xn k) (S n)) ≈ (xn k ∨ bnk ?? xn (S k) n). -intros (R ml xn k n); elim n; simplify; [apply join_comm] -simplify in H; apply (Eq≈ ? (feq_jl ???? (H))); clear H; -apply (Eq≈ ? (join_assoc ????)); -apply (Eq≈ ?? (eq_sym ??? (join_assoc ????))); -apply feq_jr; rewrite > sym_plus in ⊢ (? ? ? (? ? ? (? (? %)))); -simplify; rewrite > sym_plus in ⊢ (? ? ? (? ? ? (? (? %)))); -apply join_comm; -qed. - -lemma le_asnk_ansk: - ∀R.∀ml:mlattice R.∀xn:sequence ml.∀k,n. - (ank ?? xn k (S n)) ≤ (ank ?? xn (S k) n). -intros (R ml xn k n); -apply (Le≪ (xn k ∧ ank ?? xn (S k) n) (ankS ?????)); apply lem; -qed. - -lemma le_bnsk_bsnk: - ∀R.∀ml:mlattice R.∀xn:sequence ml.∀k,n. - (bnk ?? xn (S k) n) ≤ (bnk ?? xn k (S n)). -intros (R ml xn k n); -apply (Le≫ (xn k ∨ bnk ?? xn (S k) n) (bnkS ?????)); -apply (Le≫ ? (join_comm ???)); -apply lej; -qed. - - -(* 3.27 *) -lemma inf_increasing: - ∀R.∀ml:mlattice R.∀xn:sequence ml. - ∀alpha:sequence ml. (∀k.strong_inf ml (ank ?? xn k) (alpha k)) → - increasing ml alpha. -intros (R ml xn alpha H); unfold strong_inf in H; unfold lower_bound in H; unfold; -intro r; -elim (H r) (H1r H2r); -elim (H (S r)) (H1sr H2sr); clear H H2r H1sr; -intro e; cases (H2sr ? e) (w Hw); clear e H2sr; -lapply (H1r (S w)) as Hsw; clear H1r; -lapply (le_transitive ???? Hsw (le_asnk_ansk ?????)) as H; -cases (H Hw); -qed. - -lemma sup_decreasing: - ∀R.∀ml:mlattice R.∀xn:sequence ml. - ∀alpha:sequence ml. (∀k.strong_sup ml (bnk ?? xn k) (alpha k)) → - decreasing ml alpha. -intros (R ml xn alpha H); unfold strong_sup in H; unfold upper_bound in H; unfold; -intro r; -elim (H r) (H1r H2r); -elim (H (S r)) (H1sr H2sr); clear H H2r H1sr; -intro e; cases (H2sr ? e) (w Hw); clear e H2sr; -lapply (H1r (S w)) as Hsw; clear H1r; -lapply (le_transitive ???? (le_bnsk_bsnk ?????) Hsw) as H; -cases (H Hw); -qed. - -(* 3.28 *) -definition liminf ≝ - λR.λml:mlattice R.λxn:sequence ml.λx:ml. - ∃alpha:sequence ml. - (∀k.strong_inf ml (ank ?? xn k) (alpha k)) ∧ strong_sup ml alpha x. - -definition limsup ≝ - λR.λml:mlattice R.λxn:sequence ml.λx:ml. - ∃alpha:sequence ml. - (∀k.strong_sup ml (bnk ?? xn k) (alpha k)) ∧ strong_inf ml alpha x. - -(* 3.29 *) -alias symbol "and" = "constructive and". -definition lim ≝ - λR.λml:mlattice R.λxn:sequence ml.λx:ml. - (*∃y,z.*)limsup ?? xn x ∧ liminf ?? xn x(* ∧ y ≈ x ∧ z ≈ x*). - -(* 3.30 *) -lemma lim_uniq: ∀R.∀ml:mlattice R.∀xn:sequence ml.∀x:ml. - lim ?? xn x → xn ⇝ x. -intros (R ml xn x Hl); -unfold in Hl; unfold limsup in Hl; unfold liminf in Hl; -(* decompose; *) -elim Hl (low Hl_); clear Hl; -elim Hl_ (up Hl); clear Hl_; -elim Hl (Hl_ E1); clear Hl; -elim Hl_ (Hl E2); clear Hl_; -elim Hl (H1 H2); clear Hl; -elim H1 (alpha Halpha); clear H1; -elim H2 (beta Hbeta); clear H2; -apply (sandwich ?? alpha beta); -[1: intro m; elim Halpha (Ha5 Ha6); clear Halpha; - lapply (sup_increasing ????? Ha6) as Ha7; - - unfold strong_sup in Halpha Hbeta; - unfold strong_inf in Halpha Hbeta; - unfold lower_bound in Halpha Hbeta; - unfold upper_bound in Halpha Hbeta; - elim (Halpha m) (Ha5 Ha6); clear Halpha; - elim Ha5 (Ha1 Ha2); clear Ha5; - elim Ha6 (Ha3 Ha4); clear Ha6; - split; - [1: intro H; elim (Ha2 ? H) (w H1); - elim (Ha4 ? H1); - - - - \ No newline at end of file +coercion cic:/matita/infsup/seq_dual_exc_hint.con nocomposites. +coercion cic:/matita/infsup/seq_dual_exc_hint1.con nocomposites. diff --git a/helm/software/matita/dama/lattice.ma b/helm/software/matita/dama/lattice.ma index 83d138526..ef0213425 100644 --- a/helm/software/matita/dama/lattice.ma +++ b/helm/software/matita/dama/lattice.ma @@ -71,26 +71,26 @@ qed. record semi_lattice : Type ≝ { sl_exc:> excess; - meet: sl_exc → sl_exc → sl_exc; - meet_refl: ∀x.meet x x ≈ x; - meet_comm: ∀x,y. meet x y ≈ meet y x; - meet_assoc: ∀x,y,z. meet x (meet y z) ≈ meet (meet x y) z; - strong_extm: ∀x.strong_ext ? (meet x); - le_to_eqm: ∀x,y.x ≤ y → x ≈ meet x y; - lem: ∀x,y.(meet x y) ≤ y + sl_meet: sl_exc → sl_exc → sl_exc; + sl_meet_refl: ∀x.sl_meet x x ≈ x; + sl_meet_comm: ∀x,y. sl_meet x y ≈ sl_meet y x; + sl_meet_assoc: ∀x,y,z. sl_meet x (sl_meet y z) ≈ sl_meet (sl_meet x y) z; + sl_strong_extm: ∀x.strong_ext ? (sl_meet x); + sl_le_to_eqm: ∀x,y.x ≤ y → x ≈ sl_meet x y; + sl_lem: ∀x,y.(sl_meet x y) ≤ y }. -interpretation "semi lattice meet" 'and a b = (cic:/matita/lattice/meet.con _ a b). +interpretation "semi lattice meet" 'and a b = (cic:/matita/lattice/sl_meet.con _ a b). -lemma feq_ml: ∀ml:semi_lattice.∀a,b,c:ml. a ≈ b → (c ∧ a) ≈ (c ∧ b). +lemma sl_feq_ml: ∀ml:semi_lattice.∀a,b,c:ml. a ≈ b → (c ∧ a) ≈ (c ∧ b). intros (l a b c H); unfold eq in H ⊢ %; unfold Not in H ⊢ %; -intro H1; apply H; clear H; apply (strong_extm ???? H1); +intro H1; apply H; clear H; apply (sl_strong_extm ???? H1); qed. -lemma feq_mr: ∀ml:semi_lattice.∀a,b,c:ml. a ≈ b → (a ∧ c) ≈ (b ∧ c). +lemma sl_feq_mr: ∀ml:semi_lattice.∀a,b,c:ml. a ≈ b → (a ∧ c) ≈ (b ∧ c). intros (l a b c H); -apply (Eq≈ ? (meet_comm ???)); apply (Eq≈ ?? (meet_comm ???)); -apply feq_ml; assumption; +apply (Eq≈ ? (sl_meet_comm ???)); apply (Eq≈ ?? (sl_meet_comm ???)); +apply sl_feq_ml; assumption; qed. @@ -173,17 +173,17 @@ intro l; apply (mk_semi_lattice (dual_exc l)); unfold excess_OF_lattice_; cases (latt_with l); simplify; -[apply meet|apply meet_refl|apply meet_comm|apply meet_assoc| -apply strong_extm| apply le_to_eqm|apply lem] +[apply sl_meet|apply sl_meet_refl|apply sl_meet_comm|apply sl_meet_assoc| +apply sl_strong_extm| apply sl_le_to_eqm|apply sl_lem] qed. coercion cic:/matita/lattice/latt_jcarr.con. interpretation "Lattice meet" 'and a b = - (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_mcarr.con _) a b). + (cic:/matita/lattice/sl_meet.con (cic:/matita/lattice/latt_mcarr.con _) a b). interpretation "Lattice join" 'or a b = - (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_jcarr.con _) a b). + (cic:/matita/lattice/sl_meet.con (cic:/matita/lattice/latt_jcarr.con _) a b). record lattice : Type ≝ { latt_carr:> lattice_; @@ -206,27 +206,47 @@ notation "'strong_extj'" non associative with precedence 50 for @{'strong_extj}. notation "'le_to_eqj'" non associative with precedence 50 for @{'le_to_eqj}. notation "'lej'" non associative with precedence 50 for @{'lej}. -interpretation "Lattice meet" 'meet = (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice meet_refl" 'meet_refl = (cic:/matita/lattice/meet_refl.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice meet_comm" 'meet_comm = (cic:/matita/lattice/meet_comm.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice meet_assoc" 'meet_assoc = (cic:/matita/lattice/meet_assoc.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice strong_extm" 'strong_extm = (cic:/matita/lattice/strong_extm.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice le_to_eqm" 'le_to_eqm = (cic:/matita/lattice/le_to_eqm.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice lem" 'lem = (cic:/matita/lattice/lem.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice join" 'join = (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_jcarr.con _)). -interpretation "Lattice join_refl" 'join_refl = (cic:/matita/lattice/meet_refl.con (cic:/matita/lattice/latt_jcarr.con _)). -interpretation "Lattice join_comm" 'join_comm = (cic:/matita/lattice/meet_comm.con (cic:/matita/lattice/latt_jcarr.con _)). -interpretation "Lattice join_assoc" 'join_assoc = (cic:/matita/lattice/meet_assoc.con (cic:/matita/lattice/latt_jcarr.con _)). -interpretation "Lattice strong_extm" 'strong_extj = (cic:/matita/lattice/strong_extm.con (cic:/matita/lattice/latt_jcarr.con _)). -interpretation "Lattice le_to_eqj" 'le_to_eqj = (cic:/matita/lattice/le_to_eqm.con (cic:/matita/lattice/latt_jcarr.con _)). -interpretation "Lattice lej" 'lej = (cic:/matita/lattice/lem.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice meet" 'meet = (cic:/matita/lattice/sl_meet.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice meet_refl" 'meet_refl = (cic:/matita/lattice/sl_meet_refl.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice meet_comm" 'meet_comm = (cic:/matita/lattice/sl_meet_comm.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice meet_assoc" 'meet_assoc = (cic:/matita/lattice/sl_meet_assoc.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice strong_extm" 'strong_extm = (cic:/matita/lattice/sl_strong_extm.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice le_to_eqm" 'le_to_eqm = (cic:/matita/lattice/sl_le_to_eqm.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice lem" 'lem = (cic:/matita/lattice/sl_lem.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice join" 'join = (cic:/matita/lattice/sl_meet.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice join_refl" 'join_refl = (cic:/matita/lattice/sl_meet_refl.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice join_comm" 'join_comm = (cic:/matita/lattice/sl_meet_comm.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice join_assoc" 'join_assoc = (cic:/matita/lattice/sl_meet_assoc.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice strong_extm" 'strong_extj = (cic:/matita/lattice/sl_strong_extm.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice le_to_eqj" 'le_to_eqj = (cic:/matita/lattice/sl_le_to_eqm.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice lej" 'lej = (cic:/matita/lattice/sl_lem.con (cic:/matita/lattice/latt_jcarr.con _)). notation "'feq_jl'" non associative with precedence 50 for @{'feq_jl}. notation "'feq_jr'" non associative with precedence 50 for @{'feq_jr}. -interpretation "Lattice feq_jl" 'feq_jl = (cic:/matita/lattice/feq_ml.con (cic:/matita/lattice/latt_jcarr.con _)). -interpretation "Lattice feq_jr" 'feq_jr = (cic:/matita/lattice/feq_mr.con (cic:/matita/lattice/latt_jcarr.con _)). notation "'feq_ml'" non associative with precedence 50 for @{'feq_ml}. notation "'feq_mr'" non associative with precedence 50 for @{'feq_mr}. -interpretation "Lattice feq_ml" 'feq_ml = (cic:/matita/lattice/feq_ml.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice feq_mr" 'feq_mr = (cic:/matita/lattice/feq_mr.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice feq_jl" 'feq_jl = (cic:/matita/lattice/sl_feq_ml.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice feq_jr" 'feq_jr = (cic:/matita/lattice/sl_feq_mr.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice feq_ml" 'feq_ml = (cic:/matita/lattice/sl_feq_ml.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice feq_mr" 'feq_mr = (cic:/matita/lattice/sl_feq_mr.con (cic:/matita/lattice/latt_mcarr.con _)). + +interpretation "Lattive meet le" 'leq a b = + (cic:/matita/excess/le.con (cic:/matita/lattice/excess_OF_lattice1.con _) a b). + +interpretation "Lattive join le (aka ge)" 'geq a b = + (cic:/matita/excess/le.con (cic:/matita/lattice/excess_OF_lattice.con _) a b). + +(* these coercions help unification, handmaking a bit of conversion + over an open term +*) +lemma le_to_ge: ∀l:lattice.∀a,b:l.a ≤ b → b ≥ a. +intros(l a b H); apply H; +qed. + +lemma ge_to_le: ∀l:lattice.∀a,b:l.b ≥ a → a ≤ b. +intros(l a b H); apply H; +qed. + +coercion cic:/matita/lattice/le_to_ge.con nocomposites. +coercion cic:/matita/lattice/ge_to_le.con nocomposites. \ No newline at end of file diff --git a/helm/software/matita/dama/limit.ma b/helm/software/matita/dama/limit.ma new file mode 100644 index 000000000..14a0637b3 --- /dev/null +++ b/helm/software/matita/dama/limit.ma @@ -0,0 +1,56 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "infsup.ma". + +(* 3.28 *) +definition limsup ≝ + λE:excess.λxn:sequence E.λx:E.∃alpha:sequence E. + (∀k.(alpha k) is_strong_sup xn) ∧ x is_strong_inf alpha. + +notation < "x \nbsp 'is_limsup' \nbsp s" non associative with precedence 50 for @{'limsup $s $x}. +notation < "x \nbsp 'is_liminf' \nbsp s" non associative with precedence 50 for @{'liminf $s $x}. +notation > "x 'is_limsup' s" non associative with precedence 50 for @{'limsup $s $x}. +notation > "x 'is_liminf' s" non associative with precedence 50 for @{'liminf $s $x}. + +interpretation "Excess limsup" 'limsup s x = (cic:/matita/limit/limsup.con _ s x). +interpretation "Excess liminf" 'liminf s x = (cic:/matita/limit/limsup.con (cic:/matita/excess/dual_exc.con _) s x). + +(* 3.29 *) +definition lim ≝ λE:excess.λxn:sequence E.λx:E. x is_limsup xn ∧ x is_liminf xn. + +notation < "x \nbsp 'is_lim' \nbsp s" non associative with precedence 50 for @{'lim $s $x}. +notation > "x 'is_lim' s" non associative with precedence 50 for @{'lim $s $x}. +interpretation "Excess lim" 'lim s x = (cic:/matita/limit/lim.con _ s x). + +lemma sup_decreasing: + ∀E:excess.∀xn:sequence E. + ∀alpha:sequence E. (∀k.(alpha k) is_strong_sup xn) → + alpha is_decreasing. +intros (E xn alpha H); unfold strong_sup in H; unfold upper_bound in H; unfold; +intro r; +elim (H r) (H1r H2r); +elim (H (S r)) (H1sr H2sr); clear H H2r H1sr; +intro e; cases (H2sr (alpha r) e) (w Hw); clear e H2sr; +cases (H1r w Hw); +qed. + +include "tend.ma". + +(* 3.30 *) +lemma lim_tends: + ∀R.∀ml:mlattice R.∀xn:sequence ml.∀x:ml. + x is_lim xn → xn ⇝ x. +intros (R ml xn x Hl); unfold lim in Hl; unfold limsup in Hl; + diff --git a/helm/software/matita/dama/metric_lattice.ma b/helm/software/matita/dama/metric_lattice.ma index 968ae8f3b..9f5811b6d 100644 --- a/helm/software/matita/dama/metric_lattice.ma +++ b/helm/software/matita/dama/metric_lattice.ma @@ -18,25 +18,25 @@ include "lattice.ma". record mlattice_ (R : todgroup) : Type ≝ { ml_mspace_: metric_space R; ml_lattice:> lattice; - ml_with_: ms_carr ? ml_mspace_ = apart_of_excess (pl_carr ml_lattice) + ml_with: ms_carr ? ml_mspace_ = Type_OF_lattice ml_lattice }. lemma ml_mspace: ∀R.mlattice_ R → metric_space R. -intros (R ml); apply (mk_metric_space R (apart_of_excess ml)); -unfold apartness_OF_mlattice_; -[rewrite < (ml_with_ ? ml); apply (metric ? (ml_mspace_ ? ml))] -cases (ml_with_ ? ml); simplify; -[apply (mpositive ? (ml_mspace_ ? ml));|apply (mreflexive ? (ml_mspace_ ? ml)); -|apply (msymmetric ? (ml_mspace_ ? ml));|apply (mtineq ? (ml_mspace_ ? ml))] +intros (R ml); apply (mk_metric_space R (Type_OF_mlattice_ ? ml)); +unfold Type_OF_mlattice_; cases (ml_with ? ml); simplify; +[apply (metric ? (ml_mspace_ ? ml));|apply (mpositive ? (ml_mspace_ ? ml)); +|apply (mreflexive ? (ml_mspace_ ? ml));|apply (msymmetric ? (ml_mspace_ ? ml)); +|apply (mtineq ? (ml_mspace_ ? ml))] qed. coercion cic:/matita/metric_lattice/ml_mspace.con. alias symbol "plus" = "Abelian group plus". +alias symbol "leq" = "ordered sets less or equal than". record mlattice (R : todgroup) : Type ≝ { ml_carr :> mlattice_ R; ml_prop1: ∀a,b:ml_carr. 0 < δ a b → a # b; - ml_prop2: ∀a,b,c:ml_carr. δ (a∨b) (a∨c) + δ (a∧b) (a∧c) ≤ δ b c + ml_prop2: ∀a,b,c:ml_carr. δ (a∨b) (a∨c) + δ (a∧b) (a∧c) ≤ (δ b c) }. lemma eq_to_ndlt0: ∀R.∀ml:mlattice R.∀a,b:ml. a ≈ b → ¬ 0 < δ a b. @@ -65,7 +65,6 @@ lemma meq_r: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δy x ≈ δy z. intros; apply (eq_trans ???? (msymmetric ??y x)); apply (eq_trans ????? (msymmetric ??z y)); apply meq_l; assumption; qed. - lemma dap_to_lt: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → 0 < δ x y. intros; split [apply mpositive] apply ap_symmetric; assumption; @@ -76,31 +75,6 @@ intros (R ml x y H); apply ml_prop1; split; [apply mpositive;] apply ap_symmetric; assumption; qed. -interpretation "Lattive meet le" 'leq a b = - (cic:/matita/excess/le.con (cic:/matita/lattice/excess_OF_lattice1.con _) a b). - -interpretation "Lattive join le (aka ge)" 'geq a b = - (cic:/matita/excess/le.con (cic:/matita/lattice/excess_OF_lattice.con _) a b). - -lemma le_to_ge: ∀l:lattice.∀a,b:l.a ≤ b → b ≥ a. -intros(l a b H); apply H; -qed. - -lemma ge_to_le: ∀l:lattice.∀a,b:l.b ≥ a → a ≤ b. -intros(l a b H); apply H; -qed. - -lemma eq_to_eq:∀l:lattice.∀a,b:l. - (eq (apart_of_excess (pl_carr (latt_jcarr l))) a b) → - (eq (apart_of_excess (pl_carr (latt_mcarr l))) a b). -intros 3; unfold eq; unfold apartness_OF_lattice; -unfold apartness_OF_lattice_1; unfold latt_jcarr; simplify; -unfold dual_exc; simplify; intros 2 (H H1); apply H; -cases H1;[right|left]assumption; -qed. - -coercion cic:/matita/metric_lattice/eq_to_eq.con nocomposites. - (* 3.11 *) lemma le_mtri: ∀R.∀ml:mlattice R.∀x,y,z:ml. x ≤ y → y ≤ z → δ x z ≈ δ x y + δ y z. @@ -109,22 +83,18 @@ apply (le_transitive ????? (ml_prop2 ?? (y) ??)); cut ( δx y+ δy z ≈ δ(y∨x) (y∨z)+ δ(y∧x) (y∧z)); [ apply (le_rewr ??? (δx y+ δy z)); [assumption] apply le_reflexive] lapply (le_to_eqm ?? Lxy) as Dxm; lapply (le_to_eqm ?? Lyz) as Dym; -lapply (le_to_eqj ?? (le_to_ge ??? Lxy)) as Dxj; lapply (le_to_eqj ?? (le_to_ge ??? Lyz)) as Dyj; clear Lxy Lyz; +lapply (le_to_eqj ?? Lxy) as Dxj; lapply (le_to_eqj ?? Lyz) as Dyj; clear Lxy Lyz; apply (Eq≈ (δ(x∧y) y + δy z) (meq_l ????? Dxm)); apply (Eq≈ (δ(x∧y) (y∧z) + δy z) (meq_r ????? Dym)); apply (Eq≈ (δ(x∧y) (y∧z) + δ(y∨x) z));[ - apply feq_plusl; apply meq_l; clear Dyj Dxm Dym; - unfold apartness_OF_mlattice1; - exact (eq_to_eq ??? Dxj);] + apply feq_plusl; apply meq_l; clear Dyj Dxm Dym; assumption] apply (Eq≈ (δ(x∧y) (y∧z) + δ(y∨x) (z∨y))); [ apply (feq_plusl ? (δ(x∧y) (y∧z)) ?? (meq_r ??? (y∨x) ? Dyj));] apply (Eq≈ ? (plus_comm ???)); apply (Eq≈ (δ(y∨x) (y∨z)+ δ(x∧y) (y∧z)));[ - apply feq_plusr; - apply meq_r; - apply (join_comm y z);] + apply feq_plusr; apply meq_r; apply (join_comm ??);] apply feq_plusl; -apply (Eq≈ (δ(y∧x) (y∧z)) (meq_l ????? (meet_comm x y))); +apply (Eq≈ (δ(y∧x) (y∧z)) (meq_l ????? (meet_comm ??))); apply eq_reflexive; qed. diff --git a/helm/software/matita/dama/metric_space.ma b/helm/software/matita/dama/metric_space.ma index 2ea43c03a..2266fe9e9 100644 --- a/helm/software/matita/dama/metric_space.ma +++ b/helm/software/matita/dama/metric_space.ma @@ -12,11 +12,9 @@ (* *) (**************************************************************************) - - include "ordered_divisible_group.ma". -record metric_space (R : todgroup) : Type ≝ { +record metric_space (R: todgroup) : Type ≝ { ms_carr :> Type; metric: ms_carr → ms_carr → R; mpositive: ∀a,b:ms_carr. 0 ≤ metric a b; @@ -30,24 +28,19 @@ interpretation "metric" 'delta2 a b = (cic:/matita/metric_space/metric.con _ _ a notation "\delta" non associative with precedence 80 for @{ 'delta }. interpretation "metric" 'delta = (cic:/matita/metric_space/metric.con _ _). -definition apart_metric:= - λR.λms:metric_space R.λa,b:ms.0 < δ a b. - -lemma apart_of_metric_space: ∀R:todgroup.metric_space R → apartness. -intros (R ms); apply (mk_apartness ? (apart_metric ? ms)); unfold apart_metric; unfold; -[1: intros 2 (x H); cases H (H1 H2); - lapply (ap_rewr ???? (eq_sym ??? (mreflexive ??x)) H2); +lemma apart_of_metric_space: ∀R.metric_space R → apartness. +intros (R ms); apply (mk_apartness ? (λa,b:ms.0 < δ a b)); unfold; +[1: intros 2 (x H); cases H (H1 H2); clear H; + lapply (Ap≫ ? (eq_sym ??? (mreflexive ??x)) H2); apply (ap_coreflexive R 0); assumption; |2: intros (x y H); cases H; split; - [1: apply (le_rewr ???? (msymmetric ????)); assumption - |2: apply (ap_rewr ???? (msymmetric ????)); assumption] -|3: simplify; intros (x y z H); cases H (LExy Axy); - lapply (mtineq ?? x y z) as H1; whd in Axy; cases Axy (H2 H2); [cases (LExy H2)] + [1: apply (Le≫ ? (msymmetric ????)); assumption + |2: apply (Ap≫ ? (msymmetric ????)); assumption] +|3: simplify; intros (x y z H); elim H (LExy Axy); + lapply (mtineq ?? x y z) as H1; elim (ap2exc ??? Axy) (H2 H2); [cases (LExy H2)] clear LExy; lapply (lt_le_transitive ???? H H1) as LT0; apply (lt0plus_orlt ????? LT0); apply mpositive;] qed. -(* coercion cic:/matita/metric_space/apart_of_metric_space.con. *) - lemma ap2delta: ∀R.∀m:metric_space R.∀x,y:m.ap_apart (apart_of_metric_space ? m) x y → 0 < δ x y. intros 2 (R m); cases m 0; simplify; intros; assumption; qed. diff --git a/helm/software/matita/dama/ordered_group.ma b/helm/software/matita/dama/ordered_group.ma index 8677e755b..44529cadf 100644 --- a/helm/software/matita/dama/ordered_group.ma +++ b/helm/software/matita/dama/ordered_group.ma @@ -19,14 +19,14 @@ include "group.ma". record pogroup_ : Type ≝ { og_abelian_group_: abelian_group; og_excess:> excess; - og_with: carr og_abelian_group_ = apart_of_excess og_excess + og_with: carr og_abelian_group_ = exc_ap og_excess }. lemma og_abelian_group: pogroup_ → abelian_group. -intro G; apply (mk_abelian_group G); [1,2,3: rewrite < (og_with G)] -[apply (plus (og_abelian_group_ G));|apply zero;|apply opp] -unfold apartness_OF_pogroup_; cases (og_with G); simplify; -[apply plus_assoc|apply plus_comm|apply zero_neutral|apply opp_inverse|apply plus_strong_ext] +intro G; apply (mk_abelian_group G); unfold apartness_OF_pogroup_; +cases (og_with G); simplify; +[apply (plus (og_abelian_group_ G));|apply zero;|apply opp +|apply plus_assoc|apply plus_comm|apply zero_neutral|apply opp_inverse|apply plus_strong_ext] qed. coercion cic:/matita/ordered_group/og_abelian_group.con. diff --git a/helm/software/matita/dama/sandwich.ma b/helm/software/matita/dama/sandwich.ma index 47709bd24..0ab83082e 100644 --- a/helm/software/matita/dama/sandwich.ma +++ b/helm/software/matita/dama/sandwich.ma @@ -26,22 +26,14 @@ lemma ltwr: ∀a,b,c:nat. a + b < c → a < c. intros 3 (x y z); rewrite > sym_plus; apply ltwl; qed. -include "sequence.ma". -include "metric_lattice.ma". - -definition d2s ≝ - λR.λml:mlattice R.λs:sequence ml.λk.λn. δ (s n) k. - -notation "s ⇝ x" non associative with precedence 50 for @{'tends $s $x}. - -interpretation "tends to" 'tends s x = - (cic:/matita/sequence/tends0.con _ (cic:/matita/sandwich/d2s.con _ _ s x)). +include "tend.ma". +alias symbol "leq" = "ordered sets less or equal than". +alias symbol "and" = "constructive and". theorem sandwich: let ugo ≝ excess_OF_lattice1 in ∀R.∀ml:mlattice R.∀an,bn,xn:sequence ml.∀x:ml. - (∀n. (le (excess_OF_lattice1 ml) (xn n) (an n)) ∧ - (le (excess_OF_lattice1 ?) (bn n) (xn n))) → True. + (∀n. (xn n ≤ an n) ∧ (bn n ≤ xn n)) → an ⇝ x → bn ⇝ x → xn ⇝ x. intros (R ml an bn xn x H Ha Hb); unfold tends0 in Ha Hb ⊢ %; unfold d2s in Ha Hb ⊢ %; intros (e He); diff --git a/helm/software/matita/dama/sandwich_corollary.ma b/helm/software/matita/dama/sandwich_corollary.ma index 72da08236..6b509a4a8 100644 --- a/helm/software/matita/dama/sandwich_corollary.ma +++ b/helm/software/matita/dama/sandwich_corollary.ma @@ -14,15 +14,9 @@ include "sandwich.ma". -include "metric_lattice.ma". - (* 3.17 *) lemma tends_uniq: - ∀R.∀ml:mlattice R.∀xn:sequence ml. - ∀x,y:ml. - (* BUG: it inserts a compesoed coercion instead of an hand made one, - what to do? prefer the human made one or allow to kill a coercion? - *) + ∀R.∀ml:mlattice R.∀xn:sequence ml.∀x,y:ml. xn ⇝ x → xn ⇝ y → δ x y ≈ 0. intros (R ml xn x y H1 H2); unfold tends0 in H1 H2; unfold d2s in H1 H2; intro Axy; lapply (ap_le_to_lt ??? (ap_symmetric ??? Axy) (mpositive ? ml ??)) as ge0; diff --git a/helm/software/matita/dama/sequence.ma b/helm/software/matita/dama/sequence.ma index 7536901ba..5a3e0ea1c 100644 --- a/helm/software/matita/dama/sequence.ma +++ b/helm/software/matita/dama/sequence.ma @@ -12,224 +12,10 @@ (* *) (**************************************************************************) - - include "excess.ma". definition sequence := λO:excess.nat → O. -definition fun_of_sequence: ∀O:excess.sequence O → nat → O. -intros; apply s; assumption; -qed. +definition fun_of_sequence: ∀O:excess.sequence O → nat → O ≝ λO.λx:sequence O.x. coercion cic:/matita/sequence/fun_of_sequence.con 1. - -definition upper_bound ≝ - λO:excess.λa:sequence O.λu:O.∀n:nat.a n ≤ u. - -definition lower_bound ≝ - λO:excess.λa:sequence O.λu:O.∀n:nat.u ≤ a n. - -definition strong_sup ≝ - λO:excess.λs:sequence O.λx. - upper_bound ? s x ∧ (∀y:O.x ≰ y → ∃n.s n ≰ y). - -definition strong_inf ≝ - λO:excess.λs:sequence O.λx. - lower_bound ? s x ∧ (∀y:O.y ≰ x → ∃n.y ≰ s n). - -definition weak_sup ≝ - λO:excess.λs:sequence O.λx. - upper_bound ? s x ∧ (∀y:O.upper_bound ? s y → x ≤ y). - -definition weak_inf ≝ - λO:excess.λs:sequence O.λx. - lower_bound ? s x ∧ (∀y:O.lower_bound ? s y → y ≤ x). - -lemma strong_sup_is_weak: - ∀O:excess.∀s:sequence O.∀x:O.strong_sup ? s x → weak_sup ? s x. -intros (O s x Ssup); elim Ssup (Ubx M); clear Ssup; split; [assumption] -intros 3 (y Uby E); cases (M ? E) (n En); unfold in Uby; cases (Uby ? En); -qed. - -lemma strong_inf_is_weak: - ∀O:excess.∀s:sequence O.∀x:O.strong_inf ? s x → weak_inf ? s x. -intros (O s x Ssup); elim Ssup (Ubx M); clear Ssup; split; [assumption] -intros 3 (y Uby E); cases (M ? E) (n En); unfold in Uby; cases (Uby ? En); -qed. - -include "ordered_group.ma". -include "nat/orders.ma". - -definition tends0 ≝ - λO:pogroup.λs:sequence O. - ∀e:O.0 < e → ∃N.∀n.N < n → -e < s n ∧ s n < e. - -definition increasing ≝ - λO:excess.λa:sequence O.∀n:nat.a n ≤ a (S n). - -definition decreasing ≝ - λO:excess.λa:sequence O.∀n:nat.a (S n) ≤ a n. - - - - -(* - -definition is_upper_bound ≝ λO:excess.λa:sequence O.λu:O.∀n:nat.a n ≤ u. -definition is_lower_bound ≝ λO:excess.λa:sequence O.λu:O.∀n:nat.u ≤ a n. - -record is_sup (O:excess) (a:sequence O) (u:O) : Prop ≝ - { sup_upper_bound: is_upper_bound O a u; - sup_least_upper_bound: ∀v:O. is_upper_bound O a v → u≤v - }. - -record is_inf (O:excess) (a:sequence O) (u:O) : Prop ≝ - { inf_lower_bound: is_lower_bound O a u; - inf_greatest_lower_bound: ∀v:O. is_lower_bound O a v → v≤u - }. - -record is_bounded_below (O:excess) (a:sequence O) : Type ≝ - { ib_lower_bound: O; - ib_lower_bound_is_lower_bound: is_lower_bound ? a ib_lower_bound - }. - -record is_bounded_above (O:excess) (a:sequence O) : Type ≝ - { ib_upper_bound: O; - ib_upper_bound_is_upper_bound: is_upper_bound ? a ib_upper_bound - }. - -record is_bounded (O:excess) (a:sequence O) : Type ≝ - { ib_bounded_below:> is_bounded_below ? a; - ib_bounded_above:> is_bounded_above ? a - }. - -record bounded_below_sequence (O:excess) : Type ≝ - { bbs_seq:> sequence O; - bbs_is_bounded_below:> is_bounded_below ? bbs_seq - }. - -record bounded_above_sequence (O:excess) : Type ≝ - { bas_seq:> sequence O; - bas_is_bounded_above:> is_bounded_above ? bas_seq - }. - -record bounded_sequence (O:excess) : Type ≝ - { bs_seq:> sequence O; - bs_is_bounded_below: is_bounded_below ? bs_seq; - bs_is_bounded_above: is_bounded_above ? bs_seq - }. - -definition bounded_below_sequence_of_bounded_sequence ≝ - λO:excess.λb:bounded_sequence O. - mk_bounded_below_sequence ? b (bs_is_bounded_below ? b). - -coercion cic:/matita/sequence/bounded_below_sequence_of_bounded_sequence.con. - -definition bounded_above_sequence_of_bounded_sequence ≝ - λO:excess.λb:bounded_sequence O. - mk_bounded_above_sequence ? b (bs_is_bounded_above ? b). - -coercion cic:/matita/sequence/bounded_above_sequence_of_bounded_sequence.con. - -definition lower_bound ≝ - λO:excess.λb:bounded_below_sequence O. - ib_lower_bound ? b (bbs_is_bounded_below ? b). - -lemma lower_bound_is_lower_bound: - ∀O:excess.∀b:bounded_below_sequence O. - is_lower_bound ? b (lower_bound ? b). -intros; unfold lower_bound; apply ib_lower_bound_is_lower_bound. -qed. - -definition upper_bound ≝ - λO:excess.λb:bounded_above_sequence O. - ib_upper_bound ? b (bas_is_bounded_above ? b). - -lemma upper_bound_is_upper_bound: - ∀O:excess.∀b:bounded_above_sequence O. - is_upper_bound ? b (upper_bound ? b). -intros; unfold upper_bound; apply ib_upper_bound_is_upper_bound. -qed. - -definition reverse_excess: excess → excess. -intros (E); apply (mk_excess E); [apply (λx,y.exc_relation E y x)] -cases E (T f cRf cTf); simplify; -[1: unfold Not; intros (x H); apply (cRf x); assumption -|2: intros (x y z); apply Or_symmetric; apply cTf; assumption;] -qed. - -definition reverse_excess: excess → excess. -intros (p); apply (mk_excess (reverse_excess p)); -generalize in match (reverse_excess p); intros (E); -apply mk_is_porder_relation; -[apply le_reflexive|apply le_transitive|apply le_antisymmetric] -qed. - -lemma is_lower_bound_reverse_is_upper_bound: - ∀O:excess.∀a:sequence O.∀l:O. - is_lower_bound O a l → is_upper_bound (reverse_excess O) a l. -intros (O a l H); unfold; intros (n); unfold reverse_excess; -unfold reverse_excess; simplify; fold unfold le (le ? l (a n)); apply H; -qed. - -lemma is_upper_bound_reverse_is_lower_bound: - ∀O:excess.∀a:sequence O.∀l:O. - is_upper_bound O a l → is_lower_bound (reverse_excess O) a l. -intros (O a l H); unfold; intros (n); unfold reverse_excess; -unfold reverse_excess; simplify; fold unfold le (le ? (a n) l); apply H; -qed. - -lemma reverse_is_lower_bound_is_upper_bound: - ∀O:excess.∀a:sequence O.∀l:O. - is_lower_bound (reverse_excess O) a l → is_upper_bound O a l. -intros (O a l H); unfold; intros (n); unfold reverse_excess in H; -unfold reverse_excess in H; simplify in H; apply H; -qed. - -lemma reverse_is_upper_bound_is_lower_bound: - ∀O:excess.∀a:sequence O.∀l:O. - is_upper_bound (reverse_excess O) a l → is_lower_bound O a l. -intros (O a l H); unfold; intros (n); unfold reverse_excess in H; -unfold reverse_excess in H; simplify in H; apply H; -qed. - -lemma is_inf_to_reverse_is_sup: - ∀O:excess.∀a:bounded_below_sequence O.∀l:O. - is_inf O a l → is_sup (reverse_excess O) a l. -intros (O a l H); apply (mk_is_sup (reverse_excess O)); -[1: apply is_lower_bound_reverse_is_upper_bound; apply inf_lower_bound; assumption -|2: unfold reverse_excess; simplify; unfold reverse_excess; simplify; - intros (m H1); apply (inf_greatest_lower_bound ? ? ? H); apply H1;] -qed. - -lemma is_sup_to_reverse_is_inf: - ∀O:excess.∀a:bounded_above_sequence O.∀l:O. - is_sup O a l → is_inf (reverse_excess O) a l. -intros (O a l H); apply (mk_is_inf (reverse_excess O)); -[1: apply is_upper_bound_reverse_is_lower_bound; apply sup_upper_bound; assumption -|2: unfold reverse_excess; simplify; unfold reverse_excess; simplify; - intros (m H1); apply (sup_least_upper_bound ? ? ? H); apply H1;] -qed. - -lemma reverse_is_sup_to_is_inf: - ∀O:excess.∀a:bounded_above_sequence O.∀l:O. - is_sup (reverse_excess O) a l → is_inf O a l. -intros (O a l H); apply mk_is_inf; -[1: apply reverse_is_upper_bound_is_lower_bound; - apply (sup_upper_bound (reverse_excess O)); assumption -|2: intros (v H1); apply (sup_least_upper_bound (reverse_excess O) a l H v); - apply is_lower_bound_reverse_is_upper_bound; assumption;] -qed. - -lemma reverse_is_inf_to_is_sup: - ∀O:excess.∀a:bounded_above_sequence O.∀l:O. - is_inf (reverse_excess O) a l → is_sup O a l. -intros (O a l H); apply mk_is_sup; -[1: apply reverse_is_lower_bound_is_upper_bound; - apply (inf_lower_bound (reverse_excess O)); assumption -|2: intros (v H1); apply (inf_greatest_lower_bound (reverse_excess O) a l H v); - apply is_upper_bound_reverse_is_lower_bound; assumption;] -qed. - -*) \ No newline at end of file diff --git a/helm/software/matita/dama/tend.ma b/helm/software/matita/dama/tend.ma new file mode 100644 index 000000000..d2decf0dc --- /dev/null +++ b/helm/software/matita/dama/tend.ma @@ -0,0 +1,28 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "sequence.ma". +include "metric_lattice.ma". (* we should probably use something weaker *) +include "nat/orders.ma". + +definition tends0 ≝ + λO:pogroup.λs:sequence O.∀e:O.0 < e → ∃N.∀n.N < n → -e < s n ∧ s n < e. + +definition d2s ≝ + λR.λml:mlattice R.λs:sequence ml.λk.λn. δ (s n) k. + +notation "s ⇝ x" non associative with precedence 50 for @{'tends $s $x}. +interpretation "tends to" 'tends s x = + (cic:/matita/tend/tends0.con _ (cic:/matita/tend/d2s.con _ _ s x)). +