From: Claudio Sacerdoti Coen Date: Mon, 27 Aug 2012 16:28:29 +0000 (+0000) Subject: ... X-Git-Tag: make_still_working~1536 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=974fafd9a53f5baba71d616acc17248ad535cdcb;p=helm.git ... --- diff --git a/matita/matita/lib/extraction.ma b/matita/matita/lib/extraction.ma index 08a76e0ec..c06357f33 100644 --- a/matita/matita/lib/extraction.ma +++ b/matita/matita/lib/extraction.ma @@ -14,8 +14,6 @@ include "basics/pts.ma". -(*FEATURE: kind signatures in type declarations*) - inductive nat : Type[0] ≝ O: nat | S: nat → nat. axiom test1: Type[1]. @@ -73,7 +71,6 @@ definition dtest13 ≝ dtest3 nat → dtest3 True → dtest3 Prop → nat. definition dtest14 ≝ λX:Type[2]. X → X. -(*FEATURE: type the forall bound variables*) definition dtest15 ≝ ∀T:Type[1] → Type[1]. T nat → T nat. definition dtest16 ≝ ∀T:Type[1]. T → nat. @@ -123,11 +120,6 @@ definition ttest12 ≝ λf:True → nat. f I. (*GENERAL BUG: name clashes when binders shadow each other in CIC*) -(*BUG: mutual type definitions not handled correctly: the ref is computed in a - wrong way *) - -(*BUG: multiple let-reced things are given the same (wrong) name*) - (*BUG: for OCaml: cofixpoint not distinguished from fixpoints*) let rec rtest1 (n:nat) : nat ≝ @@ -147,9 +139,6 @@ and g (n:nat) : nat ≝ (*BUG: pattern matching patterns when arguments have been deleted from the constructor are wrong *) -(*BUG: constructor names in pattern should be capitalised correctly; - name clashes must be avoided*) - coinductive stream: Type[0] ≝ scons : nat → stream → stream. let corec div (n:nat) : stream ≝ scons n (div (S n)). @@ -176,14 +165,12 @@ inductive T1 : (Type[0] → Type[0]) → ∀B:Type[0]. nat → Type[0] → Type[ inductive T2 : (Type[0] → Type[0]) → ∀B:Type[0]. B → Type[0] → Type[0] ≝ . (* no content *) -(*BUG: eliminators extracted anyway???*) inductive T3 : (Type[0] → Type[0]) → CProp[2] ≝ . definition erase ≝ λX:Type[0].Type[0]. axiom lt: nat → nat → Prop. -(*BUG: elimination principles not extracted *) inductive myvect (A: Type[0]) (b:nat) : nat → Type[0] ≝ myemptyv : myvect A b O | mycons: ∀n. lt n b → A → myvect A b n → myvect A b (S n). @@ -196,11 +183,11 @@ inductive bool: Type[0] ≝ true: bool | false:bool. inductive eq (A:Type[1]) (a:A) : A → Prop ≝ refl: eq A a a. -(* BUG: requires coercion *) +(* requires coercion *) definition cast_bug1 ≝ λH:eq Type[0] bool nat. S (match H return λA:Type[0].λ_.A with [ refl ⇒ true ]). -(* BUG: requires top type *) +(* requires coercion in all branches *) definition cast_bug2 ≝ λb. match true return λb.match b with [ true ⇒ nat → nat | false ⇒ bool ] with @@ -208,4 +195,4 @@ definition cast_bug2 ≝ O. (*BUG: try singleton elimination with constructor arguments to show bug in - DeBrujin indexes *) \ No newline at end of file + DeBrujin indexes *)