From: Claudio Sacerdoti Coen Date: Sat, 30 Dec 2006 21:20:26 +0000 (+0000) Subject: Some more notation can now be used. X-Git-Tag: 0.4.95@7852~694 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=9da97ce63a09894041fc2569fd728f994832f7e4;p=helm.git Some more notation can now be used. However, in integration_algebras.ma there are several situations where multiple meets are found and notation cannot be used. --- diff --git a/matita/dama/integration_algebras.ma b/matita/dama/integration_algebras.ma index 322e59a56..7b65cd7fb 100644 --- a/matita/dama/integration_algebras.ma +++ b/matita/dama/integration_algebras.ma @@ -60,7 +60,7 @@ record riesz_space (K:ordered_field_ch0) : Type \def }. record is_positive_linear (K) (V:riesz_space K) (T:V→K) : Prop ≝ - { positive: ∀u:V. os_le V 0 u → os_le K 0 (T u); + { positive: ∀u:V. (0:carrier V)≤u → (0:carrier K)≤T u; linear1: ∀u,v:V. T (u+v) = T u + T v; linear2: ∀u:V.∀k:K. T (k*u) = k*(T u) }. @@ -77,8 +77,8 @@ definition absolute_value \def λK.λS:riesz_space K.λf.l_join S f (-f). definition is_riesz_norm ≝ λR:real.λV:riesz_space R.λnorm:norm R V. - ∀f,g:V. os_le V (absolute_value ? V f) (absolute_value ? V g) → - os_le R (n_function R V norm f) (n_function R V norm g). + ∀f,g:V. absolute_value ? V f ≤ absolute_value ? V g → + n_function R V norm f ≤ n_function R V norm g. record riesz_norm (R:real) (V:riesz_space R) : Type ≝ { rn_norm:> norm R V; @@ -104,9 +104,8 @@ record is_l_space (R:real) (V:riesz_space R) (norm:riesz_norm ? V) : Prop ≝ record is_archimedean_riesz_space (K) (S:riesz_space K) : Prop \def { ars_archimedean: ∃u:S.∀n.∀a.∀p:n > O. - os_le S - (absolute_value ? S a) - ((inv K (sum_field K n) (not_eq_sum_field_zero K n p))* u) → + absolute_value ? S a ≤ + (inv K (sum_field K n) (not_eq_sum_field_zero K n p))* u → a = 0 }. @@ -294,7 +293,7 @@ coercion cic:/matita/integration_algebras/fa_algebra.con. record is_f_algebra (K) (A:pre_f_algebra K) : Prop ≝ { compat_mult_le: ∀f,g:A. - os_le A (zero A) f → os_le A (zero A) g → os_le A (zero A) (a_mult ? A f g); + zero A ≤ f → zero A ≤ g → zero A ≤ a_mult ? A f g; compat_mult_meet: ∀f,g,h:A. l_meet A f g = (zero A) → l_meet A (a_mult ? A h f) g = (zero A)