From: Claudio Sacerdoti Coen Date: Fri, 15 Jan 2010 10:46:34 +0000 (+0000) Subject: Skipfact function (a partial general recursive function) defined by recursion X-Git-Tag: make_still_working~3125 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=9eca05b38858f9d5b36b9a102c6c8c01632b5057;p=helm.git Skipfact function (a partial general recursive function) defined by recursion over the cover relation of an IGFT. --- diff --git a/helm/software/matita/nlibrary/topology/igft2.ma b/helm/software/matita/nlibrary/topology/igft2.ma index 90a644ce9..4529b40d5 100644 --- a/helm/software/matita/nlibrary/topology/igft2.ma +++ b/helm/software/matita/nlibrary/topology/igft2.ma @@ -12,6 +12,14 @@ (* *) (**************************************************************************) +include "arithmetics/nat.ma". + +ndefinition two ≝ S (S O). +ndefinition natone ≝ S O. +ndefinition four ≝ two * two. +ndefinition eight ≝ two * four. +ndefinition natS ≝ S. + include "topology/igft.ma". nlemma hint_auto2 : ∀T.∀U,V:Ω^T.(∀x.x ∈ U → x ∈ V) → U ⊆ V. @@ -118,4 +126,65 @@ nlet rec cover_rect (* [##2: napply cover_rect] nauto depth=1; *) [ napply Hcut ##| napply (cover_rect A U memdec P refl infty a); nauto ]##] +nqed. + +(********* Esempio: + let rec skipfact n = + match n with + [ O ⇒ 1 + | S m ⇒ S m * skipfact (pred m) ] +**) + +ntheorem psym_plus: ∀n,m. n + m = m + n. + #n; nelim n + [ #m; nelim m; //; #n0; #H; + nchange with (natS n0 = natS (n0 + O)); + nrewrite < H; // + | #n0; #H; #m; nchange with (S (n0 + m) = m + S n0); + nrewrite > (H …); + nelim m; //; + #n1; #E; nrewrite > E; //] +nqed. + +nlemma easy1: ∀n:nat. two * (S n) = two + two * n. + #n; nelim n;//; + #n0; #H; nnormalize; + nrewrite > (psym_plus ??); + nrewrite > H; nnormalize; + nrewrite > (psym_plus ??); + //. +nqed. + +ndefinition skipfact_dom: uuAx. + @ nat; #n; ncases n [ napply None | #m; napply (Some … (pred m)) ] +nqed. + +ntheorem skipfact_base_dec: + memdec (uuax skipfact_dom) (mk_powerclass ? (λx: uuax skipfact_dom. x=O)). + nnormalize; @ (λx. match x with [ O ⇒ true | S _ ⇒ false ]); #n; nelim n; + nnormalize; //; #X; ndestruct; #Y; #Z; ndestruct; #W; ndestruct. +nqed. + +ntheorem skipfact_partial: + ∀n: uuax skipfact_dom. two * n ◃ mk_powerclass ? (λx: uuax skipfact_dom.x=O). + #n; nelim n + [ @1; nnormalize; @1 + | #m; #H; @2 + [ nnormalize; @1 + | nnormalize; #y; nchange in ⊢ (% → ?) with (y = pred (pred (two * (natone + m)))); + nrewrite > (easy1 …); nchange in ⊢ (% → ?) with (y = two * m); + #E; nrewrite > E; nassumption ]##] +nqed. + +ndefinition skipfact: ∀n:nat. n ◃ mk_powerclass ? (λx: uuax skipfact_dom.x=O) → nat. + #n; #D; napply (cover_rect … skipfact_base_dec … n D) + [ #a; #_; napply natone + | #a; ncases a + [ nnormalize; #i; nelim i + | #m; #i; nnormalize in i; #d; #H; + napply (S m * H (pred m) …); //] +nqed. + +nlemma test: skipfact four ? = eight. ##[##2: napply (skipfact_partial two)] + nnormalize; //. nqed. \ No newline at end of file