From: Ferruccio Guidi <ferruccio.guidi@unibo.it> Date: Sun, 27 Apr 2014 17:34:22 +0000 (+0000) Subject: reordering abstract computation properties and saturation conditions X-Git-Tag: make_still_working~926 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=9ed13b93cd1d7d75d65f1f063b6b4bf27d863f72;p=helm.git reordering abstract computation properties and saturation conditions --- diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/acp.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/acp.ma index 5de150697..7830fa7c0 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/acp.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/acp.ma @@ -17,36 +17,36 @@ include "basic_2/substitution/ldrops.ma". (* ABSTRACT COMPUTATION PROPERTIES ******************************************) -definition CP1 â λRR:relation4 genv lenv term term. λRS:relation term. - âG,L. âk. NF ⦠(RR G L) RS (âk). - -definition CP2 â λRR:relation4 genv lenv term term. λRS:relation term. +definition CP0 â λRR:relation4 genv lenv term term. λRS:relation term. âG,L0,L,T,T0,s,d,e. NF ⦠(RR G L) RS T â â©[s, d, e] L0 â¡ L â â§[d, e] T â¡ T0 â NF ⦠(RR G L0) RS T0. -definition CP2s â λRR:relation4 genv lenv term term. λRS:relation term. +definition CP0s â λRR:relation4 genv lenv term term. λRS:relation term. âG,L0,L,s,des. â©*[s, des] L0 â¡ L â âT,T0. â§*[des] T â¡ T0 â NF ⦠(RR G L) RS T â NF ⦠(RR G L0) RS T0. -definition CP3 â λRP:relation3 genv lenv term. +definition CP1 â λRR:relation4 genv lenv term term. λRS:relation term. + âG,L. âk. NF ⦠(RR G L) RS (âk). + +definition CP2 â λRP:relation3 genv lenv term. âG,L,T,k. RP G L (ââk.T) â RP G L T. -definition CP4 â λRP:relation3 genv lenv term. +definition CP3 â λRP:relation3 genv lenv term. âG,L,W,T. RP G L W â RP G L T â RP G L (âW.T). (* requirements for abstract computation properties *) record acp (RR:relation4 genv lenv term term) (RS:relation term) (RP:relation3 genv lenv term) : Prop â -{ cp1: CP1 RR RS; - cp2: CP2 RR RS; - cp3: CP3 RP; - cp4: CP4 RP +{ cp0: CP0 RR RS; + cp1: CP1 RR RS; + cp2: CP2 RP; + cp3: CP3 RP }. (* Basic properties *********************************************************) (* Basic_1: was: nf2_lift1 *) -lemma acp_lifts: âRR,RS. CP2 RR RS â CP2s RR RS. +lemma acp_lifts: âRR,RS. CP0 RR RS â CP0s RR RS. #RR #RS #HRR #G #L1 #L2 #s #des #H elim H -L1 -L2 -des [ #L #T1 #T2 #H #HT1 <(lifts_inv_nil ⦠H) -H // diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/acp_aaa.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/acp_aaa.ma index fc54854ce..13fbb93fe 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/acp_aaa.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/acp_aaa.ma @@ -54,7 +54,7 @@ theorem aacr_aaa_csubc_lifts: âRR,RS,RP. elim (lift_total V0 0 (i0 +1)) #V3 #HV03 elim (lift_total V2 0 (i0 +1)) #V #HV2 @(s5 ⦠HB ⦠(â) ⦠(âV3.V) ⦠HLK2) [2: /2 width=1 by lift_flat/ ] - @(s7 ⦠HB ⦠(â)) [ @(s8 ⦠HB ⦠HKV2A) // | @(s8 ⦠HB ⦠H1KV0A) // ] + @(s7 ⦠HB ⦠(â)) [ @(s0 ⦠HB ⦠HKV2A) // | @(s0 ⦠HB ⦠H1KV0A) // ] ] | #a #G #L #V #T #B #A #_ #_ #IHB #IHA #L0 #des #HL0 #X #H #L2 #HL20 elim (lifts_inv_bind1 ⦠H) -H #V0 #T0 #HV0 #HT0 #H destruct diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/acp_cr.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/acp_cr.ma index fa9508a28..7c6464f21 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/acp_cr.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/acp_cr.ma @@ -21,6 +21,13 @@ include "basic_2/computation/acp.ma". (* ABSTRACT COMPUTATION PROPERTIES ******************************************) +definition S0 â λC:relation3 genv lenv term. âG,L2,L1,T1,d,e. + C G L1 T1 â âT2. â©[â», d, e] L2 â¡ L1 â â§[d, e] T1 â¡ T2 â C G L2 T2. + +definition S0s â λC:relation3 genv lenv term. + âG,L1,L2,des. â©*[â», des] L2 â¡ L1 â + âT1,T2. â§*[des] T1 â¡ T2 â C G L1 T1 â C G L2 T2. + (* Note: this is Girard's CR1 *) definition S1 â λRP,C:relation3 genv lenv term. âG,L,T. C G L T â RP G L T. @@ -49,23 +56,16 @@ definition S6 â λRP,C:relation3 genv lenv term. definition S7 â λC:relation3 genv lenv term. âG,L,Vs,T,W. C G L (â¶Vs.T) â C G L (â¶Vs.W) â C G L (â¶Vs.âW.T). -definition S8 â λC:relation3 genv lenv term. âG,L2,L1,T1,d,e. - C G L1 T1 â âT2. â©[â», d, e] L2 â¡ L1 â â§[d, e] T1 â¡ T2 â C G L2 T2. - -definition S8s â λC:relation3 genv lenv term. - âG,L1,L2,des. â©*[â», des] L2 â¡ L1 â - âT1,T2. â§*[des] T1 â¡ T2 â C G L1 T1 â C G L2 T2. - (* properties of the abstract candidate of reducibility *) record acr (RR:relation4 genv lenv term term) (RS:relation term) (RP,C:relation3 genv lenv term) : Prop â -{ s1: S1 RP C; +{ s0: S0 C; + s1: S1 RP C; s2: S2 RR RS RP C; s3: S3 C; s4: S4 RP C; s5: S5 C; s6: S6 RP C; - s7: S7 C; - s8: S8 C + s7: S7 C }. (* the abstract candidate of reducibility associated to an atomic arity *) @@ -84,7 +84,7 @@ interpretation (* Basic properties *********************************************************) (* Basic_1: was: sc3_lift1 *) -lemma acr_lifts: âC. S8 C â S8s C. +lemma acr_lifts: âC. S0 C â S0s C. #C #HC #G #L1 #L2 #des #H elim H -L1 -L2 -des [ #L #T1 #T2 #H #HT1 <(lifts_inv_nil ⦠H) -H // | #L1 #L #L2 #des #d #e #_ #HL2 #IHL #T2 #T1 #H #HLT2 @@ -97,7 +97,7 @@ lemma rp_lifts: âRR,RS,RP. acr RR RS RP (λG,L,T. RP G L T) â RP G L V â RP G L0 V0. #RR #RS #RP #HRP #des #G #L0 #L #V #V0 #HL0 #HV0 #HV @acr_lifts /width=7 by/ -@(s8 ⦠HRP) +@(s0 ⦠HRP) qed. (* Basic_1: was only: sns3_lifts1 *) @@ -115,18 +115,19 @@ lemma aacr_acr: âRR,RS,RP. acp RR RS RP â acr RR RS RP (λG,L,T. RP G L T) âA. acr RR RS RP (aacr RP A). #RR #RS #RP #H1RP #H2RP #A elim A -A normalize // #B #A #IHB #IHA @mk_acr normalize -[ #G #L #T #H +[ /3 width=7 by ldrops_cons, lifts_cons/ +| #G #L #T #H elim (cp1 ⦠H1RP G L) #k #HK lapply (H ? (âk) ? (â ) ? ? ?) -H [1,3: // |2,4: skip | @(s2 ⦠IHB ⦠(â)) // - | #H @(cp3 ⦠H1RP ⦠k) @(s1 ⦠IHA) // + | #H @(cp2 ⦠H1RP ⦠k) @(s1 ⦠IHA) // ] | #G #L #Vs #HVs #T #H1T #H2T #L0 #V0 #X #des #HB #HL0 #H elim (lifts_inv_applv1 ⦠H) -H #V0s #T0 #HV0s #HT0 #H destruct lapply (s1 ⦠IHB ⦠HB) #HV0 @(s2 ⦠IHA ⦠(V0 @ V0s)) - /3 width=14 by rp_liftsv_all, acp_lifts, cp2, lifts_simple_dx, conj/ + /3 width=14 by rp_liftsv_all, acp_lifts, cp0, lifts_simple_dx, conj/ | #a #G #L #Vs #U #T #W #HA #L0 #V0 #X #des #HB #HL0 #H elim (lifts_inv_applv1 ⦠H) -H #V0s #Y #HV0s #HY #H destruct elim (lifts_inv_flat1 ⦠HY) -HY #U0 #X #HU0 #HX #H destruct @@ -154,7 +155,7 @@ lemma aacr_acr: âRR,RS,RP. acp RR RS RP â acr RR RS RP (λG,L,T. RP G L T) elim (liftv_total 0 1 V10s) #V20s #HV120s @(s6 ⦠IHA ⦠(V10 @ V10s) (V20 @ V20s)) /3 width=7 by rp_lifts, liftv_cons/ @(HA ⦠(des + 1)) /2 width=2 by ldrops_skip/ - [ @(s8 ⦠IHB ⦠HB ⦠HV120) /2 width=2 by ldrop_drop/ + [ @(s0 ⦠IHB ⦠HB ⦠HV120) /2 width=2 by ldrop_drop/ | @lifts_applv // elim (liftsv_liftv_trans_le ⦠HV10s ⦠HV120s) -V10s #V10s #HV10s #HV120s >(liftv_mono ⦠HV12s ⦠HV10s) -V1s // @@ -163,7 +164,6 @@ lemma aacr_acr: âRR,RS,RP. acp RR RS RP â acr RR RS RP (λG,L,T. RP G L T) elim (lifts_inv_applv1 ⦠H) -H #V0s #Y #HV0s #HY #H destruct elim (lifts_inv_flat1 ⦠HY) -HY #W0 #T0 #HW0 #HT0 #H destruct @(s7 ⦠IHA ⦠(V0 @ V0s)) /3 width=5 by lifts_applv/ -| /3 width=7 by ldrops_cons, lifts_cons/ ] qed. @@ -177,12 +177,12 @@ lemma aacr_abst: âRR,RS,RP. acp RR RS RP â acr RR RS RP (λG,L,T. RP G L T) lapply (aacr_acr ⦠H1RP H2RP A) #HCA lapply (aacr_acr ⦠H1RP H2RP B) #HCB elim (lifts_inv_bind1 ⦠H) -H #W0 #T0 #HW0 #HT0 #H destruct -lapply (acr_lifts ⦠HL0 ⦠HW0 HW) -HW [ @(s8 ⦠HCB) ] #HW0 +lapply (acr_lifts ⦠HL0 ⦠HW0 HW) -HW [ @(s0 ⦠HCB) ] #HW0 @(s3 ⦠HCA ⦠(â)) @(s6 ⦠HCA ⦠(â) (â)) // [ @(HA ⦠HL0) // | lapply (s1 ⦠HCB) -HCB #HCB - @(cp4 ⦠H1RP) /2 width=1 by/ + @(cp3 ⦠H1RP) /2 width=1 by/ ] qed. diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/csx_lift.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/csx_lift.ma index 3ae4bfad0..2d74a929e 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/csx_lift.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/csx_lift.ma @@ -111,8 +111,8 @@ qed-. theorem csx_acp: âh,g. acp (cpx h g) (eq â¦) (csx h g). #h #g @mk_acp -[ #G #L elim (deg_total h g 0) /3 width=8 by cnx_sort_iter, ex_intro/ -| /3 width=13 by cnx_lift/ +[ /3 width=13 by cnx_lift/ +| #G #L elim (deg_total h g 0) /3 width=8 by cnx_sort_iter, ex_intro/ | /2 width=3 by csx_fwd_flat_dx/ | /2 width=1 by csx_cast/ ] diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/csx_tstc_vector.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/csx_tstc_vector.ma index 5e9ea06c7..5ce3e142a 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/csx_tstc_vector.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/csx_tstc_vector.ma @@ -118,12 +118,12 @@ qed. theorem csx_acr: âh,g. acr (cpx h g) (eq â¦) (csx h g) (λG,L,T. â¦G, L⦠⢠â¬*[h, g] T). #h #g @mk_acr // -[ /3 width=1 by csx_applv_cnx/ -|2,3,6: /2 width=1 by csx_applv_beta, csx_applv_sort, csx_applv_cast/ +[ /2 width=8 by csx_lift/ +| /3 width=1 by csx_applv_cnx/ +|3,4,7: /2 width=1 by csx_applv_beta, csx_applv_sort, csx_applv_cast/ | /2 width=7 by csx_applv_delta/ | #G #L #V1s #V2s #HV12s #a #V #T #H #HV @(csx_applv_theta ⦠HV12s) -HV12s @csx_abbr // -| /2 width=8 by csx_lift/ ] qed. diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/lsubc_ldrop.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/lsubc_ldrop.ma index 2b8133bda..8680fe4f1 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/lsubc_ldrop.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/lsubc_ldrop.ma @@ -64,8 +64,8 @@ lemma ldrop_lsubc_trans: âRR,RS,RP. elim (lift_inv_flat1 ⦠HV21) -HV21 #W3 #V3 #HW23 #HV3 #H destruct elim (IHLK1 ⦠HK12) #K #HL1K #HK2 lapply (aacr_acr ⦠Hacp Hacr A) -Hacp -Hacr #HA - lapply (s8 ⦠HA ⦠HV2 ⦠HLK1 HV3) -HV2 - lapply (s8 ⦠HA ⦠H1W2 ⦠HLK1 HW23) -H1W2 + lapply (s0 ⦠HA ⦠HV2 ⦠HLK1 HV3) -HV2 + lapply (s0 ⦠HA ⦠H1W2 ⦠HLK1 HW23) -H1W2 /4 width=11 by lsubc_abbr, aaa_lift, ldrop_skip, ex2_intro/ ] ]