From: Claudio Sacerdoti Coen Date: Tue, 13 Dec 2011 12:17:18 +0000 (+0000) Subject: 1) New file russell with the coercions to activate Russell-style proving. X-Git-Tag: make_still_working~2011 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=a59e4e76e3f91aa7cf6fe81fc6e8ddaaf306f966;p=helm.git 1) New file russell with the coercions to activate Russell-style proving. 2) More stuff on lists integrated from CerCo library --- diff --git a/matita/matita/lib/basics/lists/list.ma b/matita/matita/lib/basics/lists/list.ma index fa9e8bfee..2a368527c 100644 --- a/matita/matita/lib/basics/lists/list.ma +++ b/matita/matita/lib/basics/lists/list.ma @@ -85,10 +85,17 @@ theorem nil_to_nil: ∀A.∀l1,l2:list A. #A #l1 #l2 #isnil @(nil_append_elim A l1 l2) /2/ qed. -(* iterators *) +(**************************** iterators ******************************) let rec map (A,B:Type[0]) (f: A → B) (l:list A) on l: list B ≝ match l with [ nil ⇒ nil ? | cons x tl ⇒ f x :: (map A B f tl)]. + +lemma map_append : ∀A,B,f,l1,l2. + (map A B f l1) @ (map A B f l2) = map A B f (l1@l2). +#A #B #f #l1 elim l1 +[ #l2 @refl +| #h #t #IH #l2 normalize // +] qed. let rec foldr (A,B:Type[0]) (f:A → B → B) (b:B) (l:list A) on l :B ≝ match l with [ nil ⇒ b | cons a l ⇒ f a (foldr A B f b l)]. @@ -145,6 +152,102 @@ lemma nth_nil: ∀A,a,i. nth i A ([]) a = a. #A #a #i elim i normalize // qed. +(****************************** nth_opt ********************************) +let rec nth_opt (A:Type[0]) (n:nat) (l:list A) on l : option A ≝ +match l with +[ nil ⇒ None ? +| cons h t ⇒ match n with [ O ⇒ Some ? h | S m ⇒ nth_opt A m t ] +]. + +(**************************** All *******************************) + +let rec All (A:Type[0]) (P:A → Prop) (l:list A) on l : Prop ≝ +match l with +[ nil ⇒ True +| cons h t ⇒ P h ∧ All A P t +]. + +lemma All_mp : ∀A,P,Q. (∀a.P a → Q a) → ∀l. All A P l → All A Q l. +#A #P #Q #H #l elim l normalize // +#h #t #IH * /3/ +qed. + +lemma All_nth : ∀A,P,n,l. + All A P l → + ∀a. + nth_opt A n l = Some A a → + P a. +#A #P #n elim n +[ * [ #_ #a #E whd in E:(??%?); destruct + | #hd #tl * #H #_ #a #E whd in E:(??%?); destruct @H + ] +| #m #IH * + [ #_ #a #E whd in E:(??%?); destruct + | #hd #tl * #_ whd in ⊢ (? → ∀_.??%? → ?); @IH + ] +] qed. + +(**************************** Exists *******************************) + +let rec Exists (A:Type[0]) (P:A → Prop) (l:list A) on l : Prop ≝ +match l with +[ nil ⇒ False +| cons h t ⇒ (P h) ∨ (Exists A P t) +]. + +lemma Exists_append : ∀A,P,l1,l2. + Exists A P (l1 @ l2) → Exists A P l1 ∨ Exists A P l2. +#A #P #l1 elim l1 +[ normalize /2/ +| #h #t #IH #l2 * + [ #H /3/ + | #H cases (IH l2 H) /3/ + ] +] qed. + +lemma Exists_append_l : ∀A,P,l1,l2. + Exists A P l1 → Exists A P (l1@l2). +#A #P #l1 #l2 elim l1 +[ * +| #h #t #IH * + [ #H %1 @H + | #H %2 @IH @H + ] +] qed. + +lemma Exists_append_r : ∀A,P,l1,l2. + Exists A P l2 → Exists A P (l1@l2). +#A #P #l1 #l2 elim l1 +[ #H @H +| #h #t #IH #H %2 @IH @H +] qed. + +lemma Exists_add : ∀A,P,l1,x,l2. Exists A P (l1@l2) → Exists A P (l1@x::l2). +#A #P #l1 #x #l2 elim l1 +[ normalize #H %2 @H +| #h #t #IH normalize * [ #H %1 @H | #H %2 @IH @H ] +qed. + +lemma Exists_mid : ∀A,P,l1,x,l2. P x → Exists A P (l1@x::l2). +#A #P #l1 #x #l2 #H elim l1 +[ %1 @H +| #h #t #IH %2 @IH +] qed. + +lemma Exists_map : ∀A,B,P,Q,f,l. +Exists A P l → +(∀a.P a → Q (f a)) → +Exists B Q (map A B f l). +#A #B #P #Q #f #l elim l // +#h #t #IH * [ #H #F %1 @F @H | #H #F %2 @IH [ @H | @F ] ] qed. + +lemma Exists_All : ∀A,P,Q,l. + Exists A P l → + All A Q l → + ∃x. P x ∧ Q x. +#A #P #Q #l elim l [ * | #hd #tl #IH * [ #H1 * #H2 #_ %{hd} /2/ | #H1 * #_ #H2 @IH // ] +qed. + (**************************** fold *******************************) let rec fold (A,B:Type[0]) (op:B → B → B) (b:B) (p:A→bool) (f:A→B) (l:list A) on l :B ≝ @@ -229,3 +332,32 @@ lemma length_ltl: ∀A,n,l. |ltl A l n| = |l| - n. #A #n elim n -n /2/ #n #IHn *; normalize /2/ qed. + +(********************** find ******************************) +let rec find (A,B:Type[0]) (f:A → option B) (l:list A) on l : option B ≝ +match l with +[ nil ⇒ None B +| cons h t ⇒ + match f h with + [ None ⇒ find A B f t + | Some b ⇒ Some B b + ] +]. + +(********************** position_of ******************************) +let rec position_of_aux (A:Type[0]) (found: A → bool) (l:list A) (acc:nat) on l : option nat ≝ +match l with +[ nil ⇒ None ? +| cons h t ⇒ + match found h with [true ⇒ Some … acc | false ⇒ position_of_aux … found t (S acc)]]. + +definition position_of: ∀A:Type[0]. (A → bool) → list A → option nat ≝ + λA,found,l. position_of_aux A found l 0. + + +(********************** make_list ******************************) +let rec make_list (A:Type[0]) (a:A) (n:nat) on n : list A ≝ +match n with +[ O ⇒ [ ] +| S m ⇒ a::(make_list A a m) +]. diff --git a/matita/matita/lib/basics/lists/listb.ma b/matita/matita/lib/basics/lists/listb.ma index f5bf4df9e..29d89ffee 100644 --- a/matita/matita/lib/basics/lists/listb.ma +++ b/matita/matita/lib/basics/lists/listb.ma @@ -192,5 +192,16 @@ memb S x (filter ? f l) = true. ] qed. - - +(********************* exists *****************) + +let rec exists (A:Type[0]) (p:A → bool) (l:list A) on l : bool ≝ +match l with +[ nil ⇒ false +| cons h t ⇒ orb (p h) (exists A p t) +]. + +lemma Exists_exists : ∀A,P,l. + Exists A P l → + ∃x. P x. +#A #P #l elim l [ * | #hd #tl #IH * [ #H %{hd} @H | @IH ] +qed. diff --git a/matita/matita/lib/basics/russell.ma b/matita/matita/lib/basics/russell.ma new file mode 100644 index 000000000..314649af6 --- /dev/null +++ b/matita/matita/lib/basics/russell.ma @@ -0,0 +1,19 @@ +(* + ||M|| This file is part of HELM, an Hypertextual, Electronic + ||A|| Library of Mathematics, developed at the Computer Science + ||T|| Department of the University of Bologna, Italy. + ||I|| + ||T|| + ||A|| + \ / This file is distributed under the terms of the + \ / GNU General Public License Version 2 + V_______________________________________________________________ *) + +include "basics/jmeq.ma". +include "basics/types.ma". + +definition inject : ∀A.∀P:A → Prop.∀a.∀p:P a.Σx:A.P x ≝ λA,P,a,p. mk_Sig … a p. +definition eject : ∀A.∀P: A → Prop.(Σx:A.P x) → A ≝ λA,P,c.pi1 … c. + +coercion inject nocomposites: ∀A.∀P:A → Prop.∀a.∀p:P a.Σx:A.P x ≝ inject on a:? to Σx:?.?. +coercion eject nocomposites: ∀A.∀P:A → Prop.∀c:Σx:A.P x.A ≝ eject on _c:Σx:?.? to ?.