From: Andrea Asperti <andrea.asperti@unibo.it> Date: Tue, 3 Jan 2012 15:58:23 +0000 (+0000) Subject: reverse X-Git-Tag: make_still_working~1993 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=a65c5b3337075672736b1583b8519ff14bb16976;p=helm.git reverse --- diff --git a/matita/matita/lib/basics/lists/list.ma b/matita/matita/lib/basics/lists/list.ma index 40839b28f..021e9d400 100644 --- a/matita/matita/lib/basics/lists/list.ma +++ b/matita/matita/lib/basics/lists/list.ma @@ -65,12 +65,6 @@ theorem associative_append: âA.associative (list A) (append A). #A #l1 #l2 #l3 (elim l1) normalize // qed. -(* deleterio per auto -ntheorem cons_append_commute: - âA:Type.âl1,l2:list A.âa:A. - a :: (l1 @ l2) = (a :: l1) @ l2. -//; nqed. *) - theorem append_cons:âA.âa:A.âl,l1.l@(a::l1)=(l@[a])@l1. #A #a #l #l1 >associative_append // qed. @@ -121,6 +115,46 @@ lemma filter_false : âA,l,a,p. p a = false â theorem eq_map : âA,B,f,g,l. (âx.f x = g x) â map A B f l = map A B g l. #A #B #f #g #l #eqfg (elim l) normalize // qed. +(**************************** reverse *****************************) +let rec rev_append S (l1,l2:list S) on l1 â + match l1 with + [ nil â l2 + | cons a tl â rev_append S tl (a::l2) + ] +. + +definition reverse âλS.λl.rev_append S l []. + +lemma reverse_single : âS,a. reverse S [a] = [a]. +// qed. + +lemma rev_append_def : âS,l1,l2. + rev_append S l1 l2 = (reverse S l1) @ l2 . +#S #l1 elim l1 normalize // +qed. + +lemma reverse_cons : âS,a,l. reverse S (a::l) = (reverse S l)@[a]. +#S #a #l whd in ⢠(??%?); // +qed. + +lemma reverse_append: âS,l1,l2. + reverse S (l1 @ l2) = (reverse S l2)@(reverse S l1). +#S #l1 elim l1 [normalize // | #a #tl #Hind #l2 >reverse_cons +>reverse_cons // qed. + +lemma reverse_reverse : âS,l. reverse S (reverse S l) = l. +#S #l elim l // #a #tl #Hind >reverse_cons >reverse_append +normalize // qed. + +(* an elimination principle for lists working on the tail; +useful for strings *) +lemma list_elim_left: âS.âP:list S â Prop. P (nil S) â +(âa.âtl.P tl â P (tl@[a])) â âl. P l. +#S #P #Pnil #Pstep #l <(reverse_reverse ⦠l) +generalize in match (reverse S l); #l elim l // +#a #tl #H >reverse_cons @Pstep // +qed. + (**************************** length ******************************) let rec length (A:Type[0]) (l:list A) on l â