From: Ferruccio Guidi Date: Thu, 12 Oct 2006 21:14:23 +0000 (+0000) Subject: files with newest objects (to be included in the respective developments) X-Git-Tag: 0.4.95@7852~893 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=a95eb5976107b2e4615c8ede24da4e96de9d9e42;p=helm.git files with newest objects (to be included in the respective developments) --- diff --git a/matita/contribs/LAMBDA-TYPES/Level-1/Base.ma b/matita/contribs/LAMBDA-TYPES/Level-1/Base.ma new file mode 100644 index 000000000..09d3ada50 --- /dev/null +++ b/matita/contribs/LAMBDA-TYPES/Level-1/Base.ma @@ -0,0 +1,20 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +(* This file was automatically generated: do not edit *********************) + +set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/Base". + +include "Base/theory.ma". + diff --git a/matita/contribs/LAMBDA-TYPES/Level-1/LambdaDelta.ma b/matita/contribs/LAMBDA-TYPES/Level-1/LambdaDelta.ma new file mode 100644 index 000000000..e38a5df8a --- /dev/null +++ b/matita/contribs/LAMBDA-TYPES/Level-1/LambdaDelta.ma @@ -0,0 +1,1817 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +(* This file was automatically generated: do not edit *********************) + +set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta". + +include "LambdaDelta/theory.ma". + +definition TApp: + TList \to (T \to TList) +\def + let rec TApp (ts: TList) on ts: (T \to TList) \def (\lambda (v: T).(match ts +with [TNil \Rightarrow (TCons v TNil) | (TCons t ts0) \Rightarrow (TCons t +(TApp ts0 v))])) in TApp. + +definition tslen: + TList \to nat +\def + let rec tslen (ts: TList) on ts: nat \def (match ts with [TNil \Rightarrow O +| (TCons _ ts0) \Rightarrow (S (tslen ts0))]) in tslen. + +definition tslt: + TList \to (TList \to Prop) +\def + \lambda (ts1: TList).(\lambda (ts2: TList).(lt (tslen ts1) (tslen ts2))). + +theorem tslt_wf__q_ind: + \forall (P: ((TList \to Prop))).(((\forall (n: nat).((\lambda (P0: ((TList +\to Prop))).(\lambda (n0: nat).(\forall (ts: TList).((eq nat (tslen ts) n0) +\to (P0 ts))))) P n))) \to (\forall (ts: TList).(P ts))) +\def + let Q \def (\lambda (P: ((TList \to Prop))).(\lambda (n: nat).(\forall (ts: +TList).((eq nat (tslen ts) n) \to (P ts))))) in (\lambda (P: ((TList \to +Prop))).(\lambda (H: ((\forall (n: nat).(\forall (ts: TList).((eq nat (tslen +ts) n) \to (P ts)))))).(\lambda (ts: TList).(H (tslen ts) ts (refl_equal nat +(tslen ts)))))). + +theorem tslt_wf_ind: + \forall (P: ((TList \to Prop))).(((\forall (ts2: TList).(((\forall (ts1: +TList).((tslt ts1 ts2) \to (P ts1)))) \to (P ts2)))) \to (\forall (ts: +TList).(P ts))) +\def + let Q \def (\lambda (P: ((TList \to Prop))).(\lambda (n: nat).(\forall (ts: +TList).((eq nat (tslen ts) n) \to (P ts))))) in (\lambda (P: ((TList \to +Prop))).(\lambda (H: ((\forall (ts2: TList).(((\forall (ts1: TList).((lt +(tslen ts1) (tslen ts2)) \to (P ts1)))) \to (P ts2))))).(\lambda (ts: +TList).(tslt_wf__q_ind (\lambda (t: TList).(P t)) (\lambda (n: +nat).(lt_wf_ind n (Q (\lambda (t: TList).(P t))) (\lambda (n0: nat).(\lambda +(H0: ((\forall (m: nat).((lt m n0) \to (Q (\lambda (t: TList).(P t)) +m))))).(\lambda (ts0: TList).(\lambda (H1: (eq nat (tslen ts0) n0)).(let H2 +\def (eq_ind_r nat n0 (\lambda (n1: nat).(\forall (m: nat).((lt m n1) \to +(\forall (ts1: TList).((eq nat (tslen ts1) m) \to (P ts1)))))) H0 (tslen ts0) +H1) in (H ts0 (\lambda (ts1: TList).(\lambda (H3: (lt (tslen ts1) (tslen +ts0))).(H2 (tslen ts1) H3 ts1 (refl_equal nat (tslen ts1))))))))))))) ts)))). + +theorem theads_tapp: + \forall (k: K).(\forall (vs: TList).(\forall (v: T).(\forall (t: T).(eq T +(THeads k (TApp vs v) t) (THeads k vs (THead k v t)))))) +\def + \lambda (k: K).(\lambda (vs: TList).(TList_ind (\lambda (t: TList).(\forall +(v: T).(\forall (t0: T).(eq T (THeads k (TApp t v) t0) (THeads k t (THead k v +t0)))))) (\lambda (v: T).(\lambda (t: T).(refl_equal T (THead k v t)))) +(\lambda (t: T).(\lambda (t0: TList).(\lambda (H: ((\forall (v: T).(\forall +(t1: T).(eq T (THeads k (TApp t0 v) t1) (THeads k t0 (THead k v +t1))))))).(\lambda (v: T).(\lambda (t1: T).(eq_ind_r T (THeads k t0 (THead k +v t1)) (\lambda (t2: T).(eq T (THead k t t2) (THead k t (THeads k t0 (THead k +v t1))))) (refl_equal T (THead k t (THeads k t0 (THead k v t1)))) (THeads k +(TApp t0 v) t1) (H v t1))))))) vs)). + +theorem tcons_tapp_ex: + \forall (ts1: TList).(\forall (t1: T).(ex2_2 TList T (\lambda (ts2: +TList).(\lambda (t2: T).(eq TList (TCons t1 ts1) (TApp ts2 t2)))) (\lambda +(ts2: TList).(\lambda (_: T).(eq nat (tslen ts1) (tslen ts2)))))) +\def + \lambda (ts1: TList).(TList_ind (\lambda (t: TList).(\forall (t1: T).(ex2_2 +TList T (\lambda (ts2: TList).(\lambda (t2: T).(eq TList (TCons t1 t) (TApp +ts2 t2)))) (\lambda (ts2: TList).(\lambda (_: T).(eq nat (tslen t) (tslen +ts2))))))) (\lambda (t1: T).(ex2_2_intro TList T (\lambda (ts2: +TList).(\lambda (t2: T).(eq TList (TCons t1 TNil) (TApp ts2 t2)))) (\lambda +(ts2: TList).(\lambda (_: T).(eq nat O (tslen ts2)))) TNil t1 (refl_equal +TList (TApp TNil t1)) (refl_equal nat (tslen TNil)))) (\lambda (t: +T).(\lambda (t0: TList).(\lambda (H: ((\forall (t1: T).(ex2_2 TList T +(\lambda (ts2: TList).(\lambda (t2: T).(eq TList (TCons t1 t0) (TApp ts2 +t2)))) (\lambda (ts2: TList).(\lambda (_: T).(eq nat (tslen t0) (tslen +ts2)))))))).(\lambda (t1: T).(let H_x \def (H t) in (let H0 \def H_x in +(ex2_2_ind TList T (\lambda (ts2: TList).(\lambda (t2: T).(eq TList (TCons t +t0) (TApp ts2 t2)))) (\lambda (ts2: TList).(\lambda (_: T).(eq nat (tslen t0) +(tslen ts2)))) (ex2_2 TList T (\lambda (ts2: TList).(\lambda (t2: T).(eq +TList (TCons t1 (TCons t t0)) (TApp ts2 t2)))) (\lambda (ts2: TList).(\lambda +(_: T).(eq nat (S (tslen t0)) (tslen ts2))))) (\lambda (x0: TList).(\lambda +(x1: T).(\lambda (H1: (eq TList (TCons t t0) (TApp x0 x1))).(\lambda (H2: (eq +nat (tslen t0) (tslen x0))).(eq_ind_r TList (TApp x0 x1) (\lambda (t2: +TList).(ex2_2 TList T (\lambda (ts2: TList).(\lambda (t3: T).(eq TList (TCons +t1 t2) (TApp ts2 t3)))) (\lambda (ts2: TList).(\lambda (_: T).(eq nat (S +(tslen t0)) (tslen ts2)))))) (eq_ind_r nat (tslen x0) (\lambda (n: +nat).(ex2_2 TList T (\lambda (ts2: TList).(\lambda (t2: T).(eq TList (TCons +t1 (TApp x0 x1)) (TApp ts2 t2)))) (\lambda (ts2: TList).(\lambda (_: T).(eq +nat (S n) (tslen ts2)))))) (ex2_2_intro TList T (\lambda (ts2: +TList).(\lambda (t2: T).(eq TList (TCons t1 (TApp x0 x1)) (TApp ts2 t2)))) +(\lambda (ts2: TList).(\lambda (_: T).(eq nat (S (tslen x0)) (tslen ts2)))) +(TCons t1 x0) x1 (refl_equal TList (TApp (TCons t1 x0) x1)) (refl_equal nat +(tslen (TCons t1 x0)))) (tslen t0) H2) (TCons t t0) H1))))) H0))))))) ts1). + +theorem tlist_ind_rew: + \forall (P: ((TList \to Prop))).((P TNil) \to (((\forall (ts: +TList).(\forall (t: T).((P ts) \to (P (TApp ts t)))))) \to (\forall (ts: +TList).(P ts)))) +\def + \lambda (P: ((TList \to Prop))).(\lambda (H: (P TNil)).(\lambda (H0: +((\forall (ts: TList).(\forall (t: T).((P ts) \to (P (TApp ts +t))))))).(\lambda (ts: TList).(tslt_wf_ind (\lambda (t: TList).(P t)) +(\lambda (ts2: TList).(match ts2 in TList return (\lambda (t: +TList).(((\forall (ts1: TList).((tslt ts1 t) \to (P ts1)))) \to (P t))) with +[TNil \Rightarrow (\lambda (_: ((\forall (ts1: TList).((tslt ts1 TNil) \to (P +ts1))))).H) | (TCons t t0) \Rightarrow (\lambda (H1: ((\forall (ts1: +TList).((tslt ts1 (TCons t t0)) \to (P ts1))))).(let H_x \def (tcons_tapp_ex +t0 t) in (let H2 \def H_x in (ex2_2_ind TList T (\lambda (ts3: +TList).(\lambda (t2: T).(eq TList (TCons t t0) (TApp ts3 t2)))) (\lambda +(ts3: TList).(\lambda (_: T).(eq nat (tslen t0) (tslen ts3)))) (P (TCons t +t0)) (\lambda (x0: TList).(\lambda (x1: T).(\lambda (H3: (eq TList (TCons t +t0) (TApp x0 x1))).(\lambda (H4: (eq nat (tslen t0) (tslen x0))).(eq_ind_r +TList (TApp x0 x1) (\lambda (t1: TList).(P t1)) (H0 x0 x1 (H1 x0 (eq_ind nat +(tslen t0) (\lambda (n: nat).(lt n (tslen (TCons t t0)))) (le_n (tslen (TCons +t t0))) (tslen x0) H4))) (TCons t t0) H3))))) H2))))])) ts)))). + +theorem iso_gen_sort: + \forall (u2: T).(\forall (n1: nat).((iso (TSort n1) u2) \to (ex nat (\lambda +(n2: nat).(eq T u2 (TSort n2)))))) +\def + \lambda (u2: T).(\lambda (n1: nat).(\lambda (H: (iso (TSort n1) u2)).(let H0 +\def (match H in iso return (\lambda (t: T).(\lambda (t0: T).(\lambda (_: +(iso t t0)).((eq T t (TSort n1)) \to ((eq T t0 u2) \to (ex nat (\lambda (n2: +nat).(eq T u2 (TSort n2))))))))) with [(iso_sort n0 n2) \Rightarrow (\lambda +(H0: (eq T (TSort n0) (TSort n1))).(\lambda (H1: (eq T (TSort n2) u2)).((let +H2 \def (f_equal T nat (\lambda (e: T).(match e in T return (\lambda (_: +T).nat) with [(TSort n) \Rightarrow n | (TLRef _) \Rightarrow n0 | (THead _ _ +_) \Rightarrow n0])) (TSort n0) (TSort n1) H0) in (eq_ind nat n1 (\lambda (_: +nat).((eq T (TSort n2) u2) \to (ex nat (\lambda (n3: nat).(eq T u2 (TSort +n3)))))) (\lambda (H3: (eq T (TSort n2) u2)).(eq_ind T (TSort n2) (\lambda +(t: T).(ex nat (\lambda (n3: nat).(eq T t (TSort n3))))) (ex_intro nat +(\lambda (n3: nat).(eq T (TSort n2) (TSort n3))) n2 (refl_equal T (TSort +n2))) u2 H3)) n0 (sym_eq nat n0 n1 H2))) H1))) | (iso_lref i1 i2) \Rightarrow +(\lambda (H0: (eq T (TLRef i1) (TSort n1))).(\lambda (H1: (eq T (TLRef i2) +u2)).((let H2 \def (eq_ind T (TLRef i1) (\lambda (e: T).(match e in T return +(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow True | (THead _ _ _) \Rightarrow False])) I (TSort n1) H0) in +(False_ind ((eq T (TLRef i2) u2) \to (ex nat (\lambda (n2: nat).(eq T u2 +(TSort n2))))) H2)) H1))) | (iso_head v1 v2 t1 t2 k) \Rightarrow (\lambda +(H0: (eq T (THead k v1 t1) (TSort n1))).(\lambda (H1: (eq T (THead k v2 t2) +u2)).((let H2 \def (eq_ind T (THead k v1 t1) (\lambda (e: T).(match e in T +return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n1) H0) in +(False_ind ((eq T (THead k v2 t2) u2) \to (ex nat (\lambda (n2: nat).(eq T u2 +(TSort n2))))) H2)) H1)))]) in (H0 (refl_equal T (TSort n1)) (refl_equal T +u2))))). + +theorem iso_gen_lref: + \forall (u2: T).(\forall (n1: nat).((iso (TLRef n1) u2) \to (ex nat (\lambda +(n2: nat).(eq T u2 (TLRef n2)))))) +\def + \lambda (u2: T).(\lambda (n1: nat).(\lambda (H: (iso (TLRef n1) u2)).(let H0 +\def (match H in iso return (\lambda (t: T).(\lambda (t0: T).(\lambda (_: +(iso t t0)).((eq T t (TLRef n1)) \to ((eq T t0 u2) \to (ex nat (\lambda (n2: +nat).(eq T u2 (TLRef n2))))))))) with [(iso_sort n0 n2) \Rightarrow (\lambda +(H0: (eq T (TSort n0) (TLRef n1))).(\lambda (H1: (eq T (TSort n2) u2)).((let +H2 \def (eq_ind T (TSort n0) (\lambda (e: T).(match e in T return (\lambda +(_: T).Prop) with [(TSort _) \Rightarrow True | (TLRef _) \Rightarrow False | +(THead _ _ _) \Rightarrow False])) I (TLRef n1) H0) in (False_ind ((eq T +(TSort n2) u2) \to (ex nat (\lambda (n3: nat).(eq T u2 (TLRef n3))))) H2)) +H1))) | (iso_lref i1 i2) \Rightarrow (\lambda (H0: (eq T (TLRef i1) (TLRef +n1))).(\lambda (H1: (eq T (TLRef i2) u2)).((let H2 \def (f_equal T nat +(\lambda (e: T).(match e in T return (\lambda (_: T).nat) with [(TSort _) +\Rightarrow i1 | (TLRef n) \Rightarrow n | (THead _ _ _) \Rightarrow i1])) +(TLRef i1) (TLRef n1) H0) in (eq_ind nat n1 (\lambda (_: nat).((eq T (TLRef +i2) u2) \to (ex nat (\lambda (n2: nat).(eq T u2 (TLRef n2)))))) (\lambda (H3: +(eq T (TLRef i2) u2)).(eq_ind T (TLRef i2) (\lambda (t: T).(ex nat (\lambda +(n2: nat).(eq T t (TLRef n2))))) (ex_intro nat (\lambda (n2: nat).(eq T +(TLRef i2) (TLRef n2))) i2 (refl_equal T (TLRef i2))) u2 H3)) i1 (sym_eq nat +i1 n1 H2))) H1))) | (iso_head v1 v2 t1 t2 k) \Rightarrow (\lambda (H0: (eq T +(THead k v1 t1) (TLRef n1))).(\lambda (H1: (eq T (THead k v2 t2) u2)).((let +H2 \def (eq_ind T (THead k v1 t1) (\lambda (e: T).(match e in T return +(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n1) H0) in +(False_ind ((eq T (THead k v2 t2) u2) \to (ex nat (\lambda (n2: nat).(eq T u2 +(TLRef n2))))) H2)) H1)))]) in (H0 (refl_equal T (TLRef n1)) (refl_equal T +u2))))). + +theorem iso_gen_head: + \forall (k: K).(\forall (v1: T).(\forall (t1: T).(\forall (u2: T).((iso +(THead k v1 t1) u2) \to (ex_2 T T (\lambda (v2: T).(\lambda (t2: T).(eq T u2 +(THead k v2 t2))))))))) +\def + \lambda (k: K).(\lambda (v1: T).(\lambda (t1: T).(\lambda (u2: T).(\lambda +(H: (iso (THead k v1 t1) u2)).(let H0 \def (match H in iso return (\lambda +(t: T).(\lambda (t0: T).(\lambda (_: (iso t t0)).((eq T t (THead k v1 t1)) +\to ((eq T t0 u2) \to (ex_2 T T (\lambda (v2: T).(\lambda (t2: T).(eq T u2 +(THead k v2 t2)))))))))) with [(iso_sort n1 n2) \Rightarrow (\lambda (H0: (eq +T (TSort n1) (THead k v1 t1))).(\lambda (H1: (eq T (TSort n2) u2)).((let H2 +\def (eq_ind T (TSort n1) (\lambda (e: T).(match e in T return (\lambda (_: +T).Prop) with [(TSort _) \Rightarrow True | (TLRef _) \Rightarrow False | +(THead _ _ _) \Rightarrow False])) I (THead k v1 t1) H0) in (False_ind ((eq T +(TSort n2) u2) \to (ex_2 T T (\lambda (v2: T).(\lambda (t2: T).(eq T u2 +(THead k v2 t2)))))) H2)) H1))) | (iso_lref i1 i2) \Rightarrow (\lambda (H0: +(eq T (TLRef i1) (THead k v1 t1))).(\lambda (H1: (eq T (TLRef i2) u2)).((let +H2 \def (eq_ind T (TLRef i1) (\lambda (e: T).(match e in T return (\lambda +(_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow True | +(THead _ _ _) \Rightarrow False])) I (THead k v1 t1) H0) in (False_ind ((eq T +(TLRef i2) u2) \to (ex_2 T T (\lambda (v2: T).(\lambda (t2: T).(eq T u2 +(THead k v2 t2)))))) H2)) H1))) | (iso_head v0 v2 t0 t2 k0) \Rightarrow +(\lambda (H0: (eq T (THead k0 v0 t0) (THead k v1 t1))).(\lambda (H1: (eq T +(THead k0 v2 t2) u2)).((let H2 \def (f_equal T T (\lambda (e: T).(match e in +T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _) +\Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead k0 v0 t0) (THead k v1 +t1) H0) in ((let H3 \def (f_equal T T (\lambda (e: T).(match e in T return +(\lambda (_: T).T) with [(TSort _) \Rightarrow v0 | (TLRef _) \Rightarrow v0 +| (THead _ t _) \Rightarrow t])) (THead k0 v0 t0) (THead k v1 t1) H0) in +((let H4 \def (f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: +T).K) with [(TSort _) \Rightarrow k0 | (TLRef _) \Rightarrow k0 | (THead k1 _ +_) \Rightarrow k1])) (THead k0 v0 t0) (THead k v1 t1) H0) in (eq_ind K k +(\lambda (k1: K).((eq T v0 v1) \to ((eq T t0 t1) \to ((eq T (THead k1 v2 t2) +u2) \to (ex_2 T T (\lambda (v3: T).(\lambda (t3: T).(eq T u2 (THead k v3 +t3))))))))) (\lambda (H5: (eq T v0 v1)).(eq_ind T v1 (\lambda (_: T).((eq T +t0 t1) \to ((eq T (THead k v2 t2) u2) \to (ex_2 T T (\lambda (v3: T).(\lambda +(t3: T).(eq T u2 (THead k v3 t3)))))))) (\lambda (H6: (eq T t0 t1)).(eq_ind T +t1 (\lambda (_: T).((eq T (THead k v2 t2) u2) \to (ex_2 T T (\lambda (v3: +T).(\lambda (t3: T).(eq T u2 (THead k v3 t3))))))) (\lambda (H7: (eq T (THead +k v2 t2) u2)).(eq_ind T (THead k v2 t2) (\lambda (t: T).(ex_2 T T (\lambda +(v3: T).(\lambda (t3: T).(eq T t (THead k v3 t3)))))) (ex_2_intro T T +(\lambda (v3: T).(\lambda (t3: T).(eq T (THead k v2 t2) (THead k v3 t3)))) v2 +t2 (refl_equal T (THead k v2 t2))) u2 H7)) t0 (sym_eq T t0 t1 H6))) v0 +(sym_eq T v0 v1 H5))) k0 (sym_eq K k0 k H4))) H3)) H2)) H1)))]) in (H0 +(refl_equal T (THead k v1 t1)) (refl_equal T u2))))))). + +theorem iso_refl: + \forall (t: T).(iso t t) +\def + \lambda (t: T).(T_ind (\lambda (t0: T).(iso t0 t0)) (\lambda (n: +nat).(iso_sort n n)) (\lambda (n: nat).(iso_lref n n)) (\lambda (k: +K).(\lambda (t0: T).(\lambda (_: (iso t0 t0)).(\lambda (t1: T).(\lambda (_: +(iso t1 t1)).(iso_head t0 t0 t1 t1 k)))))) t). + +theorem lifts_tapp: + \forall (h: nat).(\forall (d: nat).(\forall (v: T).(\forall (vs: TList).(eq +TList (lifts h d (TApp vs v)) (TApp (lifts h d vs) (lift h d v)))))) +\def + \lambda (h: nat).(\lambda (d: nat).(\lambda (v: T).(\lambda (vs: +TList).(TList_ind (\lambda (t: TList).(eq TList (lifts h d (TApp t v)) (TApp +(lifts h d t) (lift h d v)))) (refl_equal TList (TCons (lift h d v) TNil)) +(\lambda (t: T).(\lambda (t0: TList).(\lambda (H: (eq TList (lifts h d (TApp +t0 v)) (TApp (lifts h d t0) (lift h d v)))).(eq_ind_r TList (TApp (lifts h d +t0) (lift h d v)) (\lambda (t1: TList).(eq TList (TCons (lift h d t) t1) +(TCons (lift h d t) (TApp (lifts h d t0) (lift h d v))))) (refl_equal TList +(TCons (lift h d t) (TApp (lifts h d t0) (lift h d v)))) (lifts h d (TApp t0 +v)) H)))) vs)))). + +theorem pr3_flat: + \forall (c: C).(\forall (u1: T).(\forall (u2: T).((pr3 c u1 u2) \to (\forall +(t1: T).(\forall (t2: T).((pr3 c t1 t2) \to (\forall (f: F).(pr3 c (THead +(Flat f) u1 t1) (THead (Flat f) u2 t2))))))))) +\def + \lambda (c: C).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H: (pr3 c u1 +u2)).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H0: (pr3 c t1 t2)).(\lambda +(f: F).(pr3_head_12 c u1 u2 H (Flat f) t1 t2 (pr3_cflat c t1 t2 H0 f +u2))))))))). + +theorem pr3_gen_bind: + \forall (b: B).((not (eq B b Abst)) \to (\forall (c: C).(\forall (u1: +T).(\forall (t1: T).(\forall (x: T).((pr3 c (THead (Bind b) u1 t1) x) \to (or +(ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind b) u2 +t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: +T).(\lambda (t2: T).(pr3 (CHead c (Bind b) u1) t1 t2)))) (pr3 (CHead c (Bind +b) u1) t1 (lift (S O) O x))))))))) +\def + \lambda (b: B).(match b in B return (\lambda (b0: B).((not (eq B b0 Abst)) +\to (\forall (c: C).(\forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr3 c +(THead (Bind b0) u1 t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: +T).(eq T x (THead (Bind b0) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c +u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind b0) u1) t1 +t2)))) (pr3 (CHead c (Bind b0) u1) t1 (lift (S O) O x)))))))))) with [Abbr +\Rightarrow (\lambda (_: (not (eq B Abbr Abst))).(\lambda (c: C).(\lambda +(u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H0: (pr3 c (THead (Bind +Abbr) u1 t1) x)).(let H1 \def (pr3_gen_abbr c u1 t1 x H0) in (or_ind (ex3_2 T +T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind Abbr) u2 t2)))) +(\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda +(t2: T).(pr3 (CHead c (Bind Abbr) u1) t1 t2)))) (pr3 (CHead c (Bind Abbr) u1) +t1 (lift (S O) O x)) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x +(THead (Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) +(\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind Abbr) u1) t1 t2)))) (pr3 +(CHead c (Bind Abbr) u1) t1 (lift (S O) O x))) (\lambda (H2: (ex3_2 T T +(\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind Abbr) u2 t2)))) +(\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda +(t2: T).(pr3 (CHead c (Bind Abbr) u1) t1 t2))))).(ex3_2_ind T T (\lambda (u2: +T).(\lambda (t2: T).(eq T x (THead (Bind Abbr) u2 t2)))) (\lambda (u2: +T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 +(CHead c (Bind Abbr) u1) t1 t2))) (or (ex3_2 T T (\lambda (u2: T).(\lambda +(t2: T).(eq T x (THead (Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: +T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind Abbr) +u1) t1 t2)))) (pr3 (CHead c (Bind Abbr) u1) t1 (lift (S O) O x))) (\lambda +(x0: T).(\lambda (x1: T).(\lambda (H3: (eq T x (THead (Bind Abbr) x0 +x1))).(\lambda (H4: (pr3 c u1 x0)).(\lambda (H5: (pr3 (CHead c (Bind Abbr) +u1) t1 x1)).(or_introl (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x +(THead (Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) +(\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind Abbr) u1) t1 t2)))) (pr3 +(CHead c (Bind Abbr) u1) t1 (lift (S O) O x)) (ex3_2_intro T T (\lambda (u2: +T).(\lambda (t2: T).(eq T x (THead (Bind Abbr) u2 t2)))) (\lambda (u2: +T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 +(CHead c (Bind Abbr) u1) t1 t2))) x0 x1 H3 H4 H5))))))) H2)) (\lambda (H2: +(pr3 (CHead c (Bind Abbr) u1) t1 (lift (S O) O x))).(or_intror (ex3_2 T T +(\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind Abbr) u2 t2)))) +(\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda +(t2: T).(pr3 (CHead c (Bind Abbr) u1) t1 t2)))) (pr3 (CHead c (Bind Abbr) u1) +t1 (lift (S O) O x)) H2)) H1)))))))) | Abst \Rightarrow (\lambda (H: (not (eq +B Abst Abst))).(\lambda (c: C).(\lambda (u1: T).(\lambda (t1: T).(\lambda (x: +T).(\lambda (_: (pr3 c (THead (Bind Abst) u1 t1) x)).(let H1 \def (match (H +(refl_equal B Abst)) in False return (\lambda (_: False).(or (ex3_2 T T +(\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind Abst) u2 t2)))) +(\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda +(t2: T).(pr3 (CHead c (Bind Abst) u1) t1 t2)))) (pr3 (CHead c (Bind Abst) u1) +t1 (lift (S O) O x)))) with []) in H1))))))) | Void \Rightarrow (\lambda (_: +(not (eq B Void Abst))).(\lambda (c: C).(\lambda (u1: T).(\lambda (t1: +T).(\lambda (x: T).(\lambda (H0: (pr3 c (THead (Bind Void) u1 t1) x)).(let H1 +\def (pr3_gen_void c u1 t1 x H0) in (or_ind (ex3_2 T T (\lambda (u2: +T).(\lambda (t2: T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: +T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(\forall +(b0: B).(\forall (u: T).(pr3 (CHead c (Bind b0) u) t1 t2)))))) (pr3 (CHead c +(Bind Void) u1) t1 (lift (S O) O x)) (or (ex3_2 T T (\lambda (u2: T).(\lambda +(t2: T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: +T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind Void) +u1) t1 t2)))) (pr3 (CHead c (Bind Void) u1) t1 (lift (S O) O x))) (\lambda +(H2: (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind Void) +u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: +T).(\lambda (t2: T).(\forall (b0: B).(\forall (u: T).(pr3 (CHead c (Bind b0) +u) t1 t2))))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t2: T).(eq T x +(THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) +(\lambda (_: T).(\lambda (t2: T).(\forall (b0: B).(\forall (u: T).(pr3 (CHead +c (Bind b0) u) t1 t2))))) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: +T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 +c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind Void) u1) t1 +t2)))) (pr3 (CHead c (Bind Void) u1) t1 (lift (S O) O x))) (\lambda (x0: +T).(\lambda (x1: T).(\lambda (H3: (eq T x (THead (Bind Void) x0 +x1))).(\lambda (H4: (pr3 c u1 x0)).(\lambda (H5: ((\forall (b0: B).(\forall +(u: T).(pr3 (CHead c (Bind b0) u) t1 x1))))).(or_introl (ex3_2 T T (\lambda +(u2: T).(\lambda (t2: T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: +T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 +(CHead c (Bind Void) u1) t1 t2)))) (pr3 (CHead c (Bind Void) u1) t1 (lift (S +O) O x)) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead +(Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) +(\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind Void) u1) t1 t2))) x0 x1 +H3 H4 (H5 Void u1)))))))) H2)) (\lambda (H2: (pr3 (CHead c (Bind Void) u1) t1 +(lift (S O) O x))).(or_intror (ex3_2 T T (\lambda (u2: T).(\lambda (t2: +T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 +c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind Void) u1) t1 +t2)))) (pr3 (CHead c (Bind Void) u1) t1 (lift (S O) O x)) H2)) H1))))))))]). + +theorem pr3_iso_appls_abbr: + \forall (c: C).(\forall (d: C).(\forall (w: T).(\forall (i: nat).((getl i c +(CHead d (Bind Abbr) w)) \to (\forall (vs: TList).(let u1 \def (THeads (Flat +Appl) vs (TLRef i)) in (\forall (u2: T).((pr3 c u1 u2) \to ((((iso u1 u2) \to +(\forall (P: Prop).P))) \to (pr3 c (THeads (Flat Appl) vs (lift (S i) O w)) +u2)))))))))) +\def + \lambda (c: C).(\lambda (d: C).(\lambda (w: T).(\lambda (i: nat).(\lambda +(H: (getl i c (CHead d (Bind Abbr) w))).(\lambda (vs: TList).(TList_ind +(\lambda (t: TList).(let u1 \def (THeads (Flat Appl) t (TLRef i)) in (\forall +(u2: T).((pr3 c u1 u2) \to ((((iso u1 u2) \to (\forall (P: Prop).P))) \to +(pr3 c (THeads (Flat Appl) t (lift (S i) O w)) u2)))))) (\lambda (u2: +T).(\lambda (H0: (pr3 c (TLRef i) u2)).(\lambda (H1: (((iso (TLRef i) u2) \to +(\forall (P: Prop).P)))).(let H2 \def (pr3_gen_lref c u2 i H0) in (or_ind (eq +T u2 (TLRef i)) (ex3_3 C T T (\lambda (d0: C).(\lambda (u: T).(\lambda (_: +T).(getl i c (CHead d0 (Bind Abbr) u))))) (\lambda (d0: C).(\lambda (u: +T).(\lambda (v: T).(pr3 d0 u v)))) (\lambda (_: C).(\lambda (_: T).(\lambda +(v: T).(eq T u2 (lift (S i) O v)))))) (pr3 c (lift (S i) O w) u2) (\lambda +(H3: (eq T u2 (TLRef i))).(let H4 \def (eq_ind T u2 (\lambda (t: T).((iso +(TLRef i) t) \to (\forall (P: Prop).P))) H1 (TLRef i) H3) in (eq_ind_r T +(TLRef i) (\lambda (t: T).(pr3 c (lift (S i) O w) t)) (H4 (iso_refl (TLRef +i)) (pr3 c (lift (S i) O w) (TLRef i))) u2 H3))) (\lambda (H3: (ex3_3 C T T +(\lambda (d0: C).(\lambda (u: T).(\lambda (_: T).(getl i c (CHead d0 (Bind +Abbr) u))))) (\lambda (d0: C).(\lambda (u: T).(\lambda (v: T).(pr3 d0 u v)))) +(\lambda (_: C).(\lambda (_: T).(\lambda (v: T).(eq T u2 (lift (S i) O +v))))))).(ex3_3_ind C T T (\lambda (d0: C).(\lambda (u: T).(\lambda (_: +T).(getl i c (CHead d0 (Bind Abbr) u))))) (\lambda (d0: C).(\lambda (u: +T).(\lambda (v: T).(pr3 d0 u v)))) (\lambda (_: C).(\lambda (_: T).(\lambda +(v: T).(eq T u2 (lift (S i) O v))))) (pr3 c (lift (S i) O w) u2) (\lambda +(x0: C).(\lambda (x1: T).(\lambda (x2: T).(\lambda (H4: (getl i c (CHead x0 +(Bind Abbr) x1))).(\lambda (H5: (pr3 x0 x1 x2)).(\lambda (H6: (eq T u2 (lift +(S i) O x2))).(let H7 \def (eq_ind T u2 (\lambda (t: T).((iso (TLRef i) t) +\to (\forall (P: Prop).P))) H1 (lift (S i) O x2) H6) in (eq_ind_r T (lift (S +i) O x2) (\lambda (t: T).(pr3 c (lift (S i) O w) t)) (let H8 \def (eq_ind C +(CHead d (Bind Abbr) w) (\lambda (c0: C).(getl i c c0)) H (CHead x0 (Bind +Abbr) x1) (getl_mono c (CHead d (Bind Abbr) w) i H (CHead x0 (Bind Abbr) x1) +H4)) in (let H9 \def (f_equal C C (\lambda (e: C).(match e in C return +(\lambda (_: C).C) with [(CSort _) \Rightarrow d | (CHead c0 _ _) \Rightarrow +c0])) (CHead d (Bind Abbr) w) (CHead x0 (Bind Abbr) x1) (getl_mono c (CHead d +(Bind Abbr) w) i H (CHead x0 (Bind Abbr) x1) H4)) in ((let H10 \def (f_equal +C T (\lambda (e: C).(match e in C return (\lambda (_: C).T) with [(CSort _) +\Rightarrow w | (CHead _ _ t) \Rightarrow t])) (CHead d (Bind Abbr) w) (CHead +x0 (Bind Abbr) x1) (getl_mono c (CHead d (Bind Abbr) w) i H (CHead x0 (Bind +Abbr) x1) H4)) in (\lambda (H11: (eq C d x0)).(let H12 \def (eq_ind_r T x1 +(\lambda (t: T).(getl i c (CHead x0 (Bind Abbr) t))) H8 w H10) in (let H13 +\def (eq_ind_r T x1 (\lambda (t: T).(pr3 x0 t x2)) H5 w H10) in (let H14 \def +(eq_ind_r C x0 (\lambda (c0: C).(getl i c (CHead c0 (Bind Abbr) w))) H12 d +H11) in (let H15 \def (eq_ind_r C x0 (\lambda (c0: C).(pr3 c0 w x2)) H13 d +H11) in (pr3_lift c d (S i) O (getl_drop Abbr c d w i H14) w x2 H15))))))) +H9))) u2 H6)))))))) H3)) H2))))) (\lambda (t: T).(\lambda (t0: +TList).(\lambda (H0: ((\forall (u2: T).((pr3 c (THeads (Flat Appl) t0 (TLRef +i)) u2) \to ((((iso (THeads (Flat Appl) t0 (TLRef i)) u2) \to (\forall (P: +Prop).P))) \to (pr3 c (THeads (Flat Appl) t0 (lift (S i) O w)) +u2)))))).(\lambda (u2: T).(\lambda (H1: (pr3 c (THead (Flat Appl) t (THeads +(Flat Appl) t0 (TLRef i))) u2)).(\lambda (H2: (((iso (THead (Flat Appl) t +(THeads (Flat Appl) t0 (TLRef i))) u2) \to (\forall (P: Prop).P)))).(let H3 +\def (pr3_gen_appl c t (THeads (Flat Appl) t0 (TLRef i)) u2 H1) in (or3_ind +(ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 +t2)))) (\lambda (u3: T).(\lambda (_: T).(pr3 c t u3))) (\lambda (_: +T).(\lambda (t2: T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) t2)))) (ex4_4 T +T T T (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 +c (THead (Bind Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda +(u3: T).(\lambda (_: T).(pr3 c t u3))))) (\lambda (y1: T).(\lambda (z1: +T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) +(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: +T).(\lambda (t2: T).(\forall (b: B).(\forall (u: T).(pr3 (CHead c (Bind b) u) +z1 t2)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) +(\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda +(_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) (THead (Bind +b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda +(z2: T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b) y2 (THead +(Flat Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_: B).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr3 c t +u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2))))))) (\lambda (b: +B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda +(y2: T).(pr3 (CHead c (Bind b) y2) z1 z2)))))))) (pr3 c (THead (Flat Appl) t +(THeads (Flat Appl) t0 (lift (S i) O w))) u2) (\lambda (H4: (ex3_2 T T +(\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 t2)))) +(\lambda (u3: T).(\lambda (_: T).(pr3 c t u3))) (\lambda (_: T).(\lambda (t2: +T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) t2))))).(ex3_2_ind T T (\lambda +(u3: T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 t2)))) (\lambda (u3: +T).(\lambda (_: T).(pr3 c t u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 c +(THeads (Flat Appl) t0 (TLRef i)) t2))) (pr3 c (THead (Flat Appl) t (THeads +(Flat Appl) t0 (lift (S i) O w))) u2) (\lambda (x0: T).(\lambda (x1: +T).(\lambda (H5: (eq T u2 (THead (Flat Appl) x0 x1))).(\lambda (_: (pr3 c t +x0)).(\lambda (_: (pr3 c (THeads (Flat Appl) t0 (TLRef i)) x1)).(let H8 \def +(eq_ind T u2 (\lambda (t1: T).((iso (THead (Flat Appl) t (THeads (Flat Appl) +t0 (TLRef i))) t1) \to (\forall (P: Prop).P))) H2 (THead (Flat Appl) x0 x1) +H5) in (eq_ind_r T (THead (Flat Appl) x0 x1) (\lambda (t1: T).(pr3 c (THead +(Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O w))) t1)) (H8 (iso_head t +x0 (THeads (Flat Appl) t0 (TLRef i)) x1 (Flat Appl)) (pr3 c (THead (Flat +Appl) t (THeads (Flat Appl) t0 (lift (S i) O w))) (THead (Flat Appl) x0 x1))) +u2 H5))))))) H4)) (\lambda (H4: (ex4_4 T T T T (\lambda (_: T).(\lambda (_: +T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c (THead (Bind Abbr) u3 t2) u2))))) +(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr3 c t +u3))))) (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: +T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) (THead (Bind Abst) y1 z1)))))) +(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall +(b: B).(\forall (u: T).(pr3 (CHead c (Bind b) u) z1 t2))))))))).(ex4_4_ind T +T T T (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 +c (THead (Bind Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda +(u3: T).(\lambda (_: T).(pr3 c t u3))))) (\lambda (y1: T).(\lambda (z1: +T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) +(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: +T).(\lambda (t2: T).(\forall (b: B).(\forall (u: T).(pr3 (CHead c (Bind b) u) +z1 t2))))))) (pr3 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O +w))) u2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: +T).(\lambda (H5: (pr3 c (THead (Bind Abbr) x2 x3) u2)).(\lambda (H6: (pr3 c t +x2)).(\lambda (H7: (pr3 c (THeads (Flat Appl) t0 (TLRef i)) (THead (Bind +Abst) x0 x1))).(\lambda (H8: ((\forall (b: B).(\forall (u: T).(pr3 (CHead c +(Bind b) u) x1 x3))))).(pr3_t (THead (Bind Abbr) t x1) (THead (Flat Appl) t +(THeads (Flat Appl) t0 (lift (S i) O w))) c (pr3_t (THead (Flat Appl) t +(THead (Bind Abst) x0 x1)) (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift +(S i) O w))) c (pr3_thin_dx c (THeads (Flat Appl) t0 (lift (S i) O w)) (THead +(Bind Abst) x0 x1) (H0 (THead (Bind Abst) x0 x1) H7 (\lambda (H9: (iso +(THeads (Flat Appl) t0 (TLRef i)) (THead (Bind Abst) x0 x1))).(\lambda (P: +Prop).(iso_flats_lref_bind_false Appl Abst i x0 x1 t0 H9 P)))) t Appl) (THead +(Bind Abbr) t x1) (pr3_pr2 c (THead (Flat Appl) t (THead (Bind Abst) x0 x1)) +(THead (Bind Abbr) t x1) (pr2_free c (THead (Flat Appl) t (THead (Bind Abst) +x0 x1)) (THead (Bind Abbr) t x1) (pr0_beta x0 t t (pr0_refl t) x1 x1 +(pr0_refl x1))))) u2 (pr3_t (THead (Bind Abbr) x2 x3) (THead (Bind Abbr) t +x1) c (pr3_head_12 c t x2 H6 (Bind Abbr) x1 x3 (H8 Abbr x2)) u2 H5)))))))))) +H4)) (\lambda (H4: (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B +b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) +(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: +T).(\lambda (z2: T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b) +y2 (THead (Flat Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_: +B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda +(_: T).(pr3 c t u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2))))))) +(\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda +(_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b) y2) z1 z2))))))))).(ex6_6_ind +B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: +B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) (THead (Bind b) y1 z1)))))))) +(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda +(u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift +(S O) O u3) z2)) u2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr3 c t u3))))))) +(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (y2: T).(pr3 c y1 y2))))))) (\lambda (b: B).(\lambda (_: +T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr3 +(CHead c (Bind b) y2) z1 z2))))))) (pr3 c (THead (Flat Appl) t (THeads (Flat +Appl) t0 (lift (S i) O w))) u2) (\lambda (x0: B).(\lambda (x1: T).(\lambda +(x2: T).(\lambda (x3: T).(\lambda (x4: T).(\lambda (x5: T).(\lambda (H5: (not +(eq B x0 Abst))).(\lambda (H6: (pr3 c (THeads (Flat Appl) t0 (TLRef i)) +(THead (Bind x0) x1 x2))).(\lambda (H7: (pr3 c (THead (Bind x0) x5 (THead +(Flat Appl) (lift (S O) O x4) x3)) u2)).(\lambda (H8: (pr3 c t x4)).(\lambda +(H9: (pr3 c x1 x5)).(\lambda (H10: (pr3 (CHead c (Bind x0) x5) x2 x3)).(pr3_t +(THead (Bind x0) x1 (THead (Flat Appl) (lift (S O) O x4) x2)) (THead (Flat +Appl) t (THeads (Flat Appl) t0 (lift (S i) O w))) c (pr3_t (THead (Bind x0) +x1 (THead (Flat Appl) (lift (S O) O t) x2)) (THead (Flat Appl) t (THeads +(Flat Appl) t0 (lift (S i) O w))) c (pr3_t (THead (Flat Appl) t (THead (Bind +x0) x1 x2)) (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O w))) c +(pr3_thin_dx c (THeads (Flat Appl) t0 (lift (S i) O w)) (THead (Bind x0) x1 +x2) (H0 (THead (Bind x0) x1 x2) H6 (\lambda (H11: (iso (THeads (Flat Appl) t0 +(TLRef i)) (THead (Bind x0) x1 x2))).(\lambda (P: +Prop).(iso_flats_lref_bind_false Appl x0 i x1 x2 t0 H11 P)))) t Appl) (THead +(Bind x0) x1 (THead (Flat Appl) (lift (S O) O t) x2)) (pr3_pr2 c (THead (Flat +Appl) t (THead (Bind x0) x1 x2)) (THead (Bind x0) x1 (THead (Flat Appl) (lift +(S O) O t) x2)) (pr2_free c (THead (Flat Appl) t (THead (Bind x0) x1 x2)) +(THead (Bind x0) x1 (THead (Flat Appl) (lift (S O) O t) x2)) (pr0_upsilon x0 +H5 t t (pr0_refl t) x1 x1 (pr0_refl x1) x2 x2 (pr0_refl x2))))) (THead (Bind +x0) x1 (THead (Flat Appl) (lift (S O) O x4) x2)) (pr3_head_12 c x1 x1 +(pr3_refl c x1) (Bind x0) (THead (Flat Appl) (lift (S O) O t) x2) (THead +(Flat Appl) (lift (S O) O x4) x2) (pr3_head_12 (CHead c (Bind x0) x1) (lift +(S O) O t) (lift (S O) O x4) (pr3_lift (CHead c (Bind x0) x1) c (S O) O +(drop_drop (Bind x0) O c c (drop_refl c) x1) t x4 H8) (Flat Appl) x2 x2 +(pr3_refl (CHead (CHead c (Bind x0) x1) (Flat Appl) (lift (S O) O x4)) x2)))) +u2 (pr3_t (THead (Bind x0) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) +(THead (Bind x0) x1 (THead (Flat Appl) (lift (S O) O x4) x2)) c (pr3_head_12 +c x1 x5 H9 (Bind x0) (THead (Flat Appl) (lift (S O) O x4) x2) (THead (Flat +Appl) (lift (S O) O x4) x3) (pr3_thin_dx (CHead c (Bind x0) x5) x2 x3 H10 +(lift (S O) O x4) Appl)) u2 H7)))))))))))))) H4)) H3)))))))) vs)))))). + +theorem pr3_iso_appl_bind: + \forall (b: B).((not (eq B b Abst)) \to (\forall (v1: T).(\forall (v2: +T).(\forall (t: T).(let u1 \def (THead (Flat Appl) v1 (THead (Bind b) v2 t)) +in (\forall (c: C).(\forall (u2: T).((pr3 c u1 u2) \to ((((iso u1 u2) \to +(\forall (P: Prop).P))) \to (pr3 c (THead (Bind b) v2 (THead (Flat Appl) +(lift (S O) O v1) t)) u2)))))))))) +\def + \lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda (v1: T).(\lambda +(v2: T).(\lambda (t: T).(\lambda (c: C).(\lambda (u2: T).(\lambda (H0: (pr3 c +(THead (Flat Appl) v1 (THead (Bind b) v2 t)) u2)).(\lambda (H1: (((iso (THead +(Flat Appl) v1 (THead (Bind b) v2 t)) u2) \to (\forall (P: Prop).P)))).(let +H2 \def (pr3_gen_appl c v1 (THead (Bind b) v2 t) u2 H0) in (or3_ind (ex3_2 T +T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 t2)))) +(\lambda (u3: T).(\lambda (_: T).(pr3 c v1 u3))) (\lambda (_: T).(\lambda +(t2: T).(pr3 c (THead (Bind b) v2 t) t2)))) (ex4_4 T T T T (\lambda (_: +T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c (THead (Bind +Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: +T).(\lambda (_: T).(pr3 c v1 u3))))) (\lambda (y1: T).(\lambda (z1: +T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THead (Bind b) v2 t) (THead (Bind +Abst) y1 z1)))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda +(t2: T).(\forall (b0: B).(\forall (u: T).(pr3 (CHead c (Bind b0) u) z1 +t2)))))))) (ex6_6 B T T T T T (\lambda (b0: B).(\lambda (_: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b0 Abst)))))))) +(\lambda (b0: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda +(_: T).(\lambda (_: T).(pr3 c (THead (Bind b) v2 t) (THead (Bind b0) y1 +z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: +T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b0) y2 (THead (Flat +Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_: B).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr3 c v1 +u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2))))))) (\lambda (b0: +B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda +(y2: T).(pr3 (CHead c (Bind b0) y2) z1 z2)))))))) (pr3 c (THead (Bind b) v2 +(THead (Flat Appl) (lift (S O) O v1) t)) u2) (\lambda (H3: (ex3_2 T T +(\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 t2)))) +(\lambda (u3: T).(\lambda (_: T).(pr3 c v1 u3))) (\lambda (_: T).(\lambda +(t2: T).(pr3 c (THead (Bind b) v2 t) t2))))).(ex3_2_ind T T (\lambda (u3: +T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 t2)))) (\lambda (u3: +T).(\lambda (_: T).(pr3 c v1 u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 c +(THead (Bind b) v2 t) t2))) (pr3 c (THead (Bind b) v2 (THead (Flat Appl) +(lift (S O) O v1) t)) u2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H4: (eq +T u2 (THead (Flat Appl) x0 x1))).(\lambda (_: (pr3 c v1 x0)).(\lambda (_: +(pr3 c (THead (Bind b) v2 t) x1)).(let H7 \def (eq_ind T u2 (\lambda (t0: +T).((iso (THead (Flat Appl) v1 (THead (Bind b) v2 t)) t0) \to (\forall (P: +Prop).P))) H1 (THead (Flat Appl) x0 x1) H4) in (eq_ind_r T (THead (Flat Appl) +x0 x1) (\lambda (t0: T).(pr3 c (THead (Bind b) v2 (THead (Flat Appl) (lift (S +O) O v1) t)) t0)) (H7 (iso_head v1 x0 (THead (Bind b) v2 t) x1 (Flat Appl)) +(pr3 c (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O v1) t)) (THead +(Flat Appl) x0 x1))) u2 H4))))))) H3)) (\lambda (H3: (ex4_4 T T T T (\lambda +(_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c (THead (Bind +Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: +T).(\lambda (_: T).(pr3 c v1 u3))))) (\lambda (y1: T).(\lambda (z1: +T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THead (Bind b) v2 t) (THead (Bind +Abst) y1 z1)))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda +(t2: T).(\forall (b0: B).(\forall (u: T).(pr3 (CHead c (Bind b0) u) z1 +t2))))))))).(ex4_4_ind T T T T (\lambda (_: T).(\lambda (_: T).(\lambda (u3: +T).(\lambda (t2: T).(pr3 c (THead (Bind Abbr) u3 t2) u2))))) (\lambda (_: +T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr3 c v1 u3))))) +(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(pr3 c +(THead (Bind b) v2 t) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda +(z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall (b0: B).(\forall (u: +T).(pr3 (CHead c (Bind b0) u) z1 t2))))))) (pr3 c (THead (Bind b) v2 (THead +(Flat Appl) (lift (S O) O v1) t)) u2) (\lambda (x0: T).(\lambda (x1: +T).(\lambda (x2: T).(\lambda (x3: T).(\lambda (H4: (pr3 c (THead (Bind Abbr) +x2 x3) u2)).(\lambda (H5: (pr3 c v1 x2)).(\lambda (H6: (pr3 c (THead (Bind b) +v2 t) (THead (Bind Abst) x0 x1))).(\lambda (H7: ((\forall (b0: B).(\forall +(u: T).(pr3 (CHead c (Bind b0) u) x1 x3))))).(pr3_t (THead (Bind Abbr) x2 x3) +(THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O v1) t)) c (let H_x \def +(pr3_gen_bind b H c v2 t (THead (Bind Abst) x0 x1) H6) in (let H8 \def H_x in +(or_ind (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T (THead (Bind Abst) +x0 x1) (THead (Bind b) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr3 c v2 +u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind b) v2) t t2)))) +(pr3 (CHead c (Bind b) v2) t (lift (S O) O (THead (Bind Abst) x0 x1))) (pr3 c +(THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O v1) t)) (THead (Bind +Abbr) x2 x3)) (\lambda (H9: (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq +T (THead (Bind Abst) x0 x1) (THead (Bind b) u3 t2)))) (\lambda (u3: +T).(\lambda (_: T).(pr3 c v2 u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 +(CHead c (Bind b) v2) t t2))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t2: +T).(eq T (THead (Bind Abst) x0 x1) (THead (Bind b) u3 t2)))) (\lambda (u3: +T).(\lambda (_: T).(pr3 c v2 u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 +(CHead c (Bind b) v2) t t2))) (pr3 c (THead (Bind b) v2 (THead (Flat Appl) +(lift (S O) O v1) t)) (THead (Bind Abbr) x2 x3)) (\lambda (x4: T).(\lambda +(x5: T).(\lambda (H10: (eq T (THead (Bind Abst) x0 x1) (THead (Bind b) x4 +x5))).(\lambda (H11: (pr3 c v2 x4)).(\lambda (H12: (pr3 (CHead c (Bind b) v2) +t x5)).(let H13 \def (f_equal T B (\lambda (e: T).(match e in T return +(\lambda (_: T).B) with [(TSort _) \Rightarrow Abst | (TLRef _) \Rightarrow +Abst | (THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).B) with +[(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow Abst])])) (THead (Bind Abst) +x0 x1) (THead (Bind b) x4 x5) H10) in ((let H14 \def (f_equal T T (\lambda +(e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 +| (TLRef _) \Rightarrow x0 | (THead _ t0 _) \Rightarrow t0])) (THead (Bind +Abst) x0 x1) (THead (Bind b) x4 x5) H10) in ((let H15 \def (f_equal T T +(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) +\Rightarrow x1 | (TLRef _) \Rightarrow x1 | (THead _ _ t0) \Rightarrow t0])) +(THead (Bind Abst) x0 x1) (THead (Bind b) x4 x5) H10) in (\lambda (H16: (eq T +x0 x4)).(\lambda (H17: (eq B Abst b)).(let H18 \def (eq_ind_r T x5 (\lambda +(t0: T).(pr3 (CHead c (Bind b) v2) t t0)) H12 x1 H15) in (let H19 \def +(eq_ind_r T x4 (\lambda (t0: T).(pr3 c v2 t0)) H11 x0 H16) in (let H20 \def +(eq_ind_r B b (\lambda (b0: B).(pr3 (CHead c (Bind b0) v2) t x1)) H18 Abst +H17) in (let H21 \def (eq_ind_r B b (\lambda (b0: B).(not (eq B b0 Abst))) H +Abst H17) in (eq_ind B Abst (\lambda (b0: B).(pr3 c (THead (Bind b0) v2 +(THead (Flat Appl) (lift (S O) O v1) t)) (THead (Bind Abbr) x2 x3))) (let H22 +\def (match (H21 (refl_equal B Abst)) in False return (\lambda (_: +False).(pr3 c (THead (Bind Abst) v2 (THead (Flat Appl) (lift (S O) O v1) t)) +(THead (Bind Abbr) x2 x3))) with []) in H22) b H17)))))))) H14)) H13))))))) +H9)) (\lambda (H9: (pr3 (CHead c (Bind b) v2) t (lift (S O) O (THead (Bind +Abst) x0 x1)))).(pr3_t (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O +x2) (lift (S O) O (THead (Bind Abst) x0 x1)))) (THead (Bind b) v2 (THead +(Flat Appl) (lift (S O) O v1) t)) c (pr3_head_2 c v2 (THead (Flat Appl) (lift +(S O) O v1) t) (THead (Flat Appl) (lift (S O) O x2) (lift (S O) O (THead +(Bind Abst) x0 x1))) (Bind b) (pr3_flat (CHead c (Bind b) v2) (lift (S O) O +v1) (lift (S O) O x2) (pr3_lift (CHead c (Bind b) v2) c (S O) O (drop_drop +(Bind b) O c c (drop_refl c) v2) v1 x2 H5) t (lift (S O) O (THead (Bind Abst) +x0 x1)) H9 Appl)) (THead (Bind Abbr) x2 x3) (eq_ind T (lift (S O) O (THead +(Flat Appl) x2 (THead (Bind Abst) x0 x1))) (\lambda (t0: T).(pr3 c (THead +(Bind b) v2 t0) (THead (Bind Abbr) x2 x3))) (pr3_sing c (THead (Bind Abbr) x2 +x1) (THead (Bind b) v2 (lift (S O) O (THead (Flat Appl) x2 (THead (Bind Abst) +x0 x1)))) (pr2_free c (THead (Bind b) v2 (lift (S O) O (THead (Flat Appl) x2 +(THead (Bind Abst) x0 x1)))) (THead (Bind Abbr) x2 x1) (pr0_zeta b H (THead +(Flat Appl) x2 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) x2 x1) (pr0_beta +x0 x2 x2 (pr0_refl x2) x1 x1 (pr0_refl x1)) v2)) (THead (Bind Abbr) x2 x3) +(pr3_head_12 c x2 x2 (pr3_refl c x2) (Bind Abbr) x1 x3 (H7 Abbr x2))) (THead +(Flat Appl) (lift (S O) O x2) (lift (S O) O (THead (Bind Abst) x0 x1))) +(lift_flat Appl x2 (THead (Bind Abst) x0 x1) (S O) O)))) H8))) u2 H4))))))))) +H3)) (\lambda (H3: (ex6_6 B T T T T T (\lambda (b0: B).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B +b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda +(_: T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THead (Bind b) v2 t) (THead +(Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: +T).(\lambda (z2: T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b0) +y2 (THead (Flat Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_: +B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda +(_: T).(pr3 c v1 u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2))))))) +(\lambda (b0: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda +(_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b0) y2) z1 z2))))))))).(ex6_6_ind +B T T T T T (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: +B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(pr3 c (THead (Bind b) v2 t) (THead (Bind b0) y1 z1)))))))) (\lambda +(b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u3: +T).(\lambda (y2: T).(pr3 c (THead (Bind b0) y2 (THead (Flat Appl) (lift (S O) +O u3) z2)) u2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(\lambda (u3: T).(\lambda (_: T).(pr3 c v1 u3))))))) (\lambda (_: +B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda +(y2: T).(pr3 c y1 y2))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (z1: +T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b0) +y2) z1 z2))))))) (pr3 c (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O +v1) t)) u2) (\lambda (x0: B).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: +T).(\lambda (x4: T).(\lambda (x5: T).(\lambda (H4: (not (eq B x0 +Abst))).(\lambda (H5: (pr3 c (THead (Bind b) v2 t) (THead (Bind x0) x1 +x2))).(\lambda (H6: (pr3 c (THead (Bind x0) x5 (THead (Flat Appl) (lift (S O) +O x4) x3)) u2)).(\lambda (H7: (pr3 c v1 x4)).(\lambda (H8: (pr3 c x1 +x5)).(\lambda (H9: (pr3 (CHead c (Bind x0) x5) x2 x3)).(pr3_t (THead (Bind +x0) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) (THead (Bind b) v2 (THead +(Flat Appl) (lift (S O) O v1) t)) c (let H_x \def (pr3_gen_bind b H c v2 t +(THead (Bind x0) x1 x2) H5) in (let H10 \def H_x in (or_ind (ex3_2 T T +(\lambda (u3: T).(\lambda (t2: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind +b) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr3 c v2 u3))) (\lambda (_: +T).(\lambda (t2: T).(pr3 (CHead c (Bind b) v2) t t2)))) (pr3 (CHead c (Bind +b) v2) t (lift (S O) O (THead (Bind x0) x1 x2))) (pr3 c (THead (Bind b) v2 +(THead (Flat Appl) (lift (S O) O v1) t)) (THead (Bind x0) x5 (THead (Flat +Appl) (lift (S O) O x4) x3))) (\lambda (H11: (ex3_2 T T (\lambda (u3: +T).(\lambda (t2: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) u3 t2)))) +(\lambda (u3: T).(\lambda (_: T).(pr3 c v2 u3))) (\lambda (_: T).(\lambda +(t2: T).(pr3 (CHead c (Bind b) v2) t t2))))).(ex3_2_ind T T (\lambda (u3: +T).(\lambda (t2: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) u3 t2)))) +(\lambda (u3: T).(\lambda (_: T).(pr3 c v2 u3))) (\lambda (_: T).(\lambda +(t2: T).(pr3 (CHead c (Bind b) v2) t t2))) (pr3 c (THead (Bind b) v2 (THead +(Flat Appl) (lift (S O) O v1) t)) (THead (Bind x0) x5 (THead (Flat Appl) +(lift (S O) O x4) x3))) (\lambda (x6: T).(\lambda (x7: T).(\lambda (H12: (eq +T (THead (Bind x0) x1 x2) (THead (Bind b) x6 x7))).(\lambda (H13: (pr3 c v2 +x6)).(\lambda (H14: (pr3 (CHead c (Bind b) v2) t x7)).(let H15 \def (f_equal +T B (\lambda (e: T).(match e in T return (\lambda (_: T).B) with [(TSort _) +\Rightarrow x0 | (TLRef _) \Rightarrow x0 | (THead k _ _) \Rightarrow (match +k in K return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) +\Rightarrow x0])])) (THead (Bind x0) x1 x2) (THead (Bind b) x6 x7) H12) in +((let H16 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: +T).T) with [(TSort _) \Rightarrow x1 | (TLRef _) \Rightarrow x1 | (THead _ t0 +_) \Rightarrow t0])) (THead (Bind x0) x1 x2) (THead (Bind b) x6 x7) H12) in +((let H17 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: +T).T) with [(TSort _) \Rightarrow x2 | (TLRef _) \Rightarrow x2 | (THead _ _ +t0) \Rightarrow t0])) (THead (Bind x0) x1 x2) (THead (Bind b) x6 x7) H12) in +(\lambda (H18: (eq T x1 x6)).(\lambda (H19: (eq B x0 b)).(let H20 \def +(eq_ind_r T x7 (\lambda (t0: T).(pr3 (CHead c (Bind b) v2) t t0)) H14 x2 H17) +in (let H21 \def (eq_ind_r T x6 (\lambda (t0: T).(pr3 c v2 t0)) H13 x1 H18) +in (let H22 \def (eq_ind B x0 (\lambda (b0: B).(pr3 (CHead c (Bind b0) x5) x2 +x3)) H9 b H19) in (let H23 \def (eq_ind B x0 (\lambda (b0: B).(not (eq B b0 +Abst))) H4 b H19) in (eq_ind_r B b (\lambda (b0: B).(pr3 c (THead (Bind b) v2 +(THead (Flat Appl) (lift (S O) O v1) t)) (THead (Bind b0) x5 (THead (Flat +Appl) (lift (S O) O x4) x3)))) (pr3_head_21 c v2 x5 (pr3_t x1 v2 c H21 x5 H8) +(Bind b) (THead (Flat Appl) (lift (S O) O v1) t) (THead (Flat Appl) (lift (S +O) O x4) x3) (pr3_flat (CHead c (Bind b) v2) (lift (S O) O v1) (lift (S O) O +x4) (pr3_lift (CHead c (Bind b) v2) c (S O) O (drop_drop (Bind b) O c c +(drop_refl c) v2) v1 x4 H7) t x3 (pr3_t x2 t (CHead c (Bind b) v2) H20 x3 +(pr3_pr3_pr3_t c v2 x1 H21 x2 x3 (Bind b) (pr3_pr3_pr3_t c x1 x5 H8 x2 x3 +(Bind b) H22))) Appl)) x0 H19)))))))) H16)) H15))))))) H11)) (\lambda (H11: +(pr3 (CHead c (Bind b) v2) t (lift (S O) O (THead (Bind x0) x1 x2)))).(pr3_t +(THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O x4) (lift (S O) O (THead +(Bind x0) x1 x2)))) (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O v1) +t)) c (pr3_head_2 c v2 (THead (Flat Appl) (lift (S O) O v1) t) (THead (Flat +Appl) (lift (S O) O x4) (lift (S O) O (THead (Bind x0) x1 x2))) (Bind b) +(pr3_flat (CHead c (Bind b) v2) (lift (S O) O v1) (lift (S O) O x4) (pr3_lift +(CHead c (Bind b) v2) c (S O) O (drop_drop (Bind b) O c c (drop_refl c) v2) +v1 x4 H7) t (lift (S O) O (THead (Bind x0) x1 x2)) H11 Appl)) (THead (Bind +x0) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) (eq_ind T (lift (S O) O +(THead (Flat Appl) x4 (THead (Bind x0) x1 x2))) (\lambda (t0: T).(pr3 c +(THead (Bind b) v2 t0) (THead (Bind x0) x5 (THead (Flat Appl) (lift (S O) O +x4) x3)))) (pr3_sing c (THead (Bind x0) x1 (THead (Flat Appl) (lift (S O) O +x4) x2)) (THead (Bind b) v2 (lift (S O) O (THead (Flat Appl) x4 (THead (Bind +x0) x1 x2)))) (pr2_free c (THead (Bind b) v2 (lift (S O) O (THead (Flat Appl) +x4 (THead (Bind x0) x1 x2)))) (THead (Bind x0) x1 (THead (Flat Appl) (lift (S +O) O x4) x2)) (pr0_zeta b H (THead (Flat Appl) x4 (THead (Bind x0) x1 x2)) +(THead (Bind x0) x1 (THead (Flat Appl) (lift (S O) O x4) x2)) (pr0_upsilon x0 +H4 x4 x4 (pr0_refl x4) x1 x1 (pr0_refl x1) x2 x2 (pr0_refl x2)) v2)) (THead +(Bind x0) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) (pr3_head_12 c x1 x5 +H8 (Bind x0) (THead (Flat Appl) (lift (S O) O x4) x2) (THead (Flat Appl) +(lift (S O) O x4) x3) (pr3_thin_dx (CHead c (Bind x0) x5) x2 x3 H9 (lift (S +O) O x4) Appl))) (THead (Flat Appl) (lift (S O) O x4) (lift (S O) O (THead +(Bind x0) x1 x2))) (lift_flat Appl x4 (THead (Bind x0) x1 x2) (S O) O)))) +H10))) u2 H6))))))))))))) H3)) H2)))))))))). + +theorem pr3_iso_appls_appl_bind: + \forall (b: B).((not (eq B b Abst)) \to (\forall (v: T).(\forall (u: +T).(\forall (t: T).(\forall (vs: TList).(let u1 \def (THeads (Flat Appl) vs +(THead (Flat Appl) v (THead (Bind b) u t))) in (\forall (c: C).(\forall (u2: +T).((pr3 c u1 u2) \to ((((iso u1 u2) \to (\forall (P: Prop).P))) \to (pr3 c +(THeads (Flat Appl) vs (THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) +t))) u2))))))))))) +\def + \lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda (v: T).(\lambda +(u: T).(\lambda (t: T).(\lambda (vs: TList).(TList_ind (\lambda (t0: +TList).(let u1 \def (THeads (Flat Appl) t0 (THead (Flat Appl) v (THead (Bind +b) u t))) in (\forall (c: C).(\forall (u2: T).((pr3 c u1 u2) \to ((((iso u1 +u2) \to (\forall (P: Prop).P))) \to (pr3 c (THeads (Flat Appl) t0 (THead +(Bind b) u (THead (Flat Appl) (lift (S O) O v) t))) u2))))))) (\lambda (c: +C).(\lambda (u2: T).(\lambda (H0: (pr3 c (THead (Flat Appl) v (THead (Bind b) +u t)) u2)).(\lambda (H1: (((iso (THead (Flat Appl) v (THead (Bind b) u t)) +u2) \to (\forall (P: Prop).P)))).(pr3_iso_appl_bind b H v u t c u2 H0 H1))))) +(\lambda (t0: T).(\lambda (t1: TList).(\lambda (H0: ((\forall (c: C).(\forall +(u2: T).((pr3 c (THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind b) u +t))) u2) \to ((((iso (THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind +b) u t))) u2) \to (\forall (P: Prop).P))) \to (pr3 c (THeads (Flat Appl) t1 +(THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) t))) u2))))))).(\lambda +(c: C).(\lambda (u2: T).(\lambda (H1: (pr3 c (THead (Flat Appl) t0 (THeads +(Flat Appl) t1 (THead (Flat Appl) v (THead (Bind b) u t)))) u2)).(\lambda +(H2: (((iso (THead (Flat Appl) t0 (THeads (Flat Appl) t1 (THead (Flat Appl) v +(THead (Bind b) u t)))) u2) \to (\forall (P: Prop).P)))).(let H3 \def +(pr3_gen_appl c t0 (THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind +b) u t))) u2 H1) in (or3_ind (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq +T u2 (THead (Flat Appl) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr3 c t0 +u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 c (THeads (Flat Appl) t1 (THead +(Flat Appl) v (THead (Bind b) u t))) t2)))) (ex4_4 T T T T (\lambda (_: +T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c (THead (Bind +Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: +T).(\lambda (_: T).(pr3 c t0 u3))))) (\lambda (y1: T).(\lambda (z1: +T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t1 (THead (Flat +Appl) v (THead (Bind b) u t))) (THead (Bind Abst) y1 z1)))))) (\lambda (_: +T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall (b0: +B).(\forall (u0: T).(pr3 (CHead c (Bind b0) u0) z1 t2)))))))) (ex6_6 B T T T +T T (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(\lambda (_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda +(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(pr3 +c (THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind b) u t))) (THead +(Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: +T).(\lambda (z2: T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b0) +y2 (THead (Flat Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_: +B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda +(_: T).(pr3 c t0 u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2))))))) +(\lambda (b0: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda +(_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b0) y2) z1 z2)))))))) (pr3 c +(THead (Flat Appl) t0 (THeads (Flat Appl) t1 (THead (Bind b) u (THead (Flat +Appl) (lift (S O) O v) t)))) u2) (\lambda (H4: (ex3_2 T T (\lambda (u3: +T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 t2)))) (\lambda (u3: +T).(\lambda (_: T).(pr3 c t0 u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 c +(THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind b) u t))) +t2))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead +(Flat Appl) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr3 c t0 u3))) +(\lambda (_: T).(\lambda (t2: T).(pr3 c (THeads (Flat Appl) t1 (THead (Flat +Appl) v (THead (Bind b) u t))) t2))) (pr3 c (THead (Flat Appl) t0 (THeads +(Flat Appl) t1 (THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) t)))) +u2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H5: (eq T u2 (THead (Flat +Appl) x0 x1))).(\lambda (_: (pr3 c t0 x0)).(\lambda (_: (pr3 c (THeads (Flat +Appl) t1 (THead (Flat Appl) v (THead (Bind b) u t))) x1)).(let H8 \def +(eq_ind T u2 (\lambda (t2: T).((iso (THead (Flat Appl) t0 (THeads (Flat Appl) +t1 (THead (Flat Appl) v (THead (Bind b) u t)))) t2) \to (\forall (P: +Prop).P))) H2 (THead (Flat Appl) x0 x1) H5) in (eq_ind_r T (THead (Flat Appl) +x0 x1) (\lambda (t2: T).(pr3 c (THead (Flat Appl) t0 (THeads (Flat Appl) t1 +(THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) t)))) t2)) (H8 +(iso_head t0 x0 (THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind b) u +t))) x1 (Flat Appl)) (pr3 c (THead (Flat Appl) t0 (THeads (Flat Appl) t1 +(THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) t)))) (THead (Flat +Appl) x0 x1))) u2 H5))))))) H4)) (\lambda (H4: (ex4_4 T T T T (\lambda (_: +T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c (THead (Bind +Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: +T).(\lambda (_: T).(pr3 c t0 u3))))) (\lambda (y1: T).(\lambda (z1: +T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t1 (THead (Flat +Appl) v (THead (Bind b) u t))) (THead (Bind Abst) y1 z1)))))) (\lambda (_: +T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall (b0: +B).(\forall (u0: T).(pr3 (CHead c (Bind b0) u0) z1 t2))))))))).(ex4_4_ind T T +T T (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c +(THead (Bind Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda +(u3: T).(\lambda (_: T).(pr3 c t0 u3))))) (\lambda (y1: T).(\lambda (z1: +T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t1 (THead (Flat +Appl) v (THead (Bind b) u t))) (THead (Bind Abst) y1 z1)))))) (\lambda (_: +T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall (b0: +B).(\forall (u0: T).(pr3 (CHead c (Bind b0) u0) z1 t2))))))) (pr3 c (THead +(Flat Appl) t0 (THeads (Flat Appl) t1 (THead (Bind b) u (THead (Flat Appl) +(lift (S O) O v) t)))) u2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (x2: +T).(\lambda (x3: T).(\lambda (H5: (pr3 c (THead (Bind Abbr) x2 x3) +u2)).(\lambda (H6: (pr3 c t0 x2)).(\lambda (H7: (pr3 c (THeads (Flat Appl) t1 +(THead (Flat Appl) v (THead (Bind b) u t))) (THead (Bind Abst) x0 +x1))).(\lambda (H8: ((\forall (b0: B).(\forall (u0: T).(pr3 (CHead c (Bind +b0) u0) x1 x3))))).(pr3_t (THead (Bind Abbr) t0 x1) (THead (Flat Appl) t0 +(THeads (Flat Appl) t1 (THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) +t)))) c (pr3_t (THead (Flat Appl) t0 (THead (Bind Abst) x0 x1)) (THead (Flat +Appl) t0 (THeads (Flat Appl) t1 (THead (Bind b) u (THead (Flat Appl) (lift (S +O) O v) t)))) c (pr3_thin_dx c (THeads (Flat Appl) t1 (THead (Bind b) u +(THead (Flat Appl) (lift (S O) O v) t))) (THead (Bind Abst) x0 x1) (H0 c +(THead (Bind Abst) x0 x1) H7 (\lambda (H9: (iso (THeads (Flat Appl) t1 (THead +(Flat Appl) v (THead (Bind b) u t))) (THead (Bind Abst) x0 x1))).(\lambda (P: +Prop).(iso_flats_flat_bind_false Appl Appl Abst x0 v x1 (THead (Bind b) u t) +t1 H9 P)))) t0 Appl) (THead (Bind Abbr) t0 x1) (pr3_pr2 c (THead (Flat Appl) +t0 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) t0 x1) (pr2_free c (THead +(Flat Appl) t0 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) t0 x1) (pr0_beta +x0 t0 t0 (pr0_refl t0) x1 x1 (pr0_refl x1))))) u2 (pr3_t (THead (Bind Abbr) +x2 x3) (THead (Bind Abbr) t0 x1) c (pr3_head_12 c t0 x2 H6 (Bind Abbr) x1 x3 +(H8 Abbr x2)) u2 H5)))))))))) H4)) (\lambda (H4: (ex6_6 B T T T T T (\lambda +(b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: +T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(pr3 c +(THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind b) u t))) (THead +(Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: +T).(\lambda (z2: T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b0) +y2 (THead (Flat Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_: +B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda +(_: T).(pr3 c t0 u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2))))))) +(\lambda (b0: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda +(_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b0) y2) z1 z2))))))))).(ex6_6_ind +B T T T T T (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: +B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(pr3 c (THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind b) u +t))) (THead (Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda +(_: T).(\lambda (z2: T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind +b0) y2 (THead (Flat Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_: +B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda +(_: T).(pr3 c t0 u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2))))))) +(\lambda (b0: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda +(_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b0) y2) z1 z2))))))) (pr3 c +(THead (Flat Appl) t0 (THeads (Flat Appl) t1 (THead (Bind b) u (THead (Flat +Appl) (lift (S O) O v) t)))) u2) (\lambda (x0: B).(\lambda (x1: T).(\lambda +(x2: T).(\lambda (x3: T).(\lambda (x4: T).(\lambda (x5: T).(\lambda (H5: (not +(eq B x0 Abst))).(\lambda (H6: (pr3 c (THeads (Flat Appl) t1 (THead (Flat +Appl) v (THead (Bind b) u t))) (THead (Bind x0) x1 x2))).(\lambda (H7: (pr3 c +(THead (Bind x0) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) u2)).(\lambda +(H8: (pr3 c t0 x4)).(\lambda (H9: (pr3 c x1 x5)).(\lambda (H10: (pr3 (CHead c +(Bind x0) x5) x2 x3)).(pr3_t (THead (Bind x0) x1 (THead (Flat Appl) (lift (S +O) O x4) x2)) (THead (Flat Appl) t0 (THeads (Flat Appl) t1 (THead (Bind b) u +(THead (Flat Appl) (lift (S O) O v) t)))) c (pr3_t (THead (Bind x0) x1 (THead +(Flat Appl) (lift (S O) O t0) x2)) (THead (Flat Appl) t0 (THeads (Flat Appl) +t1 (THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) t)))) c (pr3_t +(THead (Flat Appl) t0 (THead (Bind x0) x1 x2)) (THead (Flat Appl) t0 (THeads +(Flat Appl) t1 (THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) t)))) c +(pr3_thin_dx c (THeads (Flat Appl) t1 (THead (Bind b) u (THead (Flat Appl) +(lift (S O) O v) t))) (THead (Bind x0) x1 x2) (H0 c (THead (Bind x0) x1 x2) +H6 (\lambda (H11: (iso (THeads (Flat Appl) t1 (THead (Flat Appl) v (THead +(Bind b) u t))) (THead (Bind x0) x1 x2))).(\lambda (P: +Prop).(iso_flats_flat_bind_false Appl Appl x0 x1 v x2 (THead (Bind b) u t) t1 +H11 P)))) t0 Appl) (THead (Bind x0) x1 (THead (Flat Appl) (lift (S O) O t0) +x2)) (pr3_pr2 c (THead (Flat Appl) t0 (THead (Bind x0) x1 x2)) (THead (Bind +x0) x1 (THead (Flat Appl) (lift (S O) O t0) x2)) (pr2_free c (THead (Flat +Appl) t0 (THead (Bind x0) x1 x2)) (THead (Bind x0) x1 (THead (Flat Appl) +(lift (S O) O t0) x2)) (pr0_upsilon x0 H5 t0 t0 (pr0_refl t0) x1 x1 (pr0_refl +x1) x2 x2 (pr0_refl x2))))) (THead (Bind x0) x1 (THead (Flat Appl) (lift (S +O) O x4) x2)) (pr3_head_12 c x1 x1 (pr3_refl c x1) (Bind x0) (THead (Flat +Appl) (lift (S O) O t0) x2) (THead (Flat Appl) (lift (S O) O x4) x2) +(pr3_head_12 (CHead c (Bind x0) x1) (lift (S O) O t0) (lift (S O) O x4) +(pr3_lift (CHead c (Bind x0) x1) c (S O) O (drop_drop (Bind x0) O c c +(drop_refl c) x1) t0 x4 H8) (Flat Appl) x2 x2 (pr3_refl (CHead (CHead c (Bind +x0) x1) (Flat Appl) (lift (S O) O x4)) x2)))) u2 (pr3_t (THead (Bind x0) x5 +(THead (Flat Appl) (lift (S O) O x4) x3)) (THead (Bind x0) x1 (THead (Flat +Appl) (lift (S O) O x4) x2)) c (pr3_head_12 c x1 x5 H9 (Bind x0) (THead (Flat +Appl) (lift (S O) O x4) x2) (THead (Flat Appl) (lift (S O) O x4) x3) +(pr3_thin_dx (CHead c (Bind x0) x5) x2 x3 H10 (lift (S O) O x4) Appl)) u2 +H7)))))))))))))) H4)) H3))))))))) vs)))))). + +theorem pr3_iso_appls_bind: + \forall (b: B).((not (eq B b Abst)) \to (\forall (vs: TList).(\forall (u: +T).(\forall (t: T).(let u1 \def (THeads (Flat Appl) vs (THead (Bind b) u t)) +in (\forall (c: C).(\forall (u2: T).((pr3 c u1 u2) \to ((((iso u1 u2) \to +(\forall (P: Prop).P))) \to (pr3 c (THead (Bind b) u (THeads (Flat Appl) +(lifts (S O) O vs) t)) u2)))))))))) +\def + \lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda (vs: +TList).(tlist_ind_rew (\lambda (t: TList).(\forall (u: T).(\forall (t0: +T).(let u1 \def (THeads (Flat Appl) t (THead (Bind b) u t0)) in (\forall (c: +C).(\forall (u2: T).((pr3 c u1 u2) \to ((((iso u1 u2) \to (\forall (P: +Prop).P))) \to (pr3 c (THead (Bind b) u (THeads (Flat Appl) (lifts (S O) O t) +t0)) u2))))))))) (\lambda (u: T).(\lambda (t: T).(\lambda (c: C).(\lambda +(u2: T).(\lambda (H0: (pr3 c (THead (Bind b) u t) u2)).(\lambda (_: (((iso +(THead (Bind b) u t) u2) \to (\forall (P: Prop).P)))).H0)))))) (\lambda (ts: +TList).(\lambda (t: T).(\lambda (H0: ((\forall (u: T).(\forall (t0: +T).(\forall (c: C).(\forall (u2: T).((pr3 c (THeads (Flat Appl) ts (THead +(Bind b) u t0)) u2) \to ((((iso (THeads (Flat Appl) ts (THead (Bind b) u t0)) +u2) \to (\forall (P: Prop).P))) \to (pr3 c (THead (Bind b) u (THeads (Flat +Appl) (lifts (S O) O ts) t0)) u2))))))))).(\lambda (u: T).(\lambda (t0: +T).(\lambda (c: C).(\lambda (u2: T).(\lambda (H1: (pr3 c (THeads (Flat Appl) +(TApp ts t) (THead (Bind b) u t0)) u2)).(\lambda (H2: (((iso (THeads (Flat +Appl) (TApp ts t) (THead (Bind b) u t0)) u2) \to (\forall (P: +Prop).P)))).(eq_ind_r TList (TApp (lifts (S O) O ts) (lift (S O) O t)) +(\lambda (t1: TList).(pr3 c (THead (Bind b) u (THeads (Flat Appl) t1 t0)) +u2)) (eq_ind_r T (THeads (Flat Appl) (lifts (S O) O ts) (THead (Flat Appl) +(lift (S O) O t) t0)) (\lambda (t1: T).(pr3 c (THead (Bind b) u t1) u2)) (let +H3 \def (eq_ind T (THeads (Flat Appl) (TApp ts t) (THead (Bind b) u t0)) +(\lambda (t1: T).(pr3 c t1 u2)) H1 (THeads (Flat Appl) ts (THead (Flat Appl) +t (THead (Bind b) u t0))) (theads_tapp (Flat Appl) ts t (THead (Bind b) u +t0))) in (let H4 \def (eq_ind T (THeads (Flat Appl) (TApp ts t) (THead (Bind +b) u t0)) (\lambda (t1: T).((iso t1 u2) \to (\forall (P: Prop).P))) H2 +(THeads (Flat Appl) ts (THead (Flat Appl) t (THead (Bind b) u t0))) +(theads_tapp (Flat Appl) ts t (THead (Bind b) u t0))) in ((match ts in TList +return (\lambda (t1: TList).(((\forall (u0: T).(\forall (t2: T).(\forall (c0: +C).(\forall (u3: T).((pr3 c0 (THeads (Flat Appl) t1 (THead (Bind b) u0 t2)) +u3) \to ((((iso (THeads (Flat Appl) t1 (THead (Bind b) u0 t2)) u3) \to +(\forall (P: Prop).P))) \to (pr3 c0 (THead (Bind b) u0 (THeads (Flat Appl) +(lifts (S O) O t1) t2)) u3)))))))) \to ((pr3 c (THeads (Flat Appl) t1 (THead +(Flat Appl) t (THead (Bind b) u t0))) u2) \to ((((iso (THeads (Flat Appl) t1 +(THead (Flat Appl) t (THead (Bind b) u t0))) u2) \to (\forall (P: Prop).P))) +\to (pr3 c (THead (Bind b) u (THeads (Flat Appl) (lifts (S O) O t1) (THead +(Flat Appl) (lift (S O) O t) t0))) u2))))) with [TNil \Rightarrow (\lambda +(_: ((\forall (u0: T).(\forall (t1: T).(\forall (c0: C).(\forall (u3: +T).((pr3 c0 (THeads (Flat Appl) TNil (THead (Bind b) u0 t1)) u3) \to ((((iso +(THeads (Flat Appl) TNil (THead (Bind b) u0 t1)) u3) \to (\forall (P: +Prop).P))) \to (pr3 c0 (THead (Bind b) u0 (THeads (Flat Appl) (lifts (S O) O +TNil) t1)) u3))))))))).(\lambda (H6: (pr3 c (THeads (Flat Appl) TNil (THead +(Flat Appl) t (THead (Bind b) u t0))) u2)).(\lambda (H7: (((iso (THeads (Flat +Appl) TNil (THead (Flat Appl) t (THead (Bind b) u t0))) u2) \to (\forall (P: +Prop).P)))).(pr3_iso_appl_bind b H t u t0 c u2 H6 H7)))) | (TCons t1 t2) +\Rightarrow (\lambda (H5: ((\forall (u0: T).(\forall (t3: T).(\forall (c0: +C).(\forall (u3: T).((pr3 c0 (THeads (Flat Appl) (TCons t1 t2) (THead (Bind +b) u0 t3)) u3) \to ((((iso (THeads (Flat Appl) (TCons t1 t2) (THead (Bind b) +u0 t3)) u3) \to (\forall (P: Prop).P))) \to (pr3 c0 (THead (Bind b) u0 +(THeads (Flat Appl) (lifts (S O) O (TCons t1 t2)) t3)) u3))))))))).(\lambda +(H6: (pr3 c (THeads (Flat Appl) (TCons t1 t2) (THead (Flat Appl) t (THead +(Bind b) u t0))) u2)).(\lambda (H7: (((iso (THeads (Flat Appl) (TCons t1 t2) +(THead (Flat Appl) t (THead (Bind b) u t0))) u2) \to (\forall (P: +Prop).P)))).(H5 u (THead (Flat Appl) (lift (S O) O t) t0) c u2 +(pr3_iso_appls_appl_bind b H t u t0 (TCons t1 t2) c u2 H6 H7) (\lambda (H8: +(iso (THeads (Flat Appl) (TCons t1 t2) (THead (Bind b) u (THead (Flat Appl) +(lift (S O) O t) t0))) u2)).(\lambda (P: Prop).(H7 (iso_trans (THeads (Flat +Appl) (TCons t1 t2) (THead (Flat Appl) t (THead (Bind b) u t0))) (THeads +(Flat Appl) (TCons t1 t2) (THead (Bind b) u (THead (Flat Appl) (lift (S O) O +t) t0))) (iso_head t1 t1 (THeads (Flat Appl) t2 (THead (Flat Appl) t (THead +(Bind b) u t0))) (THeads (Flat Appl) t2 (THead (Bind b) u (THead (Flat Appl) +(lift (S O) O t) t0))) (Flat Appl)) u2 H8) P)))))))]) H0 H3 H4))) (THeads +(Flat Appl) (TApp (lifts (S O) O ts) (lift (S O) O t)) t0) (theads_tapp (Flat +Appl) (lifts (S O) O ts) (lift (S O) O t) t0)) (lifts (S O) O (TApp ts t)) +(lifts_tapp (S O) O t ts))))))))))) vs))). + +theorem sn3_cpr3_trans: + \forall (c: C).(\forall (u1: T).(\forall (u2: T).((pr3 c u1 u2) \to (\forall +(k: K).(\forall (t: T).((sn3 (CHead c k u1) t) \to (sn3 (CHead c k u2) +t))))))) +\def + \lambda (c: C).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H: (pr3 c u1 +u2)).(\lambda (k: K).(\lambda (t: T).(\lambda (H0: (sn3 (CHead c k u1) +t)).(sn3_ind (CHead c k u1) (\lambda (t0: T).(sn3 (CHead c k u2) t0)) +(\lambda (t1: T).(\lambda (_: ((\forall (t2: T).((((eq T t1 t2) \to (\forall +(P: Prop).P))) \to ((pr3 (CHead c k u1) t1 t2) \to (sn3 (CHead c k u1) +t2)))))).(\lambda (H2: ((\forall (t2: T).((((eq T t1 t2) \to (\forall (P: +Prop).P))) \to ((pr3 (CHead c k u1) t1 t2) \to (sn3 (CHead c k u2) +t2)))))).(sn3_sing (CHead c k u2) t1 (\lambda (t2: T).(\lambda (H3: (((eq T +t1 t2) \to (\forall (P: Prop).P)))).(\lambda (H4: (pr3 (CHead c k u2) t1 +t2)).(H2 t2 H3 (pr3_pr3_pr3_t c u1 u2 H t1 t2 k H4))))))))) t H0))))))). + +theorem sn3_bind: + \forall (b: B).((not (eq B b Abst)) \to (\forall (c: C).(\forall (u: +T).((sn3 c u) \to (\forall (t: T).((sn3 (CHead c (Bind b) u) t) \to (sn3 c +(THead (Bind b) u t)))))))) +\def + \lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda (c: C).(\lambda +(u: T).(\lambda (H0: (sn3 c u)).(sn3_ind c (\lambda (t: T).(\forall (t0: +T).((sn3 (CHead c (Bind b) t) t0) \to (sn3 c (THead (Bind b) t t0))))) +(\lambda (t1: T).(\lambda (_: ((\forall (t2: T).((((eq T t1 t2) \to (\forall +(P: Prop).P))) \to ((pr3 c t1 t2) \to (sn3 c t2)))))).(\lambda (H2: ((\forall +(t2: T).((((eq T t1 t2) \to (\forall (P: Prop).P))) \to ((pr3 c t1 t2) \to +(\forall (t: T).((sn3 (CHead c (Bind b) t2) t) \to (sn3 c (THead (Bind b) t2 +t))))))))).(\lambda (t: T).(\lambda (H3: (sn3 (CHead c (Bind b) t1) +t)).(sn3_ind (CHead c (Bind b) t1) (\lambda (t0: T).(sn3 c (THead (Bind b) t1 +t0))) (\lambda (t2: T).(\lambda (H4: ((\forall (t3: T).((((eq T t2 t3) \to +(\forall (P: Prop).P))) \to ((pr3 (CHead c (Bind b) t1) t2 t3) \to (sn3 +(CHead c (Bind b) t1) t3)))))).(\lambda (H5: ((\forall (t3: T).((((eq T t2 +t3) \to (\forall (P: Prop).P))) \to ((pr3 (CHead c (Bind b) t1) t2 t3) \to +(sn3 c (THead (Bind b) t1 t3))))))).(sn3_sing c (THead (Bind b) t1 t2) +(\lambda (t3: T).(\lambda (H6: (((eq T (THead (Bind b) t1 t2) t3) \to +(\forall (P: Prop).P)))).(\lambda (H7: (pr3 c (THead (Bind b) t1 t2) +t3)).(let H_x \def (pr3_gen_bind b H c t1 t2 t3 H7) in (let H8 \def H_x in +(or_ind (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Bind b) +u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c t1 u2))) (\lambda (_: +T).(\lambda (t4: T).(pr3 (CHead c (Bind b) t1) t2 t4)))) (pr3 (CHead c (Bind +b) t1) t2 (lift (S O) O t3)) (sn3 c t3) (\lambda (H9: (ex3_2 T T (\lambda +(u2: T).(\lambda (t4: T).(eq T t3 (THead (Bind b) u2 t4)))) (\lambda (u2: +T).(\lambda (_: T).(pr3 c t1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr3 +(CHead c (Bind b) t1) t2 t4))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda +(t4: T).(eq T t3 (THead (Bind b) u2 t4)))) (\lambda (u2: T).(\lambda (_: +T).(pr3 c t1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr3 (CHead c (Bind b) +t1) t2 t4))) (sn3 c t3) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H10: (eq +T t3 (THead (Bind b) x0 x1))).(\lambda (H11: (pr3 c t1 x0)).(\lambda (H12: +(pr3 (CHead c (Bind b) t1) t2 x1)).(let H13 \def (eq_ind T t3 (\lambda (t0: +T).((eq T (THead (Bind b) t1 t2) t0) \to (\forall (P: Prop).P))) H6 (THead +(Bind b) x0 x1) H10) in (eq_ind_r T (THead (Bind b) x0 x1) (\lambda (t0: +T).(sn3 c t0)) (let H_x0 \def (term_dec t1 x0) in (let H14 \def H_x0 in +(or_ind (eq T t1 x0) ((eq T t1 x0) \to (\forall (P: Prop).P)) (sn3 c (THead +(Bind b) x0 x1)) (\lambda (H15: (eq T t1 x0)).(let H16 \def (eq_ind_r T x0 +(\lambda (t0: T).((eq T (THead (Bind b) t1 t2) (THead (Bind b) t0 x1)) \to +(\forall (P: Prop).P))) H13 t1 H15) in (let H17 \def (eq_ind_r T x0 (\lambda +(t0: T).(pr3 c t1 t0)) H11 t1 H15) in (eq_ind T t1 (\lambda (t0: T).(sn3 c +(THead (Bind b) t0 x1))) (let H_x1 \def (term_dec t2 x1) in (let H18 \def +H_x1 in (or_ind (eq T t2 x1) ((eq T t2 x1) \to (\forall (P: Prop).P)) (sn3 c +(THead (Bind b) t1 x1)) (\lambda (H19: (eq T t2 x1)).(let H20 \def (eq_ind_r +T x1 (\lambda (t0: T).((eq T (THead (Bind b) t1 t2) (THead (Bind b) t1 t0)) +\to (\forall (P: Prop).P))) H16 t2 H19) in (let H21 \def (eq_ind_r T x1 +(\lambda (t0: T).(pr3 (CHead c (Bind b) t1) t2 t0)) H12 t2 H19) in (eq_ind T +t2 (\lambda (t0: T).(sn3 c (THead (Bind b) t1 t0))) (H20 (refl_equal T (THead +(Bind b) t1 t2)) (sn3 c (THead (Bind b) t1 t2))) x1 H19)))) (\lambda (H19: +(((eq T t2 x1) \to (\forall (P: Prop).P)))).(H5 x1 H19 H12)) H18))) x0 +H15)))) (\lambda (H15: (((eq T t1 x0) \to (\forall (P: Prop).P)))).(let H_x1 +\def (term_dec t2 x1) in (let H16 \def H_x1 in (or_ind (eq T t2 x1) ((eq T t2 +x1) \to (\forall (P: Prop).P)) (sn3 c (THead (Bind b) x0 x1)) (\lambda (H17: +(eq T t2 x1)).(let H18 \def (eq_ind_r T x1 (\lambda (t0: T).(pr3 (CHead c +(Bind b) t1) t2 t0)) H12 t2 H17) in (eq_ind T t2 (\lambda (t0: T).(sn3 c +(THead (Bind b) x0 t0))) (H2 x0 H15 H11 t2 (sn3_cpr3_trans c t1 x0 H11 (Bind +b) t2 (sn3_sing (CHead c (Bind b) t1) t2 H4))) x1 H17))) (\lambda (H17: (((eq +T t2 x1) \to (\forall (P: Prop).P)))).(H2 x0 H15 H11 x1 (sn3_cpr3_trans c t1 +x0 H11 (Bind b) x1 (H4 x1 H17 H12)))) H16)))) H14))) t3 H10))))))) H9)) +(\lambda (H9: (pr3 (CHead c (Bind b) t1) t2 (lift (S O) O t3))).(sn3_gen_lift +(CHead c (Bind b) t1) t3 (S O) O (sn3_pr3_trans (CHead c (Bind b) t1) t2 +(sn3_pr2_intro (CHead c (Bind b) t1) t2 (\lambda (t0: T).(\lambda (H10: (((eq +T t2 t0) \to (\forall (P: Prop).P)))).(\lambda (H11: (pr2 (CHead c (Bind b) +t1) t2 t0)).(H4 t0 H10 (pr3_pr2 (CHead c (Bind b) t1) t2 t0 H11)))))) (lift +(S O) O t3) H9) c (drop_drop (Bind b) O c c (drop_refl c) t1))) H8)))))))))) +t H3)))))) u H0))))). + +theorem nf3_appl_abbr: + \forall (c: C).(\forall (d: C).(\forall (w: T).(\forall (i: nat).((getl i c +(CHead d (Bind Abbr) w)) \to (\forall (v: T).((sn3 c (THead (Flat Appl) v +(lift (S i) O w))) \to (sn3 c (THead (Flat Appl) v (TLRef i))))))))) +\def + \lambda (c: C).(\lambda (d: C).(\lambda (w: T).(\lambda (i: nat).(\lambda +(H: (getl i c (CHead d (Bind Abbr) w))).(\lambda (v: T).(\lambda (H0: (sn3 c +(THead (Flat Appl) v (lift (S i) O w)))).(insert_eq T (THead (Flat Appl) v +(lift (S i) O w)) (\lambda (t: T).(sn3 c t)) (sn3 c (THead (Flat Appl) v +(TLRef i))) (\lambda (y: T).(\lambda (H1: (sn3 c y)).(unintro T v (\lambda +(t: T).((eq T y (THead (Flat Appl) t (lift (S i) O w))) \to (sn3 c (THead +(Flat Appl) t (TLRef i))))) (sn3_ind c (\lambda (t: T).(\forall (x: T).((eq T +t (THead (Flat Appl) x (lift (S i) O w))) \to (sn3 c (THead (Flat Appl) x +(TLRef i)))))) (\lambda (t1: T).(\lambda (H2: ((\forall (t2: T).((((eq T t1 +t2) \to (\forall (P: Prop).P))) \to ((pr3 c t1 t2) \to (sn3 c +t2)))))).(\lambda (H3: ((\forall (t2: T).((((eq T t1 t2) \to (\forall (P: +Prop).P))) \to ((pr3 c t1 t2) \to (\forall (x: T).((eq T t2 (THead (Flat +Appl) x (lift (S i) O w))) \to (sn3 c (THead (Flat Appl) x (TLRef +i)))))))))).(\lambda (x: T).(\lambda (H4: (eq T t1 (THead (Flat Appl) x (lift +(S i) O w)))).(let H5 \def (eq_ind T t1 (\lambda (t: T).(\forall (t2: +T).((((eq T t t2) \to (\forall (P: Prop).P))) \to ((pr3 c t t2) \to (\forall +(x0: T).((eq T t2 (THead (Flat Appl) x0 (lift (S i) O w))) \to (sn3 c (THead +(Flat Appl) x0 (TLRef i))))))))) H3 (THead (Flat Appl) x (lift (S i) O w)) +H4) in (let H6 \def (eq_ind T t1 (\lambda (t: T).(\forall (t2: T).((((eq T t +t2) \to (\forall (P: Prop).P))) \to ((pr3 c t t2) \to (sn3 c t2))))) H2 +(THead (Flat Appl) x (lift (S i) O w)) H4) in (sn3_pr2_intro c (THead (Flat +Appl) x (TLRef i)) (\lambda (t2: T).(\lambda (H7: (((eq T (THead (Flat Appl) +x (TLRef i)) t2) \to (\forall (P: Prop).P)))).(\lambda (H8: (pr2 c (THead +(Flat Appl) x (TLRef i)) t2)).(let H9 \def (pr2_gen_appl c x (TLRef i) t2 H8) +in (or3_ind (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead +(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c x u2))) +(\lambda (_: T).(\lambda (t3: T).(pr2 c (TLRef i) t3)))) (ex4_4 T T T T +(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T +(TLRef i) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: +T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) +(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c x +u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: +T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) z1 t3)))))))) +(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: +B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(eq T (TLRef i) (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda +(_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq +T t2 (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) +(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: +T).(\lambda (_: T).(pr2 c x u2))))))) (\lambda (_: B).(\lambda (y1: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 +y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: +T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))) +(sn3 c t2) (\lambda (H10: (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T +t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c x +u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c (TLRef i) t3))))).(ex3_2_ind T +T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 t3)))) +(\lambda (u2: T).(\lambda (_: T).(pr2 c x u2))) (\lambda (_: T).(\lambda (t3: +T).(pr2 c (TLRef i) t3))) (sn3 c t2) (\lambda (x0: T).(\lambda (x1: +T).(\lambda (H11: (eq T t2 (THead (Flat Appl) x0 x1))).(\lambda (H12: (pr2 c +x x0)).(\lambda (H13: (pr2 c (TLRef i) x1)).(let H14 \def (eq_ind T t2 +(\lambda (t: T).((eq T (THead (Flat Appl) x (TLRef i)) t) \to (\forall (P: +Prop).P))) H7 (THead (Flat Appl) x0 x1) H11) in (eq_ind_r T (THead (Flat +Appl) x0 x1) (\lambda (t: T).(sn3 c t)) (let H15 \def (pr2_gen_lref c x1 i +H13) in (or_ind (eq T x1 (TLRef i)) (ex2_2 C T (\lambda (d0: C).(\lambda (u: +T).(getl i c (CHead d0 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(eq +T x1 (lift (S i) O u))))) (sn3 c (THead (Flat Appl) x0 x1)) (\lambda (H16: +(eq T x1 (TLRef i))).(let H17 \def (eq_ind T x1 (\lambda (t: T).((eq T (THead +(Flat Appl) x (TLRef i)) (THead (Flat Appl) x0 t)) \to (\forall (P: +Prop).P))) H14 (TLRef i) H16) in (eq_ind_r T (TLRef i) (\lambda (t: T).(sn3 c +(THead (Flat Appl) x0 t))) (let H_x \def (term_dec x x0) in (let H18 \def H_x +in (or_ind (eq T x x0) ((eq T x x0) \to (\forall (P: Prop).P)) (sn3 c (THead +(Flat Appl) x0 (TLRef i))) (\lambda (H19: (eq T x x0)).(let H20 \def +(eq_ind_r T x0 (\lambda (t: T).((eq T (THead (Flat Appl) x (TLRef i)) (THead +(Flat Appl) t (TLRef i))) \to (\forall (P: Prop).P))) H17 x H19) in (let H21 +\def (eq_ind_r T x0 (\lambda (t: T).(pr2 c x t)) H12 x H19) in (eq_ind T x +(\lambda (t: T).(sn3 c (THead (Flat Appl) t (TLRef i)))) (H20 (refl_equal T +(THead (Flat Appl) x (TLRef i))) (sn3 c (THead (Flat Appl) x (TLRef i)))) x0 +H19)))) (\lambda (H19: (((eq T x x0) \to (\forall (P: Prop).P)))).(H5 (THead +(Flat Appl) x0 (lift (S i) O w)) (\lambda (H20: (eq T (THead (Flat Appl) x +(lift (S i) O w)) (THead (Flat Appl) x0 (lift (S i) O w)))).(\lambda (P: +Prop).(let H21 \def (f_equal T T (\lambda (e: T).(match e in T return +(\lambda (_: T).T) with [(TSort _) \Rightarrow x | (TLRef _) \Rightarrow x | +(THead _ t _) \Rightarrow t])) (THead (Flat Appl) x (lift (S i) O w)) (THead +(Flat Appl) x0 (lift (S i) O w)) H20) in (let H22 \def (eq_ind_r T x0 +(\lambda (t: T).((eq T x t) \to (\forall (P0: Prop).P0))) H19 x H21) in (let +H23 \def (eq_ind_r T x0 (\lambda (t: T).(pr2 c x t)) H12 x H21) in (H22 +(refl_equal T x) P)))))) (pr3_pr2 c (THead (Flat Appl) x (lift (S i) O w)) +(THead (Flat Appl) x0 (lift (S i) O w)) (pr2_head_1 c x x0 H12 (Flat Appl) +(lift (S i) O w))) x0 (refl_equal T (THead (Flat Appl) x0 (lift (S i) O +w))))) H18))) x1 H16))) (\lambda (H16: (ex2_2 C T (\lambda (d0: C).(\lambda +(u: T).(getl i c (CHead d0 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: +T).(eq T x1 (lift (S i) O u)))))).(ex2_2_ind C T (\lambda (d0: C).(\lambda +(u: T).(getl i c (CHead d0 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: +T).(eq T x1 (lift (S i) O u)))) (sn3 c (THead (Flat Appl) x0 x1)) (\lambda +(x2: C).(\lambda (x3: T).(\lambda (H17: (getl i c (CHead x2 (Bind Abbr) +x3))).(\lambda (H18: (eq T x1 (lift (S i) O x3))).(let H19 \def (eq_ind T x1 +(\lambda (t: T).((eq T (THead (Flat Appl) x (TLRef i)) (THead (Flat Appl) x0 +t)) \to (\forall (P: Prop).P))) H14 (lift (S i) O x3) H18) in (eq_ind_r T +(lift (S i) O x3) (\lambda (t: T).(sn3 c (THead (Flat Appl) x0 t))) (let H20 +\def (eq_ind C (CHead d (Bind Abbr) w) (\lambda (c0: C).(getl i c c0)) H +(CHead x2 (Bind Abbr) x3) (getl_mono c (CHead d (Bind Abbr) w) i H (CHead x2 +(Bind Abbr) x3) H17)) in (let H21 \def (f_equal C C (\lambda (e: C).(match e +in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow d | (CHead c0 _ _) +\Rightarrow c0])) (CHead d (Bind Abbr) w) (CHead x2 (Bind Abbr) x3) +(getl_mono c (CHead d (Bind Abbr) w) i H (CHead x2 (Bind Abbr) x3) H17)) in +((let H22 \def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: +C).T) with [(CSort _) \Rightarrow w | (CHead _ _ t) \Rightarrow t])) (CHead d +(Bind Abbr) w) (CHead x2 (Bind Abbr) x3) (getl_mono c (CHead d (Bind Abbr) w) +i H (CHead x2 (Bind Abbr) x3) H17)) in (\lambda (H23: (eq C d x2)).(let H24 +\def (eq_ind_r T x3 (\lambda (t: T).(getl i c (CHead x2 (Bind Abbr) t))) H20 +w H22) in (eq_ind T w (\lambda (t: T).(sn3 c (THead (Flat Appl) x0 (lift (S +i) O t)))) (let H25 \def (eq_ind_r C x2 (\lambda (c0: C).(getl i c (CHead c0 +(Bind Abbr) w))) H24 d H23) in (let H_x \def (term_dec x x0) in (let H26 \def +H_x in (or_ind (eq T x x0) ((eq T x x0) \to (\forall (P: Prop).P)) (sn3 c +(THead (Flat Appl) x0 (lift (S i) O w))) (\lambda (H27: (eq T x x0)).(let H28 +\def (eq_ind_r T x0 (\lambda (t: T).(pr2 c x t)) H12 x H27) in (eq_ind T x +(\lambda (t: T).(sn3 c (THead (Flat Appl) t (lift (S i) O w)))) (sn3_sing c +(THead (Flat Appl) x (lift (S i) O w)) H6) x0 H27))) (\lambda (H27: (((eq T x +x0) \to (\forall (P: Prop).P)))).(H6 (THead (Flat Appl) x0 (lift (S i) O w)) +(\lambda (H28: (eq T (THead (Flat Appl) x (lift (S i) O w)) (THead (Flat +Appl) x0 (lift (S i) O w)))).(\lambda (P: Prop).(let H29 \def (f_equal T T +(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) +\Rightarrow x | (TLRef _) \Rightarrow x | (THead _ t _) \Rightarrow t])) +(THead (Flat Appl) x (lift (S i) O w)) (THead (Flat Appl) x0 (lift (S i) O +w)) H28) in (let H30 \def (eq_ind_r T x0 (\lambda (t: T).((eq T x t) \to +(\forall (P0: Prop).P0))) H27 x H29) in (let H31 \def (eq_ind_r T x0 (\lambda +(t: T).(pr2 c x t)) H12 x H29) in (H30 (refl_equal T x) P)))))) (pr3_pr2 c +(THead (Flat Appl) x (lift (S i) O w)) (THead (Flat Appl) x0 (lift (S i) O +w)) (pr2_head_1 c x x0 H12 (Flat Appl) (lift (S i) O w))))) H26)))) x3 +H22)))) H21))) x1 H18)))))) H16)) H15)) t2 H11))))))) H10)) (\lambda (H10: +(ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: +T).(eq T (TLRef i) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda +(_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 +t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: +T).(pr2 c x u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda +(t3: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) z1 +t3))))))))).(ex4_4_ind T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: +T).(\lambda (_: T).(eq T (TLRef i) (THead (Bind Abst) y1 z1)))))) (\lambda +(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead +(Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: +T).(\lambda (_: T).(pr2 c x u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda +(_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind +b) u) z1 t3))))))) (sn3 c t2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (x2: +T).(\lambda (x3: T).(\lambda (H11: (eq T (TLRef i) (THead (Bind Abst) x0 +x1))).(\lambda (H12: (eq T t2 (THead (Bind Abbr) x2 x3))).(\lambda (_: (pr2 c +x x2)).(\lambda (_: ((\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) +u) x1 x3))))).(let H15 \def (eq_ind T t2 (\lambda (t: T).((eq T (THead (Flat +Appl) x (TLRef i)) t) \to (\forall (P: Prop).P))) H7 (THead (Bind Abbr) x2 +x3) H12) in (eq_ind_r T (THead (Bind Abbr) x2 x3) (\lambda (t: T).(sn3 c t)) +(let H16 \def (eq_ind T (TLRef i) (\lambda (ee: T).(match ee in T return +(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow True | (THead _ _ _) \Rightarrow False])) I (THead (Bind Abst) x0 +x1) H11) in (False_ind (sn3 c (THead (Bind Abbr) x2 x3)) H16)) t2 +H12)))))))))) H10)) (\lambda (H10: (ex6_6 B T T T T T (\lambda (b: +B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda +(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T (TLRef i) +(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: +T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T t2 (THead (Bind +b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: +B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda +(_: T).(pr2 c x u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) +(\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda +(_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))).(ex6_6_ind +B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: +B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(eq T (TLRef i) (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda +(_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq +T t2 (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) +(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: +T).(\lambda (_: T).(pr2 c x u2))))))) (\lambda (_: B).(\lambda (y1: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 +y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: +T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))) +(sn3 c t2) (\lambda (x0: B).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: +T).(\lambda (x4: T).(\lambda (x5: T).(\lambda (_: (not (eq B x0 +Abst))).(\lambda (H12: (eq T (TLRef i) (THead (Bind x0) x1 x2))).(\lambda +(H13: (eq T t2 (THead (Bind x0) x5 (THead (Flat Appl) (lift (S O) O x4) +x3)))).(\lambda (_: (pr2 c x x4)).(\lambda (_: (pr2 c x1 x5)).(\lambda (_: +(pr2 (CHead c (Bind x0) x5) x2 x3)).(let H17 \def (eq_ind T t2 (\lambda (t: +T).((eq T (THead (Flat Appl) x (TLRef i)) t) \to (\forall (P: Prop).P))) H7 +(THead (Bind x0) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) H13) in +(eq_ind_r T (THead (Bind x0) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) +(\lambda (t: T).(sn3 c t)) (let H18 \def (eq_ind T (TLRef i) (\lambda (ee: +T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow +False | (TLRef _) \Rightarrow True | (THead _ _ _) \Rightarrow False])) I +(THead (Bind x0) x1 x2) H12) in (False_ind (sn3 c (THead (Bind x0) x5 (THead +(Flat Appl) (lift (S O) O x4) x3))) H18)) t2 H13)))))))))))))) H10)) +H9))))))))))))) y H1)))) H0))))))). + +theorem sn3_appl_bind: + \forall (b: B).((not (eq B b Abst)) \to (\forall (c: C).(\forall (u: +T).((sn3 c u) \to (\forall (t: T).(\forall (v: T).((sn3 (CHead c (Bind b) u) +(THead (Flat Appl) (lift (S O) O v) t)) \to (sn3 c (THead (Flat Appl) v +(THead (Bind b) u t)))))))))) +\def + \lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda (c: C).(\lambda +(u: T).(\lambda (H0: (sn3 c u)).(sn3_ind c (\lambda (t: T).(\forall (t0: +T).(\forall (v: T).((sn3 (CHead c (Bind b) t) (THead (Flat Appl) (lift (S O) +O v) t0)) \to (sn3 c (THead (Flat Appl) v (THead (Bind b) t t0))))))) +(\lambda (t1: T).(\lambda (H1: ((\forall (t2: T).((((eq T t1 t2) \to (\forall +(P: Prop).P))) \to ((pr3 c t1 t2) \to (sn3 c t2)))))).(\lambda (H2: ((\forall +(t2: T).((((eq T t1 t2) \to (\forall (P: Prop).P))) \to ((pr3 c t1 t2) \to +(\forall (t: T).(\forall (v: T).((sn3 (CHead c (Bind b) t2) (THead (Flat +Appl) (lift (S O) O v) t)) \to (sn3 c (THead (Flat Appl) v (THead (Bind b) t2 +t))))))))))).(\lambda (t: T).(\lambda (v: T).(\lambda (H3: (sn3 (CHead c +(Bind b) t1) (THead (Flat Appl) (lift (S O) O v) t))).(insert_eq T (THead +(Flat Appl) (lift (S O) O v) t) (\lambda (t0: T).(sn3 (CHead c (Bind b) t1) +t0)) (sn3 c (THead (Flat Appl) v (THead (Bind b) t1 t))) (\lambda (y: +T).(\lambda (H4: (sn3 (CHead c (Bind b) t1) y)).(unintro T t (\lambda (t0: +T).((eq T y (THead (Flat Appl) (lift (S O) O v) t0)) \to (sn3 c (THead (Flat +Appl) v (THead (Bind b) t1 t0))))) (unintro T v (\lambda (t0: T).(\forall (x: +T).((eq T y (THead (Flat Appl) (lift (S O) O t0) x)) \to (sn3 c (THead (Flat +Appl) t0 (THead (Bind b) t1 x)))))) (sn3_ind (CHead c (Bind b) t1) (\lambda +(t0: T).(\forall (x: T).(\forall (x0: T).((eq T t0 (THead (Flat Appl) (lift +(S O) O x) x0)) \to (sn3 c (THead (Flat Appl) x (THead (Bind b) t1 x0))))))) +(\lambda (t2: T).(\lambda (H5: ((\forall (t3: T).((((eq T t2 t3) \to (\forall +(P: Prop).P))) \to ((pr3 (CHead c (Bind b) t1) t2 t3) \to (sn3 (CHead c (Bind +b) t1) t3)))))).(\lambda (H6: ((\forall (t3: T).((((eq T t2 t3) \to (\forall +(P: Prop).P))) \to ((pr3 (CHead c (Bind b) t1) t2 t3) \to (\forall (x: +T).(\forall (x0: T).((eq T t3 (THead (Flat Appl) (lift (S O) O x) x0)) \to +(sn3 c (THead (Flat Appl) x (THead (Bind b) t1 x0))))))))))).(\lambda (x: +T).(\lambda (x0: T).(\lambda (H7: (eq T t2 (THead (Flat Appl) (lift (S O) O +x) x0))).(let H8 \def (eq_ind T t2 (\lambda (t0: T).(\forall (t3: T).((((eq T +t0 t3) \to (\forall (P: Prop).P))) \to ((pr3 (CHead c (Bind b) t1) t0 t3) \to +(\forall (x1: T).(\forall (x2: T).((eq T t3 (THead (Flat Appl) (lift (S O) O +x1) x2)) \to (sn3 c (THead (Flat Appl) x1 (THead (Bind b) t1 x2)))))))))) H6 +(THead (Flat Appl) (lift (S O) O x) x0) H7) in (let H9 \def (eq_ind T t2 +(\lambda (t0: T).(\forall (t3: T).((((eq T t0 t3) \to (\forall (P: Prop).P))) +\to ((pr3 (CHead c (Bind b) t1) t0 t3) \to (sn3 (CHead c (Bind b) t1) t3))))) +H5 (THead (Flat Appl) (lift (S O) O x) x0) H7) in (sn3_pr2_intro c (THead +(Flat Appl) x (THead (Bind b) t1 x0)) (\lambda (t3: T).(\lambda (H10: (((eq T +(THead (Flat Appl) x (THead (Bind b) t1 x0)) t3) \to (\forall (P: +Prop).P)))).(\lambda (H11: (pr2 c (THead (Flat Appl) x (THead (Bind b) t1 +x0)) t3)).(let H12 \def (pr2_gen_appl c x (THead (Bind b) t1 x0) t3 H11) in +(or3_ind (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Flat +Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c x u2))) (\lambda (_: +T).(\lambda (t4: T).(pr2 c (THead (Bind b) t1 x0) t4)))) (ex4_4 T T T T +(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T +(THead (Bind b) t1 x0) (THead (Bind Abst) y1 z1)))))) (\lambda (_: +T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Bind +Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda +(_: T).(pr2 c x u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: +T).(\lambda (t4: T).(\forall (b0: B).(\forall (u0: T).(pr2 (CHead c (Bind b0) +u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda (b0: B).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B +b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda +(_: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind b) t1 x0) (THead +(Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: +T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T t3 (THead (Bind +b0) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: +B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda +(_: T).(pr2 c x u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) +(\lambda (b0: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda +(_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b0) y2) z1 z2)))))))) (sn3 c t3) +(\lambda (H13: (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead +(Flat Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c x u2))) +(\lambda (_: T).(\lambda (t4: T).(pr2 c (THead (Bind b) t1 x0) +t4))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead +(Flat Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c x u2))) +(\lambda (_: T).(\lambda (t4: T).(pr2 c (THead (Bind b) t1 x0) t4))) (sn3 c +t3) (\lambda (x1: T).(\lambda (x2: T).(\lambda (H14: (eq T t3 (THead (Flat +Appl) x1 x2))).(\lambda (H15: (pr2 c x x1)).(\lambda (H16: (pr2 c (THead +(Bind b) t1 x0) x2)).(let H17 \def (eq_ind T t3 (\lambda (t0: T).((eq T +(THead (Flat Appl) x (THead (Bind b) t1 x0)) t0) \to (\forall (P: Prop).P))) +H10 (THead (Flat Appl) x1 x2) H14) in (eq_ind_r T (THead (Flat Appl) x1 x2) +(\lambda (t0: T).(sn3 c t0)) (let H_x \def (pr3_gen_bind b H c t1 x0 x2) in +(let H18 \def (H_x (pr3_pr2 c (THead (Bind b) t1 x0) x2 H16)) in (or_ind +(ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T x2 (THead (Bind b) u2 +t4)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c t1 u2))) (\lambda (_: +T).(\lambda (t4: T).(pr3 (CHead c (Bind b) t1) x0 t4)))) (pr3 (CHead c (Bind +b) t1) x0 (lift (S O) O x2)) (sn3 c (THead (Flat Appl) x1 x2)) (\lambda (H19: +(ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T x2 (THead (Bind b) u2 +t4)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c t1 u2))) (\lambda (_: +T).(\lambda (t4: T).(pr3 (CHead c (Bind b) t1) x0 t4))))).(ex3_2_ind T T +(\lambda (u2: T).(\lambda (t4: T).(eq T x2 (THead (Bind b) u2 t4)))) (\lambda +(u2: T).(\lambda (_: T).(pr3 c t1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr3 +(CHead c (Bind b) t1) x0 t4))) (sn3 c (THead (Flat Appl) x1 x2)) (\lambda +(x3: T).(\lambda (x4: T).(\lambda (H20: (eq T x2 (THead (Bind b) x3 +x4))).(\lambda (H21: (pr3 c t1 x3)).(\lambda (H22: (pr3 (CHead c (Bind b) t1) +x0 x4)).(let H23 \def (eq_ind T x2 (\lambda (t0: T).((eq T (THead (Flat Appl) +x (THead (Bind b) t1 x0)) (THead (Flat Appl) x1 t0)) \to (\forall (P: +Prop).P))) H17 (THead (Bind b) x3 x4) H20) in (eq_ind_r T (THead (Bind b) x3 +x4) (\lambda (t0: T).(sn3 c (THead (Flat Appl) x1 t0))) (let H_x0 \def +(term_dec t1 x3) in (let H24 \def H_x0 in (or_ind (eq T t1 x3) ((eq T t1 x3) +\to (\forall (P: Prop).P)) (sn3 c (THead (Flat Appl) x1 (THead (Bind b) x3 +x4))) (\lambda (H25: (eq T t1 x3)).(let H26 \def (eq_ind_r T x3 (\lambda (t0: +T).((eq T (THead (Flat Appl) x (THead (Bind b) t1 x0)) (THead (Flat Appl) x1 +(THead (Bind b) t0 x4))) \to (\forall (P: Prop).P))) H23 t1 H25) in (let H27 +\def (eq_ind_r T x3 (\lambda (t0: T).(pr3 c t1 t0)) H21 t1 H25) in (eq_ind T +t1 (\lambda (t0: T).(sn3 c (THead (Flat Appl) x1 (THead (Bind b) t0 x4)))) +(let H_x1 \def (term_dec x0 x4) in (let H28 \def H_x1 in (or_ind (eq T x0 x4) +((eq T x0 x4) \to (\forall (P: Prop).P)) (sn3 c (THead (Flat Appl) x1 (THead +(Bind b) t1 x4))) (\lambda (H29: (eq T x0 x4)).(let H30 \def (eq_ind_r T x4 +(\lambda (t0: T).((eq T (THead (Flat Appl) x (THead (Bind b) t1 x0)) (THead +(Flat Appl) x1 (THead (Bind b) t1 t0))) \to (\forall (P: Prop).P))) H26 x0 +H29) in (let H31 \def (eq_ind_r T x4 (\lambda (t0: T).(pr3 (CHead c (Bind b) +t1) x0 t0)) H22 x0 H29) in (eq_ind T x0 (\lambda (t0: T).(sn3 c (THead (Flat +Appl) x1 (THead (Bind b) t1 t0)))) (let H_x2 \def (term_dec x x1) in (let H32 +\def H_x2 in (or_ind (eq T x x1) ((eq T x x1) \to (\forall (P: Prop).P)) (sn3 +c (THead (Flat Appl) x1 (THead (Bind b) t1 x0))) (\lambda (H33: (eq T x +x1)).(let H34 \def (eq_ind_r T x1 (\lambda (t0: T).((eq T (THead (Flat Appl) +x (THead (Bind b) t1 x0)) (THead (Flat Appl) t0 (THead (Bind b) t1 x0))) \to +(\forall (P: Prop).P))) H30 x H33) in (let H35 \def (eq_ind_r T x1 (\lambda +(t0: T).(pr2 c x t0)) H15 x H33) in (eq_ind T x (\lambda (t0: T).(sn3 c +(THead (Flat Appl) t0 (THead (Bind b) t1 x0)))) (H34 (refl_equal T (THead +(Flat Appl) x (THead (Bind b) t1 x0))) (sn3 c (THead (Flat Appl) x (THead +(Bind b) t1 x0)))) x1 H33)))) (\lambda (H33: (((eq T x x1) \to (\forall (P: +Prop).P)))).(H8 (THead (Flat Appl) (lift (S O) O x1) x0) (\lambda (H34: (eq T +(THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x1) +x0))).(\lambda (P: Prop).(let H35 \def (f_equal T T (\lambda (e: T).(match e +in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map +(f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match t0 with [(TSort n) +\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with +[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t4) +\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t4))]) in +lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (TLRef _) \Rightarrow +((let rec lref_map (f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match +t0 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef +(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | +(THead k u0 t4) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) +t4))]) in lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (THead _ t0 _) +\Rightarrow t0])) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) +(lift (S O) O x1) x0) H34) in (let H36 \def (eq_ind_r T x1 (\lambda (t0: +T).((eq T x t0) \to (\forall (P0: Prop).P0))) H33 x (lift_inj x x1 (S O) O +H35)) in (let H37 \def (eq_ind_r T x1 (\lambda (t0: T).(pr2 c x t0)) H15 x +(lift_inj x x1 (S O) O H35)) in (H36 (refl_equal T x) P)))))) (pr3_flat +(CHead c (Bind b) t1) (lift (S O) O x) (lift (S O) O x1) (pr3_lift (CHead c +(Bind b) t1) c (S O) O (drop_drop (Bind b) O c c (drop_refl c) t1) x x1 +(pr3_pr2 c x x1 H15)) x0 x0 (pr3_refl (CHead c (Bind b) t1) x0) Appl) x1 x0 +(refl_equal T (THead (Flat Appl) (lift (S O) O x1) x0)))) H32))) x4 H29)))) +(\lambda (H29: (((eq T x0 x4) \to (\forall (P: Prop).P)))).(H8 (THead (Flat +Appl) (lift (S O) O x1) x4) (\lambda (H30: (eq T (THead (Flat Appl) (lift (S +O) O x) x0) (THead (Flat Appl) (lift (S O) O x1) x4))).(\lambda (P: +Prop).(let H31 \def (f_equal T T (\lambda (e: T).(match e in T return +(\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f: ((nat +\to nat))) (d: nat) (t0: T) on t0: T \def (match t0 with [(TSort n) +\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with +[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t4) +\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t4))]) in +lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (TLRef _) \Rightarrow +((let rec lref_map (f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match +t0 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef +(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | +(THead k u0 t4) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) +t4))]) in lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (THead _ t0 _) +\Rightarrow t0])) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) +(lift (S O) O x1) x4) H30) in ((let H32 \def (f_equal T T (\lambda (e: +T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 | +(TLRef _) \Rightarrow x0 | (THead _ _ t0) \Rightarrow t0])) (THead (Flat +Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x1) x4) H30) in +(\lambda (H33: (eq T (lift (S O) O x) (lift (S O) O x1))).(let H34 \def +(eq_ind_r T x4 (\lambda (t0: T).((eq T x0 t0) \to (\forall (P0: Prop).P0))) +H29 x0 H32) in (let H35 \def (eq_ind_r T x4 (\lambda (t0: T).((eq T (THead +(Flat Appl) x (THead (Bind b) t1 x0)) (THead (Flat Appl) x1 (THead (Bind b) +t1 t0))) \to (\forall (P0: Prop).P0))) H26 x0 H32) in (let H36 \def (eq_ind_r +T x4 (\lambda (t0: T).(pr3 (CHead c (Bind b) t1) x0 t0)) H22 x0 H32) in (let +H37 \def (eq_ind_r T x1 (\lambda (t0: T).((eq T (THead (Flat Appl) x (THead +(Bind b) t1 x0)) (THead (Flat Appl) t0 (THead (Bind b) t1 x0))) \to (\forall +(P0: Prop).P0))) H35 x (lift_inj x x1 (S O) O H33)) in (let H38 \def +(eq_ind_r T x1 (\lambda (t0: T).(pr2 c x t0)) H15 x (lift_inj x x1 (S O) O +H33)) in (H34 (refl_equal T x0) P)))))))) H31)))) (pr3_flat (CHead c (Bind b) +t1) (lift (S O) O x) (lift (S O) O x1) (pr3_lift (CHead c (Bind b) t1) c (S +O) O (drop_drop (Bind b) O c c (drop_refl c) t1) x x1 (pr3_pr2 c x x1 H15)) +x0 x4 H22 Appl) x1 x4 (refl_equal T (THead (Flat Appl) (lift (S O) O x1) +x4)))) H28))) x3 H25)))) (\lambda (H25: (((eq T t1 x3) \to (\forall (P: +Prop).P)))).(H2 x3 H25 H21 x4 x1 (sn3_cpr3_trans c t1 x3 H21 (Bind b) (THead +(Flat Appl) (lift (S O) O x1) x4) (let H_x1 \def (term_dec x0 x4) in (let H26 +\def H_x1 in (or_ind (eq T x0 x4) ((eq T x0 x4) \to (\forall (P: Prop).P)) +(sn3 (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O x1) x4)) (\lambda +(H27: (eq T x0 x4)).(let H28 \def (eq_ind_r T x4 (\lambda (t0: T).(pr3 (CHead +c (Bind b) t1) x0 t0)) H22 x0 H27) in (eq_ind T x0 (\lambda (t0: T).(sn3 +(CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O x1) t0))) (let H_x2 +\def (term_dec x x1) in (let H29 \def H_x2 in (or_ind (eq T x x1) ((eq T x +x1) \to (\forall (P: Prop).P)) (sn3 (CHead c (Bind b) t1) (THead (Flat Appl) +(lift (S O) O x1) x0)) (\lambda (H30: (eq T x x1)).(let H31 \def (eq_ind_r T +x1 (\lambda (t0: T).(pr2 c x t0)) H15 x H30) in (eq_ind T x (\lambda (t0: +T).(sn3 (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O t0) x0))) +(sn3_sing (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O x) x0) H9) +x1 H30))) (\lambda (H30: (((eq T x x1) \to (\forall (P: Prop).P)))).(H9 +(THead (Flat Appl) (lift (S O) O x1) x0) (\lambda (H31: (eq T (THead (Flat +Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x1) +x0))).(\lambda (P: Prop).(let H32 \def (f_equal T T (\lambda (e: T).(match e +in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map +(f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match t0 with [(TSort n) +\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with +[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t4) +\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t4))]) in +lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (TLRef _) \Rightarrow +((let rec lref_map (f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match +t0 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef +(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | +(THead k u0 t4) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) +t4))]) in lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (THead _ t0 _) +\Rightarrow t0])) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) +(lift (S O) O x1) x0) H31) in (let H33 \def (eq_ind_r T x1 (\lambda (t0: +T).((eq T x t0) \to (\forall (P0: Prop).P0))) H30 x (lift_inj x x1 (S O) O +H32)) in (let H34 \def (eq_ind_r T x1 (\lambda (t0: T).(pr2 c x t0)) H15 x +(lift_inj x x1 (S O) O H32)) in (H33 (refl_equal T x) P)))))) (pr3_flat +(CHead c (Bind b) t1) (lift (S O) O x) (lift (S O) O x1) (pr3_lift (CHead c +(Bind b) t1) c (S O) O (drop_drop (Bind b) O c c (drop_refl c) t1) x x1 +(pr3_pr2 c x x1 H15)) x0 x0 (pr3_refl (CHead c (Bind b) t1) x0) Appl))) +H29))) x4 H27))) (\lambda (H27: (((eq T x0 x4) \to (\forall (P: +Prop).P)))).(H9 (THead (Flat Appl) (lift (S O) O x1) x4) (\lambda (H28: (eq T +(THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x1) +x4))).(\lambda (P: Prop).(let H29 \def (f_equal T T (\lambda (e: T).(match e +in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map +(f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match t0 with [(TSort n) +\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with +[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t4) +\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t4))]) in +lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (TLRef _) \Rightarrow +((let rec lref_map (f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match +t0 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef +(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | +(THead k u0 t4) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) +t4))]) in lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (THead _ t0 _) +\Rightarrow t0])) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) +(lift (S O) O x1) x4) H28) in ((let H30 \def (f_equal T T (\lambda (e: +T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 | +(TLRef _) \Rightarrow x0 | (THead _ _ t0) \Rightarrow t0])) (THead (Flat +Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x1) x4) H28) in +(\lambda (H31: (eq T (lift (S O) O x) (lift (S O) O x1))).(let H32 \def +(eq_ind_r T x4 (\lambda (t0: T).((eq T x0 t0) \to (\forall (P0: Prop).P0))) +H27 x0 H30) in (let H33 \def (eq_ind_r T x4 (\lambda (t0: T).(pr3 (CHead c +(Bind b) t1) x0 t0)) H22 x0 H30) in (let H34 \def (eq_ind_r T x1 (\lambda +(t0: T).(pr2 c x t0)) H15 x (lift_inj x x1 (S O) O H31)) in (H32 (refl_equal +T x0) P)))))) H29)))) (pr3_flat (CHead c (Bind b) t1) (lift (S O) O x) (lift +(S O) O x1) (pr3_lift (CHead c (Bind b) t1) c (S O) O (drop_drop (Bind b) O c +c (drop_refl c) t1) x x1 (pr3_pr2 c x x1 H15)) x0 x4 H22 Appl))) H26)))))) +H24))) x2 H20))))))) H19)) (\lambda (H19: (pr3 (CHead c (Bind b) t1) x0 (lift +(S O) O x2))).(sn3_gen_lift (CHead c (Bind b) t1) (THead (Flat Appl) x1 x2) +(S O) O (eq_ind_r T (THead (Flat Appl) (lift (S O) O x1) (lift (S O) (s (Flat +Appl) O) x2)) (\lambda (t0: T).(sn3 (CHead c (Bind b) t1) t0)) (sn3_pr3_trans +(CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O x1) x0) (let H_x0 \def +(term_dec x x1) in (let H20 \def H_x0 in (or_ind (eq T x x1) ((eq T x x1) \to +(\forall (P: Prop).P)) (sn3 (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S +O) O x1) x0)) (\lambda (H21: (eq T x x1)).(let H22 \def (eq_ind_r T x1 +(\lambda (t0: T).(pr2 c x t0)) H15 x H21) in (eq_ind T x (\lambda (t0: +T).(sn3 (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O t0) x0))) +(sn3_sing (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O x) x0) H9) +x1 H21))) (\lambda (H21: (((eq T x x1) \to (\forall (P: Prop).P)))).(H9 +(THead (Flat Appl) (lift (S O) O x1) x0) (\lambda (H22: (eq T (THead (Flat +Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x1) +x0))).(\lambda (P: Prop).(let H23 \def (f_equal T T (\lambda (e: T).(match e +in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map +(f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match t0 with [(TSort n) +\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with +[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t4) +\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t4))]) in +lref_map) (\lambda (x3: nat).(plus x3 (S O))) O x) | (TLRef _) \Rightarrow +((let rec lref_map (f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match +t0 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef +(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | +(THead k u0 t4) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) +t4))]) in lref_map) (\lambda (x3: nat).(plus x3 (S O))) O x) | (THead _ t0 _) +\Rightarrow t0])) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) +(lift (S O) O x1) x0) H22) in (let H24 \def (eq_ind_r T x1 (\lambda (t0: +T).((eq T x t0) \to (\forall (P0: Prop).P0))) H21 x (lift_inj x x1 (S O) O +H23)) in (let H25 \def (eq_ind_r T x1 (\lambda (t0: T).(pr2 c x t0)) H15 x +(lift_inj x x1 (S O) O H23)) in (H24 (refl_equal T x) P)))))) (pr3_flat +(CHead c (Bind b) t1) (lift (S O) O x) (lift (S O) O x1) (pr3_lift (CHead c +(Bind b) t1) c (S O) O (drop_drop (Bind b) O c c (drop_refl c) t1) x x1 +(pr3_pr2 c x x1 H15)) x0 x0 (pr3_refl (CHead c (Bind b) t1) x0) Appl))) +H20))) (THead (Flat Appl) (lift (S O) O x1) (lift (S O) O x2)) (pr3_thin_dx +(CHead c (Bind b) t1) x0 (lift (S O) O x2) H19 (lift (S O) O x1) Appl)) (lift +(S O) O (THead (Flat Appl) x1 x2)) (lift_head (Flat Appl) x1 x2 (S O) O)) c +(drop_drop (Bind b) O c c (drop_refl c) t1))) H18))) t3 H14))))))) H13)) +(\lambda (H13: (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: +T).(\lambda (_: T).(eq T (THead (Bind b) t1 x0) (THead (Bind Abst) y1 +z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4: +T).(eq T t3 (THead (Bind Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_: +T).(\lambda (u2: T).(\lambda (_: T).(pr2 c x u2))))) (\lambda (_: T).(\lambda +(z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall (b0: B).(\forall (u0: +T).(pr2 (CHead c (Bind b0) u0) z1 t4))))))))).(ex4_4_ind T T T T (\lambda +(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind +b) t1 x0) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: +T).(\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Bind Abbr) u2 t4)))))) +(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c x +u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: +T).(\forall (b0: B).(\forall (u0: T).(pr2 (CHead c (Bind b0) u0) z1 t4))))))) +(sn3 c t3) (\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: T).(\lambda (x4: +T).(\lambda (H14: (eq T (THead (Bind b) t1 x0) (THead (Bind Abst) x1 +x2))).(\lambda (H15: (eq T t3 (THead (Bind Abbr) x3 x4))).(\lambda (_: (pr2 c +x x3)).(\lambda (H17: ((\forall (b0: B).(\forall (u0: T).(pr2 (CHead c (Bind +b0) u0) x2 x4))))).(let H18 \def (eq_ind T t3 (\lambda (t0: T).((eq T (THead +(Flat Appl) x (THead (Bind b) t1 x0)) t0) \to (\forall (P: Prop).P))) H10 +(THead (Bind Abbr) x3 x4) H15) in (eq_ind_r T (THead (Bind Abbr) x3 x4) +(\lambda (t0: T).(sn3 c t0)) (let H19 \def (f_equal T B (\lambda (e: +T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b | +(TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k in K return +(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow +b])])) (THead (Bind b) t1 x0) (THead (Bind Abst) x1 x2) H14) in ((let H20 +\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) +with [(TSort _) \Rightarrow t1 | (TLRef _) \Rightarrow t1 | (THead _ t0 _) +\Rightarrow t0])) (THead (Bind b) t1 x0) (THead (Bind Abst) x1 x2) H14) in +((let H21 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: +T).T) with [(TSort _) \Rightarrow x0 | (TLRef _) \Rightarrow x0 | (THead _ _ +t0) \Rightarrow t0])) (THead (Bind b) t1 x0) (THead (Bind Abst) x1 x2) H14) +in (\lambda (_: (eq T t1 x1)).(\lambda (H23: (eq B b Abst)).(let H24 \def +(eq_ind_r T x2 (\lambda (t0: T).(\forall (b0: B).(\forall (u0: T).(pr2 (CHead +c (Bind b0) u0) t0 x4)))) H17 x0 H21) in (let H25 \def (eq_ind B b (\lambda +(b0: B).((eq T (THead (Flat Appl) x (THead (Bind b0) t1 x0)) (THead (Bind +Abbr) x3 x4)) \to (\forall (P: Prop).P))) H18 Abst H23) in (let H26 \def +(eq_ind B b (\lambda (b0: B).(\forall (t4: T).((((eq T (THead (Flat Appl) +(lift (S O) O x) x0) t4) \to (\forall (P: Prop).P))) \to ((pr3 (CHead c (Bind +b0) t1) (THead (Flat Appl) (lift (S O) O x) x0) t4) \to (sn3 (CHead c (Bind +b0) t1) t4))))) H9 Abst H23) in (let H27 \def (eq_ind B b (\lambda (b0: +B).(\forall (t4: T).((((eq T (THead (Flat Appl) (lift (S O) O x) x0) t4) \to +(\forall (P: Prop).P))) \to ((pr3 (CHead c (Bind b0) t1) (THead (Flat Appl) +(lift (S O) O x) x0) t4) \to (\forall (x5: T).(\forall (x6: T).((eq T t4 +(THead (Flat Appl) (lift (S O) O x5) x6)) \to (sn3 c (THead (Flat Appl) x5 +(THead (Bind b0) t1 x6)))))))))) H8 Abst H23) in (let H28 \def (eq_ind B b +(\lambda (b0: B).(\forall (t4: T).((((eq T t1 t4) \to (\forall (P: Prop).P))) +\to ((pr3 c t1 t4) \to (\forall (t0: T).(\forall (v0: T).((sn3 (CHead c (Bind +b0) t4) (THead (Flat Appl) (lift (S O) O v0) t0)) \to (sn3 c (THead (Flat +Appl) v0 (THead (Bind b0) t4 t0)))))))))) H2 Abst H23) in (let H29 \def +(eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H Abst H23) in (let H30 +\def (match (H29 (refl_equal B Abst)) in False return (\lambda (_: +False).(sn3 c (THead (Bind Abbr) x3 x4))) with []) in H30)))))))))) H20)) +H19)) t3 H15)))))))))) H13)) (\lambda (H13: (ex6_6 B T T T T T (\lambda (b0: +B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda +(_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda +(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind b) +t1 x0) (THead (Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: +T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T +t3 (THead (Bind b0) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) +(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: +T).(\lambda (_: T).(pr2 c x u2))))))) (\lambda (_: B).(\lambda (y1: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 +y2))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: +T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b0) y2) z1 +z2))))))))).(ex6_6_ind B T T T T T (\lambda (b0: B).(\lambda (_: T).(\lambda +(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b0 +Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind b) t1 x0) (THead (Bind +b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda +(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T t3 (THead (Bind b0) y2 (THead +(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: +T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c x +u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: +T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b0: +B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda +(y2: T).(pr2 (CHead c (Bind b0) y2) z1 z2))))))) (sn3 c t3) (\lambda (x1: +B).(\lambda (x2: T).(\lambda (x3: T).(\lambda (x4: T).(\lambda (x5: +T).(\lambda (x6: T).(\lambda (_: (not (eq B x1 Abst))).(\lambda (H15: (eq T +(THead (Bind b) t1 x0) (THead (Bind x1) x2 x3))).(\lambda (H16: (eq T t3 +(THead (Bind x1) x6 (THead (Flat Appl) (lift (S O) O x5) x4)))).(\lambda +(H17: (pr2 c x x5)).(\lambda (H18: (pr2 c x2 x6)).(\lambda (H19: (pr2 (CHead +c (Bind x1) x6) x3 x4)).(let H20 \def (eq_ind T t3 (\lambda (t0: T).((eq T +(THead (Flat Appl) x (THead (Bind b) t1 x0)) t0) \to (\forall (P: Prop).P))) +H10 (THead (Bind x1) x6 (THead (Flat Appl) (lift (S O) O x5) x4)) H16) in +(eq_ind_r T (THead (Bind x1) x6 (THead (Flat Appl) (lift (S O) O x5) x4)) +(\lambda (t0: T).(sn3 c t0)) (let H21 \def (f_equal T B (\lambda (e: +T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b | +(TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k in K return +(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow +b])])) (THead (Bind b) t1 x0) (THead (Bind x1) x2 x3) H15) in ((let H22 \def +(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with +[(TSort _) \Rightarrow t1 | (TLRef _) \Rightarrow t1 | (THead _ t0 _) +\Rightarrow t0])) (THead (Bind b) t1 x0) (THead (Bind x1) x2 x3) H15) in +((let H23 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: +T).T) with [(TSort _) \Rightarrow x0 | (TLRef _) \Rightarrow x0 | (THead _ _ +t0) \Rightarrow t0])) (THead (Bind b) t1 x0) (THead (Bind x1) x2 x3) H15) in +(\lambda (H24: (eq T t1 x2)).(\lambda (H25: (eq B b x1)).(let H26 \def +(eq_ind_r T x3 (\lambda (t0: T).(pr2 (CHead c (Bind x1) x6) t0 x4)) H19 x0 +H23) in (let H27 \def (eq_ind_r T x2 (\lambda (t0: T).(pr2 c t0 x6)) H18 t1 +H24) in (let H28 \def (eq_ind_r B x1 (\lambda (b0: B).(pr2 (CHead c (Bind b0) +x6) x0 x4)) H26 b H25) in (eq_ind B b (\lambda (b0: B).(sn3 c (THead (Bind +b0) x6 (THead (Flat Appl) (lift (S O) O x5) x4)))) (sn3_pr3_trans c (THead +(Bind b) t1 (THead (Flat Appl) (lift (S O) O x5) x4)) (sn3_bind b H c t1 +(sn3_sing c t1 H1) (THead (Flat Appl) (lift (S O) O x5) x4) (let H_x \def +(term_dec x x5) in (let H29 \def H_x in (or_ind (eq T x x5) ((eq T x x5) \to +(\forall (P: Prop).P)) (sn3 (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S +O) O x5) x4)) (\lambda (H30: (eq T x x5)).(let H31 \def (eq_ind_r T x5 +(\lambda (t0: T).(pr2 c x t0)) H17 x H30) in (eq_ind T x (\lambda (t0: +T).(sn3 (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O t0) x4))) (let +H_x0 \def (term_dec x0 x4) in (let H32 \def H_x0 in (or_ind (eq T x0 x4) ((eq +T x0 x4) \to (\forall (P: Prop).P)) (sn3 (CHead c (Bind b) t1) (THead (Flat +Appl) (lift (S O) O x) x4)) (\lambda (H33: (eq T x0 x4)).(let H34 \def +(eq_ind_r T x4 (\lambda (t0: T).(pr2 (CHead c (Bind b) x6) x0 t0)) H28 x0 +H33) in (eq_ind T x0 (\lambda (t0: T).(sn3 (CHead c (Bind b) t1) (THead (Flat +Appl) (lift (S O) O x) t0))) (sn3_sing (CHead c (Bind b) t1) (THead (Flat +Appl) (lift (S O) O x) x0) H9) x4 H33))) (\lambda (H33: (((eq T x0 x4) \to +(\forall (P: Prop).P)))).(H9 (THead (Flat Appl) (lift (S O) O x) x4) (\lambda +(H34: (eq T (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift +(S O) O x) x4))).(\lambda (P: Prop).(let H35 \def (f_equal T T (\lambda (e: +T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 | +(TLRef _) \Rightarrow x0 | (THead _ _ t0) \Rightarrow t0])) (THead (Flat +Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x) x4) H34) in +(let H36 \def (eq_ind_r T x4 (\lambda (t0: T).((eq T x0 t0) \to (\forall (P0: +Prop).P0))) H33 x0 H35) in (let H37 \def (eq_ind_r T x4 (\lambda (t0: T).(pr2 +(CHead c (Bind b) x6) x0 t0)) H28 x0 H35) in (H36 (refl_equal T x0) P)))))) +(pr3_pr3_pr3_t c t1 x6 (pr3_pr2 c t1 x6 H27) (THead (Flat Appl) (lift (S O) O +x) x0) (THead (Flat Appl) (lift (S O) O x) x4) (Bind b) (pr3_pr2 (CHead c +(Bind b) x6) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift +(S O) O x) x4) (pr2_thin_dx (CHead c (Bind b) x6) x0 x4 H28 (lift (S O) O x) +Appl))))) H32))) x5 H30))) (\lambda (H30: (((eq T x x5) \to (\forall (P: +Prop).P)))).(H9 (THead (Flat Appl) (lift (S O) O x5) x4) (\lambda (H31: (eq T +(THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x5) +x4))).(\lambda (P: Prop).(let H32 \def (f_equal T T (\lambda (e: T).(match e +in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map +(f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match t0 with [(TSort n) +\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with +[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t4) +\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t4))]) in +lref_map) (\lambda (x7: nat).(plus x7 (S O))) O x) | (TLRef _) \Rightarrow +((let rec lref_map (f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match +t0 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef +(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | +(THead k u0 t4) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) +t4))]) in lref_map) (\lambda (x7: nat).(plus x7 (S O))) O x) | (THead _ t0 _) +\Rightarrow t0])) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) +(lift (S O) O x5) x4) H31) in ((let H33 \def (f_equal T T (\lambda (e: +T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 | +(TLRef _) \Rightarrow x0 | (THead _ _ t0) \Rightarrow t0])) (THead (Flat +Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x5) x4) H31) in +(\lambda (H34: (eq T (lift (S O) O x) (lift (S O) O x5))).(let H35 \def +(eq_ind_r T x5 (\lambda (t0: T).((eq T x t0) \to (\forall (P0: Prop).P0))) +H30 x (lift_inj x x5 (S O) O H34)) in (let H36 \def (eq_ind_r T x5 (\lambda +(t0: T).(pr2 c x t0)) H17 x (lift_inj x x5 (S O) O H34)) in (let H37 \def +(eq_ind_r T x4 (\lambda (t0: T).(pr2 (CHead c (Bind b) x6) x0 t0)) H28 x0 +H33) in (H35 (refl_equal T x) P)))))) H32)))) (pr3_pr3_pr3_t c t1 x6 (pr3_pr2 +c t1 x6 H27) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift +(S O) O x5) x4) (Bind b) (pr3_flat (CHead c (Bind b) x6) (lift (S O) O x) +(lift (S O) O x5) (pr3_lift (CHead c (Bind b) x6) c (S O) O (drop_drop (Bind +b) O c c (drop_refl c) x6) x x5 (pr3_pr2 c x x5 H17)) x0 x4 (pr3_pr2 (CHead c +(Bind b) x6) x0 x4 H28) Appl)))) H29)))) (THead (Bind b) x6 (THead (Flat +Appl) (lift (S O) O x5) x4)) (pr3_pr2 c (THead (Bind b) t1 (THead (Flat Appl) +(lift (S O) O x5) x4)) (THead (Bind b) x6 (THead (Flat Appl) (lift (S O) O +x5) x4)) (pr2_head_1 c t1 x6 H27 (Bind b) (THead (Flat Appl) (lift (S O) O +x5) x4)))) x1 H25))))))) H22)) H21)) t3 H16)))))))))))))) H13)) +H12)))))))))))))) y H4))))) H3))))))) u H0))))). + +theorem sn3_appls_bind: + \forall (b: B).((not (eq B b Abst)) \to (\forall (c: C).(\forall (u: +T).((sn3 c u) \to (\forall (vs: TList).(\forall (t: T).((sn3 (CHead c (Bind +b) u) (THeads (Flat Appl) (lifts (S O) O vs) t)) \to (sn3 c (THeads (Flat +Appl) vs (THead (Bind b) u t)))))))))) +\def + \lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda (c: C).(\lambda +(u: T).(\lambda (H0: (sn3 c u)).(\lambda (vs: TList).(TList_ind (\lambda (t: +TList).(\forall (t0: T).((sn3 (CHead c (Bind b) u) (THeads (Flat Appl) (lifts +(S O) O t) t0)) \to (sn3 c (THeads (Flat Appl) t (THead (Bind b) u t0)))))) +(\lambda (t: T).(\lambda (H1: (sn3 (CHead c (Bind b) u) t)).(sn3_bind b H c u +H0 t H1))) (\lambda (v: T).(\lambda (vs0: TList).(TList_ind (\lambda (t: +TList).(((\forall (t0: T).((sn3 (CHead c (Bind b) u) (THeads (Flat Appl) +(lifts (S O) O t) t0)) \to (sn3 c (THeads (Flat Appl) t (THead (Bind b) u +t0)))))) \to (\forall (t0: T).((sn3 (CHead c (Bind b) u) (THead (Flat Appl) +(lift (S O) O v) (THeads (Flat Appl) (lifts (S O) O t) t0))) \to (sn3 c +(THead (Flat Appl) v (THeads (Flat Appl) t (THead (Bind b) u t0)))))))) +(\lambda (_: ((\forall (t: T).((sn3 (CHead c (Bind b) u) (THeads (Flat Appl) +(lifts (S O) O TNil) t)) \to (sn3 c (THeads (Flat Appl) TNil (THead (Bind b) +u t))))))).(\lambda (t: T).(\lambda (H2: (sn3 (CHead c (Bind b) u) (THead +(Flat Appl) (lift (S O) O v) (THeads (Flat Appl) (lifts (S O) O TNil) +t)))).(sn3_appl_bind b H c u H0 t v H2)))) (\lambda (t: T).(\lambda (t0: +TList).(\lambda (_: ((((\forall (t1: T).((sn3 (CHead c (Bind b) u) (THeads +(Flat Appl) (lifts (S O) O t0) t1)) \to (sn3 c (THeads (Flat Appl) t0 (THead +(Bind b) u t1)))))) \to (\forall (t1: T).((sn3 (CHead c (Bind b) u) (THead +(Flat Appl) (lift (S O) O v) (THeads (Flat Appl) (lifts (S O) O t0) t1))) \to +(sn3 c (THead (Flat Appl) v (THeads (Flat Appl) t0 (THead (Bind b) u +t1))))))))).(\lambda (H2: ((\forall (t1: T).((sn3 (CHead c (Bind b) u) +(THeads (Flat Appl) (lifts (S O) O (TCons t t0)) t1)) \to (sn3 c (THeads +(Flat Appl) (TCons t t0) (THead (Bind b) u t1))))))).(\lambda (t1: +T).(\lambda (H3: (sn3 (CHead c (Bind b) u) (THead (Flat Appl) (lift (S O) O +v) (THeads (Flat Appl) (lifts (S O) O (TCons t t0)) t1)))).(let H4 \def +(sn3_gen_flat Appl (CHead c (Bind b) u) (lift (S O) O v) (THeads (Flat Appl) +(lifts (S O) O (TCons t t0)) t1) H3) in (and_ind (sn3 (CHead c (Bind b) u) +(lift (S O) O v)) (sn3 (CHead c (Bind b) u) (THead (Flat Appl) (lift (S O) O +t) (THeads (Flat Appl) (lifts (S O) O t0) t1))) (sn3 c (THead (Flat Appl) v +(THeads (Flat Appl) (TCons t t0) (THead (Bind b) u t1)))) (\lambda (H5: (sn3 +(CHead c (Bind b) u) (lift (S O) O v))).(\lambda (H6: (sn3 (CHead c (Bind b) +u) (THead (Flat Appl) (lift (S O) O t) (THeads (Flat Appl) (lifts (S O) O t0) +t1)))).(let H_y \def (sn3_gen_lift (CHead c (Bind b) u) v (S O) O H5 c) in +(sn3_appl_appls t (THead (Bind b) u t1) t0 c (H2 t1 H6) v (H_y (drop_drop +(Bind b) O c c (drop_refl c) u)) (\lambda (u2: T).(\lambda (H7: (pr3 c +(THeads (Flat Appl) (TCons t t0) (THead (Bind b) u t1)) u2)).(\lambda (H8: +(((iso (THeads (Flat Appl) (TCons t t0) (THead (Bind b) u t1)) u2) \to +(\forall (P: Prop).P)))).(let H9 \def (pr3_iso_appls_bind b H (TCons t t0) u +t1 c u2 H7 H8) in (sn3_pr3_trans c (THead (Flat Appl) v (THead (Bind b) u +(THeads (Flat Appl) (lifts (S O) O (TCons t t0)) t1))) (sn3_appl_bind b H c u +H0 (THeads (Flat Appl) (lifts (S O) O (TCons t t0)) t1) v H3) (THead (Flat +Appl) v u2) (pr3_flat c v v (pr3_refl c v) (THead (Bind b) u (THeads (Flat +Appl) (lifts (S O) O (TCons t t0)) t1)) u2 H9 Appl)))))))))) H4)))))))) +vs0))) vs)))))). + +theorem sn3_appls_abbr: + \forall (c: C).(\forall (d: C).(\forall (w: T).(\forall (i: nat).((getl i c +(CHead d (Bind Abbr) w)) \to (\forall (vs: TList).((sn3 c (THeads (Flat Appl) +vs (lift (S i) O w))) \to (sn3 c (THeads (Flat Appl) vs (TLRef i))))))))) +\def + \lambda (c: C).(\lambda (d: C).(\lambda (w: T).(\lambda (i: nat).(\lambda +(H: (getl i c (CHead d (Bind Abbr) w))).(\lambda (vs: TList).(TList_ind +(\lambda (t: TList).((sn3 c (THeads (Flat Appl) t (lift (S i) O w))) \to (sn3 +c (THeads (Flat Appl) t (TLRef i))))) (\lambda (H0: (sn3 c (lift (S i) O +w))).(let H_y \def (sn3_gen_lift c w (S i) O H0 d (getl_drop Abbr c d w i H)) +in (sn3_abbr c d w i H H_y))) (\lambda (v: T).(\lambda (vs0: +TList).(TList_ind (\lambda (t: TList).((((sn3 c (THeads (Flat Appl) t (lift +(S i) O w))) \to (sn3 c (THeads (Flat Appl) t (TLRef i))))) \to ((sn3 c +(THead (Flat Appl) v (THeads (Flat Appl) t (lift (S i) O w)))) \to (sn3 c +(THead (Flat Appl) v (THeads (Flat Appl) t (TLRef i))))))) (\lambda (_: +(((sn3 c (THeads (Flat Appl) TNil (lift (S i) O w))) \to (sn3 c (THeads (Flat +Appl) TNil (TLRef i)))))).(\lambda (H1: (sn3 c (THead (Flat Appl) v (THeads +(Flat Appl) TNil (lift (S i) O w))))).(nf3_appl_abbr c d w i H v H1))) +(\lambda (t: T).(\lambda (t0: TList).(\lambda (_: (((((sn3 c (THeads (Flat +Appl) t0 (lift (S i) O w))) \to (sn3 c (THeads (Flat Appl) t0 (TLRef i))))) +\to ((sn3 c (THead (Flat Appl) v (THeads (Flat Appl) t0 (lift (S i) O w)))) +\to (sn3 c (THead (Flat Appl) v (THeads (Flat Appl) t0 (TLRef +i)))))))).(\lambda (H1: (((sn3 c (THeads (Flat Appl) (TCons t t0) (lift (S i) +O w))) \to (sn3 c (THeads (Flat Appl) (TCons t t0) (TLRef i)))))).(\lambda +(H2: (sn3 c (THead (Flat Appl) v (THeads (Flat Appl) (TCons t t0) (lift (S i) +O w))))).(let H3 \def (sn3_gen_flat Appl c v (THeads (Flat Appl) (TCons t t0) +(lift (S i) O w)) H2) in (and_ind (sn3 c v) (sn3 c (THead (Flat Appl) t +(THeads (Flat Appl) t0 (lift (S i) O w)))) (sn3 c (THead (Flat Appl) v +(THeads (Flat Appl) (TCons t t0) (TLRef i)))) (\lambda (H4: (sn3 c +v)).(\lambda (H5: (sn3 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S +i) O w))))).(sn3_appl_appls t (TLRef i) t0 c (H1 H5) v H4 (\lambda (u2: +T).(\lambda (H6: (pr3 c (THeads (Flat Appl) (TCons t t0) (TLRef i)) +u2)).(\lambda (H7: (((iso (THeads (Flat Appl) (TCons t t0) (TLRef i)) u2) \to +(\forall (P: Prop).P)))).(sn3_pr3_trans c (THead (Flat Appl) v (THeads (Flat +Appl) (TCons t t0) (lift (S i) O w))) H2 (THead (Flat Appl) v u2) +(pr3_thin_dx c (THeads (Flat Appl) (TCons t t0) (lift (S i) O w)) u2 +(pr3_iso_appls_abbr c d w i H (TCons t t0) u2 H6 H7) v Appl)))))))) H3))))))) +vs0))) vs)))))). +