From: Andrea Asperti Date: Wed, 2 May 2012 09:15:19 +0000 (+0000) Subject: Added wmono. X-Git-Tag: make_still_working~1788 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=b0378187bd0aeebb65502ad270264a980de4c8c0;p=helm.git Added wmono. --- diff --git a/matita/matita/lib/turing/wmono.ma b/matita/matita/lib/turing/wmono.ma new file mode 100644 index 000000000..6b7849709 --- /dev/null +++ b/matita/matita/lib/turing/wmono.ma @@ -0,0 +1,399 @@ +(* + ||M|| This file is part of HELM, an Hypertextual, Electronic + ||A|| Library of Mathematics, developed at the Computer Science + ||T|| Department of the University of Bologna, Italy. + ||I|| + ||T|| + ||A|| + \ / This file is distributed under the terms of the + \ / GNU General Public License Version 2 + V_____________________________________________________________*) + +include "basics/vectors.ma". +(* include "basics/relations.ma". *) + +record tape (sig:FinSet): Type[0] ≝ +{ left : list sig; + right: list sig +}. + +inductive move : Type[0] ≝ +| L : move +| R : move +. + +(* We do not distinuish an input tape *) + +record TM (sig:FinSet): Type[1] ≝ +{ states : FinSet; + trans : states × (option sig) → states × (option (sig × move)); + start: states; + halt : states → bool +}. + +record config (sig,states:FinSet): Type[0] ≝ +{ cstate : states; + ctape: tape sig +}. + +definition option_hd ≝ λA.λl:list A. + match l with + [nil ⇒ None ? + |cons a _ ⇒ Some ? a + ]. + +definition tape_move ≝ λsig.λt: tape sig.λm:option (sig × move). + match m with + [ None ⇒ t + | Some m1 ⇒ + match \snd m1 with + [ R ⇒ mk_tape sig ((\fst m1)::(left ? t)) (tail ? (right ? t)) + | L ⇒ mk_tape sig (tail ? (left ? t)) ((\fst m1)::(right ? t)) + ] + ]. + +definition step ≝ λsig.λM:TM sig.λc:config sig (states sig M). + let current_char ≝ option_hd ? (right ? (ctape ?? c)) in + let 〈news,mv〉 ≝ trans sig M 〈cstate ?? c,current_char〉 in + mk_config ?? news (tape_move sig (ctape ?? c) mv). + +let rec loop (A:Type[0]) n (f:A→A) p a on n ≝ + match n with + [ O ⇒ None ? + | S m ⇒ if p a then (Some ? a) else loop A m f p (f a) + ]. + +lemma loop_incr : ∀A,f,p,k1,k2,a1,a2. + loop A k1 f p a1 = Some ? a2 → + loop A (k2+k1) f p a1 = Some ? a2. +#A #f #p #k1 #k2 #a1 #a2 generalize in match a1; elim k1 +[normalize #a0 #Hfalse destruct +|#k1' #IH #a0 Hpa0 whd in ⊢ (??%? → ??%?); // @IH +] +qed. + +lemma loop_split : ∀A,f,p,q.(∀b. q b = true → p b = true) → + ∀k,a1,a2. + loop A k f q a1 = Some ? a2 → + ∃k1,a3. + loop A k1 f p a1 = Some ? a3 ∧ + loop A (S(k-k1)) f q a3 = Some ? a2. +#A #f #p #q #Hpq #k elim k + [#a1 #a2 normalize #Heq destruct + |#i #Hind #a1 #a2 normalize + cases (true_or_false (q a1)) #Hqa1 >Hqa1 normalize + [ #Ha1a2 destruct + @(ex_intro … 1) @(ex_intro … a2) % + [normalize >(Hpq …Hqa1) // |>Hqa1 //] + |#Hloop cases (true_or_false (p a1)) #Hpa1 + [@(ex_intro … 1) @(ex_intro … a1) % + [normalize >Hpa1 // |>Hqa1 Hpa1 normalize // | @Hloop2 ] + ] + ] + ] +qed. + +(* +lemma loop_split : ∀A,f,p,q.(∀b. p b = false → q b = false) → + ∀k1,k2,a1,a2,a3,a4. + loop A k1 f p a1 = Some ? a2 → + f a2 = a3 → q a2 = false → + loop A k2 f q a3 = Some ? a4 → + loop A (k1+k2) f q a1 = Some ? a4. +#Sig #f #p #q #Hpq #k1 elim k1 + [normalize #k2 #a1 #a2 #a3 #a4 #H destruct + |#k1' #Hind #k2 #a1 #a2 #a3 #a4 normalize in ⊢ (%→?); + cases (true_or_false (p a1)) #pa1 >pa1 normalize in ⊢ (%→?); + [#eqa1a2 destruct #eqa2a3 #Hqa2 #H + whd in ⊢ (??(??%???)?); >plus_n_Sm @loop_incr + whd in ⊢ (??%?); >Hqa2 >eqa2a3 @H + |normalize >(Hpq … pa1) normalize + #H1 #H2 #H3 @(Hind … H2) // + ] + ] +qed. *) + +(* +lemma loop_split : ∀A,f,p,q.(∀b. p b = false → q b = false) → + ∀k1,k2,a1,a2,a3. + loop A k1 f p a1 = Some ? a2 → + loop A k2 f q a2 = Some ? a3 → + loop A (k1+k2) f q a1 = Some ? a3. +#Sig #f #p #q #Hpq #k1 elim k1 + [normalize #k2 #a1 #a2 #a3 #H destruct + |#k1' #Hind #k2 #a1 #a2 #a3 normalize in ⊢ (%→?→?); + cases (true_or_false (p a1)) #pa1 >pa1 normalize in ⊢ (%→?); + [#eqa1a2 destruct #H @loop_incr // + |normalize >(Hpq … pa1) normalize + #H1 #H2 @(Hind … H2) // + ] + ] +qed. +*) + +definition initc ≝ λsig.λM:TM sig.λt. + mk_config sig (states sig M) (start sig M) t. + +definition Realize ≝ λsig.λM:TM sig.λR:relation (tape sig). +∀t.∀i.∀outc. + loop ? i (step sig M) (λc.halt sig M (cstate ?? c)) (initc sig M t) = Some ? outc → + R t (ctape ?? outc). + + +definition accRealize ≝ λsig.λM:TM sig.λacc:states sig M.λRtrue,Rfalse:relation (tape sig). +∀t.∃i.∃outc. + loop ? i (step sig M) (λc.halt sig M (cstate ?? c)) (initc sig M t) = Some ? outc ∧ + (cstate ?? outc = acc → Rtrue t (ctape ?? outc)) ∧ + (cstate ?? outc ≠ acc → Rfalse t (ctape ?? outc)). + +(* Compositions *) + +definition seq_trans ≝ λsig. λM1,M2 : TM sig. +λp. let 〈s,a〉 ≝ p in + match s with + [ inl s1 ⇒ + if halt sig M1 s1 then 〈inr … (start sig M2), None ?〉 + else + let 〈news1,m〉 ≝ trans sig M1 〈s1,a〉 in + 〈inl … news1,m〉 + | inr s2 ⇒ + let 〈news2,m〉 ≝ trans sig M2 〈s2,a〉 in + 〈inr … news2,m〉 + ]. + +definition seq ≝ λsig. λM1,M2 : TM sig. + mk_TM sig + (FinSum (states sig M1) (states sig M2)) + (seq_trans sig M1 M2) + (inl … (start sig M1)) + (λs.match s with + [ inl _ ⇒ false | inr s2 ⇒ halt sig M2 s2]). + +definition Rcomp ≝ λA.λR1,R2:relation A.λa1,a2. + ∃am.R1 a1 am ∧ R2 am a2. + +(* +definition injectRl ≝ λsig.λM1.λM2.λR. + λc1,c2. ∃c11,c12. + inl … (cstate sig M1 c11) = cstate sig (seq sig M1 M2) c1 ∧ + inl … (cstate sig M1 c12) = cstate sig (seq sig M1 M2) c2 ∧ + ctape sig M1 c11 = ctape sig (seq sig M1 M2) c1 ∧ + ctape sig M1 c12 = ctape sig (seq sig M1 M2) c2 ∧ + R c11 c12. + +definition injectRr ≝ λsig.λM1.λM2.λR. + λc1,c2. ∃c21,c22. + inr … (cstate sig M2 c21) = cstate sig (seq sig M1 M2) c1 ∧ + inr … (cstate sig M2 c22) = cstate sig (seq sig M1 M2) c2 ∧ + ctape sig M2 c21 = ctape sig (seq sig M1 M2) c1 ∧ + ctape sig M2 c22 = ctape sig (seq sig M1 M2) c2 ∧ + R c21 c22. + +definition Rlink ≝ λsig.λM1,M2.λc1,c2. + ctape sig (seq sig M1 M2) c1 = ctape sig (seq sig M1 M2) c2 ∧ + cstate sig (seq sig M1 M2) c1 = inl … (halt sig M1) ∧ + cstate sig (seq sig M1 M2) c2 = inr … (start sig M2). *) + +interpretation "relation composition" 'compose R1 R2 = (Rcomp ? R1 R2). + +definition lift_confL ≝ + λsig,S1,S2,c.match c with + [ mk_config s t ⇒ mk_config sig (FinSum S1 S2) (inl … s) t ]. + +definition lift_confR ≝ + λsig,S1,S2,c.match c with + [ mk_config s t ⇒ mk_config sig (FinSum S1 S2) (inr … s) t ]. + +definition halt_liftL ≝ + λS1,S2,halt.λs:FinSum S1 S2. + match s with + [ inl s1 ⇒ halt s1 + | inr _ ⇒ true ]. (* should be vacuous in all cases we use halt_liftL *) + +definition halt_liftR ≝ + λS1,S2,halt.λs:FinSum S1 S2. + match s with + [ inl _ ⇒ false + | inr s2 ⇒ halt s2 ]. + +lemma p_halt_liftL : ∀sig,S1,S2,halt,c. + halt (cstate sig S1 c) = + halt_liftL S1 S2 halt (cstate … (lift_confL … c)). +#sig #S1 #S2 #halt #c cases c #s #t % +qed. + +lemma trans_liftL : ∀sig,M1,M2,s,a,news,move. + halt ? M1 s = false → + trans sig M1 〈s,a〉 = 〈news,move〉 → + trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inl … news,move〉. +#sig (*#M1*) * #Q1 #T1 #init1 #halt1 #M2 #s #a #news #move +#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % +qed. + +lemma trans_liftR : ∀sig,M1,M2,s,a,news,move. + halt ? M2 s = false → + trans sig M2 〈s,a〉 = 〈news,move〉 → + trans sig (seq sig M1 M2) 〈inr … s,a〉 = 〈inr … news,move〉. +#sig #M1 * #Q2 #T2 #init2 #halt2 #s #a #news #move +#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % +qed. + +lemma config_eq : + ∀sig,M,c1,c2. + cstate sig M c1 = cstate sig M c2 → + ctape sig M c1 = ctape sig M c2 → c1 = c2. +#sig #M1 * #s1 #t1 * #s2 #t2 // +qed. + +lemma step_lift_confR : ∀sig,M1,M2,c0. + halt ? M2 (cstate ?? c0) = false → + step sig (seq sig M1 M2) (lift_confR sig (states ? M1) (states ? M2) c0) = + lift_confR sig (states ? M1) (states ? M2) (step sig M2 c0). +#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s * #lt +#rs #Hhalt +whd in ⊢ (???(????%));whd in ⊢ (???%); +lapply (refl ? (trans ?? 〈s,option_hd sig rs〉)) +cases (trans ?? 〈s,option_hd sig rs〉) in ⊢ (???% → %); +#s0 #m0 #Heq whd in ⊢ (???%); +whd in ⊢ (??(???%)?); whd in ⊢ (??%?); +>(trans_liftR … Heq) +[% | //] +qed. + +lemma step_lift_confL : ∀sig,M1,M2,c0. + halt ? M1 (cstate ?? c0) = false → + step sig (seq sig M1 M2) (lift_confL sig (states ? M1) (states ? M2) c0) = + lift_confL sig ?? (step sig M1 c0). +#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s * #lt +#rs #Hhalt +whd in ⊢ (???(????%));whd in ⊢ (???%); +lapply (refl ? (trans ?? 〈s,option_hd sig rs〉)) +cases (trans ?? 〈s,option_hd sig rs〉) in ⊢ (???% → %); +#s0 #m0 #Heq whd in ⊢ (???%); +whd in ⊢ (??(???%)?); whd in ⊢ (??%?); +>(trans_liftL … Heq) +[% | //] +qed. + +lemma loop_lift : ∀A,B,k,lift,f,g,h,hlift,c1,c2. + (∀x.hlift (lift x) = h x) → + (∀x.h x = false → lift (f x) = g (lift x)) → + loop A k f h c1 = Some ? c2 → + loop B k g hlift (lift c1) = Some ? (lift … c2). +#A #B #k #lift #f #g #h #hlift #c1 #c2 #Hfg #Hhlift +generalize in match c1; elim k +[#c0 normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse) +|#k0 #IH #c0 whd in ⊢ (??%? → ??%?); + cases (true_or_false (h c0)) #Hc0 >Hfg >Hc0 + [ normalize #Heq destruct (Heq) % + | normalize Hc0 + [ >(?: halt_liftL ?? (halt sig M1) (cstate sig ? (lift_confL … c0)) = true) + [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) % + | (?: halt_liftL ?? (halt sig M1) (cstate ?? (lift_confL … c0)) = false) + [whd in ⊢ (??%? → ??%?); #Hc2 <(IH ? Hc2) @eq_f + @step_lift_confL // + | Hc0 + [ >(?: halt ? (seq sig M1 M2) (cstate sig ? (lift_confR … c0)) = true) + [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) % + | (?: halt ? (seq sig M1 M2) (cstate sig ? (lift_confR … c0)) = false) + [whd in ⊢ (??%? → ??%?); #Hc2 <(IH ? Hc2) @eq_f + @step_lift_confR // + | Hpa normalize #H1 destruct // + | >Hpa normalize @IH + ] +] +qed. + +lemma trans_liftL_true : ∀sig,M1,M2,s,a. + halt ? M1 s = true → + trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inr … (start ? M2),None ?〉. +#sig #M1 #M2 #s #a +#Hhalt whd in ⊢ (??%?); >Hhalt % +qed. + +lemma eq_ctape_lift_conf_L : ∀sig,S1,S2,outc. + ctape sig (FinSum S1 S2) (lift_confL … outc) = ctape … outc. +#sig #S1 #S2 #outc cases outc #s #t % +qed. + +lemma eq_ctape_lift_conf_R : ∀sig,S1,S2,outc. + ctape sig (FinSum S1 S2) (lift_confR … outc) = ctape … outc. +#sig #S1 #S2 #outc cases outc #s #t % +qed. + +theorem sem_seq: ∀sig,M1,M2,R1,R2. + Realize sig M1 R1 → Realize sig M2 R2 → + Realize sig (seq sig M1 M2) (R1 ∘ R2). +#sig #M1 #M2 #R1 #R2 #HR1 #HR2 #t #i #outc #Hloop +cases (HR1 t) #k1 * #outc1 * #Hloop1 #HM1 +cases (HR2 (ctape sig (states ? M1) outc1)) #k2 * #outc2 * #Hloop2 #HM2 +@(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2)) +% +[@(loop_split ??????????? + (loop_lift ??? (lift_confL sig (states sig M1) (states sig M2)) + (step sig M1) (step sig (seq sig M1 M2)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) … Hloop1)) + [ * * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + || #c0 #Hhalt (trans_liftL_true sig M1 M2 ??) + [ whd in ⊢ (??%?); whd in ⊢ (???%); + @config_eq whd in ⊢ (???%); // + | @(loop_Some ?????? Hloop10) ] + ] +| @(ex_intro … (ctape ? (FinSum (states ? M1) (states ? M2)) (lift_confL … outc1))) + % // >eq_ctape_lift_conf_L >eq_ctape_lift_conf_R // +] +qed. +