From: Claudio Sacerdoti Coen Date: Fri, 8 Jan 2010 15:18:46 +0000 (+0000) Subject: Categorical stuff postponed. X-Git-Tag: make_still_working~3135 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=b0f18f8992623be7c7dde1890d51c7404e9930ab;p=helm.git Categorical stuff postponed. --- diff --git a/helm/software/matita/nlibrary/overlap/o-algebra.ma b/helm/software/matita/nlibrary/overlap/o-algebra.ma index bf320c1e1..c55131315 100644 --- a/helm/software/matita/nlibrary/overlap/o-algebra.ma +++ b/helm/software/matita/nlibrary/overlap/o-algebra.ma @@ -314,115 +314,6 @@ unification hint 0 ≔ P, Q, r; (* ------------------------ *) ⊢ fun11 … R r ≡ or_f_minus_star P Q r. -ninductive one : Type[0] ≝ unit : one. - -ndefinition force : ∀S:Type[2]. S → ∀T:Type[2]. T → one → Type[2] ≝ - λS,s,T,t,lock. match lock with [ unit => S ]. - -ndefinition enrich_as : - ∀S:Type[2].∀s:S.∀T:Type[2].∀t:T.∀lock:one.force S s T t lock ≝ - λS,s,T,t,lock. match lock return λlock.match lock with [ unit ⇒ S ] - with [ unit ⇒ s ]. - -ncoercion enrich_as : ∀S:Type[2].∀s:S.∀T:Type[2].∀t:T.∀lock:one. force S s T t lock - ≝ enrich_as on t: ? to force ? ? ? ? ?. - -(* does not work here -nlemma foo : ∀A,B,C:setoid1.∀f:B ⇒ C.∀g:A ⇒ B. unary_morphism1 A C. -#A; #B; #C; #f; #g; napply(f \circ g). -nqed.*) - -(* This precise hint does not leave spurious metavariables *) -unification hint 0 ≔ A,B,C : setoid1, f:B ⇒ C, g: A ⇒ B; - lock ≟ unit -(* --------------------------------------------------------------- *) ⊢ - (unary_morphism1 A C) - ≡ - (force (unary_morphism1 A C) (comp1_unary_morphisms A B C f g) - (carr1 A → carr1 C) (composition1 A B C f g) lock) - . - -(* This uniform hint opens spurious metavariables -unification hint 0 ≔ A,B,C : setoid1, f:B ⇒ C, g: A ⇒ B, X; - lock ≟ unit -(* --------------------------------------------------------------- *) ⊢ - (unary_morphism1 A C) - ≡ - (force (unary_morphism1 A C) X (carr1 A → carr1 C) (fun11 … X) lock) - . -*) - -nlemma foo : ∀A,B,C:setoid1.∀f:B ⇒ C.∀g:A ⇒ B. unary_morphism1 A C. -#A; #B; #C; #f; #g; napply(f ∘ g). -nqed. - -(* - -ndefinition uffa: ∀A,B. ∀U: unary_morphism1 A B. (A → B) → CProp[0]. - #A;#B;#_;#_; napply True. -nqed. -ndefinition mk_uffa: ∀A,B.∀U: unary_morphism1 A B. ∀f: (A → B). uffa A B U f. - #A; #B; #U; #f; napply I. -nqed. - -ndefinition coerc_to_unary_morphism1: - ∀A,B. ∀U: unary_morphism1 A B. uffa A B U (fun11 … U) → unary_morphism1 A B. - #A; #B; #U; #_; nassumption. -nqed. - -ncheck (λA,B,C,f,g.coerc_to_unary_morphism1 ??? (mk_uffa ??? (composition1 A B C f g))). -*) -ndefinition ORelation_composition : ∀P,Q,R. - binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). -#P; #Q; #R; @ -[ #F; #G; @ - [ napply (G ∘ F) (* napply (comp1_unary_morphisms … G F) (*CSC: was (G ∘ F);*) *) - | napply (G⎻* ∘ F⎻* ) (* napply (comp1_unary_morphisms … G⎻* F⎻* ) (*CSC: was (G⎻* ∘ F⎻* );*)*) - | napply (comp1_unary_morphisms … F* G* ) (*CSC: was (F* ∘ G* );*) - | napply (comp1_unary_morphisms … F⎻ G⎻) (*CSC: was (F⎻ ∘ G⎻);*) - | #p; #q; nnormalize; - napply (.= (or_prop1 … G …)); (*CSC: it used to understand without G *) - napply (or_prop1 …) - | #p; #q; nnormalize; - napply (.= (or_prop2 … F …)); - napply or_prop2 - | #p; #q; nnormalize; - napply (.= (or_prop3 … G …)); - napply or_prop3 - ] -##| #a;#a';#b;#b';#e;#e1;#x;nnormalize;napply (.= †(e x));napply e1] -nqed. - -(* -ndefinition OA : category2. -split; -[ apply (OAlgebra); -| intros; apply (ORelation_setoid o o1); -| intro O; split; - [1,2,3,4: apply id2; - |5,6,7:intros; apply refl1;] -| apply ORelation_composition; -| intros (P Q R S F G H); split; - [ change with (H⎻* ∘ G⎻* ∘ F⎻* = H⎻* ∘ (G⎻* ∘ F⎻* )); - apply (comp_assoc2 ????? (F⎻* ) (G⎻* ) (H⎻* )); - | apply ((comp_assoc2 ????? (H⎻) (G⎻) (F⎻))^-1); - | apply ((comp_assoc2 ????? F G H)^-1); - | apply ((comp_assoc2 ????? H* G* F* ));] -| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left2; -| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right2;] -qed. - -definition OAlgebra_of_objs2_OA: objs2 OA → OAlgebra ≝ λx.x. -coercion OAlgebra_of_objs2_OA. - -definition ORelation_setoid_of_arrows2_OA: - ∀P,Q. arrows2 OA P Q → ORelation_setoid P Q ≝ λP,Q,c.c. -coercion ORelation_setoid_of_arrows2_OA. - -prefer coercion Type_OF_objs2. -*) -(* alias symbol "eq" = "setoid1 eq". *) - (* qui la notazione non va *) (*CSC nlemma leq_to_eq_join: ∀S:OAlgebra.∀p,q:S. p ≤ q → q = (binary_join ? p q). @@ -545,4 +436,115 @@ nqed. nlemma oa_overlap_sym': ∀o:OAlgebra.∀U,V:o. (U >< V) = (V >< U). #o; #U; #V; @; #H; napply oa_overlap_sym; nassumption. -nqed. \ No newline at end of file +nqed. + +(******************* CATEGORIES **********************) + +ninductive one : Type[0] ≝ unit : one. + +ndefinition force : ∀S:Type[2]. S → ∀T:Type[2]. T → one → Type[2] ≝ + λS,s,T,t,lock. match lock with [ unit => S ]. + +ndefinition enrich_as : + ∀S:Type[2].∀s:S.∀T:Type[2].∀t:T.∀lock:one.force S s T t lock ≝ + λS,s,T,t,lock. match lock return λlock.match lock with [ unit ⇒ S ] + with [ unit ⇒ s ]. + +ncoercion enrich_as : ∀S:Type[2].∀s:S.∀T:Type[2].∀t:T.∀lock:one. force S s T t lock + ≝ enrich_as on t: ? to force ? ? ? ? ?. + +(* does not work here +nlemma foo : ∀A,B,C:setoid1.∀f:B ⇒ C.∀g:A ⇒ B. unary_morphism1 A C. +#A; #B; #C; #f; #g; napply(f \circ g). +nqed.*) + +(* This precise hint does not leave spurious metavariables *) +unification hint 0 ≔ A,B,C : setoid1, f:B ⇒ C, g: A ⇒ B; + lock ≟ unit +(* --------------------------------------------------------------- *) ⊢ + (unary_morphism1 A C) + ≡ + (force (unary_morphism1 A C) (comp1_unary_morphisms A B C f g) + (carr1 A → carr1 C) (composition1 A B C f g) lock) + . + +(* This uniform hint opens spurious metavariables +unification hint 0 ≔ A,B,C : setoid1, f:B ⇒ C, g: A ⇒ B, X; + lock ≟ unit +(* --------------------------------------------------------------- *) ⊢ + (unary_morphism1 A C) + ≡ + (force (unary_morphism1 A C) X (carr1 A → carr1 C) (fun11 … X) lock) + . +*) + +nlemma foo : ∀A,B,C:setoid1.∀f:B ⇒ C.∀g:A ⇒ B. unary_morphism1 A C. +#A; #B; #C; #f; #g; napply(f ∘ g). +nqed. + +(* + +ndefinition uffa: ∀A,B. ∀U: unary_morphism1 A B. (A → B) → CProp[0]. + #A;#B;#_;#_; napply True. +nqed. +ndefinition mk_uffa: ∀A,B.∀U: unary_morphism1 A B. ∀f: (A → B). uffa A B U f. + #A; #B; #U; #f; napply I. +nqed. + +ndefinition coerc_to_unary_morphism1: + ∀A,B. ∀U: unary_morphism1 A B. uffa A B U (fun11 … U) → unary_morphism1 A B. + #A; #B; #U; #_; nassumption. +nqed. + +ncheck (λA,B,C,f,g.coerc_to_unary_morphism1 ??? (mk_uffa ??? (composition1 A B C f g))). +*) +ndefinition ORelation_composition : ∀P,Q,R. + binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). +#P; #Q; #R; @ +[ #F; #G; @ + [ napply (G ∘ F) (* napply (comp1_unary_morphisms … G F) (*CSC: was (G ∘ F);*) *) + | napply (G⎻* ∘ F⎻* ) (* napply (comp1_unary_morphisms … G⎻* F⎻* ) (*CSC: was (G⎻* ∘ F⎻* );*)*) + | napply (comp1_unary_morphisms … F* G* ) (*CSC: was (F* ∘ G* );*) + | napply (comp1_unary_morphisms … F⎻ G⎻) (*CSC: was (F⎻ ∘ G⎻);*) + | #p; #q; nnormalize; + napply (.= (or_prop1 … G …)); (*CSC: it used to understand without G *) + napply (or_prop1 …) + | #p; #q; nnormalize; + napply (.= (or_prop2 … F …)); + napply or_prop2 + | #p; #q; nnormalize; + napply (.= (or_prop3 … G …)); + napply or_prop3 + ] +##| #a;#a';#b;#b';#e;#e1;#x;nnormalize;napply (.= †(e x));napply e1] +nqed. + +(* +ndefinition OA : category2. +split; +[ apply (OAlgebra); +| intros; apply (ORelation_setoid o o1); +| intro O; split; + [1,2,3,4: apply id2; + |5,6,7:intros; apply refl1;] +| apply ORelation_composition; +| intros (P Q R S F G H); split; + [ change with (H⎻* ∘ G⎻* ∘ F⎻* = H⎻* ∘ (G⎻* ∘ F⎻* )); + apply (comp_assoc2 ????? (F⎻* ) (G⎻* ) (H⎻* )); + | apply ((comp_assoc2 ????? (H⎻) (G⎻) (F⎻))^-1); + | apply ((comp_assoc2 ????? F G H)^-1); + | apply ((comp_assoc2 ????? H* G* F* ));] +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left2; +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right2;] +qed. + +definition OAlgebra_of_objs2_OA: objs2 OA → OAlgebra ≝ λx.x. +coercion OAlgebra_of_objs2_OA. + +definition ORelation_setoid_of_arrows2_OA: + ∀P,Q. arrows2 OA P Q → ORelation_setoid P Q ≝ λP,Q,c.c. +coercion ORelation_setoid_of_arrows2_OA. + +prefer coercion Type_OF_objs2. +*) +(* alias symbol "eq" = "setoid1 eq". *)