From: Ferruccio Guidi Date: Fri, 5 Jan 2018 19:20:09 +0000 (+0100) Subject: beginning of minimalist foundation from a student of Milly X-Git-Tag: make_still_working~381 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=b3aa03ebf904d8c7290aa44b4ce80bf3f976fb2e;p=helm.git beginning of minimalist foundation from a student of Milly --- diff --git a/matita/matita/contribs/mf/de.ma b/matita/matita/contribs/mf/de.ma new file mode 100644 index 000000000..47b33dde8 --- /dev/null +++ b/matita/matita/contribs/mf/de.ma @@ -0,0 +1,70 @@ +(* (C) 2014 Luca Bressan *) + +include "model.ma". + +definition eDe: est → est. + #I % + [ @(De I) + | @De_rect_Type1 + [ #z @(z = c_unit …) + | #i * [ 2: #i' @(i ≃ i') | 3,4: #_ #_ ] @falsum + | #F1 #F2 #H1 #H2 * [ 3: #F1' #F2' @(H1 F1' ∧ H2 F2') | 2: #_ | 4: #_ #_ ] @falsum + | #F1 #F2 #H1 #H2 * [ 4: #F1' #F2' @(H1 F1' ∧ H2 F2') | 2: #_ | 3: #_ #_ ] @falsum + ] + | % + [ @De_rect_CProp0 + [ % + | @rfl + | #F1 #F2 #H1 #H2 % [ @H1 | @H2 ] + | #F1 #F2 #H1 #H2 % [ @H1 | @H2 ] + ] + | @De_rect_CProp0 + [ * [ #_ % | #i #abs @(De_clash_unit_ev I i abs) + | #F1 #F2 #abs @(De_clash_unit_times I F1 F2 abs) + | #F1 #F2 #abs @(De_clash_unit_plus I F1 F2 abs) ] + | #i * [ @falsum_rect_CProp0 | #i' @sym | 3,4: #F1' #F2' #abs @abs ] + | #F1 #F2 #H1 #H2 * [ @falsum_rect_CProp0 | #i' #abs @abs + | #F1' #F2' * #K1 #K2 % [ @H1 @K1 | @H2 @K2 ] + | #F1' #F2' #abs @abs ] + | #F1 #F2 #H1 #H2 * [ @falsum_rect_CProp0 | #i' #abs @abs + | #F1' #F2' #abs @abs + | #F1' #F2' * #K1 #K2 % [ @H1 @K1 | @H2 @K2 ] ] + ] + | @De_rect_CProp0 + [ * [ #F'' #_ #h @h + | #i' #F'' #abs @(falsum_rect_CProp0 … (De_clash_unit_ev I i' abs)) + | #F1' #F2' #F'' #abs @(falsum_rect_CProp0 … (De_clash_unit_times I F1' F2' abs)) + | #F1' #F2' #F'' #abs @(falsum_rect_CProp0 … (De_clash_unit_plus I F1' F2' abs)) + ] + | #i * [ #F'' @falsum_rect_CProp0 + | #i' * [ #_ #abs @abs + | #i'' @tra + | 3,4: #F1'' #F2'' #_ #abs @abs + ] + | 3,4: #F1' #F2' #F'' @falsum_rect_CProp0 + ] + | #F1 #F2 #H1 #H2 * [ #F'' @falsum_rect_CProp0 + | #i' #F'' @falsum_rect_CProp0 + | #F1' #F2' * [ #_ #abs @abs + | #i'' #_ #abs @abs + | #F1'' #F2'' * #H11 #H12 * #H21 #H22 % + [ @(H1 F1' F1'' H11 H21) | @(H2 F2' F2'' H12 H22) ] + | #F1'' #F2'' #_ #abs @abs + ] + | #F1' #F2' #F'' @falsum_rect_CProp0 + ] + | #F1 #F2 #H1 #H2 * [ #F'' @falsum_rect_CProp0 + | #i' #F'' @falsum_rect_CProp0 + | #F1' #F2' #F'' @falsum_rect_CProp0 + | #F1' #F2' * [ #_ #abs @abs + | #i'' #_ #abs @abs + | #F1'' #F2'' #_ #abs @abs + | #F1'' #F2'' * #H11 #H12 * #H21 #H22 % + [ @(H1 F1' F1'' H11 H21) | @(H2 F2' F2'' H12 H22) ] + ] + ] + ] + ] + ] +qed. + diff --git a/matita/matita/contribs/mf/empty.ma b/matita/matita/contribs/mf/empty.ma new file mode 100644 index 000000000..a402ef217 --- /dev/null +++ b/matita/matita/contribs/mf/empty.ma @@ -0,0 +1,23 @@ +(* (C) 2014 Luca Bressan *) + +include "model.ma". +include "pisigma.ma". +include "pisigma2.ma". + +definition en0: est ≝ + mk_est n0 (λz,z'. z = z') ?. + % #x [ % | #y * % | #y #z #h * @h ] +qed. + +definition en0_rect_Type0: ∀Q: edst en0. epi en0 Q ≝ + λQ. 〈n0_rect_Type0 …, ?〉. + @(n0_rect_CProp0). +qed. + +definition en0_rect_Type1: ∀Q: edcl (est_into_ecl en0). ePi … Q ≝ + λQ. 〈n0_rect_Type1 …, ?〉. + @(n0_rect_CProp1). +qed. + +definition edn0: ∀I: est. edst I ≝ λI. constant_edst I en0. + diff --git a/matita/matita/contribs/mf/interface.ma b/matita/matita/contribs/mf/interface.ma new file mode 100644 index 000000000..4f9f0c011 --- /dev/null +++ b/matita/matita/contribs/mf/interface.ma @@ -0,0 +1,27 @@ +(* (C) 2014 Luca Bressan *) + +include "model.ma". + +include "pisigma2.ma". +include "power_one.ma". +include "power.ma". + +include "pisigma.ma". +include "empty.ma". +include "singleton.ma". +include "list.ma". +include "plus.ma". +include "de.ma". + +definition eFalsum: eprop ≝ Falsum. +definition eId: ∀B: ecl. Sup B → Sup B → eprop ≝ Eq. +definition eImplies: eprop → eprop → eprop ≝ Implies. +definition eConj: eprop → eprop → eprop ≝ Conj. +definition eDisj: eprop → eprop → eprop ≝ Disj. + +definition efalsum: eprops ≝ falsum. +definition eid: ∀B: est. sup B → sup B → eprops ≝ eq. +definition eimplies: eprops → eprops → eprops ≝ implies. +definition econj: eprops → eprops → eprops ≝ conj. +definition edisj: eprops → eprops → eprops ≝ disj. + diff --git a/matita/matita/contribs/mf/list.ma b/matita/matita/contribs/mf/list.ma new file mode 100644 index 000000000..122002c67 --- /dev/null +++ b/matita/matita/contribs/mf/list.ma @@ -0,0 +1,197 @@ +(* (C) 2014 Luca Bressan *) + +include "model.ma". +include "pisigma.ma". + +definition proj1: ∀C: est. ∀r: list (Σx. Σy. x ≃ y). list C ≝ + λC. lift_to_list … (π1 …). + +definition proj2: ∀C: est. ∀r: list (Σx. Σy. x ≃ y). list C ≝ + λC. lift_to_list … (λz: Σx. Σy. x ≃ y. π1 (π2 z)). + +definition elist: est → est ≝ + λC. mk_est + (list C) + (λz,z'. ∃l: list (Σx. Σy. x ≃ y). (proj1 … l = z) ∧ (proj2 … l = z')) + ?. + % [ @list_rect_CProp0 + [ %{ϵ} % % + | #l #c * #r * #h1 #h2 + %{⌈r, 〈c, 〈c, ıc〉〉⌉} + % [ @(rewrite_l … ⌈proj1 … r, c⌉ + (λz. z = ⌈l, c⌉) + (rewrite_l … (proj1 … r) (λz. ⌈proj1 … r, c⌉ = ⌈z, c⌉) (reflexivity …) … h1) + … (reflexivity …)) + | @(rewrite_l … ⌈proj2 … r, c⌉ + (λz. z = ⌈l, c⌉) + (rewrite_l … (proj2 … r) (λz. ⌈proj2 … r, c⌉ = ⌈z, c⌉) (reflexivity …) … h2) + … (reflexivity …)) + ] + ] + | @list_rect_CProp0 + [ * + [ // + | #l2' #c * * + [ * #_ #abs @(falsum_rect_CProp0 … (list_clash … abs)) + | #r #s * normalize #abs @(falsum_rect_CProp0 … (list_clash … abs⁻¹)) + ] + ] + | #l1' #c1 #h * + [ * * + [ * #abs @(falsum_rect_CProp0 … (list_clash … abs)) + | #r #s * #_ normalize #abs @(falsum_rect_CProp0 … (list_clash … abs⁻¹)) + ] + | #l2' #c2 * * + [ * #abs @(falsum_rect_CProp0 … (list_clash … abs)) + | #r #s * #h1 #h2 + cut (∃l. (proj1 … l = l2') ∧ (proj2 … l = l1')) + [ @(h l2') %{r} % [ @(injectivity_cons1 … h1) | @(injectivity_cons1 … h2) ] + | * #r' * #h1' #h2' %{⌈r', 〈c2, 〈c1, ?〉〉⌉} + [ cut (π1 (π2 s) = c2) + [ cut (⌈proj2 … r, π1 (π2 s)⌉ = ⌈l2', c2⌉) + [ @(rewrite_l … (proj2 … ⌈r, s⌉) + (λz. z = ⌈l2', c2⌉) h2 … (reflexivity …)) + | @injectivity_cons2 + ] + | #k2 cut (π1 s = c1) + [ cut (⌈proj1 … r, sig1 … s⌉ = ⌈l1', c1⌉) + [ @(rewrite_l … (proj1 … ⌈r, s⌉) + (λz. z = ⌈l1', c1⌉) h1 … (reflexivity …)) + | @injectivity_cons2 + ] + | #k1 cut (π1 (π2 s) ≃ π1 s) + [ @((π2 (π2 s))⁻¹) + | #e cut (c2 ≃ π1 s) + [ @(rewrite_l … (π1 (π2 s)) (λz. z ≃ π1 s) e … k2) + | #e' @(rewrite_l … (π1 s) (λz. c2 ≃ z) e' … k1) + ] + ] + ] + ] + | + % [ @(rewrite_l … (proj1 … r') (λz. ⌈proj1 … r', c2⌉ = ⌈z, c2⌉) (reflexivity …) … h1') + | @(rewrite_l … (proj2 … r') (λz. ⌈proj2 … r', c1⌉ = ⌈z, c1⌉) (reflexivity …) … h2') + ] + ] + ] + ] + ] + ] + | @list_rect_CProp0 + [ * + [ * + [ // + | #l3' #c3 #_ // + ] + | #l2 #c2 * + [ #_ #_ %{ϵ} % % + | #l3' #c3 * * + [ * #_ #abs @(falsum_rect_CProp0 … (list_clash … abs)) + | #r1' #s1 * #abs @(falsum_rect_CProp0 … (list_clash … abs⁻¹)) + ] + ] + ] + | #l1' #c1 #h * + [ * + [ * | #l3' #c3 * ] * + [ 1,3: * #abs @(falsum_rect_CProp0 … (list_clash … abs)) + | 2,4: #r' #s * #_ #abs @(falsum_rect_CProp0 … (list_clash … abs⁻¹)) + ] + | #l2' #c2 * + [ #_ * * + [ * #abs @(falsum_rect_CProp0 … (list_clash … abs)) + | #r' #s * #_ #abs @(falsum_rect_CProp0 … (list_clash … abs⁻¹)) + ] + | #l3' #c3 * * + [ * #abs @(falsum_rect_CProp0 … (list_clash … abs)) + | #r1 #s1 * #h1 #h2 * * + [ * #abs @(falsum_rect_CProp0 … (list_clash … abs)) + | #r2 #s2 * #h3 #h4 + cut (⌈proj1 … r1, π1 s1⌉ = ⌈l1', c1⌉) + [ @(rewrite_l … (proj1 … ⌈r1, s1⌉) + (λz. z = ⌈l1', c1⌉) h1 … (reflexivity …)) + | -h1 #h1 + cut (⌈proj2 … r1, π1 (π2 s1)⌉ = ⌈l2', c2⌉) + [ @(rewrite_l … (proj2 … ⌈r1, s1⌉) + (λz. z = ⌈l2', c2⌉) h2 … (reflexivity …)) + | -h2 #h2 + cut (⌈proj1 … r2, π1 s2⌉ = ⌈l2', c2⌉) + [ @(rewrite_l … (proj1 … ⌈r2, s2⌉) + (λz. z = ⌈l2', c2⌉) h3 … (reflexivity …)) + | -h3 #h3 + cut (⌈proj2 … r2, π1 (π2 s2)⌉ = ⌈l3', c3⌉) + [ @(rewrite_l … (proj2 … ⌈r2, s2⌉) + (λz. z = ⌈l3', c3⌉) h4 … (reflexivity …)) + | -h4 #h4 + cut (∃l. (proj1 … l = l1') ∧ (proj2 … l = l3')) + [ @(h l2' l3') + [ %{r1} @(mk_conj … (injectivity_cons1 … h1) (injectivity_cons1 … h2)) + | %{r2} @(mk_conj … (injectivity_cons1 … h3) (injectivity_cons1 … h4)) + ] + | * #r * #e1 #e2 %{⌈r, 〈c1, 〈c3, ?〉〉⌉} + [ @(tra … + (rewrite_l … (π1 s1) (λz. z ≃ c2) + (rewrite_l … (π1 (π2 s1)) (λz. π1 s1 ≃ z) (π2 (π2 s1)) + … (injectivity_cons2 … h2)) + … (injectivity_cons2 … h1)) + (rewrite_l … (π1 (π2 s2)) (λz. c2 ≃ z) + (rewrite_l … (π1 s2) (λz. z ≃ π1 (π2 s2)) (π2 (π2 s2)) + … (injectivity_cons2 … h3)) + … (injectivity_cons2 … h4))) + | % + [ @(rewrite_l … (proj1 … r) (λz. ⌈proj1 … r, c1⌉ = ⌈z, c1⌉) (reflexivity …) … e1) + | @(rewrite_l … (proj2 … r) (λz. ⌈proj2 … r, c3⌉ = ⌈z, c3⌉) (reflexivity …) … e2) + ] + ] + ] + ] + ] + ] + ] + ] + ] + ] + ] + ] + ] +qed. + +definition eepsilon: ∀C: est. elist C ≝ epsilon. + +definition econs: ∀C: est. eto (elist C) (eto C (elist C)) ≝ + λC. 〈λl. 〈cons … l, ?〉, ?〉. + [ #c1 #c2 #d + cut (subst C (constant_edst C (elist C)) c1 c2 d ⌈l, c1⌉ = ⌈l, c1⌉) + [ % + | #h @(rewrite_l (list (sup C)) ⌈l, c1⌉ (λz. eq (elist C) z ⌈l, c2⌉) ? + (subst C (constant_edst C (elist C)) c1 c2 d ⌈l, c1⌉) h) + @(list_rect_CProp0 … l) + [ %{⌈ϵ, 〈c1, 〈c2, d〉〉⌉} % % + | #l' #c * * + [ * #abs @(falsum_rect_CProp0 … (list_clash … abs)) + | #r' #s * #h1 #h2 %{⌈⌈r', 〈c, 〈c, ıc〉〉⌉, 〈c1, 〈c2, d〉〉⌉} % + [ change with (⌈⌈proj1 … , ?⌉, ?⌉) in ⊢ (??%?); + cut (proj1 … r' = l') + [ @(injectivity_cons1 … h1) + | #h @(rewrite_l ????? h) @reflexivity + ] + | @(rewrite_l … ⌈⌈proj2 … r', c⌉, c2⌉ (λz. z = ⌈⌈l', c⌉, c2⌉) ? + (proj2 … ⌈⌈r', 〈c, 〈c, ıc〉〉⌉, 〈c1, 〈c2, d〉〉⌉) (reflexivity …)) + cut (proj2 … r' = l') + [ @(injectivity_cons1 … + (rewrite_l … (proj2 … ⌈r', s⌉) (λz. ⌈proj2 … r', sig1 … (sig2 … s)⌉ = z) + (reflexivity …) ⌈l', c2⌉ h2)) + | #h @(rewrite_l … l' (λz. ⌈⌈z, c⌉, c2⌉ = ⌈⌈l', c⌉, c2⌉) (reflexivity …) + (proj2 C r') (symmetry … h)) + ] + ] + ] + ] + ] + | #l1 #l2 * #r * #h1 #h2 #c %{⌈r, 〈c, 〈c, ıc〉〉⌉} % + [ @(rewrite_l … l1 (λz. ⌈z, c⌉ = ⌈l1, c⌉) (reflexivity …) (proj1 … r) (symmetry … h1)) + | @(rewrite_l … l2 (λz. ⌈z, c⌉ = ⌈l2, c⌉) (reflexivity …) (proj2 … r) (symmetry … h2)) + ] + ] +qed. + diff --git a/matita/matita/contribs/mf/mTT.ma b/matita/matita/contribs/mf/mTT.ma new file mode 100644 index 000000000..7bcc7ce62 --- /dev/null +++ b/matita/matita/contribs/mf/mTT.ma @@ -0,0 +1,274 @@ +(* (C) 2014 Luca Bressan *) + +include "notations.ma". + +universe constraint Type[0] < Type[1]. +universe constraint Type[1] < Type[2]. + +notation "'cl'" with precedence 90 for @{ Type[1] }. +notation "'st'" with precedence 90 for @{ Type[0] }. +notation "'prop'" with precedence 90 for @{ CProp[1] }. +notation "'props'" with precedence 90 for @{ CProp[0] }. + +record Sigma (B: cl) (C: B → cl) : cl ≝ + { Sig1: B + ; Sig2: C Sig1 + }. +interpretation "Strong Indexed Sum" 'sigma x = (Sigma ? x). +interpretation "Strong Indexed Sum constructor" 'mk_sigma x y = (mk_Sigma ?? x y). +interpretation "First projection of Strong Indexed Sum" 'sig1 x = (Sig1 ?? x). +interpretation "Second projection of Strong Indexed Sum" 'sig2 x = (Sig2 ?? x). + +definition Times: cl → cl → cl ≝ + λB,C. Sigma B (λ_. C). +interpretation "Binary collection product" 'times B C = (Times B C). + +inductive n0: st ≝ . + +inductive n1: st ≝ + star: n1. +interpretation "Element of the singleton" 'star = star. + +record sigma (B: st) (C : B → st) : st ≝ + { sig1: B + ; sig2: C sig1 + }. +interpretation "Strong Indexed Sum set" 'sigma x = (sigma ? x). +interpretation "Strong Indexed Sum set constructor" 'mk_sigma x y = (mk_sigma ?? x y). +interpretation "First projection of Strong Indexed Sum set" 'sig1 x = (sig1 ?? x). +interpretation "Second projection of Strong Indexed Sum set" 'sig2 x = (sig2 ?? x). + +definition times: st → st → st ≝ + λB,C. sigma B (λ_. C). +interpretation "Binary set product" 'times B C = (times B C). + +inductive list (C: st) : st (*CSC: Type[0]*) ≝ + epsilon: list C + | cons: list C → C → list C. +interpretation "Empty list" 'epsilon = (epsilon ?). +interpretation "List constructor" 'cons l c = (cons ? l c). + +inductive plus (B: st) (C: st) : st ≝ + inl: B → plus B C + | inr: C → plus B C. +interpretation "Disjoint Sum set" 'plus B C = (plus B C). + +inductive Falsum: prop ≝ . +interpretation "Falsum" 'falsum = Falsum. + +inductive Disj (B: prop) (C: prop) : prop ≝ + lOr: B → Disj B C + | rOr: C → Disj B C. +interpretation "Disjunction" 'disj B C = (Disj B C). + +record Conj (B: prop) (C: prop) : prop ≝ + { Conj1: B + ; Conj2: C + }. +interpretation "Conjunction" 'conj B C = (Conj B C). + +definition Implies: prop → prop → prop ≝ + λB,C: prop. B → C. +interpretation "Implication" 'implies B C = (Implies B C). + +record Exists (B: cl) (C: B → prop) : prop ≝ + { Ex1: B + ; Ex2: C Ex1 + }. +interpretation "Existential quantification" 'exists x = (Exists ? x). +interpretation "Existential quantification constructor" 'mk_exists x y = (mk_Exists ?? x y). + +definition Forall: ∀B: cl. (B → prop) → prop ≝ λB,C. ∀b: B. C b. + +inductive Id (A: cl) (a: A) : A → prop ≝ + Reflexivity: Id A a a. +interpretation "Propositional Equality" 'id a b = (Id ? a b). +interpretation "Reflexivity in Extensional Collections" 'rfl x = (Reflexivity ? x). + +definition Verum: prop ≝ Implies Falsum Falsum. +interpretation "Verum" 'verum = Verum. + +inductive falsum: props ≝ . +interpretation "Small Falsum" 'falsum = falsum. + +inductive disj (B: props) (C: props) : props ≝ + lor: B → disj B C + | ror: C → disj B C. +interpretation "Small Disjunction" 'disj B C = (disj B C). + +record conj (B: props) (C: props) : props ≝ + { conj1: B + ; conj2: C + }. +interpretation "Small Conjunction" 'conj B C = (conj B C). + +definition implies: props → props → props ≝ + λB,C. B → C. +interpretation "Small Implication" 'implies B C = (implies B C). + +record exists (B: st) (C: B → props) : props ≝ + { exs1: B + ; exs2: C exs1 + }. +interpretation "Small Existential quantification" 'exists x = (exists ? x). +interpretation "Small Existential quantification constructor" 'mk_exists x y = (mk_exists ?? x y). + +definition forall: ∀B: st. (B → props) → props ≝ λB,C. ∀b: B. C b. + +inductive id (A: st) (a: A) : A → props ≝ + reflexivity: id A a a. +interpretation "Small Propositional Equality" 'id a b = (id ? a b). +interpretation "Reflexivity in Extensional Sets" 'rfl x = (reflexivity ? x). + +definition verum: props ≝ implies falsum falsum. +interpretation "Verum" 'verum = verum. + +definition fun_to_props: st → cl ≝ λB. B → props. + +lemma Symmetry: ∀A: cl. ∀x,x': A. x = x' → x' = x. + #A #x #x' * % +qed. +interpretation "Symmetry in Intensional Collections" 'sym d = (Symmetry ??? d). + +lemma Transitivity: ∀A: cl. ∀x,x',x'': A. x = x' → x' = x'' → x = x''. + #A #x #x' #x'' * * % +qed. +interpretation "Transitivity in Intensional Collections" 'tra d = (Transitivity ???? d). + +lemma rewrite_l: ∀A: st. ∀x: A. ∀P: A → props. P x → ∀y: A. x = y → P y. + #A #x #P #h #y * @h +qed. + +notation "hvbox(> h)" + non associative with precedence 45 + for @{ 'rewrite_l $h }. +interpretation "Rewrite left" 'rewrite_l h = (rewrite_l ????? h). + +lemma symmetry: ∀A: st. ∀x,x': A. x = x' → x' = x. + #A #x #x' * % +qed. +interpretation "Symmetry in Intensional Sets" 'sym d = (symmetry ??? d). + +notation "hvbox(< h)" + non associative with precedence 45 + for @{ 'rewrite_r $h }. +interpretation "Rewrite right" 'rewrite_r h = (rewrite_l ????? (symmetry ??? h)). + +lemma transitivity: ∀A: st. ∀x,x',x'': A. x = x' → x' = x'' → x = x''. + #A #x #x' #x'' * * % +qed. +interpretation "Transitivity in Intensional Sets" 'tra d = (transitivity ???? d). + +definition lift_to_list: ∀A,A': st. (A → A') → list A → list A' ≝ + λA,A',f. list_rect_Type0 … (λ_. list A') ϵ (λl,x,l'. ⌈l', f x⌉). + +definition proj_l: ∀B,C: st. B → plus B C → B ≝ + λB,C,b'. plus_rect_Type0 B C (λ_. B) (λb. b) (λ_. b'). + +definition proj_r: ∀B,C: st. C → plus B C → C ≝ + λB,C,c'. plus_rect_Type0 B C (λ_. C) (λ_. c') (λc. c). + +lemma injectivity_inl: ∀B,C: st. ∀x,x'. inl B C x = inl B C x' → x = x'. + #B #C #x #x' + @(rewrite_l … (inl … x) (λz. proj_l … x (inl … x) = proj_l … x z) + (ı(proj_l … x (inl … x))) (inl … x')) +qed. + +lemma injectivity_inr: ∀B,C: st. ∀y,y'. inr B C y = inr B C y' → y = y'. + #B #C #y #y' + @(rewrite_l … (inr … y) (λz. proj_r … y (inr … y) = proj_r … y z) + (ı(proj_r … y (inr … y))) (inr … y')) +qed. + +lemma injectivity_cons1: ∀C: st. ∀l,l': list C. ∀c,c': C. ⌈l, c⌉ = ⌈l', c'⌉ → l = l'. + #C #l1 #l2 #c1 #c2 + @(rewrite_l … ⌈l1, c1⌉ + (list_rect_Type1 … (λ_. props) ⊥ (λl,c,h. l1 = l)) + (ı…) ⌈l2, c2⌉) +qed. + +lemma injectivity_cons2: ∀C: st. ∀l,l': list C. ∀c,c': C. ⌈l, c⌉ = ⌈l', c'⌉ → c = c'. + #C #l1 #l2 #c1 #c2 + @(rewrite_l … ⌈l1, c1⌉ + (list_rect_Type1 … (λ_. props) ⊥ (λl,c,h. c1 = c)) + (ı…) ⌈l2, c2⌉) +qed. + +lemma plus_clash: ∀B,C: st. ∀b: B. ∀c: C. inl … b = inr … c → ⊥. + #B #C #b #c #h + @(rewrite_l … (inl … b) (plus_rect_Type1 … (λ_. props) (λ_. ⊤) (λ_. ⊥)) + (λx. x) … h) +qed. + +lemma list_clash: ∀C: st. ∀l: list C. ∀c: C. ϵ = ⌈l, c⌉ → ⊥. + #C #l #c #h + @(rewrite_l … ϵ (list_rect_Type1 … (λ_. props) ⊤ (λ_,_,_. ⊥)) + (λx. x) … h) +qed. + +definition nat: st ≝ list n1. +definition zero: nat ≝ ϵ. +definition succ: nat → nat ≝ λn. cons … n ⋆. +definition nat_rect_Type0: ∀Q: nat → st. Q zero → (∀n. Q n → Q (succ n)) → ∀n. Q n. + #Q #h0 #hi @list_rect_Type0 [ @h0 | #n @n1_rect_Type0 @(hi n) ] +qed. +definition nat_rect_Type1: ∀Q: nat → cl. Q zero → (∀n. Q n → Q (succ n)) → ∀n. Q n. + #Q #h0 #hi @list_rect_Type1 [ @h0 | #n @n1_rect_Type1 @(hi n) ] +qed. +definition nat_rect_CProp0: ∀Q: nat → props. Q zero → (∀n. Q n → Q (succ n)) → ∀n. Q n. + #Q #h0 #hi @list_rect_CProp0 [ @h0 | #n @n1_rect_CProp0 @(hi n) ] +qed. +definition nat_rect_CProp1: ∀Q: nat → prop. Q zero → (∀n. Q n → Q (succ n)) → ∀n. Q n. + #Q #h0 #hi @list_rect_CProp1 [ @h0 | #n @n1_rect_CProp1 @(hi n) ] +qed. + +inductive De (I: st) : st ≝ + | c_unit: De I + | c_ev: I → De I + | c_times: De I → De I → De I + | c_plus: De I → De I → De I. + +definition int: ∀I: st. De I → (I → st) → st. + #I @De_rect_Type1 + [ #_ @n1 + | #i #X @(X i) + | #L #R #intL #intR #X @((intL X)×(intR X)) + | #L #R #intL #intR #X @((intL X)+(intR X)) + ] +qed. + +definition napply: nat → (st → st) → st → st. + @nat_rect_Type1 + [ #F #X @X + | #_ #F' #F #X @(F' F X) + ] +qed. + +definition mu: ∀I: st. (I → De I) → I → st. + #I #F #i @(Σn: nat. napply n (λX: st. int I (F i) (λ_. X)) n0) +qed. + +definition is_c_unit: ∀I: st. ∀F: De I. props. + #I * [ @verum | #_ @falsum | 3,4: #_ #_ @falsum ] +qed. + +lemma De_clash_unit_ev: ∀I: st. ∀i: I. c_ev I i = c_unit I → falsum. + #I #i #h + @(rewrite_l (De I) (c_unit I) (is_c_unit I) (λx. x) (c_ev I i) h⁻¹) +qed. +lemma De_clash_unit_times: ∀I: st. ∀F,G: De I. c_times I F G = c_unit I → falsum. + #I #F #G #h + @(rewrite_l (De I) (c_unit I) (is_c_unit I) (λx. x) (c_times I F G) h⁻¹) +qed. +lemma De_clash_unit_plus: ∀I: st. ∀F,G: De I. c_plus I F G = c_unit I → falsum. + #I #F #G #h + @(rewrite_l (De I) (c_unit I) (is_c_unit I) (λx. x) (c_plus I F G) h⁻¹) +qed. + +inductive mu_ (I: st) (F: I → De I) : I → De I → st ≝ + fold_unit: ∀i: I. mu_ I F i (c_unit I) + | fold_ev: ∀i,i': I. mu_ I F i' (F i') → mu_ I F i (c_ev I i') + | fold_times: ∀i: I. ∀G1,G2: De I. mu_ I F i G1 → mu_ I F i G2 → mu_ I F i (c_times I G1 G2) + | fold_plusL: ∀i: I. ∀G1,G2: De I. mu_ I F i G1 → mu_ I F i (c_plus I G1 G2) + | fold_plusR: ∀i: I. ∀G1,G2: De I. mu_ I F i G2 → mu_ I F i (c_plus I G1 G2). + diff --git a/matita/matita/contribs/mf/model.ma b/matita/matita/contribs/mf/model.ma new file mode 100644 index 000000000..4cc7e45de --- /dev/null +++ b/matita/matita/contribs/mf/model.ma @@ -0,0 +1,190 @@ +(* (C) 2014 Luca Bressan *) + +include "mTT.ma". + +record is_Equiv (Sup: cl) (Eq: Sup → Sup → prop) : prop ≝ + { Rfl_: ∀x. Eq x x + ; Sym_: ∀x,x'. Eq x x' → Eq x' x + ; Tra_: ∀x,x',x''. Eq x x' → Eq x' x'' → Eq x x'' + }. + +record ecl: Type[2] ≝ + { Sup:> cl + ; Eq: Sup → Sup → prop + ; is_ecl: is_Equiv Sup Eq + }. +interpretation "Equality in Extensional Collections" 'eq a b = (Eq ? a b). + +definition Rfl: ∀B: ecl. ∀x: B. x ≃ x ≝ + λB. Rfl_ … (is_ecl B). +interpretation "Reflexivity in Extensional Collections" 'rfl x = (Rfl ? x). + +definition Sym: ∀B: ecl. ∀x,x': B. x ≃ x' → x' ≃ x ≝ + λB. Sym_ … (is_ecl B). +interpretation "Symmetry in Extensional Collections" 'sym d = (Sym ??? d). + +definition Tra: ∀B: ecl. ∀x,x',x'': B. x ≃ x' → x' ≃ x'' → x ≃ x'' ≝ + λB. Tra_ … (is_ecl B). +interpretation "Transitivity in Extensional Collections" 'tra d d' = (Tra ???? d d'). + +record is_Subst (A: ecl) + (dSup: A → ecl) + (Subst: ∀x1,x2: A. x1 ≃ x2 → dSup x1 → dSup x2) : prop ≝ + { Pres_eq_: ∀x1,x2: A. ∀d: x1 ≃ x2. ∀y,y': dSup x1. + y ≃ y' → Subst … d y ≃ Subst … d y' + ; Not_dep_: ∀x1,x2: A. ∀d,d': x1 ≃ x2. ∀y: dSup x1. + Subst … d y ≃ Subst … d' y + ; Pres_id_: ∀x: A. ∀y: dSup x. + Subst … (ı x) y ≃ y + ; Clos_comp_: ∀x1,x2,x3: A. ∀y: dSup x1. ∀d: x1 ≃ x2. ∀d': x2 ≃ x3. + Subst … d' (Subst … d y) ≃ Subst … (d•d') y + }. + +record edcl (A: ecl) : Type[2] ≝ + { dSup:1> Sup A → ecl + ; Subst: ∀x1,x2: Sup A. x1 ≃ x2 → Sup (dSup x1) → Sup (dSup x2) + ; is_edcl: is_Subst A dSup Subst + }. +interpretation "Substitution morphisms for Extensional Collections" + 'subst d y = (Subst ???? d y). + +definition Pres_eq: ∀B: ecl. ∀C: edcl B. ∀x1,x2: B. ∀d: x1 ≃ x2. ∀y,y': C x1. + y ≃ y' → y∘d ≃ y'∘d ≝ + λB,C. Pres_eq_ … (is_edcl … C). +definition Not_dep: ∀B: ecl. ∀C: edcl B. ∀x1,x2: B. ∀d,d': x1 ≃ x2. ∀y: C x1. + y∘d ≃ y∘d' ≝ + λB,C. Not_dep_ … (is_edcl … C). +definition Pres_id: ∀B: ecl. ∀C: edcl B. ∀x: B. ∀y: C x. + y∘(ıx) ≃ y ≝ + λB,C. Pres_id_ … (is_edcl … C). +definition Clos_comp: ∀B: ecl. ∀C: edcl B. ∀x1,x2,x3: B. ∀y: C x1. ∀d: x1 ≃ x2. ∀d': x2 ≃ x3. + y∘d∘d' ≃ y∘d•d' ≝ + λB,C. Clos_comp_ … (is_edcl … C). + +definition constant_edcl: ∀A: ecl. ecl → edcl A ≝ + λA,Y. mk_edcl … (λ_. Y) (λx1,x2,d,y. y) ?. + % [ #x1 #x2 #d #y #y' #h @h + | #x1 #x2 #_ #_ #y @(ıy) + | #_ #y @(ıy) + | #x1 #x2 #x3 #y #_ #_ @(ıy) + ] +qed. + +lemma inverse_Subst: ∀B: ecl. ∀C: edcl B. ∀x1,x2: B. ∀d: x1 ≃ x2. ∀y: C x2. + y∘d⁻¹∘d ≃ y. + #B #C #x1 #x2 #d #y + @(Tra … (y∘d⁻¹∘d) (y∘d⁻¹•d) y) + [ @Clos_comp + | @(Tra … (y∘d⁻¹•d) (y∘ıx2) y) + [ @Not_dep | @Pres_id ] + ] +qed. + +record is_equiv (sup: st) (eq: sup → sup → props) : props ≝ + { rfl_: ∀x. eq x x + ; sym_: ∀x,x'. eq x x' → eq x' x + ; tra_: ∀x,x',x''. eq x x' → eq x' x'' → eq x x'' + }. + +record est: Type[1] ≝ + { sup:> st + ; eq: sup → sup → props + ; is_est: is_equiv sup eq + }. +interpretation "Equality in Extensional Sets" 'eq a b = (eq ? a b). + +definition rfl: ∀B: est. ∀x: B. x ≃ x ≝ + λB. rfl_ … (is_est B). +interpretation "Reflexivity in Extensional Sets" 'rfl x = (rfl ? x). + +definition sym: ∀B: est. ∀x,x': B. x ≃ x' → x' ≃ x ≝ + λB. sym_ … (is_est B). +interpretation "Symmetry in Extensional Sets" 'sym d = (sym ??? d). + +definition tra: ∀B: est. ∀x,x',x'': B. x ≃ x' → x' ≃ x'' → x ≃ x'' ≝ + λB. tra_ … (is_est B). +interpretation "Transitivity in Extensional Sets" 'tra d d' = (tra ???? d d'). + +definition est_into_ecl: est → ecl ≝ + λB. mk_ecl (sup B) (eq B) ?. + % [ @rfl | @sym | @tra ] +qed. + +record is_subst (A: est) + (dsup: A → est) + (subst: ∀x1,x2: A. x1 ≃ x2 → dsup x1 → dsup x2) : props ≝ + { pres_eq_: ∀x1,x2: A. ∀d: x1 ≃ x2. ∀y,y': dsup x1. + y ≃ y' → subst … d y ≃ subst … d y' + ; not_dep_: ∀x1,x2: A. ∀d1,d2: x1 ≃ x2. ∀y: dsup x1. + subst … d1 y ≃ subst … d2 y + ; pres_id_: ∀x: sup A. ∀y: dsup x. + subst … (ıx) y ≃ y + ; clos_comp_: ∀x1,x2,x3: A. ∀y: dsup x1. ∀d1: x1 ≃ x2. ∀d2: x2 ≃ x3. + subst … d2 (subst … d1 y) ≃ subst … (d1•d2) y + }. + +record edst (A: est) : Type[1] ≝ + { dsup:1> sup A → est + ; subst: ∀x1,x2: sup A. x1 ≃ x2 → sup (dsup x1) → sup (dsup x2) + ; is_edst: is_subst A dsup subst + }. +interpretation "Substitution morphisms for Extensional Sets" + 'subst p a = (subst ???? p a). + +definition pres_eq: ∀B: est. ∀C: edst B. ∀x1,x2: B. ∀d: x1 ≃ x2. ∀y,y': C x1. + y ≃ y' → y∘d ≃ y'∘d ≝ + λB,C. pres_eq_ … (is_edst … C). +definition not_dep: ∀B: est. ∀C: edst B. ∀x1,x2: B. ∀d,d': x1 ≃ x2. ∀y: C x1. + y∘d ≃ y∘d' ≝ + λB,C. not_dep_ … (is_edst … C). +definition pres_id: ∀B: est. ∀C: edst B. ∀x: B. ∀y: C x. + y∘(ıx) ≃ y ≝ + λB,C. pres_id_ … (is_edst … C). +definition clos_comp: ∀B: est. ∀C: edst B. ∀x1,x2,x3: B. ∀y: C x1. ∀d: x1 ≃ x2. ∀d': x2 ≃ x3. + y∘d∘d' ≃ y∘(d•d') ≝ + λB,C. clos_comp_ … (is_edst … C). + +definition constant_edst: ∀A: est. est → edst A ≝ + λA,Y. mk_edst … (λ_. Y) (λx1,x2,d,y. y) ?. + % [ #x1 #x2 #d #y #y' #h @h + | #x1 #x2 #_ #_ #y @(ıy) + | #_ #y @(ıy) + | #x1 #x2 #x3 #y #_ #_ @(ıy) + ] +qed. + +lemma inverse_subst: ∀B: est. ∀C: edst B. ∀x1,x2: B. ∀d: x1 ≃ x2. ∀y: C x2. + y∘d⁻¹∘d ≃ y. + #B #C #x1 #x2 #d #y + @tra [ @(y∘d⁻¹•d) + | @clos_comp + | @tra [ @(y∘ıx2) | @not_dep | @pres_id ] + ] +qed. + +lemma inverse_subst2: ∀B: est. ∀C: edst B. ∀x1,x2: B. ∀d: x1 ≃ x2. ∀y: C x1. + y∘d∘d⁻¹ ≃ y. + #B #C #x1 #x2 #d #y @tra [ @(y∘d•d⁻¹) + | @clos_comp + | @tra [ @(y∘(ıx1)) | @not_dep | @pres_id ] + ] +qed. + +lemma eq_reflexivity: ∀B: est. ∀b1,b2: B. b1 = b2 → b1 ≃ b2. + #B #b1 #b2 #h @(rewrite_l … b1 (λz. b1 ≃ z) (ıb1) … h) +qed. + +definition eprop: Type[2] ≝ prop. + +definition eprop_into_ecl: eprop → ecl ≝ + λP. mk_ecl P (λ_,_. ⊤) ?. + % // +qed. + +definition eprops: Type[1] ≝ props. + +definition eprops_into_est: eprops → est ≝ + λP. mk_est P (λ_,_. ⊤) ?. + % // +qed. + diff --git a/matita/matita/contribs/mf/notations.ma b/matita/matita/contribs/mf/notations.ma new file mode 100644 index 000000000..87c797807 --- /dev/null +++ b/matita/matita/contribs/mf/notations.ma @@ -0,0 +1,114 @@ +(* (C) 2014 Luca Bressan *) + +notation "hvbox(a break \to b)" + right associative with precedence 20 + for @{ \forall $_:$a.$b }. + +notation < "hvbox(Σ ident i : ty break . p)" + left associative with precedence 20 +for @{'sigma (λ${ident i}: $ty. $p) }. +notation < "hvbox(Σ ident i break . p)" + with precedence 20 +for @{'sigma (λ${ident i}. $p) }. + +notation > "Σ list1 ident x sep , opt (: T). term 19 Px" + with precedence 20 + for ${ default + @{ ${ fold right @{$Px} rec acc @{'sigma (λ${ident x}: $T. $acc)} } } + @{ ${ fold right @{$Px} rec acc @{'sigma (λ${ident x}. $acc)} } } + }. + +notation "hvbox(π1 s)" + non associative with precedence 70 + for @{ 'sig1 $s) }. +notation "hvbox(π2 s)" + non associative with precedence 70 + for @{ 'sig2 $s) }. + +notation "hvbox(〈 term 19 a, break term 19 b 〉)" + with precedence 90 for @{ 'mk_sigma $a $b }. + +notation "hvbox(B break × C)" + left associative with precedence 55 + for @{ 'times $B $C }. + +notation "⋆" + non associative with precedence 90 + for @{ 'star }. + +notation "ϵ" + non associative with precedence 90 + for @{ 'epsilon }. +notation "⌈ l, c ⌉" + non associative with precedence 90 + for @{ 'cons $l $c }. + +notation "hvbox(B break + C)" + left associative with precedence 50 + for @{ 'plus $B $C }. + +notation "⊥" + non associative with precedence 90 + for @{ 'falsum }. + +notation "hvbox(B break ∨ C)" + left associative with precedence 50 + for @{ 'disj $B $C }. + +notation "hvbox(B break ∧ C)" + left associative with precedence 60 + for @{ 'conj $B $C }. + +notation < "hvbox(B break → C)" + left associative with precedence 60 + for @{ 'implies $B $C }. + +notation < "hvbox(∃ ident i : ty break . p)" + left associative with precedence 20 +for @{'exists (λ${ident i}: $ty. $p) }. +notation < "hvbox(∃ ident i break . p)" + with precedence 20 +for @{'exists (λ${ident i}. $p) }. + +notation > "∃ list1 ident x sep , opt (: T). term 19 Px" + with precedence 20 + for ${ default + @{ ${ fold right @{$Px} rec acc @{'exists (λ${ident x}: $T. $acc)} } } + @{ ${ fold right @{$Px} rec acc @{'exists (λ${ident x}. $acc)} } } + }. +notation "hvbox(« term 19 a, break term 19 b »)" + with precedence 90 for @{ 'mk_exists $a $b }. + +notation "⊤" + non associative with precedence 90 + for @{ 'verum }. + +notation "hvbox(a break = b)" + non associative with precedence 45 + for @{ 'id $a $b }. + +notation "hvbox(a break ≃ b)" + non associative with precedence 45 + for @{ 'eq $a $b }. + +notation "hvbox(ı x)" + non associative with precedence 90 + for @{ 'rfl $x }. +notation "hvbox(d⁻¹)" + non associative with precedence 80 + for @{ 'sym $d }. +notation "hvbox(d break • d')" + left associative with precedence 60 + for @{ 'tra $d $d' }. + +notation "hvbox(y break ∘ d)" + non associative with precedence 50 + for @{ 'subst $d $y }. + +notation "hvbox(f ◽ d)" + non associative with precedence 40 + for @{ 'ap $f $d}. +notation "hvbox(f ˙ d)" + non associative with precedence 60 + for @{ 'sup_f $f $d}. + diff --git a/matita/matita/contribs/mf/pisigma.ma b/matita/matita/contribs/mf/pisigma.ma new file mode 100644 index 000000000..85e39d73a --- /dev/null +++ b/matita/matita/contribs/mf/pisigma.ma @@ -0,0 +1,110 @@ +(* (C) 2014 Luca Bressan *) + +include "model.ma". + +definition epi: ∀B: est. edst B → est ≝ + λB,C. mk_est + (Σh: ∀y: sup B. sup (dsup … C y). ∀y1,y2: sup B. ∀d: y1 ≃ y2. subst … d (h y1) ≃ h y2) + (λz,z'. ∀y: sup B. eq … ((sig1 … z) y) ((sig1 … z') y)) + ?. + % [ #x #y @(ı…) + | #x #x' #h #y @((h …)⁻¹) + | #x #x' #x'' #h1 #h2 #y @((h1 …)•(h2 …)) + ] +qed. + +interpretation "Properness of set morphisms" 'ap f d = (sig2 ?? f ?? d). +interpretation "Support of set morphisms" 'sup_f f d = (sig1 ?? f d). + +definition eto: est → est → est ≝ + λB,C. epi B (constant_edst B C). + +definition lift: ∀A,B: est. sup (eto A B) → edst B → edst A ≝ + λA,B,f,C. + mk_edst A (λa: sup A. dsup … C (sig1 … f a)) + (λx1,x2,d. subst … (sig2 … f … d)) ?. + letin B' ≝ (constant_edst A B) + % [ #x1 #x2 #d #y #y' #e @(pres_eq … e) + | #x1 #x2 #d1 #d2 #y @not_dep + | #x #y + cut (y∘(ı(f˙x)) ≃ y) + [ @pres_id + | cut (y∘(f◽(ıx)) ≃ y∘ı(f˙x)) + [ @not_dep + | @tra + ] + ] + | #x1 #x2 #x3 #y #d1 #d2 + cut (y∘(f◽d1)∘(f◽d2) ≃ y∘(f◽d1)•(f◽d2)) + [ @clos_comp + | cut (y∘(f◽d1)•(f◽d2) ≃ y∘(f◽(d1•d2))) + [ @not_dep + | #e1 #e2 @(e2•e1) + ] + ] + ] +qed. + +definition shift: ∀B: est. edst B → est → edst B. + #B #C #D % + [ #b @(eto (C b) D) + | #x1 #x2 #d #f % + [ #y @(f˙(y∘d⁻¹)) + | #y1 #y2 #e @(f◽…) @pres_eq @e + ] + | % + [ #x1 #x2 #d #f1 #f2 #h #y @(h (y∘d⁻¹)) + | #x1 #x2 #d1 #d2 #f #y @(f◽…) @not_dep + | #x #f #y @(f◽…) cut (y∘(ıx) ≃ y) + [ @pres_id + | #h @tra [ @(y∘(ıx)) | @not_dep | @pres_id ] + ] + | #x1 #x2 #x3 #f #d1 #d2 #y @(f◽…) + @tra [ @(y∘(d2⁻¹•d1⁻¹)) | @clos_comp | @not_dep ] + ] + ] +qed. + +definition esigma: ∀B: est. edst B → est ≝ + λB,C. mk_est + (Σy: B. C y) + (λz,z'. ∃d: π1 z ≃ π1 z'. (π2 z)∘d ≃ π2 z') + ?. + % [ * #b #c %{ıb} @pres_id + | * #b #c * #b' #c' * #d #h %{(d⁻¹)} + @tra [ @(c∘d•d⁻¹) + | @tra [ @(c∘d∘d⁻¹) | @pres_eq @(h⁻¹) | @clos_comp ] + | @tra [ @(c∘ıb) | @not_dep | @pres_id ] + ] + | * #b #c * #b' #c' * #b'' #c'' * #d1 #h1 * #d2 #h2 %{(d1•d2)} + @tra [ @(c∘d1∘d2) + | @sym @clos_comp + | @tra [ @(c'∘d2) | @pres_eq @h1 | @h2 ] + ] + ] +qed. + +definition etimes: est → est → est ≝ + λB,C. esigma B (constant_edst B C). + +definition mk_esigma: ∀B: est. ∀C: edst B. epi B (shift B C (esigma B C)). + #B #C % + [ #b % + [ #c @〈b, c〉 + | #c1 #c2 #d %{(ıb)} + @tra [ @c1 | @pres_id | @d ] + ] + | #b1 #b2 #d #y %{d} @inverse_subst + ] +qed. + +definition esig1: ∀B: est. ∀C: edst B. sup (eto (esigma B C) B) ≝ + λB,C. 〈π1 …, ?〉. + * #b1 #c1 * #b2 #c2 * #db #dc @db +qed. + +definition esig2: ∀B: est. ∀C: edst B. sup (epi (esigma B C) (lift … (esig1 …) C …)) ≝ + λB,C. 〈π2 …, ?〉. + * #b1 #c1 * #b2 #c2 * #db #dc @dc +qed. + diff --git a/matita/matita/contribs/mf/pisigma2.ma b/matita/matita/contribs/mf/pisigma2.ma new file mode 100644 index 000000000..24a950c2f --- /dev/null +++ b/matita/matita/contribs/mf/pisigma2.ma @@ -0,0 +1,110 @@ +(* (C) 2014 Luca Bressan *) + +include "model.ma". + +definition ePi: ∀B: ecl. edcl B → ecl ≝ + λB,C. mk_ecl + (Σh: ∀y: Sup B. Sup (dSup … C y). ∀y1,y2: Sup B. ∀d: y1 ≃ y2. Subst … d (h y1) ≃ h y2) + (λz,z'. ∀y: Sup B. Eq … ((Sig1 … z) y) ((Sig1 … z') y)) + ?. + % [ #x #y @(ı…) + | #x #x' #h #y @((h …)⁻¹) + | #x #x' #x'' #h1 #h2 #y @((h1 …)•(h2 …)) + ] +qed. + +interpretation "Properness of col morphisms" 'ap f d = (Sig2 ?? f ?? d). +interpretation "Support of col morphisms" 'sup_f f d = (Sig1 ?? f d). + +definition eTo: ecl → ecl → ecl ≝ + λB,C. ePi B (constant_edcl B C). + +definition Lift: ∀A,B: ecl. Sup (eTo A B) → edcl B → edcl A ≝ + λA,B,f,C. + mk_edcl A (λa: Sup A. dSup … C (Sig1 … f a)) + (λx1,x2,d. Subst … (Sig2 … f … d)) ?. + letin B' ≝ (constant_edcl A B) + % [ #x1 #x2 #d #y #y' #e @(Pres_eq … e) + | #x1 #x2 #d1 #d2 #y @Not_dep + | #x #y + cut (y∘(ı(f˙x)) ≃ y) + [ @Pres_id + | cut (y∘(f◽(ıx)) ≃ y∘ı(f˙x)) + [ @Not_dep + | @Tra + ] + ] + | #x1 #x2 #x3 #y #d1 #d2 + cut (y∘(f◽d1)∘(f◽d2) ≃ y∘(f◽d1)•(f◽d2)) + [ @Clos_comp + | cut (Eq (C (f˙x3)) (y∘(f◽d1)•(f◽d2)) (y∘(f◽(d1•d2)))) + [ @Not_dep + | #e1 #e2 @(e2•e1) + ] + ] + ] +qed. + +definition Shift: ∀B: ecl. edcl B → ecl → edcl B. + #B #C #D % + [ #b @(eTo (C b) D) + | #x1 #x2 #d #f % + [ #y @(f˙(y∘d⁻¹)) + | #y1 #y2 #e @(f◽…) @Pres_eq @e + ] + | % + [ #x1 #x2 #d #f1 #f2 #h #y @(h (y∘d⁻¹)) + | #x1 #x2 #d1 #d2 #f #y @(f◽…) @Not_dep + | #x #f #y @(f◽…) cut (y∘(ıx) ≃ y) + [ @Pres_id + | #h @Tra [ @(y∘(ıx)) | @Not_dep | @Pres_id ] + ] + | #x1 #x2 #x3 #f #d1 #d2 #y @(f◽…) + @Tra [ @(y∘(d2⁻¹•d1⁻¹)) | @Clos_comp | @Not_dep ] + ] + ] +qed. + +definition eSigma: ∀B: ecl. edcl B → ecl ≝ + λB,C. mk_ecl + (Σy: B. C y) + (λz,z'. ∃d: π1 z ≃ π1 z'. (π2 z)∘d ≃ π2 z') + ?. + % [ * #b #c %{ıb} @Pres_id + | * #b #c * #b' #c' * #d #h %{(d⁻¹)} + @Tra [ @(c∘d•d⁻¹) + | @Tra [ @(c∘d∘d⁻¹) | @Pres_eq @(h⁻¹) | @Clos_comp ] + | @Tra [ @(c∘ıb) | @Not_dep | @Pres_id ] + ] + | * #b #c * #b' #c' * #b'' #c'' * #d1 #h1 * #d2 #h2 %{(d1•d2)} + @Tra [ @(c∘d1∘d2) + | @Sym @Clos_comp + | @Tra [ @(c'∘d2) | @Pres_eq @h1 | @h2 ] + ] + ] +qed. + +definition eTimes: ecl → ecl → ecl ≝ + λB,C. eSigma B (constant_edcl B C). + +definition mk_eSigma: ∀B: ecl. ∀C: edcl B. ePi B (Shift B C (eSigma B C)). + #B #C % + [ #b % + [ #c @〈b, c〉 + | #c1 #c2 #d %{(ıb)} + @Tra [ @c1 | @Pres_id | @d ] + ] + | #b1 #b2 #d #y %{d} @inverse_Subst + ] +qed. + +definition eSig1: ∀B: ecl. ∀C: edcl B. Sup (eTo (eSigma B C) B) ≝ + λB,C. 〈π1 …, ?〉. + * #b1 #c1 * #b2 #c2 * #db #dc @db +qed. + +definition eSig2: ∀B: ecl. ∀C: edcl B. Sup (ePi (eSigma B C) (Lift … (eSig1 …) C …)) ≝ + λB,C. 〈π2 …, ?〉. + * #b1 #c1 * #b2 #c2 * #db #dc @dc +qed. + diff --git a/matita/matita/contribs/mf/plus.ma b/matita/matita/contribs/mf/plus.ma new file mode 100644 index 000000000..141c83e39 --- /dev/null +++ b/matita/matita/contribs/mf/plus.ma @@ -0,0 +1,96 @@ +(* (C) 2014 Luca Bressan *) + +include "model.ma". +include "pisigma.ma". + +definition eplus: est → est → est ≝ + λB,C. mk_est + (B+C) + (λz,z'. (∃b: B. ∃b': B. (z = inl … b) ∧ ((z' = inl … b') ∧ (b ≃ b'))) + ∨ (∃c: C. ∃c': C. (z = inr … c) ∧ ((z' = inr … c') ∧ (c ≃ c')))) + ?. + % [ * #x [ %1 | %2 ] %{x} %{x} % + [ 1,3: @(reflexivity …) + | 2: @(mk_conj … (reflexivity …) (ıx)) + | 4: @(mk_conj … (reflexivity …) (ıx)) + ] + | #z1 #z2 * * #x1 * #x2 * #h1 * #h2 #e [ %1 | %2 ] %{x2} %{x1} % + [ 1,3: @h2 + | 2,4: % [ 1,3: @h1 + | 2,4: @(e⁻¹) + ] + ] + | #z1 #z2 #z3 * * #x1 * #x12 * #h1 * #h12 #e12 * * #x23 * #x3 * #h23 * #h3 #e23 + [ %1 %{x1} %{x3} % + [ @h1 + | % [ @h3 + | @(e12• + (rewrite_l … x23 (λz. z ≃ x3) e23 … + (injectivity_inl … (h12⁻¹•h23)⁻¹))) + ] + ] + | @(falsum_rect_CProp0 … (plus_clash … (h12⁻¹•h23))) + | @(falsum_rect_CProp0 … (plus_clash … ((h12⁻¹•h23)⁻¹))) + | %2 %{x1} %{x3} % + [ @h1 + | % [ @h3 + | @(e12• + (rewrite_l … x23 (λz. z ≃ x3) e23 … + (injectivity_inr … (h12⁻¹•h23)⁻¹))) + ] + ] + ] + ] +qed. + +definition einl: ∀B,C: est. eto B (eplus B C) ≝ + λB,C. 〈inl …, ?〉. + #x #y #h %1 %{x} %{y} % % [ % | @h ] +qed. + +definition einr: ∀B,C: est. eto C (eplus B C) ≝ + λB,C. 〈inr …, ?〉. + #x #y #h %2 %{x} %{y} % % [ % | @h ] +qed. + +lemma injectivity_einl: ∀B,C: est. ∀b,b': B. (einl B C)˙b ≃ (einl B C)˙b' → b ≃ b'. + #B #C #b #b' * * #z * #z' * #h1 * #h2 #h3 + [ @(rewrite_l … z (λw. w ≃ b') + (rewrite_l … z' (λw. z ≃ w) h3 … (symmetry … (injectivity_inl … h2))) … + (symmetry … (injectivity_inl … h1))) + | @(falsum_rect_CProp0 … (plus_clash … h1)) + ] +qed. + +lemma injectivity_einr: ∀B,C: est. ∀c,c': C. (einr B C)˙c ≃ (einr B C)˙c' → c ≃ c'. + #B #C #c #c' * * #z * #z' * #h1 * #h2 #h3 + [ @(falsum_rect_CProp0 … (plus_clash … (symmetry … h1))) + | @(rewrite_l … z (λw. w ≃ c') + (rewrite_l … z' (λw. z ≃ w) h3 … (symmetry … (injectivity_inr … h2))) … + (symmetry … (injectivity_inr … h1))) + ] +qed. + +definition edplus: ∀I: est. edst I → edst I → edst I. + #I #B #C % + [ @(λi. eplus (B i) (C i)) + | #i1 #i2 #e * #x [ @(inl … (x∘e)) | @(inr … (x∘e)) ] + | % [ #i1 #i2 #e * #x1 * #x2 #h + cases h * #z1 * #z2 * #h1 * #h2 #d + [ 1: %1 %{(x1∘e)} %{(x2∘e)} % [ % | % [ % | @(pres_eq … (injectivity_einl … h)) ]] + | 2,4: @(falsum_rect_CProp0 … (plus_clash … h1)) + | 3: @(falsum_rect_CProp0 … (plus_clash … h2⁻¹)) + | 5,7: @(falsum_rect_CProp0 … (plus_clash … h1⁻¹)) + | 6: @(falsum_rect_CProp0 … (plus_clash … h2)) + | 8: %2 %{(x1∘e)} %{(x2∘e)} % [ % | % [ % | @(pres_eq … (injectivity_einr … h)) ]] + ] + | #i1 #i2 #e1 #e2 * #x [ %1 | %2 ] %{(x∘e1)} %{(x∘e2)} % + [ 1,3: % | 2,4: % [ 1,3: % | 2,4: @not_dep ]] + | #i * #x [ %1 | %2 ] %{(x∘ıi)} %{x} % + [ 1,3: % | 2,4: % [ 1,3: % | 2,4: @pres_id ]] + | #i1 #i2 #i3 * #x #d1 #d2 [ %1 | %2 ] %{(x∘d1∘d2)} %{(x∘d1•d2)} % + [ 1,3: % | 2,4: % [ 1,3: % | 2,4: @clos_comp ]] + ] + ] +qed. + diff --git a/matita/matita/contribs/mf/power.ma b/matita/matita/contribs/mf/power.ma new file mode 100644 index 000000000..27a84ec3b --- /dev/null +++ b/matita/matita/contribs/mf/power.ma @@ -0,0 +1,17 @@ +(* (C) 2014 Luca Bressan *) + +include "model.ma". + +definition fun_to_power_one: est → ecl ≝ + λB. mk_ecl + (Σh: fun_to_props B. ∀y1,y2: B. eq … y1 y2 → (conj (h y1 → h y2) (h y2 → h y1))) + (λz,z'. ∀y: B. conj ((Sig1 … z) y → (Sig1 … z') y) + (implies ((Sig1 … z') y) ((Sig1 … z) y))) + ?. + % [ #x #y % #h @h + | #x #x' #h #b % #k cases (h b) [ #_ #r | #r #_ ] @(r k) + | #x #x' #x'' #h1 #h2 #b cases (h1 b) #k10 #k01 cases (h2 b) #k21 #k12 % + #r [ @(k21 (k10 r)) | @(k01 (k12 r)) ] + ] +qed. + diff --git a/matita/matita/contribs/mf/power_one.ma b/matita/matita/contribs/mf/power_one.ma new file mode 100644 index 000000000..0be6282ae --- /dev/null +++ b/matita/matita/contribs/mf/power_one.ma @@ -0,0 +1,28 @@ +(* (C) 2014 Luca Bressan *) + +include "model.ma". + +definition power_one: ecl ≝ + mk_ecl props (λz,z'. (z → z') ∧ (z' → z)) ?. + % [ #x % #h @h + | #x #y * #h1 #h2 % [ @h2 | @h1 ] + | #x #y #z #h1 #h2 % cases h1 #hxy #hyx cases h2 #hyz #hzy + [ #hx @(hyz (hxy hx)) + | #hz @(hyx (hzy hz)) + ] + ] +qed. + +definition dpower_one: ∀I: ecl. edcl I. + #I % + [ #i @power_one + | #i1 #i2 #e #p @p + | % + [ #i1 #i2 #_ #y #y' #h @h + | #i1 #i2 #_ #_ @Rfl + | #i @Rfl + | #i1 #i2 #i3 #y #_ #_ @Rfl + ] + ] +qed. + diff --git a/matita/matita/contribs/mf/root b/matita/matita/contribs/mf/root new file mode 100644 index 000000000..bb65fd45c --- /dev/null +++ b/matita/matita/contribs/mf/root @@ -0,0 +1 @@ +baseuri=cic:/matita/minimalist_foundation/ diff --git a/matita/matita/contribs/mf/singleton.ma b/matita/matita/contribs/mf/singleton.ma new file mode 100644 index 000000000..4a2d6854f --- /dev/null +++ b/matita/matita/contribs/mf/singleton.ma @@ -0,0 +1,24 @@ +(* (C) 2014 Luca Bressan *) + +include "model.ma". +include "pisigma.ma". + +definition en1: est ≝ + mk_est n1 (λz,z'. z = z') ?. + % #x [ % | #y * % | #y #z * * % ] +qed. + +definition estar: en1 ≝ ⋆. + +definition en1_rect_Type0: ∀Q: edst en1. eto (Q estar) (epi en1 Q). + #Q @(〈?, ?〉) + [ #h @(〈n1_rect_Type0 (λw. Q w) h, ?〉) + * * #d + @(rewrite_l … h (λz. (subst … d z) ≃ z) … (n1_rect_Type0 … h estar) (reflexivity …)) + @tra [ @(h∘(ı…)) | @not_dep | @pres_id ] + | #y1 #y2 #d * @d + ] +qed. + +definition edn1: ∀I: est. edst I ≝ λI. constant_edst I en1. +