From: matitaweb Date: Fri, 23 Mar 2012 09:23:59 +0000 (+0000) Subject: commit by user andrea X-Git-Tag: make_still_working~1838 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=b503649d75bd4cb8edf87418abfd56bf06c18cfd;p=helm.git commit by user andrea --- diff --git a/weblib/basics/list.ma b/weblib/basics/list.ma index 4e44ce298..d6c066120 100644 --- a/weblib/basics/list.ma +++ b/weblib/basics/list.ma @@ -9,7 +9,7 @@ \ / GNU General Public License Version 2 V_______________________________________________________________ *) -include "arithmetics/nat.ma".span class="error" title="disambiguation error"/span +include "arithmetics/nat.ma". inductive list (A:Type[0]) : Type[0] := | nil: list A @@ -237,4 +237,4 @@ theorem fold_sum: ∀A,B. ∀I,J:a href="cic:/matita/basics/list/list.ind(1,0,1 a title="\fold" href="cic:/fakeuri.def(1)"\fold/a[op,nil]_{i∈(Ia title="append" href="cic:/fakeuri.def(1)"@/aJ)} (f i). #A #B #I #J #nil #op #f (elim I) normalize [>a href="cic:/matita/basics/list/nill.fix(0,2,2)"nill/a //|#a #tl #Hind <a href="cic:/matita/basics/list/assoc.fix(0,2,2)"assoc/a //] -qed. \ No newline at end of file +qed. diff --git a/weblib/tutorial/chapter10.ma b/weblib/tutorial/chapter10.ma index 95e3a55c1..8fe459cd2 100644 --- a/weblib/tutorial/chapter10.ma +++ b/weblib/tutorial/chapter10.ma @@ -3,9 +3,8 @@ include "tutorial/chapter9.ma". -(* We say that two pres \langle i_1,b_1\rangle$ and -$\langle i_1,b_1\rangle$ are {\em cofinal} if and only if -$b_1 = b_2$. *) +(* We say that two pres 〈i_1,b_1〉 and 〈i_1,b_1〉 are {\em cofinal} if and +only if b_1 = b_2. *) definition cofinal ≝ λS.λp:(a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S)a title="Product" href="cic:/fakeuri.def(1)"×/a(a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S). a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a p) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a p). @@ -15,7 +14,7 @@ e1 and e2 are equivalent iff for any word w the states reachable through w are cofinal. *) theorem equiv_sem: ∀S:a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"DeqSet/a.∀e1,e2:a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S. - a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e1} a title="extensional equality" href="cic:/fakeuri.def(1)"=/a1 a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e2} a title="iff" href="cic:/fakeuri.def(1)"↔/a ∀w.a href="cic:/matita/tutorial/chapter10/cofinal.def(2)"cofinal/a ? a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a ? w e1,a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a ? w e2〉. + a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e1} a title="extensional equality" href="cic:/fakeuri.def(1)"=/a1 a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e2} a title="iff" href="cic:/fakeuri.def(1)"↔/a ∀w.a href="cic:/matita/tutorial/chapter10/cofinal.def(2)"cofinal/a ? a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a ? w e1,a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a ? w e2〉. #S #e1 #e2 % [#same_sem #w cut (∀b1,b2. a href="cic:/matita/basics/logic/iff.def(1)"iff/a (b1 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a) (b2 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a) → (b1 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a b2)) @@ -34,7 +33,7 @@ definition occ ≝ λS.λe1,e2:a href="cic:/matita/tutorial/chapter7/pre.def(1) a href="cic:/matita/tutorial/chapter5/unique_append.fix(0,1,5)"unique_append/a ? (a href="cic:/matita/tutorial/chapter9/occur.fix(0,1,6)"occur/a S (a title="forget" href="cic:/fakeuri.def(1)"|/aa title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a e1|)) (a href="cic:/matita/tutorial/chapter9/occur.fix(0,1,6)"occur/a S (a title="forget" href="cic:/fakeuri.def(1)"|/aa title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a e2|)). lemma occ_enough: ∀S.∀e1,e2:a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S. -(∀w.(a href="cic:/matita/tutorial/chapter5/sublist.def(5)"sublist/a S w (a href="cic:/matita/tutorial/chapter10/occ.def(7)"occ/a S e1 e2))→ a href="cic:/matita/tutorial/chapter10/cofinal.def(2)"cofinal/a ? a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a ? w e1,a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a ? w e2〉) +(∀w.(a href="cic:/matita/tutorial/chapter5/sublist.def(5)"sublist/a S w (a href="cic:/matita/tutorial/chapter10/occ.def(7)"occ/a S e1 e2))→ a href="cic:/matita/tutorial/chapter10/cofinal.def(2)"cofinal/a ? a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a ? w e1,a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a ? w e2〉) →∀w.a href="cic:/matita/tutorial/chapter10/cofinal.def(2)"cofinal/a ? a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a ? w e1,a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a ? w e2〉. #S #e1 #e2 #H #w cases (a href="cic:/matita/tutorial/chapter5/decidable_sublist.def(6)"decidable_sublist/a S w (a href="cic:/matita/tutorial/chapter10/occ.def(7)"occ/a S e1 e2)) [@H] -H #H @@ -47,7 +46,7 @@ qed. occurring the given regular expressions. *) lemma equiv_sem_occ: ∀S.∀e1,e2:a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S. -(∀w.(a href="cic:/matita/tutorial/chapter5/sublist.def(5)"sublist/a S w (a href="cic:/matita/tutorial/chapter10/occ.def(7)"occ/a S e1 e2))→ a href="cic:/matita/tutorial/chapter10/cofinal.def(2)"cofinal/a ? a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a ? w e1,a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a ? w e2〉) +(∀w.(a href="cic:/matita/tutorial/chapter5/sublist.def(5)"sublist/a S w (a href="cic:/matita/tutorial/chapter10/occ.def(7)"occ/a S e1 e2))→ a href="cic:/matita/tutorial/chapter10/cofinal.def(2)"cofinal/a ? a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a ? w e1,a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a ? w e2〉) → a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e1}a title="extensional equality" href="cic:/fakeuri.def(1)"=/a1a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e2}. #S #e1 #e2 #H @(a href="cic:/matita/basics/logic/proj2.def(2)"proj2/a … (a href="cic:/matita/tutorial/chapter10/equiv_sem.def(16)"equiv_sem/a …)) @a href="cic:/matita/tutorial/chapter10/occ_enough.def(11)"occ_enough/a #w @H qed. @@ -60,7 +59,7 @@ w.r.t. moves, and all its members are cofinal. *) definition sons ≝ λS:a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"DeqSet/a.λl:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a S.λp:(a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S)a title="Product" href="cic:/fakeuri.def(1)"×/a(a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S). - a href="cic:/matita/basics/list/map.fix(0,3,1)"map/a ?? (λa.a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"move/a S a (a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a p)),a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"move/a S a (a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a p))〉) l. + a href="cic:/matita/basics/list/map.fix(0,3,1)"map/a ?? (λa.a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"move/a S a (a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a p)),a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"move/a S a (a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a p))〉) l. lemma memb_sons: ∀S,l.∀p,q:(a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S)a title="Product" href="cic:/fakeuri.def(1)"×/a(a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S). a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"memb/a ? p (a href="cic:/matita/tutorial/chapter10/sons.def(7)"sons/a ? l q) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a → a title="exists" href="cic:/fakeuri.def(1)"∃/aa.(a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"move/a ? a (a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a q)) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a p a title="logical and" href="cic:/fakeuri.def(1)"∧/a @@ -76,7 +75,7 @@ definition is_bisim ≝ λS:a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1, (* Using lemma equiv_sem_occ it is easy to prove the following result: *) lemma bisim_to_sem: ∀S:a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"DeqSet/a.∀l:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a ?.∀e1,e2: a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S. - a href="cic:/matita/tutorial/chapter10/is_bisim.def(8)"is_bisim/a S l (a href="cic:/matita/tutorial/chapter10/occ.def(7)"occ/a S e1 e2) → a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"memb/a ? a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ae1,e2〉 l a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a → a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e1}a title="extensional equality" href="cic:/fakeuri.def(1)"=/a1a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e2}. + a href="cic:/matita/tutorial/chapter10/is_bisim.def(8)"is_bisim/a S l (a href="cic:/matita/tutorial/chapter10/occ.def(7)"occ/a S e1 e2) → a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"memb/a ?a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ae1,e2〉 l a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a → a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e1}a title="extensional equality" href="cic:/fakeuri.def(1)"=/a1a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e2}. #S #l #e1 #e2 #Hbisim #Hmemb @a href="cic:/matita/tutorial/chapter10/equiv_sem_occ.def(17)"equiv_sem_occ/a #w #Hsub @(a href="cic:/matita/basics/logic/proj1.def(2)"proj1/a … (Hbisim a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a S w e1,a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a S w e2〉 ?)) lapply Hsub @(a href="cic:/matita/basics/list/list_elim_left.def(10)"list_elim_left/a … w) [//] @@ -114,15 +113,15 @@ Here is the extremely simple algorithm: *) let rec bisim S l n (frontier,visited: a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a ?) on n ≝ match n with - [ O ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a,visited〉 (* assert false *) + [ O ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a,visited〉 (* assert false *) | S m ⇒ match frontier with - [ nil ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a,visited〉 + [ nil ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a,visited〉 | cons hd tl ⇒ if a href="cic:/matita/tutorial/chapter4/beqb.def(2)"beqb/a (a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a hd)) (a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a hd)) then bisim S l m (a href="cic:/matita/tutorial/chapter5/unique_append.fix(0,1,5)"unique_append/a ? (a href="cic:/matita/basics/list/filter.def(2)"filter/a ? (λx.a href="cic:/matita/basics/bool/notb.def(1)"notb/a (a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"memb/a ? x (hda title="cons" href="cic:/fakeuri.def(1)":/a:visited))) (a href="cic:/matita/tutorial/chapter10/sons.def(7)"sons/a S l hd)) tl) (hda title="cons" href="cic:/fakeuri.def(1)":/a:visited) - else a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a,visited〉 + else a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a,visited〉 ] ]. @@ -137,26 +136,26 @@ case and in some relevant instances *) lemma unfold_bisim: ∀S,l,n.∀frontier,visited: a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a ?. a href="cic:/matita/tutorial/chapter10/bisim.fix(0,2,8)"bisim/a S l n frontier visited a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a match n with - [ O ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a,visited〉 (* assert false *) + [ O ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a,visited〉 (* assert false *) | S m ⇒ match frontier with - [ nil ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a,visited〉 + [ nil ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a,visited〉 | cons hd tl ⇒ if a href="cic:/matita/tutorial/chapter4/beqb.def(2)"beqb/a (a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a hd)) (a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a hd)) then a href="cic:/matita/tutorial/chapter10/bisim.fix(0,2,8)"bisim/a S l m (a href="cic:/matita/tutorial/chapter5/unique_append.fix(0,1,5)"unique_append/a ? (a href="cic:/matita/basics/list/filter.def(2)"filter/a ? (λx.a href="cic:/matita/basics/bool/notb.def(1)"notb/a(a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"memb/a ? x (hda title="cons" href="cic:/fakeuri.def(1)":/a:visited))) (a href="cic:/matita/tutorial/chapter10/sons.def(7)"sons/a S l hd)) tl) (hda title="cons" href="cic:/fakeuri.def(1)":/a:visited) - else a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a,visited〉 + else a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a,visited〉 ] ]. #S #l #n cases n // qed. lemma bisim_never: ∀S,l.∀frontier,visited: a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a ?. - a href="cic:/matita/tutorial/chapter10/bisim.fix(0,2,8)"bisim/a S l a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"O/a frontier visited a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a,visited〉. + a href="cic:/matita/tutorial/chapter10/bisim.fix(0,2,8)"bisim/a S l a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"O/a frontier visited a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a,visited〉. #frontier #visited >a href="cic:/matita/tutorial/chapter10/unfold_bisim.def(9)"unfold_bisim/a // qed. lemma bisim_end: ∀Sig,l,m.∀visited: a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a ?. - a href="cic:/matita/tutorial/chapter10/bisim.fix(0,2,8)"bisim/a Sig l (a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"S/a m) a title="nil" href="cic:/fakeuri.def(1)"[/a] visited a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a,visited〉. + a href="cic:/matita/tutorial/chapter10/bisim.fix(0,2,8)"bisim/a Sig l (a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"S/a m) a title="nil" href="cic:/fakeuri.def(1)"[/a] visited a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a,visited〉. #n #visisted >a href="cic:/matita/tutorial/chapter10/unfold_bisim.def(9)"unfold_bisim/a // qed. @@ -170,7 +169,7 @@ qed. lemma bisim_step_false: ∀Sig,l,m.∀p.∀frontier,visited: a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a ?. a href="cic:/matita/tutorial/chapter4/beqb.def(2)"beqb/a (a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a p)) (a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a p)) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a → - a href="cic:/matita/tutorial/chapter10/bisim.fix(0,2,8)"bisim/a Sig l (a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"S/a m) (pa title="cons" href="cic:/fakeuri.def(1)":/a:frontier) visited a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a,visited〉. + a href="cic:/matita/tutorial/chapter10/bisim.fix(0,2,8)"bisim/a Sig l (a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"S/a m) (pa title="cons" href="cic:/fakeuri.def(1)":/a:frontier) visited a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a,visited〉. #Sig #l #m #p #frontier #visited #test >a href="cic:/matita/tutorial/chapter10/unfold_bisim.def(9)"unfold_bisim/a whd in ⊢ (??%?); >test // qed. @@ -183,7 +182,7 @@ qed. *) let rec pitem_enum S (i:a href="cic:/matita/tutorial/chapter7/re.ind(1,0,1)"re/a S) on i ≝ match i with - [ z ⇒ (a href="cic:/matita/tutorial/chapter7/pitem.con(0,1,1)"pz/aspan class="error" title="Parse error: SYMBOL ':' or RPAREN expected after [term] (in [term])"/spanspan class="error" title="Parse error: SYMBOL ':' or RPAREN expected after [term] (in [term])"/span S)a title="cons" href="cic:/fakeuri.def(1)":/a:a title="nil" href="cic:/fakeuri.def(1)"[/a] + [ z ⇒ (a href="cic:/matita/tutorial/chapter7/pitem.con(0,1,1)"pz/a S)a title="cons" href="cic:/fakeuri.def(1)":/a:a title="nil" href="cic:/fakeuri.def(1)"[/a] | e ⇒ (a href="cic:/matita/tutorial/chapter7/pitem.con(0,2,1)"pe/a S)a title="cons" href="cic:/fakeuri.def(1)":/a:a title="nil" href="cic:/fakeuri.def(1)"[/a] | s y ⇒ (a href="cic:/matita/tutorial/chapter7/pitem.con(0,3,1)"ps/a S y)a title="cons" href="cic:/fakeuri.def(1)":/a:(a href="cic:/matita/tutorial/chapter7/pitem.con(0,4,1)"pp/a S y)a title="cons" href="cic:/fakeuri.def(1)":/a:a title="nil" href="cic:/fakeuri.def(1)"[/a] | o i1 i2 ⇒ a href="cic:/matita/basics/list/compose.def(2)"compose/a ??? (a href="cic:/matita/tutorial/chapter7/pitem.con(0,6,1)"po/a S) (pitem_enum S i1) (pitem_enum S i2) @@ -202,23 +201,23 @@ lemma pitem_enum_complete : ∀S.∀i:a href="cic:/matita/tutorial/chapter7/pit qed. definition pre_enum ≝ λS.λi:a href="cic:/matita/tutorial/chapter7/re.ind(1,0,1)"re/a S. - a href="cic:/matita/basics/list/compose.def(2)"compose/a ??? (λi,b.a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,b〉) (a href="cic:/matita/tutorial/chapter10/pitem_enum.fix(0,1,3)"pitem_enum/a S i) (a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/aa title="cons" href="cic:/fakeuri.def(1)":/a:a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/aa title="cons" href="cic:/fakeuri.def(1)":/a:a title="nil" href="cic:/fakeuri.def(1)"[/a]). + a href="cic:/matita/basics/list/compose.def(2)"compose/a ??? (λi,b.a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,b〉) ( a href="cic:/matita/tutorial/chapter10/pitem_enum.fix(0,1,3)"pitem_enum/a S i) (a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/aa title="cons" href="cic:/fakeuri.def(1)":/a:a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/aa title="cons" href="cic:/fakeuri.def(1)":/a:a title="nil" href="cic:/fakeuri.def(1)"[/a]). lemma pre_enum_complete : ∀S.∀e:a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S. a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"memb/a ? e (a href="cic:/matita/tutorial/chapter10/pre_enum.def(4)"pre_enum/a S (a title="forget" href="cic:/fakeuri.def(1)"|/aa title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a e|)) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a. -#S * #i #b @(a href="cic:/matita/tutorial/chapter5/memb_compose.def(6)"memb_compose/a (a href="cic:/matita/tutorial/chapter7/DeqItem.def(6)"DeqItem/a S) a href="cic:/matita/tutorial/chapter4/DeqBool.def(5)"DeqBool/a ? (λi,b.a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,b〉)) +#S * #i #b @(a href="cic:/matita/tutorial/chapter5/memb_compose.def(6)"memb_compose/a (a href="cic:/matita/tutorial/chapter7/DeqItem.def(6)"DeqItem/a S) a href="cic:/matita/tutorial/chapter4/DeqBool.def(5)"DeqBool/a ? (λi,b.a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,b〉)) // cases b normalize // qed. -definition space_enum ≝ λS.λi1,i2:a href="cic:/matita/tutorial/chapter7/re.ind(1,0,1)"re/a S. - a href="cic:/matita/basics/list/compose.def(2)"compose/a ??? (λe1,e2.a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ae1,e2〉) (a href="cic:/matita/tutorial/chapter10/pre_enum.def(4)"pre_enum/a S i1) (a href="cic:/matita/tutorial/chapter10/pre_enum.def(4)"pre_enum/a S i2). +definition space_enum ≝ λS.λi1,i2: a href="cic:/matita/tutorial/chapter7/re.ind(1,0,1)"re/a S. + a href="cic:/matita/basics/list/compose.def(2)"compose/a ??? (λe1,e2.a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ae1,e2〉) ( a href="cic:/matita/tutorial/chapter10/pre_enum.def(4)"pre_enum/a S i1) (a href="cic:/matita/tutorial/chapter10/pre_enum.def(4)"pre_enum/a S i2). lemma space_enum_complete : ∀S.∀e1,e2: a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S. - a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"memb/a ? a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ae1,e2〉 (a href="cic:/matita/tutorial/chapter10/space_enum.def(5)"space_enum/a S (a title="forget" href="cic:/fakeuri.def(1)"|/aa title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a e1|) (a title="forget" href="cic:/fakeuri.def(1)"|/aa title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a e2|)) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a. -#S #e1 #e2 @(a href="cic:/matita/tutorial/chapter5/memb_compose.def(6)"memb_compose/a … (λi,b.a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,b〉)) + a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"memb/a ? a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ae1,e2〉 ( a href="cic:/matita/tutorial/chapter10/space_enum.def(5)"space_enum/a S (a title="forget" href="cic:/fakeuri.def(1)"|/aa title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a e1|) (a title="forget" href="cic:/fakeuri.def(1)"|/aa title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a e2|)) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a. +#S #e1 #e2 @(a href="cic:/matita/tutorial/chapter5/memb_compose.def(6)"memb_compose/a … (λi,b.a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,b〉)) // qed. -definition all_reachable ≝ λS.λe1,e2:a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S.λl: a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a ?. +definition all_reachable ≝ λS.λe1,e2: a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S.λl: a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a ?. a href="cic:/matita/tutorial/chapter5/uniqueb.fix(0,1,5)"uniqueb/a ? l a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a a title="logical and" href="cic:/fakeuri.def(1)"∧/a ∀p. a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"memb/a ? p l a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a → a title="exists" href="cic:/fakeuri.def(1)"∃/aw.(a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a S w e1 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a p) a title="logical and" href="cic:/fakeuri.def(1)"∧/a (a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"moves/a S w e2 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a p). @@ -228,8 +227,8 @@ definition disjoint ≝ λS:a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1, (* We are ready to prove that bisim is correct; we use the invariant that at each call of bisim the two lists visited and frontier only contain -nodes reachable from \langle e_1,e_2\rangle, hence it is absurd to suppose -to meet a pair which is not cofinal. *) +nodes reachable from 〈e_1,e_2〉, hence it is absurd to suppose to meet a pair +which is not cofinal. *) lemma bisim_correct: ∀S.∀e1,e2:a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S.a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e1}a title="extensional equality" href="cic:/fakeuri.def(1)"=/a1a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e2} → ∀l,n.∀frontier,visited:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a ((a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S)a title="Product" href="cic:/fakeuri.def(1)"×/a(a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S)). @@ -265,7 +264,7 @@ lemma bisim_correct: ∀S.∀e1,e2:a href="cic:/matita/tutorial/chapter7/pre.de |@r_frontier @a href="cic:/matita/tutorial/chapter5/memb_cons.def(5)"memb_cons/a // ] |@a href="cic:/matita/tutorial/chapter5/unique_append_elim.def(7)"unique_append_elim/a #q #H - [@a href="cic:/matita/basics/bool/injective_notb.def(4)"injective_notb/a @(a href="cic:/matita/tutorial/chapter5/memb_filter_true.def(5)"memb_filter_true/a … Hspan class="error" title="error location"/span) + [@a href="cic:/matita/basics/bool/injective_notb.def(4)"injective_notb/a @(a href="cic:/matita/tutorial/chapter5/memb_filter_true.def(5)"memb_filter_true/a … H) |cut ((qa title="eqb" href="cic:/fakeuri.def(1)"=/a=p) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a) [|#Hpq whd in ⊢ (??%?); >Hpq @disjoint @a href="cic:/matita/tutorial/chapter5/memb_cons.def(5)"memb_cons/a //] cases (a href="cic:/matita/basics/bool/andb_true.def(5)"andb_true/a … u_frontier) #notp #_ @(\bf ?) @@ -274,7 +273,7 @@ lemma bisim_correct: ∀S.∀e1,e2:a href="cic:/matita/tutorial/chapter7/pre.de ] ] qed. - + (* For completeness, we use the invariant that all the nodes in visited are cofinal, and the sons of visited are either in visited or in the frontier; since at the end frontier is empty, visited is hence a bisimulation. *) @@ -289,7 +288,7 @@ lemma bisim_complete: ∀S,l,n.∀frontier,visited,visited_res:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a ?. a href="cic:/matita/tutorial/chapter10/all_true.def(8)"all_true/a S visited → a href="cic:/matita/tutorial/chapter10/sub_sons.def(8)"sub_sons/a S l visited (frontiera title="append" href="cic:/fakeuri.def(1)"@/avisited) → - a href="cic:/matita/tutorial/chapter10/bisim.fix(0,2,8)"bisim/a S l n frontier visited a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a,visited_res〉 → + a href="cic:/matita/tutorial/chapter10/bisim.fix(0,2,8)"bisim/a S l n frontier visited a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a,visited_res〉 → a href="cic:/matita/tutorial/chapter10/is_bisim.def(8)"is_bisim/a S visited_res l a title="logical and" href="cic:/fakeuri.def(1)"∧/a a href="cic:/matita/tutorial/chapter5/sublist.def(5)"sublist/a ? (frontiera title="append" href="cic:/fakeuri.def(1)"@/avisited) visited_res. #S #l #n elim n [#fron #vis #vis_res #_ #_ >a href="cic:/matita/tutorial/chapter10/bisim_never.def(10)"bisim_never/a #H destruct @@ -354,7 +353,7 @@ theorem euqiv_sem : ∀Sig.∀e1,e2:a href="cic:/matita/tutorial/chapter7/re.in a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (a href="cic:/matita/tutorial/chapter10/equiv.def(9)"equiv/a ? e1 e2) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a a title="iff" href="cic:/fakeuri.def(1)"↔/a a title="in_l" href="cic:/fakeuri.def(1)"\sem/a{e1} a title="extensional equality" href="cic:/fakeuri.def(1)"=/a1 a title="in_l" href="cic:/fakeuri.def(1)"\sem/a{e2}. #Sig #re1 #re2 % [#H @a href="cic:/matita/tutorial/chapter4/eqP_trans.def(3)"eqP_trans/a [|@a href="cic:/matita/tutorial/chapter4/eqP_sym.def(3)"eqP_sym/a @a href="cic:/matita/tutorial/chapter8/re_embedding.def(13)"re_embedding/a] @a href="cic:/matita/tutorial/chapter4/eqP_trans.def(3)"eqP_trans/a [||@a href="cic:/matita/tutorial/chapter8/re_embedding.def(13)"re_embedding/a] - cut (a href="cic:/matita/tutorial/chapter10/equiv.def(9)"equiv/a ? re1 re2 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a,a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (a href="cic:/matita/tutorial/chapter10/equiv.def(9)"equiv/a ? re1 re2)〉) + cut (a href="cic:/matita/tutorial/chapter10/equiv.def(9)"equiv/a ? re1 re2 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a,a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (a href="cic:/matita/tutorial/chapter10/equiv.def(9)"equiv/a ? re1 re2)〉) [