From: Andrea Asperti Date: Fri, 14 Sep 2007 17:10:50 +0000 (+0000) Subject: Qualche semplificazione. X-Git-Tag: 0.4.95@7852~165 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=b6240d9c5094e87bb2a5aa9952237a698a0b1bcb;p=helm.git Qualche semplificazione. --- diff --git a/matita/library/Fsub/defn.ma b/matita/library/Fsub/defn.ma index a56b38eaf..573b2afe8 100644 --- a/matita/library/Fsub/defn.ma +++ b/matita/library/Fsub/defn.ma @@ -293,24 +293,13 @@ cut (\forall l:(list nat).\exists n.\forall m. |apply H;constructor 1] |intros;elim l [apply (ex_intro ? ? O);intros;unfold;intro;elim (in_list_nil ? ? H1) - |elim H;elim (decidable_eq_nat a t) - [apply (ex_intro ? ? (S a));intros;intro;elim (in_cons_case ? ? ? ? H4) - [rewrite < H5 in H2;rewrite < H2 in H3;apply (not_le_Sn_n ? H3) - |elim H5;elim (H1 m ? H7);apply (le_S_S_to_le ? ? (le_S ? ? H3))] - |cut ((leb a t) = true \lor (leb a t) = false) - [elim Hcut - [apply (ex_intro ? ? (S t));intros;intro; - elim (in_cons_case ? ? ? ? H5) - [rewrite > H6 in H4;apply (not_le_Sn_n ? H4) - |elim H6;elim (H1 m ? H8);apply (trans_le a t m) - [lapply (leb_to_Prop a t);rewrite > H3 in Hletin;assumption - |apply (le_S_S_to_le t m (le_S (S t) m H4))]] - |apply (ex_intro ? ? a);intros;intro;elim (in_cons_case ? ? ? ? H5) - [lapply (leb_to_Prop a t);rewrite > H3 in Hletin; - simplify in Hletin;lapply (not_le_to_lt ? ? Hletin); - unfold in Hletin1;rewrite < H6 in Hletin;apply (Hletin H4) - |elim H6;elim (H1 ? H4 H8)]] - |elim (leb a t);autobatch]]]] + |elim H; + apply (ex_intro ? ? (S (max a t))). + intros.unfold. intro. + elim (in_cons_case ? ? ? ? H3) + [rewrite > H4 in H2.autobatch + |elim H4.apply (H1 m ? H6). + apply (trans_le ? (max a t));autobatch]]] qed. (*** lemmata on well-formedness ***) @@ -340,6 +329,13 @@ qed. (*** some exotic inductions and related lemmas ***) +lemma O_lt_t_len: \forall T.O < (t_len T). +intros;elim T + [1,2,3:simplify;apply le_n + |*:simplify;apply lt_O_S] +qed. + +(* lemma not_t_len_lt_SO : \forall T.\lnot (t_len T) < (S O). intros;elim T [1,2,3:simplify;unfold;intro;unfold in H;elim (not_le_Sn_n ? H) @@ -347,6 +343,7 @@ intros;elim T [1,3:simplify in H2;apply H1;apply (trans_lt ? ? ? ? H2);unfold;constructor 1 |*:simplify in H2;apply H;apply (trans_lt ? ? ? ? H2);unfold;constructor 1]] qed. +*) lemma Typ_len_ind : \forall P:Typ \to Prop. (\forall U.(\forall V.((t_len V) < (t_len U)) \to (P V)) @@ -359,7 +356,7 @@ cut (\forall P:Typ \to Prop. [intros;apply (Hcut ? H ? (t_len T));reflexivity |intros 4;generalize in match T;apply (nat_elim1 n);intros; generalize in match H2;elim t - [1,2,3:apply H;intros;simplify in H4;elim (not_t_len_lt_SO ? H4) + [1,2,3:apply H;intros;simplify in H4;elim (lt_to_not_le ? ? H4 (O_lt_t_len ?)) |*:apply H;intros;apply (H1 (t_len V)) [1,3:rewrite > H5;assumption |*:reflexivity]]] @@ -367,68 +364,22 @@ qed. lemma t_len_arrow1 : \forall T1,T2.(t_len T1) < (t_len (Arrow T1 T2)). intros.simplify. -(* FIXME!!! BUG?!?! *) -cut ((max (t_len T1) (t_len T2)) = match (leb (t_len T1) (t_len T2)) with - [ false ⇒ (t_len T2) - | true ⇒ (t_len T1) ]) - [rewrite > Hcut;cut ((leb (t_len T1) (t_len T2)) = false \lor - (leb (t_len T1) (t_len T2)) = true) - [lapply (leb_to_Prop (t_len T1) (t_len T2));elim Hcut1 - [rewrite > H;rewrite > H in Hletin;simplify;constructor 1 - |rewrite > H;rewrite > H in Hletin;simplify;simplify in Hletin; - unfold;apply le_S_S;assumption] - |elim (leb (t_len T1) (t_len T2));autobatch] - |elim T1;simplify;reflexivity] +apply le_S_S.apply le_m_max_m_n. qed. lemma t_len_arrow2 : \forall T1,T2.(t_len T2) < (t_len (Arrow T1 T2)). intros.simplify. -(* FIXME!!! BUG?!?! *) -cut ((max (t_len T1) (t_len T2)) = match (leb (t_len T1) (t_len T2)) with - [ false \Rightarrow (t_len T2) - | true \Rightarrow (t_len T1) ]) - [rewrite > Hcut;cut ((leb (t_len T1) (t_len T2)) = false \lor - (leb (t_len T1) (t_len T2)) = true) - [lapply (leb_to_Prop (t_len T1) (t_len T2));elim Hcut1 - [rewrite > H;rewrite > H in Hletin;simplify;simplify in Hletin; - lapply (not_le_to_lt ? ? Hletin);unfold in Hletin1;unfold; - constructor 2;assumption - |rewrite > H;simplify;unfold;constructor 1] - |elim (leb (t_len T1) (t_len T2));autobatch] - |elim T1;simplify;reflexivity] +apply le_S_S.apply le_n_max_m_n. qed. lemma t_len_forall1 : \forall T1,T2.(t_len T1) < (t_len (Forall T1 T2)). intros.simplify. -(* FIXME!!! BUG?!?! *) -cut ((max (t_len T1) (t_len T2)) = match (leb (t_len T1) (t_len T2)) with - [ false \Rightarrow (t_len T2) - | true \Rightarrow (t_len T1) ]) - [rewrite > Hcut;cut ((leb (t_len T1) (t_len T2)) = false \lor - (leb (t_len T1) (t_len T2)) = true) - [lapply (leb_to_Prop (t_len T1) (t_len T2));elim Hcut1 - [rewrite > H;rewrite > H in Hletin;simplify;constructor 1 - |rewrite > H;rewrite > H in Hletin;simplify;simplify in Hletin; - unfold;apply le_S_S;assumption] - |elim (leb (t_len T1) (t_len T2));autobatch] - |elim T1;simplify;reflexivity] +apply le_S_S.apply le_m_max_m_n. qed. lemma t_len_forall2 : \forall T1,T2.(t_len T2) < (t_len (Forall T1 T2)). intros.simplify. -(* FIXME!!! BUG?!?! *) -cut ((max (t_len T1) (t_len T2)) = match (leb (t_len T1) (t_len T2)) with - [ false \Rightarrow (t_len T2) - | true \Rightarrow (t_len T1) ]) - [rewrite > Hcut;cut ((leb (t_len T1) (t_len T2)) = false \lor - (leb (t_len T1) (t_len T2)) = true) - [lapply (leb_to_Prop (t_len T1) (t_len T2));elim Hcut1 - [rewrite > H;rewrite > H in Hletin;simplify;simplify in Hletin; - lapply (not_le_to_lt ? ? Hletin);unfold in Hletin1;unfold; - constructor 2;assumption - |rewrite > H;simplify;unfold;constructor 1] - |elim (leb (t_len T1) (t_len T2));autobatch] - |elim T1;simplify;reflexivity] +apply le_S_S.apply le_n_max_m_n. qed. lemma eq_t_len_TFree_subst : \forall T,n,X.(t_len T) = diff --git a/matita/library/Fsub/util.ma b/matita/library/Fsub/util.ma index 5a81f7ec5..5446efe56 100644 --- a/matita/library/Fsub/util.ma +++ b/matita/library/Fsub/util.ma @@ -19,10 +19,29 @@ include "list/list.ma". (*** useful definitions and lemmas not really related to Fsub ***) -let rec max m n \def +definition max \def +\lambda m,n. match (leb m n) with [true \Rightarrow n |false \Rightarrow m]. + +lemma le_n_max_m_n: \forall m,n:nat. n \le max m n. +intros. +unfold max. +apply (leb_elim m n) + [simplify.intros.apply le_n + |simplify.intros.autobatch + ] +qed. + +lemma le_m_max_m_n: \forall m,n:nat. m \le max m n. +intros. +unfold max. +apply (leb_elim m n) + [simplify.intro.assumption + |simplify.intros.autobatch + ] +qed. inductive in_list (A:Type): A → (list A) → Prop ≝ | in_Base : ∀ x,l.(in_list A x (x::l))