From: Claudio Sacerdoti Coen Date: Sun, 18 Nov 2007 18:18:02 +0000 (+0000) Subject: The axiom can be proved. Just follow the hint. X-Git-Tag: make_still_working~5804 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=bb0074a578a1d4860516964a3717a99a70c0f28c;p=helm.git The axiom can be proved. Just follow the hint. --- diff --git a/helm/software/matita/dama/valued_lattice.ma b/helm/software/matita/dama/valued_lattice.ma index 83a062de5..66eb715c9 100644 --- a/helm/software/matita/dama/valued_lattice.ma +++ b/helm/software/matita/dama/valued_lattice.ma @@ -46,8 +46,15 @@ interpretation "lattice value" 'value2 a = (cic:/matita/valued_lattice/value.con notation "\mu" non associative with precedence 80 for @{ 'value }. interpretation "lattice value" 'value = (cic:/matita/valued_lattice/value.con _ _). -axiom foo: ∀R.∀L:vlattice R.∀x,y,z:L. +lemma foo: ∀R.∀L:vlattice R.∀x,y,z:L. μ(x ∧ (y ∨ z)) ≈ (μ x) + (μ y) + μ z + -μ (y ∧ z) + -μ (z ∨ (x ∨ y)). +intros (R L x y z); +lapply (meet_join_plus ? ? x (y ∨ z)) as H; +lapply (meet_join_plus ? ? y z) as H1; + (*CSC: A questo punto ti servono dei lemmi sui gruppi che non sono ancora + stati dimostrati. E una valanga di passi di riscrittura :-) + *) + lemma meet_join_le1: ∀R.∀L:vlattice R.∀x,y,z:L.μ (x ∧ z) ≤ μ (x ∧ (y ∨ z)). intros (R L x y z);