From: Enrico Tassi Date: Mon, 29 Jun 2009 13:45:03 +0000 (+0000) Subject: ... X-Git-Tag: make_still_working~3774 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=bbb2b03fee9f7c7595870d997118d51c1ce469f2;p=helm.git ... --- diff --git a/helm/software/components/binaries/matitaprover/log.090625 b/helm/software/components/binaries/matitaprover/log.090625 new file mode 100644 index 000000000..875cbc35d --- /dev/null +++ b/helm/software/components/binaries/matitaprover/log.090625 @@ -0,0 +1,4220 @@ +BOO007-2 +Order + == is 100 + _ is 99 + a is 98 + add is 93 + additive_id1 is 77 + additive_id2 is 76 + additive_identity is 82 + additive_inverse1 is 84 + additive_inverse2 is 83 + b is 97 + c is 96 + commutativity_of_add is 92 + commutativity_of_multiply is 91 + distributivity1 is 90 + distributivity2 is 89 + distributivity3 is 88 + distributivity4 is 87 + inverse is 86 + multiplicative_id1 is 79 + multiplicative_id2 is 78 + multiplicative_identity is 85 + multiplicative_inverse1 is 81 + multiplicative_inverse2 is 80 + multiply is 95 + prove_associativity is 94 +Facts + Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 + Id : 6, {_}: + multiply ?5 ?6 =?= multiply ?6 ?5 + [6, 5] by commutativity_of_multiply ?5 ?6 + Id : 8, {_}: + add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10) + [10, 9, 8] by distributivity1 ?8 ?9 ?10 + Id : 10, {_}: + add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14) + [14, 13, 12] by distributivity2 ?12 ?13 ?14 + Id : 12, {_}: + multiply (add ?16 ?17) ?18 + =<= + add (multiply ?16 ?18) (multiply ?17 ?18) + [18, 17, 16] by distributivity3 ?16 ?17 ?18 + Id : 14, {_}: + multiply ?20 (add ?21 ?22) + =<= + add (multiply ?20 ?21) (multiply ?20 ?22) + [22, 21, 20] by distributivity4 ?20 ?21 ?22 + Id : 16, {_}: + add ?24 (inverse ?24) =>= multiplicative_identity + [24] by additive_inverse1 ?24 + Id : 18, {_}: + add (inverse ?26) ?26 =>= multiplicative_identity + [26] by additive_inverse2 ?26 + Id : 20, {_}: + multiply ?28 (inverse ?28) =>= additive_identity + [28] by multiplicative_inverse1 ?28 + Id : 22, {_}: + multiply (inverse ?30) ?30 =>= additive_identity + [30] by multiplicative_inverse2 ?30 + Id : 24, {_}: + multiply ?32 multiplicative_identity =>= ?32 + [32] by multiplicative_id1 ?32 + Id : 26, {_}: + multiply multiplicative_identity ?34 =>= ?34 + [34] by multiplicative_id2 ?34 + Id : 28, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36 + Id : 30, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38 +Goal + Id : 2, {_}: + multiply a (multiply b c) =<= multiply (multiply a b) c + [] by prove_associativity +Found proof, 6.095314s +BOO007-4 +Order + == is 100 + _ is 99 + a is 98 + add is 93 + additive_id1 is 87 + additive_identity is 88 + additive_inverse1 is 83 + b is 97 + c is 96 + commutativity_of_add is 92 + commutativity_of_multiply is 91 + distributivity1 is 90 + distributivity2 is 89 + inverse is 84 + multiplicative_id1 is 85 + multiplicative_identity is 86 + multiplicative_inverse1 is 82 + multiply is 95 + prove_associativity is 94 +Facts + Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 + Id : 6, {_}: + multiply ?5 ?6 =?= multiply ?6 ?5 + [6, 5] by commutativity_of_multiply ?5 ?6 + Id : 8, {_}: + add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10) + [10, 9, 8] by distributivity1 ?8 ?9 ?10 + Id : 10, {_}: + multiply ?12 (add ?13 ?14) + =<= + add (multiply ?12 ?13) (multiply ?12 ?14) + [14, 13, 12] by distributivity2 ?12 ?13 ?14 + Id : 12, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16 + Id : 14, {_}: + multiply ?18 multiplicative_identity =>= ?18 + [18] by multiplicative_id1 ?18 + Id : 16, {_}: + add ?20 (inverse ?20) =>= multiplicative_identity + [20] by additive_inverse1 ?20 + Id : 18, {_}: + multiply ?22 (inverse ?22) =>= additive_identity + [22] by multiplicative_inverse1 ?22 +Goal + Id : 2, {_}: + multiply a (multiply b c) =<= multiply (multiply a b) c + [] by prove_associativity +Timeout ! +FAILURE in 625 iterations +BOO031-1 +Order + == is 100 + _ is 99 + a is 98 + add is 95 + additive_inverse is 83 + associativity_of_add is 80 + associativity_of_multiply is 79 + b is 97 + c is 96 + distributivity is 92 + inverse is 89 + l1 is 91 + l2 is 87 + l3 is 90 + l4 is 86 + multiplicative_inverse is 81 + multiply is 94 + n0 is 82 + n1 is 84 + property3 is 88 + property3_dual is 85 + prove_multiply_add_property is 93 +Facts + Id : 4, {_}: + add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) + =>= + multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) + [4, 3, 2] by distributivity ?2 ?3 ?4 + Id : 6, {_}: + add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 + [8, 7, 6] by l1 ?6 ?7 ?8 + Id : 8, {_}: + add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 + [12, 11, 10] by l3 ?10 ?11 ?12 + Id : 10, {_}: + multiply (add ?14 (inverse ?14)) ?15 =>= ?15 + [15, 14] by property3 ?14 ?15 + Id : 12, {_}: + multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17 + [19, 18, 17] by l2 ?17 ?18 ?19 + Id : 14, {_}: + multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22 + [23, 22, 21] by l4 ?21 ?22 ?23 + Id : 16, {_}: + add (multiply ?25 (inverse ?25)) ?26 =>= ?26 + [26, 25] by property3_dual ?25 ?26 + Id : 18, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28 + Id : 20, {_}: + multiply ?30 (inverse ?30) =>= n0 + [30] by multiplicative_inverse ?30 + Id : 22, {_}: + add (add ?32 ?33) ?34 =?= add ?32 (add ?33 ?34) + [34, 33, 32] by associativity_of_add ?32 ?33 ?34 + Id : 24, {_}: + multiply (multiply ?36 ?37) ?38 =?= multiply ?36 (multiply ?37 ?38) + [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38 +Goal + Id : 2, {_}: + multiply a (add b c) =<= add (multiply b a) (multiply c a) + [] by prove_multiply_add_property +Timeout ! +FAILURE in 413 iterations +BOO034-1 +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + b is 96 + c is 94 + d is 93 + e is 92 + f is 91 + g is 90 + inverse is 97 + left_inverse is 85 + multiply is 95 + prove_single_axiom is 89 + right_inverse is 84 + ternary_multiply_1 is 87 + ternary_multiply_2 is 86 +Facts + Id : 4, {_}: + multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) + =>= + multiply ?2 ?3 (multiply ?4 ?5 ?6) + [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6 + Id : 6, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9 + Id : 8, {_}: + multiply ?11 ?11 ?12 =>= ?11 + [12, 11] by ternary_multiply_2 ?11 ?12 + Id : 10, {_}: + multiply (inverse ?14) ?14 ?15 =>= ?15 + [15, 14] by left_inverse ?14 ?15 + Id : 12, {_}: + multiply ?17 ?18 (inverse ?18) =>= ?17 + [18, 17] by right_inverse ?17 ?18 +Goal + Id : 2, {_}: + multiply (multiply a (inverse a) b) + (inverse (multiply (multiply c d e) f (multiply c d g))) + (multiply d (multiply g f e) c) + =>= + b + [] by prove_single_axiom +Timeout ! +FAILURE in 424 iterations +BOO072-1 +Order + == is 100 + _ is 99 + a is 97 + add is 96 + b is 98 + dn1 is 93 + huntinton_1 is 95 + inverse is 94 +Facts + Id : 4, {_}: + inverse + (add (inverse (add (inverse (add ?2 ?3)) ?4)) + (inverse + (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) + =>= + ?4 + [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 +Goal + Id : 2, {_}: add b a =>= add a b [] by huntinton_1 +Found proof, 0.440809s +BOO073-1 +Order + == is 100 + _ is 99 + a is 98 + add is 96 + b is 97 + c is 95 + dn1 is 92 + huntinton_2 is 94 + inverse is 93 +Facts + Id : 4, {_}: + inverse + (add (inverse (add (inverse (add ?2 ?3)) ?4)) + (inverse + (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) + =>= + ?4 + [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 +Goal + Id : 2, {_}: add (add a b) c =>= add a (add b c) [] by huntinton_2 +Found proof, 95.580028s +BOO076-1 +Order + == is 100 + _ is 99 + a is 98 + b is 97 + c is 96 + nand is 95 + prove_meredith_2_basis_2 is 94 + sh_1 is 93 +Facts + Id : 4, {_}: + nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?4 ?2)) =>= ?3 + [4, 3, 2] by sh_1 ?2 ?3 ?4 +Goal + Id : 2, {_}: + nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a + [] by prove_meredith_2_basis_2 +Timeout ! +FAILURE in 277 iterations +COL003-1 +Order + == is 100 + _ is 99 + apply is 97 + b is 95 + b_definition is 94 + f is 98 + prove_strong_fixed_point is 96 + w is 93 + w_definition is 92 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 + [8, 7] by w_definition ?7 ?8 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_strong_fixed_point ?1 +Timeout ! +FAILURE in 1120 iterations +COL003-12 +Order + == is 100 + _ is 99 + apply is 96 + b is 94 + b_definition is 93 + fixed_pt is 97 + prove_strong_fixed_point is 95 + strong_fixed_point is 98 + w is 92 + w_definition is 91 +Facts + Id : 4, {_}: + apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) + [4, 3, 2] by b_definition ?2 ?3 ?4 + Id : 6, {_}: + apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 + [7, 6] by w_definition ?6 ?7 + Id : 8, {_}: + strong_fixed_point + =<= + apply (apply b (apply w w)) + (apply (apply b w) (apply (apply b b) b)) + [] by strong_fixed_point +Goal + Id : 2, {_}: + apply strong_fixed_point fixed_pt + =<= + apply fixed_pt (apply strong_fixed_point fixed_pt) + [] by prove_strong_fixed_point +Timeout ! +FAILURE in 1252 iterations +COL003-20 +Order + == is 100 + _ is 99 + apply is 96 + b is 94 + b_definition is 93 + fixed_pt is 97 + prove_strong_fixed_point is 95 + strong_fixed_point is 98 + w is 92 + w_definition is 91 +Facts + Id : 4, {_}: + apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) + [4, 3, 2] by b_definition ?2 ?3 ?4 + Id : 6, {_}: + apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 + [7, 6] by w_definition ?6 ?7 + Id : 8, {_}: + strong_fixed_point + =<= + apply (apply b (apply w w)) + (apply (apply b (apply b w)) (apply (apply b b) b)) + [] by strong_fixed_point +Goal + Id : 2, {_}: + apply strong_fixed_point fixed_pt + =<= + apply fixed_pt (apply strong_fixed_point fixed_pt) + [] by prove_strong_fixed_point +Timeout ! +FAILURE in 1223 iterations +COL006-6 +Order + == is 100 + _ is 99 + apply is 96 + fixed_pt is 97 + k is 92 + k_definition is 91 + prove_strong_fixed_point is 95 + s is 94 + s_definition is 93 + strong_fixed_point is 98 +Facts + Id : 4, {_}: + apply (apply (apply s ?2) ?3) ?4 + =?= + apply (apply ?2 ?4) (apply ?3 ?4) + [4, 3, 2] by s_definition ?2 ?3 ?4 + Id : 6, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 + Id : 8, {_}: + strong_fixed_point + =<= + apply + (apply s + (apply k + (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) + (apply (apply s (apply (apply s (apply k s)) k)) + (apply k + (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) + [] by strong_fixed_point +Goal + Id : 2, {_}: + apply strong_fixed_point fixed_pt + =<= + apply fixed_pt (apply strong_fixed_point fixed_pt) + [] by prove_strong_fixed_point +Timeout ! +FAILURE in 1708 iterations +COL011-1 +Order + == is 100 + _ is 99 + apply is 97 + combinator is 98 + o is 95 + o_definition is 94 + prove_fixed_point is 96 + q1 is 93 + q1_definition is 92 +Facts + Id : 4, {_}: + apply (apply o ?3) ?4 =?= apply ?4 (apply ?3 ?4) + [4, 3] by o_definition ?3 ?4 + Id : 6, {_}: + apply (apply (apply q1 ?6) ?7) ?8 =>= apply ?6 (apply ?8 ?7) + [8, 7, 6] by q1_definition ?6 ?7 ?8 +Goal + Id : 2, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1 +Timeout ! +FAILURE in 1839 iterations +COL037-1 +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + c is 91 + c_definition is 90 + f is 98 + prove_fixed_point is 96 + s is 95 + s_definition is 94 +Facts + Id : 4, {_}: + apply (apply (apply s ?3) ?4) ?5 + =?= + apply (apply ?3 ?5) (apply ?4 ?5) + [5, 4, 3] by s_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) + [9, 8, 7] by b_definition ?7 ?8 ?9 + Id : 8, {_}: + apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12 + [13, 12, 11] by c_definition ?11 ?12 ?13 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_fixed_point ?1 +Timeout ! +FAILURE in 944 iterations +COL038-1 +Order + == is 100 + _ is 99 + apply is 97 + b is 95 + b_definition is 94 + f is 98 + m is 93 + m_definition is 92 + prove_fixed_point is 96 + v is 91 + v_definition is 90 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 + Id : 8, {_}: + apply (apply (apply v ?9) ?10) ?11 =>= apply (apply ?11 ?9) ?10 + [11, 10, 9] by v_definition ?9 ?10 ?11 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_fixed_point ?1 +Timeout ! +FAILURE in 1682 iterations +COL043-3 +Order + == is 100 + _ is 99 + apply is 96 + b is 94 + b_definition is 93 + fixed_pt is 97 + h is 92 + h_definition is 91 + prove_strong_fixed_point is 95 + strong_fixed_point is 98 +Facts + Id : 4, {_}: + apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) + [4, 3, 2] by b_definition ?2 ?3 ?4 + Id : 6, {_}: + apply (apply (apply h ?6) ?7) ?8 + =?= + apply (apply (apply ?6 ?7) ?8) ?7 + [8, 7, 6] by h_definition ?6 ?7 ?8 + Id : 8, {_}: + strong_fixed_point + =<= + apply + (apply b + (apply + (apply b + (apply + (apply h + (apply (apply b (apply (apply b h) (apply b b))) + (apply h (apply (apply b h) (apply b b))))) h)) b)) b + [] by strong_fixed_point +Goal + Id : 2, {_}: + apply strong_fixed_point fixed_pt + =<= + apply fixed_pt (apply strong_fixed_point fixed_pt) + [] by prove_strong_fixed_point +Timeout ! +FAILURE in 1406 iterations +COL044-8 +Order + == is 100 + _ is 99 + apply is 96 + b is 94 + b_definition is 93 + fixed_pt is 97 + n is 92 + n_definition is 91 + prove_strong_fixed_point is 95 + strong_fixed_point is 98 +Facts + Id : 4, {_}: + apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) + [4, 3, 2] by b_definition ?2 ?3 ?4 + Id : 6, {_}: + apply (apply (apply n ?6) ?7) ?8 + =?= + apply (apply (apply ?6 ?8) ?7) ?8 + [8, 7, 6] by n_definition ?6 ?7 ?8 + Id : 8, {_}: + strong_fixed_point + =<= + apply + (apply b + (apply + (apply b + (apply + (apply n + (apply n + (apply (apply b (apply b b)) + (apply n (apply (apply b b) n))))) n)) b)) b + [] by strong_fixed_point +Goal + Id : 2, {_}: + apply strong_fixed_point fixed_pt + =<= + apply fixed_pt (apply strong_fixed_point fixed_pt) + [] by prove_strong_fixed_point +Timeout ! +FAILURE in 1249 iterations +COL046-1 +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + f is 98 + m is 91 + m_definition is 90 + prove_fixed_point is 96 + s is 95 + s_definition is 94 +Facts + Id : 4, {_}: + apply (apply (apply s ?3) ?4) ?5 + =?= + apply (apply ?3 ?5) (apply ?4 ?5) + [5, 4, 3] by s_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) + [9, 8, 7] by b_definition ?7 ?8 ?9 + Id : 8, {_}: apply m ?11 =?= apply ?11 ?11 [11] by m_definition ?11 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_fixed_point ?1 +Timeout ! +FAILURE in 1258 iterations +COL049-1 +Order + == is 100 + _ is 99 + apply is 97 + b is 95 + b_definition is 94 + f is 98 + m is 91 + m_definition is 90 + prove_strong_fixed_point is 96 + w is 93 + w_definition is 92 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 + [8, 7] by w_definition ?7 ?8 + Id : 8, {_}: apply m ?10 =?= apply ?10 ?10 [10] by m_definition ?10 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_strong_fixed_point ?1 +Timeout ! +FAILURE in 1565 iterations +COL057-1 +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + c is 91 + c_definition is 90 + f is 98 + i is 89 + i_definition is 88 + prove_strong_fixed_point is 96 + s is 95 + s_definition is 94 +Facts + Id : 4, {_}: + apply (apply (apply s ?3) ?4) ?5 + =?= + apply (apply ?3 ?5) (apply ?4 ?5) + [5, 4, 3] by s_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) + [9, 8, 7] by b_definition ?7 ?8 ?9 + Id : 8, {_}: + apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12 + [13, 12, 11] by c_definition ?11 ?12 ?13 + Id : 10, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_strong_fixed_point ?1 +Timeout ! +FAILURE in 1505 iterations +COL060-1 +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + f is 98 + g is 96 + h is 95 + prove_q_combinator is 94 + t is 91 + t_definition is 90 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply t ?7) ?8 =>= apply ?8 ?7 + [8, 7] by t_definition ?7 ?8 +Goal + Id : 2, {_}: + apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) + =>= + apply (g ?1) (apply (f ?1) (h ?1)) + [1] by prove_q_combinator ?1 +Found proof, 0.103279s +COL061-1 +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + f is 98 + g is 96 + h is 95 + prove_q1_combinator is 94 + t is 91 + t_definition is 90 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply t ?7) ?8 =>= apply ?8 ?7 + [8, 7] by t_definition ?7 ?8 +Goal + Id : 2, {_}: + apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) + =>= + apply (f ?1) (apply (h ?1) (g ?1)) + [1] by prove_q1_combinator ?1 +Found proof, 0.116546s +COL063-1 +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + f is 98 + g is 96 + h is 95 + prove_f_combinator is 94 + t is 91 + t_definition is 90 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply t ?7) ?8 =>= apply ?8 ?7 + [8, 7] by t_definition ?7 ?8 +Goal + Id : 2, {_}: + apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) + =>= + apply (apply (h ?1) (g ?1)) (f ?1) + [1] by prove_f_combinator ?1 +Found proof, 1.828433s +COL064-1 +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + f is 98 + g is 96 + h is 95 + prove_v_combinator is 94 + t is 91 + t_definition is 90 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply t ?7) ?8 =>= apply ?8 ?7 + [8, 7] by t_definition ?7 ?8 +Goal + Id : 2, {_}: + apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) + =>= + apply (apply (h ?1) (f ?1)) (g ?1) + [1] by prove_v_combinator ?1 +Found proof, 13.759082s +COL065-1 +Order + == is 100 + _ is 99 + apply is 97 + b is 92 + b_definition is 91 + f is 98 + g is 96 + h is 95 + i is 94 + prove_g_combinator is 93 + t is 90 + t_definition is 89 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply t ?7) ?8 =>= apply ?8 ?7 + [8, 7] by t_definition ?7 ?8 +Goal + Id : 2, {_}: + apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)) (i ?1) + =>= + apply (apply (f ?1) (i ?1)) (apply (g ?1) (h ?1)) + [1] by prove_g_combinator ?1 +Found proof, 68.133820s +GRP014-1 +Order + == is 100 + _ is 99 + a is 98 + b is 97 + c is 96 + group_axiom is 92 + inverse is 93 + multiply is 95 + prove_associativity is 94 +Facts + Id : 4, {_}: + multiply ?2 + (inverse + (multiply + (multiply + (inverse + (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) + (inverse (multiply ?3 ?5)))) + =>= + ?4 + [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5 +Goal + Id : 2, {_}: + multiply a (multiply b c) =<= multiply (multiply a b) c + [] by prove_associativity +Found proof, 3.453474s +GRP024-5 +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + associativity_of_commutator is 86 + b is 97 + c is 96 + commutator is 95 + identity is 92 + inverse is 90 + left_identity is 91 + left_inverse is 89 + multiply is 94 + name is 87 + prove_center is 93 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + commutator ?10 ?11 + =<= + multiply (inverse ?10) (multiply (inverse ?11) (multiply ?10 ?11)) + [11, 10] by name ?10 ?11 + Id : 12, {_}: + commutator (commutator ?13 ?14) ?15 + =?= + commutator ?13 (commutator ?14 ?15) + [15, 14, 13] by associativity_of_commutator ?13 ?14 ?15 +Goal + Id : 2, {_}: + multiply a (commutator b c) =<= multiply (commutator b c) a + [] by prove_center +Timeout ! +FAILURE in 602 iterations +GRP114-1 +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + identity is 93 + intersection is 85 + intersection_associative is 79 + intersection_commutative is 81 + intersection_idempotent is 84 + intersection_union_absorbtion is 76 + inverse is 91 + inverse_involution is 87 + inverse_of_identity is 88 + inverse_product_lemma is 86 + left_identity is 92 + left_inverse is 90 + multiply is 95 + multiply_intersection1 is 74 + multiply_intersection2 is 72 + multiply_union1 is 75 + multiply_union2 is 73 + negative_part is 96 + positive_part is 97 + prove_product is 94 + union is 83 + union_associative is 78 + union_commutative is 80 + union_idempotent is 82 + union_intersection_absorbtion is 77 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: inverse identity =>= identity [] by inverse_of_identity + Id : 12, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11 + Id : 14, {_}: + inverse (multiply ?13 ?14) =<= multiply (inverse ?14) (inverse ?13) + [14, 13] by inverse_product_lemma ?13 ?14 + Id : 16, {_}: + intersection ?16 ?16 =>= ?16 + [16] by intersection_idempotent ?16 + Id : 18, {_}: union ?18 ?18 =>= ?18 [18] by union_idempotent ?18 + Id : 20, {_}: + intersection ?20 ?21 =?= intersection ?21 ?20 + [21, 20] by intersection_commutative ?20 ?21 + Id : 22, {_}: + union ?23 ?24 =?= union ?24 ?23 + [24, 23] by union_commutative ?23 ?24 + Id : 24, {_}: + intersection ?26 (intersection ?27 ?28) + =?= + intersection (intersection ?26 ?27) ?28 + [28, 27, 26] by intersection_associative ?26 ?27 ?28 + Id : 26, {_}: + union ?30 (union ?31 ?32) =?= union (union ?30 ?31) ?32 + [32, 31, 30] by union_associative ?30 ?31 ?32 + Id : 28, {_}: + union (intersection ?34 ?35) ?35 =>= ?35 + [35, 34] by union_intersection_absorbtion ?34 ?35 + Id : 30, {_}: + intersection (union ?37 ?38) ?38 =>= ?38 + [38, 37] by intersection_union_absorbtion ?37 ?38 + Id : 32, {_}: + multiply ?40 (union ?41 ?42) + =<= + union (multiply ?40 ?41) (multiply ?40 ?42) + [42, 41, 40] by multiply_union1 ?40 ?41 ?42 + Id : 34, {_}: + multiply ?44 (intersection ?45 ?46) + =<= + intersection (multiply ?44 ?45) (multiply ?44 ?46) + [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46 + Id : 36, {_}: + multiply (union ?48 ?49) ?50 + =<= + union (multiply ?48 ?50) (multiply ?49 ?50) + [50, 49, 48] by multiply_union2 ?48 ?49 ?50 + Id : 38, {_}: + multiply (intersection ?52 ?53) ?54 + =<= + intersection (multiply ?52 ?54) (multiply ?53 ?54) + [54, 53, 52] by multiply_intersection2 ?52 ?53 ?54 + Id : 40, {_}: + positive_part ?56 =<= union ?56 identity + [56] by positive_part ?56 + Id : 42, {_}: + negative_part ?58 =<= intersection ?58 identity + [58] by negative_part ?58 +Goal + Id : 2, {_}: + multiply (positive_part a) (negative_part a) =>= a + [] by prove_product +Timeout ! +FAILURE in 1190 iterations +GRP164-2 +Order + == is 100 + _ is 99 + a is 98 + associativity is 87 + associativity_of_glb is 84 + associativity_of_lub is 83 + b is 97 + c is 96 + glb_absorbtion is 79 + greatest_lower_bound is 94 + idempotence_of_gld is 81 + idempotence_of_lub is 82 + identity is 92 + inverse is 89 + least_upper_bound is 95 + left_identity is 90 + left_inverse is 88 + lub_absorbtion is 80 + monotony_glb1 is 77 + monotony_glb2 is 75 + monotony_lub1 is 78 + monotony_lub2 is 76 + multiply is 91 + prove_distrun is 93 + symmetry_of_glb is 86 + symmetry_of_lub is 85 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: + least_upper_bound ?24 ?24 =>= ?24 + [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Goal + Id : 2, {_}: + greatest_lower_bound a (least_upper_bound b c) + =<= + least_upper_bound (greatest_lower_bound a b) + (greatest_lower_bound a c) + [] by prove_distrun +Timeout ! +FAILURE in 1400 iterations +GRP167-1 +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + associativity_of_glb is 84 + associativity_of_lub is 83 + glb_absorbtion is 79 + greatest_lower_bound is 88 + idempotence_of_gld is 81 + idempotence_of_lub is 82 + identity is 93 + inverse is 91 + lat4_1 is 74 + lat4_2 is 73 + lat4_3 is 72 + lat4_4 is 71 + least_upper_bound is 86 + left_identity is 92 + left_inverse is 90 + lub_absorbtion is 80 + monotony_glb1 is 77 + monotony_glb2 is 75 + monotony_lub1 is 78 + monotony_lub2 is 76 + multiply is 95 + negative_part is 96 + positive_part is 97 + prove_lat4 is 94 + symmetry_of_glb is 87 + symmetry_of_lub is 85 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: + least_upper_bound ?24 ?24 =>= ?24 + [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: + positive_part ?50 =<= least_upper_bound ?50 identity + [50] by lat4_1 ?50 + Id : 36, {_}: + negative_part ?52 =<= greatest_lower_bound ?52 identity + [52] by lat4_2 ?52 + Id : 38, {_}: + least_upper_bound ?54 (greatest_lower_bound ?55 ?56) + =<= + greatest_lower_bound (least_upper_bound ?54 ?55) + (least_upper_bound ?54 ?56) + [56, 55, 54] by lat4_3 ?54 ?55 ?56 + Id : 40, {_}: + greatest_lower_bound ?58 (least_upper_bound ?59 ?60) + =<= + least_upper_bound (greatest_lower_bound ?58 ?59) + (greatest_lower_bound ?58 ?60) + [60, 59, 58] by lat4_4 ?58 ?59 ?60 +Goal + Id : 2, {_}: + a =<= multiply (positive_part a) (negative_part a) + [] by prove_lat4 +Timeout ! +FAILURE in 1375 iterations +GRP178-2 +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + associativity_of_glb is 84 + associativity_of_lub is 83 + b is 97 + c is 96 + glb_absorbtion is 79 + greatest_lower_bound is 94 + idempotence_of_gld is 81 + idempotence_of_lub is 82 + identity is 92 + inverse is 90 + least_upper_bound is 86 + left_identity is 91 + left_inverse is 89 + lub_absorbtion is 80 + monotony_glb1 is 77 + monotony_glb2 is 75 + monotony_lub1 is 78 + monotony_lub2 is 76 + multiply is 95 + p09b_1 is 74 + p09b_2 is 73 + p09b_3 is 72 + p09b_4 is 71 + prove_p09b is 93 + symmetry_of_glb is 87 + symmetry_of_lub is 85 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: + least_upper_bound ?24 ?24 =>= ?24 + [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: greatest_lower_bound identity a =>= identity [] by p09b_1 + Id : 36, {_}: greatest_lower_bound identity b =>= identity [] by p09b_2 + Id : 38, {_}: greatest_lower_bound identity c =>= identity [] by p09b_3 + Id : 40, {_}: greatest_lower_bound a b =>= identity [] by p09b_4 +Goal + Id : 2, {_}: + greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c + [] by prove_p09b +Timeout ! +FAILURE in 2472 iterations +GRP181-4 +Order + == is 100 + _ is 99 + a is 98 + associativity is 90 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + c is 72 + glb_absorbtion is 80 + greatest_lower_bound is 89 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 95 + inverse is 92 + least_upper_bound is 87 + left_identity is 93 + left_inverse is 91 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 94 + p12x_1 is 75 + p12x_2 is 74 + p12x_3 is 73 + p12x_4 is 71 + p12x_5 is 70 + p12x_6 is 69 + p12x_7 is 68 + prove_p12x is 96 + symmetry_of_glb is 88 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: + least_upper_bound ?24 ?24 =>= ?24 + [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: inverse identity =>= identity [] by p12x_1 + Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51 + Id : 38, {_}: + inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) + [54, 53] by p12x_3 ?53 ?54 + Id : 40, {_}: + greatest_lower_bound a c =>= greatest_lower_bound b c + [] by p12x_4 + Id : 42, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_5 + Id : 44, {_}: + inverse (greatest_lower_bound ?58 ?59) + =<= + least_upper_bound (inverse ?58) (inverse ?59) + [59, 58] by p12x_6 ?58 ?59 + Id : 46, {_}: + inverse (least_upper_bound ?61 ?62) + =<= + greatest_lower_bound (inverse ?61) (inverse ?62) + [62, 61] by p12x_7 ?61 ?62 +Goal + Id : 2, {_}: a =>= b [] by prove_p12x +Timeout ! +FAILURE in 1207 iterations +GRP183-4 +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + associativity_of_glb is 86 + associativity_of_lub is 85 + glb_absorbtion is 81 + greatest_lower_bound is 94 + idempotence_of_gld is 83 + idempotence_of_lub is 84 + identity is 97 + inverse is 95 + least_upper_bound is 96 + left_identity is 91 + left_inverse is 90 + lub_absorbtion is 82 + monotony_glb1 is 79 + monotony_glb2 is 77 + monotony_lub1 is 80 + monotony_lub2 is 78 + multiply is 92 + p20x_1 is 76 + p20x_3 is 75 + prove_20x is 93 + symmetry_of_glb is 88 + symmetry_of_lub is 87 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: + least_upper_bound ?24 ?24 =>= ?24 + [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: inverse identity =>= identity [] by p20x_1 + Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p20x_1 ?51 + Id : 38, {_}: + inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) + [54, 53] by p20x_3 ?53 ?54 +Goal + Id : 2, {_}: + greatest_lower_bound (least_upper_bound a identity) + (least_upper_bound (inverse a) identity) + =>= + identity + [] by prove_20x +Timeout ! +FAILURE in 933 iterations +GRP184-1 +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + associativity_of_glb is 86 + associativity_of_lub is 85 + glb_absorbtion is 81 + greatest_lower_bound is 95 + idempotence_of_gld is 83 + idempotence_of_lub is 84 + identity is 97 + inverse is 94 + least_upper_bound is 96 + left_identity is 91 + left_inverse is 90 + lub_absorbtion is 82 + monotony_glb1 is 79 + monotony_glb2 is 77 + monotony_lub1 is 80 + monotony_lub2 is 78 + multiply is 93 + prove_p21 is 92 + symmetry_of_glb is 88 + symmetry_of_lub is 87 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: + least_upper_bound ?24 ?24 =>= ?24 + [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Goal + Id : 2, {_}: + multiply (least_upper_bound a identity) + (inverse (greatest_lower_bound a identity)) + =>= + multiply (inverse (greatest_lower_bound a identity)) + (least_upper_bound a identity) + [] by prove_p21 +Timeout ! +FAILURE in 1398 iterations +GRP184-3 +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + associativity_of_glb is 86 + associativity_of_lub is 85 + glb_absorbtion is 81 + greatest_lower_bound is 95 + idempotence_of_gld is 83 + idempotence_of_lub is 84 + identity is 97 + inverse is 94 + least_upper_bound is 96 + left_identity is 91 + left_inverse is 90 + lub_absorbtion is 82 + monotony_glb1 is 79 + monotony_glb2 is 77 + monotony_lub1 is 80 + monotony_lub2 is 78 + multiply is 93 + prove_p21x is 92 + symmetry_of_glb is 88 + symmetry_of_lub is 87 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: + least_upper_bound ?24 ?24 =>= ?24 + [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Goal + Id : 2, {_}: + multiply (least_upper_bound a identity) + (inverse (greatest_lower_bound a identity)) + =>= + multiply (inverse (greatest_lower_bound a identity)) + (least_upper_bound a identity) + [] by prove_p21x +Timeout ! +FAILURE in 1398 iterations +GRP185-2 +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + glb_absorbtion is 80 + greatest_lower_bound is 88 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 95 + inverse is 91 + least_upper_bound is 94 + left_identity is 92 + left_inverse is 90 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 96 + p22a_1 is 75 + p22a_2 is 74 + p22a_3 is 73 + prove_p22a is 93 + symmetry_of_glb is 87 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: + least_upper_bound ?24 ?24 =>= ?24 + [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: inverse identity =>= identity [] by p22a_1 + Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p22a_2 ?51 + Id : 38, {_}: + inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) + [54, 53] by p22a_3 ?53 ?54 +Goal + Id : 2, {_}: + least_upper_bound (least_upper_bound (multiply a b) identity) + (multiply (least_upper_bound a identity) + (least_upper_bound b identity)) + =>= + multiply (least_upper_bound a identity) + (least_upper_bound b identity) + [] by prove_p22a +Timeout ! +FAILURE in 944 iterations +GRP185-3 +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + glb_absorbtion is 80 + greatest_lower_bound is 93 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 95 + inverse is 90 + least_upper_bound is 94 + left_identity is 91 + left_inverse is 89 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 96 + prove_p22b is 92 + symmetry_of_glb is 87 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: + least_upper_bound ?24 ?24 =>= ?24 + [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Goal + Id : 2, {_}: + greatest_lower_bound (least_upper_bound (multiply a b) identity) + (multiply (least_upper_bound a identity) + (least_upper_bound b identity)) + =>= + least_upper_bound (multiply a b) identity + [] by prove_p22b +Timeout ! +FAILURE in 1232 iterations +GRP186-1 +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + glb_absorbtion is 80 + greatest_lower_bound is 92 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 95 + inverse is 93 + least_upper_bound is 94 + left_identity is 90 + left_inverse is 89 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 96 + prove_p23 is 91 + symmetry_of_glb is 87 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: + least_upper_bound ?24 ?24 =>= ?24 + [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Goal + Id : 2, {_}: + least_upper_bound (multiply a b) identity + =<= + multiply a (inverse (greatest_lower_bound a (inverse b))) + [] by prove_p23 +Timeout ! +FAILURE in 1205 iterations +GRP186-2 +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + glb_absorbtion is 80 + greatest_lower_bound is 92 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 95 + inverse is 93 + least_upper_bound is 94 + left_identity is 90 + left_inverse is 89 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 96 + p23_1 is 75 + p23_2 is 74 + p23_3 is 73 + prove_p23 is 91 + symmetry_of_glb is 87 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: + least_upper_bound ?24 ?24 =>= ?24 + [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: inverse identity =>= identity [] by p23_1 + Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p23_2 ?51 + Id : 38, {_}: + inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) + [54, 53] by p23_3 ?53 ?54 +Goal + Id : 2, {_}: + least_upper_bound (multiply a b) identity + =<= + multiply a (inverse (greatest_lower_bound a (inverse b))) + [] by prove_p23 +Timeout ! +FAILURE in 964 iterations +GRP187-1 +Order + == is 100 + _ is 99 + a is 98 + associativity is 90 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + glb_absorbtion is 80 + greatest_lower_bound is 89 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 94 + inverse is 92 + least_upper_bound is 87 + left_identity is 93 + left_inverse is 91 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 96 + p33_1 is 75 + prove_p33 is 95 + symmetry_of_glb is 88 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: + least_upper_bound ?24 ?24 =>= ?24 + [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: + greatest_lower_bound (least_upper_bound a (inverse a)) + (least_upper_bound b (inverse b)) + =>= + identity + [] by p33_1 +Goal + Id : 2, {_}: multiply a b =>= multiply b a [] by prove_p33 +Timeout ! +FAILURE in 1541 iterations +GRP200-1 +Order + == is 100 + _ is 99 + a is 98 + b is 97 + c is 95 + identity is 93 + left_division is 90 + left_division_multiply is 88 + left_identity is 92 + left_inverse is 83 + moufang1 is 82 + multiply is 96 + multiply_left_division is 89 + multiply_right_division is 86 + prove_moufang2 is 94 + right_division is 87 + right_division_multiply is 85 + right_identity is 91 + right_inverse is 84 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 + Id : 8, {_}: + multiply ?6 (left_division ?6 ?7) =>= ?7 + [7, 6] by multiply_left_division ?6 ?7 + Id : 10, {_}: + left_division ?9 (multiply ?9 ?10) =>= ?10 + [10, 9] by left_division_multiply ?9 ?10 + Id : 12, {_}: + multiply (right_division ?12 ?13) ?13 =>= ?12 + [13, 12] by multiply_right_division ?12 ?13 + Id : 14, {_}: + right_division (multiply ?15 ?16) ?16 =>= ?15 + [16, 15] by right_division_multiply ?15 ?16 + Id : 16, {_}: + multiply ?18 (right_inverse ?18) =>= identity + [18] by right_inverse ?18 + Id : 18, {_}: + multiply (left_inverse ?20) ?20 =>= identity + [20] by left_inverse ?20 + Id : 20, {_}: + multiply (multiply ?22 (multiply ?23 ?24)) ?22 + =?= + multiply (multiply ?22 ?23) (multiply ?24 ?22) + [24, 23, 22] by moufang1 ?22 ?23 ?24 +Goal + Id : 2, {_}: + multiply (multiply (multiply a b) c) b + =>= + multiply a (multiply b (multiply c b)) + [] by prove_moufang2 +Timeout ! +FAILURE in 712 iterations +GRP202-1 +Order + == is 100 + _ is 99 + a is 98 + b is 97 + c is 96 + identity is 93 + left_division is 90 + left_division_multiply is 88 + left_identity is 92 + left_inverse is 83 + moufang3 is 82 + multiply is 95 + multiply_left_division is 89 + multiply_right_division is 86 + prove_moufang1 is 94 + right_division is 87 + right_division_multiply is 85 + right_identity is 91 + right_inverse is 84 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 + Id : 8, {_}: + multiply ?6 (left_division ?6 ?7) =>= ?7 + [7, 6] by multiply_left_division ?6 ?7 + Id : 10, {_}: + left_division ?9 (multiply ?9 ?10) =>= ?10 + [10, 9] by left_division_multiply ?9 ?10 + Id : 12, {_}: + multiply (right_division ?12 ?13) ?13 =>= ?12 + [13, 12] by multiply_right_division ?12 ?13 + Id : 14, {_}: + right_division (multiply ?15 ?16) ?16 =>= ?15 + [16, 15] by right_division_multiply ?15 ?16 + Id : 16, {_}: + multiply ?18 (right_inverse ?18) =>= identity + [18] by right_inverse ?18 + Id : 18, {_}: + multiply (left_inverse ?20) ?20 =>= identity + [20] by left_inverse ?20 + Id : 20, {_}: + multiply (multiply (multiply ?22 ?23) ?22) ?24 + =?= + multiply ?22 (multiply ?23 (multiply ?22 ?24)) + [24, 23, 22] by moufang3 ?22 ?23 ?24 +Goal + Id : 2, {_}: + multiply (multiply a (multiply b c)) a + =>= + multiply (multiply a b) (multiply c a) + [] by prove_moufang1 +Timeout ! +FAILURE in 674 iterations +GRP404-1 +Order + == is 100 + _ is 99 + a2 is 95 + b2 is 98 + inverse is 97 + multiply is 96 + prove_these_axioms_2 is 94 + single_axiom is 93 +Facts + Id : 4, {_}: + multiply ?2 + (inverse + (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) + (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) + =>= + ?4 + [4, 3, 2] by single_axiom ?2 ?3 ?4 +Goal + Id : 2, {_}: + multiply (multiply (inverse b2) b2) a2 =>= a2 + [] by prove_these_axioms_2 +Timeout ! +FAILURE in 342 iterations +GRP405-1 +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + inverse is 93 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 92 +Facts + Id : 4, {_}: + multiply ?2 + (inverse + (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) + (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) + =>= + ?4 + [4, 3, 2] by single_axiom ?2 ?3 ?4 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 234.971871s +GRP422-1 +Order + == is 100 + _ is 99 + a2 is 95 + b2 is 98 + inverse is 97 + multiply is 96 + prove_these_axioms_2 is 94 + single_axiom is 93 +Facts + Id : 4, {_}: + inverse + (multiply + (inverse + (multiply ?2 + (inverse + (multiply (inverse ?3) + (multiply (inverse ?4) + (inverse (multiply (inverse ?4) ?4))))))) + (multiply ?2 ?4)) + =>= + ?3 + [4, 3, 2] by single_axiom ?2 ?3 ?4 +Goal + Id : 2, {_}: + multiply (multiply (inverse b2) b2) a2 =>= a2 + [] by prove_these_axioms_2 +Found proof, 14.541466s +GRP423-1 +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + inverse is 93 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 92 +Facts + Id : 4, {_}: + inverse + (multiply + (inverse + (multiply ?2 + (inverse + (multiply (inverse ?3) + (multiply (inverse ?4) + (inverse (multiply (inverse ?4) ?4))))))) + (multiply ?2 ?4)) + =>= + ?3 + [4, 3, 2] by single_axiom ?2 ?3 ?4 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 12.056212s +GRP444-1 +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + inverse is 93 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 92 +Facts + Id : 4, {_}: + inverse + (multiply ?2 + (multiply ?3 + (multiply (multiply ?4 (inverse ?4)) + (inverse (multiply ?5 (multiply ?2 ?3)))))) + =>= + ?5 + [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 21.164993s +GRP452-1 +Order + == is 100 + _ is 99 + a2 is 95 + b2 is 98 + divide is 93 + inverse is 97 + multiply is 96 + prove_these_axioms_2 is 94 + single_axiom is 92 +Facts + Id : 4, {_}: + divide + (divide (divide ?2 ?2) + (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) + ?4 + =>= + ?3 + [4, 3, 2] by single_axiom ?2 ?3 ?4 + Id : 6, {_}: + multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) + [8, 7, 6] by multiply ?6 ?7 ?8 + Id : 8, {_}: + inverse ?10 =<= divide (divide ?11 ?11) ?10 + [11, 10] by inverse ?10 ?11 +Goal + Id : 2, {_}: + multiply (multiply (inverse b2) b2) a2 =>= a2 + [] by prove_these_axioms_2 +Found proof, 0.549585s +GRP453-1 +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + divide is 93 + inverse is 91 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 92 +Facts + Id : 4, {_}: + divide + (divide (divide ?2 ?2) + (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) + ?4 + =>= + ?3 + [4, 3, 2] by single_axiom ?2 ?3 ?4 + Id : 6, {_}: + multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) + [8, 7, 6] by multiply ?6 ?7 ?8 + Id : 8, {_}: + inverse ?10 =<= divide (divide ?11 ?11) ?10 + [11, 10] by inverse ?10 ?11 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 0.716819s +GRP471-1 +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + divide is 93 + inverse is 92 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 91 +Facts + Id : 4, {_}: + divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) + (divide (divide ?5 ?4) ?2) + =>= + ?3 + [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 + Id : 6, {_}: + multiply ?7 ?8 =<= divide ?7 (inverse ?8) + [8, 7] by multiply ?7 ?8 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 115.504740s +GRP477-1 +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + divide is 93 + inverse is 92 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 91 +Facts + Id : 4, {_}: + divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) + (divide ?3 ?2) + =>= + ?5 + [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 + Id : 6, {_}: + multiply ?7 ?8 =<= divide ?7 (inverse ?8) + [8, 7] by multiply ?7 ?8 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 11.020022s +GRP506-1 +Order + == is 100 + _ is 99 + a2 is 95 + b2 is 98 + inverse is 97 + multiply is 96 + prove_these_axioms_2 is 94 + single_axiom is 93 +Facts + Id : 4, {_}: + multiply + (inverse + (multiply + (inverse + (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) + (multiply (inverse (multiply ?4 ?5)) + (multiply ?4 + (inverse + (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) + ?7 + =>= + ?6 + [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 +Goal + Id : 2, {_}: + multiply (multiply (inverse b2) b2) a2 =>= a2 + [] by prove_these_axioms_2 +Timeout ! +FAILURE in 184 iterations +GRP508-1 +Order + == is 100 + _ is 99 + a is 98 + b is 97 + inverse is 94 + multiply is 96 + prove_these_axioms_4 is 95 + single_axiom is 93 +Facts + Id : 4, {_}: + multiply + (inverse + (multiply + (inverse + (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) + (multiply (inverse (multiply ?4 ?5)) + (multiply ?4 + (inverse + (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) + ?7 + =>= + ?6 + [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 +Goal + Id : 2, {_}: multiply a b =>= multiply b a [] by prove_these_axioms_4 +Timeout ! +FAILURE in 183 iterations +LAT080-1 +Order + == is 100 + _ is 99 + a is 98 + join is 95 + meet is 97 + prove_normal_axioms_1 is 96 + single_axiom is 94 +Facts + Id : 4, {_}: + join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) + (meet + (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) + (meet + (join + (meet ?3 + (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) + (meet ?8 + (join ?3 + (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) + (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) + (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) + =>= + ?3 + [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 +Goal + Id : 2, {_}: meet a a =>= a [] by prove_normal_axioms_1 +Found proof, 13.776911s +LAT087-1 +Order + == is 100 + _ is 99 + a is 98 + b is 97 + join is 95 + meet is 96 + prove_normal_axioms_8 is 94 + single_axiom is 93 +Facts + Id : 4, {_}: + join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) + (meet + (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) + (meet + (join + (meet ?3 + (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) + (meet ?8 + (join ?3 + (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) + (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) + (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) + =>= + ?3 + [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 +Goal + Id : 2, {_}: join a (meet a b) =>= a [] by prove_normal_axioms_8 +Found proof, 13.866156s +LAT093-1 +Order + == is 100 + _ is 99 + a is 97 + b is 98 + join is 94 + meet is 96 + prove_wal_axioms_2 is 95 + single_axiom is 93 +Facts + Id : 4, {_}: + join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) + (meet + (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) + (meet + (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) + (meet ?7 + (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) + (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) + (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) + =>= + ?3 + [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 +Goal + Id : 2, {_}: meet b a =>= meet a b [] by prove_wal_axioms_2 +Found proof, 13.533964s +LAT138-1 +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H7 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H6 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?26 ?28)) + =<= + meet ?26 + (join ?27 + (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))) + [28, 27, 26] by equation_H7 ?26 ?27 ?28 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join (meet a (join b (meet a c))) (meet c (join a b))) + [] by prove_H6 +Timeout ! +FAILURE in 250 iterations +LAT140-1 +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H21 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H2 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + join (meet ?26 ?27) (meet ?26 ?28) + =<= + meet ?26 + (join (meet ?27 (join ?26 (meet ?27 ?28))) + (meet ?28 (join ?26 ?27))) + [28, 27, 26] by equation_H21 ?26 ?27 ?28 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) + [] by prove_H2 +Timeout ! +FAILURE in 250 iterations +LAT146-1 +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 89 + absorption2 is 88 + associativity_of_join is 84 + associativity_of_meet is 85 + b is 97 + c is 96 + commutativity_of_join is 86 + commutativity_of_meet is 87 + d is 95 + equation_H34 is 83 + idempotence_of_join is 90 + idempotence_of_meet is 91 + join is 93 + meet is 94 + prove_H28 is 92 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 ?29)) + =<= + meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) + [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a (meet c d))) + =<= + meet a (join b (meet c (meet d (join a (meet b d))))) + [] by prove_H28 +Timeout ! +FAILURE in 250 iterations +LAT148-1 +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H34 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H7 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 ?29)) + =<= + meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) + [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join b (meet a (join (meet a b) (meet c (join a b))))) + [] by prove_H7 +Timeout ! +FAILURE in 250 iterations +LAT152-1 +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H40 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H6 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) + =<= + meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27))))) + [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join (meet a (join b (meet a c))) (meet c (join a b))) + [] by prove_H6 +Timeout ! +FAILURE in 249 iterations +LAT156-1 +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H49 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H6 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) + =<= + meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29)))) + [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join (meet a (join b (meet a c))) (meet c (join a b))) + [] by prove_H6 +Timeout ! +FAILURE in 249 iterations +LAT159-1 +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H50 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H7 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) + =<= + meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) + [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join b (meet a (join (meet a b) (meet c (join a b))))) + [] by prove_H7 +Timeout ! +FAILURE in 250 iterations +LAT164-1 +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H76 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H6 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) + =<= + meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) + [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join (meet a (join b (meet a c))) (meet c (join a b))) + [] by prove_H6 +Timeout ! +FAILURE in 250 iterations +LAT165-1 +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 89 + absorption2 is 88 + associativity_of_join is 84 + associativity_of_meet is 85 + b is 97 + c is 96 + commutativity_of_join is 86 + commutativity_of_meet is 87 + d is 95 + equation_H76 is 83 + idempotence_of_join is 90 + idempotence_of_meet is 91 + join is 94 + meet is 93 + prove_H77 is 92 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) + =<= + meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) + [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet c (join b d))) + =<= + meet a (join b (meet c (join d (meet a (meet b c))))) + [] by prove_H77 +Timeout ! +FAILURE in 269 iterations +LAT166-1 +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 89 + absorption2 is 88 + associativity_of_join is 84 + associativity_of_meet is 85 + b is 97 + c is 96 + commutativity_of_join is 86 + commutativity_of_meet is 87 + d is 95 + equation_H77 is 83 + idempotence_of_join is 90 + idempotence_of_meet is 91 + join is 94 + meet is 93 + prove_H78 is 92 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) + =<= + meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 (meet ?27 ?28))))) + [29, 28, 27, 26] by equation_H77 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet c (join b d))) + =<= + meet a (join b (meet c (join d (meet b (join a d))))) + [] by prove_H78 +Timeout ! +FAILURE in 269 iterations +LAT169-1 +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H21_dual is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 95 + meet is 94 + prove_H58 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet (join ?26 ?27) (join ?26 ?28) + =<= + join ?26 + (meet (join ?27 (meet ?26 (join ?27 ?28))) + (join ?28 (meet ?26 ?27))) + [28, 27, 26] by equation_H21_dual ?26 ?27 ?28 +Goal + Id : 2, {_}: + meet a (join b c) + =<= + meet a (join b (meet (join a b) (join c (meet a b)))) + [] by prove_H58 +Timeout ! +FAILURE in 268 iterations +LAT170-1 +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H49_dual is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 95 + meet is 94 + prove_H58 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) + =<= + join ?26 (meet ?27 (meet (join ?26 ?28) (join ?28 (meet ?27 ?29)))) + [29, 28, 27, 26] by equation_H49_dual ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b c) + =<= + meet a (join b (meet (join a b) (join c (meet a b)))) + [] by prove_H58 +Timeout ! +FAILURE in 269 iterations +LAT173-1 +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 89 + absorption2 is 88 + associativity_of_join is 84 + associativity_of_meet is 85 + b is 97 + c is 96 + commutativity_of_join is 86 + commutativity_of_meet is 87 + d is 95 + equation_H76_dual is 83 + idempotence_of_join is 90 + idempotence_of_meet is 91 + join is 94 + meet is 93 + prove_H40 is 92 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + join ?26 (meet ?27 (join ?28 (meet ?27 ?29))) + =<= + join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27)))) + [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet c (join a d))) + =<= + meet a (join b (meet c (join d (meet c (join a b))))) + [] by prove_H40 +Timeout ! +FAILURE in 269 iterations +LAT175-1 +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 89 + absorption2 is 88 + associativity_of_join is 84 + associativity_of_meet is 85 + b is 97 + c is 96 + commutativity_of_join is 86 + commutativity_of_meet is 87 + d is 95 + equation_H79_dual is 83 + idempotence_of_join is 90 + idempotence_of_meet is 91 + join is 93 + meet is 94 + prove_H32 is 92 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) + =<= + join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29)) + [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a (meet c d))) + =<= + meet a (join b (meet c (join (meet a d) (meet b d)))) + [] by prove_H32 +Timeout ! +FAILURE in 250 iterations +RNG009-7 +Fatal error: exception Assert_failure("tptp_cnf.ml", 4, 25) +RNG019-6 +Order + == is 100 + _ is 99 + add is 94 + additive_identity is 91 + additive_inverse is 85 + additive_inverse_additive_inverse is 82 + associativity_for_addition is 78 + associator is 93 + commutativity_for_addition is 79 + commutator is 75 + distribute1 is 81 + distribute2 is 80 + left_additive_identity is 90 + left_additive_inverse is 84 + left_alternative is 76 + left_multiplicative_zero is 87 + multiply is 88 + prove_linearised_form1 is 92 + right_additive_identity is 89 + right_additive_inverse is 83 + right_alternative is 77 + right_multiplicative_zero is 86 + u is 96 + v is 95 + x is 98 + y is 97 +Facts + Id : 4, {_}: + add additive_identity ?2 =>= ?2 + [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 +Goal + Id : 2, {_}: + associator x y (add u v) + =<= + add (associator x y u) (associator x y v) + [] by prove_linearised_form1 +Timeout ! +FAILURE in 393 iterations +RNG019-7 +Order + == is 100 + _ is 99 + add is 94 + additive_identity is 91 + additive_inverse is 85 + additive_inverse_additive_inverse is 82 + associativity_for_addition is 78 + associator is 93 + commutativity_for_addition is 79 + commutator is 75 + distribute1 is 81 + distribute2 is 80 + distributivity_of_difference1 is 71 + distributivity_of_difference2 is 70 + distributivity_of_difference3 is 69 + distributivity_of_difference4 is 68 + inverse_product1 is 73 + inverse_product2 is 72 + left_additive_identity is 90 + left_additive_inverse is 84 + left_alternative is 76 + left_multiplicative_zero is 87 + multiply is 88 + product_of_inverses is 74 + prove_linearised_form1 is 92 + right_additive_identity is 89 + right_additive_inverse is 83 + right_alternative is 77 + right_multiplicative_zero is 86 + u is 96 + v is 95 + x is 98 + y is 97 +Facts + Id : 4, {_}: + add additive_identity ?2 =>= ?2 + [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 + Id : 34, {_}: + multiply (additive_inverse ?44) (additive_inverse ?45) + =>= + multiply ?44 ?45 + [45, 44] by product_of_inverses ?44 ?45 + Id : 36, {_}: + multiply (additive_inverse ?47) ?48 + =>= + additive_inverse (multiply ?47 ?48) + [48, 47] by inverse_product1 ?47 ?48 + Id : 38, {_}: + multiply ?50 (additive_inverse ?51) + =>= + additive_inverse (multiply ?50 ?51) + [51, 50] by inverse_product2 ?50 ?51 + Id : 40, {_}: + multiply ?53 (add ?54 (additive_inverse ?55)) + =<= + add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) + [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 + Id : 42, {_}: + multiply (add ?57 (additive_inverse ?58)) ?59 + =<= + add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) + [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 + Id : 44, {_}: + multiply (additive_inverse ?61) (add ?62 ?63) + =<= + add (additive_inverse (multiply ?61 ?62)) + (additive_inverse (multiply ?61 ?63)) + [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 + Id : 46, {_}: + multiply (add ?65 ?66) (additive_inverse ?67) + =<= + add (additive_inverse (multiply ?65 ?67)) + (additive_inverse (multiply ?66 ?67)) + [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 +Goal + Id : 2, {_}: + associator x y (add u v) + =<= + add (associator x y u) (associator x y v) + [] by prove_linearised_form1 +Timeout ! +FAILURE in 546 iterations +RNG020-6 +Order + == is 100 + _ is 99 + add is 95 + additive_identity is 91 + additive_inverse is 85 + additive_inverse_additive_inverse is 82 + associativity_for_addition is 78 + associator is 93 + commutativity_for_addition is 79 + commutator is 75 + distribute1 is 81 + distribute2 is 80 + left_additive_identity is 90 + left_additive_inverse is 84 + left_alternative is 76 + left_multiplicative_zero is 87 + multiply is 88 + prove_linearised_form2 is 92 + right_additive_identity is 89 + right_additive_inverse is 83 + right_alternative is 77 + right_multiplicative_zero is 86 + u is 97 + v is 96 + x is 98 + y is 94 +Facts + Id : 4, {_}: + add additive_identity ?2 =>= ?2 + [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 +Goal + Id : 2, {_}: + associator x (add u v) y + =<= + add (associator x u y) (associator x v y) + [] by prove_linearised_form2 +Timeout ! +FAILURE in 398 iterations +RNG026-6 +Order + == is 100 + _ is 99 + a is 98 + add is 92 + additive_identity is 90 + additive_inverse is 91 + additive_inverse_additive_inverse is 82 + associativity_for_addition is 78 + associator is 93 + b is 97 + c is 95 + commutativity_for_addition is 79 + commutator is 75 + d is 94 + distribute1 is 81 + distribute2 is 80 + left_additive_identity is 88 + left_additive_inverse is 84 + left_alternative is 76 + left_multiplicative_zero is 86 + multiply is 96 + prove_teichmuller_identity is 89 + right_additive_identity is 87 + right_additive_inverse is 83 + right_alternative is 77 + right_multiplicative_zero is 85 +Facts + Id : 4, {_}: + add additive_identity ?2 =>= ?2 + [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 +Goal + Id : 2, {_}: + add + (add (associator (multiply a b) c d) + (associator a b (multiply c d))) + (additive_inverse + (add + (add (associator a (multiply b c) d) + (multiply a (associator b c d))) + (multiply (associator a b c) d))) + =>= + additive_identity + [] by prove_teichmuller_identity +Timeout ! +FAILURE in 406 iterations +RNG027-7 +Order + == is 100 + _ is 99 + add is 92 + additive_identity is 93 + additive_inverse is 87 + additive_inverse_additive_inverse is 84 + associativity_for_addition is 80 + associator is 77 + commutativity_for_addition is 81 + commutator is 76 + cx is 97 + cy is 96 + cz is 98 + distribute1 is 83 + distribute2 is 82 + distributivity_of_difference1 is 72 + distributivity_of_difference2 is 71 + distributivity_of_difference3 is 70 + distributivity_of_difference4 is 69 + inverse_product1 is 74 + inverse_product2 is 73 + left_additive_identity is 91 + left_additive_inverse is 86 + left_alternative is 78 + left_multiplicative_zero is 89 + multiply is 95 + product_of_inverses is 75 + prove_right_moufang is 94 + right_additive_identity is 90 + right_additive_inverse is 85 + right_alternative is 79 + right_multiplicative_zero is 88 +Facts + Id : 4, {_}: + add additive_identity ?2 =>= ?2 + [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 + Id : 34, {_}: + multiply (additive_inverse ?44) (additive_inverse ?45) + =>= + multiply ?44 ?45 + [45, 44] by product_of_inverses ?44 ?45 + Id : 36, {_}: + multiply (additive_inverse ?47) ?48 + =>= + additive_inverse (multiply ?47 ?48) + [48, 47] by inverse_product1 ?47 ?48 + Id : 38, {_}: + multiply ?50 (additive_inverse ?51) + =>= + additive_inverse (multiply ?50 ?51) + [51, 50] by inverse_product2 ?50 ?51 + Id : 40, {_}: + multiply ?53 (add ?54 (additive_inverse ?55)) + =<= + add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) + [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 + Id : 42, {_}: + multiply (add ?57 (additive_inverse ?58)) ?59 + =<= + add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) + [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 + Id : 44, {_}: + multiply (additive_inverse ?61) (add ?62 ?63) + =<= + add (additive_inverse (multiply ?61 ?62)) + (additive_inverse (multiply ?61 ?63)) + [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 + Id : 46, {_}: + multiply (add ?65 ?66) (additive_inverse ?67) + =<= + add (additive_inverse (multiply ?65 ?67)) + (additive_inverse (multiply ?66 ?67)) + [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 +Goal + Id : 2, {_}: + multiply cz (multiply cx (multiply cy cx)) + =<= + multiply (multiply (multiply cz cx) cy) cx + [] by prove_right_moufang +Timeout ! +FAILURE in 538 iterations +RNG028-9 +Order + == is 100 + _ is 99 + add is 91 + additive_identity is 92 + additive_inverse is 86 + additive_inverse_additive_inverse is 83 + associativity_for_addition is 79 + associator is 94 + commutativity_for_addition is 80 + commutator is 76 + distribute1 is 82 + distribute2 is 81 + distributivity_of_difference1 is 72 + distributivity_of_difference2 is 71 + distributivity_of_difference3 is 70 + distributivity_of_difference4 is 69 + inverse_product1 is 74 + inverse_product2 is 73 + left_additive_identity is 90 + left_additive_inverse is 85 + left_alternative is 77 + left_multiplicative_zero is 88 + multiply is 96 + product_of_inverses is 75 + prove_left_moufang is 93 + right_additive_identity is 89 + right_additive_inverse is 84 + right_alternative is 78 + right_multiplicative_zero is 87 + x is 98 + y is 97 + z is 95 +Facts + Id : 4, {_}: + add additive_identity ?2 =>= ?2 + [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 + Id : 34, {_}: + multiply (additive_inverse ?44) (additive_inverse ?45) + =>= + multiply ?44 ?45 + [45, 44] by product_of_inverses ?44 ?45 + Id : 36, {_}: + multiply (additive_inverse ?47) ?48 + =>= + additive_inverse (multiply ?47 ?48) + [48, 47] by inverse_product1 ?47 ?48 + Id : 38, {_}: + multiply ?50 (additive_inverse ?51) + =>= + additive_inverse (multiply ?50 ?51) + [51, 50] by inverse_product2 ?50 ?51 + Id : 40, {_}: + multiply ?53 (add ?54 (additive_inverse ?55)) + =<= + add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) + [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 + Id : 42, {_}: + multiply (add ?57 (additive_inverse ?58)) ?59 + =<= + add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) + [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 + Id : 44, {_}: + multiply (additive_inverse ?61) (add ?62 ?63) + =<= + add (additive_inverse (multiply ?61 ?62)) + (additive_inverse (multiply ?61 ?63)) + [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 + Id : 46, {_}: + multiply (add ?65 ?66) (additive_inverse ?67) + =<= + add (additive_inverse (multiply ?65 ?67)) + (additive_inverse (multiply ?66 ?67)) + [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 +Goal + Id : 2, {_}: + associator x (multiply y x) z =<= multiply x (associator x y z) + [] by prove_left_moufang +Timeout ! +FAILURE in 537 iterations +RNG029-7 +Order + == is 100 + _ is 99 + add is 92 + additive_identity is 93 + additive_inverse is 87 + additive_inverse_additive_inverse is 84 + associativity_for_addition is 80 + associator is 77 + commutativity_for_addition is 81 + commutator is 76 + distribute1 is 83 + distribute2 is 82 + distributivity_of_difference1 is 72 + distributivity_of_difference2 is 71 + distributivity_of_difference3 is 70 + distributivity_of_difference4 is 69 + inverse_product1 is 74 + inverse_product2 is 73 + left_additive_identity is 91 + left_additive_inverse is 86 + left_alternative is 78 + left_multiplicative_zero is 89 + multiply is 96 + product_of_inverses is 75 + prove_middle_moufang is 94 + right_additive_identity is 90 + right_additive_inverse is 85 + right_alternative is 79 + right_multiplicative_zero is 88 + x is 98 + y is 97 + z is 95 +Facts + Id : 4, {_}: + add additive_identity ?2 =>= ?2 + [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 + Id : 34, {_}: + multiply (additive_inverse ?44) (additive_inverse ?45) + =>= + multiply ?44 ?45 + [45, 44] by product_of_inverses ?44 ?45 + Id : 36, {_}: + multiply (additive_inverse ?47) ?48 + =>= + additive_inverse (multiply ?47 ?48) + [48, 47] by inverse_product1 ?47 ?48 + Id : 38, {_}: + multiply ?50 (additive_inverse ?51) + =>= + additive_inverse (multiply ?50 ?51) + [51, 50] by inverse_product2 ?50 ?51 + Id : 40, {_}: + multiply ?53 (add ?54 (additive_inverse ?55)) + =<= + add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) + [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 + Id : 42, {_}: + multiply (add ?57 (additive_inverse ?58)) ?59 + =<= + add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) + [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 + Id : 44, {_}: + multiply (additive_inverse ?61) (add ?62 ?63) + =<= + add (additive_inverse (multiply ?61 ?62)) + (additive_inverse (multiply ?61 ?63)) + [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 + Id : 46, {_}: + multiply (add ?65 ?66) (additive_inverse ?67) + =<= + add (additive_inverse (multiply ?65 ?67)) + (additive_inverse (multiply ?66 ?67)) + [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 +Goal + Id : 2, {_}: + multiply (multiply x y) (multiply z x) + =<= + multiply (multiply x (multiply y z)) x + [] by prove_middle_moufang +Timeout ! +FAILURE in 537 iterations +RNG035-7 +Fatal error: exception Assert_failure("tptp_cnf.ml", 4, 25) +ROB006-1 +Order + == is 100 + _ is 99 + a is 98 + absorbtion is 88 + add is 95 + associativity_of_add is 92 + b is 97 + c is 90 + commutativity_of_add is 93 + d is 89 + negate is 96 + prove_huntingtons_axiom is 94 + robbins_axiom is 91 +Facts + Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 + Id : 6, {_}: + add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) + [7, 6, 5] by associativity_of_add ?5 ?6 ?7 + Id : 8, {_}: + negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) + =>= + ?9 + [10, 9] by robbins_axiom ?9 ?10 + Id : 10, {_}: add c d =>= d [] by absorbtion +Goal + Id : 2, {_}: + add (negate (add a (negate b))) + (negate (add (negate a) (negate b))) + =>= + b + [] by prove_huntingtons_axiom +Timeout ! +FAILURE in 163 iterations +ROB006-2 +Order + == is 100 + _ is 99 + absorbtion is 90 + add is 98 + associativity_of_add is 95 + c is 92 + commutativity_of_add is 96 + d is 91 + negate is 94 + prove_idempotence is 97 + robbins_axiom is 93 +Facts + Id : 4, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4 + Id : 6, {_}: + add (add ?6 ?7) ?8 =?= add ?6 (add ?7 ?8) + [8, 7, 6] by associativity_of_add ?6 ?7 ?8 + Id : 8, {_}: + negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11)))) + =>= + ?10 + [11, 10] by robbins_axiom ?10 ?11 + Id : 10, {_}: add c d =>= d [] by absorbtion +Goal + Id : 2, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1 +Timeout ! +FAILURE in 253 iterations diff --git a/helm/software/components/binaries/matitaprover/log.090627 b/helm/software/components/binaries/matitaprover/log.090627 new file mode 100644 index 000000000..50e0b5bd6 --- /dev/null +++ b/helm/software/components/binaries/matitaprover/log.090627 @@ -0,0 +1,8332 @@ +Order + == is 100 + _ is 99 + a is 98 + add is 93 + additive_id1 is 77 + additive_id2 is 76 + additive_identity is 82 + additive_inverse1 is 84 + additive_inverse2 is 83 + b is 97 + c is 96 + commutativity_of_add is 92 + commutativity_of_multiply is 91 + distributivity1 is 90 + distributivity2 is 89 + distributivity3 is 88 + distributivity4 is 87 + inverse is 86 + multiplicative_id1 is 79 + multiplicative_id2 is 78 + multiplicative_identity is 85 + multiplicative_inverse1 is 81 + multiplicative_inverse2 is 80 + multiply is 95 + prove_associativity is 94 +Facts + Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 + Id : 6, {_}: + multiply ?5 ?6 =?= multiply ?6 ?5 + [6, 5] by commutativity_of_multiply ?5 ?6 + Id : 8, {_}: + add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10) + [10, 9, 8] by distributivity1 ?8 ?9 ?10 + Id : 10, {_}: + add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14) + [14, 13, 12] by distributivity2 ?12 ?13 ?14 + Id : 12, {_}: + multiply (add ?16 ?17) ?18 + =<= + add (multiply ?16 ?18) (multiply ?17 ?18) + [18, 17, 16] by distributivity3 ?16 ?17 ?18 + Id : 14, {_}: + multiply ?20 (add ?21 ?22) + =<= + add (multiply ?20 ?21) (multiply ?20 ?22) + [22, 21, 20] by distributivity4 ?20 ?21 ?22 + Id : 16, {_}: + add ?24 (inverse ?24) =>= multiplicative_identity + [24] by additive_inverse1 ?24 + Id : 18, {_}: + add (inverse ?26) ?26 =>= multiplicative_identity + [26] by additive_inverse2 ?26 + Id : 20, {_}: + multiply ?28 (inverse ?28) =>= additive_identity + [28] by multiplicative_inverse1 ?28 + Id : 22, {_}: + multiply (inverse ?30) ?30 =>= additive_identity + [30] by multiplicative_inverse2 ?30 + Id : 24, {_}: + multiply ?32 multiplicative_identity =>= ?32 + [32] by multiplicative_id1 ?32 + Id : 26, {_}: + multiply multiplicative_identity ?34 =>= ?34 + [34] by multiplicative_id2 ?34 + Id : 28, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36 + Id : 30, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38 +Goal + Id : 2, {_}: + multiply a (multiply b c) =<= multiply (multiply a b) c + [] by prove_associativity +Found proof, 50.092125s +% SZS status Unsatisfiable for BOO007-2.p +% SZS output start CNFRefutation for BOO007-2.p +Id : 22, {_}: multiply (inverse ?30) ?30 =>= additive_identity [30] by multiplicative_inverse2 ?30 +Id : 24, {_}: multiply ?32 multiplicative_identity =>= ?32 [32] by multiplicative_id1 ?32 +Id : 69, {_}: multiply (add ?160 ?161) ?162 =<= add (multiply ?160 ?162) (multiply ?161 ?162) [162, 161, 160] by distributivity3 ?160 ?161 ?162 +Id : 28, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36 +Id : 16, {_}: add ?24 (inverse ?24) =>= multiplicative_identity [24] by additive_inverse1 ?24 +Id : 10, {_}: add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 +Id : 26, {_}: multiply multiplicative_identity ?34 =>= ?34 [34] by multiplicative_id2 ?34 +Id : 18, {_}: add (inverse ?26) ?26 =>= multiplicative_identity [26] by additive_inverse2 ?26 +Id : 8, {_}: add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 +Id : 30, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38 +Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 +Id : 20, {_}: multiply ?28 (inverse ?28) =>= additive_identity [28] by multiplicative_inverse1 ?28 +Id : 14, {_}: multiply ?20 (add ?21 ?22) =<= add (multiply ?20 ?21) (multiply ?20 ?22) [22, 21, 20] by distributivity4 ?20 ?21 ?22 +Id : 12, {_}: multiply (add ?16 ?17) ?18 =<= add (multiply ?16 ?18) (multiply ?17 ?18) [18, 17, 16] by distributivity3 ?16 ?17 ?18 +Id : 6, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 +Id : 151, {_}: multiply ?356 (add ?357 (inverse ?356)) =>= add (multiply ?356 ?357) additive_identity [357, 356] by Super 14 with 20 at 2,3 +Id : 157, {_}: multiply ?356 (add ?357 (inverse ?356)) =>= add additive_identity (multiply ?356 ?357) [357, 356] by Demod 151 with 4 at 3 +Id : 3270, {_}: multiply ?3107 (add ?3108 (inverse ?3107)) =>= multiply ?3107 ?3108 [3108, 3107] by Demod 157 with 30 at 3 +Id : 136, {_}: add (multiply (inverse ?335) ?336) ?335 =>= multiply multiplicative_identity (add ?336 ?335) [336, 335] by Super 8 with 18 at 1,3 +Id : 2697, {_}: add (multiply (inverse ?335) ?336) ?335 =>= add ?336 ?335 [336, 335] by Demod 136 with 26 at 3 +Id : 3279, {_}: multiply ?3129 (add ?3128 (inverse ?3129)) =<= multiply ?3129 (multiply (inverse (inverse ?3129)) ?3128) [3128, 3129] by Super 3270 with 2697 at 2,2 +Id : 3256, {_}: multiply ?356 (add ?357 (inverse ?356)) =>= multiply ?356 ?357 [357, 356] by Demod 157 with 30 at 3 +Id : 3316, {_}: multiply ?3129 ?3128 =<= multiply ?3129 (multiply (inverse (inverse ?3129)) ?3128) [3128, 3129] by Demod 3279 with 3256 at 2 +Id : 135, {_}: add (multiply ?333 (inverse ?332)) ?332 =>= multiply (add ?333 ?332) multiplicative_identity [332, 333] by Super 8 with 18 at 2,3 +Id : 141, {_}: add (multiply ?333 (inverse ?332)) ?332 =>= multiply multiplicative_identity (add ?333 ?332) [332, 333] by Demod 135 with 6 at 3 +Id : 2790, {_}: add (multiply ?333 (inverse ?332)) ?332 =>= add ?333 ?332 [332, 333] by Demod 141 with 26 at 3 +Id : 152, {_}: multiply ?359 (add (inverse ?359) ?360) =>= add additive_identity (multiply ?359 ?360) [360, 359] by Super 14 with 20 at 1,3 +Id : 2899, {_}: multiply ?2812 (add (inverse ?2812) ?2813) =>= multiply ?2812 ?2813 [2813, 2812] by Demod 152 with 30 at 3 +Id : 122, {_}: add ?311 (multiply (inverse ?311) ?312) =>= multiply multiplicative_identity (add ?311 ?312) [312, 311] by Super 10 with 16 at 1,3 +Id : 1484, {_}: add ?1608 (multiply (inverse ?1608) ?1609) =>= add ?1608 ?1609 [1609, 1608] by Demod 122 with 26 at 3 +Id : 1488, {_}: add ?1618 additive_identity =<= add ?1618 (inverse (inverse ?1618)) [1618] by Super 1484 with 20 at 2,2 +Id : 1524, {_}: ?1618 =<= add ?1618 (inverse (inverse ?1618)) [1618] by Demod 1488 with 28 at 2 +Id : 2914, {_}: multiply ?2849 (inverse ?2849) =<= multiply ?2849 (inverse (inverse (inverse ?2849))) [2849] by Super 2899 with 1524 at 2,2 +Id : 2987, {_}: additive_identity =<= multiply ?2849 (inverse (inverse (inverse ?2849))) [2849] by Demod 2914 with 20 at 2 +Id : 3172, {_}: add additive_identity (inverse (inverse ?3022)) =?= add ?3022 (inverse (inverse ?3022)) [3022] by Super 2790 with 2987 at 1,2 +Id : 3182, {_}: inverse (inverse ?3022) =<= add ?3022 (inverse (inverse ?3022)) [3022] by Demod 3172 with 30 at 2 +Id : 3183, {_}: inverse (inverse ?3022) =>= ?3022 [3022] by Demod 3182 with 1524 at 3 +Id : 3317, {_}: multiply ?3129 ?3128 =<= multiply ?3129 (multiply ?3129 ?3128) [3128, 3129] by Demod 3316 with 3183 at 1,2,3 +Id : 3479, {_}: multiply (multiply ?3373 ?3374) ?3373 =>= multiply ?3373 ?3374 [3374, 3373] by Super 6 with 3317 at 3 +Id : 3807, {_}: multiply (add ?3814 (multiply ?3812 ?3813)) ?3812 =>= add (multiply ?3814 ?3812) (multiply ?3812 ?3813) [3813, 3812, 3814] by Super 12 with 3479 at 2,3 +Id : 70, {_}: multiply (add ?164 ?165) ?166 =<= add (multiply ?164 ?166) (multiply ?166 ?165) [166, 165, 164] by Super 69 with 6 at 2,3 +Id : 27040, {_}: multiply (add ?32987 (multiply ?32988 ?32989)) ?32988 =>= multiply (add ?32987 ?32989) ?32988 [32989, 32988, 32987] by Demod 3807 with 70 at 3 +Id : 27129, {_}: multiply (multiply (add ?33340 ?33341) ?33342) ?33341 =?= multiply (add (multiply ?33340 ?33342) ?33342) ?33341 [33342, 33341, 33340] by Super 27040 with 12 at 1,2 +Id : 1722, {_}: add (multiply ?1843 ?1842) (inverse (inverse ?1842)) =<= multiply (add ?1843 (inverse (inverse ?1842))) ?1842 [1842, 1843] by Super 8 with 1524 at 2,3 +Id : 1739, {_}: add (inverse (inverse ?1842)) (multiply ?1843 ?1842) =<= multiply (add ?1843 (inverse (inverse ?1842))) ?1842 [1843, 1842] by Demod 1722 with 4 at 2 +Id : 6934, {_}: add ?1842 (multiply ?1843 ?1842) =<= multiply (add ?1843 (inverse (inverse ?1842))) ?1842 [1843, 1842] by Demod 1739 with 3183 at 1,2 +Id : 6935, {_}: add ?1842 (multiply ?1843 ?1842) =<= multiply (add ?1843 ?1842) ?1842 [1843, 1842] by Demod 6934 with 3183 at 2,1,3 +Id : 235, {_}: add (multiply ?485 additive_identity) ?484 =<= multiply (add ?485 ?484) ?484 [484, 485] by Super 8 with 30 at 2,3 +Id : 498, {_}: multiply ?740 (add ?739 ?740) =>= add (multiply ?739 additive_identity) ?740 [739, 740] by Super 6 with 235 at 3 +Id : 236, {_}: add (multiply additive_identity ?488) ?487 =<= multiply ?487 (add ?488 ?487) [487, 488] by Super 8 with 30 at 1,3 +Id : 968, {_}: add (multiply additive_identity ?739) ?740 =?= add (multiply ?739 additive_identity) ?740 [740, 739] by Demod 498 with 236 at 2 +Id : 450, {_}: add ?682 (multiply additive_identity ?683) =<= multiply ?682 (add ?682 ?683) [683, 682] by Super 10 with 28 at 1,3 +Id : 453, {_}: add (inverse ?690) (multiply additive_identity ?690) =>= multiply (inverse ?690) multiplicative_identity [690] by Super 450 with 18 at 2,3 +Id : 478, {_}: add (inverse ?690) (multiply additive_identity ?690) =>= multiply multiplicative_identity (inverse ?690) [690] by Demod 453 with 6 at 3 +Id : 479, {_}: add (inverse ?690) (multiply additive_identity ?690) =>= inverse ?690 [690] by Demod 478 with 26 at 3 +Id : 2879, {_}: multiply ?359 (add (inverse ?359) ?360) =>= multiply ?359 ?360 [360, 359] by Demod 152 with 30 at 3 +Id : 2886, {_}: add (inverse (add (inverse additive_identity) ?2774)) (multiply additive_identity ?2774) =>= inverse (add (inverse additive_identity) ?2774) [2774] by Super 479 with 2879 at 2,2 +Id : 221, {_}: inverse additive_identity =>= multiplicative_identity [] by Super 18 with 28 at 2 +Id : 2945, {_}: add (inverse (add multiplicative_identity ?2774)) (multiply additive_identity ?2774) =>= inverse (add (inverse additive_identity) ?2774) [2774] by Demod 2886 with 221 at 1,1,1,2 +Id : 1490, {_}: add ?1622 (inverse ?1622) =>= add ?1622 multiplicative_identity [1622] by Super 1484 with 24 at 2,2 +Id : 1526, {_}: multiplicative_identity =<= add ?1622 multiplicative_identity [1622] by Demod 1490 with 16 at 2 +Id : 1546, {_}: add multiplicative_identity ?1675 =>= multiplicative_identity [1675] by Super 4 with 1526 at 3 +Id : 2946, {_}: add (inverse multiplicative_identity) (multiply additive_identity ?2774) =>= inverse (add (inverse additive_identity) ?2774) [2774] by Demod 2945 with 1546 at 1,1,2 +Id : 183, {_}: inverse multiplicative_identity =>= additive_identity [] by Super 22 with 24 at 2 +Id : 2947, {_}: add additive_identity (multiply additive_identity ?2774) =>= inverse (add (inverse additive_identity) ?2774) [2774] by Demod 2946 with 183 at 1,2 +Id : 2948, {_}: multiply additive_identity ?2774 =<= inverse (add (inverse additive_identity) ?2774) [2774] by Demod 2947 with 30 at 2 +Id : 2949, {_}: multiply additive_identity ?2774 =<= inverse (add multiplicative_identity ?2774) [2774] by Demod 2948 with 221 at 1,1,3 +Id : 2950, {_}: multiply additive_identity ?2774 =>= inverse multiplicative_identity [2774] by Demod 2949 with 1546 at 1,3 +Id : 2951, {_}: multiply additive_identity ?2774 =>= additive_identity [2774] by Demod 2950 with 183 at 3 +Id : 3009, {_}: add additive_identity ?740 =<= add (multiply ?739 additive_identity) ?740 [739, 740] by Demod 968 with 2951 at 1,2 +Id : 3029, {_}: ?740 =<= add (multiply ?739 additive_identity) ?740 [739, 740] by Demod 3009 with 30 at 2 +Id : 3031, {_}: ?484 =<= multiply (add ?485 ?484) ?484 [485, 484] by Demod 235 with 3029 at 2 +Id : 6936, {_}: add ?1842 (multiply ?1843 ?1842) =>= ?1842 [1843, 1842] by Demod 6935 with 3031 at 3 +Id : 6956, {_}: add (multiply ?7059 ?7058) ?7058 =>= ?7058 [7058, 7059] by Super 4 with 6936 at 3 +Id : 52241, {_}: multiply (multiply (add ?83798 ?83799) ?83800) ?83799 =>= multiply ?83800 ?83799 [83800, 83799, 83798] by Demod 27129 with 6956 at 1,3 +Id : 52270, {_}: multiply (multiply ?83922 ?83923) (multiply ?83921 ?83922) =>= multiply ?83923 (multiply ?83921 ?83922) [83921, 83923, 83922] by Super 52241 with 6936 at 1,1,2 +Id : 3280, {_}: multiply ?3132 (add ?3131 (inverse ?3132)) =<= multiply ?3132 (multiply ?3131 (inverse (inverse ?3132))) [3131, 3132] by Super 3270 with 2790 at 2,2 +Id : 3318, {_}: multiply ?3132 ?3131 =<= multiply ?3132 (multiply ?3131 (inverse (inverse ?3132))) [3131, 3132] by Demod 3280 with 3256 at 2 +Id : 3319, {_}: multiply ?3132 ?3131 =<= multiply ?3132 (multiply ?3131 ?3132) [3131, 3132] by Demod 3318 with 3183 at 2,2,3 +Id : 3542, {_}: multiply ?3472 (add ?3474 (multiply ?3473 ?3472)) =>= add (multiply ?3472 ?3474) (multiply ?3472 ?3473) [3473, 3474, 3472] by Super 14 with 3319 at 2,3 +Id : 23927, {_}: multiply ?27205 (add ?27206 (multiply ?27207 ?27205)) =>= multiply ?27205 (add ?27206 ?27207) [27207, 27206, 27205] by Demod 3542 with 14 at 3 +Id : 24009, {_}: multiply ?27527 (multiply ?27528 (add ?27526 ?27527)) =?= multiply ?27527 (add (multiply ?27528 ?27526) ?27528) [27526, 27528, 27527] by Super 23927 with 14 at 2,2 +Id : 7091, {_}: add (multiply ?7292 ?7293) ?7293 =>= ?7293 [7293, 7292] by Super 4 with 6936 at 3 +Id : 7092, {_}: add (multiply ?7296 ?7295) ?7296 =>= ?7296 [7295, 7296] by Super 7091 with 6 at 1,2 +Id : 49144, {_}: multiply ?77879 (multiply ?77880 (add ?77881 ?77879)) =>= multiply ?77879 ?77880 [77881, 77880, 77879] by Demod 24009 with 7092 at 2,3 +Id : 6968, {_}: add ?7096 (multiply ?7097 ?7096) =>= ?7096 [7097, 7096] by Demod 6935 with 3031 at 3 +Id : 6969, {_}: add ?7099 (multiply ?7099 ?7100) =>= ?7099 [7100, 7099] by Super 6968 with 6 at 2,2 +Id : 49175, {_}: multiply (multiply ?78012 ?78010) (multiply ?78011 ?78012) =>= multiply (multiply ?78012 ?78010) ?78011 [78011, 78010, 78012] by Super 49144 with 6969 at 2,2,2 +Id : 77462, {_}: multiply (multiply ?134082 ?134083) ?134084 =?= multiply ?134083 (multiply ?134084 ?134082) [134084, 134083, 134082] by Demod 52270 with 49175 at 2 +Id : 77468, {_}: multiply (multiply (add (inverse ?134104) ?134102) ?134103) ?134104 =>= multiply ?134103 (multiply ?134104 ?134102) [134103, 134102, 134104] by Super 77462 with 2879 at 2,3 +Id : 3544, {_}: multiply (multiply ?3481 ?3480) ?3480 =>= multiply ?3480 ?3481 [3480, 3481] by Super 6 with 3319 at 3 +Id : 3902, {_}: multiply (add ?3943 (multiply ?3941 ?3942)) ?3942 =>= add (multiply ?3943 ?3942) (multiply ?3942 ?3941) [3942, 3941, 3943] by Super 12 with 3544 at 2,3 +Id : 27853, {_}: multiply (add ?34448 (multiply ?34449 ?34450)) ?34450 =>= multiply (add ?34448 ?34449) ?34450 [34450, 34449, 34448] by Demod 3902 with 70 at 3 +Id : 27945, {_}: multiply (multiply ?34816 (add ?34815 ?34817)) ?34817 =?= multiply (add (multiply ?34816 ?34815) ?34816) ?34817 [34817, 34815, 34816] by Super 27853 with 14 at 1,2 +Id : 53412, {_}: multiply (multiply ?86132 (add ?86133 ?86134)) ?86134 =>= multiply ?86132 ?86134 [86134, 86133, 86132] by Demod 27945 with 7092 at 1,3 +Id : 53441, {_}: multiply (multiply ?86256 ?86257) (multiply ?86255 ?86257) =>= multiply ?86256 (multiply ?86255 ?86257) [86255, 86257, 86256] by Super 53412 with 6936 at 2,1,2 +Id : 49173, {_}: multiply (multiply ?78002 ?78004) (multiply ?78003 ?78004) =>= multiply (multiply ?78002 ?78004) ?78003 [78003, 78004, 78002] by Super 49144 with 6936 at 2,2,2 +Id : 79216, {_}: multiply (multiply ?86256 ?86257) ?86255 =?= multiply ?86256 (multiply ?86255 ?86257) [86255, 86257, 86256] by Demod 53441 with 49173 at 2 +Id : 290220, {_}: multiply (add (inverse ?134104) ?134102) (multiply ?134104 ?134103) =>= multiply ?134103 (multiply ?134104 ?134102) [134103, 134102, 134104] by Demod 77468 with 79216 at 2 +Id : 148, {_}: multiply (add ?349 ?350) (inverse ?349) =>= add additive_identity (multiply ?350 (inverse ?349)) [350, 349] by Super 12 with 20 at 1,3 +Id : 160, {_}: multiply (inverse ?349) (add ?349 ?350) =>= add additive_identity (multiply ?350 (inverse ?349)) [350, 349] by Demod 148 with 6 at 2 +Id : 4141, {_}: multiply (inverse ?4194) (add ?4194 ?4195) =>= multiply ?4195 (inverse ?4194) [4195, 4194] by Demod 160 with 30 at 3 +Id : 3259, {_}: add (multiply (inverse ?3073) ?3072) ?3073 =<= add (add ?3072 (inverse (inverse ?3073))) ?3073 [3072, 3073] by Super 2697 with 3256 at 1,2 +Id : 3300, {_}: add ?3072 ?3073 =<= add (add ?3072 (inverse (inverse ?3073))) ?3073 [3073, 3072] by Demod 3259 with 2697 at 2 +Id : 3301, {_}: add ?3072 ?3073 =<= add (add ?3072 ?3073) ?3073 [3073, 3072] by Demod 3300 with 3183 at 2,1,3 +Id : 4158, {_}: multiply (inverse (add ?4240 ?4241)) (add ?4240 ?4241) =>= multiply ?4241 (inverse (add ?4240 ?4241)) [4241, 4240] by Super 4141 with 3301 at 2,2 +Id : 4229, {_}: additive_identity =<= multiply ?4241 (inverse (add ?4240 ?4241)) [4240, 4241] by Demod 4158 with 22 at 2 +Id : 5045, {_}: multiply (inverse (add ?4937 ?4936)) ?4936 =>= additive_identity [4936, 4937] by Super 6 with 4229 at 3 +Id : 7219, {_}: multiply (inverse ?7487) (multiply ?7487 ?7488) =>= additive_identity [7488, 7487] by Super 5045 with 6969 at 1,1,2 +Id : 7871, {_}: multiply (add (inverse ?8300) ?8302) (multiply ?8300 ?8301) =>= add additive_identity (multiply ?8302 (multiply ?8300 ?8301)) [8301, 8302, 8300] by Super 12 with 7219 at 1,3 +Id : 7967, {_}: multiply (add (inverse ?8300) ?8302) (multiply ?8300 ?8301) =>= multiply ?8302 (multiply ?8300 ?8301) [8301, 8302, 8300] by Demod 7871 with 30 at 3 +Id : 290221, {_}: multiply ?134102 (multiply ?134104 ?134103) =?= multiply ?134103 (multiply ?134104 ?134102) [134103, 134104, 134102] by Demod 290220 with 7967 at 2 +Id : 166, {_}: multiply (add (inverse ?383) ?384) ?383 =>= add additive_identity (multiply ?384 ?383) [384, 383] by Super 12 with 22 at 1,3 +Id : 4249, {_}: multiply (add (inverse ?383) ?384) ?383 =>= multiply ?384 ?383 [384, 383] by Demod 166 with 30 at 3 +Id : 77480, {_}: multiply (multiply ?134153 ?134154) (add (inverse ?134153) ?134152) =>= multiply ?134154 (multiply ?134152 ?134153) [134152, 134154, 134153] by Super 77462 with 4249 at 2,3 +Id : 77935, {_}: multiply (add (inverse ?134153) ?134152) (multiply ?134153 ?134154) =>= multiply ?134154 (multiply ?134152 ?134153) [134154, 134152, 134153] by Demod 77480 with 6 at 2 +Id : 295050, {_}: multiply ?134152 (multiply ?134153 ?134154) =?= multiply ?134154 (multiply ?134152 ?134153) [134154, 134153, 134152] by Demod 77935 with 7967 at 2 +Id : 3012, {_}: add additive_identity ?487 =<= multiply ?487 (add ?488 ?487) [488, 487] by Demod 236 with 2951 at 1,2 +Id : 3025, {_}: ?487 =<= multiply ?487 (add ?488 ?487) [488, 487] by Demod 3012 with 30 at 2 +Id : 6954, {_}: add ?7050 (multiply ?7052 (multiply ?7051 ?7050)) =>= multiply (add ?7050 ?7052) ?7050 [7051, 7052, 7050] by Super 10 with 6936 at 2,3 +Id : 219, {_}: add ?458 (multiply ?459 additive_identity) =<= multiply (add ?458 ?459) ?458 [459, 458] by Super 10 with 28 at 2,3 +Id : 310, {_}: multiply ?527 (add ?527 ?528) =>= add ?527 (multiply ?528 additive_identity) [528, 527] by Super 6 with 219 at 3 +Id : 220, {_}: add ?461 (multiply additive_identity ?462) =<= multiply ?461 (add ?461 ?462) [462, 461] by Super 10 with 28 at 1,3 +Id : 632, {_}: add ?527 (multiply additive_identity ?528) =?= add ?527 (multiply ?528 additive_identity) [528, 527] by Demod 310 with 220 at 2 +Id : 3013, {_}: add ?527 additive_identity =<= add ?527 (multiply ?528 additive_identity) [528, 527] by Demod 632 with 2951 at 2,2 +Id : 3021, {_}: ?527 =<= add ?527 (multiply ?528 additive_identity) [528, 527] by Demod 3013 with 28 at 2 +Id : 3024, {_}: ?458 =<= multiply (add ?458 ?459) ?458 [459, 458] by Demod 219 with 3021 at 2 +Id : 7015, {_}: add ?7050 (multiply ?7052 (multiply ?7051 ?7050)) =>= ?7050 [7051, 7052, 7050] by Demod 6954 with 3024 at 3 +Id : 54601, {_}: multiply ?88480 (multiply ?88481 ?88482) =<= multiply (multiply ?88480 (multiply ?88481 ?88482)) ?88482 [88482, 88481, 88480] by Super 3025 with 7015 at 2,3 +Id : 54602, {_}: multiply ?88484 (multiply ?88485 ?88486) =<= multiply (multiply ?88484 (multiply ?88486 ?88485)) ?88486 [88486, 88485, 88484] by Super 54601 with 6 at 2,1,3 +Id : 7204, {_}: add ?7439 (multiply ?7441 (multiply ?7439 ?7440)) =>= multiply (add ?7439 ?7441) ?7439 [7440, 7441, 7439] by Super 10 with 6969 at 2,3 +Id : 7269, {_}: add ?7439 (multiply ?7441 (multiply ?7439 ?7440)) =>= ?7439 [7440, 7441, 7439] by Demod 7204 with 3024 at 3 +Id : 30112, {_}: multiply ?38749 (multiply ?38748 ?38750) =<= multiply (multiply ?38749 (multiply ?38748 ?38750)) ?38748 [38750, 38748, 38749] by Super 3025 with 7269 at 2,3 +Id : 81336, {_}: multiply ?88484 (multiply ?88485 ?88486) =?= multiply ?88484 (multiply ?88486 ?88485) [88486, 88485, 88484] by Demod 54602 with 30112 at 3 +Id : 297313, {_}: multiply c (multiply b a) === multiply c (multiply b a) [] by Demod 297312 with 81336 at 2 +Id : 297312, {_}: multiply c (multiply a b) =>= multiply c (multiply b a) [] by Demod 292477 with 295050 at 2 +Id : 292477, {_}: multiply b (multiply c a) =>= multiply c (multiply b a) [] by Demod 255 with 290221 at 2 +Id : 255, {_}: multiply a (multiply c b) =>= multiply c (multiply b a) [] by Demod 254 with 6 at 2,3 +Id : 254, {_}: multiply a (multiply c b) =>= multiply c (multiply a b) [] by Demod 253 with 6 at 3 +Id : 253, {_}: multiply a (multiply c b) =<= multiply (multiply a b) c [] by Demod 2 with 6 at 2,2 +Id : 2, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity +% SZS output end CNFRefutation for BOO007-2.p +Order + == is 100 + _ is 99 + a is 98 + add is 93 + additive_id1 is 87 + additive_identity is 88 + additive_inverse1 is 83 + b is 97 + c is 96 + commutativity_of_add is 92 + commutativity_of_multiply is 91 + distributivity1 is 90 + distributivity2 is 89 + inverse is 84 + multiplicative_id1 is 85 + multiplicative_identity is 86 + multiplicative_inverse1 is 82 + multiply is 95 + prove_associativity is 94 +Facts + Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 + Id : 6, {_}: + multiply ?5 ?6 =?= multiply ?6 ?5 + [6, 5] by commutativity_of_multiply ?5 ?6 + Id : 8, {_}: + add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10) + [10, 9, 8] by distributivity1 ?8 ?9 ?10 + Id : 10, {_}: + multiply ?12 (add ?13 ?14) + =<= + add (multiply ?12 ?13) (multiply ?12 ?14) + [14, 13, 12] by distributivity2 ?12 ?13 ?14 + Id : 12, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16 + Id : 14, {_}: + multiply ?18 multiplicative_identity =>= ?18 + [18] by multiplicative_id1 ?18 + Id : 16, {_}: + add ?20 (inverse ?20) =>= multiplicative_identity + [20] by additive_inverse1 ?20 + Id : 18, {_}: + multiply ?22 (inverse ?22) =>= additive_identity + [22] by multiplicative_inverse1 ?22 +Goal + Id : 2, {_}: + multiply a (multiply b c) =<= multiply (multiply a b) c + [] by prove_associativity +Found proof, 74.913351s +% SZS status Unsatisfiable for BOO007-4.p +% SZS output start CNFRefutation for BOO007-4.p +Id : 14, {_}: multiply ?18 multiplicative_identity =>= ?18 [18] by multiplicative_id1 ?18 +Id : 16, {_}: add ?20 (inverse ?20) =>= multiplicative_identity [20] by additive_inverse1 ?20 +Id : 8, {_}: add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 +Id : 12, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16 +Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 +Id : 18, {_}: multiply ?22 (inverse ?22) =>= additive_identity [22] by multiplicative_inverse1 ?22 +Id : 10, {_}: multiply ?12 (add ?13 ?14) =<= add (multiply ?12 ?13) (multiply ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 +Id : 6, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 +Id : 81, {_}: multiply ?187 (add (inverse ?187) ?188) =>= add additive_identity (multiply ?187 ?188) [188, 187] by Super 10 with 18 at 1,3 +Id : 57, {_}: add additive_identity ?136 =>= ?136 [136] by Super 4 with 12 at 3 +Id : 2041, {_}: multiply ?187 (add (inverse ?187) ?188) =>= multiply ?187 ?188 [188, 187] by Demod 81 with 57 at 3 +Id : 2049, {_}: multiply (add (inverse ?1798) ?1799) ?1798 =>= multiply ?1798 ?1799 [1799, 1798] by Super 6 with 2041 at 3 +Id : 72, {_}: add ?169 (multiply (inverse ?169) ?170) =>= multiply multiplicative_identity (add ?169 ?170) [170, 169] by Super 8 with 16 at 1,3 +Id : 65, {_}: multiply multiplicative_identity ?154 =>= ?154 [154] by Super 6 with 14 at 3 +Id : 1065, {_}: add ?169 (multiply (inverse ?169) ?170) =>= add ?169 ?170 [170, 169] by Demod 72 with 65 at 3 +Id : 80, {_}: multiply ?184 (add ?185 (inverse ?184)) =>= add (multiply ?184 ?185) additive_identity [185, 184] by Super 10 with 18 at 2,3 +Id : 88, {_}: multiply ?184 (add ?185 (inverse ?184)) =>= add additive_identity (multiply ?184 ?185) [185, 184] by Demod 80 with 4 at 3 +Id : 2371, {_}: multiply ?184 (add ?185 (inverse ?184)) =>= multiply ?184 ?185 [185, 184] by Demod 88 with 57 at 3 +Id : 2380, {_}: add ?2048 (multiply (inverse ?2048) ?2047) =<= add ?2048 (add ?2047 (inverse (inverse ?2048))) [2047, 2048] by Super 1065 with 2371 at 2,2 +Id : 2402, {_}: add ?2048 ?2047 =<= add ?2048 (add ?2047 (inverse (inverse ?2048))) [2047, 2048] by Demod 2380 with 1065 at 2 +Id : 71, {_}: add ?166 (multiply ?167 (inverse ?166)) =>= multiply (add ?166 ?167) multiplicative_identity [167, 166] by Super 8 with 16 at 2,3 +Id : 79, {_}: add ?166 (multiply ?167 (inverse ?166)) =>= multiply multiplicative_identity (add ?166 ?167) [167, 166] by Demod 71 with 6 at 3 +Id : 1969, {_}: add ?166 (multiply ?167 (inverse ?166)) =>= add ?166 ?167 [167, 166] by Demod 79 with 65 at 3 +Id : 2056, {_}: multiply ?1815 (add (inverse ?1815) ?1816) =>= multiply ?1815 ?1816 [1816, 1815] by Demod 81 with 57 at 3 +Id : 1077, {_}: add ?1042 (multiply (inverse ?1042) ?1043) =>= add ?1042 ?1043 [1043, 1042] by Demod 72 with 65 at 3 +Id : 1082, {_}: add ?1054 additive_identity =<= add ?1054 (inverse (inverse ?1054)) [1054] by Super 1077 with 18 at 2,2 +Id : 1115, {_}: ?1054 =<= add ?1054 (inverse (inverse ?1054)) [1054] by Demod 1082 with 12 at 2 +Id : 2072, {_}: multiply ?1854 (inverse ?1854) =<= multiply ?1854 (inverse (inverse (inverse ?1854))) [1854] by Super 2056 with 1115 at 2,2 +Id : 2140, {_}: additive_identity =<= multiply ?1854 (inverse (inverse (inverse ?1854))) [1854] by Demod 2072 with 18 at 2 +Id : 2304, {_}: add (inverse (inverse ?1984)) additive_identity =?= add (inverse (inverse ?1984)) ?1984 [1984] by Super 1969 with 2140 at 2,2 +Id : 2314, {_}: add additive_identity (inverse (inverse ?1984)) =<= add (inverse (inverse ?1984)) ?1984 [1984] by Demod 2304 with 4 at 2 +Id : 2315, {_}: inverse (inverse ?1984) =<= add (inverse (inverse ?1984)) ?1984 [1984] by Demod 2314 with 57 at 2 +Id : 1260, {_}: add (inverse (inverse ?1219)) ?1219 =>= ?1219 [1219] by Super 4 with 1115 at 3 +Id : 2316, {_}: inverse (inverse ?1984) =>= ?1984 [1984] by Demod 2315 with 1260 at 3 +Id : 2403, {_}: add ?2048 ?2047 =<= add ?2048 (add ?2047 ?2048) [2047, 2048] by Demod 2402 with 2316 at 2,2,3 +Id : 2435, {_}: add ?2108 (multiply ?2110 (add ?2109 ?2108)) =<= multiply (add ?2108 ?2110) (add ?2108 ?2109) [2109, 2110, 2108] by Super 8 with 2403 at 2,3 +Id : 2463, {_}: add ?2108 (multiply ?2110 (add ?2109 ?2108)) =>= add ?2108 (multiply ?2110 ?2109) [2109, 2110, 2108] by Demod 2435 with 8 at 3 +Id : 18875, {_}: multiply (add (inverse ?19839) (multiply ?19837 ?19838)) ?19839 =?= multiply ?19839 (multiply ?19837 (add ?19838 (inverse ?19839))) [19838, 19837, 19839] by Super 2049 with 2463 at 1,2 +Id : 151787, {_}: multiply ?278411 (multiply ?278412 ?278413) =<= multiply ?278411 (multiply ?278412 (add ?278413 (inverse ?278411))) [278413, 278412, 278411] by Demod 18875 with 2049 at 2 +Id : 1071, {_}: add (multiply (inverse ?1025) ?1026) ?1025 =>= add ?1025 ?1026 [1026, 1025] by Super 4 with 1065 at 3 +Id : 151803, {_}: multiply ?278483 (multiply ?278484 (multiply (inverse (inverse ?278483)) ?278482)) =>= multiply ?278483 (multiply ?278484 (add (inverse ?278483) ?278482)) [278482, 278484, 278483] by Super 151787 with 1071 at 2,2,3 +Id : 152295, {_}: multiply ?278483 (multiply ?278484 (multiply ?278483 ?278482)) =<= multiply ?278483 (multiply ?278484 (add (inverse ?278483) ?278482)) [278482, 278484, 278483] by Demod 151803 with 2316 at 1,2,2,2 +Id : 228, {_}: add ?322 (multiply ?323 additive_identity) =<= multiply (add ?322 ?323) ?322 [323, 322] by Super 8 with 12 at 2,3 +Id : 229, {_}: add ?325 (multiply ?326 additive_identity) =<= multiply (add ?326 ?325) ?325 [326, 325] by Super 228 with 4 at 1,3 +Id : 331, {_}: add ?429 (multiply additive_identity ?430) =<= multiply ?429 (add ?429 ?430) [430, 429] by Super 8 with 12 at 1,3 +Id : 332, {_}: add ?432 (multiply additive_identity ?433) =<= multiply ?432 (add ?433 ?432) [433, 432] by Super 331 with 4 at 2,3 +Id : 73, {_}: add (inverse ?172) ?172 =>= multiplicative_identity [172] by Super 4 with 16 at 3 +Id : 336, {_}: add (inverse ?441) (multiply additive_identity ?441) =>= multiply (inverse ?441) multiplicative_identity [441] by Super 331 with 73 at 2,3 +Id : 355, {_}: add (inverse ?441) (multiply additive_identity ?441) =>= multiply multiplicative_identity (inverse ?441) [441] by Demod 336 with 6 at 3 +Id : 356, {_}: add (inverse ?441) (multiply additive_identity ?441) =>= inverse ?441 [441] by Demod 355 with 65 at 3 +Id : 713, {_}: add (multiply additive_identity ?819) (multiply additive_identity (inverse ?819)) =>= multiply (multiply additive_identity ?819) (inverse ?819) [819] by Super 332 with 356 at 2,3 +Id : 726, {_}: multiply additive_identity (add ?819 (inverse ?819)) =<= multiply (multiply additive_identity ?819) (inverse ?819) [819] by Demod 713 with 10 at 2 +Id : 727, {_}: multiply additive_identity multiplicative_identity =<= multiply (multiply additive_identity ?819) (inverse ?819) [819] by Demod 726 with 16 at 2,2 +Id : 728, {_}: multiply multiplicative_identity additive_identity =<= multiply (multiply additive_identity ?819) (inverse ?819) [819] by Demod 727 with 6 at 2 +Id : 729, {_}: additive_identity =<= multiply (multiply additive_identity ?819) (inverse ?819) [819] by Demod 728 with 65 at 2 +Id : 730, {_}: additive_identity =<= multiply (inverse ?819) (multiply additive_identity ?819) [819] by Demod 729 with 6 at 3 +Id : 1088, {_}: add ?1069 additive_identity =<= add ?1069 (multiply additive_identity ?1069) [1069] by Super 1077 with 730 at 2,2 +Id : 1118, {_}: ?1069 =<= add ?1069 (multiply additive_identity ?1069) [1069] by Demod 1088 with 12 at 2 +Id : 1283, {_}: add (multiply additive_identity ?1241) (multiply additive_identity ?1241) =>= multiply (multiply additive_identity ?1241) ?1241 [1241] by Super 332 with 1118 at 2,3 +Id : 1319, {_}: multiply additive_identity (add ?1241 ?1241) =<= multiply (multiply additive_identity ?1241) ?1241 [1241] by Demod 1283 with 10 at 2 +Id : 82, {_}: multiply (inverse ?190) ?190 =>= additive_identity [190] by Super 6 with 18 at 3 +Id : 1083, {_}: add ?1056 additive_identity =?= add ?1056 ?1056 [1056] by Super 1077 with 82 at 2,2 +Id : 1116, {_}: ?1056 =<= add ?1056 ?1056 [1056] by Demod 1083 with 12 at 2 +Id : 1320, {_}: multiply additive_identity ?1241 =<= multiply (multiply additive_identity ?1241) ?1241 [1241] by Demod 1319 with 1116 at 2,2 +Id : 1567, {_}: multiply ?1480 (multiply additive_identity ?1480) =>= multiply additive_identity ?1480 [1480] by Super 6 with 1320 at 3 +Id : 2051, {_}: add (inverse (add (inverse additive_identity) ?1804)) (multiply additive_identity ?1804) =>= inverse (add (inverse additive_identity) ?1804) [1804] by Super 356 with 2041 at 2,2 +Id : 92, {_}: inverse additive_identity =>= multiplicative_identity [] by Super 16 with 57 at 2 +Id : 2095, {_}: add (inverse (add multiplicative_identity ?1804)) (multiply additive_identity ?1804) =>= inverse (add (inverse additive_identity) ?1804) [1804] by Demod 2051 with 92 at 1,1,1,2 +Id : 1081, {_}: add ?1052 (inverse ?1052) =>= add ?1052 multiplicative_identity [1052] by Super 1077 with 14 at 2,2 +Id : 1114, {_}: multiplicative_identity =<= add ?1052 multiplicative_identity [1052] by Demod 1081 with 16 at 2 +Id : 1133, {_}: add multiplicative_identity ?1095 =>= multiplicative_identity [1095] by Super 4 with 1114 at 3 +Id : 2096, {_}: add (inverse multiplicative_identity) (multiply additive_identity ?1804) =>= inverse (add (inverse additive_identity) ?1804) [1804] by Demod 2095 with 1133 at 1,1,2 +Id : 139, {_}: inverse multiplicative_identity =>= additive_identity [] by Super 18 with 65 at 2 +Id : 2097, {_}: add additive_identity (multiply additive_identity ?1804) =>= inverse (add (inverse additive_identity) ?1804) [1804] by Demod 2096 with 139 at 1,2 +Id : 2098, {_}: multiply additive_identity ?1804 =<= inverse (add (inverse additive_identity) ?1804) [1804] by Demod 2097 with 57 at 2 +Id : 2099, {_}: multiply additive_identity ?1804 =<= inverse (add multiplicative_identity ?1804) [1804] by Demod 2098 with 92 at 1,1,3 +Id : 2100, {_}: multiply additive_identity ?1804 =>= inverse multiplicative_identity [1804] by Demod 2099 with 1133 at 1,3 +Id : 2101, {_}: multiply additive_identity ?1804 =>= additive_identity [1804] by Demod 2100 with 139 at 3 +Id : 2167, {_}: multiply ?1480 additive_identity =?= multiply additive_identity ?1480 [1480] by Demod 1567 with 2101 at 2,2 +Id : 2168, {_}: multiply ?1480 additive_identity =>= additive_identity [1480] by Demod 2167 with 2101 at 3 +Id : 2174, {_}: add ?325 additive_identity =<= multiply (add ?326 ?325) ?325 [326, 325] by Demod 229 with 2168 at 2,2 +Id : 2180, {_}: ?325 =<= multiply (add ?326 ?325) ?325 [326, 325] by Demod 2174 with 12 at 2 +Id : 1258, {_}: add ?1213 (multiply ?1214 (inverse (inverse ?1213))) =>= multiply (add ?1213 ?1214) ?1213 [1214, 1213] by Super 8 with 1115 at 2,3 +Id : 55, {_}: add ?130 (multiply ?131 additive_identity) =<= multiply (add ?130 ?131) ?130 [131, 130] by Super 8 with 12 at 2,3 +Id : 1274, {_}: add ?1213 (multiply ?1214 (inverse (inverse ?1213))) =>= add ?1213 (multiply ?1214 additive_identity) [1214, 1213] by Demod 1258 with 55 at 3 +Id : 5845, {_}: add ?1213 (multiply ?1214 ?1213) =?= add ?1213 (multiply ?1214 additive_identity) [1214, 1213] by Demod 1274 with 2316 at 2,2,2 +Id : 5846, {_}: add ?1213 (multiply ?1214 ?1213) =>= add ?1213 additive_identity [1214, 1213] by Demod 5845 with 2168 at 2,3 +Id : 5877, {_}: add ?5881 (multiply ?5882 ?5881) =>= ?5881 [5882, 5881] by Demod 5846 with 12 at 3 +Id : 5878, {_}: add ?5884 (multiply ?5884 ?5885) =>= ?5884 [5885, 5884] by Super 5877 with 6 at 2,2 +Id : 6099, {_}: add ?6204 (multiply ?6206 (multiply ?6204 ?6205)) =>= multiply (add ?6204 ?6206) ?6204 [6205, 6206, 6204] by Super 8 with 5878 at 2,3 +Id : 2175, {_}: add ?130 additive_identity =<= multiply (add ?130 ?131) ?130 [131, 130] by Demod 55 with 2168 at 2,2 +Id : 2179, {_}: ?130 =<= multiply (add ?130 ?131) ?130 [131, 130] by Demod 2175 with 12 at 2 +Id : 6162, {_}: add ?6204 (multiply ?6206 (multiply ?6204 ?6205)) =>= ?6204 [6205, 6206, 6204] by Demod 6099 with 2179 at 3 +Id : 23650, {_}: multiply ?28445 (multiply ?28444 ?28446) =<= multiply ?28444 (multiply ?28445 (multiply ?28444 ?28446)) [28446, 28444, 28445] by Super 2180 with 6162 at 1,3 +Id : 152296, {_}: multiply ?278484 (multiply ?278483 ?278482) =<= multiply ?278483 (multiply ?278484 (add (inverse ?278483) ?278482)) [278482, 278483, 278484] by Demod 152295 with 23650 at 2 +Id : 2442, {_}: add ?2131 ?2132 =<= add ?2131 (add ?2132 ?2131) [2132, 2131] by Demod 2402 with 2316 at 2,2,3 +Id : 2443, {_}: add ?2134 ?2135 =<= add ?2134 (add ?2134 ?2135) [2135, 2134] by Super 2442 with 4 at 2,3 +Id : 2558, {_}: add ?2283 (multiply ?2285 (add ?2283 ?2284)) =<= multiply (add ?2283 ?2285) (add ?2283 ?2284) [2284, 2285, 2283] by Super 8 with 2443 at 2,3 +Id : 2593, {_}: add ?2283 (multiply ?2285 (add ?2283 ?2284)) =>= add ?2283 (multiply ?2285 ?2284) [2284, 2285, 2283] by Demod 2558 with 8 at 3 +Id : 19422, {_}: multiply (add (inverse ?20977) (multiply ?20975 ?20976)) ?20977 =?= multiply ?20977 (multiply ?20975 (add (inverse ?20977) ?20976)) [20976, 20975, 20977] by Super 2049 with 2593 at 1,2 +Id : 19552, {_}: multiply ?20977 (multiply ?20975 ?20976) =<= multiply ?20977 (multiply ?20975 (add (inverse ?20977) ?20976)) [20976, 20975, 20977] by Demod 19422 with 2049 at 2 +Id : 352787, {_}: multiply ?278484 (multiply ?278483 ?278482) =?= multiply ?278483 (multiply ?278484 ?278482) [278482, 278483, 278484] by Demod 152296 with 19552 at 3 +Id : 2159, {_}: add ?432 additive_identity =<= multiply ?432 (add ?433 ?432) [433, 432] by Demod 332 with 2101 at 2,2 +Id : 2194, {_}: ?432 =<= multiply ?432 (add ?433 ?432) [433, 432] by Demod 2159 with 12 at 2 +Id : 5847, {_}: add ?1213 (multiply ?1214 ?1213) =>= ?1213 [1214, 1213] by Demod 5846 with 12 at 3 +Id : 5862, {_}: add ?5837 (multiply ?5839 (multiply ?5838 ?5837)) =>= multiply (add ?5837 ?5839) ?5837 [5838, 5839, 5837] by Super 8 with 5847 at 2,3 +Id : 5925, {_}: add ?5837 (multiply ?5839 (multiply ?5838 ?5837)) =>= ?5837 [5838, 5839, 5837] by Demod 5862 with 2179 at 3 +Id : 36958, {_}: multiply ?53806 (multiply ?53807 ?53808) =<= multiply (multiply ?53806 (multiply ?53807 ?53808)) ?53808 [53808, 53807, 53806] by Super 2194 with 5925 at 2,3 +Id : 36959, {_}: multiply ?53810 (multiply ?53811 ?53812) =<= multiply (multiply ?53810 (multiply ?53812 ?53811)) ?53812 [53812, 53811, 53810] by Super 36958 with 6 at 2,1,3 +Id : 23651, {_}: multiply ?28449 (multiply ?28448 ?28450) =<= multiply (multiply ?28449 (multiply ?28448 ?28450)) ?28448 [28450, 28448, 28449] by Super 2194 with 6162 at 2,3 +Id : 58893, {_}: multiply ?53810 (multiply ?53811 ?53812) =?= multiply ?53810 (multiply ?53812 ?53811) [53812, 53811, 53810] by Demod 36959 with 23651 at 3 +Id : 355225, {_}: multiply c (multiply b a) === multiply c (multiply b a) [] by Demod 355224 with 58893 at 2 +Id : 355224, {_}: multiply c (multiply a b) =>= multiply c (multiply b a) [] by Demod 91 with 352787 at 2 +Id : 91, {_}: multiply a (multiply c b) =>= multiply c (multiply b a) [] by Demod 90 with 6 at 2,3 +Id : 90, {_}: multiply a (multiply c b) =>= multiply c (multiply a b) [] by Demod 89 with 6 at 3 +Id : 89, {_}: multiply a (multiply c b) =<= multiply (multiply a b) c [] by Demod 2 with 6 at 2,2 +Id : 2, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity +% SZS output end CNFRefutation for BOO007-4.p +Order + == is 100 + _ is 99 + a is 98 + add is 95 + additive_inverse is 83 + associativity_of_add is 80 + associativity_of_multiply is 79 + b is 97 + c is 96 + distributivity is 92 + inverse is 89 + l1 is 91 + l2 is 87 + l3 is 90 + l4 is 86 + multiplicative_inverse is 81 + multiply is 94 + n0 is 82 + n1 is 84 + property3 is 88 + property3_dual is 85 + prove_multiply_add_property is 93 +Facts + Id : 4, {_}: + add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) + =>= + multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) + [4, 3, 2] by distributivity ?2 ?3 ?4 + Id : 6, {_}: + add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 + [8, 7, 6] by l1 ?6 ?7 ?8 + Id : 8, {_}: + add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 + [12, 11, 10] by l3 ?10 ?11 ?12 + Id : 10, {_}: + multiply (add ?14 (inverse ?14)) ?15 =>= ?15 + [15, 14] by property3 ?14 ?15 + Id : 12, {_}: + multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17 + [19, 18, 17] by l2 ?17 ?18 ?19 + Id : 14, {_}: + multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22 + [23, 22, 21] by l4 ?21 ?22 ?23 + Id : 16, {_}: + add (multiply ?25 (inverse ?25)) ?26 =>= ?26 + [26, 25] by property3_dual ?25 ?26 + Id : 18, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28 + Id : 20, {_}: + multiply ?30 (inverse ?30) =>= n0 + [30] by multiplicative_inverse ?30 + Id : 22, {_}: + add (add ?32 ?33) ?34 =?= add ?32 (add ?33 ?34) + [34, 33, 32] by associativity_of_add ?32 ?33 ?34 + Id : 24, {_}: + multiply (multiply ?36 ?37) ?38 =?= multiply ?36 (multiply ?37 ?38) + [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38 +Goal + Id : 2, {_}: + multiply a (add b c) =<= add (multiply b a) (multiply c a) + [] by prove_multiply_add_property +Found proof, 20.324508s +% SZS status Unsatisfiable for BOO031-1.p +% SZS output start CNFRefutation for BOO031-1.p +Id : 16, {_}: add (multiply ?25 (inverse ?25)) ?26 =>= ?26 [26, 25] by property3_dual ?25 ?26 +Id : 20, {_}: multiply ?30 (inverse ?30) =>= n0 [30] by multiplicative_inverse ?30 +Id : 18, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28 +Id : 14, {_}: multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22 [23, 22, 21] by l4 ?21 ?22 ?23 +Id : 10, {_}: multiply (add ?14 (inverse ?14)) ?15 =>= ?15 [15, 14] by property3 ?14 ?15 +Id : 64, {_}: multiply (multiply (add ?211 ?212) (add ?212 ?213)) ?212 =>= ?212 [213, 212, 211] by l4 ?211 ?212 ?213 +Id : 24, {_}: multiply (multiply ?36 ?37) ?38 =?= multiply ?36 (multiply ?37 ?38) [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38 +Id : 4, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =>= multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) [4, 3, 2] by distributivity ?2 ?3 ?4 +Id : 8, {_}: add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 [12, 11, 10] by l3 ?10 ?11 ?12 +Id : 12, {_}: multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17 [19, 18, 17] by l2 ?17 ?18 ?19 +Id : 49, {_}: multiply ?140 (add ?141 (add ?140 ?142)) =>= ?140 [142, 141, 140] by l2 ?140 ?141 ?142 +Id : 6, {_}: add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 [8, 7, 6] by l1 ?6 ?7 ?8 +Id : 30, {_}: add (add (multiply ?60 ?61) (multiply ?61 ?62)) ?61 =>= ?61 [62, 61, 60] by l3 ?60 ?61 ?62 +Id : 22, {_}: add (add ?32 ?33) ?34 =?= add ?32 (add ?33 ?34) [34, 33, 32] by associativity_of_add ?32 ?33 ?34 +Id : 31, {_}: add (multiply ?65 ?66) ?66 =>= ?66 [66, 65] by Super 30 with 6 at 1,2 +Id : 51, {_}: multiply ?151 (add ?152 ?151) =>= ?151 [152, 151] by Super 49 with 6 at 2,2,2 +Id : 568, {_}: add ?1169 (add ?1170 ?1169) =>= add ?1170 ?1169 [1170, 1169] by Super 31 with 51 at 1,2 +Id : 1034, {_}: add (add ?2011 ?2012) ?2011 =>= add ?2012 ?2011 [2012, 2011] by Super 22 with 568 at 3 +Id : 47, {_}: add ?131 (multiply ?134 ?131) =>= ?131 [134, 131] by Super 6 with 12 at 2,2,2 +Id : 54, {_}: multiply ?165 (add ?165 ?166) =>= ?165 [166, 165] by Super 49 with 8 at 2,2 +Id : 673, {_}: add (add ?1383 ?1384) ?1383 =>= add ?1383 ?1384 [1384, 1383] by Super 47 with 54 at 2,2 +Id : 1524, {_}: add ?2011 ?2012 =?= add ?2012 ?2011 [2012, 2011] by Demod 1034 with 673 at 2 +Id : 161, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =>= multiply (multiply (add ?2 ?3) (add ?3 ?4)) (add ?4 ?2) [4, 3, 2] by Demod 4 with 24 at 3 +Id : 727, {_}: multiply (add ?1499 ?1500) ?1500 =>= ?1500 [1500, 1499] by Super 64 with 12 at 1,2 +Id : 733, {_}: multiply ?1519 (multiply ?1518 ?1519) =>= multiply ?1518 ?1519 [1518, 1519] by Super 727 with 47 at 1,2 +Id : 1435, {_}: add (multiply ?2622 ?2620) (add (multiply ?2621 ?2620) (multiply (multiply ?2621 ?2620) ?2622)) =<= multiply (multiply (add ?2622 ?2620) (add ?2620 (multiply ?2621 ?2620))) (add (multiply ?2621 ?2620) ?2622) [2621, 2620, 2622] by Super 161 with 733 at 1,2,2 +Id : 34, {_}: add ?77 (multiply ?77 ?78) =>= ?77 [78, 77] by Super 6 with 10 at 2,2 +Id : 1478, {_}: add (multiply ?2622 ?2620) (multiply ?2621 ?2620) =<= multiply (multiply (add ?2622 ?2620) (add ?2620 (multiply ?2621 ?2620))) (add (multiply ?2621 ?2620) ?2622) [2621, 2620, 2622] by Demod 1435 with 34 at 2,2 +Id : 1479, {_}: add (multiply ?2622 ?2620) (multiply ?2621 ?2620) =<= multiply (multiply (add ?2622 ?2620) ?2620) (add (multiply ?2621 ?2620) ?2622) [2621, 2620, 2622] by Demod 1478 with 47 at 2,1,3 +Id : 72, {_}: multiply (add ?249 ?250) ?250 =>= ?250 [250, 249] by Super 64 with 12 at 1,2 +Id : 1480, {_}: add (multiply ?2622 ?2620) (multiply ?2621 ?2620) =>= multiply ?2620 (add (multiply ?2621 ?2620) ?2622) [2621, 2620, 2622] by Demod 1479 with 72 at 1,3 +Id : 7843, {_}: multiply ?13007 ?13008 =<= multiply ?13007 (multiply (add ?13009 ?13007) ?13008) [13009, 13008, 13007] by Super 24 with 51 at 1,2 +Id : 582, {_}: multiply ?1218 (add ?1219 ?1218) =>= ?1218 [1219, 1218] by Super 49 with 6 at 2,2,2 +Id : 587, {_}: multiply (multiply ?1235 ?1234) ?1235 =>= multiply ?1235 ?1234 [1234, 1235] by Super 582 with 34 at 2,2 +Id : 1123, {_}: multiply ?2124 ?2125 =<= multiply ?2124 (multiply ?2125 ?2124) [2125, 2124] by Super 24 with 587 at 2 +Id : 1768, {_}: multiply ?2124 ?2125 =?= multiply ?2125 ?2124 [2125, 2124] by Demod 1123 with 733 at 3 +Id : 7897, {_}: multiply ?13228 ?13229 =<= multiply ?13228 (multiply ?13229 (add ?13230 ?13228)) [13230, 13229, 13228] by Super 7843 with 1768 at 2,3 +Id : 586, {_}: multiply ?1232 ?1232 =>= ?1232 [1232] by Super 582 with 31 at 2,2 +Id : 618, {_}: multiply ?1282 ?1283 =<= multiply ?1282 (multiply ?1282 ?1283) [1283, 1282] by Super 24 with 586 at 1,2 +Id : 1266, {_}: add (multiply ?2366 ?2364) (add (multiply ?2364 ?2365) (multiply (multiply ?2364 ?2365) ?2366)) =<= multiply (multiply (add ?2366 ?2364) (add ?2364 (multiply ?2364 ?2365))) (add (multiply ?2364 ?2365) ?2366) [2365, 2364, 2366] by Super 161 with 618 at 1,2,2 +Id : 1308, {_}: add (multiply ?2366 ?2364) (multiply ?2364 ?2365) =<= multiply (multiply (add ?2366 ?2364) (add ?2364 (multiply ?2364 ?2365))) (add (multiply ?2364 ?2365) ?2366) [2365, 2364, 2366] by Demod 1266 with 34 at 2,2 +Id : 1309, {_}: add (multiply ?2366 ?2364) (multiply ?2364 ?2365) =<= multiply (multiply (add ?2366 ?2364) ?2364) (add (multiply ?2364 ?2365) ?2366) [2365, 2364, 2366] by Demod 1308 with 34 at 2,1,3 +Id : 16375, {_}: add (multiply ?29661 ?29662) (multiply ?29662 ?29663) =>= multiply ?29662 (add (multiply ?29662 ?29663) ?29661) [29663, 29662, 29661] by Demod 1309 with 72 at 1,3 +Id : 16381, {_}: add (multiply ?29687 (add ?29686 ?29688)) ?29688 =<= multiply (add ?29686 ?29688) (add (multiply (add ?29686 ?29688) ?29688) ?29687) [29688, 29686, 29687] by Super 16375 with 72 at 2,2 +Id : 16548, {_}: add (multiply ?29687 (add ?29686 ?29688)) ?29688 =>= multiply (add ?29686 ?29688) (add ?29688 ?29687) [29688, 29686, 29687] by Demod 16381 with 72 at 1,2,3 +Id : 91, {_}: multiply n1 ?15 =>= ?15 [15] by Demod 10 with 18 at 1,2 +Id : 101, {_}: n0 =<= inverse n1 [] by Super 91 with 20 at 2 +Id : 206, {_}: add n1 n0 =>= n1 [] by Super 18 with 101 at 2,2 +Id : 214, {_}: multiply n1 (add ?663 n1) =>= n1 [663] by Super 12 with 206 at 2,2,2 +Id : 222, {_}: add ?663 n1 =>= n1 [663] by Demod 214 with 91 at 2 +Id : 259, {_}: multiply ?726 (add ?727 n1) =>= ?726 [727, 726] by Super 12 with 222 at 2,2,2 +Id : 268, {_}: multiply ?726 n1 =>= ?726 [726] by Demod 259 with 222 at 2,2 +Id : 306, {_}: multiply (add ?801 n1) (add n1 ?802) =>= n1 [802, 801] by Super 14 with 268 at 2 +Id : 312, {_}: multiply n1 (add n1 ?802) =>= n1 [802] by Demod 306 with 222 at 1,2 +Id : 313, {_}: add n1 ?802 =>= n1 [802] by Demod 312 with 91 at 2 +Id : 390, {_}: multiply (multiply n1 (add ?884 ?885)) ?884 =>= ?884 [885, 884] by Super 14 with 313 at 1,1,2 +Id : 401, {_}: multiply n1 (multiply (add ?884 ?885) ?884) =>= ?884 [885, 884] by Demod 390 with 24 at 2 +Id : 402, {_}: multiply (add ?884 ?885) ?884 =>= ?884 [885, 884] by Demod 401 with 91 at 2 +Id : 827, {_}: multiply (multiply ?1658 (add ?1656 ?1657)) ?1656 =>= multiply ?1658 ?1656 [1657, 1656, 1658] by Super 24 with 402 at 2,3 +Id : 77, {_}: add (multiply ?268 ?267) (multiply (inverse ?267) ?268) =<= multiply (add ?268 ?267) (multiply (add ?267 (inverse ?267)) (add (inverse ?267) ?268)) [267, 268] by Super 4 with 16 at 2,2 +Id : 88, {_}: add (multiply ?268 ?267) (multiply (inverse ?267) ?268) =>= multiply (add ?268 ?267) (add (inverse ?267) ?268) [267, 268] by Demod 77 with 10 at 2,3 +Id : 1310, {_}: add (multiply ?2366 ?2364) (multiply ?2364 ?2365) =>= multiply ?2364 (add (multiply ?2364 ?2365) ?2366) [2365, 2364, 2366] by Demod 1309 with 72 at 1,3 +Id : 16342, {_}: add (multiply ?29521 ?29522) (multiply ?29520 ?29521) =>= multiply ?29521 (add (multiply ?29521 ?29522) ?29520) [29520, 29522, 29521] by Super 1524 with 1310 at 3 +Id : 51988, {_}: multiply ?268 (add (multiply ?268 ?267) (inverse ?267)) =?= multiply (add ?268 ?267) (add (inverse ?267) ?268) [267, 268] by Demod 88 with 16342 at 2 +Id : 51989, {_}: multiply ?268 (add (inverse ?267) (multiply ?268 ?267)) =?= multiply (add ?268 ?267) (add (inverse ?267) ?268) [267, 268] by Demod 51988 with 1524 at 2,2 +Id : 52070, {_}: multiply (multiply (add ?105798 ?105797) (add (inverse ?105797) ?105798)) (inverse ?105797) =>= multiply ?105798 (inverse ?105797) [105797, 105798] by Super 827 with 51989 at 1,2 +Id : 52559, {_}: multiply (add ?105798 ?105797) (inverse ?105797) =>= multiply ?105798 (inverse ?105797) [105797, 105798] by Demod 52070 with 827 at 2 +Id : 52560, {_}: multiply (inverse ?105797) (add ?105798 ?105797) =>= multiply ?105798 (inverse ?105797) [105798, 105797] by Demod 52559 with 1768 at 2 +Id : 54336, {_}: add (multiply ?108230 (inverse ?108229)) ?108229 =<= multiply (add ?108230 ?108229) (add ?108229 (inverse ?108229)) [108229, 108230] by Super 16548 with 52560 at 1,2 +Id : 54743, {_}: add (multiply ?108230 (inverse ?108229)) ?108229 =>= multiply (add ?108230 ?108229) n1 [108229, 108230] by Demod 54336 with 18 at 2,3 +Id : 55540, {_}: add (multiply ?110128 (inverse ?110129)) ?110129 =>= add ?110128 ?110129 [110129, 110128] by Demod 54743 with 268 at 3 +Id : 57387, {_}: add (multiply (inverse ?112946) ?112947) ?112946 =>= add ?112947 ?112946 [112947, 112946] by Super 55540 with 1768 at 1,2 +Id : 119, {_}: add (multiply ?10 ?11) (add (multiply ?11 ?12) ?11) =>= ?11 [12, 11, 10] by Demod 8 with 22 at 2 +Id : 216, {_}: multiply (multiply n1 (add n0 ?667)) n0 =>= n0 [667] by Super 14 with 206 at 1,1,2 +Id : 219, {_}: multiply n1 (multiply (add n0 ?667) n0) =>= n0 [667] by Demod 216 with 24 at 2 +Id : 220, {_}: multiply (add n0 ?667) n0 =>= n0 [667] by Demod 219 with 91 at 2 +Id : 100, {_}: add n0 ?26 =>= ?26 [26] by Demod 16 with 20 at 1,2 +Id : 221, {_}: multiply ?667 n0 =>= n0 [667] by Demod 220 with 100 at 1,2 +Id : 225, {_}: add ?674 (multiply ?675 n0) =>= ?674 [675, 674] by Super 6 with 221 at 2,2,2 +Id : 251, {_}: add ?674 n0 =>= ?674 [674] by Demod 225 with 221 at 2,2 +Id : 281, {_}: add (multiply ?753 n0) (multiply n0 ?754) =>= n0 [754, 753] by Super 119 with 251 at 2,2 +Id : 292, {_}: add n0 (multiply n0 ?754) =>= n0 [754] by Demod 281 with 221 at 1,2 +Id : 293, {_}: multiply n0 ?754 =>= n0 [754] by Demod 292 with 100 at 2 +Id : 338, {_}: add n0 (add (multiply ?829 ?830) ?829) =>= ?829 [830, 829] by Super 119 with 293 at 1,2 +Id : 377, {_}: add (multiply ?829 ?830) ?829 =>= ?829 [830, 829] by Demod 338 with 100 at 2 +Id : 38238, {_}: add (multiply ?76482 ?76483) (multiply ?76484 ?76482) =>= multiply ?76482 (add (multiply ?76482 ?76483) ?76484) [76484, 76483, 76482] by Super 1524 with 1310 at 3 +Id : 38322, {_}: add ?76856 (multiply ?76857 (add ?76856 ?76855)) =<= multiply (add ?76856 ?76855) (add (multiply (add ?76856 ?76855) ?76856) ?76857) [76855, 76857, 76856] by Super 38238 with 402 at 1,2 +Id : 47380, {_}: add ?97201 (multiply ?97202 (add ?97201 ?97203)) =>= multiply (add ?97201 ?97203) (add ?97201 ?97202) [97203, 97202, 97201] by Demod 38322 with 402 at 1,2,3 +Id : 47486, {_}: add ?97677 (multiply (add ?97677 ?97679) ?97678) =>= multiply (add ?97677 ?97679) (add ?97677 ?97678) [97678, 97679, 97677] by Super 47380 with 1768 at 2,2 +Id : 52196, {_}: multiply ?106255 (add (inverse ?106256) (multiply ?106255 ?106256)) =?= multiply (add ?106255 ?106256) (add (inverse ?106256) ?106255) [106256, 106255] by Demod 51988 with 1524 at 2,2 +Id : 52239, {_}: multiply ?106398 (add (inverse (inverse ?106398)) (multiply ?106398 (inverse ?106398))) =>= multiply n1 (add (inverse (inverse ?106398)) ?106398) [106398] by Super 52196 with 18 at 1,3 +Id : 52779, {_}: multiply ?106398 (add (inverse (inverse ?106398)) n0) =?= multiply n1 (add (inverse (inverse ?106398)) ?106398) [106398] by Demod 52239 with 20 at 2,2,2 +Id : 52780, {_}: multiply ?106398 (inverse (inverse ?106398)) =<= multiply n1 (add (inverse (inverse ?106398)) ?106398) [106398] by Demod 52779 with 251 at 2,2 +Id : 52781, {_}: multiply ?106398 (inverse (inverse ?106398)) =<= add (inverse (inverse ?106398)) ?106398 [106398] by Demod 52780 with 91 at 3 +Id : 53322, {_}: add (inverse (inverse ?107400)) (multiply (multiply ?107400 (inverse (inverse ?107400))) ?107401) =>= multiply (add (inverse (inverse ?107400)) ?107400) (add (inverse (inverse ?107400)) ?107401) [107401, 107400] by Super 47486 with 52781 at 1,2,2 +Id : 177, {_}: add ?561 (multiply (multiply ?560 ?561) ?562) =>= ?561 [562, 560, 561] by Super 6 with 24 at 2,2 +Id : 53342, {_}: inverse (inverse ?107400) =<= multiply (add (inverse (inverse ?107400)) ?107400) (add (inverse (inverse ?107400)) ?107401) [107401, 107400] by Demod 53322 with 177 at 2 +Id : 53343, {_}: inverse (inverse ?107400) =<= multiply (multiply ?107400 (inverse (inverse ?107400))) (add (inverse (inverse ?107400)) ?107401) [107401, 107400] by Demod 53342 with 52781 at 1,3 +Id : 670, {_}: multiply (multiply ?1373 ?1371) (add ?1371 ?1372) =>= multiply ?1373 ?1371 [1372, 1371, 1373] by Super 24 with 54 at 2,3 +Id : 53344, {_}: inverse (inverse ?107400) =<= multiply ?107400 (inverse (inverse ?107400)) [107400] by Demod 53343 with 670 at 3 +Id : 53988, {_}: add (inverse (inverse ?107962)) ?107962 =>= ?107962 [107962] by Super 377 with 53344 at 1,2 +Id : 53931, {_}: inverse (inverse ?106398) =<= add (inverse (inverse ?106398)) ?106398 [106398] by Demod 52781 with 53344 at 2 +Id : 54117, {_}: inverse (inverse ?107962) =>= ?107962 [107962] by Demod 53988 with 53931 at 2 +Id : 57388, {_}: add (multiply ?112949 ?112950) (inverse ?112949) =>= add ?112950 (inverse ?112949) [112950, 112949] by Super 57387 with 54117 at 1,1,2 +Id : 57660, {_}: add (inverse ?112949) (multiply ?112949 ?112950) =>= add ?112950 (inverse ?112949) [112950, 112949] by Demod 57388 with 1524 at 2 +Id : 1445, {_}: multiply ?2651 (multiply ?2652 ?2651) =>= multiply ?2652 ?2651 [2652, 2651] by Super 727 with 47 at 1,2 +Id : 18543, {_}: multiply ?33695 (multiply ?33696 (multiply ?33697 ?33695)) =>= multiply (multiply ?33696 ?33697) ?33695 [33697, 33696, 33695] by Super 1445 with 24 at 2,2 +Id : 1430, {_}: multiply (multiply ?2603 ?2601) (multiply ?2602 ?2601) =>= multiply ?2603 (multiply ?2602 ?2601) [2602, 2601, 2603] by Super 24 with 733 at 2,3 +Id : 18612, {_}: multiply ?33994 (multiply ?33993 (multiply ?33995 ?33994)) =?= multiply (multiply (multiply ?33993 ?33994) ?33995) ?33994 [33995, 33993, 33994] by Super 18543 with 1430 at 2,2 +Id : 1449, {_}: multiply ?2666 (multiply ?2664 (multiply ?2665 ?2666)) =>= multiply (multiply ?2664 ?2665) ?2666 [2665, 2664, 2666] by Super 1445 with 24 at 2,2 +Id : 18850, {_}: multiply (multiply ?33993 ?33995) ?33994 =<= multiply (multiply (multiply ?33993 ?33994) ?33995) ?33994 [33994, 33995, 33993] by Demod 18612 with 1449 at 2 +Id : 4399, {_}: multiply (multiply (multiply ?6795 ?6794) ?6796) ?6794 =>= multiply (multiply ?6795 ?6794) ?6796 [6796, 6794, 6795] by Super 51 with 177 at 2,2 +Id : 43487, {_}: multiply (multiply ?33993 ?33995) ?33994 =?= multiply (multiply ?33993 ?33994) ?33995 [33994, 33995, 33993] by Demod 18850 with 4399 at 3 +Id : 54429, {_}: multiply (multiply (inverse ?108571) ?108573) (add ?108572 ?108571) =>= multiply (multiply ?108572 (inverse ?108571)) ?108573 [108572, 108573, 108571] by Super 43487 with 52560 at 1,3 +Id : 54563, {_}: multiply (inverse ?108571) (multiply ?108573 (add ?108572 ?108571)) =>= multiply (multiply ?108572 (inverse ?108571)) ?108573 [108572, 108573, 108571] by Demod 54429 with 24 at 2 +Id : 728, {_}: multiply ?1504 (multiply ?1502 (multiply ?1504 ?1503)) =>= multiply ?1502 (multiply ?1504 ?1503) [1503, 1502, 1504] by Super 727 with 6 at 1,2 +Id : 9518, {_}: multiply (multiply ?16547 ?16548) (multiply ?16547 ?16549) =>= multiply ?16548 (multiply ?16547 ?16549) [16549, 16548, 16547] by Super 24 with 728 at 3 +Id : 1122, {_}: multiply (multiply ?2120 ?2121) ?2122 =<= multiply (multiply ?2120 ?2121) (multiply ?2120 ?2122) [2122, 2121, 2120] by Super 24 with 587 at 1,2 +Id : 30202, {_}: multiply (multiply ?16547 ?16548) ?16549 =?= multiply ?16548 (multiply ?16547 ?16549) [16549, 16548, 16547] by Demod 9518 with 1122 at 2 +Id : 54564, {_}: multiply (inverse ?108571) (multiply ?108573 (add ?108572 ?108571)) =>= multiply (inverse ?108571) (multiply ?108572 ?108573) [108572, 108573, 108571] by Demod 54563 with 30202 at 3 +Id : 145944, {_}: add (inverse (inverse ?250795)) (multiply (inverse ?250795) (multiply ?250797 ?250796)) =>= add (multiply ?250796 (add ?250797 ?250795)) (inverse (inverse ?250795)) [250796, 250797, 250795] by Super 57660 with 54564 at 2,2 +Id : 146263, {_}: add (multiply ?250797 ?250796) (inverse (inverse ?250795)) =<= add (multiply ?250796 (add ?250797 ?250795)) (inverse (inverse ?250795)) [250795, 250796, 250797] by Demod 145944 with 57660 at 2 +Id : 146264, {_}: add (inverse (inverse ?250795)) (multiply ?250797 ?250796) =<= add (multiply ?250796 (add ?250797 ?250795)) (inverse (inverse ?250795)) [250796, 250797, 250795] by Demod 146263 with 1524 at 2 +Id : 146265, {_}: add ?250795 (multiply ?250797 ?250796) =<= add (multiply ?250796 (add ?250797 ?250795)) (inverse (inverse ?250795)) [250796, 250797, 250795] by Demod 146264 with 54117 at 1,2 +Id : 146266, {_}: add ?250795 (multiply ?250797 ?250796) =<= add (inverse (inverse ?250795)) (multiply ?250796 (add ?250797 ?250795)) [250796, 250797, 250795] by Demod 146265 with 1524 at 3 +Id : 146267, {_}: add ?250795 (multiply ?250797 ?250796) =<= add ?250795 (multiply ?250796 (add ?250797 ?250795)) [250796, 250797, 250795] by Demod 146266 with 54117 at 1,3 +Id : 38316, {_}: add ?76835 (multiply ?76836 (add ?76834 ?76835)) =<= multiply (add ?76834 ?76835) (add (multiply (add ?76834 ?76835) ?76835) ?76836) [76834, 76836, 76835] by Super 38238 with 72 at 1,2 +Id : 38565, {_}: add ?76835 (multiply ?76836 (add ?76834 ?76835)) =>= multiply (add ?76834 ?76835) (add ?76835 ?76836) [76834, 76836, 76835] by Demod 38316 with 72 at 1,2,3 +Id : 146268, {_}: add ?250795 (multiply ?250797 ?250796) =<= multiply (add ?250797 ?250795) (add ?250795 ?250796) [250796, 250797, 250795] by Demod 146267 with 38565 at 3 +Id : 147010, {_}: multiply ?252446 (add ?252445 ?252444) =<= multiply ?252446 (add ?252444 (multiply ?252445 ?252446)) [252444, 252445, 252446] by Super 7897 with 146268 at 2,3 +Id : 152622, {_}: multiply a (add c b) === multiply a (add c b) [] by Demod 152621 with 1524 at 2,3 +Id : 152621, {_}: multiply a (add c b) =<= multiply a (add b c) [] by Demod 19333 with 147010 at 3 +Id : 19333, {_}: multiply a (add c b) =<= multiply a (add c (multiply b a)) [] by Demod 19332 with 1524 at 2,3 +Id : 19332, {_}: multiply a (add c b) =<= multiply a (add (multiply b a) c) [] by Demod 1703 with 1480 at 3 +Id : 1703, {_}: multiply a (add c b) =<= add (multiply c a) (multiply b a) [] by Demod 1702 with 1524 at 3 +Id : 1702, {_}: multiply a (add c b) =<= add (multiply b a) (multiply c a) [] by Demod 2 with 1524 at 2,2 +Id : 2, {_}: multiply a (add b c) =<= add (multiply b a) (multiply c a) [] by prove_multiply_add_property +% SZS output end CNFRefutation for BOO031-1.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + b is 96 + c is 94 + d is 93 + e is 92 + f is 91 + g is 90 + inverse is 97 + left_inverse is 85 + multiply is 95 + prove_single_axiom is 89 + right_inverse is 84 + ternary_multiply_1 is 87 + ternary_multiply_2 is 86 +Facts + Id : 4, {_}: + multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) + =>= + multiply ?2 ?3 (multiply ?4 ?5 ?6) + [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6 + Id : 6, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9 + Id : 8, {_}: + multiply ?11 ?11 ?12 =>= ?11 + [12, 11] by ternary_multiply_2 ?11 ?12 + Id : 10, {_}: + multiply (inverse ?14) ?14 ?15 =>= ?15 + [15, 14] by left_inverse ?14 ?15 + Id : 12, {_}: + multiply ?17 ?18 (inverse ?18) =>= ?17 + [18, 17] by right_inverse ?17 ?18 +Goal + Id : 2, {_}: + multiply (multiply a (inverse a) b) + (inverse (multiply (multiply c d e) f (multiply c d g))) + (multiply d (multiply g f e) c) + =>= + b + [] by prove_single_axiom +Found proof, 2.692905s +% SZS status Unsatisfiable for BOO034-1.p +% SZS output start CNFRefutation for BOO034-1.p +Id : 8, {_}: multiply ?11 ?11 ?12 =>= ?11 [12, 11] by ternary_multiply_2 ?11 ?12 +Id : 6, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9 +Id : 12, {_}: multiply ?17 ?18 (inverse ?18) =>= ?17 [18, 17] by right_inverse ?17 ?18 +Id : 10, {_}: multiply (inverse ?14) ?14 ?15 =>= ?15 [15, 14] by left_inverse ?14 ?15 +Id : 4, {_}: multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) =>= multiply ?2 ?3 (multiply ?4 ?5 ?6) [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6 +Id : 75, {_}: multiply ?212 ?213 ?214 =<= multiply ?212 ?213 (multiply ?215 (multiply ?212 ?213 ?214) ?214) [215, 214, 213, 212] by Super 4 with 6 at 2 +Id : 84, {_}: multiply ?257 ?258 ?259 =<= multiply ?257 ?258 (multiply ?257 ?258 ?259) [259, 258, 257] by Super 75 with 8 at 3,3 +Id : 115, {_}: multiply (multiply ?285 ?286 ?288) ?289 (multiply ?285 ?286 ?287) =?= multiply ?285 ?286 (multiply ?288 ?289 (multiply ?285 ?286 ?287)) [287, 289, 288, 286, 285] by Super 4 with 84 at 3,2 +Id : 298, {_}: multiply ?735 ?736 (multiply ?737 ?738 ?739) =<= multiply ?735 ?736 (multiply ?737 ?738 (multiply ?735 ?736 ?739)) [739, 738, 737, 736, 735] by Demod 115 with 4 at 2 +Id : 184, {_}: multiply ?446 ?447 ?448 =<= multiply ?446 ?447 (multiply ?448 (multiply ?446 ?447 ?448) ?449) [449, 448, 447, 446] by Super 4 with 8 at 2 +Id : 189, {_}: multiply ?470 ?471 (inverse ?471) =<= multiply ?470 ?471 (multiply (inverse ?471) ?470 ?472) [472, 471, 470] by Super 184 with 12 at 2,3,3 +Id : 225, {_}: ?470 =<= multiply ?470 ?471 (multiply (inverse ?471) ?470 ?472) [472, 471, 470] by Demod 189 with 12 at 2 +Id : 321, {_}: multiply (inverse ?865) ?864 (multiply ?864 ?865 ?866) =>= multiply (inverse ?865) ?864 ?864 [866, 864, 865] by Super 298 with 225 at 3,3 +Id : 387, {_}: multiply (inverse ?963) ?964 (multiply ?964 ?963 ?965) =>= ?964 [965, 964, 963] by Demod 321 with 6 at 3 +Id : 389, {_}: multiply (inverse ?974) ?973 ?974 =>= ?973 [973, 974] by Super 387 with 6 at 3,2 +Id : 437, {_}: ?1071 =<= inverse (inverse ?1071) [1071] by Super 12 with 389 at 2 +Id : 462, {_}: multiply ?1119 (inverse ?1119) ?1120 =>= ?1120 [1120, 1119] by Super 10 with 437 at 1,2 +Id : 116, {_}: multiply (multiply ?291 ?292 ?293) ?294 (multiply ?291 ?292 ?295) =?= multiply ?291 ?292 (multiply (multiply ?291 ?292 ?293) ?294 ?295) [295, 294, 293, 292, 291] by Super 4 with 84 at 1,2 +Id : 12671, {_}: multiply ?19232 ?19233 (multiply ?19234 ?19235 ?19236) =<= multiply ?19232 ?19233 (multiply (multiply ?19232 ?19233 ?19234) ?19235 ?19236) [19236, 19235, 19234, 19233, 19232] by Demod 116 with 4 at 2 +Id : 80, {_}: multiply ?236 ?237 (inverse ?237) =<= multiply ?236 ?237 (multiply ?238 ?236 (inverse ?237)) [238, 237, 236] by Super 75 with 12 at 2,3,3 +Id : 105, {_}: ?236 =<= multiply ?236 ?237 (multiply ?238 ?236 (inverse ?237)) [238, 237, 236] by Demod 80 with 12 at 2 +Id : 996, {_}: ?2202 =<= multiply ?2202 (inverse ?2203) (multiply ?2204 ?2202 ?2203) [2204, 2203, 2202] by Super 105 with 437 at 3,3,3 +Id : 1012, {_}: ?2262 =<= multiply ?2262 (inverse (multiply ?2261 ?2263 (inverse ?2262))) ?2263 [2263, 2261, 2262] by Super 996 with 105 at 3,3 +Id : 459, {_}: ?1109 =<= multiply ?1109 (inverse ?1108) (multiply ?1108 ?1109 ?1110) [1110, 1108, 1109] by Super 225 with 437 at 1,3,3 +Id : 1017, {_}: inverse ?2283 =<= multiply (inverse ?2283) (inverse (multiply ?2283 ?2285 ?2284)) ?2285 [2284, 2285, 2283] by Super 996 with 459 at 3,3 +Id : 1909, {_}: ?3987 =<= multiply ?3987 (inverse (inverse ?3985)) (inverse (multiply ?3985 (inverse ?3987) ?3986)) [3986, 3985, 3987] by Super 1012 with 1017 at 1,2,3 +Id : 1996, {_}: ?3987 =<= multiply ?3987 ?3985 (inverse (multiply ?3985 (inverse ?3987) ?3986)) [3986, 3985, 3987] by Demod 1909 with 437 at 2,3 +Id : 2510, {_}: ?5132 =<= multiply ?5132 (multiply ?5132 (inverse ?5131) ?5133) ?5131 [5133, 5131, 5132] by Super 105 with 1996 at 3,3 +Id : 2812, {_}: multiply ?5719 (inverse (inverse ?5721)) ?5720 =<= multiply (multiply ?5719 (inverse (inverse ?5721)) ?5720) ?5721 ?5719 [5720, 5721, 5719] by Super 105 with 2510 at 3,3 +Id : 2874, {_}: multiply ?5719 ?5721 ?5720 =<= multiply (multiply ?5719 (inverse (inverse ?5721)) ?5720) ?5721 ?5719 [5720, 5721, 5719] by Demod 2812 with 437 at 2,2 +Id : 2875, {_}: multiply ?5719 ?5721 ?5720 =<= multiply (multiply ?5719 ?5721 ?5720) ?5721 ?5719 [5720, 5721, 5719] by Demod 2874 with 437 at 2,1,3 +Id : 12777, {_}: multiply ?19864 ?19863 (multiply ?19862 ?19863 ?19864) =?= multiply ?19864 ?19863 (multiply ?19864 ?19863 ?19862) [19862, 19863, 19864] by Super 12671 with 2875 at 3,3 +Id : 12993, {_}: multiply ?20226 ?20227 (multiply ?20228 ?20227 ?20226) =>= multiply ?20226 ?20227 ?20228 [20228, 20227, 20226] by Demod 12777 with 84 at 3 +Id : 19, {_}: multiply ?58 ?59 ?61 =<= multiply ?58 ?59 (multiply ?60 (multiply ?58 ?59 ?61) ?61) [60, 61, 59, 58] by Super 4 with 6 at 2 +Id : 463, {_}: multiply ?1122 ?1123 (inverse ?1122) =>= ?1123 [1123, 1122] by Super 389 with 437 at 1,2 +Id : 607, {_}: multiply ?1371 ?1372 (inverse ?1371) =<= multiply ?1371 ?1372 (multiply ?1373 ?1372 (inverse ?1371)) [1373, 1372, 1371] by Super 19 with 463 at 2,3,3 +Id : 625, {_}: ?1372 =<= multiply ?1371 ?1372 (multiply ?1373 ?1372 (inverse ?1371)) [1373, 1371, 1372] by Demod 607 with 463 at 2 +Id : 460, {_}: ?1113 =<= multiply ?1113 (inverse ?1112) (multiply ?1114 ?1113 ?1112) [1114, 1112, 1113] by Super 105 with 437 at 3,3,3 +Id : 1018, {_}: inverse ?2287 =<= multiply (inverse ?2287) (inverse (multiply ?2288 ?2289 ?2287)) ?2289 [2289, 2288, 2287] by Super 996 with 460 at 3,3 +Id : 2078, {_}: ?4356 =<= multiply ?4356 (inverse (inverse ?4354)) (inverse (multiply ?4355 (inverse ?4356) ?4354)) [4355, 4354, 4356] by Super 1012 with 1018 at 1,2,3 +Id : 2124, {_}: ?4356 =<= multiply ?4356 ?4354 (inverse (multiply ?4355 (inverse ?4356) ?4354)) [4355, 4354, 4356] by Demod 2078 with 437 at 2,3 +Id : 3650, {_}: ?7215 =<= multiply ?7215 (multiply ?7216 (inverse ?7214) ?7215) ?7214 [7214, 7216, 7215] by Super 105 with 2124 at 3,3 +Id : 4032, {_}: multiply ?7968 (inverse (inverse ?7969)) ?7967 =<= multiply ?7969 (multiply ?7968 (inverse (inverse ?7969)) ?7967) ?7967 [7967, 7969, 7968] by Super 625 with 3650 at 3,3 +Id : 4103, {_}: multiply ?7968 ?7969 ?7967 =<= multiply ?7969 (multiply ?7968 (inverse (inverse ?7969)) ?7967) ?7967 [7967, 7969, 7968] by Demod 4032 with 437 at 2,2 +Id : 4104, {_}: multiply ?7968 ?7969 ?7967 =<= multiply ?7969 (multiply ?7968 ?7969 ?7967) ?7967 [7967, 7969, 7968] by Demod 4103 with 437 at 2,2,3 +Id : 13062, {_}: multiply ?20502 (multiply ?20501 ?20503 ?20502) (multiply ?20501 ?20503 ?20502) =>= multiply ?20502 (multiply ?20501 ?20503 ?20502) ?20503 [20503, 20501, 20502] by Super 12993 with 4104 at 3,2 +Id : 13612, {_}: multiply ?21322 ?21323 ?21324 =<= multiply ?21324 (multiply ?21322 ?21323 ?21324) ?21323 [21324, 21323, 21322] by Demod 13062 with 6 at 2 +Id : 12903, {_}: multiply ?19864 ?19863 (multiply ?19862 ?19863 ?19864) =>= multiply ?19864 ?19863 ?19862 [19862, 19863, 19864] by Demod 12777 with 84 at 3 +Id : 13625, {_}: multiply ?21368 ?21369 (multiply ?21367 ?21369 ?21368) =<= multiply (multiply ?21367 ?21369 ?21368) (multiply ?21368 ?21369 ?21367) ?21369 [21367, 21369, 21368] by Super 13612 with 12903 at 2,3 +Id : 13783, {_}: multiply ?21368 ?21369 ?21367 =<= multiply (multiply ?21367 ?21369 ?21368) (multiply ?21368 ?21369 ?21367) ?21369 [21367, 21369, 21368] by Demod 13625 with 12903 at 2 +Id : 34256, {_}: multiply (multiply ?56219 ?56220 ?56221) ?56222 ?56219 =<= multiply ?56219 ?56220 (multiply ?56221 ?56222 (multiply ?56223 ?56219 (inverse ?56220))) [56223, 56222, 56221, 56220, 56219] by Super 4 with 105 at 3,2 +Id : 34781, {_}: multiply (multiply ?57676 ?57677 ?57678) ?57678 ?57676 =>= multiply ?57676 ?57677 ?57678 [57678, 57677, 57676] by Super 34256 with 8 at 3,3 +Id : 34858, {_}: multiply (multiply ?57992 ?57993 ?57994) ?57994 ?57993 =?= multiply ?57993 (multiply ?57992 ?57993 ?57994) ?57994 [57994, 57993, 57992] by Super 34781 with 4104 at 1,2 +Id : 35129, {_}: multiply (multiply ?57992 ?57993 ?57994) ?57994 ?57993 =>= multiply ?57992 ?57993 ?57994 [57994, 57993, 57992] by Demod 34858 with 4104 at 3 +Id : 36343, {_}: multiply (multiply ?60132 ?60133 ?60134) ?60134 ?60133 =<= multiply (multiply ?60133 ?60134 (multiply ?60132 ?60133 ?60134)) (multiply ?60132 ?60133 ?60134) ?60134 [60134, 60133, 60132] by Super 13783 with 35129 at 2,3 +Id : 36700, {_}: multiply ?60132 ?60133 ?60134 =<= multiply (multiply ?60133 ?60134 (multiply ?60132 ?60133 ?60134)) (multiply ?60132 ?60133 ?60134) ?60134 [60134, 60133, 60132] by Demod 36343 with 35129 at 2 +Id : 36701, {_}: multiply ?60132 ?60133 ?60134 =<= multiply ?60133 ?60134 (multiply ?60132 ?60133 ?60134) [60134, 60133, 60132] by Demod 36700 with 35129 at 3 +Id : 136, {_}: multiply ?291 ?292 (multiply ?293 ?294 ?295) =<= multiply ?291 ?292 (multiply (multiply ?291 ?292 ?293) ?294 ?295) [295, 294, 293, 292, 291] by Demod 116 with 4 at 2 +Id : 2796, {_}: multiply ?5648 (inverse (inverse ?5650)) ?5649 =<= multiply ?5650 (multiply ?5648 (inverse (inverse ?5650)) ?5649) ?5648 [5649, 5650, 5648] by Super 625 with 2510 at 3,3 +Id : 2887, {_}: multiply ?5648 ?5650 ?5649 =<= multiply ?5650 (multiply ?5648 (inverse (inverse ?5650)) ?5649) ?5648 [5649, 5650, 5648] by Demod 2796 with 437 at 2,2 +Id : 2888, {_}: multiply ?5648 ?5650 ?5649 =<= multiply ?5650 (multiply ?5648 ?5650 ?5649) ?5648 [5649, 5650, 5648] by Demod 2887 with 437 at 2,2,3 +Id : 34853, {_}: multiply (multiply ?57974 ?57973 ?57972) ?57974 ?57973 =?= multiply ?57973 (multiply ?57974 ?57973 ?57972) ?57974 [57972, 57973, 57974] by Super 34781 with 2888 at 1,2 +Id : 35120, {_}: multiply (multiply ?57974 ?57973 ?57972) ?57974 ?57973 =>= multiply ?57974 ?57973 ?57972 [57972, 57973, 57974] by Demod 34853 with 2888 at 3 +Id : 35775, {_}: multiply ?59268 ?59269 (multiply ?59270 ?59268 ?59269) =?= multiply ?59268 ?59269 (multiply ?59268 ?59269 ?59270) [59270, 59269, 59268] by Super 136 with 35120 at 3,3 +Id : 36064, {_}: multiply ?59268 ?59269 (multiply ?59270 ?59268 ?59269) =>= multiply ?59268 ?59269 ?59270 [59270, 59269, 59268] by Demod 35775 with 84 at 3 +Id : 37436, {_}: multiply ?60132 ?60133 ?60134 =?= multiply ?60133 ?60134 ?60132 [60134, 60133, 60132] by Demod 36701 with 36064 at 3 +Id : 25, {_}: multiply ?84 ?85 ?86 =<= multiply ?84 ?85 (multiply ?86 (multiply ?84 ?85 ?86) ?87) [87, 86, 85, 84] by Super 4 with 8 at 2 +Id : 317, {_}: multiply ?845 (multiply ?846 ?847 ?845) (multiply ?846 ?847 ?848) =?= multiply ?845 (multiply ?846 ?847 ?845) (multiply ?846 ?847 ?845) [848, 847, 846, 845] by Super 298 with 25 at 3,3 +Id : 24761, {_}: multiply ?36657 (multiply ?36658 ?36659 ?36657) (multiply ?36658 ?36659 ?36660) =>= multiply ?36658 ?36659 ?36657 [36660, 36659, 36658, 36657] by Demod 317 with 6 at 3 +Id : 24766, {_}: multiply ?36681 (multiply ?36682 ?36683 ?36681) ?36682 =>= multiply ?36682 ?36683 ?36681 [36683, 36682, 36681] by Super 24761 with 12 at 3,2 +Id : 37850, {_}: multiply ?63783 ?63784 (multiply ?63783 ?63785 ?63784) =>= multiply ?63783 ?63785 ?63784 [63785, 63784, 63783] by Super 24766 with 37436 at 2 +Id : 37801, {_}: multiply ?63587 ?63589 (multiply ?63587 ?63588 ?63589) =>= multiply ?63587 ?63589 ?63588 [63588, 63589, 63587] by Super 12903 with 37436 at 3,2 +Id : 41412, {_}: multiply ?63783 ?63784 ?63785 =?= multiply ?63783 ?63785 ?63784 [63785, 63784, 63783] by Demod 37850 with 37801 at 2 +Id : 42484, {_}: b === b [] by Demod 42483 with 12 at 2 +Id : 42483, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d c (multiply g f e))) =>= b [] by Demod 42482 with 41412 at 3,1,3,2 +Id : 42482, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d c (multiply g e f))) =>= b [] by Demod 42481 with 41412 at 1,3,2 +Id : 42481, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d (multiply g e f) c)) =>= b [] by Demod 42480 with 41412 at 2,2 +Id : 42480, {_}: multiply b (multiply d (multiply g f e) c) (inverse (multiply d (multiply g e f) c)) =>= b [] by Demod 38492 with 41412 at 2 +Id : 38492, {_}: multiply b (inverse (multiply d (multiply g e f) c)) (multiply d (multiply g f e) c) =>= b [] by Demod 38491 with 37436 at 2,1,2,2 +Id : 38491, {_}: multiply b (inverse (multiply d (multiply f g e) c)) (multiply d (multiply g f e) c) =>= b [] by Demod 38490 with 37436 at 2,1,2,2 +Id : 38490, {_}: multiply b (inverse (multiply d (multiply e f g) c)) (multiply d (multiply g f e) c) =>= b [] by Demod 595 with 37436 at 1,2,2 +Id : 595, {_}: multiply b (inverse (multiply c d (multiply e f g))) (multiply d (multiply g f e) c) =>= b [] by Demod 53 with 462 at 1,2 +Id : 53, {_}: multiply (multiply a (inverse a) b) (inverse (multiply c d (multiply e f g))) (multiply d (multiply g f e) c) =>= b [] by Demod 2 with 4 at 1,2,2 +Id : 2, {_}: multiply (multiply a (inverse a) b) (inverse (multiply (multiply c d e) f (multiply c d g))) (multiply d (multiply g f e) c) =>= b [] by prove_single_axiom +% SZS output end CNFRefutation for BOO034-1.p +Order + == is 100 + _ is 99 + a is 97 + add is 96 + b is 98 + dn1 is 93 + huntinton_1 is 95 + inverse is 94 +Facts + Id : 4, {_}: + inverse + (add (inverse (add (inverse (add ?2 ?3)) ?4)) + (inverse + (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) + =>= + ?4 + [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 +Goal + Id : 2, {_}: add b a =>= add a b [] by huntinton_1 +Found proof, 0.405036s +% SZS status Unsatisfiable for BOO072-1.p +% SZS output start CNFRefutation for BOO072-1.p +Id : 5, {_}: inverse (add (inverse (add (inverse (add ?7 ?8)) ?9)) (inverse (add ?7 (inverse (add (inverse ?9) (inverse (add ?9 ?10))))))) =>= ?9 [10, 9, 8, 7] by dn1 ?7 ?8 ?9 ?10 +Id : 4, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 +Id : 17, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?80)) ?81)) ?80)) ?82)) (inverse ?80))) ?80) =>= inverse ?80 [82, 81, 80] by Super 5 with 4 at 2,1,2 +Id : 22, {_}: inverse (add (inverse (add ?111 (inverse ?111))) ?111) =>= inverse ?111 [111] by Super 17 with 4 at 1,1,1,1,2 +Id : 36, {_}: inverse (add (inverse ?135) (inverse (add ?135 (inverse (add (inverse ?135) (inverse (add ?135 ?136))))))) =>= ?135 [136, 135] by Super 4 with 22 at 1,1,2 +Id : 57, {_}: inverse (add (inverse (add (inverse (add ?192 ?193)) ?190)) (inverse (add ?192 ?190))) =>= ?190 [190, 193, 192] by Super 4 with 36 at 2,1,2,1,2 +Id : 131, {_}: inverse (add (inverse (add (inverse (add ?400 ?401)) ?402)) (inverse (add ?400 ?402))) =>= ?402 [402, 401, 400] by Super 4 with 36 at 2,1,2,1,2 +Id : 141, {_}: inverse (add (inverse (add ?444 ?446)) (inverse (add (inverse ?444) ?446))) =>= ?446 [446, 444] by Super 131 with 36 at 1,1,1,1,2 +Id : 175, {_}: inverse (add ?545 (inverse (add ?544 (inverse (add (inverse ?544) ?545))))) =>= inverse (add (inverse ?544) ?545) [544, 545] by Super 57 with 141 at 1,1,2 +Id : 341, {_}: inverse (add (inverse ?894) (inverse (add ?894 (inverse (add (inverse ?894) (inverse ?894)))))) =>= ?894 [894] by Super 36 with 175 at 2,1,2,1,2 +Id : 390, {_}: inverse (add (inverse ?894) (inverse ?894)) =>= ?894 [894] by Demod 341 with 175 at 2 +Id : 176, {_}: inverse (add (inverse (add ?547 ?548)) (inverse (add (inverse ?547) ?548))) =>= ?548 [548, 547] by Super 131 with 36 at 1,1,1,1,2 +Id : 61, {_}: inverse (add (inverse ?208) (inverse (add ?208 (inverse (add (inverse ?208) (inverse (add ?208 ?209))))))) =>= ?208 [209, 208] by Super 4 with 22 at 1,1,2 +Id : 70, {_}: inverse (add (inverse ?244) (inverse (add ?244 ?244))) =>= ?244 [244] by Super 61 with 36 at 2,1,2,1,2 +Id : 189, {_}: inverse (add (inverse (add ?598 (inverse (add ?598 ?598)))) ?598) =>= inverse (add ?598 ?598) [598] by Super 176 with 70 at 2,1,2 +Id : 209, {_}: inverse (add (inverse (add ?635 ?635)) (inverse (add ?635 ?635))) =>= ?635 [635] by Super 57 with 189 at 1,1,2 +Id : 418, {_}: add ?635 ?635 =>= ?635 [635] by Demod 209 with 390 at 2 +Id : 441, {_}: inverse (inverse ?1072) =>= ?1072 [1072] by Demod 390 with 418 at 1,2 +Id : 447, {_}: inverse (inverse (add (inverse ?1092) ?1091)) =<= add ?1091 (inverse (add ?1092 (inverse (add (inverse ?1092) ?1091)))) [1091, 1092] by Super 441 with 175 at 1,2 +Id : 427, {_}: inverse (inverse ?894) =>= ?894 [894] by Demod 390 with 418 at 1,2 +Id : 835, {_}: add (inverse ?1599) ?1600 =<= add ?1600 (inverse (add ?1599 (inverse (add (inverse ?1599) ?1600)))) [1600, 1599] by Demod 447 with 427 at 2 +Id : 839, {_}: add (inverse (inverse ?1617)) ?1618 =<= add ?1618 (inverse (add (inverse ?1617) (inverse (add ?1617 ?1618)))) [1618, 1617] by Super 835 with 427 at 1,1,2,1,2,3 +Id : 866, {_}: add ?1617 ?1618 =<= add ?1618 (inverse (add (inverse ?1617) (inverse (add ?1617 ?1618)))) [1618, 1617] by Demod 839 with 427 at 1,2 +Id : 459, {_}: add (inverse ?1092) ?1091 =<= add ?1091 (inverse (add ?1092 (inverse (add (inverse ?1092) ?1091)))) [1091, 1092] by Demod 447 with 427 at 2 +Id : 8, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?28)) ?27)) ?28)) ?30)) (inverse ?28))) ?28) =>= inverse ?28 [30, 27, 28] by Super 5 with 4 at 2,1,2 +Id : 428, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add ?28 ?27)) ?28)) ?30)) (inverse ?28))) ?28) =>= inverse ?28 [30, 27, 28] by Demod 8 with 427 at 1,1,1,1,1,1,1,1,1,1,2 +Id : 443, {_}: inverse (inverse ?1079) =<= add (inverse (add ?1079 (inverse ?1079))) ?1079 [1079] by Super 441 with 22 at 1,2 +Id : 476, {_}: ?1141 =<= add (inverse (add ?1141 (inverse ?1141))) ?1141 [1141] by Demod 443 with 427 at 2 +Id : 483, {_}: inverse ?1163 =<= add (inverse (add (inverse ?1163) ?1163)) (inverse ?1163) [1163] by Super 476 with 427 at 2,1,1,3 +Id : 545, {_}: inverse (add (inverse (add (inverse (add (inverse (inverse ?1237)) ?1238)) (inverse (inverse ?1237)))) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Super 428 with 483 at 1,1,1,1,1,1,1,2 +Id : 596, {_}: inverse (add (inverse (add (inverse (add ?1237 ?1238)) (inverse (inverse ?1237)))) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Demod 545 with 427 at 1,1,1,1,1,1,2 +Id : 597, {_}: inverse (add (inverse (add (inverse (add ?1237 ?1238)) ?1237)) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Demod 596 with 427 at 2,1,1,1,2 +Id : 1828, {_}: inverse (add (inverse (add (inverse (add ?2824 ?2825)) ?2824)) (inverse ?2824)) =>= ?2824 [2825, 2824] by Demod 597 with 427 at 3 +Id : 1862, {_}: inverse (add ?2924 (inverse (inverse (add ?2923 ?2924)))) =>= inverse (add ?2923 ?2924) [2923, 2924] by Super 1828 with 57 at 1,1,2 +Id : 1957, {_}: inverse (add ?2924 (add ?2923 ?2924)) =>= inverse (add ?2923 ?2924) [2923, 2924] by Demod 1862 with 427 at 2,1,2 +Id : 1989, {_}: inverse (inverse (add ?3044 ?3043)) =<= add ?3043 (add ?3044 ?3043) [3043, 3044] by Super 427 with 1957 at 1,2 +Id : 2126, {_}: add ?3204 ?3205 =<= add ?3205 (add ?3204 ?3205) [3205, 3204] by Demod 1989 with 427 at 2 +Id : 733, {_}: inverse ?1452 =<= add (inverse (add ?1453 ?1452)) (inverse (add (inverse ?1453) ?1452)) [1453, 1452] by Super 441 with 141 at 1,2 +Id : 738, {_}: inverse ?1475 =<= add (inverse (add (inverse ?1474) ?1475)) (inverse (add ?1474 ?1475)) [1474, 1475] by Super 733 with 427 at 1,1,2,3 +Id : 2134, {_}: add (inverse (add (inverse ?3224) ?3223)) (inverse (add ?3224 ?3223)) =>= add (inverse (add ?3224 ?3223)) (inverse ?3223) [3223, 3224] by Super 2126 with 738 at 2,3 +Id : 2159, {_}: inverse ?3223 =<= add (inverse (add ?3224 ?3223)) (inverse ?3223) [3224, 3223] by Demod 2134 with 738 at 2 +Id : 2197, {_}: inverse (add (inverse (inverse ?3289)) (inverse (add ?3290 (inverse ?3289)))) =>= inverse ?3289 [3290, 3289] by Super 57 with 2159 at 1,1,1,2 +Id : 2249, {_}: inverse (add ?3289 (inverse (add ?3290 (inverse ?3289)))) =>= inverse ?3289 [3290, 3289] by Demod 2197 with 427 at 1,1,2 +Id : 2455, {_}: add (inverse ?3654) (inverse (add ?3653 (inverse (inverse ?3654)))) =<= add (inverse (add ?3653 (inverse (inverse ?3654)))) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Super 459 with 2249 at 2,1,2,3 +Id : 2497, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 (inverse (inverse ?3654)))) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Demod 2455 with 427 at 2,1,2,2 +Id : 2498, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 ?3654)) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Demod 2497 with 427 at 2,1,1,3 +Id : 2499, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 ?3654)) (inverse (add ?3654 ?3654)) [3653, 3654] by Demod 2498 with 427 at 2,1,2,3 +Id : 2500, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =?= add (inverse (add ?3653 ?3654)) (inverse ?3654) [3653, 3654] by Demod 2499 with 418 at 1,2,3 +Id : 2501, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =>= inverse ?3654 [3653, 3654] by Demod 2500 with 2159 at 3 +Id : 2761, {_}: add (inverse ?4078) (inverse (add ?4079 ?4078)) =>= inverse ?4078 [4079, 4078] by Demod 2500 with 2159 at 3 +Id : 2775, {_}: add (inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119))))))) ?4118 =>= inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119)))))) [4119, 4118, 4116] by Super 2761 with 4 at 2,2 +Id : 2871, {_}: add (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119))))) ?4118 =>= inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119)))))) [4119, 4118, 4116] by Demod 2775 with 427 at 1,2 +Id : 4872, {_}: add (add ?6485 (inverse (add (inverse ?6486) (inverse (add ?6486 ?6487))))) ?6486 =>= add ?6485 (inverse (add (inverse ?6486) (inverse (add ?6486 ?6487)))) [6487, 6486, 6485] by Demod 2871 with 427 at 3 +Id : 4906, {_}: add (inverse (inverse (add ?6624 ?6625))) ?6624 =<= add (inverse (inverse (add ?6624 ?6625))) (inverse (add (inverse ?6624) (inverse (add ?6624 ?6625)))) [6625, 6624] by Super 4872 with 2501 at 1,2 +Id : 5128, {_}: add (add ?6624 ?6625) ?6624 =<= add (inverse (inverse (add ?6624 ?6625))) (inverse (add (inverse ?6624) (inverse (add ?6624 ?6625)))) [6625, 6624] by Demod 4906 with 427 at 1,2 +Id : 5129, {_}: add (add ?6624 ?6625) ?6624 =>= inverse (inverse (add ?6624 ?6625)) [6625, 6624] by Demod 5128 with 2501 at 3 +Id : 5130, {_}: add (add ?6624 ?6625) ?6624 =>= add ?6624 ?6625 [6625, 6624] by Demod 5129 with 427 at 3 +Id : 5176, {_}: add (inverse ?6745) (inverse (add ?6745 ?6746)) =>= inverse ?6745 [6746, 6745] by Super 2501 with 5130 at 1,2,2 +Id : 5963, {_}: add ?1617 ?1618 =<= add ?1618 (inverse (inverse ?1617)) [1618, 1617] by Demod 866 with 5176 at 1,2,3 +Id : 5973, {_}: add ?1617 ?1618 =?= add ?1618 ?1617 [1618, 1617] by Demod 5963 with 427 at 2,3 +Id : 6201, {_}: add a b === add a b [] by Demod 2 with 5973 at 2 +Id : 2, {_}: add b a =>= add a b [] by huntinton_1 +% SZS output end CNFRefutation for BOO072-1.p +Order + == is 100 + _ is 99 + a is 98 + add is 96 + b is 97 + c is 95 + dn1 is 92 + huntinton_2 is 94 + inverse is 93 +Facts + Id : 4, {_}: + inverse + (add (inverse (add (inverse (add ?2 ?3)) ?4)) + (inverse + (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) + =>= + ?4 + [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 +Goal + Id : 2, {_}: add (add a b) c =>= add a (add b c) [] by huntinton_2 +Found proof, 88.839419s +% SZS status Unsatisfiable for BOO073-1.p +% SZS output start CNFRefutation for BOO073-1.p +Id : 5, {_}: inverse (add (inverse (add (inverse (add ?7 ?8)) ?9)) (inverse (add ?7 (inverse (add (inverse ?9) (inverse (add ?9 ?10))))))) =>= ?9 [10, 9, 8, 7] by dn1 ?7 ?8 ?9 ?10 +Id : 4, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 +Id : 17, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?80)) ?81)) ?80)) ?82)) (inverse ?80))) ?80) =>= inverse ?80 [82, 81, 80] by Super 5 with 4 at 2,1,2 +Id : 22, {_}: inverse (add (inverse (add ?111 (inverse ?111))) ?111) =>= inverse ?111 [111] by Super 17 with 4 at 1,1,1,1,2 +Id : 36, {_}: inverse (add (inverse ?135) (inverse (add ?135 (inverse (add (inverse ?135) (inverse (add ?135 ?136))))))) =>= ?135 [136, 135] by Super 4 with 22 at 1,1,2 +Id : 57, {_}: inverse (add (inverse (add (inverse (add ?192 ?193)) ?190)) (inverse (add ?192 ?190))) =>= ?190 [190, 193, 192] by Super 4 with 36 at 2,1,2,1,2 +Id : 131, {_}: inverse (add (inverse (add (inverse (add ?400 ?401)) ?402)) (inverse (add ?400 ?402))) =>= ?402 [402, 401, 400] by Super 4 with 36 at 2,1,2,1,2 +Id : 141, {_}: inverse (add (inverse (add ?444 ?446)) (inverse (add (inverse ?444) ?446))) =>= ?446 [446, 444] by Super 131 with 36 at 1,1,1,1,2 +Id : 175, {_}: inverse (add ?545 (inverse (add ?544 (inverse (add (inverse ?544) ?545))))) =>= inverse (add (inverse ?544) ?545) [544, 545] by Super 57 with 141 at 1,1,2 +Id : 341, {_}: inverse (add (inverse ?894) (inverse (add ?894 (inverse (add (inverse ?894) (inverse ?894)))))) =>= ?894 [894] by Super 36 with 175 at 2,1,2,1,2 +Id : 390, {_}: inverse (add (inverse ?894) (inverse ?894)) =>= ?894 [894] by Demod 341 with 175 at 2 +Id : 176, {_}: inverse (add (inverse (add ?547 ?548)) (inverse (add (inverse ?547) ?548))) =>= ?548 [548, 547] by Super 131 with 36 at 1,1,1,1,2 +Id : 61, {_}: inverse (add (inverse ?208) (inverse (add ?208 (inverse (add (inverse ?208) (inverse (add ?208 ?209))))))) =>= ?208 [209, 208] by Super 4 with 22 at 1,1,2 +Id : 70, {_}: inverse (add (inverse ?244) (inverse (add ?244 ?244))) =>= ?244 [244] by Super 61 with 36 at 2,1,2,1,2 +Id : 189, {_}: inverse (add (inverse (add ?598 (inverse (add ?598 ?598)))) ?598) =>= inverse (add ?598 ?598) [598] by Super 176 with 70 at 2,1,2 +Id : 209, {_}: inverse (add (inverse (add ?635 ?635)) (inverse (add ?635 ?635))) =>= ?635 [635] by Super 57 with 189 at 1,1,2 +Id : 418, {_}: add ?635 ?635 =>= ?635 [635] by Demod 209 with 390 at 2 +Id : 441, {_}: inverse (inverse ?1072) =>= ?1072 [1072] by Demod 390 with 418 at 1,2 +Id : 447, {_}: inverse (inverse (add (inverse ?1092) ?1091)) =<= add ?1091 (inverse (add ?1092 (inverse (add (inverse ?1092) ?1091)))) [1091, 1092] by Super 441 with 175 at 1,2 +Id : 427, {_}: inverse (inverse ?894) =>= ?894 [894] by Demod 390 with 418 at 1,2 +Id : 835, {_}: add (inverse ?1599) ?1600 =<= add ?1600 (inverse (add ?1599 (inverse (add (inverse ?1599) ?1600)))) [1600, 1599] by Demod 447 with 427 at 2 +Id : 839, {_}: add (inverse (inverse ?1617)) ?1618 =<= add ?1618 (inverse (add (inverse ?1617) (inverse (add ?1617 ?1618)))) [1618, 1617] by Super 835 with 427 at 1,1,2,1,2,3 +Id : 866, {_}: add ?1617 ?1618 =<= add ?1618 (inverse (add (inverse ?1617) (inverse (add ?1617 ?1618)))) [1618, 1617] by Demod 839 with 427 at 1,2 +Id : 459, {_}: add (inverse ?1092) ?1091 =<= add ?1091 (inverse (add ?1092 (inverse (add (inverse ?1092) ?1091)))) [1091, 1092] by Demod 447 with 427 at 2 +Id : 8, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?28)) ?27)) ?28)) ?30)) (inverse ?28))) ?28) =>= inverse ?28 [30, 27, 28] by Super 5 with 4 at 2,1,2 +Id : 428, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add ?28 ?27)) ?28)) ?30)) (inverse ?28))) ?28) =>= inverse ?28 [30, 27, 28] by Demod 8 with 427 at 1,1,1,1,1,1,1,1,1,1,2 +Id : 443, {_}: inverse (inverse ?1079) =<= add (inverse (add ?1079 (inverse ?1079))) ?1079 [1079] by Super 441 with 22 at 1,2 +Id : 476, {_}: ?1141 =<= add (inverse (add ?1141 (inverse ?1141))) ?1141 [1141] by Demod 443 with 427 at 2 +Id : 483, {_}: inverse ?1163 =<= add (inverse (add (inverse ?1163) ?1163)) (inverse ?1163) [1163] by Super 476 with 427 at 2,1,1,3 +Id : 545, {_}: inverse (add (inverse (add (inverse (add (inverse (inverse ?1237)) ?1238)) (inverse (inverse ?1237)))) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Super 428 with 483 at 1,1,1,1,1,1,1,2 +Id : 596, {_}: inverse (add (inverse (add (inverse (add ?1237 ?1238)) (inverse (inverse ?1237)))) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Demod 545 with 427 at 1,1,1,1,1,1,2 +Id : 597, {_}: inverse (add (inverse (add (inverse (add ?1237 ?1238)) ?1237)) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Demod 596 with 427 at 2,1,1,1,2 +Id : 1828, {_}: inverse (add (inverse (add (inverse (add ?2824 ?2825)) ?2824)) (inverse ?2824)) =>= ?2824 [2825, 2824] by Demod 597 with 427 at 3 +Id : 1862, {_}: inverse (add ?2924 (inverse (inverse (add ?2923 ?2924)))) =>= inverse (add ?2923 ?2924) [2923, 2924] by Super 1828 with 57 at 1,1,2 +Id : 1957, {_}: inverse (add ?2924 (add ?2923 ?2924)) =>= inverse (add ?2923 ?2924) [2923, 2924] by Demod 1862 with 427 at 2,1,2 +Id : 1989, {_}: inverse (inverse (add ?3044 ?3043)) =<= add ?3043 (add ?3044 ?3043) [3043, 3044] by Super 427 with 1957 at 1,2 +Id : 2126, {_}: add ?3204 ?3205 =<= add ?3205 (add ?3204 ?3205) [3205, 3204] by Demod 1989 with 427 at 2 +Id : 733, {_}: inverse ?1452 =<= add (inverse (add ?1453 ?1452)) (inverse (add (inverse ?1453) ?1452)) [1453, 1452] by Super 441 with 141 at 1,2 +Id : 738, {_}: inverse ?1475 =<= add (inverse (add (inverse ?1474) ?1475)) (inverse (add ?1474 ?1475)) [1474, 1475] by Super 733 with 427 at 1,1,2,3 +Id : 2134, {_}: add (inverse (add (inverse ?3224) ?3223)) (inverse (add ?3224 ?3223)) =>= add (inverse (add ?3224 ?3223)) (inverse ?3223) [3223, 3224] by Super 2126 with 738 at 2,3 +Id : 2159, {_}: inverse ?3223 =<= add (inverse (add ?3224 ?3223)) (inverse ?3223) [3224, 3223] by Demod 2134 with 738 at 2 +Id : 2197, {_}: inverse (add (inverse (inverse ?3289)) (inverse (add ?3290 (inverse ?3289)))) =>= inverse ?3289 [3290, 3289] by Super 57 with 2159 at 1,1,1,2 +Id : 2249, {_}: inverse (add ?3289 (inverse (add ?3290 (inverse ?3289)))) =>= inverse ?3289 [3290, 3289] by Demod 2197 with 427 at 1,1,2 +Id : 2455, {_}: add (inverse ?3654) (inverse (add ?3653 (inverse (inverse ?3654)))) =<= add (inverse (add ?3653 (inverse (inverse ?3654)))) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Super 459 with 2249 at 2,1,2,3 +Id : 2497, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 (inverse (inverse ?3654)))) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Demod 2455 with 427 at 2,1,2,2 +Id : 2498, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 ?3654)) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Demod 2497 with 427 at 2,1,1,3 +Id : 2499, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 ?3654)) (inverse (add ?3654 ?3654)) [3653, 3654] by Demod 2498 with 427 at 2,1,2,3 +Id : 2500, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =?= add (inverse (add ?3653 ?3654)) (inverse ?3654) [3653, 3654] by Demod 2499 with 418 at 1,2,3 +Id : 2501, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =>= inverse ?3654 [3653, 3654] by Demod 2500 with 2159 at 3 +Id : 2761, {_}: add (inverse ?4078) (inverse (add ?4079 ?4078)) =>= inverse ?4078 [4079, 4078] by Demod 2500 with 2159 at 3 +Id : 2775, {_}: add (inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119))))))) ?4118 =>= inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119)))))) [4119, 4118, 4116] by Super 2761 with 4 at 2,2 +Id : 2871, {_}: add (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119))))) ?4118 =>= inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119)))))) [4119, 4118, 4116] by Demod 2775 with 427 at 1,2 +Id : 4872, {_}: add (add ?6485 (inverse (add (inverse ?6486) (inverse (add ?6486 ?6487))))) ?6486 =>= add ?6485 (inverse (add (inverse ?6486) (inverse (add ?6486 ?6487)))) [6487, 6486, 6485] by Demod 2871 with 427 at 3 +Id : 4906, {_}: add (inverse (inverse (add ?6624 ?6625))) ?6624 =<= add (inverse (inverse (add ?6624 ?6625))) (inverse (add (inverse ?6624) (inverse (add ?6624 ?6625)))) [6625, 6624] by Super 4872 with 2501 at 1,2 +Id : 5128, {_}: add (add ?6624 ?6625) ?6624 =<= add (inverse (inverse (add ?6624 ?6625))) (inverse (add (inverse ?6624) (inverse (add ?6624 ?6625)))) [6625, 6624] by Demod 4906 with 427 at 1,2 +Id : 5129, {_}: add (add ?6624 ?6625) ?6624 =>= inverse (inverse (add ?6624 ?6625)) [6625, 6624] by Demod 5128 with 2501 at 3 +Id : 5130, {_}: add (add ?6624 ?6625) ?6624 =>= add ?6624 ?6625 [6625, 6624] by Demod 5129 with 427 at 3 +Id : 5176, {_}: add (inverse ?6745) (inverse (add ?6745 ?6746)) =>= inverse ?6745 [6746, 6745] by Super 2501 with 5130 at 1,2,2 +Id : 5963, {_}: add ?1617 ?1618 =<= add ?1618 (inverse (inverse ?1617)) [1618, 1617] by Demod 866 with 5176 at 1,2,3 +Id : 5973, {_}: add ?1617 ?1618 =?= add ?1618 ?1617 [1618, 1617] by Demod 5963 with 427 at 2,3 +Id : 445, {_}: inverse ?1086 =<= add (inverse (add (inverse (add ?1084 ?1085)) ?1086)) (inverse (add ?1084 ?1086)) [1085, 1084, 1086] by Super 441 with 57 at 1,2 +Id : 3282, {_}: inverse ?4640 =<= add (inverse (add (inverse (add ?4641 ?4642)) ?4640)) (inverse (add ?4641 ?4640)) [4642, 4641, 4640] by Super 441 with 57 at 1,2 +Id : 3306, {_}: inverse ?4739 =<= add (inverse (add (inverse (add ?4738 ?4740)) ?4739)) (inverse (add ?4740 ?4739)) [4740, 4738, 4739] by Super 3282 with 866 at 1,1,1,1,3 +Id : 9402, {_}: inverse (inverse (add ?10628 ?10626)) =<= add (inverse (inverse ?10626)) (inverse (add (inverse (add ?10627 ?10628)) (inverse (add ?10628 ?10626)))) [10627, 10626, 10628] by Super 445 with 3306 at 1,1,3 +Id : 9643, {_}: add ?10628 ?10626 =<= add (inverse (inverse ?10626)) (inverse (add (inverse (add ?10627 ?10628)) (inverse (add ?10628 ?10626)))) [10627, 10626, 10628] by Demod 9402 with 427 at 2 +Id : 9644, {_}: add ?10628 ?10626 =<= add ?10626 (inverse (add (inverse (add ?10627 ?10628)) (inverse (add ?10628 ?10626)))) [10627, 10626, 10628] by Demod 9643 with 427 at 1,3 +Id : 3277, {_}: add (inverse (add (inverse (add ?4621 ?4622)) ?4620)) (inverse (add ?4621 ?4620)) =<= add (inverse (add ?4621 ?4620)) (inverse (add (inverse (inverse (add (inverse (add ?4621 ?4622)) ?4620))) (inverse (inverse ?4620)))) [4620, 4622, 4621] by Super 866 with 445 at 1,2,1,2,3 +Id : 3341, {_}: inverse ?4620 =<= add (inverse (add ?4621 ?4620)) (inverse (add (inverse (inverse (add (inverse (add ?4621 ?4622)) ?4620))) (inverse (inverse ?4620)))) [4622, 4621, 4620] by Demod 3277 with 445 at 2 +Id : 3342, {_}: inverse ?4620 =<= add (inverse (add ?4621 ?4620)) (inverse (add (add (inverse (add ?4621 ?4622)) ?4620) (inverse (inverse ?4620)))) [4622, 4621, 4620] by Demod 3341 with 427 at 1,1,2,3 +Id : 3343, {_}: inverse ?4620 =<= add (inverse (add ?4621 ?4620)) (inverse (add (add (inverse (add ?4621 ?4622)) ?4620) ?4620)) [4622, 4621, 4620] by Demod 3342 with 427 at 2,1,2,3 +Id : 2463, {_}: inverse (add ?3677 (inverse (add ?3678 (inverse ?3677)))) =>= inverse ?3677 [3678, 3677] by Demod 2197 with 427 at 1,1,2 +Id : 2485, {_}: inverse (add (add ?3744 ?3746) ?3746) =>= inverse (add ?3744 ?3746) [3746, 3744] by Super 2463 with 57 at 2,1,2 +Id : 2605, {_}: add (add ?3852 ?3853) ?3853 =<= add ?3853 (inverse (add (inverse (add ?3852 ?3853)) (inverse (add ?3852 ?3853)))) [3853, 3852] by Super 866 with 2485 at 2,1,2,3 +Id : 2630, {_}: add (add ?3852 ?3853) ?3853 =<= add ?3853 (inverse (inverse (add ?3852 ?3853))) [3853, 3852] by Demod 2605 with 418 at 1,2,3 +Id : 2631, {_}: add (add ?3852 ?3853) ?3853 =?= add ?3853 (add ?3852 ?3853) [3853, 3852] by Demod 2630 with 427 at 2,3 +Id : 2044, {_}: add ?3044 ?3043 =<= add ?3043 (add ?3044 ?3043) [3043, 3044] by Demod 1989 with 427 at 2 +Id : 2632, {_}: add (add ?3852 ?3853) ?3853 =>= add ?3852 ?3853 [3853, 3852] by Demod 2631 with 2044 at 3 +Id : 3344, {_}: inverse ?4620 =<= add (inverse (add ?4621 ?4620)) (inverse (add (inverse (add ?4621 ?4622)) ?4620)) [4622, 4621, 4620] by Demod 3343 with 2632 at 1,2,3 +Id : 9856, {_}: inverse (inverse (add (inverse (add ?11316 ?11317)) ?11315)) =<= add (inverse (inverse ?11315)) (inverse (add ?11316 (inverse (add (inverse (add ?11316 ?11317)) ?11315)))) [11315, 11317, 11316] by Super 445 with 3344 at 1,1,3 +Id : 10050, {_}: add (inverse (add ?11316 ?11317)) ?11315 =<= add (inverse (inverse ?11315)) (inverse (add ?11316 (inverse (add (inverse (add ?11316 ?11317)) ?11315)))) [11315, 11317, 11316] by Demod 9856 with 427 at 2 +Id : 10051, {_}: add (inverse (add ?11316 ?11317)) ?11315 =<= add ?11315 (inverse (add ?11316 (inverse (add (inverse (add ?11316 ?11317)) ?11315)))) [11315, 11317, 11316] by Demod 10050 with 427 at 1,3 +Id : 27274, {_}: add (inverse (add ?27240 ?27241)) ?27242 =<= add ?27242 (inverse (add ?27240 (inverse (add (inverse (add ?27240 ?27241)) ?27242)))) [27242, 27241, 27240] by Demod 10050 with 427 at 1,3 +Id : 446, {_}: inverse ?1089 =<= add (inverse (add ?1088 ?1089)) (inverse (add (inverse ?1088) ?1089)) [1088, 1089] by Super 441 with 141 at 1,2 +Id : 3303, {_}: inverse ?4728 =<= add (inverse (add (inverse (inverse ?4726)) ?4728)) (inverse (add (inverse (add ?4727 ?4726)) ?4728)) [4727, 4726, 4728] by Super 3282 with 446 at 1,1,1,1,3 +Id : 3407, {_}: inverse ?4728 =<= add (inverse (add ?4726 ?4728)) (inverse (add (inverse (add ?4727 ?4726)) ?4728)) [4727, 4726, 4728] by Demod 3303 with 427 at 1,1,1,3 +Id : 27388, {_}: add (inverse (add (inverse (add ?27678 ?27679)) ?27678)) ?27679 =>= add ?27679 (inverse (inverse ?27679)) [27679, 27678] by Super 27274 with 3407 at 1,2,3 +Id : 27835, {_}: add (inverse (add (inverse (add ?27678 ?27679)) ?27678)) ?27679 =>= add ?27679 ?27679 [27679, 27678] by Demod 27388 with 427 at 2,3 +Id : 27836, {_}: add (inverse (add (inverse (add ?27678 ?27679)) ?27678)) ?27679 =>= ?27679 [27679, 27678] by Demod 27835 with 418 at 3 +Id : 35831, {_}: add ?35916 (inverse (add (inverse (add ?35917 ?35916)) ?35917)) =>= ?35916 [35917, 35916] by Super 5973 with 27836 at 3 +Id : 35837, {_}: add ?35933 (inverse (add (inverse (add ?35933 ?35934)) ?35934)) =>= ?35933 [35934, 35933] by Super 35831 with 5973 at 1,1,1,2,2 +Id : 43017, {_}: add (inverse (add ?44930 ?44931)) ?44931 =>= add ?44931 (inverse ?44930) [44931, 44930] by Super 10051 with 35837 at 1,2,3 +Id : 43043, {_}: add (inverse (inverse ?45008)) (inverse ?45008) =<= add (inverse ?45008) (inverse (inverse (add ?45009 ?45008))) [45009, 45008] by Super 43017 with 2159 at 1,1,2 +Id : 43373, {_}: add ?45008 (inverse ?45008) =<= add (inverse ?45008) (inverse (inverse (add ?45009 ?45008))) [45009, 45008] by Demod 43043 with 427 at 1,2 +Id : 44805, {_}: add ?46602 (inverse ?46602) =<= add (inverse ?46602) (add ?46603 ?46602) [46603, 46602] by Demod 43373 with 427 at 2,3 +Id : 895, {_}: inverse (inverse (add ?1666 ?1665)) =<= add (inverse (inverse ?1665)) (inverse (add (inverse (inverse (add (inverse ?1666) ?1665))) (inverse (add ?1666 ?1665)))) [1665, 1666] by Super 446 with 738 at 1,1,3 +Id : 960, {_}: add ?1666 ?1665 =<= add (inverse (inverse ?1665)) (inverse (add (inverse (inverse (add (inverse ?1666) ?1665))) (inverse (add ?1666 ?1665)))) [1665, 1666] by Demod 895 with 427 at 2 +Id : 961, {_}: add ?1666 ?1665 =<= add ?1665 (inverse (add (inverse (inverse (add (inverse ?1666) ?1665))) (inverse (add ?1666 ?1665)))) [1665, 1666] by Demod 960 with 427 at 1,3 +Id : 962, {_}: add ?1666 ?1665 =<= add ?1665 (inverse (add (add (inverse ?1666) ?1665) (inverse (add ?1666 ?1665)))) [1665, 1666] by Demod 961 with 427 at 1,1,2,3 +Id : 5181, {_}: add (add ?6762 ?6763) ?6762 =<= add ?6762 (inverse (add (add (inverse (add ?6762 ?6763)) ?6762) (inverse (add ?6762 ?6763)))) [6763, 6762] by Super 962 with 5130 at 1,2,1,2,3 +Id : 5222, {_}: add ?6762 ?6763 =<= add ?6762 (inverse (add (add (inverse (add ?6762 ?6763)) ?6762) (inverse (add ?6762 ?6763)))) [6763, 6762] by Demod 5181 with 5130 at 2 +Id : 6255, {_}: add ?7893 ?7894 =<= add ?7893 (inverse (add (inverse (add ?7893 ?7894)) ?7893)) [7894, 7893] by Demod 5222 with 5130 at 1,2,3 +Id : 6261, {_}: add ?7910 ?7911 =<= add ?7910 (inverse (add (inverse (add ?7911 ?7910)) ?7910)) [7911, 7910] by Super 6255 with 5973 at 1,1,1,2,3 +Id : 27395, {_}: add (inverse (add ?27697 ?27698)) (inverse (add ?27698 ?27697)) =?= add (inverse (add ?27698 ?27697)) (inverse (add ?27698 ?27697)) [27698, 27697] by Super 27274 with 9644 at 1,2,3 +Id : 27857, {_}: add (inverse (add ?27697 ?27698)) (inverse (add ?27698 ?27697)) =>= inverse (add ?27698 ?27697) [27698, 27697] by Demod 27395 with 418 at 3 +Id : 28327, {_}: add (inverse (add ?28496 ?28495)) (inverse (add ?28495 ?28496)) =<= add (inverse (add ?28496 ?28495)) (inverse (add (inverse (inverse (add ?28496 ?28495))) (inverse (add ?28496 ?28495)))) [28495, 28496] by Super 6261 with 27857 at 1,1,1,2,3 +Id : 28628, {_}: inverse (add ?28495 ?28496) =<= add (inverse (add ?28496 ?28495)) (inverse (add (inverse (inverse (add ?28496 ?28495))) (inverse (add ?28496 ?28495)))) [28496, 28495] by Demod 28327 with 27857 at 2 +Id : 2450, {_}: inverse (inverse ?3637) =<= add ?3637 (inverse (add ?3638 (inverse ?3637))) [3638, 3637] by Super 427 with 2249 at 1,2 +Id : 2506, {_}: ?3637 =<= add ?3637 (inverse (add ?3638 (inverse ?3637))) [3638, 3637] by Demod 2450 with 427 at 2 +Id : 5163, {_}: ?6702 =<= add ?6702 (inverse (add (inverse ?6702) ?6701)) [6701, 6702] by Super 2506 with 5130 at 1,2,3 +Id : 28629, {_}: inverse (add ?28495 ?28496) =?= inverse (add ?28496 ?28495) [28496, 28495] by Demod 28628 with 5163 at 3 +Id : 44870, {_}: add (add ?46807 ?46808) (inverse (add ?46807 ?46808)) =<= add (inverse (add ?46808 ?46807)) (add ?46809 (add ?46807 ?46808)) [46809, 46808, 46807] by Super 44805 with 28629 at 1,3 +Id : 45240, {_}: add (inverse (add ?46807 ?46808)) (add ?46807 ?46808) =<= add (inverse (add ?46808 ?46807)) (add ?46809 (add ?46807 ?46808)) [46809, 46808, 46807] by Demod 44870 with 5973 at 2 +Id : 75570, {_}: inverse (add ?71946 (add ?71944 ?71945)) =<= add (inverse (add ?71945 (add ?71946 (add ?71944 ?71945)))) (inverse (add (inverse (add ?71944 ?71945)) (add ?71944 ?71945))) [71945, 71944, 71946] by Super 3344 with 45240 at 1,2,3 +Id : 2205, {_}: inverse ?3320 =<= add (inverse (add ?3321 ?3320)) (inverse ?3320) [3321, 3320] by Demod 2134 with 738 at 2 +Id : 2209, {_}: inverse (inverse ?3338) =<= add (inverse (add ?3339 (inverse ?3338))) ?3338 [3339, 3338] by Super 2205 with 427 at 2,3 +Id : 2281, {_}: ?3338 =<= add (inverse (add ?3339 (inverse ?3338))) ?3338 [3339, 3338] by Demod 2209 with 427 at 2 +Id : 5175, {_}: ?6743 =<= add (inverse (add (inverse ?6743) ?6742)) ?6743 [6742, 6743] by Super 2281 with 5130 at 1,1,3 +Id : 43053, {_}: add (inverse ?45043) ?45043 =<= add ?45043 (inverse (inverse (add (inverse ?45043) ?45042))) [45042, 45043] by Super 43017 with 5175 at 1,1,2 +Id : 43393, {_}: add (inverse ?45043) ?45043 =<= add ?45043 (add (inverse ?45043) ?45042) [45042, 45043] by Demod 43053 with 427 at 2,3 +Id : 46219, {_}: add (add (inverse ?47976) ?47977) ?47976 =>= add (inverse ?47976) ?47976 [47977, 47976] by Super 5973 with 43393 at 3 +Id : 2228, {_}: inverse (inverse (add ?3386 (inverse (add (inverse ?3388) (inverse (add ?3388 ?3389)))))) =<= add ?3388 (inverse (inverse (add ?3386 (inverse (add (inverse ?3388) (inverse (add ?3388 ?3389))))))) [3389, 3388, 3386] by Super 2205 with 4 at 1,3 +Id : 2327, {_}: add ?3386 (inverse (add (inverse ?3388) (inverse (add ?3388 ?3389)))) =<= add ?3388 (inverse (inverse (add ?3386 (inverse (add (inverse ?3388) (inverse (add ?3388 ?3389))))))) [3389, 3388, 3386] by Demod 2228 with 427 at 2 +Id : 4116, {_}: add ?5774 (inverse (add (inverse ?5775) (inverse (add ?5775 ?5776)))) =<= add ?5775 (add ?5774 (inverse (add (inverse ?5775) (inverse (add ?5775 ?5776))))) [5776, 5775, 5774] by Demod 2327 with 427 at 2,3 +Id : 4147, {_}: add (inverse (inverse (add ?5900 ?5901))) (inverse (add (inverse ?5900) (inverse (add ?5900 ?5901)))) =>= add ?5900 (inverse (inverse (add ?5900 ?5901))) [5901, 5900] by Super 4116 with 2501 at 2,3 +Id : 4368, {_}: inverse (inverse (add ?5900 ?5901)) =<= add ?5900 (inverse (inverse (add ?5900 ?5901))) [5901, 5900] by Demod 4147 with 2501 at 2 +Id : 4369, {_}: add ?5900 ?5901 =<= add ?5900 (inverse (inverse (add ?5900 ?5901))) [5901, 5900] by Demod 4368 with 427 at 2 +Id : 4370, {_}: add ?5900 ?5901 =<= add ?5900 (add ?5900 ?5901) [5901, 5900] by Demod 4369 with 427 at 2,3 +Id : 43050, {_}: add (inverse (add ?45034 ?45033)) (add ?45034 ?45033) =>= add (add ?45034 ?45033) (inverse ?45034) [45033, 45034] by Super 43017 with 4370 at 1,1,2 +Id : 43389, {_}: add (inverse (add ?45034 ?45033)) (add ?45034 ?45033) =>= add (inverse ?45034) (add ?45034 ?45033) [45033, 45034] by Demod 43050 with 5973 at 3 +Id : 43042, {_}: add (inverse (add ?45005 ?45006)) (add ?45005 ?45006) =>= add (add ?45005 ?45006) (inverse ?45006) [45006, 45005] by Super 43017 with 2044 at 1,1,2 +Id : 43372, {_}: add (inverse (add ?45005 ?45006)) (add ?45005 ?45006) =>= add (inverse ?45006) (add ?45005 ?45006) [45006, 45005] by Demod 43042 with 5973 at 3 +Id : 43374, {_}: add ?45008 (inverse ?45008) =<= add (inverse ?45008) (add ?45009 ?45008) [45009, 45008] by Demod 43373 with 427 at 2,3 +Id : 48043, {_}: add (inverse (add ?45005 ?45006)) (add ?45005 ?45006) =>= add ?45006 (inverse ?45006) [45006, 45005] by Demod 43372 with 43374 at 3 +Id : 49303, {_}: add ?45033 (inverse ?45033) =?= add (inverse ?45034) (add ?45034 ?45033) [45034, 45033] by Demod 43389 with 48043 at 2 +Id : 5166, {_}: inverse ?6709 =<= add (inverse (add ?6709 ?6710)) (inverse ?6709) [6710, 6709] by Super 2159 with 5130 at 1,1,3 +Id : 43052, {_}: add (inverse (inverse ?45039)) (inverse ?45039) =<= add (inverse ?45039) (inverse (inverse (add ?45039 ?45040))) [45040, 45039] by Super 43017 with 5166 at 1,1,2 +Id : 43391, {_}: add ?45039 (inverse ?45039) =<= add (inverse ?45039) (inverse (inverse (add ?45039 ?45040))) [45040, 45039] by Demod 43052 with 427 at 1,2 +Id : 43392, {_}: add ?45039 (inverse ?45039) =<= add (inverse ?45039) (add ?45039 ?45040) [45040, 45039] by Demod 43391 with 427 at 2,3 +Id : 49304, {_}: add ?45033 (inverse ?45033) =?= add ?45034 (inverse ?45034) [45034, 45033] by Demod 49303 with 43392 at 3 +Id : 49415, {_}: ?50953 =<= add (inverse (add ?50954 (inverse ?50954))) ?50953 [50954, 50953] by Super 2281 with 49304 at 1,1,3 +Id : 50053, {_}: add ?51918 (add ?51919 (inverse ?51919)) =?= add (inverse (add ?51919 (inverse ?51919))) (add ?51919 (inverse ?51919)) [51919, 51918] by Super 46219 with 49415 at 1,2 +Id : 50133, {_}: add ?51918 (add ?51919 (inverse ?51919)) =?= add (inverse ?51919) (inverse (inverse ?51919)) [51919, 51918] by Demod 50053 with 48043 at 3 +Id : 50134, {_}: add ?51918 (add ?51919 (inverse ?51919)) =>= add (inverse ?51919) ?51919 [51919, 51918] by Demod 50133 with 427 at 2,3 +Id : 50710, {_}: ?52352 =<= add ?52352 (inverse (add (inverse ?52351) ?52351)) [52351, 52352] by Super 5163 with 50134 at 1,2,3 +Id : 75914, {_}: inverse (add ?71946 (add ?71944 ?71945)) =<= inverse (add ?71945 (add ?71946 (add ?71944 ?71945))) [71945, 71944, 71946] by Demod 75570 with 50710 at 3 +Id : 77144, {_}: add ?73328 (add ?73326 (add ?73327 ?73328)) =<= add (add ?73326 (add ?73327 ?73328)) (inverse (add (inverse (add ?73329 ?73328)) (inverse (add ?73326 (add ?73327 ?73328))))) [73329, 73327, 73326, 73328] by Super 9644 with 75914 at 2,1,2,3 +Id : 77399, {_}: add ?73328 (add ?73326 (add ?73327 ?73328)) =<= add (inverse (add (inverse (add ?73329 ?73328)) (inverse (add ?73326 (add ?73327 ?73328))))) (add ?73326 (add ?73327 ?73328)) [73329, 73327, 73326, 73328] by Demod 77144 with 5973 at 3 +Id : 77889, {_}: add ?74480 (add ?74481 (add ?74482 ?74480)) =>= add ?74481 (add ?74482 ?74480) [74482, 74481, 74480] by Demod 77399 with 2281 at 3 +Id : 77893, {_}: add ?74496 (add ?74497 (add ?74496 ?74495)) =?= add ?74497 (add (add ?74496 ?74495) ?74496) [74495, 74497, 74496] by Super 77889 with 5130 at 2,2,2 +Id : 78169, {_}: add ?74496 (add ?74497 (add ?74496 ?74495)) =>= add ?74497 (add ?74496 ?74495) [74495, 74497, 74496] by Demod 77893 with 5130 at 2,3 +Id : 77895, {_}: add ?74503 (add ?74504 (add ?74503 ?74505)) =>= add ?74504 (add ?74505 ?74503) [74505, 74504, 74503] by Super 77889 with 5973 at 2,2,2 +Id : 80396, {_}: add ?74497 (add ?74495 ?74496) =?= add ?74497 (add ?74496 ?74495) [74496, 74495, 74497] by Demod 78169 with 77895 at 2 +Id : 80521, {_}: add (add (add ?78514 ?78515) ?78516) (add ?78515 ?78514) =>= add (add ?78514 ?78515) ?78516 [78516, 78515, 78514] by Super 5130 with 80396 at 2 +Id : 79247, {_}: add ?76425 (add ?76426 (add ?76425 ?76427)) =>= add ?76426 (add ?76427 ?76425) [76427, 76426, 76425] by Super 77889 with 5973 at 2,2,2 +Id : 79331, {_}: add ?76775 (add (add ?76775 ?76776) ?76774) =<= add (add (add ?76775 ?76776) ?76774) (add ?76776 ?76775) [76774, 76776, 76775] by Super 79247 with 5130 at 2,2 +Id : 79332, {_}: add ?76778 (add (add ?76778 ?76780) ?76779) =>= add ?76779 (add ?76780 ?76778) [76779, 76780, 76778] by Super 79247 with 5973 at 2,2 +Id : 135898, {_}: add ?76774 (add ?76776 ?76775) =<= add (add (add ?76775 ?76776) ?76774) (add ?76776 ?76775) [76775, 76776, 76774] by Demod 79331 with 79332 at 2 +Id : 140658, {_}: add ?78516 (add ?78515 ?78514) =?= add (add ?78514 ?78515) ?78516 [78514, 78515, 78516] by Demod 80521 with 135898 at 2 +Id : 43039, {_}: add (inverse (inverse ?44995)) (inverse (add ?44996 ?44995)) =<= add (inverse (add ?44996 ?44995)) (inverse (inverse (add (inverse (add ?44996 ?44997)) ?44995))) [44997, 44996, 44995] by Super 43017 with 445 at 1,1,2 +Id : 43360, {_}: add ?44995 (inverse (add ?44996 ?44995)) =<= add (inverse (add ?44996 ?44995)) (inverse (inverse (add (inverse (add ?44996 ?44997)) ?44995))) [44997, 44996, 44995] by Demod 43039 with 427 at 1,2 +Id : 43361, {_}: add ?44995 (inverse (add ?44996 ?44995)) =<= add (inverse (inverse (add (inverse (add ?44996 ?44997)) ?44995))) (inverse (add ?44996 ?44995)) [44997, 44996, 44995] by Demod 43360 with 5973 at 3 +Id : 43362, {_}: add ?44995 (inverse (add ?44996 ?44995)) =<= add (add (inverse (add ?44996 ?44997)) ?44995) (inverse (add ?44996 ?44995)) [44997, 44996, 44995] by Demod 43361 with 427 at 1,3 +Id : 43363, {_}: add ?44995 (inverse (add ?44996 ?44995)) =<= add (inverse (add ?44996 ?44995)) (add (inverse (add ?44996 ?44997)) ?44995) [44997, 44996, 44995] by Demod 43362 with 5973 at 3 +Id : 42258, {_}: add (inverse (add ?43873 ?43874)) ?43874 =>= add ?43874 (inverse ?43873) [43874, 43873] by Super 10051 with 35837 at 1,2,3 +Id : 42969, {_}: add ?44778 (inverse (add ?44777 ?44778)) =>= add ?44778 (inverse ?44777) [44777, 44778] by Super 5973 with 42258 at 3 +Id : 415299, {_}: add ?44995 (inverse ?44996) =<= add (inverse (add ?44996 ?44995)) (add (inverse (add ?44996 ?44997)) ?44995) [44997, 44996, 44995] by Demod 43363 with 42969 at 2 +Id : 415494, {_}: add (inverse (add ?628669 ?628668)) (add (inverse (add ?628669 ?628670)) ?628668) =<= add (add (inverse (add ?628669 ?628670)) ?628668) (inverse (add ?628669 (inverse (add ?628668 (inverse ?628669))))) [628670, 628668, 628669] by Super 10051 with 415299 at 1,2,1,2,3 +Id : 416655, {_}: add ?628668 (inverse ?628669) =<= add (add (inverse (add ?628669 ?628670)) ?628668) (inverse (add ?628669 (inverse (add ?628668 (inverse ?628669))))) [628670, 628669, 628668] by Demod 415494 with 415299 at 2 +Id : 416656, {_}: add ?628668 (inverse ?628669) =<= add (inverse (add ?628669 (inverse (add ?628668 (inverse ?628669))))) (add (inverse (add ?628669 ?628670)) ?628668) [628670, 628669, 628668] by Demod 416655 with 5973 at 3 +Id : 418876, {_}: add ?634385 (inverse ?634386) =<= add (inverse ?634386) (add (inverse (add ?634386 ?634387)) ?634385) [634387, 634386, 634385] by Demod 416656 with 2506 at 1,1,3 +Id : 9436, {_}: inverse ?10759 =<= add (inverse (add (inverse (add ?10760 ?10761)) ?10759)) (inverse (add ?10761 ?10759)) [10761, 10760, 10759] by Super 3282 with 866 at 1,1,1,1,3 +Id : 18533, {_}: inverse ?18554 =<= add (inverse (add (inverse (add ?18555 ?18556)) ?18554)) (inverse (add ?18554 ?18556)) [18556, 18555, 18554] by Super 9436 with 5973 at 1,2,3 +Id : 18582, {_}: inverse ?18755 =<= add (inverse (add (inverse ?18756) ?18755)) (inverse (add ?18755 ?18756)) [18756, 18755] by Super 18533 with 418 at 1,1,1,1,3 +Id : 19155, {_}: add (inverse (add ?19200 ?19201)) (inverse (add (inverse ?19201) ?19200)) =>= inverse ?19200 [19201, 19200] by Super 5973 with 18582 at 3 +Id : 418883, {_}: add ?634414 (inverse (inverse (add ?634412 ?634413))) =<= add (inverse (inverse (add ?634412 ?634413))) (add (inverse (inverse ?634412)) ?634414) [634413, 634412, 634414] by Super 418876 with 19155 at 1,1,2,3 +Id : 420154, {_}: add ?634414 (add ?634412 ?634413) =<= add (inverse (inverse (add ?634412 ?634413))) (add (inverse (inverse ?634412)) ?634414) [634413, 634412, 634414] by Demod 418883 with 427 at 2,2 +Id : 420155, {_}: add ?634414 (add ?634412 ?634413) =<= add (add ?634412 ?634413) (add (inverse (inverse ?634412)) ?634414) [634413, 634412, 634414] by Demod 420154 with 427 at 1,3 +Id : 420156, {_}: add ?634414 (add ?634412 ?634413) =<= add (add ?634412 ?634413) (add ?634412 ?634414) [634413, 634412, 634414] by Demod 420155 with 427 at 1,2,3 +Id : 421396, {_}: add (add ?637936 ?637935) (add ?637937 ?637936) =>= add ?637935 (add ?637936 ?637937) [637937, 637935, 637936] by Super 140658 with 420156 at 3 +Id : 421337, {_}: add (add ?637673 ?637674) (add ?637672 ?637673) =>= add ?637672 (add ?637673 ?637674) [637672, 637674, 637673] by Super 80396 with 420156 at 3 +Id : 428375, {_}: add ?637937 (add ?637936 ?637935) =?= add ?637935 (add ?637936 ?637937) [637935, 637936, 637937] by Demod 421396 with 421337 at 2 +Id : 421398, {_}: add ?637944 (add ?637945 ?637946) =<= add (add ?637944 ?637945) (add ?637945 ?637946) [637946, 637945, 637944] by Super 140658 with 420156 at 2 +Id : 418964, {_}: add ?634834 (inverse (inverse (add ?634833 ?634832))) =<= add (inverse (inverse (add ?634833 ?634832))) (add (inverse (inverse ?634832)) ?634834) [634832, 634833, 634834] by Super 418876 with 446 at 1,1,2,3 +Id : 420298, {_}: add ?634834 (add ?634833 ?634832) =<= add (inverse (inverse (add ?634833 ?634832))) (add (inverse (inverse ?634832)) ?634834) [634832, 634833, 634834] by Demod 418964 with 427 at 2,2 +Id : 420299, {_}: add ?634834 (add ?634833 ?634832) =<= add (add ?634833 ?634832) (add (inverse (inverse ?634832)) ?634834) [634832, 634833, 634834] by Demod 420298 with 427 at 1,3 +Id : 420300, {_}: add ?634834 (add ?634833 ?634832) =<= add (add ?634833 ?634832) (add ?634832 ?634834) [634832, 634833, 634834] by Demod 420299 with 427 at 1,2,3 +Id : 431824, {_}: add ?637944 (add ?637945 ?637946) =?= add ?637946 (add ?637944 ?637945) [637946, 637945, 637944] by Demod 421398 with 420300 at 3 +Id : 435227, {_}: add c (add b a) === add c (add b a) [] by Demod 435226 with 80396 at 3 +Id : 435226, {_}: add c (add b a) =<= add c (add a b) [] by Demod 431823 with 431824 at 3 +Id : 431823, {_}: add c (add b a) =<= add b (add c a) [] by Demod 6203 with 428375 at 3 +Id : 6203, {_}: add c (add b a) =<= add a (add c b) [] by Demod 6202 with 5973 at 2,3 +Id : 6202, {_}: add c (add b a) =<= add a (add b c) [] by Demod 6201 with 5973 at 2,2 +Id : 6201, {_}: add c (add a b) =<= add a (add b c) [] by Demod 2 with 5973 at 2 +Id : 2, {_}: add (add a b) c =>= add a (add b c) [] by huntinton_2 +% SZS output end CNFRefutation for BOO073-1.p +Order + == is 100 + _ is 99 + a is 98 + b is 97 + c is 96 + nand is 95 + prove_meredith_2_basis_2 is 94 + sh_1 is 93 +Facts + Id : 4, {_}: + nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?4 ?2)) =>= ?3 + [4, 3, 2] by sh_1 ?2 ?3 ?4 +Goal + Id : 2, {_}: + nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a + [] by prove_meredith_2_basis_2 +Last chance: 1246037795.9 +Last chance: all is indexed 1246038082.63 +Last chance: failed over 100 goal 1246038082.65 +FAILURE in 0 iterations +% SZS status Timeout for BOO076-1.p +Order + == is 100 + _ is 99 + apply is 96 + b is 94 + b_definition is 93 + fixed_pt is 97 + prove_strong_fixed_point is 95 + strong_fixed_point is 98 + w is 92 + w_definition is 91 +Facts + Id : 4, {_}: + apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) + [4, 3, 2] by b_definition ?2 ?3 ?4 + Id : 6, {_}: + apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 + [7, 6] by w_definition ?6 ?7 + Id : 8, {_}: + strong_fixed_point + =<= + apply (apply b (apply w w)) (apply (apply b w) (apply (apply b b) b)) + [] by strong_fixed_point +Goal + Id : 2, {_}: + apply strong_fixed_point fixed_pt + =<= + apply fixed_pt (apply strong_fixed_point fixed_pt) + [] by prove_strong_fixed_point +Last chance: 1246038383.09 +Last chance: all is indexed 1246039114.07 +Last chance: failed over 100 goal 1246039114.19 +FAILURE in 0 iterations +% SZS status Timeout for COL003-12.p +Order + == is 100 + _ is 99 + apply is 97 + b is 95 + b_definition is 94 + f is 98 + prove_strong_fixed_point is 96 + w is 93 + w_definition is 92 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 + [8, 7] by w_definition ?7 ?8 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_strong_fixed_point ?1 +Last chance: 1246039420.58 +Last chance: all is indexed 1246040215.63 +Last chance: failed over 100 goal 1246040481.46 +FAILURE in 0 iterations +% SZS status Timeout for COL003-1.p +Order + == is 100 + _ is 99 + apply is 96 + b is 94 + b_definition is 93 + fixed_pt is 97 + prove_strong_fixed_point is 95 + strong_fixed_point is 98 + w is 92 + w_definition is 91 +Facts + Id : 4, {_}: + apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) + [4, 3, 2] by b_definition ?2 ?3 ?4 + Id : 6, {_}: + apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 + [7, 6] by w_definition ?6 ?7 + Id : 8, {_}: + strong_fixed_point + =<= + apply (apply b (apply w w)) + (apply (apply b (apply b w)) (apply (apply b b) b)) + [] by strong_fixed_point +Goal + Id : 2, {_}: + apply strong_fixed_point fixed_pt + =<= + apply fixed_pt (apply strong_fixed_point fixed_pt) + [] by prove_strong_fixed_point +Last chance: 1246040786.39 +Last chance: all is indexed 1246041551.8 +Last chance: failed over 100 goal 1246041551.9 +FAILURE in 0 iterations +% SZS status Timeout for COL003-20.p +Order + == is 100 + _ is 99 + apply is 96 + fixed_pt is 97 + k is 92 + k_definition is 91 + prove_strong_fixed_point is 95 + s is 94 + s_definition is 93 + strong_fixed_point is 98 +Facts + Id : 4, {_}: + apply (apply (apply s ?2) ?3) ?4 + =?= + apply (apply ?2 ?4) (apply ?3 ?4) + [4, 3, 2] by s_definition ?2 ?3 ?4 + Id : 6, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 + Id : 8, {_}: + strong_fixed_point + =<= + apply + (apply s + (apply k + (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) + (apply (apply s (apply (apply s (apply k s)) k)) + (apply k + (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) + [] by strong_fixed_point +Goal + Id : 2, {_}: + apply strong_fixed_point fixed_pt + =<= + apply fixed_pt (apply strong_fixed_point fixed_pt) + [] by prove_strong_fixed_point +Last chance: 1246041853.36 +Last chance: all is indexed 1246043148.51 +Last chance: failed over 100 goal 1246043148.61 +FAILURE in 0 iterations +% SZS status Timeout for COL006-6.p +Order + == is 100 + _ is 99 + apply is 97 + combinator is 98 + o is 95 + o_definition is 94 + prove_fixed_point is 96 + q1 is 93 + q1_definition is 92 +Facts + Id : 4, {_}: + apply (apply o ?3) ?4 =?= apply ?4 (apply ?3 ?4) + [4, 3] by o_definition ?3 ?4 + Id : 6, {_}: + apply (apply (apply q1 ?6) ?7) ?8 =>= apply ?6 (apply ?8 ?7) + [8, 7, 6] by q1_definition ?6 ?7 ?8 +Goal + Id : 2, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1 +Last chance: 1246043453.25 +Last chance: all is indexed 1246044101.73 +Last chance: failed over 100 goal 1246044104.01 +FAILURE in 0 iterations +% SZS status Timeout for COL011-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + c is 91 + c_definition is 90 + f is 98 + prove_fixed_point is 96 + s is 95 + s_definition is 94 +Facts + Id : 4, {_}: + apply (apply (apply s ?3) ?4) ?5 + =?= + apply (apply ?3 ?5) (apply ?4 ?5) + [5, 4, 3] by s_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) + [9, 8, 7] by b_definition ?7 ?8 ?9 + Id : 8, {_}: + apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12 + [13, 12, 11] by c_definition ?11 ?12 ?13 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_fixed_point ?1 +Last chance: 1246044405.58 +Last chance: all is indexed 1246045687.02 +Last chance: failed over 100 goal 1246047742.94 +FAILURE in 0 iterations +% SZS status Timeout for COL037-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 95 + b_definition is 94 + f is 98 + m is 93 + m_definition is 92 + prove_fixed_point is 96 + v is 91 + v_definition is 90 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 + Id : 8, {_}: + apply (apply (apply v ?9) ?10) ?11 =>= apply (apply ?11 ?9) ?10 + [11, 10, 9] by v_definition ?9 ?10 ?11 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_fixed_point ?1 +Last chance: 1246048045.65 +Last chance: all is indexed 1246048609.34 +Last chance: failed over 100 goal 1246048629.8 +FAILURE in 0 iterations +% SZS status Timeout for COL038-1.p +Order + == is 100 + _ is 99 + apply is 96 + b is 94 + b_definition is 93 + fixed_pt is 97 + h is 92 + h_definition is 91 + prove_strong_fixed_point is 95 + strong_fixed_point is 98 +Facts + Id : 4, {_}: + apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) + [4, 3, 2] by b_definition ?2 ?3 ?4 + Id : 6, {_}: + apply (apply (apply h ?6) ?7) ?8 + =?= + apply (apply (apply ?6 ?7) ?8) ?7 + [8, 7, 6] by h_definition ?6 ?7 ?8 + Id : 8, {_}: + strong_fixed_point + =<= + apply + (apply b + (apply + (apply b + (apply + (apply h + (apply (apply b (apply (apply b h) (apply b b))) + (apply h (apply (apply b h) (apply b b))))) h)) b)) b + [] by strong_fixed_point +Goal + Id : 2, {_}: + apply strong_fixed_point fixed_pt + =<= + apply fixed_pt (apply strong_fixed_point fixed_pt) + [] by prove_strong_fixed_point +Last chance: 1246048932. +Last chance: all is indexed 1246050149.29 +Last chance: failed over 100 goal 1246050149.38 +FAILURE in 0 iterations +% SZS status Timeout for COL043-3.p +Order + == is 100 + _ is 99 + apply is 96 + b is 94 + b_definition is 93 + fixed_pt is 97 + n is 92 + n_definition is 91 + prove_strong_fixed_point is 95 + strong_fixed_point is 98 +Facts + Id : 4, {_}: + apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) + [4, 3, 2] by b_definition ?2 ?3 ?4 + Id : 6, {_}: + apply (apply (apply n ?6) ?7) ?8 + =?= + apply (apply (apply ?6 ?8) ?7) ?8 + [8, 7, 6] by n_definition ?6 ?7 ?8 + Id : 8, {_}: + strong_fixed_point + =<= + apply + (apply b + (apply + (apply b + (apply + (apply n + (apply n + (apply (apply b (apply b b)) + (apply n (apply (apply b b) n))))) n)) b)) b + [] by strong_fixed_point +Goal + Id : 2, {_}: + apply strong_fixed_point fixed_pt + =<= + apply fixed_pt (apply strong_fixed_point fixed_pt) + [] by prove_strong_fixed_point +Last chance: 1246050450.39 +Last chance: all is indexed 1246051298.02 +Last chance: failed over 100 goal 1246051298.1 +FAILURE in 0 iterations +% SZS status Timeout for COL044-8.p +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + f is 98 + m is 91 + m_definition is 90 + prove_fixed_point is 96 + s is 95 + s_definition is 94 +Facts + Id : 4, {_}: + apply (apply (apply s ?3) ?4) ?5 + =?= + apply (apply ?3 ?5) (apply ?4 ?5) + [5, 4, 3] by s_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) + [9, 8, 7] by b_definition ?7 ?8 ?9 + Id : 8, {_}: apply m ?11 =?= apply ?11 ?11 [11] by m_definition ?11 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_fixed_point ?1 +Last chance: 1246051601.26 +Last chance: all is indexed 1246052740.68 +Last chance: failed over 100 goal 1246053297.04 +FAILURE in 0 iterations +% SZS status Timeout for COL046-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 95 + b_definition is 94 + f is 98 + m is 91 + m_definition is 90 + prove_strong_fixed_point is 96 + w is 93 + w_definition is 92 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 + [8, 7] by w_definition ?7 ?8 + Id : 8, {_}: apply m ?10 =?= apply ?10 ?10 [10] by m_definition ?10 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_strong_fixed_point ?1 +Last chance: 1246053599.67 +Last chance: all is indexed 1246054318.64 +Last chance: failed over 100 goal 1246054325.15 +FAILURE in 0 iterations +% SZS status Timeout for COL049-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + c is 91 + c_definition is 90 + f is 98 + i is 89 + i_definition is 88 + prove_strong_fixed_point is 96 + s is 95 + s_definition is 94 +Facts + Id : 4, {_}: + apply (apply (apply s ?3) ?4) ?5 + =?= + apply (apply ?3 ?5) (apply ?4 ?5) + [5, 4, 3] by s_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) + [9, 8, 7] by b_definition ?7 ?8 ?9 + Id : 8, {_}: + apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12 + [13, 12, 11] by c_definition ?11 ?12 ?13 + Id : 10, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_strong_fixed_point ?1 +Last chance: 1246054626.38 +Last chance: all is indexed 1246055200.41 +Last chance: failed over 100 goal 1246055315.25 +FAILURE in 0 iterations +% SZS status Timeout for COL057-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + f is 98 + g is 96 + h is 95 + prove_q_combinator is 94 + t is 91 + t_definition is 90 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply t ?7) ?8 =>= apply ?8 ?7 + [8, 7] by t_definition ?7 ?8 +Goal + Id : 2, {_}: + apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) + =>= + apply (g ?1) (apply (f ?1) (h ?1)) + [1] by prove_q_combinator ?1 +Goal subsumed +Found proof, 0.118431s +% SZS status Unsatisfiable for COL060-1.p +% SZS output start CNFRefutation for COL060-1.p +Id : 6, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 +Id : 4, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 +Id : 410, {_}: apply (g (apply (apply b (apply t b)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t b)) (apply (apply b b) t))) (h (apply (apply b (apply t b)) (apply (apply b b) t)))) === apply (g (apply (apply b (apply t b)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t b)) (apply (apply b b) t))) (h (apply (apply b (apply t b)) (apply (apply b b) t)))) [] by Super 408 with 4 at 2 +Id : 408, {_}: apply (apply (apply ?1205 (g (apply (apply b (apply t ?1205)) (apply (apply b b) t)))) (f (apply (apply b (apply t ?1205)) (apply (apply b b) t)))) (h (apply (apply b (apply t ?1205)) (apply (apply b b) t))) =>= apply (g (apply (apply b (apply t ?1205)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t ?1205)) (apply (apply b b) t))) (h (apply (apply b (apply t ?1205)) (apply (apply b b) t)))) [1205] by Super 389 with 6 at 1,2 +Id : 389, {_}: apply (apply (apply ?1151 (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (apply ?1152 (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) =>= apply (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (apply (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) [1152, 1151] by Super 50 with 4 at 1,2 +Id : 50, {_}: apply (apply (apply (apply ?123 (apply ?124 (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))))) ?125) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) =>= apply (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (apply (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) [125, 124, 123] by Super 25 with 4 at 1,1,1,2 +Id : 25, {_}: apply (apply (apply (apply ?58 (f (apply (apply b (apply t ?57)) ?58))) ?57) (g (apply (apply b (apply t ?57)) ?58))) (h (apply (apply b (apply t ?57)) ?58)) =>= apply (g (apply (apply b (apply t ?57)) ?58)) (apply (f (apply (apply b (apply t ?57)) ?58)) (h (apply (apply b (apply t ?57)) ?58))) [57, 58] by Super 11 with 6 at 1,1,2 +Id : 11, {_}: apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25)) =>= apply (g (apply (apply b ?24) ?25)) (apply (f (apply (apply b ?24) ?25)) (h (apply (apply b ?24) ?25))) [25, 24] by Super 2 with 4 at 1,1,2 +Id : 2, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (g ?1) (apply (f ?1) (h ?1)) [1] by prove_q_combinator ?1 +% SZS output end CNFRefutation for COL060-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + f is 98 + g is 96 + h is 95 + prove_q1_combinator is 94 + t is 91 + t_definition is 90 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply t ?7) ?8 =>= apply ?8 ?7 + [8, 7] by t_definition ?7 ?8 +Goal + Id : 2, {_}: + apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) + =>= + apply (f ?1) (apply (h ?1) (g ?1)) + [1] by prove_q1_combinator ?1 +Goal subsumed +Found proof, 0.119590s +% SZS status Unsatisfiable for COL061-1.p +% SZS output start CNFRefutation for COL061-1.p +Id : 6, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 +Id : 4, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 +Id : 410, {_}: apply (f (apply (apply b (apply t t)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) b))) (g (apply (apply b (apply t t)) (apply (apply b b) b)))) === apply (f (apply (apply b (apply t t)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) b))) (g (apply (apply b (apply t t)) (apply (apply b b) b)))) [] by Super 409 with 6 at 2,2 +Id : 409, {_}: apply (f (apply (apply b (apply t ?1207)) (apply (apply b b) b))) (apply (apply ?1207 (g (apply (apply b (apply t ?1207)) (apply (apply b b) b)))) (h (apply (apply b (apply t ?1207)) (apply (apply b b) b)))) =>= apply (f (apply (apply b (apply t ?1207)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t ?1207)) (apply (apply b b) b))) (g (apply (apply b (apply t ?1207)) (apply (apply b b) b)))) [1207] by Super 389 with 4 at 2 +Id : 389, {_}: apply (apply (apply ?1151 (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (apply ?1152 (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) =>= apply (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (apply (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) [1152, 1151] by Super 50 with 4 at 1,2 +Id : 50, {_}: apply (apply (apply (apply ?123 (apply ?124 (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))))) ?125) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) =>= apply (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (apply (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) [125, 124, 123] by Super 25 with 4 at 1,1,1,2 +Id : 25, {_}: apply (apply (apply (apply ?58 (f (apply (apply b (apply t ?57)) ?58))) ?57) (g (apply (apply b (apply t ?57)) ?58))) (h (apply (apply b (apply t ?57)) ?58)) =>= apply (f (apply (apply b (apply t ?57)) ?58)) (apply (h (apply (apply b (apply t ?57)) ?58)) (g (apply (apply b (apply t ?57)) ?58))) [57, 58] by Super 11 with 6 at 1,1,2 +Id : 11, {_}: apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25)) =>= apply (f (apply (apply b ?24) ?25)) (apply (h (apply (apply b ?24) ?25)) (g (apply (apply b ?24) ?25))) [25, 24] by Super 2 with 4 at 1,1,2 +Id : 2, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (f ?1) (apply (h ?1) (g ?1)) [1] by prove_q1_combinator ?1 +% SZS output end CNFRefutation for COL061-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + f is 98 + g is 96 + h is 95 + prove_f_combinator is 94 + t is 91 + t_definition is 90 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply t ?7) ?8 =>= apply ?8 ?7 + [8, 7] by t_definition ?7 ?8 +Goal + Id : 2, {_}: + apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) + =>= + apply (apply (h ?1) (g ?1)) (f ?1) + [1] by prove_f_combinator ?1 +Goal subsumed +Found proof, 2.017016s +% SZS status Unsatisfiable for COL063-1.p +% SZS output start CNFRefutation for COL063-1.p +Id : 6, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 +Id : 4, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 +Id : 3084, {_}: apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) === apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) [] by Super 3079 with 6 at 2 +Id : 3079, {_}: apply (apply ?9991 (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991))))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991))))) =>= apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991)))) [9991] by Super 3059 with 6 at 2,2 +Id : 3059, {_}: apply (apply ?9940 (f (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (apply (apply ?9941 (g (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (h (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) =>= apply (apply (h (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940)))) (g (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (f (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940)))) [9941, 9940] by Super 405 with 4 at 2 +Id : 405, {_}: apply (apply (apply ?1195 (apply ?1196 (f (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))))) (apply ?1197 (g (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))))) (h (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) =>= apply (apply (h (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) (g (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196))))) (f (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) [1197, 1196, 1195] by Super 389 with 4 at 1,1,2 +Id : 389, {_}: apply (apply (apply ?1151 (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (apply ?1152 (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) =>= apply (apply (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) [1152, 1151] by Super 50 with 4 at 1,2 +Id : 50, {_}: apply (apply (apply (apply ?123 (apply ?124 (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))))) ?125) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) =>= apply (apply (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) [125, 124, 123] by Super 25 with 4 at 1,1,1,2 +Id : 25, {_}: apply (apply (apply (apply ?58 (f (apply (apply b (apply t ?57)) ?58))) ?57) (g (apply (apply b (apply t ?57)) ?58))) (h (apply (apply b (apply t ?57)) ?58)) =>= apply (apply (h (apply (apply b (apply t ?57)) ?58)) (g (apply (apply b (apply t ?57)) ?58))) (f (apply (apply b (apply t ?57)) ?58)) [57, 58] by Super 11 with 6 at 1,1,2 +Id : 11, {_}: apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25)) =>= apply (apply (h (apply (apply b ?24) ?25)) (g (apply (apply b ?24) ?25))) (f (apply (apply b ?24) ?25)) [25, 24] by Super 2 with 4 at 1,1,2 +Id : 2, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (g ?1)) (f ?1) [1] by prove_f_combinator ?1 +% SZS output end CNFRefutation for COL063-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + f is 98 + g is 96 + h is 95 + prove_v_combinator is 94 + t is 91 + t_definition is 90 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply t ?7) ?8 =>= apply ?8 ?7 + [8, 7] by t_definition ?7 ?8 +Goal + Id : 2, {_}: + apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) + =>= + apply (apply (h ?1) (f ?1)) (g ?1) + [1] by prove_v_combinator ?1 +Goal subsumed +Found proof, 14.407016s +% SZS status Unsatisfiable for COL064-1.p +% SZS output start CNFRefutation for COL064-1.p +Id : 6, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 +Id : 4, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 +Id : 10866, {_}: apply (apply (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) === apply (apply (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) [] by Super 10865 with 6 at 2 +Id : 10865, {_}: apply (apply ?36992 (g (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t))))) (apply (h (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t))))) =>= apply (apply (h (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t)))) [36992] by Super 3088 with 4 at 2 +Id : 3088, {_}: apply (apply (apply ?10013 (apply ?10014 (g (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))))) (h (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))) =>= apply (apply (h (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))) [10014, 10013] by Super 3083 with 4 at 1,1,2 +Id : 3083, {_}: apply (apply (apply ?10003 (g (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t))))) (h (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t)))) =>= apply (apply (h (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t)))) [10003] by Super 3059 with 6 at 2 +Id : 3059, {_}: apply (apply ?9940 (f (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (apply (apply ?9941 (g (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (h (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) =>= apply (apply (h (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940)))) (f (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (g (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940)))) [9941, 9940] by Super 405 with 4 at 2 +Id : 405, {_}: apply (apply (apply ?1195 (apply ?1196 (f (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))))) (apply ?1197 (g (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))))) (h (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) =>= apply (apply (h (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) (f (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196))))) (g (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) [1197, 1196, 1195] by Super 389 with 4 at 1,1,2 +Id : 389, {_}: apply (apply (apply ?1151 (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (apply ?1152 (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) =>= apply (apply (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) [1152, 1151] by Super 50 with 4 at 1,2 +Id : 50, {_}: apply (apply (apply (apply ?123 (apply ?124 (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))))) ?125) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) =>= apply (apply (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) [125, 124, 123] by Super 25 with 4 at 1,1,1,2 +Id : 25, {_}: apply (apply (apply (apply ?58 (f (apply (apply b (apply t ?57)) ?58))) ?57) (g (apply (apply b (apply t ?57)) ?58))) (h (apply (apply b (apply t ?57)) ?58)) =>= apply (apply (h (apply (apply b (apply t ?57)) ?58)) (f (apply (apply b (apply t ?57)) ?58))) (g (apply (apply b (apply t ?57)) ?58)) [57, 58] by Super 11 with 6 at 1,1,2 +Id : 11, {_}: apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25)) =>= apply (apply (h (apply (apply b ?24) ?25)) (f (apply (apply b ?24) ?25))) (g (apply (apply b ?24) ?25)) [25, 24] by Super 2 with 4 at 1,1,2 +Id : 2, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (f ?1)) (g ?1) [1] by prove_v_combinator ?1 +% SZS output end CNFRefutation for COL064-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 92 + b_definition is 91 + f is 98 + g is 96 + h is 95 + i is 94 + prove_g_combinator is 93 + t is 90 + t_definition is 89 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply t ?7) ?8 =>= apply ?8 ?7 + [8, 7] by t_definition ?7 ?8 +Goal + Id : 2, {_}: + apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)) (i ?1) + =>= + apply (apply (f ?1) (i ?1)) (apply (g ?1) (h ?1)) + [1] by prove_g_combinator ?1 +Goal subsumed +Found proof, 71.220473s +% SZS status Unsatisfiable for COL065-1.p +% SZS output start CNFRefutation for COL065-1.p +Id : 6, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 +Id : 4, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 +Id : 24512, {_}: apply (apply (f (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))))) (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))))) === apply (apply (f (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))))) (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))))) [] by Super 24511 with 6 at 2 +Id : 24511, {_}: apply (apply ?78509 (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t)))))) (apply (f (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t))))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t))))) (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t))))) [78509] by Super 5051 with 4 at 2 +Id : 5051, {_}: apply (apply (apply ?14812 (apply ?14813 (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t))))))) (f (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t))))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t)))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t))))) (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t))))) [14813, 14812] by Super 5049 with 4 at 1,1,2 +Id : 5049, {_}: apply (apply (apply ?14808 (apply (g (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t)))))) (f (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t))))) (i (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t)))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t))))) (apply (g (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t))))) [14808] by Super 5030 with 6 at 1,2 +Id : 5030, {_}: apply (apply (apply ?14754 (f (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754))))) (apply ?14755 (apply (g (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754)))) (h (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754))))))) (i (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754)))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754)))) (i (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754))))) (apply (g (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754)))) (h (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754))))) [14755, 14754] by Super 388 with 4 at 1,2 +Id : 388, {_}: apply (apply (apply (apply ?1025 (apply ?1026 (f (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))))) ?1027) (apply (g (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))) (h (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))))) (i (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))) (i (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026))))) (apply (g (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))) (h (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026))))) [1027, 1026, 1025] by Super 132 with 4 at 1,1,1,2 +Id : 132, {_}: apply (apply (apply (apply ?316 (f (apply (apply b b) (apply (apply b (apply t ?315)) ?316)))) ?315) (apply (g (apply (apply b b) (apply (apply b (apply t ?315)) ?316))) (h (apply (apply b b) (apply (apply b (apply t ?315)) ?316))))) (i (apply (apply b b) (apply (apply b (apply t ?315)) ?316))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t ?315)) ?316))) (i (apply (apply b b) (apply (apply b (apply t ?315)) ?316)))) (apply (g (apply (apply b b) (apply (apply b (apply t ?315)) ?316))) (h (apply (apply b b) (apply (apply b (apply t ?315)) ?316)))) [315, 316] by Super 34 with 6 at 1,1,2 +Id : 34, {_}: apply (apply (apply ?76 (apply ?77 (f (apply (apply b b) (apply (apply b ?76) ?77))))) (apply (g (apply (apply b b) (apply (apply b ?76) ?77))) (h (apply (apply b b) (apply (apply b ?76) ?77))))) (i (apply (apply b b) (apply (apply b ?76) ?77))) =>= apply (apply (f (apply (apply b b) (apply (apply b ?76) ?77))) (i (apply (apply b b) (apply (apply b ?76) ?77)))) (apply (g (apply (apply b b) (apply (apply b ?76) ?77))) (h (apply (apply b b) (apply (apply b ?76) ?77)))) [77, 76] by Super 31 with 4 at 1,1,2 +Id : 31, {_}: apply (apply (apply ?69 (f (apply (apply b b) ?69))) (apply (g (apply (apply b b) ?69)) (h (apply (apply b b) ?69)))) (i (apply (apply b b) ?69)) =>= apply (apply (f (apply (apply b b) ?69)) (i (apply (apply b b) ?69))) (apply (g (apply (apply b b) ?69)) (h (apply (apply b b) ?69))) [69] by Super 11 with 4 at 1,2 +Id : 11, {_}: apply (apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25))) (i (apply (apply b ?24) ?25)) =>= apply (apply (f (apply (apply b ?24) ?25)) (i (apply (apply b ?24) ?25))) (apply (g (apply (apply b ?24) ?25)) (h (apply (apply b ?24) ?25))) [25, 24] by Super 2 with 4 at 1,1,1,2 +Id : 2, {_}: apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)) (i ?1) =>= apply (apply (f ?1) (i ?1)) (apply (g ?1) (h ?1)) [1] by prove_g_combinator ?1 +% SZS output end CNFRefutation for COL065-1.p +Order + == is 100 + _ is 99 + a is 98 + b is 97 + c is 96 + group_axiom is 92 + inverse is 93 + multiply is 95 + prove_associativity is 94 +Facts + Id : 4, {_}: + multiply ?2 + (inverse + (multiply + (multiply + (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) + ?5) (inverse (multiply ?3 ?5)))) + =>= + ?4 + [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5 +Goal + Id : 2, {_}: + multiply a (multiply b c) =<= multiply (multiply a b) c + [] by prove_associativity +Found proof, 3.169341s +% SZS status Unsatisfiable for GRP014-1.p +% SZS output start CNFRefutation for GRP014-1.p +Id : 5, {_}: multiply ?7 (inverse (multiply (multiply (inverse (multiply (inverse ?8) (multiply (inverse ?7) ?9))) ?10) (inverse (multiply ?8 ?10)))) =>= ?9 [10, 9, 8, 7] by group_axiom ?7 ?8 ?9 ?10 +Id : 4, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5 +Id : 7, {_}: multiply ?22 (inverse (multiply (multiply (inverse (multiply (inverse ?23) ?20)) ?24) (inverse (multiply ?23 ?24)))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?19) (multiply (inverse (inverse ?22)) ?20))) ?21) (inverse (multiply ?19 ?21))) [21, 19, 24, 20, 23, 22] by Super 5 with 4 at 2,1,1,1,1,2,2 +Id : 65, {_}: multiply (inverse ?586) (multiply ?586 (inverse (multiply (multiply (inverse (multiply (inverse ?587) ?588)) ?589) (inverse (multiply ?587 ?589))))) =>= ?588 [589, 588, 587, 586] by Super 4 with 7 at 2,2 +Id : 66, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?596) (multiply (inverse (inverse ?593)) (multiply (inverse ?593) ?598)))) ?597) (inverse (multiply ?596 ?597))) =>= ?598 [597, 598, 593, 596] by Super 4 with 7 at 2 +Id : 285, {_}: multiply (inverse ?2327) (multiply ?2327 ?2328) =?= multiply (inverse (inverse ?2329)) (multiply (inverse ?2329) ?2328) [2329, 2328, 2327] by Super 65 with 66 at 2,2,2 +Id : 188, {_}: multiply (inverse ?1696) (multiply ?1696 ?1694) =?= multiply (inverse (inverse ?1693)) (multiply (inverse ?1693) ?1694) [1693, 1694, 1696] by Super 65 with 66 at 2,2,2 +Id : 299, {_}: multiply (inverse ?2421) (multiply ?2421 ?2422) =?= multiply (inverse ?2420) (multiply ?2420 ?2422) [2420, 2422, 2421] by Super 285 with 188 at 3 +Id : 379, {_}: multiply ?2799 (inverse (multiply (multiply (inverse ?2798) (multiply ?2798 ?2797)) (inverse (multiply ?2800 (multiply (multiply (inverse ?2800) (multiply (inverse ?2799) ?2801)) ?2797))))) =>= ?2801 [2801, 2800, 2797, 2798, 2799] by Super 4 with 299 at 1,1,2,2 +Id : 550, {_}: multiply ?3835 (inverse (multiply (multiply (inverse (multiply (inverse ?3836) (multiply ?3836 ?3837))) ?3838) (inverse (multiply (inverse ?3835) ?3838)))) =>= ?3837 [3838, 3837, 3836, 3835] by Super 4 with 188 at 1,1,1,1,2,2 +Id : 2860, {_}: multiply ?17926 (inverse (multiply (multiply (inverse (multiply (inverse ?17927) (multiply ?17927 ?17928))) (multiply ?17926 ?17929)) (inverse (multiply (inverse ?17930) (multiply ?17930 ?17929))))) =>= ?17928 [17930, 17929, 17928, 17927, 17926] by Super 550 with 299 at 1,2,1,2,2 +Id : 2947, {_}: multiply (multiply (inverse ?18671) (multiply ?18671 ?18672)) (inverse (multiply ?18669 (inverse (multiply (inverse ?18673) (multiply ?18673 (inverse (multiply (multiply (inverse (multiply (inverse ?18668) ?18669)) ?18670) (inverse (multiply ?18668 ?18670))))))))) =>= ?18672 [18670, 18668, 18673, 18669, 18672, 18671] by Super 2860 with 65 at 1,1,2,2 +Id : 2989, {_}: multiply (multiply (inverse ?18671) (multiply ?18671 ?18672)) (inverse (multiply ?18669 (inverse ?18669))) =>= ?18672 [18669, 18672, 18671] by Demod 2947 with 65 at 1,2,1,2,2 +Id : 3000, {_}: multiply ?18805 (inverse (multiply (multiply (inverse ?18806) (multiply ?18806 (inverse (multiply ?18804 (inverse ?18804))))) (inverse (multiply (inverse ?18805) ?18803)))) =>= ?18803 [18803, 18804, 18806, 18805] by Super 379 with 2989 at 2,1,2,1,2,2 +Id : 7432, {_}: multiply (inverse ?40377) (multiply (multiply (inverse (inverse ?40377)) ?40378) (inverse (multiply ?40379 (inverse ?40379)))) =>= ?40378 [40379, 40378, 40377] by Super 65 with 3000 at 2,2 +Id : 3646, {_}: multiply ?23036 (inverse (multiply (multiply (inverse ?23037) (multiply ?23037 (inverse (multiply ?23038 (inverse ?23038))))) (inverse (multiply (inverse ?23036) ?23039)))) =>= ?23039 [23039, 23038, 23037, 23036] by Super 379 with 2989 at 2,1,2,1,2,2 +Id : 3702, {_}: multiply ?23470 (inverse (inverse (multiply ?23472 (inverse ?23472)))) =>= inverse (inverse ?23470) [23472, 23470] by Super 3646 with 2989 at 1,2,2 +Id : 3804, {_}: multiply (inverse ?23847) (multiply ?23847 (inverse (inverse (multiply ?23846 (inverse ?23846))))) =?= multiply (inverse ?23845) (inverse (inverse ?23845)) [23845, 23846, 23847] by Super 299 with 3702 at 2,3 +Id : 4420, {_}: multiply (inverse ?26554) (inverse (inverse ?26554)) =?= multiply (inverse ?26555) (inverse (inverse ?26555)) [26555, 26554] by Demod 3804 with 3702 at 2,2 +Id : 190, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1706) (multiply (inverse (inverse ?1707)) (multiply (inverse ?1707) ?1708)))) ?1709) (inverse (multiply ?1706 ?1709))) =>= ?1708 [1709, 1708, 1707, 1706] by Super 4 with 7 at 2 +Id : 198, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1772) (multiply (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?1768) (multiply (inverse (inverse ?1769)) (multiply (inverse ?1769) ?1770)))) ?1771) (inverse (multiply ?1768 ?1771))))) (multiply ?1770 ?1773)))) ?1774) (inverse (multiply ?1772 ?1774))) =>= ?1773 [1774, 1773, 1771, 1770, 1769, 1768, 1772] by Super 190 with 66 at 1,2,2,1,1,1,1,2 +Id : 223, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1772) (multiply (inverse ?1770) (multiply ?1770 ?1773)))) ?1774) (inverse (multiply ?1772 ?1774))) =>= ?1773 [1774, 1773, 1770, 1772] by Demod 198 with 66 at 1,1,2,1,1,1,1,2 +Id : 4421, {_}: multiply (inverse ?26561) (inverse (inverse ?26561)) =?= multiply (inverse (multiply (multiply (inverse (multiply (inverse ?26557) (multiply (inverse ?26558) (multiply ?26558 ?26559)))) ?26560) (inverse (multiply ?26557 ?26560)))) (inverse ?26559) [26560, 26559, 26558, 26557, 26561] by Super 4420 with 223 at 1,2,3 +Id : 4696, {_}: multiply (inverse ?27771) (inverse (inverse ?27771)) =?= multiply ?27772 (inverse ?27772) [27772, 27771] by Demod 4421 with 223 at 1,3 +Id : 4493, {_}: multiply (inverse ?26561) (inverse (inverse ?26561)) =?= multiply ?26559 (inverse ?26559) [26559, 26561] by Demod 4421 with 223 at 1,3 +Id : 4736, {_}: multiply ?27992 (inverse ?27992) =?= multiply ?27994 (inverse ?27994) [27994, 27992] by Super 4696 with 4493 at 2 +Id : 7526, {_}: multiply (inverse ?40902) (multiply ?40901 (inverse ?40901)) =>= inverse (inverse (inverse ?40902)) [40901, 40902] by Super 7432 with 4736 at 2,2 +Id : 7653, {_}: multiply (inverse ?41400) (multiply ?41400 (inverse ?41399)) =>= inverse (inverse (inverse ?41399)) [41399, 41400] by Super 299 with 7526 at 3 +Id : 8053, {_}: multiply ?18805 (inverse (multiply (inverse (inverse (inverse (multiply ?18804 (inverse ?18804))))) (inverse (multiply (inverse ?18805) ?18803)))) =>= ?18803 [18803, 18804, 18805] by Demod 3000 with 7653 at 1,1,2,2 +Id : 395, {_}: multiply (inverse ?2916) (multiply ?2916 (inverse (multiply (multiply (inverse (multiply (inverse ?2915) (multiply ?2915 ?2914))) ?2917) (inverse (multiply ?2913 ?2917))))) =>= multiply ?2913 ?2914 [2913, 2917, 2914, 2915, 2916] by Super 65 with 299 at 1,1,1,1,2,2,2 +Id : 8051, {_}: inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?2915) (multiply ?2915 ?2914))) ?2917) (inverse (multiply ?2913 ?2917))))) =>= multiply ?2913 ?2914 [2913, 2917, 2914, 2915] by Demod 395 with 7653 at 2 +Id : 8154, {_}: multiply (inverse ?43172) (multiply ?43172 (inverse ?43173)) =>= inverse (inverse (inverse ?43173)) [43173, 43172] by Super 299 with 7526 at 3 +Id : 474, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?3355) (multiply (inverse ?3356) (multiply ?3356 ?3357)))) ?3358) (inverse (multiply ?3355 ?3358))) =>= ?3357 [3358, 3357, 3356, 3355] by Demod 198 with 66 at 1,1,2,1,1,1,1,2 +Id : 505, {_}: inverse (multiply (multiply (inverse ?3589) (multiply ?3589 ?3588)) (inverse (multiply ?3590 (multiply (multiply (inverse ?3590) (multiply (inverse ?3591) (multiply ?3591 ?3592))) ?3588)))) =>= ?3592 [3592, 3591, 3590, 3588, 3589] by Super 474 with 299 at 1,1,2 +Id : 3283, {_}: inverse (multiply (multiply (inverse ?20660) (multiply ?20660 (inverse (multiply ?20661 (inverse ?20661))))) (inverse (multiply (inverse ?20662) (multiply ?20662 ?20663)))) =>= ?20663 [20663, 20662, 20661, 20660] by Super 505 with 2989 at 2,1,2,1,2 +Id : 251, {_}: multiply ?2088 (inverse (multiply (multiply (inverse (multiply (inverse ?2086) (multiply ?2086 ?2087))) ?2089) (inverse (multiply (inverse ?2088) ?2089)))) =>= ?2087 [2089, 2087, 2086, 2088] by Super 4 with 188 at 1,1,1,1,2,2 +Id : 3330, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?21019) (multiply ?21019 ?21020))) ?21020) (inverse (multiply (inverse ?21022) (multiply ?21022 ?21023)))) =>= ?21023 [21023, 21022, 21020, 21019] by Super 3283 with 251 at 2,1,1,2 +Id : 8160, {_}: multiply (inverse ?43212) (multiply ?43212 ?43211) =?= inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?43208) (multiply ?43208 ?43209))) ?43209) (inverse (multiply (inverse ?43210) (multiply ?43210 ?43211)))))) [43210, 43209, 43208, 43211, 43212] by Super 8154 with 3330 at 2,2,2 +Id : 8246, {_}: multiply (inverse ?43212) (multiply ?43212 ?43211) =>= inverse (inverse ?43211) [43211, 43212] by Demod 8160 with 3330 at 1,1,3 +Id : 8276, {_}: inverse (inverse (inverse (multiply (multiply (inverse (inverse (inverse ?2914))) ?2917) (inverse (multiply ?2913 ?2917))))) =>= multiply ?2913 ?2914 [2913, 2917, 2914] by Demod 8051 with 8246 at 1,1,1,1,1,1,2 +Id : 3034, {_}: multiply (multiply (inverse ?19018) (multiply ?19018 ?19019)) (inverse (multiply ?19020 (inverse ?19020))) =>= ?19019 [19020, 19019, 19018] by Demod 2947 with 65 at 1,2,1,2,2 +Id : 3049, {_}: multiply (multiply (inverse (inverse ?19126)) (multiply (inverse ?19128) (multiply ?19128 ?19127))) (inverse (multiply ?19129 (inverse ?19129))) =>= multiply ?19126 ?19127 [19129, 19127, 19128, 19126] by Super 3034 with 299 at 2,1,2 +Id : 7592, {_}: multiply (multiply (inverse (inverse ?41055)) (multiply (inverse (inverse ?41053)) (inverse (inverse (inverse ?41053))))) (inverse (multiply ?41056 (inverse ?41056))) =?= multiply ?41055 (multiply ?41054 (inverse ?41054)) [41054, 41056, 41053, 41055] by Super 3049 with 7526 at 2,2,1,2 +Id : 6756, {_}: multiply (multiply (inverse ?37293) (multiply ?37294 (inverse ?37294))) (inverse (multiply ?37295 (inverse ?37295))) =>= inverse ?37293 [37295, 37294, 37293] by Super 2989 with 4736 at 2,1,2 +Id : 6813, {_}: multiply (multiply ?37621 (multiply ?37623 (inverse ?37623))) (inverse (multiply ?37624 (inverse ?37624))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?37619) (multiply (inverse ?37620) (multiply ?37620 ?37621)))) ?37622) (inverse (multiply ?37619 ?37622))) [37622, 37620, 37619, 37624, 37623, 37621] by Super 6756 with 223 at 1,1,2 +Id : 6857, {_}: multiply (multiply ?37621 (multiply ?37623 (inverse ?37623))) (inverse (multiply ?37624 (inverse ?37624))) =>= ?37621 [37624, 37623, 37621] by Demod 6813 with 223 at 3 +Id : 7919, {_}: inverse (inverse ?42462) =<= multiply ?42462 (multiply ?42463 (inverse ?42463)) [42463, 42462] by Demod 7592 with 6857 at 2 +Id : 2998, {_}: inverse (multiply (multiply (inverse ?18792) (multiply ?18792 (inverse (multiply ?18791 (inverse ?18791))))) (inverse (multiply (inverse ?18793) (multiply ?18793 ?18794)))) =>= ?18794 [18794, 18793, 18791, 18792] by Super 505 with 2989 at 2,1,2,1,2 +Id : 5265, {_}: inverse (multiply ?30443 (inverse ?30443)) =?= inverse (multiply ?30444 (inverse ?30444)) [30444, 30443] by Super 2998 with 4736 at 1,2 +Id : 5279, {_}: inverse (multiply ?30523 (inverse ?30523)) =?= inverse (inverse (inverse (inverse (multiply ?30522 (inverse ?30522))))) [30522, 30523] by Super 5265 with 3702 at 1,3 +Id : 7936, {_}: inverse (inverse ?42552) =<= multiply ?42552 (multiply (inverse (inverse (inverse (multiply ?42551 (inverse ?42551))))) (inverse (multiply ?42550 (inverse ?42550)))) [42550, 42551, 42552] by Super 7919 with 5279 at 2,2,3 +Id : 7778, {_}: inverse (inverse ?41055) =<= multiply ?41055 (multiply ?41054 (inverse ?41054)) [41054, 41055] by Demod 7592 with 6857 at 2 +Id : 7804, {_}: multiply (inverse (inverse ?37621)) (inverse (multiply ?37624 (inverse ?37624))) =>= ?37621 [37624, 37621] by Demod 6857 with 7778 at 1,2 +Id : 8036, {_}: inverse (inverse ?42552) =<= multiply ?42552 (inverse (multiply ?42551 (inverse ?42551))) [42551, 42552] by Demod 7936 with 7804 at 2,3 +Id : 8529, {_}: inverse (inverse (inverse (multiply (multiply (inverse (inverse (inverse ?44275))) (inverse (multiply ?44274 (inverse ?44274)))) (inverse (inverse (inverse ?44273)))))) =>= multiply ?44273 ?44275 [44273, 44274, 44275] by Super 8276 with 8036 at 1,2,1,1,1,2 +Id : 8588, {_}: inverse (inverse (inverse (multiply (inverse (inverse (inverse (inverse (inverse ?44275))))) (inverse (inverse (inverse ?44273)))))) =>= multiply ?44273 ?44275 [44273, 44275] by Demod 8529 with 8036 at 1,1,1,1,2 +Id : 401, {_}: multiply (inverse ?2949) (multiply ?2949 ?2950) =?= multiply (inverse ?2951) (multiply ?2951 ?2950) [2951, 2950, 2949] by Super 285 with 188 at 3 +Id : 407, {_}: multiply (inverse ?2992) (multiply ?2992 (multiply ?2989 ?2990)) =?= multiply (inverse (inverse ?2989)) (multiply (inverse ?2991) (multiply ?2991 ?2990)) [2991, 2990, 2989, 2992] by Super 401 with 299 at 2,3 +Id : 8291, {_}: inverse (inverse (multiply ?2989 ?2990)) =<= multiply (inverse (inverse ?2989)) (multiply (inverse ?2991) (multiply ?2991 ?2990)) [2991, 2990, 2989] by Demod 407 with 8246 at 2 +Id : 8292, {_}: inverse (inverse (multiply ?2989 ?2990)) =<= multiply (inverse (inverse ?2989)) (inverse (inverse ?2990)) [2990, 2989] by Demod 8291 with 8246 at 2,3 +Id : 8589, {_}: inverse (inverse (inverse (inverse (inverse (multiply (inverse (inverse (inverse ?44275))) (inverse ?44273)))))) =>= multiply ?44273 ?44275 [44273, 44275] by Demod 8588 with 8292 at 1,1,1,2 +Id : 8446, {_}: inverse (inverse (inverse (inverse ?37621))) =>= ?37621 [37621] by Demod 7804 with 8036 at 2 +Id : 8590, {_}: inverse (multiply (inverse (inverse (inverse ?44275))) (inverse ?44273)) =>= multiply ?44273 ?44275 [44273, 44275] by Demod 8589 with 8446 at 2 +Id : 8757, {_}: multiply ?18805 (multiply (multiply (inverse ?18805) ?18803) (multiply ?18804 (inverse ?18804))) =>= ?18803 [18804, 18803, 18805] by Demod 8053 with 8590 at 2,2 +Id : 8758, {_}: multiply ?18805 (inverse (inverse (multiply (inverse ?18805) ?18803))) =>= ?18803 [18803, 18805] by Demod 8757 with 7778 at 2,2 +Id : 8857, {_}: inverse (multiply (inverse (inverse (inverse ?44963))) (inverse ?44964)) =>= multiply ?44964 ?44963 [44964, 44963] by Demod 8589 with 8446 at 2 +Id : 8919, {_}: inverse (multiply ?45241 (inverse ?45242)) =>= multiply ?45242 (inverse ?45241) [45242, 45241] by Super 8857 with 8446 at 1,1,2 +Id : 9051, {_}: multiply ?2 (multiply (multiply ?3 ?5) (inverse (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5))) =>= ?4 [4, 5, 3, 2] by Demod 4 with 8919 at 2,2 +Id : 137, {_}: multiply (inverse ?1284) (multiply ?1284 (inverse (multiply (multiply (inverse (multiply (inverse ?1285) ?1286)) ?1287) (inverse (multiply ?1285 ?1287))))) =>= ?1286 [1287, 1286, 1285, 1284] by Super 4 with 7 at 2,2 +Id : 156, {_}: multiply (inverse ?1443) (multiply ?1443 (multiply ?1439 (inverse (multiply (multiply (inverse (multiply (inverse ?1440) ?1441)) ?1442) (inverse (multiply ?1440 ?1442)))))) =>= multiply (inverse (inverse ?1439)) ?1441 [1442, 1441, 1440, 1439, 1443] by Super 137 with 7 at 2,2,2 +Id : 8285, {_}: inverse (inverse (multiply ?1439 (inverse (multiply (multiply (inverse (multiply (inverse ?1440) ?1441)) ?1442) (inverse (multiply ?1440 ?1442)))))) =>= multiply (inverse (inverse ?1439)) ?1441 [1442, 1441, 1440, 1439] by Demod 156 with 8246 at 2 +Id : 9071, {_}: inverse (multiply (multiply (multiply (inverse (multiply (inverse ?1440) ?1441)) ?1442) (inverse (multiply ?1440 ?1442))) (inverse ?1439)) =>= multiply (inverse (inverse ?1439)) ?1441 [1439, 1442, 1441, 1440] by Demod 8285 with 8919 at 1,2 +Id : 9072, {_}: multiply ?1439 (inverse (multiply (multiply (inverse (multiply (inverse ?1440) ?1441)) ?1442) (inverse (multiply ?1440 ?1442)))) =>= multiply (inverse (inverse ?1439)) ?1441 [1442, 1441, 1440, 1439] by Demod 9071 with 8919 at 2 +Id : 9073, {_}: multiply ?1439 (multiply (multiply ?1440 ?1442) (inverse (multiply (inverse (multiply (inverse ?1440) ?1441)) ?1442))) =>= multiply (inverse (inverse ?1439)) ?1441 [1441, 1442, 1440, 1439] by Demod 9072 with 8919 at 2,2 +Id : 9086, {_}: multiply (inverse (inverse ?2)) (multiply (inverse ?2) ?4) =>= ?4 [4, 2] by Demod 9051 with 9073 at 2 +Id : 9087, {_}: inverse (inverse ?4) =>= ?4 [4] by Demod 9086 with 8246 at 2 +Id : 9094, {_}: multiply ?18805 (multiply (inverse ?18805) ?18803) =>= ?18803 [18803, 18805] by Demod 8758 with 9087 at 2,2 +Id : 9160, {_}: inverse (multiply ?45446 (inverse ?45447)) =>= multiply ?45447 (inverse ?45446) [45447, 45446] by Super 8857 with 8446 at 1,1,2 +Id : 9162, {_}: inverse (multiply ?45454 ?45453) =<= multiply (inverse ?45453) (inverse ?45454) [45453, 45454] by Super 9160 with 9087 at 2,1,2 +Id : 9195, {_}: multiply ?45501 (inverse (multiply ?45500 ?45501)) =>= inverse ?45500 [45500, 45501] by Super 9094 with 9162 at 2,2 +Id : 8933, {_}: inverse ?45303 =<= multiply (inverse (multiply (inverse (inverse (inverse (inverse ?45304)))) ?45303)) ?45304 [45304, 45303] by Super 8857 with 8758 at 1,2 +Id : 9467, {_}: inverse ?46002 =<= multiply (inverse (multiply ?46003 ?46002)) ?46003 [46003, 46002] by Demod 8933 with 8446 at 1,1,1,3 +Id : 8287, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1772) (inverse (inverse ?1773)))) ?1774) (inverse (multiply ?1772 ?1774))) =>= ?1773 [1774, 1773, 1772] by Demod 223 with 8246 at 2,1,1,1,1,2 +Id : 9069, {_}: multiply (multiply ?1772 ?1774) (inverse (multiply (inverse (multiply (inverse ?1772) (inverse (inverse ?1773)))) ?1774)) =>= ?1773 [1773, 1774, 1772] by Demod 8287 with 8919 at 2 +Id : 9070, {_}: multiply (multiply ?1772 ?1774) (inverse (multiply (multiply (inverse ?1773) (inverse (inverse ?1772))) ?1774)) =>= ?1773 [1773, 1774, 1772] by Demod 9069 with 8919 at 1,1,2,2 +Id : 9090, {_}: multiply (multiply ?1772 ?1774) (inverse (multiply (multiply (inverse ?1773) ?1772) ?1774)) =>= ?1773 [1773, 1774, 1772] by Demod 9070 with 9087 at 2,1,1,2,2 +Id : 9469, {_}: inverse (inverse (multiply (multiply (inverse ?46010) ?46008) ?46009)) =>= multiply (inverse ?46010) (multiply ?46008 ?46009) [46009, 46008, 46010] by Super 9467 with 9090 at 1,1,3 +Id : 9509, {_}: multiply (multiply (inverse ?46010) ?46008) ?46009 =>= multiply (inverse ?46010) (multiply ?46008 ?46009) [46009, 46008, 46010] by Demod 9469 with 9087 at 2 +Id : 9851, {_}: multiply ?46565 (inverse (multiply (inverse ?46563) (multiply ?46564 ?46565))) =>= inverse (multiply (inverse ?46563) ?46564) [46564, 46563, 46565] by Super 9195 with 9509 at 1,2,2 +Id : 9213, {_}: inverse (multiply ?45576 ?45577) =<= multiply (inverse ?45577) (inverse ?45576) [45577, 45576] by Super 9160 with 9087 at 2,1,2 +Id : 9215, {_}: inverse (multiply (inverse ?45583) ?45584) =>= multiply (inverse ?45584) ?45583 [45584, 45583] by Super 9213 with 9087 at 2,3 +Id : 9934, {_}: multiply ?46565 (multiply (inverse (multiply ?46564 ?46565)) ?46563) =>= inverse (multiply (inverse ?46563) ?46564) [46563, 46564, 46565] by Demod 9851 with 9215 at 2,2 +Id : 12550, {_}: multiply ?50696 (multiply (inverse (multiply ?50697 ?50696)) ?50698) =>= multiply (inverse ?50697) ?50698 [50698, 50697, 50696] by Demod 9934 with 9215 at 3 +Id : 9075, {_}: inverse (inverse (multiply (multiply ?2913 ?2917) (inverse (multiply (inverse (inverse (inverse ?2914))) ?2917)))) =>= multiply ?2913 ?2914 [2914, 2917, 2913] by Demod 8276 with 8919 at 1,1,2 +Id : 9076, {_}: inverse (multiply (multiply (inverse (inverse (inverse ?2914))) ?2917) (inverse (multiply ?2913 ?2917))) =>= multiply ?2913 ?2914 [2913, 2917, 2914] by Demod 9075 with 8919 at 1,2 +Id : 9077, {_}: multiply (multiply ?2913 ?2917) (inverse (multiply (inverse (inverse (inverse ?2914))) ?2917)) =>= multiply ?2913 ?2914 [2914, 2917, 2913] by Demod 9076 with 8919 at 2 +Id : 9102, {_}: multiply (multiply ?2913 ?2917) (inverse (multiply (inverse ?2914) ?2917)) =>= multiply ?2913 ?2914 [2914, 2917, 2913] by Demod 9077 with 9087 at 1,1,2,2 +Id : 9248, {_}: multiply (multiply ?2913 ?2917) (multiply (inverse ?2917) ?2914) =>= multiply ?2913 ?2914 [2914, 2917, 2913] by Demod 9102 with 9215 at 2,2 +Id : 9533, {_}: multiply (inverse ?46084) (multiply (inverse (inverse (multiply ?46084 ?46083))) ?46085) =>= multiply ?46083 ?46085 [46085, 46083, 46084] by Super 9248 with 9195 at 1,2 +Id : 9598, {_}: multiply (inverse ?46084) (multiply (multiply ?46084 ?46083) ?46085) =>= multiply ?46083 ?46085 [46085, 46083, 46084] by Demod 9533 with 9087 at 1,2,2 +Id : 12590, {_}: multiply ?50874 (multiply ?50872 ?50873) =<= multiply (inverse ?50875) (multiply (multiply (multiply ?50875 ?50874) ?50872) ?50873) [50875, 50873, 50872, 50874] by Super 12550 with 9598 at 2,2 +Id : 12312, {_}: multiply (multiply ?50214 ?50215) ?50216 =<= multiply (inverse ?50213) (multiply (multiply (multiply ?50213 ?50214) ?50215) ?50216) [50213, 50216, 50215, 50214] by Super 9509 with 9598 at 1,2 +Id : 29878, {_}: multiply ?50874 (multiply ?50872 ?50873) =?= multiply (multiply ?50874 ?50872) ?50873 [50873, 50872, 50874] by Demod 12590 with 12312 at 3 +Id : 30629, {_}: multiply a (multiply b c) === multiply a (multiply b c) [] by Demod 2 with 29878 at 3 +Id : 2, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity +% SZS output end CNFRefutation for GRP014-1.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + associativity_of_commutator is 86 + b is 97 + c is 96 + commutator is 95 + identity is 92 + inverse is 90 + left_identity is 91 + left_inverse is 89 + multiply is 94 + name is 87 + prove_center is 93 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + commutator ?10 ?11 + =<= + multiply (inverse ?10) (multiply (inverse ?11) (multiply ?10 ?11)) + [11, 10] by name ?10 ?11 + Id : 12, {_}: + commutator (commutator ?13 ?14) ?15 + =?= + commutator ?13 (commutator ?14 ?15) + [15, 14, 13] by associativity_of_commutator ?13 ?14 ?15 +Goal + Id : 2, {_}: + multiply a (commutator b c) =<= multiply (commutator b c) a + [] by prove_center +Last chance: 1246055716.7 +Last chance: all is indexed 1246056832.19 +Last chance: failed over 100 goal 1246056832.19 +FAILURE in 0 iterations +% SZS status Timeout for GRP024-5.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + identity is 93 + intersection is 85 + intersection_associative is 79 + intersection_commutative is 81 + intersection_idempotent is 84 + intersection_union_absorbtion is 76 + inverse is 91 + inverse_involution is 87 + inverse_of_identity is 88 + inverse_product_lemma is 86 + left_identity is 92 + left_inverse is 90 + multiply is 95 + multiply_intersection1 is 74 + multiply_intersection2 is 72 + multiply_union1 is 75 + multiply_union2 is 73 + negative_part is 96 + positive_part is 97 + prove_product is 94 + union is 83 + union_associative is 78 + union_commutative is 80 + union_idempotent is 82 + union_intersection_absorbtion is 77 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: inverse identity =>= identity [] by inverse_of_identity + Id : 12, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11 + Id : 14, {_}: + inverse (multiply ?13 ?14) =<= multiply (inverse ?14) (inverse ?13) + [14, 13] by inverse_product_lemma ?13 ?14 + Id : 16, {_}: intersection ?16 ?16 =>= ?16 [16] by intersection_idempotent ?16 + Id : 18, {_}: union ?18 ?18 =>= ?18 [18] by union_idempotent ?18 + Id : 20, {_}: + intersection ?20 ?21 =?= intersection ?21 ?20 + [21, 20] by intersection_commutative ?20 ?21 + Id : 22, {_}: + union ?23 ?24 =?= union ?24 ?23 + [24, 23] by union_commutative ?23 ?24 + Id : 24, {_}: + intersection ?26 (intersection ?27 ?28) + =?= + intersection (intersection ?26 ?27) ?28 + [28, 27, 26] by intersection_associative ?26 ?27 ?28 + Id : 26, {_}: + union ?30 (union ?31 ?32) =?= union (union ?30 ?31) ?32 + [32, 31, 30] by union_associative ?30 ?31 ?32 + Id : 28, {_}: + union (intersection ?34 ?35) ?35 =>= ?35 + [35, 34] by union_intersection_absorbtion ?34 ?35 + Id : 30, {_}: + intersection (union ?37 ?38) ?38 =>= ?38 + [38, 37] by intersection_union_absorbtion ?37 ?38 + Id : 32, {_}: + multiply ?40 (union ?41 ?42) + =<= + union (multiply ?40 ?41) (multiply ?40 ?42) + [42, 41, 40] by multiply_union1 ?40 ?41 ?42 + Id : 34, {_}: + multiply ?44 (intersection ?45 ?46) + =<= + intersection (multiply ?44 ?45) (multiply ?44 ?46) + [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46 + Id : 36, {_}: + multiply (union ?48 ?49) ?50 + =<= + union (multiply ?48 ?50) (multiply ?49 ?50) + [50, 49, 48] by multiply_union2 ?48 ?49 ?50 + Id : 38, {_}: + multiply (intersection ?52 ?53) ?54 + =<= + intersection (multiply ?52 ?54) (multiply ?53 ?54) + [54, 53, 52] by multiply_intersection2 ?52 ?53 ?54 + Id : 40, {_}: + positive_part ?56 =<= union ?56 identity + [56] by positive_part ?56 + Id : 42, {_}: + negative_part ?58 =<= intersection ?58 identity + [58] by negative_part ?58 +Goal + Id : 2, {_}: + multiply (positive_part a) (negative_part a) =>= a + [] by prove_product +Found proof, 2.752118s +% SZS status Unsatisfiable for GRP114-1.p +% SZS output start CNFRefutation for GRP114-1.p +Id : 16, {_}: intersection ?16 ?16 =>= ?16 [16] by intersection_idempotent ?16 +Id : 24, {_}: intersection ?26 (intersection ?27 ?28) =?= intersection (intersection ?26 ?27) ?28 [28, 27, 26] by intersection_associative ?26 ?27 ?28 +Id : 34, {_}: multiply ?44 (intersection ?45 ?46) =<= intersection (multiply ?44 ?45) (multiply ?44 ?46) [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46 +Id : 28, {_}: union (intersection ?34 ?35) ?35 =>= ?35 [35, 34] by union_intersection_absorbtion ?34 ?35 +Id : 26, {_}: union ?30 (union ?31 ?32) =?= union (union ?30 ?31) ?32 [32, 31, 30] by union_associative ?30 ?31 ?32 +Id : 267, {_}: multiply (union ?680 ?681) ?682 =<= union (multiply ?680 ?682) (multiply ?681 ?682) [682, 681, 680] by multiply_union2 ?680 ?681 ?682 +Id : 30, {_}: intersection (union ?37 ?38) ?38 =>= ?38 [38, 37] by intersection_union_absorbtion ?37 ?38 +Id : 230, {_}: multiply ?593 (intersection ?594 ?595) =<= intersection (multiply ?593 ?594) (multiply ?593 ?595) [595, 594, 593] by multiply_intersection1 ?593 ?594 ?595 +Id : 42, {_}: negative_part ?58 =<= intersection ?58 identity [58] by negative_part ?58 +Id : 20, {_}: intersection ?20 ?21 =?= intersection ?21 ?20 [21, 20] by intersection_commutative ?20 ?21 +Id : 303, {_}: multiply (intersection ?770 ?771) ?772 =<= intersection (multiply ?770 ?772) (multiply ?771 ?772) [772, 771, 770] by multiply_intersection2 ?770 ?771 ?772 +Id : 14, {_}: inverse (multiply ?13 ?14) =<= multiply (inverse ?14) (inverse ?13) [14, 13] by inverse_product_lemma ?13 ?14 +Id : 22, {_}: union ?23 ?24 =?= union ?24 ?23 [24, 23] by union_commutative ?23 ?24 +Id : 40, {_}: positive_part ?56 =<= union ?56 identity [56] by positive_part ?56 +Id : 10, {_}: inverse identity =>= identity [] by inverse_of_identity +Id : 32, {_}: multiply ?40 (union ?41 ?42) =<= union (multiply ?40 ?41) (multiply ?40 ?42) [42, 41, 40] by multiply_union1 ?40 ?41 ?42 +Id : 12, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11 +Id : 79, {_}: inverse (multiply ?142 ?143) =<= multiply (inverse ?143) (inverse ?142) [143, 142] by inverse_product_lemma ?142 ?143 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 47, {_}: multiply (multiply ?68 ?69) ?70 =?= multiply ?68 (multiply ?69 ?70) [70, 69, 68] by associativity ?68 ?69 ?70 +Id : 56, {_}: multiply identity ?103 =<= multiply (inverse ?102) (multiply ?102 ?103) [102, 103] by Super 47 with 6 at 1,2 +Id : 8890, {_}: ?10861 =<= multiply (inverse ?10862) (multiply ?10862 ?10861) [10862, 10861] by Demod 56 with 4 at 2 +Id : 81, {_}: inverse (multiply (inverse ?147) ?148) =>= multiply (inverse ?148) ?147 [148, 147] by Super 79 with 12 at 2,3 +Id : 80, {_}: inverse (multiply identity ?145) =<= multiply (inverse ?145) identity [145] by Super 79 with 10 at 2,3 +Id : 450, {_}: inverse ?990 =<= multiply (inverse ?990) identity [990] by Demod 80 with 4 at 1,2 +Id : 452, {_}: inverse (inverse ?993) =<= multiply ?993 identity [993] by Super 450 with 12 at 1,3 +Id : 467, {_}: ?993 =<= multiply ?993 identity [993] by Demod 452 with 12 at 2 +Id : 472, {_}: multiply ?1004 (union ?1005 identity) =?= union (multiply ?1004 ?1005) ?1004 [1005, 1004] by Super 32 with 467 at 2,3 +Id : 3162, {_}: multiply ?4224 (positive_part ?4225) =<= union (multiply ?4224 ?4225) ?4224 [4225, 4224] by Demod 472 with 40 at 2,2 +Id : 3164, {_}: multiply (inverse ?4229) (positive_part ?4229) =>= union identity (inverse ?4229) [4229] by Super 3162 with 6 at 1,3 +Id : 336, {_}: union identity ?835 =>= positive_part ?835 [835] by Super 22 with 40 at 3 +Id : 3201, {_}: multiply (inverse ?4229) (positive_part ?4229) =>= positive_part (inverse ?4229) [4229] by Demod 3164 with 336 at 3 +Id : 3231, {_}: inverse (positive_part (inverse ?4304)) =<= multiply (inverse (positive_part ?4304)) ?4304 [4304] by Super 81 with 3201 at 1,2 +Id : 8905, {_}: ?10899 =<= multiply (inverse (inverse (positive_part ?10899))) (inverse (positive_part (inverse ?10899))) [10899] by Super 8890 with 3231 at 2,3 +Id : 8940, {_}: ?10899 =<= inverse (multiply (positive_part (inverse ?10899)) (inverse (positive_part ?10899))) [10899] by Demod 8905 with 14 at 3 +Id : 83, {_}: inverse (multiply ?153 (inverse ?152)) =>= multiply ?152 (inverse ?153) [152, 153] by Super 79 with 12 at 1,3 +Id : 8941, {_}: ?10899 =<= multiply (positive_part ?10899) (inverse (positive_part (inverse ?10899))) [10899] by Demod 8940 with 83 at 3 +Id : 310, {_}: multiply (intersection (inverse ?798) ?797) ?798 =>= intersection identity (multiply ?797 ?798) [797, 798] by Super 303 with 6 at 1,3 +Id : 355, {_}: intersection identity ?867 =>= negative_part ?867 [867] by Super 20 with 42 at 3 +Id : 15926, {_}: multiply (intersection (inverse ?16735) ?16736) ?16735 =>= negative_part (multiply ?16736 ?16735) [16736, 16735] by Demod 310 with 355 at 3 +Id : 15951, {_}: multiply (negative_part (inverse ?16817)) ?16817 =>= negative_part (multiply identity ?16817) [16817] by Super 15926 with 42 at 1,2 +Id : 15996, {_}: multiply (negative_part (inverse ?16817)) ?16817 =>= negative_part ?16817 [16817] by Demod 15951 with 4 at 1,3 +Id : 237, {_}: multiply (inverse ?620) (intersection ?620 ?621) =>= intersection identity (multiply (inverse ?620) ?621) [621, 620] by Super 230 with 6 at 1,3 +Id : 9389, {_}: multiply (inverse ?620) (intersection ?620 ?621) =>= negative_part (multiply (inverse ?620) ?621) [621, 620] by Demod 237 with 355 at 3 +Id : 387, {_}: intersection (positive_part ?915) ?915 =>= ?915 [915] by Super 30 with 336 at 1,2 +Id : 274, {_}: multiply (union (inverse ?708) ?707) ?708 =>= union identity (multiply ?707 ?708) [707, 708] by Super 267 with 6 at 1,3 +Id : 9866, {_}: multiply (union (inverse ?12356) ?12357) ?12356 =>= positive_part (multiply ?12357 ?12356) [12357, 12356] by Demod 274 with 336 at 3 +Id : 384, {_}: union identity (union ?906 ?907) =>= union (positive_part ?906) ?907 [907, 906] by Super 26 with 336 at 1,3 +Id : 394, {_}: positive_part (union ?906 ?907) =>= union (positive_part ?906) ?907 [907, 906] by Demod 384 with 336 at 2 +Id : 339, {_}: union ?842 (union ?843 identity) =>= positive_part (union ?842 ?843) [843, 842] by Super 26 with 40 at 3 +Id : 350, {_}: union ?842 (positive_part ?843) =<= positive_part (union ?842 ?843) [843, 842] by Demod 339 with 40 at 2,2 +Id : 667, {_}: union ?906 (positive_part ?907) =?= union (positive_part ?906) ?907 [907, 906] by Demod 394 with 350 at 2 +Id : 414, {_}: union (negative_part ?942) ?942 =>= ?942 [942] by Super 28 with 355 at 1,2 +Id : 479, {_}: multiply ?1021 (intersection ?1022 identity) =?= intersection (multiply ?1021 ?1022) ?1021 [1022, 1021] by Super 34 with 467 at 2,3 +Id : 2583, {_}: multiply ?3618 (negative_part ?3619) =<= intersection (multiply ?3618 ?3619) ?3618 [3619, 3618] by Demod 479 with 42 at 2,2 +Id : 2585, {_}: multiply (inverse ?3623) (negative_part ?3623) =>= intersection identity (inverse ?3623) [3623] by Super 2583 with 6 at 1,3 +Id : 2636, {_}: multiply (inverse ?3692) (negative_part ?3692) =>= negative_part (inverse ?3692) [3692] by Demod 2585 with 355 at 3 +Id : 358, {_}: intersection ?874 (intersection ?875 identity) =>= negative_part (intersection ?874 ?875) [875, 874] by Super 24 with 42 at 3 +Id : 603, {_}: intersection ?1157 (negative_part ?1158) =<= negative_part (intersection ?1157 ?1158) [1158, 1157] by Demod 358 with 42 at 2,2 +Id : 613, {_}: intersection ?1189 (negative_part identity) =>= negative_part (negative_part ?1189) [1189] by Super 603 with 42 at 1,3 +Id : 354, {_}: negative_part identity =>= identity [] by Super 16 with 42 at 2 +Id : 624, {_}: intersection ?1189 identity =<= negative_part (negative_part ?1189) [1189] by Demod 613 with 354 at 2,2 +Id : 625, {_}: negative_part ?1189 =<= negative_part (negative_part ?1189) [1189] by Demod 624 with 42 at 2 +Id : 2642, {_}: multiply (inverse (negative_part ?3706)) (negative_part ?3706) =>= negative_part (inverse (negative_part ?3706)) [3706] by Super 2636 with 625 at 2,2 +Id : 2662, {_}: identity =<= negative_part (inverse (negative_part ?3706)) [3706] by Demod 2642 with 6 at 2 +Id : 2732, {_}: union identity (inverse (negative_part ?3792)) =>= inverse (negative_part ?3792) [3792] by Super 414 with 2662 at 1,2 +Id : 2769, {_}: positive_part (inverse (negative_part ?3792)) =>= inverse (negative_part ?3792) [3792] by Demod 2732 with 336 at 2 +Id : 2879, {_}: union (inverse (negative_part ?3906)) (positive_part ?3907) =>= union (inverse (negative_part ?3906)) ?3907 [3907, 3906] by Super 667 with 2769 at 1,3 +Id : 9889, {_}: multiply (union (inverse (negative_part ?12432)) ?12433) (negative_part ?12432) =>= positive_part (multiply (positive_part ?12433) (negative_part ?12432)) [12433, 12432] by Super 9866 with 2879 at 1,2 +Id : 9846, {_}: multiply (union (inverse ?708) ?707) ?708 =>= positive_part (multiply ?707 ?708) [707, 708] by Demod 274 with 336 at 3 +Id : 9923, {_}: positive_part (multiply ?12433 (negative_part ?12432)) =<= positive_part (multiply (positive_part ?12433) (negative_part ?12432)) [12432, 12433] by Demod 9889 with 9846 at 2 +Id : 492, {_}: multiply ?1021 (negative_part ?1022) =<= intersection (multiply ?1021 ?1022) ?1021 [1022, 1021] by Demod 479 with 42 at 2,2 +Id : 9892, {_}: multiply (positive_part (inverse ?12441)) ?12441 =>= positive_part (multiply identity ?12441) [12441] by Super 9866 with 40 at 1,2 +Id : 9926, {_}: multiply (positive_part (inverse ?12441)) ?12441 =>= positive_part ?12441 [12441] by Demod 9892 with 4 at 1,3 +Id : 9949, {_}: multiply (positive_part (inverse ?12495)) (negative_part ?12495) =>= intersection (positive_part ?12495) (positive_part (inverse ?12495)) [12495] by Super 492 with 9926 at 1,3 +Id : 10776, {_}: positive_part (multiply (inverse ?13313) (negative_part ?13313)) =<= positive_part (intersection (positive_part ?13313) (positive_part (inverse ?13313))) [13313] by Super 9923 with 9949 at 1,3 +Id : 2613, {_}: multiply (inverse ?3623) (negative_part ?3623) =>= negative_part (inverse ?3623) [3623] by Demod 2585 with 355 at 3 +Id : 10814, {_}: positive_part (negative_part (inverse ?13313)) =<= positive_part (intersection (positive_part ?13313) (positive_part (inverse ?13313))) [13313] by Demod 10776 with 2613 at 1,2 +Id : 334, {_}: positive_part (intersection ?832 identity) =>= identity [832] by Super 28 with 40 at 2 +Id : 507, {_}: positive_part (negative_part ?832) =>= identity [832] by Demod 334 with 42 at 1,2 +Id : 10815, {_}: identity =<= positive_part (intersection (positive_part ?13313) (positive_part (inverse ?13313))) [13313] by Demod 10814 with 507 at 2 +Id : 51491, {_}: intersection identity (intersection (positive_part ?50477) (positive_part (inverse ?50477))) =>= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Super 387 with 10815 at 1,2 +Id : 51798, {_}: negative_part (intersection (positive_part ?50477) (positive_part (inverse ?50477))) =>= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Demod 51491 with 355 at 2 +Id : 369, {_}: intersection ?874 (negative_part ?875) =<= negative_part (intersection ?874 ?875) [875, 874] by Demod 358 with 42 at 2,2 +Id : 51799, {_}: intersection (positive_part ?50477) (negative_part (positive_part (inverse ?50477))) =>= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Demod 51798 with 369 at 2 +Id : 51800, {_}: intersection (negative_part (positive_part (inverse ?50477))) (positive_part ?50477) =>= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Demod 51799 with 20 at 2 +Id : 411, {_}: intersection identity (intersection ?933 ?934) =>= intersection (negative_part ?933) ?934 [934, 933] by Super 24 with 355 at 1,3 +Id : 421, {_}: negative_part (intersection ?933 ?934) =>= intersection (negative_part ?933) ?934 [934, 933] by Demod 411 with 355 at 2 +Id : 795, {_}: intersection ?1452 (negative_part ?1453) =?= intersection (negative_part ?1452) ?1453 [1453, 1452] by Demod 421 with 369 at 2 +Id : 353, {_}: negative_part (union ?864 identity) =>= identity [864] by Super 30 with 42 at 2 +Id : 371, {_}: negative_part (positive_part ?864) =>= identity [864] by Demod 353 with 40 at 1,2 +Id : 797, {_}: intersection (positive_part ?1457) (negative_part ?1458) =>= intersection identity ?1458 [1458, 1457] by Super 795 with 371 at 1,3 +Id : 834, {_}: intersection (negative_part ?1458) (positive_part ?1457) =>= intersection identity ?1458 [1457, 1458] by Demod 797 with 20 at 2 +Id : 835, {_}: intersection (negative_part ?1458) (positive_part ?1457) =>= negative_part ?1458 [1457, 1458] by Demod 834 with 355 at 3 +Id : 51801, {_}: negative_part (positive_part (inverse ?50477)) =<= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Demod 51800 with 835 at 2 +Id : 51802, {_}: identity =<= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Demod 51801 with 371 at 2 +Id : 52174, {_}: multiply (inverse (positive_part ?50853)) identity =<= negative_part (multiply (inverse (positive_part ?50853)) (positive_part (inverse ?50853))) [50853] by Super 9389 with 51802 at 2,2 +Id : 52262, {_}: inverse (positive_part ?50853) =<= negative_part (multiply (inverse (positive_part ?50853)) (positive_part (inverse ?50853))) [50853] by Demod 52174 with 467 at 2 +Id : 65, {_}: ?103 =<= multiply (inverse ?102) (multiply ?102 ?103) [102, 103] by Demod 56 with 4 at 2 +Id : 9954, {_}: multiply (positive_part (inverse ?12505)) ?12505 =>= positive_part ?12505 [12505] by Demod 9892 with 4 at 1,3 +Id : 9956, {_}: multiply (positive_part ?12508) (inverse ?12508) =>= positive_part (inverse ?12508) [12508] by Super 9954 with 12 at 1,1,2 +Id : 10049, {_}: inverse ?12562 =<= multiply (inverse (positive_part ?12562)) (positive_part (inverse ?12562)) [12562] by Super 65 with 9956 at 2,3 +Id : 52263, {_}: inverse (positive_part ?50853) =<= negative_part (inverse ?50853) [50853] by Demod 52262 with 10049 at 1,3 +Id : 52532, {_}: multiply (inverse (positive_part ?16817)) ?16817 =>= negative_part ?16817 [16817] by Demod 15996 with 52263 at 1,2 +Id : 52563, {_}: inverse (positive_part (inverse ?16817)) =>= negative_part ?16817 [16817] by Demod 52532 with 3231 at 2 +Id : 52572, {_}: ?10899 =<= multiply (positive_part ?10899) (negative_part ?10899) [10899] by Demod 8941 with 52563 at 2,3 +Id : 52951, {_}: a === a [] by Demod 2 with 52572 at 2 +Id : 2, {_}: multiply (positive_part a) (negative_part a) =>= a [] by prove_product +% SZS output end CNFRefutation for GRP114-1.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 87 + associativity_of_glb is 84 + associativity_of_lub is 83 + b is 97 + c is 96 + glb_absorbtion is 79 + greatest_lower_bound is 94 + idempotence_of_gld is 81 + idempotence_of_lub is 82 + identity is 92 + inverse is 89 + least_upper_bound is 95 + left_identity is 90 + left_inverse is 88 + lub_absorbtion is 80 + monotony_glb1 is 77 + monotony_glb2 is 75 + monotony_lub1 is 78 + monotony_lub2 is 76 + multiply is 91 + prove_distrun is 93 + symmetry_of_glb is 86 + symmetry_of_lub is 85 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Goal + Id : 2, {_}: + greatest_lower_bound a (least_upper_bound b c) + =<= + least_upper_bound (greatest_lower_bound a b) + (greatest_lower_bound a c) + [] by prove_distrun +Last chance: 1246057135.58 +Last chance: all is indexed 1246058747.63 +Last chance: failed over 100 goal 1246058747.74 +FAILURE in 0 iterations +% SZS status Timeout for GRP164-2.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + associativity_of_glb is 84 + associativity_of_lub is 83 + glb_absorbtion is 79 + greatest_lower_bound is 88 + idempotence_of_gld is 81 + idempotence_of_lub is 82 + identity is 93 + inverse is 91 + lat4_1 is 74 + lat4_2 is 73 + lat4_3 is 72 + lat4_4 is 71 + least_upper_bound is 86 + left_identity is 92 + left_inverse is 90 + lub_absorbtion is 80 + monotony_glb1 is 77 + monotony_glb2 is 75 + monotony_lub1 is 78 + monotony_lub2 is 76 + multiply is 95 + negative_part is 96 + positive_part is 97 + prove_lat4 is 94 + symmetry_of_glb is 87 + symmetry_of_lub is 85 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: + positive_part ?50 =<= least_upper_bound ?50 identity + [50] by lat4_1 ?50 + Id : 36, {_}: + negative_part ?52 =<= greatest_lower_bound ?52 identity + [52] by lat4_2 ?52 + Id : 38, {_}: + least_upper_bound ?54 (greatest_lower_bound ?55 ?56) + =<= + greatest_lower_bound (least_upper_bound ?54 ?55) + (least_upper_bound ?54 ?56) + [56, 55, 54] by lat4_3 ?54 ?55 ?56 + Id : 40, {_}: + greatest_lower_bound ?58 (least_upper_bound ?59 ?60) + =<= + least_upper_bound (greatest_lower_bound ?58 ?59) + (greatest_lower_bound ?58 ?60) + [60, 59, 58] by lat4_4 ?58 ?59 ?60 +Goal + Id : 2, {_}: + a =<= multiply (positive_part a) (negative_part a) + [] by prove_lat4 +Found proof, 4.771401s +% SZS status Unsatisfiable for GRP167-1.p +% SZS output start CNFRefutation for GRP167-1.p +Id : 202, {_}: multiply ?551 (greatest_lower_bound ?552 ?553) =<= greatest_lower_bound (multiply ?551 ?552) (multiply ?551 ?553) [553, 552, 551] by monotony_glb1 ?551 ?552 ?553 +Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 +Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 +Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 +Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 +Id : 171, {_}: multiply ?475 (least_upper_bound ?476 ?477) =<= least_upper_bound (multiply ?475 ?476) (multiply ?475 ?477) [477, 476, 475] by monotony_lub1 ?475 ?476 ?477 +Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 +Id : 32, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Id : 384, {_}: greatest_lower_bound ?977 (least_upper_bound ?978 ?979) =<= least_upper_bound (greatest_lower_bound ?977 ?978) (greatest_lower_bound ?977 ?979) [979, 978, 977] by lat4_4 ?977 ?978 ?979 +Id : 34, {_}: positive_part ?50 =<= least_upper_bound ?50 identity [50] by lat4_1 ?50 +Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 +Id : 236, {_}: multiply (least_upper_bound ?630 ?631) ?632 =<= least_upper_bound (multiply ?630 ?632) (multiply ?631 ?632) [632, 631, 630] by monotony_lub2 ?630 ?631 ?632 +Id : 36, {_}: negative_part ?52 =<= greatest_lower_bound ?52 identity [52] by lat4_2 ?52 +Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 +Id : 269, {_}: multiply (greatest_lower_bound ?712 ?713) ?714 =<= greatest_lower_bound (multiply ?712 ?714) (multiply ?713 ?714) [714, 713, 712] by monotony_glb2 ?712 ?713 ?714 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 45, {_}: multiply (multiply ?70 ?71) ?72 =?= multiply ?70 (multiply ?71 ?72) [72, 71, 70] by associativity ?70 ?71 ?72 +Id : 54, {_}: multiply identity ?105 =<= multiply (inverse ?104) (multiply ?104 ?105) [104, 105] by Super 45 with 6 at 1,2 +Id : 63, {_}: ?105 =<= multiply (inverse ?104) (multiply ?104 ?105) [104, 105] by Demod 54 with 4 at 2 +Id : 275, {_}: multiply (greatest_lower_bound (inverse ?736) ?735) ?736 =>= greatest_lower_bound identity (multiply ?735 ?736) [735, 736] by Super 269 with 6 at 1,3 +Id : 314, {_}: greatest_lower_bound identity ?795 =>= negative_part ?795 [795] by Super 10 with 36 at 3 +Id : 16391, {_}: multiply (greatest_lower_bound (inverse ?19768) ?19769) ?19768 =>= negative_part (multiply ?19769 ?19768) [19769, 19768] by Demod 275 with 314 at 3 +Id : 16415, {_}: multiply (negative_part (inverse ?19845)) ?19845 =>= negative_part (multiply identity ?19845) [19845] by Super 16391 with 36 at 1,2 +Id : 16452, {_}: multiply (negative_part (inverse ?19845)) ?19845 =>= negative_part ?19845 [19845] by Demod 16415 with 4 at 1,3 +Id : 16463, {_}: ?19856 =<= multiply (inverse (negative_part (inverse ?19856))) (negative_part ?19856) [19856] by Super 63 with 16452 at 2,3 +Id : 242, {_}: multiply (least_upper_bound (inverse ?654) ?653) ?654 =>= least_upper_bound identity (multiply ?653 ?654) [653, 654] by Super 236 with 6 at 1,3 +Id : 298, {_}: least_upper_bound identity ?767 =>= positive_part ?767 [767] by Super 12 with 34 at 3 +Id : 14215, {_}: multiply (least_upper_bound (inverse ?17599) ?17600) ?17599 =>= positive_part (multiply ?17600 ?17599) [17600, 17599] by Demod 242 with 298 at 3 +Id : 14238, {_}: multiply (positive_part (inverse ?17673)) ?17673 =>= positive_part (multiply identity ?17673) [17673] by Super 14215 with 34 at 1,2 +Id : 14268, {_}: multiply (positive_part (inverse ?17673)) ?17673 =>= positive_part ?17673 [17673] by Demod 14238 with 4 at 1,3 +Id : 14200, {_}: multiply (least_upper_bound (inverse ?654) ?653) ?654 =>= positive_part (multiply ?653 ?654) [653, 654] by Demod 242 with 298 at 3 +Id : 393, {_}: greatest_lower_bound ?1016 (least_upper_bound ?1017 identity) =<= least_upper_bound (greatest_lower_bound ?1016 ?1017) (negative_part ?1016) [1017, 1016] by Super 384 with 36 at 2,3 +Id : 17844, {_}: greatest_lower_bound ?21384 (positive_part ?21385) =<= least_upper_bound (greatest_lower_bound ?21384 ?21385) (negative_part ?21384) [21385, 21384] by Demod 393 with 34 at 2,2 +Id : 17873, {_}: greatest_lower_bound ?21489 (positive_part ?21490) =<= least_upper_bound (greatest_lower_bound ?21490 ?21489) (negative_part ?21489) [21490, 21489] by Super 17844 with 10 at 1,3 +Id : 16475, {_}: multiply (greatest_lower_bound (negative_part (inverse ?19889)) ?19890) ?19889 =>= greatest_lower_bound (negative_part ?19889) (multiply ?19890 ?19889) [19890, 19889] by Super 32 with 16452 at 1,3 +Id : 480, {_}: greatest_lower_bound identity (greatest_lower_bound ?1137 ?1138) =>= greatest_lower_bound (negative_part ?1137) ?1138 [1138, 1137] by Super 14 with 314 at 1,3 +Id : 492, {_}: negative_part (greatest_lower_bound ?1137 ?1138) =>= greatest_lower_bound (negative_part ?1137) ?1138 [1138, 1137] by Demod 480 with 314 at 2 +Id : 317, {_}: greatest_lower_bound ?802 (greatest_lower_bound ?803 identity) =>= negative_part (greatest_lower_bound ?802 ?803) [803, 802] by Super 14 with 36 at 3 +Id : 326, {_}: greatest_lower_bound ?802 (negative_part ?803) =<= negative_part (greatest_lower_bound ?802 ?803) [803, 802] by Demod 317 with 36 at 2,2 +Id : 770, {_}: greatest_lower_bound ?1137 (negative_part ?1138) =?= greatest_lower_bound (negative_part ?1137) ?1138 [1138, 1137] by Demod 492 with 326 at 2 +Id : 16503, {_}: multiply (greatest_lower_bound (inverse ?19889) (negative_part ?19890)) ?19889 =>= greatest_lower_bound (negative_part ?19889) (multiply ?19890 ?19889) [19890, 19889] by Demod 16475 with 770 at 1,2 +Id : 16376, {_}: multiply (greatest_lower_bound (inverse ?736) ?735) ?736 =>= negative_part (multiply ?735 ?736) [735, 736] by Demod 275 with 314 at 3 +Id : 16504, {_}: negative_part (multiply (negative_part ?19890) ?19889) =<= greatest_lower_bound (negative_part ?19889) (multiply ?19890 ?19889) [19889, 19890] by Demod 16503 with 16376 at 2 +Id : 16505, {_}: negative_part (multiply (negative_part ?19890) ?19889) =<= greatest_lower_bound (multiply ?19890 ?19889) (negative_part ?19889) [19889, 19890] by Demod 16504 with 10 at 3 +Id : 47, {_}: multiply (multiply ?77 (inverse ?78)) ?78 =>= multiply ?77 identity [78, 77] by Super 45 with 6 at 2,3 +Id : 4534, {_}: multiply (multiply ?6403 (inverse ?6404)) ?6404 =>= multiply ?6403 identity [6404, 6403] by Super 45 with 6 at 2,3 +Id : 4537, {_}: multiply identity ?6410 =<= multiply (inverse (inverse ?6410)) identity [6410] by Super 4534 with 6 at 1,2 +Id : 4552, {_}: ?6410 =<= multiply (inverse (inverse ?6410)) identity [6410] by Demod 4537 with 4 at 2 +Id : 46, {_}: multiply (multiply ?74 identity) ?75 =>= multiply ?74 ?75 [75, 74] by Super 45 with 4 at 2,3 +Id : 4557, {_}: multiply ?6432 ?6433 =<= multiply (inverse (inverse ?6432)) ?6433 [6433, 6432] by Super 46 with 4552 at 1,2 +Id : 4577, {_}: ?6410 =<= multiply ?6410 identity [6410] by Demod 4552 with 4557 at 3 +Id : 4578, {_}: multiply (multiply ?77 (inverse ?78)) ?78 =>= ?77 [78, 77] by Demod 47 with 4577 at 3 +Id : 4593, {_}: inverse (inverse ?6519) =<= multiply ?6519 identity [6519] by Super 4577 with 4557 at 3 +Id : 4599, {_}: inverse (inverse ?6519) =>= ?6519 [6519] by Demod 4593 with 4577 at 3 +Id : 4627, {_}: multiply (multiply ?6536 ?6535) (inverse ?6535) =>= ?6536 [6535, 6536] by Super 4578 with 4599 at 2,1,2 +Id : 62773, {_}: inverse ?65768 =<= multiply (inverse (multiply ?65769 ?65768)) ?65769 [65769, 65768] by Super 63 with 4627 at 2,3 +Id : 177, {_}: multiply (inverse ?498) (least_upper_bound ?498 ?499) =>= least_upper_bound identity (multiply (inverse ?498) ?499) [499, 498] by Super 171 with 6 at 1,3 +Id : 4722, {_}: multiply (inverse ?6711) (least_upper_bound ?6711 ?6712) =>= positive_part (multiply (inverse ?6711) ?6712) [6712, 6711] by Demod 177 with 298 at 3 +Id : 4745, {_}: multiply (inverse ?6778) (positive_part ?6778) =?= positive_part (multiply (inverse ?6778) identity) [6778] by Super 4722 with 34 at 2,2 +Id : 4793, {_}: multiply (inverse ?6833) (positive_part ?6833) =>= positive_part (inverse ?6833) [6833] by Demod 4745 with 4577 at 1,3 +Id : 4805, {_}: multiply ?6862 (positive_part (inverse ?6862)) =>= positive_part (inverse (inverse ?6862)) [6862] by Super 4793 with 4599 at 1,2 +Id : 4824, {_}: multiply ?6862 (positive_part (inverse ?6862)) =>= positive_part ?6862 [6862] by Demod 4805 with 4599 at 1,3 +Id : 62790, {_}: inverse (positive_part (inverse ?65816)) =<= multiply (inverse (positive_part ?65816)) ?65816 [65816] by Super 62773 with 4824 at 1,1,3 +Id : 63210, {_}: negative_part (multiply (negative_part (inverse (positive_part ?66345))) ?66345) =>= greatest_lower_bound (inverse (positive_part (inverse ?66345))) (negative_part ?66345) [66345] by Super 16505 with 62790 at 1,3 +Id : 303, {_}: greatest_lower_bound ?780 (positive_part ?780) =>= ?780 [780] by Super 24 with 34 at 2,2 +Id : 535, {_}: greatest_lower_bound (positive_part ?1185) ?1185 =>= ?1185 [1185] by Super 10 with 303 at 3 +Id : 301, {_}: least_upper_bound ?774 (least_upper_bound ?775 identity) =>= positive_part (least_upper_bound ?774 ?775) [775, 774] by Super 16 with 34 at 3 +Id : 566, {_}: least_upper_bound ?1228 (positive_part ?1229) =<= positive_part (least_upper_bound ?1228 ?1229) [1229, 1228] by Demod 301 with 34 at 2,2 +Id : 576, {_}: least_upper_bound ?1260 (positive_part identity) =>= positive_part (positive_part ?1260) [1260] by Super 566 with 34 at 1,3 +Id : 297, {_}: positive_part identity =>= identity [] by Super 18 with 34 at 2 +Id : 590, {_}: least_upper_bound ?1260 identity =<= positive_part (positive_part ?1260) [1260] by Demod 576 with 297 at 2,2 +Id : 591, {_}: positive_part ?1260 =<= positive_part (positive_part ?1260) [1260] by Demod 590 with 34 at 2 +Id : 4802, {_}: multiply (inverse (positive_part ?6856)) (positive_part ?6856) =>= positive_part (inverse (positive_part ?6856)) [6856] by Super 4793 with 591 at 2,2 +Id : 4819, {_}: identity =<= positive_part (inverse (positive_part ?6856)) [6856] by Demod 4802 with 6 at 2 +Id : 4905, {_}: greatest_lower_bound identity (inverse (positive_part ?6968)) =>= inverse (positive_part ?6968) [6968] by Super 535 with 4819 at 1,2 +Id : 4952, {_}: negative_part (inverse (positive_part ?6968)) =>= inverse (positive_part ?6968) [6968] by Demod 4905 with 314 at 2 +Id : 63307, {_}: negative_part (multiply (inverse (positive_part ?66345)) ?66345) =<= greatest_lower_bound (inverse (positive_part (inverse ?66345))) (negative_part ?66345) [66345] by Demod 63210 with 4952 at 1,1,2 +Id : 63308, {_}: negative_part (inverse (positive_part (inverse ?66345))) =<= greatest_lower_bound (inverse (positive_part (inverse ?66345))) (negative_part ?66345) [66345] by Demod 63307 with 62790 at 1,2 +Id : 63309, {_}: inverse (positive_part (inverse ?66345)) =<= greatest_lower_bound (inverse (positive_part (inverse ?66345))) (negative_part ?66345) [66345] by Demod 63308 with 4952 at 2 +Id : 5097, {_}: greatest_lower_bound (inverse (positive_part ?7140)) (negative_part ?7141) =>= greatest_lower_bound (inverse (positive_part ?7140)) ?7141 [7141, 7140] by Super 770 with 4952 at 1,3 +Id : 63310, {_}: inverse (positive_part (inverse ?66345)) =<= greatest_lower_bound (inverse (positive_part (inverse ?66345))) ?66345 [66345] by Demod 63309 with 5097 at 3 +Id : 63817, {_}: greatest_lower_bound ?66966 (positive_part (inverse (positive_part (inverse ?66966)))) =>= least_upper_bound (inverse (positive_part (inverse ?66966))) (negative_part ?66966) [66966] by Super 17873 with 63310 at 1,3 +Id : 64085, {_}: greatest_lower_bound ?66966 identity =<= least_upper_bound (inverse (positive_part (inverse ?66966))) (negative_part ?66966) [66966] by Demod 63817 with 4819 at 2,2 +Id : 64086, {_}: negative_part ?66966 =<= least_upper_bound (inverse (positive_part (inverse ?66966))) (negative_part ?66966) [66966] by Demod 64085 with 36 at 2 +Id : 81154, {_}: multiply (negative_part ?80770) (positive_part (inverse ?80770)) =<= positive_part (multiply (negative_part ?80770) (positive_part (inverse ?80770))) [80770] by Super 14200 with 64086 at 1,2 +Id : 4710, {_}: multiply (inverse ?498) (least_upper_bound ?498 ?499) =>= positive_part (multiply (inverse ?498) ?499) [499, 498] by Demod 177 with 298 at 3 +Id : 444, {_}: least_upper_bound identity (least_upper_bound ?1100 ?1101) =>= least_upper_bound (positive_part ?1100) ?1101 [1101, 1100] by Super 16 with 298 at 1,3 +Id : 455, {_}: positive_part (least_upper_bound ?1100 ?1101) =>= least_upper_bound (positive_part ?1100) ?1101 [1101, 1100] by Demod 444 with 298 at 2 +Id : 310, {_}: least_upper_bound ?774 (positive_part ?775) =<= positive_part (least_upper_bound ?774 ?775) [775, 774] by Demod 301 with 34 at 2,2 +Id : 677, {_}: least_upper_bound ?1100 (positive_part ?1101) =?= least_upper_bound (positive_part ?1100) ?1101 [1101, 1100] by Demod 455 with 310 at 2 +Id : 483, {_}: least_upper_bound identity (negative_part ?1146) =>= identity [1146] by Super 22 with 314 at 2,2 +Id : 491, {_}: positive_part (negative_part ?1146) =>= identity [1146] by Demod 483 with 298 at 2 +Id : 4795, {_}: multiply (inverse (negative_part ?6836)) identity =>= positive_part (inverse (negative_part ?6836)) [6836] by Super 4793 with 491 at 2,2 +Id : 4816, {_}: inverse (negative_part ?6836) =<= positive_part (inverse (negative_part ?6836)) [6836] by Demod 4795 with 4577 at 2 +Id : 4838, {_}: least_upper_bound (inverse (negative_part ?6900)) (positive_part ?6901) =>= least_upper_bound (inverse (negative_part ?6900)) ?6901 [6901, 6900] by Super 677 with 4816 at 1,3 +Id : 6365, {_}: multiply (inverse (inverse (negative_part ?8525))) (least_upper_bound (inverse (negative_part ?8525)) ?8526) =>= positive_part (multiply (inverse (inverse (negative_part ?8525))) (positive_part ?8526)) [8526, 8525] by Super 4710 with 4838 at 2,2 +Id : 6403, {_}: positive_part (multiply (inverse (inverse (negative_part ?8525))) ?8526) =<= positive_part (multiply (inverse (inverse (negative_part ?8525))) (positive_part ?8526)) [8526, 8525] by Demod 6365 with 4710 at 2 +Id : 6404, {_}: positive_part (multiply (negative_part ?8525) ?8526) =<= positive_part (multiply (inverse (inverse (negative_part ?8525))) (positive_part ?8526)) [8526, 8525] by Demod 6403 with 4599 at 1,1,2 +Id : 6405, {_}: positive_part (multiply (negative_part ?8525) ?8526) =<= positive_part (multiply (negative_part ?8525) (positive_part ?8526)) [8526, 8525] by Demod 6404 with 4599 at 1,1,3 +Id : 81274, {_}: multiply (negative_part ?80770) (positive_part (inverse ?80770)) =<= positive_part (multiply (negative_part ?80770) (inverse ?80770)) [80770] by Demod 81154 with 6405 at 3 +Id : 16478, {_}: multiply (negative_part (inverse ?19896)) ?19896 =>= negative_part ?19896 [19896] by Demod 16415 with 4 at 1,3 +Id : 16480, {_}: multiply (negative_part ?19899) (inverse ?19899) =>= negative_part (inverse ?19899) [19899] by Super 16478 with 4599 at 1,1,2 +Id : 81275, {_}: multiply (negative_part ?80770) (positive_part (inverse ?80770)) =>= positive_part (negative_part (inverse ?80770)) [80770] by Demod 81274 with 16480 at 1,3 +Id : 81276, {_}: multiply (negative_part ?80770) (positive_part (inverse ?80770)) =>= identity [80770] by Demod 81275 with 491 at 3 +Id : 81601, {_}: positive_part (inverse ?81005) =<= multiply (inverse (negative_part ?81005)) identity [81005] by Super 63 with 81276 at 2,3 +Id : 81716, {_}: positive_part (inverse ?81005) =>= inverse (negative_part ?81005) [81005] by Demod 81601 with 4577 at 3 +Id : 81904, {_}: multiply (inverse (negative_part ?17673)) ?17673 =>= positive_part ?17673 [17673] by Demod 14268 with 81716 at 1,2 +Id : 208, {_}: multiply (inverse ?574) (greatest_lower_bound ?574 ?575) =>= greatest_lower_bound identity (multiply (inverse ?574) ?575) [575, 574] by Super 202 with 6 at 1,3 +Id : 13518, {_}: multiply (inverse ?16653) (greatest_lower_bound ?16653 ?16654) =>= negative_part (multiply (inverse ?16653) ?16654) [16654, 16653] by Demod 208 with 314 at 3 +Id : 13544, {_}: multiply (inverse ?16729) (negative_part ?16729) =?= negative_part (multiply (inverse ?16729) identity) [16729] by Super 13518 with 36 at 2,2 +Id : 13624, {_}: multiply (inverse ?16816) (negative_part ?16816) =>= negative_part (inverse ?16816) [16816] by Demod 13544 with 4577 at 1,3 +Id : 13651, {_}: multiply ?16885 (negative_part (inverse ?16885)) =>= negative_part (inverse (inverse ?16885)) [16885] by Super 13624 with 4599 at 1,2 +Id : 13713, {_}: multiply ?16885 (negative_part (inverse ?16885)) =>= negative_part ?16885 [16885] by Demod 13651 with 4599 at 1,3 +Id : 62794, {_}: inverse (negative_part (inverse ?65826)) =<= multiply (inverse (negative_part ?65826)) ?65826 [65826] by Super 62773 with 13713 at 1,1,3 +Id : 81928, {_}: inverse (negative_part (inverse ?17673)) =>= positive_part ?17673 [17673] by Demod 81904 with 62794 at 2 +Id : 81935, {_}: ?19856 =<= multiply (positive_part ?19856) (negative_part ?19856) [19856] by Demod 16463 with 81928 at 1,3 +Id : 82404, {_}: a === a [] by Demod 2 with 81935 at 3 +Id : 2, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4 +% SZS output end CNFRefutation for GRP167-1.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + associativity_of_glb is 84 + associativity_of_lub is 83 + b is 97 + c is 96 + glb_absorbtion is 79 + greatest_lower_bound is 94 + idempotence_of_gld is 81 + idempotence_of_lub is 82 + identity is 92 + inverse is 90 + least_upper_bound is 86 + left_identity is 91 + left_inverse is 89 + lub_absorbtion is 80 + monotony_glb1 is 77 + monotony_glb2 is 75 + monotony_lub1 is 78 + monotony_lub2 is 76 + multiply is 95 + p09b_1 is 74 + p09b_2 is 73 + p09b_3 is 72 + p09b_4 is 71 + prove_p09b is 93 + symmetry_of_glb is 87 + symmetry_of_lub is 85 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: greatest_lower_bound identity a =>= identity [] by p09b_1 + Id : 36, {_}: greatest_lower_bound identity b =>= identity [] by p09b_2 + Id : 38, {_}: greatest_lower_bound identity c =>= identity [] by p09b_3 + Id : 40, {_}: greatest_lower_bound a b =>= identity [] by p09b_4 +Goal + Id : 2, {_}: + greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c + [] by prove_p09b +Found proof, 197.640612s +% SZS status Unsatisfiable for GRP178-2.p +% SZS output start CNFRefutation for GRP178-2.p +Id : 38, {_}: greatest_lower_bound identity c =>= identity [] by p09b_3 +Id : 30, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 +Id : 32, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 +Id : 34, {_}: greatest_lower_bound identity a =>= identity [] by p09b_1 +Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 +Id : 40, {_}: greatest_lower_bound a b =>= identity [] by p09b_4 +Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 +Id : 171, {_}: multiply ?467 (least_upper_bound ?468 ?469) =<= least_upper_bound (multiply ?467 ?468) (multiply ?467 ?469) [469, 468, 467] by monotony_lub1 ?467 ?468 ?469 +Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 +Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 +Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 +Id : 202, {_}: multiply ?543 (greatest_lower_bound ?544 ?545) =<= greatest_lower_bound (multiply ?543 ?544) (multiply ?543 ?545) [545, 544, 543] by monotony_glb1 ?543 ?544 ?545 +Id : 28, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 45, {_}: multiply (multiply ?62 ?63) ?64 =?= multiply ?62 (multiply ?63 ?64) [64, 63, 62] by associativity ?62 ?63 ?64 +Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 +Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 +Id : 54, {_}: multiply identity ?97 =<= multiply (inverse ?96) (multiply ?96 ?97) [96, 97] by Super 45 with 6 at 1,2 +Id : 63, {_}: ?97 =<= multiply (inverse ?96) (multiply ?96 ?97) [96, 97] by Demod 54 with 4 at 2 +Id : 47, {_}: multiply (multiply ?69 (inverse ?70)) ?70 =>= multiply ?69 identity [70, 69] by Super 45 with 6 at 2,3 +Id : 9265, {_}: multiply (multiply ?8232 (inverse ?8233)) ?8233 =>= multiply ?8232 identity [8233, 8232] by Super 45 with 6 at 2,3 +Id : 9268, {_}: multiply identity ?8239 =<= multiply (inverse (inverse ?8239)) identity [8239] by Super 9265 with 6 at 1,2 +Id : 9283, {_}: ?8239 =<= multiply (inverse (inverse ?8239)) identity [8239] by Demod 9268 with 4 at 2 +Id : 46, {_}: multiply (multiply ?66 identity) ?67 =>= multiply ?66 ?67 [67, 66] by Super 45 with 4 at 2,3 +Id : 9288, {_}: multiply ?8261 ?8262 =<= multiply (inverse (inverse ?8261)) ?8262 [8262, 8261] by Super 46 with 9283 at 1,2 +Id : 9304, {_}: ?8239 =<= multiply ?8239 identity [8239] by Demod 9283 with 9288 at 3 +Id : 9305, {_}: multiply (multiply ?69 (inverse ?70)) ?70 =>= ?69 [70, 69] by Demod 47 with 9304 at 3 +Id : 9320, {_}: inverse (inverse ?8348) =<= multiply ?8348 identity [8348] by Super 9304 with 9288 at 3 +Id : 9326, {_}: inverse (inverse ?8348) =>= ?8348 [8348] by Demod 9320 with 9304 at 3 +Id : 9354, {_}: multiply (multiply ?8365 ?8364) (inverse ?8364) =>= ?8365 [8364, 8365] by Super 9305 with 9326 at 2,1,2 +Id : 9315, {_}: multiply ?8330 (inverse ?8330) =>= identity [8330] by Super 6 with 9288 at 2 +Id : 9365, {_}: multiply ?8382 (greatest_lower_bound ?8383 (inverse ?8382)) =>= greatest_lower_bound (multiply ?8382 ?8383) identity [8383, 8382] by Super 28 with 9315 at 2,3 +Id : 9386, {_}: multiply ?8382 (greatest_lower_bound ?8383 (inverse ?8382)) =>= greatest_lower_bound identity (multiply ?8382 ?8383) [8383, 8382] by Demod 9365 with 10 at 3 +Id : 137579, {_}: multiply (inverse ?85743) (greatest_lower_bound ?85743 ?85744) =>= greatest_lower_bound identity (multiply (inverse ?85743) ?85744) [85744, 85743] by Super 202 with 6 at 1,3 +Id : 4862, {_}: greatest_lower_bound (least_upper_bound ?4719 ?4720) ?4719 =>= ?4719 [4720, 4719] by Super 10 with 24 at 3 +Id : 4863, {_}: greatest_lower_bound (least_upper_bound ?4723 ?4722) ?4722 =>= ?4722 [4722, 4723] by Super 4862 with 12 at 1,2 +Id : 173, {_}: multiply (inverse ?475) (least_upper_bound ?474 ?475) =>= least_upper_bound (multiply (inverse ?475) ?474) identity [474, 475] by Super 171 with 6 at 2,3 +Id : 9616, {_}: multiply (inverse ?8736) (least_upper_bound ?8737 ?8736) =>= least_upper_bound identity (multiply (inverse ?8736) ?8737) [8737, 8736] by Demod 173 with 12 at 3 +Id : 336, {_}: greatest_lower_bound b a =>= identity [] by Demod 40 with 10 at 2 +Id : 337, {_}: least_upper_bound b identity =>= b [] by Super 22 with 336 at 2,2 +Id : 349, {_}: least_upper_bound identity b =>= b [] by Demod 337 with 12 at 2 +Id : 9624, {_}: multiply (inverse b) b =<= least_upper_bound identity (multiply (inverse b) identity) [] by Super 9616 with 349 at 2,2 +Id : 9699, {_}: identity =<= least_upper_bound identity (multiply (inverse b) identity) [] by Demod 9624 with 6 at 2 +Id : 9700, {_}: identity =<= least_upper_bound identity (inverse b) [] by Demod 9699 with 9304 at 2,3 +Id : 9734, {_}: greatest_lower_bound identity (inverse b) =>= inverse b [] by Super 4863 with 9700 at 1,2 +Id : 9886, {_}: greatest_lower_bound ?8962 (inverse b) =<= greatest_lower_bound (greatest_lower_bound ?8962 identity) (inverse b) [8962] by Super 14 with 9734 at 2,2 +Id : 9910, {_}: greatest_lower_bound ?8962 (inverse b) =<= greatest_lower_bound (inverse b) (greatest_lower_bound ?8962 identity) [8962] by Demod 9886 with 10 at 3 +Id : 138060, {_}: multiply (inverse (inverse b)) (greatest_lower_bound ?86438 (inverse b)) =<= greatest_lower_bound identity (multiply (inverse (inverse b)) (greatest_lower_bound ?86438 identity)) [86438] by Super 137579 with 9910 at 2,2 +Id : 139832, {_}: multiply b (greatest_lower_bound ?86438 (inverse b)) =<= greatest_lower_bound identity (multiply (inverse (inverse b)) (greatest_lower_bound ?86438 identity)) [86438] by Demod 138060 with 9326 at 1,2 +Id : 139833, {_}: multiply b (greatest_lower_bound ?86438 (inverse b)) =<= greatest_lower_bound identity (multiply b (greatest_lower_bound ?86438 identity)) [86438] by Demod 139832 with 9326 at 1,2,3 +Id : 190, {_}: multiply (inverse ?475) (least_upper_bound ?474 ?475) =>= least_upper_bound identity (multiply (inverse ?475) ?474) [474, 475] by Demod 173 with 12 at 3 +Id : 299, {_}: greatest_lower_bound ?761 identity =<= greatest_lower_bound (greatest_lower_bound ?761 identity) a [761] by Super 14 with 34 at 2,2 +Id : 308, {_}: greatest_lower_bound ?761 identity =<= greatest_lower_bound a (greatest_lower_bound ?761 identity) [761] by Demod 299 with 10 at 3 +Id : 691, {_}: least_upper_bound a (greatest_lower_bound ?1150 identity) =>= a [1150] by Super 22 with 308 at 2,2 +Id : 693, {_}: least_upper_bound a identity =>= a [] by Super 691 with 20 at 2,2 +Id : 704, {_}: least_upper_bound identity a =>= a [] by Demod 693 with 12 at 2 +Id : 707, {_}: least_upper_bound ?1166 a =<= least_upper_bound (least_upper_bound ?1166 identity) a [1166] by Super 16 with 704 at 2,2 +Id : 1790, {_}: least_upper_bound ?1985 a =<= least_upper_bound a (least_upper_bound ?1985 identity) [1985] by Demod 707 with 12 at 3 +Id : 1791, {_}: least_upper_bound ?1987 a =<= least_upper_bound a (least_upper_bound identity ?1987) [1987] by Super 1790 with 12 at 2,3 +Id : 9745, {_}: least_upper_bound (inverse b) a =>= least_upper_bound a identity [] by Super 1791 with 9700 at 2,3 +Id : 9760, {_}: least_upper_bound a (inverse b) =>= least_upper_bound a identity [] by Demod 9745 with 12 at 2 +Id : 9761, {_}: least_upper_bound a (inverse b) =>= least_upper_bound identity a [] by Demod 9760 with 12 at 3 +Id : 9762, {_}: least_upper_bound a (inverse b) =>= a [] by Demod 9761 with 704 at 3 +Id : 9940, {_}: multiply (inverse (inverse b)) a =<= least_upper_bound identity (multiply (inverse (inverse b)) a) [] by Super 190 with 9762 at 2,2 +Id : 9943, {_}: multiply b a =<= least_upper_bound identity (multiply (inverse (inverse b)) a) [] by Demod 9940 with 9326 at 1,2 +Id : 9944, {_}: multiply b a =<= least_upper_bound identity (multiply b a) [] by Demod 9943 with 9326 at 1,2,3 +Id : 10784, {_}: greatest_lower_bound identity (multiply b a) =>= identity [] by Super 24 with 9944 at 2,2 +Id : 47323, {_}: greatest_lower_bound identity (greatest_lower_bound (multiply b a) ?32510) =>= greatest_lower_bound identity ?32510 [32510] by Super 14 with 10784 at 1,3 +Id : 69234, {_}: greatest_lower_bound identity (multiply b (greatest_lower_bound a ?46169)) =>= greatest_lower_bound identity (multiply b ?46169) [46169] by Super 47323 with 28 at 2,2 +Id : 339, {_}: greatest_lower_bound ?788 identity =<= greatest_lower_bound (greatest_lower_bound ?788 b) a [788] by Super 14 with 336 at 2,2 +Id : 348, {_}: greatest_lower_bound ?788 identity =<= greatest_lower_bound a (greatest_lower_bound ?788 b) [788] by Demod 339 with 10 at 3 +Id : 69253, {_}: greatest_lower_bound identity (multiply b (greatest_lower_bound ?46206 identity)) =<= greatest_lower_bound identity (multiply b (greatest_lower_bound ?46206 b)) [46206] by Super 69234 with 348 at 2,2,2 +Id : 353, {_}: least_upper_bound ?797 b =<= least_upper_bound (least_upper_bound ?797 identity) b [797] by Super 16 with 349 at 2,2 +Id : 607, {_}: least_upper_bound ?1066 b =<= least_upper_bound b (least_upper_bound ?1066 identity) [1066] by Demod 353 with 12 at 3 +Id : 608, {_}: least_upper_bound ?1068 b =<= least_upper_bound b (least_upper_bound identity ?1068) [1068] by Super 607 with 12 at 2,3 +Id : 9739, {_}: least_upper_bound (inverse b) b =>= least_upper_bound b identity [] by Super 608 with 9700 at 2,3 +Id : 9768, {_}: least_upper_bound b (inverse b) =>= least_upper_bound b identity [] by Demod 9739 with 12 at 2 +Id : 9769, {_}: least_upper_bound b (inverse b) =>= least_upper_bound identity b [] by Demod 9768 with 12 at 3 +Id : 9770, {_}: least_upper_bound b (inverse b) =>= b [] by Demod 9769 with 349 at 3 +Id : 9967, {_}: multiply (inverse (inverse b)) b =<= least_upper_bound identity (multiply (inverse (inverse b)) b) [] by Super 190 with 9770 at 2,2 +Id : 10010, {_}: multiply b b =<= least_upper_bound identity (multiply (inverse (inverse b)) b) [] by Demod 9967 with 9326 at 1,2 +Id : 10011, {_}: multiply b b =<= least_upper_bound identity (multiply b b) [] by Demod 10010 with 9326 at 1,2,3 +Id : 10830, {_}: greatest_lower_bound identity (multiply b b) =>= identity [] by Super 24 with 10011 at 2,2 +Id : 11235, {_}: greatest_lower_bound ?9614 identity =<= greatest_lower_bound (greatest_lower_bound ?9614 identity) (multiply b b) [9614] by Super 14 with 10830 at 2,2 +Id : 394, {_}: greatest_lower_bound ?844 identity =<= greatest_lower_bound a (greatest_lower_bound ?844 identity) [844] by Demod 299 with 10 at 3 +Id : 395, {_}: greatest_lower_bound ?846 identity =<= greatest_lower_bound a (greatest_lower_bound identity ?846) [846] by Super 394 with 10 at 2,3 +Id : 721, {_}: greatest_lower_bound a (greatest_lower_bound (greatest_lower_bound identity ?1178) ?1179) =>= greatest_lower_bound (greatest_lower_bound ?1178 identity) ?1179 [1179, 1178] by Super 14 with 395 at 1,3 +Id : 751, {_}: greatest_lower_bound a (greatest_lower_bound identity (greatest_lower_bound ?1178 ?1179)) =>= greatest_lower_bound (greatest_lower_bound ?1178 identity) ?1179 [1179, 1178] by Demod 721 with 14 at 2,2 +Id : 752, {_}: greatest_lower_bound (greatest_lower_bound ?1178 ?1179) identity =?= greatest_lower_bound (greatest_lower_bound ?1178 identity) ?1179 [1179, 1178] by Demod 751 with 395 at 2 +Id : 753, {_}: greatest_lower_bound identity (greatest_lower_bound ?1178 ?1179) =<= greatest_lower_bound (greatest_lower_bound ?1178 identity) ?1179 [1179, 1178] by Demod 752 with 10 at 2 +Id : 47765, {_}: greatest_lower_bound ?32774 identity =<= greatest_lower_bound identity (greatest_lower_bound ?32774 (multiply b b)) [32774] by Demod 11235 with 753 at 3 +Id : 47777, {_}: greatest_lower_bound (multiply b ?32794) identity =<= greatest_lower_bound identity (multiply b (greatest_lower_bound ?32794 b)) [32794] by Super 47765 with 28 at 2,3 +Id : 47888, {_}: greatest_lower_bound identity (multiply b ?32794) =<= greatest_lower_bound identity (multiply b (greatest_lower_bound ?32794 b)) [32794] by Demod 47777 with 10 at 2 +Id : 112860, {_}: greatest_lower_bound identity (multiply b (greatest_lower_bound ?46206 identity)) =>= greatest_lower_bound identity (multiply b ?46206) [46206] by Demod 69253 with 47888 at 3 +Id : 139834, {_}: multiply b (greatest_lower_bound ?86438 (inverse b)) =>= greatest_lower_bound identity (multiply b ?86438) [86438] by Demod 139833 with 112860 at 3 +Id : 758814, {_}: greatest_lower_bound ?433915 (inverse b) =<= multiply (inverse b) (greatest_lower_bound identity (multiply b ?433915)) [433915] by Super 63 with 139834 at 2,3 +Id : 9363, {_}: multiply (greatest_lower_bound ?8377 ?8376) (inverse ?8376) =>= greatest_lower_bound (multiply ?8377 (inverse ?8376)) identity [8376, 8377] by Super 32 with 9315 at 2,3 +Id : 389839, {_}: multiply (greatest_lower_bound ?219201 ?219202) (inverse ?219202) =>= greatest_lower_bound identity (multiply ?219201 (inverse ?219202)) [219202, 219201] by Demod 9363 with 10 at 3 +Id : 389867, {_}: multiply identity (inverse a) =<= greatest_lower_bound identity (multiply b (inverse a)) [] by Super 389839 with 336 at 1,2 +Id : 390920, {_}: inverse a =<= greatest_lower_bound identity (multiply b (inverse a)) [] by Demod 389867 with 4 at 2 +Id : 758889, {_}: greatest_lower_bound (inverse a) (inverse b) =<= multiply (inverse b) (inverse a) [] by Super 758814 with 390920 at 2,3 +Id : 759137, {_}: greatest_lower_bound (inverse b) (inverse a) =<= multiply (inverse b) (inverse a) [] by Demod 758889 with 10 at 2 +Id : 9373, {_}: multiply (least_upper_bound ?8405 ?8404) (inverse ?8404) =>= least_upper_bound (multiply ?8405 (inverse ?8404)) identity [8404, 8405] by Super 30 with 9315 at 2,3 +Id : 379748, {_}: multiply (least_upper_bound ?213200 ?213201) (inverse ?213201) =>= least_upper_bound identity (multiply ?213200 (inverse ?213201)) [213201, 213200] by Demod 9373 with 12 at 3 +Id : 9632, {_}: multiply (inverse a) a =<= least_upper_bound identity (multiply (inverse a) identity) [] by Super 9616 with 704 at 2,2 +Id : 9704, {_}: identity =<= least_upper_bound identity (multiply (inverse a) identity) [] by Demod 9632 with 6 at 2 +Id : 9705, {_}: identity =<= least_upper_bound identity (inverse a) [] by Demod 9704 with 9304 at 2,3 +Id : 9791, {_}: least_upper_bound (inverse a) b =>= least_upper_bound b identity [] by Super 608 with 9705 at 2,3 +Id : 9810, {_}: least_upper_bound b (inverse a) =>= least_upper_bound b identity [] by Demod 9791 with 12 at 2 +Id : 9811, {_}: least_upper_bound b (inverse a) =>= least_upper_bound identity b [] by Demod 9810 with 12 at 3 +Id : 9812, {_}: least_upper_bound b (inverse a) =>= b [] by Demod 9811 with 349 at 3 +Id : 10144, {_}: multiply (inverse (inverse a)) b =<= least_upper_bound identity (multiply (inverse (inverse a)) b) [] by Super 190 with 9812 at 2,2 +Id : 10186, {_}: multiply a b =<= least_upper_bound identity (multiply (inverse (inverse a)) b) [] by Demod 10144 with 9326 at 1,2 +Id : 10187, {_}: multiply a b =<= least_upper_bound identity (multiply a b) [] by Demod 10186 with 9326 at 1,2,3 +Id : 380544, {_}: multiply (multiply a b) (inverse (multiply a b)) =>= least_upper_bound identity (multiply identity (inverse (multiply a b))) [] by Super 379748 with 10187 at 1,2 +Id : 382056, {_}: multiply a (multiply b (inverse (multiply a b))) =>= least_upper_bound identity (multiply identity (inverse (multiply a b))) [] by Demod 380544 with 8 at 2 +Id : 382057, {_}: multiply a (multiply b (inverse (multiply a b))) =>= least_upper_bound identity (inverse (multiply a b)) [] by Demod 382056 with 4 at 2,3 +Id : 10969, {_}: multiply (inverse (multiply a b)) (multiply a b) =>= least_upper_bound identity (multiply (inverse (multiply a b)) identity) [] by Super 190 with 10187 at 2,2 +Id : 10972, {_}: identity =<= least_upper_bound identity (multiply (inverse (multiply a b)) identity) [] by Demod 10969 with 6 at 2 +Id : 10973, {_}: identity =<= least_upper_bound identity (inverse (multiply a b)) [] by Demod 10972 with 9304 at 2,3 +Id : 382058, {_}: multiply a (multiply b (inverse (multiply a b))) =>= identity [] by Demod 382057 with 10973 at 3 +Id : 383433, {_}: multiply b (inverse (multiply a b)) =>= multiply (inverse a) identity [] by Super 63 with 382058 at 2,3 +Id : 383436, {_}: multiply b (inverse (multiply a b)) =>= inverse a [] by Demod 383433 with 9304 at 3 +Id : 383449, {_}: inverse (multiply a b) =<= multiply (inverse b) (inverse a) [] by Super 63 with 383436 at 2,3 +Id : 759138, {_}: greatest_lower_bound (inverse b) (inverse a) =>= inverse (multiply a b) [] by Demod 759137 with 383449 at 3 +Id : 759204, {_}: multiply a (inverse (multiply a b)) =>= greatest_lower_bound identity (multiply a (inverse b)) [] by Super 9386 with 759138 at 2,2 +Id : 368035, {_}: multiply (greatest_lower_bound ?208569 ?208570) (inverse ?208569) =>= greatest_lower_bound identity (multiply ?208570 (inverse ?208569)) [208570, 208569] by Super 32 with 9315 at 1,3 +Id : 368063, {_}: multiply identity (inverse b) =<= greatest_lower_bound identity (multiply a (inverse b)) [] by Super 368035 with 336 at 1,2 +Id : 369182, {_}: inverse b =<= greatest_lower_bound identity (multiply a (inverse b)) [] by Demod 368063 with 4 at 2 +Id : 759234, {_}: multiply a (inverse (multiply a b)) =>= inverse b [] by Demod 759204 with 369182 at 3 +Id : 759348, {_}: inverse (multiply a b) =<= multiply (inverse a) (inverse b) [] by Super 63 with 759234 at 2,3 +Id : 380530, {_}: multiply (multiply b a) (inverse (multiply b a)) =>= least_upper_bound identity (multiply identity (inverse (multiply b a))) [] by Super 379748 with 9944 at 1,2 +Id : 382029, {_}: multiply b (multiply a (inverse (multiply b a))) =>= least_upper_bound identity (multiply identity (inverse (multiply b a))) [] by Demod 380530 with 8 at 2 +Id : 382030, {_}: multiply b (multiply a (inverse (multiply b a))) =>= least_upper_bound identity (inverse (multiply b a)) [] by Demod 382029 with 4 at 2,3 +Id : 10793, {_}: multiply (inverse (multiply b a)) (multiply b a) =>= least_upper_bound identity (multiply (inverse (multiply b a)) identity) [] by Super 190 with 9944 at 2,2 +Id : 10796, {_}: identity =<= least_upper_bound identity (multiply (inverse (multiply b a)) identity) [] by Demod 10793 with 6 at 2 +Id : 10797, {_}: identity =<= least_upper_bound identity (inverse (multiply b a)) [] by Demod 10796 with 9304 at 2,3 +Id : 382031, {_}: multiply b (multiply a (inverse (multiply b a))) =>= identity [] by Demod 382030 with 10797 at 3 +Id : 382929, {_}: multiply a (inverse (multiply b a)) =>= multiply (inverse b) identity [] by Super 63 with 382031 at 2,3 +Id : 382932, {_}: multiply a (inverse (multiply b a)) =>= inverse b [] by Demod 382929 with 9304 at 3 +Id : 382945, {_}: inverse (multiply b a) =<= multiply (inverse a) (inverse b) [] by Super 63 with 382932 at 2,3 +Id : 759368, {_}: inverse (multiply a b) =>= inverse (multiply b a) [] by Demod 759348 with 382945 at 3 +Id : 759573, {_}: inverse (inverse (multiply b a)) =>= multiply a b [] by Super 9326 with 759368 at 1,2 +Id : 759596, {_}: multiply b a =<= multiply a b [] by Demod 759573 with 9326 at 2 +Id : 760017, {_}: multiply (multiply b a) (inverse b) =>= a [] by Super 9354 with 759596 at 1,2 +Id : 760034, {_}: multiply b (multiply a (inverse b)) =>= a [] by Demod 760017 with 8 at 2 +Id : 760418, {_}: multiply a (inverse b) =<= multiply (inverse b) a [] by Super 63 with 760034 at 2,3 +Id : 760473, {_}: multiply (multiply a (inverse b)) ?434336 =>= multiply (inverse b) (multiply a ?434336) [434336] by Super 8 with 760418 at 1,2 +Id : 760489, {_}: multiply a (multiply (inverse b) ?434336) =<= multiply (inverse b) (multiply a ?434336) [434336] by Demod 760473 with 8 at 2 +Id : 763912, {_}: multiply a (greatest_lower_bound b ?436084) =<= greatest_lower_bound (multiply b a) (multiply a ?436084) [436084] by Super 28 with 759596 at 1,3 +Id : 760023, {_}: multiply (multiply b a) ?434182 =>= multiply a (multiply b ?434182) [434182] by Super 8 with 759596 at 1,2 +Id : 760032, {_}: multiply b (multiply a ?434182) =<= multiply a (multiply b ?434182) [434182] by Demod 760023 with 8 at 2 +Id : 763932, {_}: multiply a (greatest_lower_bound b (multiply b ?436118)) =<= greatest_lower_bound (multiply b a) (multiply b (multiply a ?436118)) [436118] by Super 763912 with 760032 at 2,3 +Id : 764080, {_}: multiply a (greatest_lower_bound b (multiply b ?436118)) =>= multiply b (greatest_lower_bound a (multiply a ?436118)) [436118] by Demod 763932 with 28 at 3 +Id : 768933, {_}: multiply a (multiply (inverse b) (greatest_lower_bound b (multiply b ?438632))) =<= multiply (inverse b) (multiply b (greatest_lower_bound a (multiply a ?438632))) [438632] by Super 760489 with 764080 at 2,3 +Id : 208, {_}: multiply (inverse ?566) (greatest_lower_bound ?566 ?567) =>= greatest_lower_bound identity (multiply (inverse ?566) ?567) [567, 566] by Super 202 with 6 at 1,3 +Id : 768988, {_}: multiply a (greatest_lower_bound identity (multiply (inverse b) (multiply b ?438632))) =<= multiply (inverse b) (multiply b (greatest_lower_bound a (multiply a ?438632))) [438632] by Demod 768933 with 208 at 2,2 +Id : 768989, {_}: multiply a (greatest_lower_bound identity ?438632) =<= multiply (inverse b) (multiply b (greatest_lower_bound a (multiply a ?438632))) [438632] by Demod 768988 with 63 at 2,2,2 +Id : 769075, {_}: multiply a (greatest_lower_bound identity ?438774) =>= greatest_lower_bound a (multiply a ?438774) [438774] by Demod 768989 with 63 at 3 +Id : 325, {_}: greatest_lower_bound ?779 identity =<= greatest_lower_bound (greatest_lower_bound ?779 identity) c [779] by Super 14 with 38 at 2,2 +Id : 334, {_}: greatest_lower_bound ?779 identity =<= greatest_lower_bound c (greatest_lower_bound ?779 identity) [779] by Demod 325 with 10 at 3 +Id : 1055, {_}: least_upper_bound c (greatest_lower_bound ?1435 identity) =>= c [1435] by Super 22 with 334 at 2,2 +Id : 1057, {_}: least_upper_bound c identity =>= c [] by Super 1055 with 20 at 2,2 +Id : 1068, {_}: least_upper_bound identity c =>= c [] by Demod 1057 with 12 at 2 +Id : 1072, {_}: least_upper_bound ?1452 c =<= least_upper_bound (least_upper_bound ?1452 identity) c [1452] by Super 16 with 1068 at 2,2 +Id : 2044, {_}: least_upper_bound ?2196 c =<= least_upper_bound c (least_upper_bound ?2196 identity) [2196] by Demod 1072 with 12 at 3 +Id : 2045, {_}: least_upper_bound ?2198 c =<= least_upper_bound c (least_upper_bound identity ?2198) [2198] by Super 2044 with 12 at 2,3 +Id : 9738, {_}: least_upper_bound (inverse b) c =>= least_upper_bound c identity [] by Super 2045 with 9700 at 2,3 +Id : 9771, {_}: least_upper_bound c (inverse b) =>= least_upper_bound c identity [] by Demod 9738 with 12 at 2 +Id : 9772, {_}: least_upper_bound c (inverse b) =>= least_upper_bound identity c [] by Demod 9771 with 12 at 3 +Id : 9773, {_}: least_upper_bound c (inverse b) =>= c [] by Demod 9772 with 1068 at 3 +Id : 10029, {_}: multiply (inverse (inverse b)) c =<= least_upper_bound identity (multiply (inverse (inverse b)) c) [] by Super 190 with 9773 at 2,2 +Id : 10032, {_}: multiply b c =<= least_upper_bound identity (multiply (inverse (inverse b)) c) [] by Demod 10029 with 9326 at 1,2 +Id : 10033, {_}: multiply b c =<= least_upper_bound identity (multiply b c) [] by Demod 10032 with 9326 at 1,2,3 +Id : 10872, {_}: greatest_lower_bound identity (multiply b c) =>= identity [] by Super 24 with 10033 at 2,2 +Id : 47955, {_}: greatest_lower_bound identity (greatest_lower_bound (multiply b c) ?32868) =>= greatest_lower_bound identity ?32868 [32868] by Super 14 with 10872 at 1,3 +Id : 70757, {_}: greatest_lower_bound identity (multiply (greatest_lower_bound b ?47489) c) =>= greatest_lower_bound identity (multiply ?47489 c) [47489] by Super 47955 with 32 at 2,2 +Id : 338, {_}: greatest_lower_bound b (greatest_lower_bound a ?786) =>= greatest_lower_bound identity ?786 [786] by Super 14 with 336 at 1,3 +Id : 70764, {_}: greatest_lower_bound identity (multiply (greatest_lower_bound identity ?47501) c) =<= greatest_lower_bound identity (multiply (greatest_lower_bound a ?47501) c) [47501] by Super 70757 with 338 at 1,2,2 +Id : 9792, {_}: least_upper_bound (inverse a) c =>= least_upper_bound c identity [] by Super 2045 with 9705 at 2,3 +Id : 9807, {_}: least_upper_bound c (inverse a) =>= least_upper_bound c identity [] by Demod 9792 with 12 at 2 +Id : 9808, {_}: least_upper_bound c (inverse a) =>= least_upper_bound identity c [] by Demod 9807 with 12 at 3 +Id : 9809, {_}: least_upper_bound c (inverse a) =>= c [] by Demod 9808 with 1068 at 3 +Id : 10119, {_}: multiply (inverse (inverse a)) c =<= least_upper_bound identity (multiply (inverse (inverse a)) c) [] by Super 190 with 9809 at 2,2 +Id : 10122, {_}: multiply a c =<= least_upper_bound identity (multiply (inverse (inverse a)) c) [] by Demod 10119 with 9326 at 1,2 +Id : 10123, {_}: multiply a c =<= least_upper_bound identity (multiply a c) [] by Demod 10122 with 9326 at 1,2,3 +Id : 10918, {_}: greatest_lower_bound identity (multiply a c) =>= identity [] by Super 24 with 10123 at 2,2 +Id : 48295, {_}: greatest_lower_bound identity (greatest_lower_bound (multiply a c) ?33053) =>= greatest_lower_bound identity ?33053 [33053] by Super 14 with 10918 at 1,3 +Id : 48305, {_}: greatest_lower_bound identity (multiply (greatest_lower_bound a ?33073) c) =>= greatest_lower_bound identity (multiply ?33073 c) [33073] by Super 48295 with 32 at 2,2 +Id : 115728, {_}: greatest_lower_bound identity (multiply (greatest_lower_bound identity ?47501) c) =>= greatest_lower_bound identity (multiply ?47501 c) [47501] by Demod 70764 with 48305 at 3 +Id : 204, {_}: multiply (inverse ?551) (greatest_lower_bound ?550 ?551) =>= greatest_lower_bound (multiply (inverse ?551) ?550) identity [550, 551] by Super 202 with 6 at 2,3 +Id : 142360, {_}: multiply (inverse ?87937) (greatest_lower_bound ?87938 ?87937) =>= greatest_lower_bound identity (multiply (inverse ?87937) ?87938) [87938, 87937] by Demod 204 with 10 at 3 +Id : 142374, {_}: multiply (inverse a) identity =<= greatest_lower_bound identity (multiply (inverse a) b) [] by Super 142360 with 336 at 2,2 +Id : 143139, {_}: inverse a =<= greatest_lower_bound identity (multiply (inverse a) b) [] by Demod 142374 with 9304 at 2 +Id : 144455, {_}: greatest_lower_bound identity (multiply (inverse a) c) =<= greatest_lower_bound identity (multiply (multiply (inverse a) b) c) [] by Super 115728 with 143139 at 1,2,2 +Id : 144470, {_}: greatest_lower_bound identity (multiply (inverse a) c) =<= greatest_lower_bound identity (multiply (inverse a) (multiply b c)) [] by Demod 144455 with 8 at 2,3 +Id : 769471, {_}: multiply a (greatest_lower_bound identity (multiply (inverse a) c)) =<= greatest_lower_bound a (multiply a (multiply (inverse a) (multiply b c))) [] by Super 769075 with 144470 at 2,2 +Id : 768990, {_}: multiply a (greatest_lower_bound identity ?438632) =>= greatest_lower_bound a (multiply a ?438632) [438632] by Demod 768989 with 63 at 3 +Id : 770016, {_}: greatest_lower_bound a (multiply a (multiply (inverse a) c)) =<= greatest_lower_bound a (multiply a (multiply (inverse a) (multiply b c))) [] by Demod 769471 with 768990 at 2 +Id : 9368, {_}: multiply identity ?8392 =<= multiply ?8391 (multiply (inverse ?8391) ?8392) [8391, 8392] by Super 8 with 9315 at 1,2 +Id : 9385, {_}: ?8392 =<= multiply ?8391 (multiply (inverse ?8391) ?8392) [8391, 8392] by Demod 9368 with 4 at 2 +Id : 770017, {_}: greatest_lower_bound a c =<= greatest_lower_bound a (multiply a (multiply (inverse a) (multiply b c))) [] by Demod 770016 with 9385 at 2,2 +Id : 770018, {_}: greatest_lower_bound c a =<= greatest_lower_bound a (multiply a (multiply (inverse a) (multiply b c))) [] by Demod 770017 with 10 at 2 +Id : 770019, {_}: greatest_lower_bound c a =<= greatest_lower_bound a (multiply b c) [] by Demod 770018 with 9385 at 2,3 +Id : 770827, {_}: greatest_lower_bound c a === greatest_lower_bound c a [] by Demod 350 with 770019 at 2 +Id : 350, {_}: greatest_lower_bound a (multiply b c) =>= greatest_lower_bound c a [] by Demod 2 with 10 at 3 +Id : 2, {_}: greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c [] by prove_p09b +% SZS output end CNFRefutation for GRP178-2.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 90 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + c is 72 + glb_absorbtion is 80 + greatest_lower_bound is 89 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 95 + inverse is 92 + least_upper_bound is 87 + left_identity is 93 + left_inverse is 91 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 94 + p12x_1 is 75 + p12x_2 is 74 + p12x_3 is 73 + p12x_4 is 71 + p12x_5 is 70 + p12x_6 is 69 + p12x_7 is 68 + prove_p12x is 96 + symmetry_of_glb is 88 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: inverse identity =>= identity [] by p12x_1 + Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51 + Id : 38, {_}: + inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) + [54, 53] by p12x_3 ?53 ?54 + Id : 40, {_}: + greatest_lower_bound a c =>= greatest_lower_bound b c + [] by p12x_4 + Id : 42, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_5 + Id : 44, {_}: + inverse (greatest_lower_bound ?58 ?59) + =<= + least_upper_bound (inverse ?58) (inverse ?59) + [59, 58] by p12x_6 ?58 ?59 + Id : 46, {_}: + inverse (least_upper_bound ?61 ?62) + =<= + greatest_lower_bound (inverse ?61) (inverse ?62) + [62, 61] by p12x_7 ?61 ?62 +Goal + Id : 2, {_}: a =>= b [] by prove_p12x +Found proof, 11.818806s +% SZS status Unsatisfiable for GRP181-4.p +% SZS output start CNFRefutation for GRP181-4.p +Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 +Id : 42, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_5 +Id : 177, {_}: multiply ?477 (least_upper_bound ?478 ?479) =<= least_upper_bound (multiply ?477 ?478) (multiply ?477 ?479) [479, 478, 477] by monotony_lub1 ?477 ?478 ?479 +Id : 46, {_}: inverse (least_upper_bound ?61 ?62) =<= greatest_lower_bound (inverse ?61) (inverse ?62) [62, 61] by p12x_7 ?61 ?62 +Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 +Id : 40, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12x_4 +Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 +Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 +Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 +Id : 44, {_}: inverse (greatest_lower_bound ?58 ?59) =<= least_upper_bound (inverse ?58) (inverse ?59) [59, 58] by p12x_6 ?58 ?59 +Id : 375, {_}: inverse (greatest_lower_bound ?877 ?878) =<= least_upper_bound (inverse ?877) (inverse ?878) [878, 877] by p12x_6 ?877 ?878 +Id : 398, {_}: inverse (least_upper_bound ?920 ?921) =<= greatest_lower_bound (inverse ?920) (inverse ?921) [921, 920] by p12x_7 ?920 ?921 +Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 +Id : 208, {_}: multiply ?553 (greatest_lower_bound ?554 ?555) =<= greatest_lower_bound (multiply ?553 ?554) (multiply ?553 ?555) [555, 554, 553] by monotony_glb1 ?553 ?554 ?555 +Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 +Id : 38, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p12x_3 ?53 ?54 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 34, {_}: inverse identity =>= identity [] by p12x_1 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 51, {_}: multiply (multiply ?72 ?73) ?74 =?= multiply ?72 (multiply ?73 ?74) [74, 73, 72] by associativity ?72 ?73 ?74 +Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51 +Id : 324, {_}: inverse (multiply ?822 ?823) =<= multiply (inverse ?823) (inverse ?822) [823, 822] by p12x_3 ?822 ?823 +Id : 328, {_}: inverse (multiply ?833 (inverse ?832)) =>= multiply ?832 (inverse ?833) [832, 833] by Super 324 with 36 at 1,3 +Id : 53, {_}: multiply (multiply ?79 (inverse ?80)) ?80 =>= multiply ?79 identity [80, 79] by Super 51 with 6 at 2,3 +Id : 325, {_}: inverse (multiply identity ?825) =<= multiply (inverse ?825) identity [825] by Super 324 with 34 at 2,3 +Id : 428, {_}: inverse ?975 =<= multiply (inverse ?975) identity [975] by Demod 325 with 4 at 1,2 +Id : 430, {_}: inverse (inverse ?978) =<= multiply ?978 identity [978] by Super 428 with 36 at 1,3 +Id : 441, {_}: ?978 =<= multiply ?978 identity [978] by Demod 430 with 36 at 2 +Id : 28686, {_}: multiply (multiply ?79 (inverse ?80)) ?80 =>= ?79 [80, 79] by Demod 53 with 441 at 3 +Id : 28700, {_}: inverse ?20638 =<= multiply ?20639 (inverse (multiply ?20638 (inverse (inverse ?20639)))) [20639, 20638] by Super 328 with 28686 at 1,2 +Id : 28729, {_}: inverse ?20638 =<= multiply ?20639 (multiply (inverse ?20639) (inverse ?20638)) [20639, 20638] by Demod 28700 with 328 at 2,3 +Id : 28730, {_}: inverse ?20638 =<= multiply ?20639 (inverse (multiply ?20638 ?20639)) [20639, 20638] by Demod 28729 with 38 at 2,3 +Id : 307, {_}: multiply ?771 (inverse ?771) =>= identity [771] by Super 6 with 36 at 1,2 +Id : 598, {_}: multiply (multiply ?1178 ?1177) (inverse ?1177) =>= multiply ?1178 identity [1177, 1178] by Super 8 with 307 at 2,3 +Id : 42163, {_}: multiply (multiply ?33679 ?33680) (inverse ?33680) =>= ?33679 [33680, 33679] by Demod 598 with 441 at 3 +Id : 210, {_}: multiply (inverse ?561) (greatest_lower_bound ?560 ?561) =>= greatest_lower_bound (multiply (inverse ?561) ?560) identity [560, 561] by Super 208 with 6 at 2,3 +Id : 229, {_}: multiply (inverse ?561) (greatest_lower_bound ?560 ?561) =>= greatest_lower_bound identity (multiply (inverse ?561) ?560) [560, 561] by Demod 210 with 10 at 3 +Id : 401, {_}: inverse (least_upper_bound identity ?928) =>= greatest_lower_bound identity (inverse ?928) [928] by Super 398 with 34 at 1,3 +Id : 534, {_}: inverse (multiply (least_upper_bound identity ?1106) ?1107) =<= multiply (inverse ?1107) (greatest_lower_bound identity (inverse ?1106)) [1107, 1106] by Super 38 with 401 at 2,3 +Id : 34883, {_}: inverse (multiply (least_upper_bound identity ?27004) (inverse ?27004)) =>= greatest_lower_bound identity (multiply (inverse (inverse ?27004)) identity) [27004] by Super 229 with 534 at 2 +Id : 34945, {_}: multiply ?27004 (inverse (least_upper_bound identity ?27004)) =?= greatest_lower_bound identity (multiply (inverse (inverse ?27004)) identity) [27004] by Demod 34883 with 328 at 2 +Id : 34946, {_}: multiply ?27004 (greatest_lower_bound identity (inverse ?27004)) =?= greatest_lower_bound identity (multiply (inverse (inverse ?27004)) identity) [27004] by Demod 34945 with 401 at 2,2 +Id : 34947, {_}: multiply ?27004 (greatest_lower_bound identity (inverse ?27004)) =>= greatest_lower_bound identity (inverse (inverse ?27004)) [27004] by Demod 34946 with 441 at 2,3 +Id : 34948, {_}: multiply ?27004 (greatest_lower_bound identity (inverse ?27004)) =>= greatest_lower_bound identity ?27004 [27004] by Demod 34947 with 36 at 2,3 +Id : 42223, {_}: multiply (greatest_lower_bound identity ?33882) (inverse (greatest_lower_bound identity (inverse ?33882))) =>= ?33882 [33882] by Super 42163 with 34948 at 1,2 +Id : 377, {_}: inverse (greatest_lower_bound ?883 (inverse ?882)) =>= least_upper_bound (inverse ?883) ?882 [882, 883] by Super 375 with 36 at 2,3 +Id : 42257, {_}: multiply (greatest_lower_bound identity ?33882) (least_upper_bound (inverse identity) ?33882) =>= ?33882 [33882] by Demod 42223 with 377 at 2,2 +Id : 118341, {_}: multiply (greatest_lower_bound identity ?85951) (least_upper_bound identity ?85951) =>= ?85951 [85951] by Demod 42257 with 34 at 1,2,2 +Id : 376, {_}: inverse (greatest_lower_bound ?880 identity) =>= least_upper_bound (inverse ?880) identity [880] by Super 375 with 34 at 2,3 +Id : 388, {_}: inverse (greatest_lower_bound ?880 identity) =>= least_upper_bound identity (inverse ?880) [880] by Demod 376 with 12 at 3 +Id : 509, {_}: inverse (greatest_lower_bound ?1077 (greatest_lower_bound ?1076 identity)) =<= least_upper_bound (inverse ?1077) (least_upper_bound identity (inverse ?1076)) [1076, 1077] by Super 44 with 388 at 2,3 +Id : 519, {_}: inverse (greatest_lower_bound ?1077 (greatest_lower_bound ?1076 identity)) =<= least_upper_bound (least_upper_bound identity (inverse ?1076)) (inverse ?1077) [1076, 1077] by Demod 509 with 12 at 3 +Id : 520, {_}: inverse (greatest_lower_bound ?1077 (greatest_lower_bound ?1076 identity)) =<= least_upper_bound identity (least_upper_bound (inverse ?1076) (inverse ?1077)) [1076, 1077] by Demod 519 with 16 at 3 +Id : 521, {_}: inverse (greatest_lower_bound ?1077 (greatest_lower_bound ?1076 identity)) =>= least_upper_bound identity (inverse (greatest_lower_bound ?1076 ?1077)) [1076, 1077] by Demod 520 with 44 at 2,3 +Id : 512, {_}: inverse (greatest_lower_bound ?1083 identity) =>= least_upper_bound identity (inverse ?1083) [1083] by Demod 376 with 12 at 3 +Id : 516, {_}: inverse (greatest_lower_bound ?1090 (greatest_lower_bound ?1091 identity)) =>= least_upper_bound identity (inverse (greatest_lower_bound ?1090 ?1091)) [1091, 1090] by Super 512 with 14 at 1,2 +Id : 2150, {_}: least_upper_bound identity (inverse (greatest_lower_bound ?1077 ?1076)) =?= least_upper_bound identity (inverse (greatest_lower_bound ?1076 ?1077)) [1076, 1077] by Demod 521 with 516 at 2 +Id : 30474, {_}: multiply (inverse ?22001) (greatest_lower_bound ?22001 ?22002) =>= greatest_lower_bound identity (multiply (inverse ?22001) ?22002) [22002, 22001] by Super 208 with 6 at 1,3 +Id : 337, {_}: greatest_lower_bound c a =<= greatest_lower_bound b c [] by Demod 40 with 10 at 2 +Id : 338, {_}: greatest_lower_bound c a =>= greatest_lower_bound c b [] by Demod 337 with 10 at 3 +Id : 30482, {_}: multiply (inverse c) (greatest_lower_bound c b) =>= greatest_lower_bound identity (multiply (inverse c) a) [] by Super 30474 with 338 at 2,2 +Id : 214, {_}: multiply (inverse ?576) (greatest_lower_bound ?576 ?577) =>= greatest_lower_bound identity (multiply (inverse ?576) ?577) [577, 576] by Super 208 with 6 at 1,3 +Id : 30627, {_}: greatest_lower_bound identity (multiply (inverse c) b) =<= greatest_lower_bound identity (multiply (inverse c) a) [] by Demod 30482 with 214 at 2 +Id : 30842, {_}: least_upper_bound identity (inverse (greatest_lower_bound (multiply (inverse c) a) identity)) =>= least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) b))) [] by Super 2150 with 30627 at 1,2,3 +Id : 30855, {_}: least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) a))) =>= least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) b))) [] by Demod 30842 with 2150 at 2 +Id : 378, {_}: inverse (greatest_lower_bound identity ?885) =>= least_upper_bound identity (inverse ?885) [885] by Super 375 with 34 at 1,3 +Id : 30856, {_}: least_upper_bound identity (least_upper_bound identity (inverse (multiply (inverse c) a))) =<= least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) b))) [] by Demod 30855 with 378 at 2,2 +Id : 112, {_}: least_upper_bound ?298 (least_upper_bound ?298 ?299) =>= least_upper_bound ?298 ?299 [299, 298] by Super 16 with 18 at 1,3 +Id : 30857, {_}: least_upper_bound identity (inverse (multiply (inverse c) a)) =<= least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) b))) [] by Demod 30856 with 112 at 2 +Id : 326, {_}: inverse (multiply (inverse ?827) ?828) =>= multiply (inverse ?828) ?827 [828, 827] by Super 324 with 36 at 2,3 +Id : 30858, {_}: least_upper_bound identity (multiply (inverse a) c) =<= least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) b))) [] by Demod 30857 with 326 at 2,2 +Id : 30859, {_}: least_upper_bound identity (multiply (inverse a) c) =<= least_upper_bound identity (least_upper_bound identity (inverse (multiply (inverse c) b))) [] by Demod 30858 with 378 at 2,3 +Id : 30860, {_}: least_upper_bound identity (multiply (inverse a) c) =<= least_upper_bound identity (inverse (multiply (inverse c) b)) [] by Demod 30859 with 112 at 3 +Id : 30861, {_}: least_upper_bound identity (multiply (inverse a) c) =>= least_upper_bound identity (multiply (inverse b) c) [] by Demod 30860 with 326 at 2,3 +Id : 118363, {_}: multiply (greatest_lower_bound identity (multiply (inverse a) c)) (least_upper_bound identity (multiply (inverse b) c)) =>= multiply (inverse a) c [] by Super 118341 with 30861 at 2,2 +Id : 399, {_}: inverse (least_upper_bound ?923 identity) =>= greatest_lower_bound (inverse ?923) identity [923] by Super 398 with 34 at 2,3 +Id : 413, {_}: inverse (least_upper_bound ?923 identity) =>= greatest_lower_bound identity (inverse ?923) [923] by Demod 399 with 10 at 3 +Id : 560, {_}: inverse (least_upper_bound ?1130 (least_upper_bound ?1129 identity)) =<= greatest_lower_bound (inverse ?1130) (greatest_lower_bound identity (inverse ?1129)) [1129, 1130] by Super 46 with 413 at 2,3 +Id : 580, {_}: inverse (least_upper_bound ?1130 (least_upper_bound ?1129 identity)) =<= greatest_lower_bound (greatest_lower_bound identity (inverse ?1129)) (inverse ?1130) [1129, 1130] by Demod 560 with 10 at 3 +Id : 581, {_}: inverse (least_upper_bound ?1130 (least_upper_bound ?1129 identity)) =<= greatest_lower_bound identity (greatest_lower_bound (inverse ?1129) (inverse ?1130)) [1129, 1130] by Demod 580 with 14 at 3 +Id : 582, {_}: inverse (least_upper_bound ?1130 (least_upper_bound ?1129 identity)) =>= greatest_lower_bound identity (inverse (least_upper_bound ?1129 ?1130)) [1129, 1130] by Demod 581 with 46 at 2,3 +Id : 569, {_}: inverse (least_upper_bound ?1152 identity) =>= greatest_lower_bound identity (inverse ?1152) [1152] by Demod 399 with 10 at 3 +Id : 573, {_}: inverse (least_upper_bound ?1159 (least_upper_bound ?1160 identity)) =>= greatest_lower_bound identity (inverse (least_upper_bound ?1159 ?1160)) [1160, 1159] by Super 569 with 16 at 1,2 +Id : 2778, {_}: greatest_lower_bound identity (inverse (least_upper_bound ?1130 ?1129)) =?= greatest_lower_bound identity (inverse (least_upper_bound ?1129 ?1130)) [1129, 1130] by Demod 582 with 573 at 2 +Id : 28815, {_}: multiply (inverse ?20915) (least_upper_bound ?20915 ?20916) =>= least_upper_bound identity (multiply (inverse ?20915) ?20916) [20916, 20915] by Super 177 with 6 at 1,3 +Id : 353, {_}: least_upper_bound c a =<= least_upper_bound b c [] by Demod 42 with 12 at 2 +Id : 354, {_}: least_upper_bound c a =>= least_upper_bound c b [] by Demod 353 with 12 at 3 +Id : 28823, {_}: multiply (inverse c) (least_upper_bound c b) =>= least_upper_bound identity (multiply (inverse c) a) [] by Super 28815 with 354 at 2,2 +Id : 183, {_}: multiply (inverse ?500) (least_upper_bound ?500 ?501) =>= least_upper_bound identity (multiply (inverse ?500) ?501) [501, 500] by Super 177 with 6 at 1,3 +Id : 28958, {_}: least_upper_bound identity (multiply (inverse c) b) =<= least_upper_bound identity (multiply (inverse c) a) [] by Demod 28823 with 183 at 2 +Id : 29161, {_}: greatest_lower_bound identity (inverse (least_upper_bound (multiply (inverse c) a) identity)) =>= greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) b))) [] by Super 2778 with 28958 at 1,2,3 +Id : 29185, {_}: greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) a))) =>= greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) b))) [] by Demod 29161 with 2778 at 2 +Id : 29186, {_}: greatest_lower_bound identity (greatest_lower_bound identity (inverse (multiply (inverse c) a))) =<= greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) b))) [] by Demod 29185 with 401 at 2,2 +Id : 124, {_}: greatest_lower_bound ?324 (greatest_lower_bound ?324 ?325) =>= greatest_lower_bound ?324 ?325 [325, 324] by Super 14 with 20 at 1,3 +Id : 29187, {_}: greatest_lower_bound identity (inverse (multiply (inverse c) a)) =<= greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) b))) [] by Demod 29186 with 124 at 2 +Id : 29188, {_}: greatest_lower_bound identity (multiply (inverse a) c) =<= greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) b))) [] by Demod 29187 with 326 at 2,2 +Id : 29189, {_}: greatest_lower_bound identity (multiply (inverse a) c) =<= greatest_lower_bound identity (greatest_lower_bound identity (inverse (multiply (inverse c) b))) [] by Demod 29188 with 401 at 2,3 +Id : 29190, {_}: greatest_lower_bound identity (multiply (inverse a) c) =<= greatest_lower_bound identity (inverse (multiply (inverse c) b)) [] by Demod 29189 with 124 at 3 +Id : 29191, {_}: greatest_lower_bound identity (multiply (inverse a) c) =>= greatest_lower_bound identity (multiply (inverse b) c) [] by Demod 29190 with 326 at 2,3 +Id : 118571, {_}: multiply (greatest_lower_bound identity (multiply (inverse b) c)) (least_upper_bound identity (multiply (inverse b) c)) =>= multiply (inverse a) c [] by Demod 118363 with 29191 at 1,2 +Id : 42258, {_}: multiply (greatest_lower_bound identity ?33882) (least_upper_bound identity ?33882) =>= ?33882 [33882] by Demod 42257 with 34 at 1,2,2 +Id : 118572, {_}: multiply (inverse b) c =<= multiply (inverse a) c [] by Demod 118571 with 42258 at 2 +Id : 118655, {_}: inverse (inverse a) =<= multiply c (inverse (multiply (inverse b) c)) [] by Super 28730 with 118572 at 1,2,3 +Id : 118658, {_}: a =<= multiply c (inverse (multiply (inverse b) c)) [] by Demod 118655 with 36 at 2 +Id : 118659, {_}: a =<= inverse (inverse b) [] by Demod 118658 with 28730 at 3 +Id : 118660, {_}: a =>= b [] by Demod 118659 with 36 at 3 +Id : 119303, {_}: b === b [] by Demod 2 with 118660 at 2 +Id : 2, {_}: a =>= b [] by prove_p12x +% SZS output end CNFRefutation for GRP181-4.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + associativity_of_glb is 86 + associativity_of_lub is 85 + glb_absorbtion is 81 + greatest_lower_bound is 94 + idempotence_of_gld is 83 + idempotence_of_lub is 84 + identity is 97 + inverse is 95 + least_upper_bound is 96 + left_identity is 91 + left_inverse is 90 + lub_absorbtion is 82 + monotony_glb1 is 79 + monotony_glb2 is 77 + monotony_lub1 is 80 + monotony_lub2 is 78 + multiply is 92 + p20x_1 is 76 + p20x_3 is 75 + prove_20x is 93 + symmetry_of_glb is 88 + symmetry_of_lub is 87 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: inverse identity =>= identity [] by p20x_1 + Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p20x_1 ?51 + Id : 38, {_}: + inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) + [54, 53] by p20x_3 ?53 ?54 +Goal + Id : 2, {_}: + greatest_lower_bound (least_upper_bound a identity) + (least_upper_bound (inverse a) identity) + =>= + identity + [] by prove_20x +Last chance: 1246059266.52 +Last chance: all is indexed 1246060713.99 +Last chance: failed over 100 goal 1246060714.1 +FAILURE in 0 iterations +% SZS status Timeout for GRP183-4.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + associativity_of_glb is 86 + associativity_of_lub is 85 + glb_absorbtion is 81 + greatest_lower_bound is 95 + idempotence_of_gld is 83 + idempotence_of_lub is 84 + identity is 97 + inverse is 94 + least_upper_bound is 96 + left_identity is 91 + left_inverse is 90 + lub_absorbtion is 82 + monotony_glb1 is 79 + monotony_glb2 is 77 + monotony_lub1 is 80 + monotony_lub2 is 78 + multiply is 93 + prove_p21 is 92 + symmetry_of_glb is 88 + symmetry_of_lub is 87 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Goal + Id : 2, {_}: + multiply (least_upper_bound a identity) + (inverse (greatest_lower_bound a identity)) + =>= + multiply (inverse (greatest_lower_bound a identity)) + (least_upper_bound a identity) + [] by prove_p21 +Found proof, 112.909833s +% SZS status Unsatisfiable for GRP184-1.p +% SZS output start CNFRefutation for GRP184-1.p +Id : 265, {_}: multiply (greatest_lower_bound ?703 ?704) ?705 =<= greatest_lower_bound (multiply ?703 ?705) (multiply ?704 ?705) [705, 704, 703] by monotony_glb2 ?703 ?704 ?705 +Id : 28, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 +Id : 145, {_}: greatest_lower_bound ?406 (least_upper_bound ?406 ?407) =>= ?406 [407, 406] by glb_absorbtion ?406 ?407 +Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 +Id : 127, {_}: least_upper_bound ?353 (greatest_lower_bound ?353 ?354) =>= ?353 [354, 353] by lub_absorbtion ?353 ?354 +Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 +Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 +Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 +Id : 30, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 +Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 +Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 +Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 +Id : 230, {_}: multiply (least_upper_bound ?621 ?622) ?623 =<= least_upper_bound (multiply ?621 ?623) (multiply ?622 ?623) [623, 622, 621] by monotony_lub2 ?621 ?622 ?623 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 38, {_}: multiply (multiply ?61 ?62) ?63 =?= multiply ?61 (multiply ?62 ?63) [63, 62, 61] by associativity ?61 ?62 ?63 +Id : 26, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 +Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 +Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 +Id : 2065, {_}: multiply (multiply ?3204 (inverse ?3205)) ?3205 =>= multiply ?3204 identity [3205, 3204] by Super 38 with 6 at 2,3 +Id : 2068, {_}: multiply identity ?3211 =<= multiply (inverse (inverse ?3211)) identity [3211] by Super 2065 with 6 at 1,2 +Id : 2091, {_}: ?3211 =<= multiply (inverse (inverse ?3211)) identity [3211] by Demod 2068 with 4 at 2 +Id : 2111, {_}: multiply (inverse (inverse ?3262)) (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply (inverse (inverse ?3262)) ?3263) ?3262 [3263, 3262] by Super 26 with 2091 at 2,3 +Id : 39, {_}: multiply (multiply ?65 identity) ?66 =>= multiply ?65 ?66 [66, 65] by Super 38 with 4 at 2,3 +Id : 2108, {_}: multiply ?3253 ?3254 =<= multiply (inverse (inverse ?3253)) ?3254 [3254, 3253] by Super 39 with 2091 at 1,2 +Id : 2129, {_}: ?3211 =<= multiply ?3211 identity [3211] by Demod 2091 with 2108 at 3 +Id : 2149, {_}: inverse (inverse ?3356) =>= multiply ?3356 identity [3356] by Super 2129 with 2108 at 3 +Id : 2156, {_}: inverse (inverse ?3356) =>= ?3356 [3356] by Demod 2149 with 2129 at 3 +Id : 9722, {_}: multiply ?3262 (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply (inverse (inverse ?3262)) ?3263) ?3262 [3263, 3262] by Demod 2111 with 2156 at 1,2 +Id : 9764, {_}: multiply ?11921 (least_upper_bound ?11922 identity) =<= least_upper_bound (multiply ?11921 ?11922) ?11921 [11922, 11921] by Demod 9722 with 2156 at 1,1,3 +Id : 701, {_}: multiply (least_upper_bound ?1544 identity) ?1545 =<= least_upper_bound (multiply ?1544 ?1545) ?1545 [1545, 1544] by Super 230 with 4 at 2,3 +Id : 703, {_}: multiply (least_upper_bound (inverse ?1549) identity) ?1549 =>= least_upper_bound identity ?1549 [1549] by Super 701 with 6 at 1,3 +Id : 729, {_}: multiply (least_upper_bound identity (inverse ?1549)) ?1549 =>= least_upper_bound identity ?1549 [1549] by Demod 703 with 12 at 1,2 +Id : 2193, {_}: multiply (least_upper_bound identity ?3378) (inverse ?3378) =>= least_upper_bound identity (inverse ?3378) [3378] by Super 729 with 2156 at 2,1,2 +Id : 9777, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound (inverse ?11957) identity) =<= least_upper_bound (least_upper_bound identity (inverse ?11957)) (least_upper_bound identity ?11957) [11957] by Super 9764 with 2193 at 1,3 +Id : 9888, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =<= least_upper_bound (least_upper_bound identity (inverse ?11957)) (least_upper_bound identity ?11957) [11957] by Demod 9777 with 12 at 2,2 +Id : 9889, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =<= least_upper_bound identity (least_upper_bound (inverse ?11957) (least_upper_bound identity ?11957)) [11957] by Demod 9888 with 16 at 3 +Id : 523, {_}: least_upper_bound (greatest_lower_bound ?1203 ?1204) ?1203 =>= ?1203 [1204, 1203] by Super 12 with 22 at 3 +Id : 524, {_}: least_upper_bound (greatest_lower_bound ?1207 ?1206) ?1206 =>= ?1206 [1206, 1207] by Super 523 with 10 at 1,2 +Id : 139, {_}: greatest_lower_bound (least_upper_bound ?385 ?386) ?385 =>= ?385 [386, 385] by Super 10 with 24 at 3 +Id : 40, {_}: multiply (multiply ?68 (inverse ?69)) ?69 =>= multiply ?68 identity [69, 68] by Super 38 with 6 at 2,3 +Id : 2130, {_}: multiply (multiply ?68 (inverse ?69)) ?69 =>= ?68 [69, 68] by Demod 40 with 2129 at 3 +Id : 231, {_}: multiply (least_upper_bound ?625 identity) ?626 =<= least_upper_bound (multiply ?625 ?626) ?626 [626, 625] by Super 230 with 4 at 2,3 +Id : 693, {_}: least_upper_bound ?1518 (multiply ?1517 ?1518) =>= multiply (least_upper_bound ?1517 identity) ?1518 [1517, 1518] by Super 12 with 231 at 3 +Id : 235, {_}: multiply (least_upper_bound identity ?641) ?642 =<= least_upper_bound ?642 (multiply ?641 ?642) [642, 641] by Super 230 with 4 at 1,3 +Id : 1616, {_}: multiply (least_upper_bound identity ?1517) ?1518 =?= multiply (least_upper_bound ?1517 identity) ?1518 [1518, 1517] by Demod 693 with 235 at 2 +Id : 1625, {_}: multiply (least_upper_bound (least_upper_bound identity ?2728) ?2730) ?2729 =<= least_upper_bound (multiply (least_upper_bound ?2728 identity) ?2729) (multiply ?2730 ?2729) [2729, 2730, 2728] by Super 30 with 1616 at 1,3 +Id : 1699, {_}: multiply (least_upper_bound identity (least_upper_bound ?2728 ?2730)) ?2729 =<= least_upper_bound (multiply (least_upper_bound ?2728 identity) ?2729) (multiply ?2730 ?2729) [2729, 2730, 2728] by Demod 1625 with 16 at 1,2 +Id : 1700, {_}: multiply (least_upper_bound identity (least_upper_bound ?2728 ?2730)) ?2729 =<= multiply (least_upper_bound (least_upper_bound ?2728 identity) ?2730) ?2729 [2729, 2730, 2728] by Demod 1699 with 30 at 3 +Id : 4487, {_}: multiply (multiply (least_upper_bound identity (least_upper_bound ?5822 ?5823)) (inverse ?5824)) ?5824 =>= least_upper_bound (least_upper_bound ?5822 identity) ?5823 [5824, 5823, 5822] by Super 2130 with 1700 at 1,2 +Id : 4634, {_}: least_upper_bound identity (least_upper_bound ?6053 ?6054) =<= least_upper_bound (least_upper_bound ?6053 identity) ?6054 [6054, 6053] by Demod 4487 with 2130 at 2 +Id : 122, {_}: least_upper_bound (greatest_lower_bound ?335 ?336) ?335 =>= ?335 [336, 335] by Super 12 with 22 at 3 +Id : 4738, {_}: least_upper_bound identity (least_upper_bound (greatest_lower_bound identity ?6182) ?6183) =>= least_upper_bound identity ?6183 [6183, 6182] by Super 4634 with 122 at 1,3 +Id : 4751, {_}: least_upper_bound identity (least_upper_bound ?6221 (greatest_lower_bound identity ?6220)) =>= least_upper_bound identity ?6221 [6220, 6221] by Super 4738 with 12 at 2,2 +Id : 4923, {_}: least_upper_bound identity ?6418 =<= least_upper_bound (least_upper_bound identity ?6418) (greatest_lower_bound identity ?6419) [6419, 6418] by Super 16 with 4751 at 2 +Id : 4974, {_}: least_upper_bound identity ?6418 =<= least_upper_bound (greatest_lower_bound identity ?6419) (least_upper_bound identity ?6418) [6419, 6418] by Demod 4923 with 12 at 3 +Id : 5424, {_}: greatest_lower_bound (least_upper_bound identity ?7110) (greatest_lower_bound identity ?7111) =>= greatest_lower_bound identity ?7111 [7111, 7110] by Super 139 with 4974 at 1,2 +Id : 5471, {_}: greatest_lower_bound (greatest_lower_bound identity ?7111) (least_upper_bound identity ?7110) =>= greatest_lower_bound identity ?7111 [7110, 7111] by Demod 5424 with 10 at 2 +Id : 6383, {_}: greatest_lower_bound identity (greatest_lower_bound ?8259 (least_upper_bound identity ?8260)) =>= greatest_lower_bound identity ?8259 [8260, 8259] by Demod 5471 with 14 at 2 +Id : 605, {_}: greatest_lower_bound (least_upper_bound ?1361 ?1362) ?1361 =>= ?1361 [1362, 1361] by Super 10 with 24 at 3 +Id : 606, {_}: greatest_lower_bound (least_upper_bound ?1365 ?1364) ?1364 =>= ?1364 [1364, 1365] by Super 605 with 12 at 1,2 +Id : 6408, {_}: greatest_lower_bound identity (least_upper_bound identity ?8337) =<= greatest_lower_bound identity (least_upper_bound ?8336 (least_upper_bound identity ?8337)) [8336, 8337] by Super 6383 with 606 at 2,2 +Id : 6477, {_}: identity =<= greatest_lower_bound identity (least_upper_bound ?8336 (least_upper_bound identity ?8337)) [8337, 8336] by Demod 6408 with 24 at 2 +Id : 8574, {_}: least_upper_bound identity (least_upper_bound ?10550 (least_upper_bound identity ?10551)) =>= least_upper_bound ?10550 (least_upper_bound identity ?10551) [10551, 10550] by Super 524 with 6477 at 1,2 +Id : 9890, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound (inverse ?11957) (least_upper_bound identity ?11957) [11957] by Demod 9889 with 8574 at 3 +Id : 382, {_}: least_upper_bound ?896 (least_upper_bound ?896 ?897) =>= least_upper_bound ?896 ?897 [897, 896] by Super 16 with 18 at 1,3 +Id : 383, {_}: least_upper_bound ?899 (least_upper_bound ?900 ?899) =>= least_upper_bound ?899 ?900 [900, 899] by Super 382 with 12 at 2,2 +Id : 9723, {_}: multiply ?3262 (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply ?3262 ?3263) ?3262 [3263, 3262] by Demod 9722 with 2156 at 1,1,3 +Id : 9944, {_}: least_upper_bound ?12111 (multiply ?12111 ?12112) =>= multiply ?12111 (least_upper_bound ?12112 identity) [12112, 12111] by Super 12 with 9723 at 3 +Id : 9957, {_}: least_upper_bound (least_upper_bound identity ?12147) (least_upper_bound identity (inverse ?12147)) =>= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Super 9944 with 2193 at 2,2 +Id : 10090, {_}: least_upper_bound identity (least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147))) =>= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Demod 9957 with 16 at 2 +Id : 10091, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =<= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Demod 10090 with 8574 at 2 +Id : 10092, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =<= multiply (least_upper_bound identity ?12147) (least_upper_bound identity (inverse ?12147)) [12147] by Demod 10091 with 12 at 2,3 +Id : 50296, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =?= least_upper_bound (inverse ?12147) (least_upper_bound identity ?12147) [12147] by Demod 10092 with 9890 at 3 +Id : 50343, {_}: least_upper_bound (least_upper_bound identity (inverse ?46312)) (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312)) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Super 383 with 50296 at 2,2 +Id : 50540, {_}: least_upper_bound identity (least_upper_bound (inverse ?46312) (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312))) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50343 with 16 at 2 +Id : 100, {_}: least_upper_bound ?287 (least_upper_bound ?287 ?288) =>= least_upper_bound ?287 ?288 [288, 287] by Super 16 with 18 at 1,3 +Id : 50541, {_}: least_upper_bound identity (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312)) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50540 with 100 at 2,2 +Id : 50542, {_}: least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312) =<= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50541 with 8574 at 2 +Id : 50543, {_}: least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312) =>= least_upper_bound identity (least_upper_bound (inverse ?46312) ?46312) [46312] by Demod 50542 with 16 at 3 +Id : 51165, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound identity (least_upper_bound (inverse ?11957) ?11957) [11957] by Demod 9890 with 50543 at 3 +Id : 51164, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =?= least_upper_bound identity (least_upper_bound (inverse ?12147) ?12147) [12147] by Demod 50296 with 50543 at 3 +Id : 1772, {_}: multiply (multiply ?2886 (least_upper_bound identity (inverse ?2885))) ?2885 =>= multiply ?2886 (least_upper_bound identity ?2885) [2885, 2886] by Super 8 with 729 at 2,3 +Id : 2194, {_}: multiply (multiply ?3381 ?3380) (inverse ?3380) =>= ?3381 [3380, 3381] by Super 2130 with 2156 at 2,1,2 +Id : 2142, {_}: multiply ?3332 (inverse ?3332) =>= identity [3332] by Super 6 with 2108 at 2 +Id : 2212, {_}: multiply identity ?3416 =<= multiply ?3415 (multiply (inverse ?3415) ?3416) [3415, 3416] by Super 8 with 2142 at 1,2 +Id : 2238, {_}: ?3416 =<= multiply ?3415 (multiply (inverse ?3415) ?3416) [3415, 3416] by Demod 2212 with 4 at 2 +Id : 4219, {_}: multiply ?5438 (inverse (multiply (inverse ?5439) ?5438)) =>= ?5439 [5439, 5438] by Super 2194 with 2238 at 1,2 +Id : 18113, {_}: inverse (multiply (inverse ?20071) (inverse ?20072)) =>= multiply ?20072 ?20071 [20072, 20071] by Super 2238 with 4219 at 2,3 +Id : 18209, {_}: inverse (multiply ?20210 ?20209) =<= multiply (inverse ?20209) (inverse ?20210) [20209, 20210] by Super 2156 with 18113 at 1,2 +Id : 18309, {_}: multiply (inverse (multiply ?20330 ?20331)) ?20330 =>= inverse ?20331 [20331, 20330] by Super 2130 with 18209 at 1,2 +Id : 20618, {_}: multiply (least_upper_bound identity (inverse (multiply ?22269 ?22270))) ?22269 =>= least_upper_bound ?22269 (inverse ?22270) [22270, 22269] by Super 235 with 18309 at 2,3 +Id : 379959, {_}: multiply (least_upper_bound ?332905 (inverse ?332906)) (inverse ?332905) =>= least_upper_bound identity (inverse (multiply ?332905 ?332906)) [332906, 332905] by Super 2194 with 20618 at 1,2 +Id : 243389, {_}: multiply (least_upper_bound identity (multiply ?228491 ?228492)) (inverse ?228492) =>= least_upper_bound (inverse ?228492) ?228491 [228492, 228491] by Super 235 with 2194 at 2,3 +Id : 177106, {_}: multiply (multiply ?175304 (least_upper_bound identity (inverse ?175305))) ?175305 =>= multiply ?175304 (least_upper_bound identity ?175305) [175305, 175304] by Super 8 with 729 at 2,3 +Id : 10132, {_}: multiply (inverse ?12250) (least_upper_bound ?12250 identity) =>= least_upper_bound identity (inverse ?12250) [12250] by Super 9764 with 6 at 1,3 +Id : 10133, {_}: multiply (inverse ?12252) (least_upper_bound identity ?12252) =>= least_upper_bound identity (inverse ?12252) [12252] by Super 10132 with 12 at 2,2 +Id : 10242, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =<= least_upper_bound (least_upper_bound identity ?12325) (least_upper_bound identity (inverse ?12325)) [12325] by Super 235 with 10133 at 2,3 +Id : 10288, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =<= least_upper_bound identity (least_upper_bound ?12325 (least_upper_bound identity (inverse ?12325))) [12325] by Demod 10242 with 16 at 3 +Id : 10289, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (least_upper_bound identity (inverse ?12325)) [12325] by Demod 10288 with 8574 at 3 +Id : 177160, {_}: multiply (least_upper_bound (inverse ?175487) (least_upper_bound identity (inverse (inverse ?175487)))) ?175487 =>= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Super 177106 with 10289 at 1,2 +Id : 236, {_}: multiply (least_upper_bound (inverse ?645) ?644) ?645 =>= least_upper_bound identity (multiply ?644 ?645) [644, 645] by Super 230 with 6 at 1,3 +Id : 177356, {_}: least_upper_bound identity (multiply (least_upper_bound identity (inverse (inverse ?175487))) ?175487) =>= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Demod 177160 with 236 at 2 +Id : 177357, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175487) ?175487) =<= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Demod 177356 with 2156 at 2,1,2,2 +Id : 177519, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175800) ?175800) =>= multiply (least_upper_bound identity ?175800) (least_upper_bound identity ?175800) [175800] by Demod 177357 with 2156 at 2,1,3 +Id : 177520, {_}: least_upper_bound identity (multiply (least_upper_bound ?175802 identity) ?175802) =>= multiply (least_upper_bound identity ?175802) (least_upper_bound identity ?175802) [175802] by Super 177519 with 12 at 1,2,2 +Id : 3515, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?4381) ?4382)) ?4381 =>= least_upper_bound ?4381 (least_upper_bound identity (multiply ?4382 ?4381)) [4382, 4381] by Super 235 with 236 at 2,3 +Id : 1778, {_}: multiply (least_upper_bound (least_upper_bound identity (inverse ?2903)) ?2904) ?2903 =>= least_upper_bound (least_upper_bound identity ?2903) (multiply ?2904 ?2903) [2904, 2903] by Super 30 with 729 at 1,3 +Id : 1803, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound (least_upper_bound identity ?2903) (multiply ?2904 ?2903) [2904, 2903] by Demod 1778 with 16 at 1,2 +Id : 1804, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound (multiply ?2904 ?2903) (least_upper_bound identity ?2903) [2904, 2903] by Demod 1803 with 12 at 3 +Id : 102, {_}: least_upper_bound ?294 ?293 =<= least_upper_bound (least_upper_bound ?294 ?293) ?293 [293, 294] by Super 16 with 18 at 2,2 +Id : 29053, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound ?27543 ?27544) ?27545) =<= least_upper_bound (least_upper_bound ?27543 (least_upper_bound ?27544 identity)) ?27545 [27545, 27544, 27543] by Super 4634 with 16 at 1,3 +Id : 29054, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound ?27547 ?27548) ?27549) =<= least_upper_bound (least_upper_bound ?27547 (least_upper_bound identity ?27548)) ?27549 [27549, 27548, 27547] by Super 29053 with 12 at 2,1,3 +Id : 93172, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =<= least_upper_bound identity (least_upper_bound (least_upper_bound ?78323 ?78324) (least_upper_bound identity ?78324)) [78324, 78323] by Super 102 with 29054 at 3 +Id : 93561, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =<= least_upper_bound (least_upper_bound ?78323 ?78324) (least_upper_bound identity ?78324) [78324, 78323] by Demod 93172 with 8574 at 3 +Id : 4534, {_}: least_upper_bound identity (least_upper_bound ?5822 ?5823) =<= least_upper_bound (least_upper_bound ?5822 identity) ?5823 [5823, 5822] by Demod 4487 with 2130 at 2 +Id : 27996, {_}: least_upper_bound ?26567 (least_upper_bound identity (least_upper_bound ?26568 ?26567)) =>= least_upper_bound ?26567 (least_upper_bound ?26568 identity) [26568, 26567] by Super 383 with 4534 at 2,2 +Id : 28002, {_}: least_upper_bound ?26586 (least_upper_bound identity ?26586) =<= least_upper_bound ?26586 (least_upper_bound (greatest_lower_bound ?26586 ?26585) identity) [26585, 26586] by Super 27996 with 122 at 2,2,2 +Id : 28236, {_}: least_upper_bound ?26586 identity =<= least_upper_bound ?26586 (least_upper_bound (greatest_lower_bound ?26586 ?26585) identity) [26585, 26586] by Demod 28002 with 383 at 2 +Id : 8916, {_}: least_upper_bound identity (least_upper_bound ?11024 (least_upper_bound identity ?11025)) =>= least_upper_bound ?11024 (least_upper_bound identity ?11025) [11025, 11024] by Super 524 with 6477 at 1,2 +Id : 8917, {_}: least_upper_bound identity (least_upper_bound ?11027 (least_upper_bound ?11028 identity)) =>= least_upper_bound ?11027 (least_upper_bound identity ?11028) [11028, 11027] by Super 8916 with 12 at 2,2,2 +Id : 4835, {_}: least_upper_bound identity (least_upper_bound (greatest_lower_bound ?6313 identity) ?6314) =>= least_upper_bound identity ?6314 [6314, 6313] by Super 4634 with 524 at 1,3 +Id : 4847, {_}: least_upper_bound identity (greatest_lower_bound ?6349 identity) =<= least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?6349 identity) ?6348) [6348, 6349] by Super 4835 with 22 at 2,2 +Id : 128, {_}: least_upper_bound ?356 (greatest_lower_bound ?357 ?356) =>= ?356 [357, 356] by Super 127 with 10 at 2,2 +Id : 4903, {_}: identity =<= least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?6349 identity) ?6348) [6348, 6349] by Demod 4847 with 128 at 2 +Id : 5840, {_}: greatest_lower_bound identity (greatest_lower_bound (greatest_lower_bound ?7630 identity) ?7631) =>= greatest_lower_bound (greatest_lower_bound ?7630 identity) ?7631 [7631, 7630] by Super 606 with 4903 at 1,2 +Id : 5845, {_}: greatest_lower_bound identity (greatest_lower_bound identity ?7645) =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound ?7644 identity) identity) ?7645 [7644, 7645] by Super 5840 with 606 at 1,2,2 +Id : 112, {_}: greatest_lower_bound ?313 (greatest_lower_bound ?313 ?314) =>= greatest_lower_bound ?313 ?314 [314, 313] by Super 14 with 20 at 1,3 +Id : 5908, {_}: greatest_lower_bound identity ?7645 =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound ?7644 identity) identity) ?7645 [7644, 7645] by Demod 5845 with 112 at 2 +Id : 5909, {_}: greatest_lower_bound identity ?7645 =<= greatest_lower_bound (greatest_lower_bound identity (least_upper_bound ?7644 identity)) ?7645 [7644, 7645] by Demod 5908 with 10 at 1,3 +Id : 7862, {_}: greatest_lower_bound identity ?10013 =<= greatest_lower_bound identity (greatest_lower_bound (least_upper_bound ?10014 identity) ?10013) [10014, 10013] by Demod 5909 with 14 at 3 +Id : 146, {_}: greatest_lower_bound ?409 (least_upper_bound ?410 ?409) =>= ?409 [410, 409] by Super 145 with 12 at 2,2 +Id : 7879, {_}: greatest_lower_bound identity (least_upper_bound ?10063 (least_upper_bound ?10064 identity)) =>= greatest_lower_bound identity (least_upper_bound ?10064 identity) [10064, 10063] by Super 7862 with 146 at 2,3 +Id : 7984, {_}: greatest_lower_bound identity (least_upper_bound ?10063 (least_upper_bound ?10064 identity)) =>= identity [10064, 10063] by Demod 7879 with 146 at 3 +Id : 8758, {_}: least_upper_bound identity (least_upper_bound ?10813 (least_upper_bound ?10814 identity)) =>= least_upper_bound ?10813 (least_upper_bound ?10814 identity) [10814, 10813] by Super 524 with 7984 at 1,2 +Id : 9284, {_}: least_upper_bound ?11027 (least_upper_bound ?11028 identity) =?= least_upper_bound ?11027 (least_upper_bound identity ?11028) [11028, 11027] by Demod 8917 with 8758 at 2 +Id : 89245, {_}: least_upper_bound ?75550 identity =<= least_upper_bound ?75550 (least_upper_bound identity (greatest_lower_bound ?75550 ?75551)) [75551, 75550] by Demod 28236 with 9284 at 3 +Id : 89255, {_}: least_upper_bound (least_upper_bound ?75580 ?75581) identity =<= least_upper_bound (least_upper_bound ?75580 ?75581) (least_upper_bound identity ?75581) [75581, 75580] by Super 89245 with 606 at 2,2,3 +Id : 89821, {_}: least_upper_bound identity (least_upper_bound ?75580 ?75581) =<= least_upper_bound (least_upper_bound ?75580 ?75581) (least_upper_bound identity ?75581) [75581, 75580] by Demod 89255 with 12 at 2 +Id : 113848, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =?= least_upper_bound identity (least_upper_bound ?78323 ?78324) [78324, 78323] by Demod 93561 with 89821 at 3 +Id : 181989, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound identity (least_upper_bound (multiply ?2904 ?2903) ?2903) [2904, 2903] by Demod 1804 with 113848 at 3 +Id : 181990, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound identity (multiply (least_upper_bound ?2904 identity) ?2903) [2904, 2903] by Demod 181989 with 231 at 2,3 +Id : 230272, {_}: least_upper_bound identity (multiply (least_upper_bound ?4382 identity) ?4381) =?= least_upper_bound ?4381 (least_upper_bound identity (multiply ?4382 ?4381)) [4381, 4382] by Demod 3515 with 181990 at 2 +Id : 230301, {_}: least_upper_bound ?219571 (least_upper_bound identity (multiply ?219571 ?219571)) =>= multiply (least_upper_bound identity ?219571) (least_upper_bound identity ?219571) [219571] by Super 177520 with 230272 at 2 +Id : 232386, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound (least_upper_bound ?221067 identity) (multiply ?221067 ?221067) [221067] by Super 16 with 230301 at 2 +Id : 233006, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound (multiply ?221067 ?221067) (least_upper_bound ?221067 identity) [221067] by Demod 232386 with 12 at 3 +Id : 4614, {_}: greatest_lower_bound ?5993 (least_upper_bound identity (least_upper_bound ?5992 ?5993)) =>= ?5993 [5992, 5993] by Super 146 with 4534 at 2,2 +Id : 27608, {_}: least_upper_bound ?26112 (least_upper_bound identity (least_upper_bound ?26113 ?26112)) =>= least_upper_bound identity (least_upper_bound ?26113 ?26112) [26113, 26112] by Super 524 with 4614 at 1,2 +Id : 4631, {_}: least_upper_bound ?6045 (least_upper_bound identity (least_upper_bound ?6044 ?6045)) =>= least_upper_bound ?6045 (least_upper_bound ?6044 identity) [6044, 6045] by Super 383 with 4534 at 2,2 +Id : 83798, {_}: least_upper_bound ?26112 (least_upper_bound ?26113 identity) =?= least_upper_bound identity (least_upper_bound ?26113 ?26112) [26113, 26112] by Demod 27608 with 4631 at 2 +Id : 233007, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound identity (least_upper_bound ?221067 (multiply ?221067 ?221067)) [221067] by Demod 233006 with 83798 at 3 +Id : 9743, {_}: least_upper_bound ?11859 (multiply ?11859 ?11860) =>= multiply ?11859 (least_upper_bound ?11860 identity) [11860, 11859] by Super 12 with 9723 at 3 +Id : 233595, {_}: multiply (least_upper_bound identity ?221617) (least_upper_bound identity ?221617) =<= least_upper_bound identity (multiply ?221617 (least_upper_bound ?221617 identity)) [221617] by Demod 233007 with 9743 at 2,3 +Id : 233596, {_}: multiply (least_upper_bound identity ?221619) (least_upper_bound identity ?221619) =<= least_upper_bound identity (multiply ?221619 (least_upper_bound identity ?221619)) [221619] by Super 233595 with 12 at 2,2,3 +Id : 243525, {_}: multiply (multiply (least_upper_bound identity ?228868) (least_upper_bound identity ?228868)) (inverse (least_upper_bound identity ?228868)) =>= least_upper_bound (inverse (least_upper_bound identity ?228868)) ?228868 [228868] by Super 243389 with 233596 at 1,2 +Id : 243950, {_}: least_upper_bound identity ?228868 =<= least_upper_bound (inverse (least_upper_bound identity ?228868)) ?228868 [228868] by Demod 243525 with 2194 at 2 +Id : 244049, {_}: least_upper_bound ?229075 (inverse (least_upper_bound identity ?229075)) =>= least_upper_bound identity ?229075 [229075] by Super 12 with 243950 at 3 +Id : 380052, {_}: multiply (least_upper_bound identity ?333235) (inverse ?333235) =<= least_upper_bound identity (inverse (multiply ?333235 (least_upper_bound identity ?333235))) [333235] by Super 379959 with 244049 at 1,2 +Id : 381402, {_}: least_upper_bound identity (inverse ?334503) =<= least_upper_bound identity (inverse (multiply ?334503 (least_upper_bound identity ?334503))) [334503] by Demod 380052 with 2193 at 2 +Id : 177358, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175487) ?175487) =>= multiply (least_upper_bound identity ?175487) (least_upper_bound identity ?175487) [175487] by Demod 177357 with 2156 at 2,1,3 +Id : 177476, {_}: multiply (inverse (multiply (least_upper_bound identity ?175688) ?175688)) (multiply (least_upper_bound identity ?175688) (least_upper_bound identity ?175688)) =>= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Super 10133 with 177358 at 2,2 +Id : 177670, {_}: multiply (multiply (inverse (multiply (least_upper_bound identity ?175688) ?175688)) (least_upper_bound identity ?175688)) (least_upper_bound identity ?175688) =>= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177476 with 8 at 2 +Id : 177671, {_}: multiply (inverse ?175688) (least_upper_bound identity ?175688) =<= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177670 with 18309 at 1,2 +Id : 177672, {_}: least_upper_bound identity (inverse ?175688) =<= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177671 with 10133 at 2 +Id : 381492, {_}: least_upper_bound identity (inverse (inverse (multiply (least_upper_bound identity ?334735) ?334735))) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Super 381402 with 177672 at 2,1,2,3 +Id : 382266, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?334735) ?334735) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Demod 381492 with 2156 at 2,2 +Id : 382267, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Demod 382266 with 177358 at 2 +Id : 18224, {_}: inverse (multiply (inverse ?20261) (inverse ?20262)) =>= multiply ?20262 ?20261 [20262, 20261] by Super 2238 with 4219 at 2,3 +Id : 18226, {_}: inverse (multiply (inverse ?20267) ?20266) =>= multiply (inverse ?20266) ?20267 [20266, 20267] by Super 18224 with 2156 at 2,1,2 +Id : 382268, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (multiply (inverse (least_upper_bound identity (inverse ?334735))) (multiply (least_upper_bound identity ?334735) ?334735)) [334735] by Demod 382267 with 18226 at 2,3 +Id : 382269, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (multiply (multiply (inverse (least_upper_bound identity (inverse ?334735))) (least_upper_bound identity ?334735)) ?334735) [334735] by Demod 382268 with 8 at 2,3 +Id : 18545, {_}: inverse (multiply ?20706 (inverse ?20707)) =>= multiply ?20707 (inverse ?20706) [20707, 20706] by Super 18224 with 2156 at 1,1,2 +Id : 18566, {_}: inverse (least_upper_bound identity (inverse ?20767)) =<= multiply ?20767 (inverse (least_upper_bound identity ?20767)) [20767] by Super 18545 with 2193 at 1,2 +Id : 19741, {_}: multiply (inverse (least_upper_bound identity (inverse ?21554))) (least_upper_bound identity ?21554) =>= ?21554 [21554] by Super 2130 with 18566 at 1,2 +Id : 382270, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =>= least_upper_bound identity (multiply ?334735 ?334735) [334735] by Demod 382269 with 19741 at 1,2,3 +Id : 382385, {_}: multiply (least_upper_bound identity (multiply (inverse ?334827) (inverse ?334827))) ?334827 =>= multiply (least_upper_bound identity (inverse ?334827)) (least_upper_bound identity ?334827) [334827] by Super 1772 with 382270 at 1,2 +Id : 2064, {_}: multiply (least_upper_bound identity (multiply ?3201 (inverse ?3202))) ?3202 =>= least_upper_bound ?3202 (multiply ?3201 identity) [3202, 3201] by Super 235 with 40 at 2,3 +Id : 223367, {_}: multiply (least_upper_bound identity (multiply ?3201 (inverse ?3202))) ?3202 =>= least_upper_bound ?3202 ?3201 [3202, 3201] by Demod 2064 with 2129 at 2,3 +Id : 382807, {_}: least_upper_bound ?334827 (inverse ?334827) =<= multiply (least_upper_bound identity (inverse ?334827)) (least_upper_bound identity ?334827) [334827] by Demod 382385 with 223367 at 2 +Id : 382808, {_}: least_upper_bound ?334827 (inverse ?334827) =<= least_upper_bound ?334827 (least_upper_bound identity (inverse ?334827)) [334827] by Demod 382807 with 10289 at 3 +Id : 383798, {_}: least_upper_bound ?12147 (inverse ?12147) =<= least_upper_bound identity (least_upper_bound (inverse ?12147) ?12147) [12147] by Demod 51164 with 382808 at 2 +Id : 383800, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound ?11957 (inverse ?11957) [11957] by Demod 51165 with 383798 at 3 +Id : 2115, {_}: multiply (inverse (inverse ?3274)) (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply (inverse (inverse ?3274)) ?3275) ?3274 [3275, 3274] by Super 28 with 2091 at 2,3 +Id : 10659, {_}: multiply ?3274 (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply (inverse (inverse ?3274)) ?3275) ?3274 [3275, 3274] by Demod 2115 with 2156 at 1,2 +Id : 10660, {_}: multiply ?3274 (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply ?3274 ?3275) ?3274 [3275, 3274] by Demod 10659 with 2156 at 1,1,3 +Id : 10678, {_}: greatest_lower_bound ?12834 (multiply ?12834 ?12835) =>= multiply ?12834 (greatest_lower_bound ?12835 identity) [12835, 12834] by Super 10 with 10660 at 3 +Id : 18328, {_}: greatest_lower_bound (inverse ?20397) (inverse (multiply ?20396 ?20397)) =>= multiply (inverse ?20397) (greatest_lower_bound (inverse ?20396) identity) [20396, 20397] by Super 10678 with 18209 at 2,2 +Id : 2116, {_}: multiply (inverse (inverse ?3277)) (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply (inverse (inverse ?3277)) ?3278) [3278, 3277] by Super 28 with 2091 at 1,3 +Id : 11396, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply (inverse (inverse ?3277)) ?3278) [3278, 3277] by Demod 2116 with 2156 at 1,2 +Id : 11397, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply ?3277 ?3278) [3278, 3277] by Demod 11396 with 2156 at 1,2,3 +Id : 11398, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =?= multiply ?3277 (greatest_lower_bound ?3278 identity) [3278, 3277] by Demod 11397 with 10678 at 3 +Id : 78468, {_}: greatest_lower_bound (inverse ?65596) (inverse (multiply ?65597 ?65596)) =>= multiply (inverse ?65596) (greatest_lower_bound identity (inverse ?65597)) [65597, 65596] by Demod 18328 with 11398 at 3 +Id : 78507, {_}: greatest_lower_bound (inverse ?65693) (inverse (inverse ?65692)) =<= multiply (inverse ?65693) (greatest_lower_bound identity (inverse (inverse (multiply ?65693 ?65692)))) [65692, 65693] by Super 78468 with 18309 at 1,2,2 +Id : 78731, {_}: greatest_lower_bound (inverse ?65693) ?65692 =<= multiply (inverse ?65693) (greatest_lower_bound identity (inverse (inverse (multiply ?65693 ?65692)))) [65692, 65693] by Demod 78507 with 2156 at 2,2 +Id : 443714, {_}: greatest_lower_bound (inverse ?378148) ?378149 =<= multiply (inverse ?378148) (greatest_lower_bound identity (multiply ?378148 ?378149)) [378149, 378148] by Demod 78731 with 2156 at 2,2,3 +Id : 842, {_}: multiply (greatest_lower_bound ?1730 identity) ?1731 =<= greatest_lower_bound (multiply ?1730 ?1731) ?1731 [1731, 1730] by Super 265 with 4 at 2,3 +Id : 844, {_}: multiply (greatest_lower_bound (inverse ?1735) identity) ?1735 =>= greatest_lower_bound identity ?1735 [1735] by Super 842 with 6 at 1,3 +Id : 874, {_}: multiply (greatest_lower_bound identity (inverse ?1735)) ?1735 =>= greatest_lower_bound identity ?1735 [1735] by Demod 844 with 10 at 1,2 +Id : 2191, {_}: multiply (greatest_lower_bound identity ?3374) (inverse ?3374) =>= greatest_lower_bound identity (inverse ?3374) [3374] by Super 874 with 2156 at 2,1,2 +Id : 9776, {_}: multiply (greatest_lower_bound identity ?11955) (least_upper_bound (inverse ?11955) identity) =<= least_upper_bound (greatest_lower_bound identity (inverse ?11955)) (greatest_lower_bound identity ?11955) [11955] by Super 9764 with 2191 at 1,3 +Id : 47906, {_}: multiply (greatest_lower_bound identity ?45245) (least_upper_bound identity (inverse ?45245)) =<= least_upper_bound (greatest_lower_bound identity (inverse ?45245)) (greatest_lower_bound identity ?45245) [45245] by Demod 9776 with 12 at 2,2 +Id : 47957, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity (inverse (inverse ?45371))) =>= least_upper_bound (greatest_lower_bound identity ?45371) (greatest_lower_bound identity (inverse ?45371)) [45371] by Super 47906 with 2156 at 2,1,3 +Id : 48268, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity ?45371) =<= least_upper_bound (greatest_lower_bound identity ?45371) (greatest_lower_bound identity (inverse ?45371)) [45371] by Demod 47957 with 2156 at 2,2,2 +Id : 9956, {_}: least_upper_bound (greatest_lower_bound identity ?12145) (greatest_lower_bound identity (inverse ?12145)) =>= multiply (greatest_lower_bound identity ?12145) (least_upper_bound (inverse ?12145) identity) [12145] by Super 9944 with 2191 at 2,2 +Id : 10089, {_}: least_upper_bound (greatest_lower_bound identity ?12145) (greatest_lower_bound identity (inverse ?12145)) =>= multiply (greatest_lower_bound identity ?12145) (least_upper_bound identity (inverse ?12145)) [12145] by Demod 9956 with 12 at 2,3 +Id : 105582, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity ?45371) =?= multiply (greatest_lower_bound identity ?45371) (least_upper_bound identity (inverse ?45371)) [45371] by Demod 48268 with 10089 at 3 +Id : 443814, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (multiply (greatest_lower_bound identity ?378412) (least_upper_bound identity (inverse ?378412)))) [378412] by Super 443714 with 105582 at 2,2,3 +Id : 5843, {_}: greatest_lower_bound identity (greatest_lower_bound identity ?7639) =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound identity ?7638) identity) ?7639 [7638, 7639] by Super 5840 with 139 at 1,2,2 +Id : 5900, {_}: greatest_lower_bound identity ?7639 =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound identity ?7638) identity) ?7639 [7638, 7639] by Demod 5843 with 112 at 2 +Id : 5901, {_}: greatest_lower_bound identity ?7639 =<= greatest_lower_bound (greatest_lower_bound identity (least_upper_bound identity ?7638)) ?7639 [7638, 7639] by Demod 5900 with 10 at 1,3 +Id : 7645, {_}: greatest_lower_bound identity ?9767 =<= greatest_lower_bound identity (greatest_lower_bound (least_upper_bound identity ?9768) ?9767) [9768, 9767] by Demod 5901 with 14 at 3 +Id : 270, {_}: multiply (greatest_lower_bound identity ?723) ?724 =<= greatest_lower_bound ?724 (multiply ?723 ?724) [724, 723] by Super 265 with 4 at 1,3 +Id : 7676, {_}: greatest_lower_bound identity (multiply ?9863 (least_upper_bound identity ?9864)) =<= greatest_lower_bound identity (multiply (greatest_lower_bound identity ?9863) (least_upper_bound identity ?9864)) [9864, 9863] by Super 7645 with 270 at 2,3 +Id : 444411, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (multiply ?378412 (least_upper_bound identity (inverse ?378412)))) [378412] by Demod 443814 with 7676 at 2,3 +Id : 2215, {_}: multiply ?3422 (least_upper_bound ?3423 (inverse ?3422)) =>= least_upper_bound (multiply ?3422 ?3423) identity [3423, 3422] by Super 26 with 2142 at 2,3 +Id : 2235, {_}: multiply ?3422 (least_upper_bound ?3423 (inverse ?3422)) =>= least_upper_bound identity (multiply ?3422 ?3423) [3423, 3422] by Demod 2215 with 12 at 3 +Id : 444412, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (least_upper_bound identity (multiply ?378412 identity))) [378412] by Demod 444411 with 2235 at 2,2,3 +Id : 444413, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =>= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) identity [378412] by Demod 444412 with 24 at 2,3 +Id : 444414, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =>= inverse (greatest_lower_bound identity (inverse ?378412)) [378412] by Demod 444413 with 2129 at 3 +Id : 761747, {_}: least_upper_bound (least_upper_bound identity ?693163) (inverse (greatest_lower_bound identity (inverse ?693163))) =>= least_upper_bound identity ?693163 [693163] by Super 128 with 444414 at 2,2 +Id : 762288, {_}: least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) (least_upper_bound identity ?693163) =>= least_upper_bound identity ?693163 [693163] by Demod 761747 with 12 at 2 +Id : 1150, {_}: least_upper_bound (least_upper_bound ?2078 ?2079) ?2078 =>= least_upper_bound ?2078 ?2079 [2079, 2078] by Super 12 with 100 at 3 +Id : 158742, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?149635 ?149636) ?149637) ?149635 =>= least_upper_bound ?149635 (least_upper_bound ?149636 ?149637) [149637, 149636, 149635] by Super 1150 with 16 at 1,2 +Id : 375, {_}: least_upper_bound (least_upper_bound ?872 ?873) ?872 =>= least_upper_bound ?872 ?873 [873, 872] by Super 12 with 100 at 3 +Id : 1142, {_}: least_upper_bound (least_upper_bound ?2051 ?2052) (least_upper_bound ?2051 ?2053) =>= least_upper_bound (least_upper_bound ?2051 ?2052) ?2053 [2053, 2052, 2051] by Super 16 with 375 at 1,3 +Id : 158880, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?150190 ?150191) ?150189) ?150190 =?= least_upper_bound ?150190 (least_upper_bound ?150191 (least_upper_bound ?150190 ?150189)) [150189, 150191, 150190] by Super 158742 with 1142 at 1,2 +Id : 1152, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?2086 ?2084) ?2085) ?2086 =>= least_upper_bound ?2086 (least_upper_bound ?2084 ?2085) [2085, 2084, 2086] by Super 1150 with 16 at 1,2 +Id : 159604, {_}: least_upper_bound ?150190 (least_upper_bound ?150191 ?150189) =<= least_upper_bound ?150190 (least_upper_bound ?150191 (least_upper_bound ?150190 ?150189)) [150189, 150191, 150190] by Demod 158880 with 1152 at 2 +Id : 126, {_}: least_upper_bound ?351 ?349 =<= least_upper_bound (least_upper_bound ?351 ?349) (greatest_lower_bound ?349 ?350) [350, 349, 351] by Super 16 with 22 at 2,2 +Id : 135029, {_}: least_upper_bound ?113864 ?113865 =<= least_upper_bound (greatest_lower_bound ?113865 ?113866) (least_upper_bound ?113864 ?113865) [113866, 113865, 113864] by Demod 126 with 12 at 3 +Id : 135153, {_}: least_upper_bound ?114345 (least_upper_bound ?114346 ?114344) =<= least_upper_bound ?114346 (least_upper_bound ?114345 (least_upper_bound ?114346 ?114344)) [114344, 114346, 114345] by Super 135029 with 139 at 1,3 +Id : 503059, {_}: least_upper_bound ?150190 (least_upper_bound ?150191 ?150189) =?= least_upper_bound ?150191 (least_upper_bound ?150190 ?150189) [150189, 150191, 150190] by Demod 159604 with 135153 at 3 +Id : 762289, {_}: least_upper_bound identity (least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) ?693163) =>= least_upper_bound identity ?693163 [693163] by Demod 762288 with 503059 at 2 +Id : 2280, {_}: multiply (greatest_lower_bound identity ?3504) (inverse ?3504) =>= greatest_lower_bound identity (inverse ?3504) [3504] by Super 874 with 2156 at 2,1,2 +Id : 2286, {_}: multiply (greatest_lower_bound identity ?3514) (inverse (greatest_lower_bound identity ?3514)) =>= greatest_lower_bound identity (inverse (greatest_lower_bound identity ?3514)) [3514] by Super 2280 with 112 at 1,2 +Id : 2335, {_}: identity =<= greatest_lower_bound identity (inverse (greatest_lower_bound identity ?3514)) [3514] by Demod 2286 with 2142 at 2 +Id : 2422, {_}: least_upper_bound identity (inverse (greatest_lower_bound identity ?3608)) =>= inverse (greatest_lower_bound identity ?3608) [3608] by Super 524 with 2335 at 1,2 +Id : 2722, {_}: least_upper_bound identity (least_upper_bound (inverse (greatest_lower_bound identity ?3826)) ?3827) =>= least_upper_bound (inverse (greatest_lower_bound identity ?3826)) ?3827 [3827, 3826] by Super 16 with 2422 at 1,3 +Id : 762290, {_}: least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) ?693163 =>= least_upper_bound identity ?693163 [693163] by Demod 762289 with 2722 at 2 +Id : 18327, {_}: multiply (inverse ?20394) (least_upper_bound (inverse ?20393) identity) =<= least_upper_bound (inverse (multiply ?20393 ?20394)) (inverse ?20394) [20393, 20394] by Super 9723 with 18209 at 1,3 +Id : 2112, {_}: multiply (inverse (inverse ?3265)) (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply (inverse (inverse ?3265)) ?3266) [3266, 3265] by Super 26 with 2091 at 1,3 +Id : 10376, {_}: multiply ?3265 (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply (inverse (inverse ?3265)) ?3266) [3266, 3265] by Demod 2112 with 2156 at 1,2 +Id : 10377, {_}: multiply ?3265 (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply ?3265 ?3266) [3266, 3265] by Demod 10376 with 2156 at 1,2,3 +Id : 10378, {_}: multiply ?3265 (least_upper_bound identity ?3266) =?= multiply ?3265 (least_upper_bound ?3266 identity) [3266, 3265] by Demod 10377 with 9743 at 3 +Id : 18347, {_}: multiply (inverse ?20394) (least_upper_bound identity (inverse ?20393)) =<= least_upper_bound (inverse (multiply ?20393 ?20394)) (inverse ?20394) [20393, 20394] by Demod 18327 with 10378 at 2 +Id : 2048, {_}: multiply (greatest_lower_bound identity (multiply ?3142 (inverse ?3143))) ?3143 =>= greatest_lower_bound ?3143 (multiply ?3142 identity) [3143, 3142] by Super 270 with 40 at 2,3 +Id : 194485, {_}: multiply (greatest_lower_bound identity (multiply ?3142 (inverse ?3143))) ?3143 =>= greatest_lower_bound ?3143 ?3142 [3143, 3142] by Demod 2048 with 2129 at 2,3 +Id : 194529, {_}: multiply (inverse ?186266) (least_upper_bound identity (inverse (greatest_lower_bound identity (multiply ?186265 (inverse ?186266))))) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186265, 186266] by Super 18347 with 194485 at 1,1,3 +Id : 194632, {_}: multiply (inverse ?186266) (inverse (greatest_lower_bound identity (multiply ?186265 (inverse ?186266)))) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186265, 186266] by Demod 194529 with 2422 at 2,2 +Id : 194633, {_}: inverse (multiply (greatest_lower_bound identity (multiply ?186265 (inverse ?186266))) ?186266) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186266, 186265] by Demod 194632 with 18209 at 2 +Id : 195668, {_}: inverse (greatest_lower_bound ?187604 ?187605) =<= least_upper_bound (inverse (greatest_lower_bound ?187604 ?187605)) (inverse ?187604) [187605, 187604] by Demod 194633 with 194485 at 1,2 +Id : 201008, {_}: inverse (greatest_lower_bound (inverse ?193412) ?193413) =<= least_upper_bound (inverse (greatest_lower_bound (inverse ?193412) ?193413)) ?193412 [193413, 193412] by Super 195668 with 2156 at 2,3 +Id : 201035, {_}: inverse (greatest_lower_bound (inverse ?193516) ?193517) =<= least_upper_bound (inverse (greatest_lower_bound ?193517 (inverse ?193516))) ?193516 [193517, 193516] by Super 201008 with 10 at 1,1,3 +Id : 762291, {_}: inverse (greatest_lower_bound (inverse ?693163) identity) =>= least_upper_bound identity ?693163 [693163] by Demod 762290 with 201035 at 2 +Id : 18116, {_}: multiply ?20080 (inverse (multiply (inverse ?20081) ?20080)) =>= ?20081 [20081, 20080] by Super 2194 with 2238 at 1,2 +Id : 20397, {_}: multiply ?22035 (inverse (multiply ?22036 ?22035)) =>= inverse ?22036 [22036, 22035] by Super 18116 with 2156 at 1,1,2,2 +Id : 267, {_}: multiply (greatest_lower_bound ?710 (inverse ?711)) ?711 =>= greatest_lower_bound (multiply ?710 ?711) identity [711, 710] by Super 265 with 6 at 2,3 +Id : 287, {_}: multiply (greatest_lower_bound ?710 (inverse ?711)) ?711 =>= greatest_lower_bound identity (multiply ?710 ?711) [711, 710] by Demod 267 with 10 at 3 +Id : 20404, {_}: multiply ?22056 (inverse (greatest_lower_bound identity (multiply ?22055 ?22056))) =>= inverse (greatest_lower_bound ?22055 (inverse ?22056)) [22055, 22056] by Super 20397 with 287 at 1,2,2 +Id : 271, {_}: multiply (greatest_lower_bound (inverse ?727) ?726) ?727 =>= greatest_lower_bound identity (multiply ?726 ?727) [726, 727] by Super 265 with 6 at 1,3 +Id : 20403, {_}: multiply ?22053 (inverse (greatest_lower_bound identity (multiply ?22052 ?22053))) =>= inverse (greatest_lower_bound (inverse ?22053) ?22052) [22052, 22053] by Super 20397 with 271 at 1,2,2 +Id : 354211, {_}: inverse (greatest_lower_bound (inverse ?22056) ?22055) =?= inverse (greatest_lower_bound ?22055 (inverse ?22056)) [22055, 22056] by Demod 20404 with 20403 at 2 +Id : 763705, {_}: inverse (greatest_lower_bound identity (inverse ?694794)) =>= least_upper_bound identity ?694794 [694794] by Demod 762291 with 354211 at 2 +Id : 763707, {_}: inverse (greatest_lower_bound identity ?694797) =<= least_upper_bound identity (inverse ?694797) [694797] by Super 763705 with 2156 at 2,1,2 +Id : 766509, {_}: multiply (least_upper_bound identity ?11957) (inverse (greatest_lower_bound identity ?11957)) =>= least_upper_bound ?11957 (inverse ?11957) [11957] by Demod 383800 with 763707 at 2,2 +Id : 383797, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (inverse ?12325) [12325] by Demod 10289 with 382808 at 3 +Id : 766508, {_}: multiply (inverse (greatest_lower_bound identity ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (inverse ?12325) [12325] by Demod 383797 with 763707 at 1,2 +Id : 768092, {_}: least_upper_bound a (inverse a) === least_upper_bound a (inverse a) [] by Demod 768091 with 766508 at 3 +Id : 768091, {_}: least_upper_bound a (inverse a) =<= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound identity a) [] by Demod 298 with 766509 at 2 +Id : 298, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound identity a) [] by Demod 297 with 12 at 2,3 +Id : 297, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound a identity) [] by Demod 296 with 10 at 1,1,3 +Id : 296, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by Demod 295 with 10 at 1,2,2 +Id : 295, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by Demod 2 with 12 at 1,2 +Id : 2, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21 +% SZS output end CNFRefutation for GRP184-1.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + associativity_of_glb is 86 + associativity_of_lub is 85 + glb_absorbtion is 81 + greatest_lower_bound is 95 + idempotence_of_gld is 83 + idempotence_of_lub is 84 + identity is 97 + inverse is 94 + least_upper_bound is 96 + left_identity is 91 + left_inverse is 90 + lub_absorbtion is 82 + monotony_glb1 is 79 + monotony_glb2 is 77 + monotony_lub1 is 80 + monotony_lub2 is 78 + multiply is 93 + prove_p21x is 92 + symmetry_of_glb is 88 + symmetry_of_lub is 87 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Goal + Id : 2, {_}: + multiply (least_upper_bound a identity) + (inverse (greatest_lower_bound a identity)) + =>= + multiply (inverse (greatest_lower_bound a identity)) + (least_upper_bound a identity) + [] by prove_p21x +Found proof, 111.372968s +% SZS status Unsatisfiable for GRP184-3.p +% SZS output start CNFRefutation for GRP184-3.p +Id : 265, {_}: multiply (greatest_lower_bound ?703 ?704) ?705 =<= greatest_lower_bound (multiply ?703 ?705) (multiply ?704 ?705) [705, 704, 703] by monotony_glb2 ?703 ?704 ?705 +Id : 28, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 +Id : 145, {_}: greatest_lower_bound ?406 (least_upper_bound ?406 ?407) =>= ?406 [407, 406] by glb_absorbtion ?406 ?407 +Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 +Id : 127, {_}: least_upper_bound ?353 (greatest_lower_bound ?353 ?354) =>= ?353 [354, 353] by lub_absorbtion ?353 ?354 +Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 +Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 +Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 +Id : 30, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 +Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 +Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 +Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 +Id : 230, {_}: multiply (least_upper_bound ?621 ?622) ?623 =<= least_upper_bound (multiply ?621 ?623) (multiply ?622 ?623) [623, 622, 621] by monotony_lub2 ?621 ?622 ?623 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 38, {_}: multiply (multiply ?61 ?62) ?63 =?= multiply ?61 (multiply ?62 ?63) [63, 62, 61] by associativity ?61 ?62 ?63 +Id : 26, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 +Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 +Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 +Id : 2065, {_}: multiply (multiply ?3204 (inverse ?3205)) ?3205 =>= multiply ?3204 identity [3205, 3204] by Super 38 with 6 at 2,3 +Id : 2068, {_}: multiply identity ?3211 =<= multiply (inverse (inverse ?3211)) identity [3211] by Super 2065 with 6 at 1,2 +Id : 2091, {_}: ?3211 =<= multiply (inverse (inverse ?3211)) identity [3211] by Demod 2068 with 4 at 2 +Id : 2111, {_}: multiply (inverse (inverse ?3262)) (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply (inverse (inverse ?3262)) ?3263) ?3262 [3263, 3262] by Super 26 with 2091 at 2,3 +Id : 39, {_}: multiply (multiply ?65 identity) ?66 =>= multiply ?65 ?66 [66, 65] by Super 38 with 4 at 2,3 +Id : 2108, {_}: multiply ?3253 ?3254 =<= multiply (inverse (inverse ?3253)) ?3254 [3254, 3253] by Super 39 with 2091 at 1,2 +Id : 2129, {_}: ?3211 =<= multiply ?3211 identity [3211] by Demod 2091 with 2108 at 3 +Id : 2149, {_}: inverse (inverse ?3356) =>= multiply ?3356 identity [3356] by Super 2129 with 2108 at 3 +Id : 2156, {_}: inverse (inverse ?3356) =>= ?3356 [3356] by Demod 2149 with 2129 at 3 +Id : 9722, {_}: multiply ?3262 (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply (inverse (inverse ?3262)) ?3263) ?3262 [3263, 3262] by Demod 2111 with 2156 at 1,2 +Id : 9764, {_}: multiply ?11921 (least_upper_bound ?11922 identity) =<= least_upper_bound (multiply ?11921 ?11922) ?11921 [11922, 11921] by Demod 9722 with 2156 at 1,1,3 +Id : 701, {_}: multiply (least_upper_bound ?1544 identity) ?1545 =<= least_upper_bound (multiply ?1544 ?1545) ?1545 [1545, 1544] by Super 230 with 4 at 2,3 +Id : 703, {_}: multiply (least_upper_bound (inverse ?1549) identity) ?1549 =>= least_upper_bound identity ?1549 [1549] by Super 701 with 6 at 1,3 +Id : 729, {_}: multiply (least_upper_bound identity (inverse ?1549)) ?1549 =>= least_upper_bound identity ?1549 [1549] by Demod 703 with 12 at 1,2 +Id : 2193, {_}: multiply (least_upper_bound identity ?3378) (inverse ?3378) =>= least_upper_bound identity (inverse ?3378) [3378] by Super 729 with 2156 at 2,1,2 +Id : 9777, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound (inverse ?11957) identity) =<= least_upper_bound (least_upper_bound identity (inverse ?11957)) (least_upper_bound identity ?11957) [11957] by Super 9764 with 2193 at 1,3 +Id : 9888, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =<= least_upper_bound (least_upper_bound identity (inverse ?11957)) (least_upper_bound identity ?11957) [11957] by Demod 9777 with 12 at 2,2 +Id : 9889, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =<= least_upper_bound identity (least_upper_bound (inverse ?11957) (least_upper_bound identity ?11957)) [11957] by Demod 9888 with 16 at 3 +Id : 523, {_}: least_upper_bound (greatest_lower_bound ?1203 ?1204) ?1203 =>= ?1203 [1204, 1203] by Super 12 with 22 at 3 +Id : 524, {_}: least_upper_bound (greatest_lower_bound ?1207 ?1206) ?1206 =>= ?1206 [1206, 1207] by Super 523 with 10 at 1,2 +Id : 139, {_}: greatest_lower_bound (least_upper_bound ?385 ?386) ?385 =>= ?385 [386, 385] by Super 10 with 24 at 3 +Id : 40, {_}: multiply (multiply ?68 (inverse ?69)) ?69 =>= multiply ?68 identity [69, 68] by Super 38 with 6 at 2,3 +Id : 2130, {_}: multiply (multiply ?68 (inverse ?69)) ?69 =>= ?68 [69, 68] by Demod 40 with 2129 at 3 +Id : 231, {_}: multiply (least_upper_bound ?625 identity) ?626 =<= least_upper_bound (multiply ?625 ?626) ?626 [626, 625] by Super 230 with 4 at 2,3 +Id : 693, {_}: least_upper_bound ?1518 (multiply ?1517 ?1518) =>= multiply (least_upper_bound ?1517 identity) ?1518 [1517, 1518] by Super 12 with 231 at 3 +Id : 235, {_}: multiply (least_upper_bound identity ?641) ?642 =<= least_upper_bound ?642 (multiply ?641 ?642) [642, 641] by Super 230 with 4 at 1,3 +Id : 1616, {_}: multiply (least_upper_bound identity ?1517) ?1518 =?= multiply (least_upper_bound ?1517 identity) ?1518 [1518, 1517] by Demod 693 with 235 at 2 +Id : 1625, {_}: multiply (least_upper_bound (least_upper_bound identity ?2728) ?2730) ?2729 =<= least_upper_bound (multiply (least_upper_bound ?2728 identity) ?2729) (multiply ?2730 ?2729) [2729, 2730, 2728] by Super 30 with 1616 at 1,3 +Id : 1699, {_}: multiply (least_upper_bound identity (least_upper_bound ?2728 ?2730)) ?2729 =<= least_upper_bound (multiply (least_upper_bound ?2728 identity) ?2729) (multiply ?2730 ?2729) [2729, 2730, 2728] by Demod 1625 with 16 at 1,2 +Id : 1700, {_}: multiply (least_upper_bound identity (least_upper_bound ?2728 ?2730)) ?2729 =<= multiply (least_upper_bound (least_upper_bound ?2728 identity) ?2730) ?2729 [2729, 2730, 2728] by Demod 1699 with 30 at 3 +Id : 4487, {_}: multiply (multiply (least_upper_bound identity (least_upper_bound ?5822 ?5823)) (inverse ?5824)) ?5824 =>= least_upper_bound (least_upper_bound ?5822 identity) ?5823 [5824, 5823, 5822] by Super 2130 with 1700 at 1,2 +Id : 4634, {_}: least_upper_bound identity (least_upper_bound ?6053 ?6054) =<= least_upper_bound (least_upper_bound ?6053 identity) ?6054 [6054, 6053] by Demod 4487 with 2130 at 2 +Id : 122, {_}: least_upper_bound (greatest_lower_bound ?335 ?336) ?335 =>= ?335 [336, 335] by Super 12 with 22 at 3 +Id : 4738, {_}: least_upper_bound identity (least_upper_bound (greatest_lower_bound identity ?6182) ?6183) =>= least_upper_bound identity ?6183 [6183, 6182] by Super 4634 with 122 at 1,3 +Id : 4751, {_}: least_upper_bound identity (least_upper_bound ?6221 (greatest_lower_bound identity ?6220)) =>= least_upper_bound identity ?6221 [6220, 6221] by Super 4738 with 12 at 2,2 +Id : 4923, {_}: least_upper_bound identity ?6418 =<= least_upper_bound (least_upper_bound identity ?6418) (greatest_lower_bound identity ?6419) [6419, 6418] by Super 16 with 4751 at 2 +Id : 4974, {_}: least_upper_bound identity ?6418 =<= least_upper_bound (greatest_lower_bound identity ?6419) (least_upper_bound identity ?6418) [6419, 6418] by Demod 4923 with 12 at 3 +Id : 5424, {_}: greatest_lower_bound (least_upper_bound identity ?7110) (greatest_lower_bound identity ?7111) =>= greatest_lower_bound identity ?7111 [7111, 7110] by Super 139 with 4974 at 1,2 +Id : 5471, {_}: greatest_lower_bound (greatest_lower_bound identity ?7111) (least_upper_bound identity ?7110) =>= greatest_lower_bound identity ?7111 [7110, 7111] by Demod 5424 with 10 at 2 +Id : 6383, {_}: greatest_lower_bound identity (greatest_lower_bound ?8259 (least_upper_bound identity ?8260)) =>= greatest_lower_bound identity ?8259 [8260, 8259] by Demod 5471 with 14 at 2 +Id : 605, {_}: greatest_lower_bound (least_upper_bound ?1361 ?1362) ?1361 =>= ?1361 [1362, 1361] by Super 10 with 24 at 3 +Id : 606, {_}: greatest_lower_bound (least_upper_bound ?1365 ?1364) ?1364 =>= ?1364 [1364, 1365] by Super 605 with 12 at 1,2 +Id : 6408, {_}: greatest_lower_bound identity (least_upper_bound identity ?8337) =<= greatest_lower_bound identity (least_upper_bound ?8336 (least_upper_bound identity ?8337)) [8336, 8337] by Super 6383 with 606 at 2,2 +Id : 6477, {_}: identity =<= greatest_lower_bound identity (least_upper_bound ?8336 (least_upper_bound identity ?8337)) [8337, 8336] by Demod 6408 with 24 at 2 +Id : 8574, {_}: least_upper_bound identity (least_upper_bound ?10550 (least_upper_bound identity ?10551)) =>= least_upper_bound ?10550 (least_upper_bound identity ?10551) [10551, 10550] by Super 524 with 6477 at 1,2 +Id : 9890, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound (inverse ?11957) (least_upper_bound identity ?11957) [11957] by Demod 9889 with 8574 at 3 +Id : 382, {_}: least_upper_bound ?896 (least_upper_bound ?896 ?897) =>= least_upper_bound ?896 ?897 [897, 896] by Super 16 with 18 at 1,3 +Id : 383, {_}: least_upper_bound ?899 (least_upper_bound ?900 ?899) =>= least_upper_bound ?899 ?900 [900, 899] by Super 382 with 12 at 2,2 +Id : 9723, {_}: multiply ?3262 (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply ?3262 ?3263) ?3262 [3263, 3262] by Demod 9722 with 2156 at 1,1,3 +Id : 9944, {_}: least_upper_bound ?12111 (multiply ?12111 ?12112) =>= multiply ?12111 (least_upper_bound ?12112 identity) [12112, 12111] by Super 12 with 9723 at 3 +Id : 9957, {_}: least_upper_bound (least_upper_bound identity ?12147) (least_upper_bound identity (inverse ?12147)) =>= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Super 9944 with 2193 at 2,2 +Id : 10090, {_}: least_upper_bound identity (least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147))) =>= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Demod 9957 with 16 at 2 +Id : 10091, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =<= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Demod 10090 with 8574 at 2 +Id : 10092, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =<= multiply (least_upper_bound identity ?12147) (least_upper_bound identity (inverse ?12147)) [12147] by Demod 10091 with 12 at 2,3 +Id : 50296, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =?= least_upper_bound (inverse ?12147) (least_upper_bound identity ?12147) [12147] by Demod 10092 with 9890 at 3 +Id : 50343, {_}: least_upper_bound (least_upper_bound identity (inverse ?46312)) (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312)) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Super 383 with 50296 at 2,2 +Id : 50540, {_}: least_upper_bound identity (least_upper_bound (inverse ?46312) (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312))) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50343 with 16 at 2 +Id : 100, {_}: least_upper_bound ?287 (least_upper_bound ?287 ?288) =>= least_upper_bound ?287 ?288 [288, 287] by Super 16 with 18 at 1,3 +Id : 50541, {_}: least_upper_bound identity (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312)) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50540 with 100 at 2,2 +Id : 50542, {_}: least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312) =<= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50541 with 8574 at 2 +Id : 50543, {_}: least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312) =>= least_upper_bound identity (least_upper_bound (inverse ?46312) ?46312) [46312] by Demod 50542 with 16 at 3 +Id : 51165, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound identity (least_upper_bound (inverse ?11957) ?11957) [11957] by Demod 9890 with 50543 at 3 +Id : 51164, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =?= least_upper_bound identity (least_upper_bound (inverse ?12147) ?12147) [12147] by Demod 50296 with 50543 at 3 +Id : 1772, {_}: multiply (multiply ?2886 (least_upper_bound identity (inverse ?2885))) ?2885 =>= multiply ?2886 (least_upper_bound identity ?2885) [2885, 2886] by Super 8 with 729 at 2,3 +Id : 2194, {_}: multiply (multiply ?3381 ?3380) (inverse ?3380) =>= ?3381 [3380, 3381] by Super 2130 with 2156 at 2,1,2 +Id : 2142, {_}: multiply ?3332 (inverse ?3332) =>= identity [3332] by Super 6 with 2108 at 2 +Id : 2212, {_}: multiply identity ?3416 =<= multiply ?3415 (multiply (inverse ?3415) ?3416) [3415, 3416] by Super 8 with 2142 at 1,2 +Id : 2238, {_}: ?3416 =<= multiply ?3415 (multiply (inverse ?3415) ?3416) [3415, 3416] by Demod 2212 with 4 at 2 +Id : 4219, {_}: multiply ?5438 (inverse (multiply (inverse ?5439) ?5438)) =>= ?5439 [5439, 5438] by Super 2194 with 2238 at 1,2 +Id : 18113, {_}: inverse (multiply (inverse ?20071) (inverse ?20072)) =>= multiply ?20072 ?20071 [20072, 20071] by Super 2238 with 4219 at 2,3 +Id : 18209, {_}: inverse (multiply ?20210 ?20209) =<= multiply (inverse ?20209) (inverse ?20210) [20209, 20210] by Super 2156 with 18113 at 1,2 +Id : 18309, {_}: multiply (inverse (multiply ?20330 ?20331)) ?20330 =>= inverse ?20331 [20331, 20330] by Super 2130 with 18209 at 1,2 +Id : 20618, {_}: multiply (least_upper_bound identity (inverse (multiply ?22269 ?22270))) ?22269 =>= least_upper_bound ?22269 (inverse ?22270) [22270, 22269] by Super 235 with 18309 at 2,3 +Id : 379959, {_}: multiply (least_upper_bound ?332905 (inverse ?332906)) (inverse ?332905) =>= least_upper_bound identity (inverse (multiply ?332905 ?332906)) [332906, 332905] by Super 2194 with 20618 at 1,2 +Id : 243389, {_}: multiply (least_upper_bound identity (multiply ?228491 ?228492)) (inverse ?228492) =>= least_upper_bound (inverse ?228492) ?228491 [228492, 228491] by Super 235 with 2194 at 2,3 +Id : 177106, {_}: multiply (multiply ?175304 (least_upper_bound identity (inverse ?175305))) ?175305 =>= multiply ?175304 (least_upper_bound identity ?175305) [175305, 175304] by Super 8 with 729 at 2,3 +Id : 10132, {_}: multiply (inverse ?12250) (least_upper_bound ?12250 identity) =>= least_upper_bound identity (inverse ?12250) [12250] by Super 9764 with 6 at 1,3 +Id : 10133, {_}: multiply (inverse ?12252) (least_upper_bound identity ?12252) =>= least_upper_bound identity (inverse ?12252) [12252] by Super 10132 with 12 at 2,2 +Id : 10242, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =<= least_upper_bound (least_upper_bound identity ?12325) (least_upper_bound identity (inverse ?12325)) [12325] by Super 235 with 10133 at 2,3 +Id : 10288, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =<= least_upper_bound identity (least_upper_bound ?12325 (least_upper_bound identity (inverse ?12325))) [12325] by Demod 10242 with 16 at 3 +Id : 10289, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (least_upper_bound identity (inverse ?12325)) [12325] by Demod 10288 with 8574 at 3 +Id : 177160, {_}: multiply (least_upper_bound (inverse ?175487) (least_upper_bound identity (inverse (inverse ?175487)))) ?175487 =>= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Super 177106 with 10289 at 1,2 +Id : 236, {_}: multiply (least_upper_bound (inverse ?645) ?644) ?645 =>= least_upper_bound identity (multiply ?644 ?645) [644, 645] by Super 230 with 6 at 1,3 +Id : 177356, {_}: least_upper_bound identity (multiply (least_upper_bound identity (inverse (inverse ?175487))) ?175487) =>= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Demod 177160 with 236 at 2 +Id : 177357, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175487) ?175487) =<= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Demod 177356 with 2156 at 2,1,2,2 +Id : 177519, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175800) ?175800) =>= multiply (least_upper_bound identity ?175800) (least_upper_bound identity ?175800) [175800] by Demod 177357 with 2156 at 2,1,3 +Id : 177520, {_}: least_upper_bound identity (multiply (least_upper_bound ?175802 identity) ?175802) =>= multiply (least_upper_bound identity ?175802) (least_upper_bound identity ?175802) [175802] by Super 177519 with 12 at 1,2,2 +Id : 3515, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?4381) ?4382)) ?4381 =>= least_upper_bound ?4381 (least_upper_bound identity (multiply ?4382 ?4381)) [4382, 4381] by Super 235 with 236 at 2,3 +Id : 1778, {_}: multiply (least_upper_bound (least_upper_bound identity (inverse ?2903)) ?2904) ?2903 =>= least_upper_bound (least_upper_bound identity ?2903) (multiply ?2904 ?2903) [2904, 2903] by Super 30 with 729 at 1,3 +Id : 1803, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound (least_upper_bound identity ?2903) (multiply ?2904 ?2903) [2904, 2903] by Demod 1778 with 16 at 1,2 +Id : 1804, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound (multiply ?2904 ?2903) (least_upper_bound identity ?2903) [2904, 2903] by Demod 1803 with 12 at 3 +Id : 102, {_}: least_upper_bound ?294 ?293 =<= least_upper_bound (least_upper_bound ?294 ?293) ?293 [293, 294] by Super 16 with 18 at 2,2 +Id : 29053, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound ?27543 ?27544) ?27545) =<= least_upper_bound (least_upper_bound ?27543 (least_upper_bound ?27544 identity)) ?27545 [27545, 27544, 27543] by Super 4634 with 16 at 1,3 +Id : 29054, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound ?27547 ?27548) ?27549) =<= least_upper_bound (least_upper_bound ?27547 (least_upper_bound identity ?27548)) ?27549 [27549, 27548, 27547] by Super 29053 with 12 at 2,1,3 +Id : 93172, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =<= least_upper_bound identity (least_upper_bound (least_upper_bound ?78323 ?78324) (least_upper_bound identity ?78324)) [78324, 78323] by Super 102 with 29054 at 3 +Id : 93561, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =<= least_upper_bound (least_upper_bound ?78323 ?78324) (least_upper_bound identity ?78324) [78324, 78323] by Demod 93172 with 8574 at 3 +Id : 4534, {_}: least_upper_bound identity (least_upper_bound ?5822 ?5823) =<= least_upper_bound (least_upper_bound ?5822 identity) ?5823 [5823, 5822] by Demod 4487 with 2130 at 2 +Id : 27996, {_}: least_upper_bound ?26567 (least_upper_bound identity (least_upper_bound ?26568 ?26567)) =>= least_upper_bound ?26567 (least_upper_bound ?26568 identity) [26568, 26567] by Super 383 with 4534 at 2,2 +Id : 28002, {_}: least_upper_bound ?26586 (least_upper_bound identity ?26586) =<= least_upper_bound ?26586 (least_upper_bound (greatest_lower_bound ?26586 ?26585) identity) [26585, 26586] by Super 27996 with 122 at 2,2,2 +Id : 28236, {_}: least_upper_bound ?26586 identity =<= least_upper_bound ?26586 (least_upper_bound (greatest_lower_bound ?26586 ?26585) identity) [26585, 26586] by Demod 28002 with 383 at 2 +Id : 8916, {_}: least_upper_bound identity (least_upper_bound ?11024 (least_upper_bound identity ?11025)) =>= least_upper_bound ?11024 (least_upper_bound identity ?11025) [11025, 11024] by Super 524 with 6477 at 1,2 +Id : 8917, {_}: least_upper_bound identity (least_upper_bound ?11027 (least_upper_bound ?11028 identity)) =>= least_upper_bound ?11027 (least_upper_bound identity ?11028) [11028, 11027] by Super 8916 with 12 at 2,2,2 +Id : 4835, {_}: least_upper_bound identity (least_upper_bound (greatest_lower_bound ?6313 identity) ?6314) =>= least_upper_bound identity ?6314 [6314, 6313] by Super 4634 with 524 at 1,3 +Id : 4847, {_}: least_upper_bound identity (greatest_lower_bound ?6349 identity) =<= least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?6349 identity) ?6348) [6348, 6349] by Super 4835 with 22 at 2,2 +Id : 128, {_}: least_upper_bound ?356 (greatest_lower_bound ?357 ?356) =>= ?356 [357, 356] by Super 127 with 10 at 2,2 +Id : 4903, {_}: identity =<= least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?6349 identity) ?6348) [6348, 6349] by Demod 4847 with 128 at 2 +Id : 5840, {_}: greatest_lower_bound identity (greatest_lower_bound (greatest_lower_bound ?7630 identity) ?7631) =>= greatest_lower_bound (greatest_lower_bound ?7630 identity) ?7631 [7631, 7630] by Super 606 with 4903 at 1,2 +Id : 5845, {_}: greatest_lower_bound identity (greatest_lower_bound identity ?7645) =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound ?7644 identity) identity) ?7645 [7644, 7645] by Super 5840 with 606 at 1,2,2 +Id : 112, {_}: greatest_lower_bound ?313 (greatest_lower_bound ?313 ?314) =>= greatest_lower_bound ?313 ?314 [314, 313] by Super 14 with 20 at 1,3 +Id : 5908, {_}: greatest_lower_bound identity ?7645 =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound ?7644 identity) identity) ?7645 [7644, 7645] by Demod 5845 with 112 at 2 +Id : 5909, {_}: greatest_lower_bound identity ?7645 =<= greatest_lower_bound (greatest_lower_bound identity (least_upper_bound ?7644 identity)) ?7645 [7644, 7645] by Demod 5908 with 10 at 1,3 +Id : 7862, {_}: greatest_lower_bound identity ?10013 =<= greatest_lower_bound identity (greatest_lower_bound (least_upper_bound ?10014 identity) ?10013) [10014, 10013] by Demod 5909 with 14 at 3 +Id : 146, {_}: greatest_lower_bound ?409 (least_upper_bound ?410 ?409) =>= ?409 [410, 409] by Super 145 with 12 at 2,2 +Id : 7879, {_}: greatest_lower_bound identity (least_upper_bound ?10063 (least_upper_bound ?10064 identity)) =>= greatest_lower_bound identity (least_upper_bound ?10064 identity) [10064, 10063] by Super 7862 with 146 at 2,3 +Id : 7984, {_}: greatest_lower_bound identity (least_upper_bound ?10063 (least_upper_bound ?10064 identity)) =>= identity [10064, 10063] by Demod 7879 with 146 at 3 +Id : 8758, {_}: least_upper_bound identity (least_upper_bound ?10813 (least_upper_bound ?10814 identity)) =>= least_upper_bound ?10813 (least_upper_bound ?10814 identity) [10814, 10813] by Super 524 with 7984 at 1,2 +Id : 9284, {_}: least_upper_bound ?11027 (least_upper_bound ?11028 identity) =?= least_upper_bound ?11027 (least_upper_bound identity ?11028) [11028, 11027] by Demod 8917 with 8758 at 2 +Id : 89245, {_}: least_upper_bound ?75550 identity =<= least_upper_bound ?75550 (least_upper_bound identity (greatest_lower_bound ?75550 ?75551)) [75551, 75550] by Demod 28236 with 9284 at 3 +Id : 89255, {_}: least_upper_bound (least_upper_bound ?75580 ?75581) identity =<= least_upper_bound (least_upper_bound ?75580 ?75581) (least_upper_bound identity ?75581) [75581, 75580] by Super 89245 with 606 at 2,2,3 +Id : 89821, {_}: least_upper_bound identity (least_upper_bound ?75580 ?75581) =<= least_upper_bound (least_upper_bound ?75580 ?75581) (least_upper_bound identity ?75581) [75581, 75580] by Demod 89255 with 12 at 2 +Id : 113848, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =?= least_upper_bound identity (least_upper_bound ?78323 ?78324) [78324, 78323] by Demod 93561 with 89821 at 3 +Id : 181989, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound identity (least_upper_bound (multiply ?2904 ?2903) ?2903) [2904, 2903] by Demod 1804 with 113848 at 3 +Id : 181990, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound identity (multiply (least_upper_bound ?2904 identity) ?2903) [2904, 2903] by Demod 181989 with 231 at 2,3 +Id : 230272, {_}: least_upper_bound identity (multiply (least_upper_bound ?4382 identity) ?4381) =?= least_upper_bound ?4381 (least_upper_bound identity (multiply ?4382 ?4381)) [4381, 4382] by Demod 3515 with 181990 at 2 +Id : 230301, {_}: least_upper_bound ?219571 (least_upper_bound identity (multiply ?219571 ?219571)) =>= multiply (least_upper_bound identity ?219571) (least_upper_bound identity ?219571) [219571] by Super 177520 with 230272 at 2 +Id : 232386, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound (least_upper_bound ?221067 identity) (multiply ?221067 ?221067) [221067] by Super 16 with 230301 at 2 +Id : 233006, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound (multiply ?221067 ?221067) (least_upper_bound ?221067 identity) [221067] by Demod 232386 with 12 at 3 +Id : 4614, {_}: greatest_lower_bound ?5993 (least_upper_bound identity (least_upper_bound ?5992 ?5993)) =>= ?5993 [5992, 5993] by Super 146 with 4534 at 2,2 +Id : 27608, {_}: least_upper_bound ?26112 (least_upper_bound identity (least_upper_bound ?26113 ?26112)) =>= least_upper_bound identity (least_upper_bound ?26113 ?26112) [26113, 26112] by Super 524 with 4614 at 1,2 +Id : 4631, {_}: least_upper_bound ?6045 (least_upper_bound identity (least_upper_bound ?6044 ?6045)) =>= least_upper_bound ?6045 (least_upper_bound ?6044 identity) [6044, 6045] by Super 383 with 4534 at 2,2 +Id : 83798, {_}: least_upper_bound ?26112 (least_upper_bound ?26113 identity) =?= least_upper_bound identity (least_upper_bound ?26113 ?26112) [26113, 26112] by Demod 27608 with 4631 at 2 +Id : 233007, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound identity (least_upper_bound ?221067 (multiply ?221067 ?221067)) [221067] by Demod 233006 with 83798 at 3 +Id : 9743, {_}: least_upper_bound ?11859 (multiply ?11859 ?11860) =>= multiply ?11859 (least_upper_bound ?11860 identity) [11860, 11859] by Super 12 with 9723 at 3 +Id : 233595, {_}: multiply (least_upper_bound identity ?221617) (least_upper_bound identity ?221617) =<= least_upper_bound identity (multiply ?221617 (least_upper_bound ?221617 identity)) [221617] by Demod 233007 with 9743 at 2,3 +Id : 233596, {_}: multiply (least_upper_bound identity ?221619) (least_upper_bound identity ?221619) =<= least_upper_bound identity (multiply ?221619 (least_upper_bound identity ?221619)) [221619] by Super 233595 with 12 at 2,2,3 +Id : 243525, {_}: multiply (multiply (least_upper_bound identity ?228868) (least_upper_bound identity ?228868)) (inverse (least_upper_bound identity ?228868)) =>= least_upper_bound (inverse (least_upper_bound identity ?228868)) ?228868 [228868] by Super 243389 with 233596 at 1,2 +Id : 243950, {_}: least_upper_bound identity ?228868 =<= least_upper_bound (inverse (least_upper_bound identity ?228868)) ?228868 [228868] by Demod 243525 with 2194 at 2 +Id : 244049, {_}: least_upper_bound ?229075 (inverse (least_upper_bound identity ?229075)) =>= least_upper_bound identity ?229075 [229075] by Super 12 with 243950 at 3 +Id : 380052, {_}: multiply (least_upper_bound identity ?333235) (inverse ?333235) =<= least_upper_bound identity (inverse (multiply ?333235 (least_upper_bound identity ?333235))) [333235] by Super 379959 with 244049 at 1,2 +Id : 381402, {_}: least_upper_bound identity (inverse ?334503) =<= least_upper_bound identity (inverse (multiply ?334503 (least_upper_bound identity ?334503))) [334503] by Demod 380052 with 2193 at 2 +Id : 177358, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175487) ?175487) =>= multiply (least_upper_bound identity ?175487) (least_upper_bound identity ?175487) [175487] by Demod 177357 with 2156 at 2,1,3 +Id : 177476, {_}: multiply (inverse (multiply (least_upper_bound identity ?175688) ?175688)) (multiply (least_upper_bound identity ?175688) (least_upper_bound identity ?175688)) =>= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Super 10133 with 177358 at 2,2 +Id : 177670, {_}: multiply (multiply (inverse (multiply (least_upper_bound identity ?175688) ?175688)) (least_upper_bound identity ?175688)) (least_upper_bound identity ?175688) =>= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177476 with 8 at 2 +Id : 177671, {_}: multiply (inverse ?175688) (least_upper_bound identity ?175688) =<= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177670 with 18309 at 1,2 +Id : 177672, {_}: least_upper_bound identity (inverse ?175688) =<= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177671 with 10133 at 2 +Id : 381492, {_}: least_upper_bound identity (inverse (inverse (multiply (least_upper_bound identity ?334735) ?334735))) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Super 381402 with 177672 at 2,1,2,3 +Id : 382266, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?334735) ?334735) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Demod 381492 with 2156 at 2,2 +Id : 382267, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Demod 382266 with 177358 at 2 +Id : 18224, {_}: inverse (multiply (inverse ?20261) (inverse ?20262)) =>= multiply ?20262 ?20261 [20262, 20261] by Super 2238 with 4219 at 2,3 +Id : 18226, {_}: inverse (multiply (inverse ?20267) ?20266) =>= multiply (inverse ?20266) ?20267 [20266, 20267] by Super 18224 with 2156 at 2,1,2 +Id : 382268, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (multiply (inverse (least_upper_bound identity (inverse ?334735))) (multiply (least_upper_bound identity ?334735) ?334735)) [334735] by Demod 382267 with 18226 at 2,3 +Id : 382269, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (multiply (multiply (inverse (least_upper_bound identity (inverse ?334735))) (least_upper_bound identity ?334735)) ?334735) [334735] by Demod 382268 with 8 at 2,3 +Id : 18545, {_}: inverse (multiply ?20706 (inverse ?20707)) =>= multiply ?20707 (inverse ?20706) [20707, 20706] by Super 18224 with 2156 at 1,1,2 +Id : 18566, {_}: inverse (least_upper_bound identity (inverse ?20767)) =<= multiply ?20767 (inverse (least_upper_bound identity ?20767)) [20767] by Super 18545 with 2193 at 1,2 +Id : 19741, {_}: multiply (inverse (least_upper_bound identity (inverse ?21554))) (least_upper_bound identity ?21554) =>= ?21554 [21554] by Super 2130 with 18566 at 1,2 +Id : 382270, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =>= least_upper_bound identity (multiply ?334735 ?334735) [334735] by Demod 382269 with 19741 at 1,2,3 +Id : 382385, {_}: multiply (least_upper_bound identity (multiply (inverse ?334827) (inverse ?334827))) ?334827 =>= multiply (least_upper_bound identity (inverse ?334827)) (least_upper_bound identity ?334827) [334827] by Super 1772 with 382270 at 1,2 +Id : 2064, {_}: multiply (least_upper_bound identity (multiply ?3201 (inverse ?3202))) ?3202 =>= least_upper_bound ?3202 (multiply ?3201 identity) [3202, 3201] by Super 235 with 40 at 2,3 +Id : 223367, {_}: multiply (least_upper_bound identity (multiply ?3201 (inverse ?3202))) ?3202 =>= least_upper_bound ?3202 ?3201 [3202, 3201] by Demod 2064 with 2129 at 2,3 +Id : 382807, {_}: least_upper_bound ?334827 (inverse ?334827) =<= multiply (least_upper_bound identity (inverse ?334827)) (least_upper_bound identity ?334827) [334827] by Demod 382385 with 223367 at 2 +Id : 382808, {_}: least_upper_bound ?334827 (inverse ?334827) =<= least_upper_bound ?334827 (least_upper_bound identity (inverse ?334827)) [334827] by Demod 382807 with 10289 at 3 +Id : 383798, {_}: least_upper_bound ?12147 (inverse ?12147) =<= least_upper_bound identity (least_upper_bound (inverse ?12147) ?12147) [12147] by Demod 51164 with 382808 at 2 +Id : 383800, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound ?11957 (inverse ?11957) [11957] by Demod 51165 with 383798 at 3 +Id : 2115, {_}: multiply (inverse (inverse ?3274)) (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply (inverse (inverse ?3274)) ?3275) ?3274 [3275, 3274] by Super 28 with 2091 at 2,3 +Id : 10659, {_}: multiply ?3274 (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply (inverse (inverse ?3274)) ?3275) ?3274 [3275, 3274] by Demod 2115 with 2156 at 1,2 +Id : 10660, {_}: multiply ?3274 (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply ?3274 ?3275) ?3274 [3275, 3274] by Demod 10659 with 2156 at 1,1,3 +Id : 10678, {_}: greatest_lower_bound ?12834 (multiply ?12834 ?12835) =>= multiply ?12834 (greatest_lower_bound ?12835 identity) [12835, 12834] by Super 10 with 10660 at 3 +Id : 18328, {_}: greatest_lower_bound (inverse ?20397) (inverse (multiply ?20396 ?20397)) =>= multiply (inverse ?20397) (greatest_lower_bound (inverse ?20396) identity) [20396, 20397] by Super 10678 with 18209 at 2,2 +Id : 2116, {_}: multiply (inverse (inverse ?3277)) (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply (inverse (inverse ?3277)) ?3278) [3278, 3277] by Super 28 with 2091 at 1,3 +Id : 11396, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply (inverse (inverse ?3277)) ?3278) [3278, 3277] by Demod 2116 with 2156 at 1,2 +Id : 11397, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply ?3277 ?3278) [3278, 3277] by Demod 11396 with 2156 at 1,2,3 +Id : 11398, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =?= multiply ?3277 (greatest_lower_bound ?3278 identity) [3278, 3277] by Demod 11397 with 10678 at 3 +Id : 78468, {_}: greatest_lower_bound (inverse ?65596) (inverse (multiply ?65597 ?65596)) =>= multiply (inverse ?65596) (greatest_lower_bound identity (inverse ?65597)) [65597, 65596] by Demod 18328 with 11398 at 3 +Id : 78507, {_}: greatest_lower_bound (inverse ?65693) (inverse (inverse ?65692)) =<= multiply (inverse ?65693) (greatest_lower_bound identity (inverse (inverse (multiply ?65693 ?65692)))) [65692, 65693] by Super 78468 with 18309 at 1,2,2 +Id : 78731, {_}: greatest_lower_bound (inverse ?65693) ?65692 =<= multiply (inverse ?65693) (greatest_lower_bound identity (inverse (inverse (multiply ?65693 ?65692)))) [65692, 65693] by Demod 78507 with 2156 at 2,2 +Id : 443714, {_}: greatest_lower_bound (inverse ?378148) ?378149 =<= multiply (inverse ?378148) (greatest_lower_bound identity (multiply ?378148 ?378149)) [378149, 378148] by Demod 78731 with 2156 at 2,2,3 +Id : 842, {_}: multiply (greatest_lower_bound ?1730 identity) ?1731 =<= greatest_lower_bound (multiply ?1730 ?1731) ?1731 [1731, 1730] by Super 265 with 4 at 2,3 +Id : 844, {_}: multiply (greatest_lower_bound (inverse ?1735) identity) ?1735 =>= greatest_lower_bound identity ?1735 [1735] by Super 842 with 6 at 1,3 +Id : 874, {_}: multiply (greatest_lower_bound identity (inverse ?1735)) ?1735 =>= greatest_lower_bound identity ?1735 [1735] by Demod 844 with 10 at 1,2 +Id : 2191, {_}: multiply (greatest_lower_bound identity ?3374) (inverse ?3374) =>= greatest_lower_bound identity (inverse ?3374) [3374] by Super 874 with 2156 at 2,1,2 +Id : 9776, {_}: multiply (greatest_lower_bound identity ?11955) (least_upper_bound (inverse ?11955) identity) =<= least_upper_bound (greatest_lower_bound identity (inverse ?11955)) (greatest_lower_bound identity ?11955) [11955] by Super 9764 with 2191 at 1,3 +Id : 47906, {_}: multiply (greatest_lower_bound identity ?45245) (least_upper_bound identity (inverse ?45245)) =<= least_upper_bound (greatest_lower_bound identity (inverse ?45245)) (greatest_lower_bound identity ?45245) [45245] by Demod 9776 with 12 at 2,2 +Id : 47957, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity (inverse (inverse ?45371))) =>= least_upper_bound (greatest_lower_bound identity ?45371) (greatest_lower_bound identity (inverse ?45371)) [45371] by Super 47906 with 2156 at 2,1,3 +Id : 48268, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity ?45371) =<= least_upper_bound (greatest_lower_bound identity ?45371) (greatest_lower_bound identity (inverse ?45371)) [45371] by Demod 47957 with 2156 at 2,2,2 +Id : 9956, {_}: least_upper_bound (greatest_lower_bound identity ?12145) (greatest_lower_bound identity (inverse ?12145)) =>= multiply (greatest_lower_bound identity ?12145) (least_upper_bound (inverse ?12145) identity) [12145] by Super 9944 with 2191 at 2,2 +Id : 10089, {_}: least_upper_bound (greatest_lower_bound identity ?12145) (greatest_lower_bound identity (inverse ?12145)) =>= multiply (greatest_lower_bound identity ?12145) (least_upper_bound identity (inverse ?12145)) [12145] by Demod 9956 with 12 at 2,3 +Id : 105582, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity ?45371) =?= multiply (greatest_lower_bound identity ?45371) (least_upper_bound identity (inverse ?45371)) [45371] by Demod 48268 with 10089 at 3 +Id : 443814, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (multiply (greatest_lower_bound identity ?378412) (least_upper_bound identity (inverse ?378412)))) [378412] by Super 443714 with 105582 at 2,2,3 +Id : 5843, {_}: greatest_lower_bound identity (greatest_lower_bound identity ?7639) =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound identity ?7638) identity) ?7639 [7638, 7639] by Super 5840 with 139 at 1,2,2 +Id : 5900, {_}: greatest_lower_bound identity ?7639 =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound identity ?7638) identity) ?7639 [7638, 7639] by Demod 5843 with 112 at 2 +Id : 5901, {_}: greatest_lower_bound identity ?7639 =<= greatest_lower_bound (greatest_lower_bound identity (least_upper_bound identity ?7638)) ?7639 [7638, 7639] by Demod 5900 with 10 at 1,3 +Id : 7645, {_}: greatest_lower_bound identity ?9767 =<= greatest_lower_bound identity (greatest_lower_bound (least_upper_bound identity ?9768) ?9767) [9768, 9767] by Demod 5901 with 14 at 3 +Id : 270, {_}: multiply (greatest_lower_bound identity ?723) ?724 =<= greatest_lower_bound ?724 (multiply ?723 ?724) [724, 723] by Super 265 with 4 at 1,3 +Id : 7676, {_}: greatest_lower_bound identity (multiply ?9863 (least_upper_bound identity ?9864)) =<= greatest_lower_bound identity (multiply (greatest_lower_bound identity ?9863) (least_upper_bound identity ?9864)) [9864, 9863] by Super 7645 with 270 at 2,3 +Id : 444411, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (multiply ?378412 (least_upper_bound identity (inverse ?378412)))) [378412] by Demod 443814 with 7676 at 2,3 +Id : 2215, {_}: multiply ?3422 (least_upper_bound ?3423 (inverse ?3422)) =>= least_upper_bound (multiply ?3422 ?3423) identity [3423, 3422] by Super 26 with 2142 at 2,3 +Id : 2235, {_}: multiply ?3422 (least_upper_bound ?3423 (inverse ?3422)) =>= least_upper_bound identity (multiply ?3422 ?3423) [3423, 3422] by Demod 2215 with 12 at 3 +Id : 444412, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (least_upper_bound identity (multiply ?378412 identity))) [378412] by Demod 444411 with 2235 at 2,2,3 +Id : 444413, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =>= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) identity [378412] by Demod 444412 with 24 at 2,3 +Id : 444414, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =>= inverse (greatest_lower_bound identity (inverse ?378412)) [378412] by Demod 444413 with 2129 at 3 +Id : 761747, {_}: least_upper_bound (least_upper_bound identity ?693163) (inverse (greatest_lower_bound identity (inverse ?693163))) =>= least_upper_bound identity ?693163 [693163] by Super 128 with 444414 at 2,2 +Id : 762288, {_}: least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) (least_upper_bound identity ?693163) =>= least_upper_bound identity ?693163 [693163] by Demod 761747 with 12 at 2 +Id : 1150, {_}: least_upper_bound (least_upper_bound ?2078 ?2079) ?2078 =>= least_upper_bound ?2078 ?2079 [2079, 2078] by Super 12 with 100 at 3 +Id : 158742, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?149635 ?149636) ?149637) ?149635 =>= least_upper_bound ?149635 (least_upper_bound ?149636 ?149637) [149637, 149636, 149635] by Super 1150 with 16 at 1,2 +Id : 375, {_}: least_upper_bound (least_upper_bound ?872 ?873) ?872 =>= least_upper_bound ?872 ?873 [873, 872] by Super 12 with 100 at 3 +Id : 1142, {_}: least_upper_bound (least_upper_bound ?2051 ?2052) (least_upper_bound ?2051 ?2053) =>= least_upper_bound (least_upper_bound ?2051 ?2052) ?2053 [2053, 2052, 2051] by Super 16 with 375 at 1,3 +Id : 158880, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?150190 ?150191) ?150189) ?150190 =?= least_upper_bound ?150190 (least_upper_bound ?150191 (least_upper_bound ?150190 ?150189)) [150189, 150191, 150190] by Super 158742 with 1142 at 1,2 +Id : 1152, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?2086 ?2084) ?2085) ?2086 =>= least_upper_bound ?2086 (least_upper_bound ?2084 ?2085) [2085, 2084, 2086] by Super 1150 with 16 at 1,2 +Id : 159604, {_}: least_upper_bound ?150190 (least_upper_bound ?150191 ?150189) =<= least_upper_bound ?150190 (least_upper_bound ?150191 (least_upper_bound ?150190 ?150189)) [150189, 150191, 150190] by Demod 158880 with 1152 at 2 +Id : 126, {_}: least_upper_bound ?351 ?349 =<= least_upper_bound (least_upper_bound ?351 ?349) (greatest_lower_bound ?349 ?350) [350, 349, 351] by Super 16 with 22 at 2,2 +Id : 135029, {_}: least_upper_bound ?113864 ?113865 =<= least_upper_bound (greatest_lower_bound ?113865 ?113866) (least_upper_bound ?113864 ?113865) [113866, 113865, 113864] by Demod 126 with 12 at 3 +Id : 135153, {_}: least_upper_bound ?114345 (least_upper_bound ?114346 ?114344) =<= least_upper_bound ?114346 (least_upper_bound ?114345 (least_upper_bound ?114346 ?114344)) [114344, 114346, 114345] by Super 135029 with 139 at 1,3 +Id : 503059, {_}: least_upper_bound ?150190 (least_upper_bound ?150191 ?150189) =?= least_upper_bound ?150191 (least_upper_bound ?150190 ?150189) [150189, 150191, 150190] by Demod 159604 with 135153 at 3 +Id : 762289, {_}: least_upper_bound identity (least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) ?693163) =>= least_upper_bound identity ?693163 [693163] by Demod 762288 with 503059 at 2 +Id : 2280, {_}: multiply (greatest_lower_bound identity ?3504) (inverse ?3504) =>= greatest_lower_bound identity (inverse ?3504) [3504] by Super 874 with 2156 at 2,1,2 +Id : 2286, {_}: multiply (greatest_lower_bound identity ?3514) (inverse (greatest_lower_bound identity ?3514)) =>= greatest_lower_bound identity (inverse (greatest_lower_bound identity ?3514)) [3514] by Super 2280 with 112 at 1,2 +Id : 2335, {_}: identity =<= greatest_lower_bound identity (inverse (greatest_lower_bound identity ?3514)) [3514] by Demod 2286 with 2142 at 2 +Id : 2422, {_}: least_upper_bound identity (inverse (greatest_lower_bound identity ?3608)) =>= inverse (greatest_lower_bound identity ?3608) [3608] by Super 524 with 2335 at 1,2 +Id : 2722, {_}: least_upper_bound identity (least_upper_bound (inverse (greatest_lower_bound identity ?3826)) ?3827) =>= least_upper_bound (inverse (greatest_lower_bound identity ?3826)) ?3827 [3827, 3826] by Super 16 with 2422 at 1,3 +Id : 762290, {_}: least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) ?693163 =>= least_upper_bound identity ?693163 [693163] by Demod 762289 with 2722 at 2 +Id : 18327, {_}: multiply (inverse ?20394) (least_upper_bound (inverse ?20393) identity) =<= least_upper_bound (inverse (multiply ?20393 ?20394)) (inverse ?20394) [20393, 20394] by Super 9723 with 18209 at 1,3 +Id : 2112, {_}: multiply (inverse (inverse ?3265)) (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply (inverse (inverse ?3265)) ?3266) [3266, 3265] by Super 26 with 2091 at 1,3 +Id : 10376, {_}: multiply ?3265 (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply (inverse (inverse ?3265)) ?3266) [3266, 3265] by Demod 2112 with 2156 at 1,2 +Id : 10377, {_}: multiply ?3265 (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply ?3265 ?3266) [3266, 3265] by Demod 10376 with 2156 at 1,2,3 +Id : 10378, {_}: multiply ?3265 (least_upper_bound identity ?3266) =?= multiply ?3265 (least_upper_bound ?3266 identity) [3266, 3265] by Demod 10377 with 9743 at 3 +Id : 18347, {_}: multiply (inverse ?20394) (least_upper_bound identity (inverse ?20393)) =<= least_upper_bound (inverse (multiply ?20393 ?20394)) (inverse ?20394) [20393, 20394] by Demod 18327 with 10378 at 2 +Id : 2048, {_}: multiply (greatest_lower_bound identity (multiply ?3142 (inverse ?3143))) ?3143 =>= greatest_lower_bound ?3143 (multiply ?3142 identity) [3143, 3142] by Super 270 with 40 at 2,3 +Id : 194485, {_}: multiply (greatest_lower_bound identity (multiply ?3142 (inverse ?3143))) ?3143 =>= greatest_lower_bound ?3143 ?3142 [3143, 3142] by Demod 2048 with 2129 at 2,3 +Id : 194529, {_}: multiply (inverse ?186266) (least_upper_bound identity (inverse (greatest_lower_bound identity (multiply ?186265 (inverse ?186266))))) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186265, 186266] by Super 18347 with 194485 at 1,1,3 +Id : 194632, {_}: multiply (inverse ?186266) (inverse (greatest_lower_bound identity (multiply ?186265 (inverse ?186266)))) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186265, 186266] by Demod 194529 with 2422 at 2,2 +Id : 194633, {_}: inverse (multiply (greatest_lower_bound identity (multiply ?186265 (inverse ?186266))) ?186266) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186266, 186265] by Demod 194632 with 18209 at 2 +Id : 195668, {_}: inverse (greatest_lower_bound ?187604 ?187605) =<= least_upper_bound (inverse (greatest_lower_bound ?187604 ?187605)) (inverse ?187604) [187605, 187604] by Demod 194633 with 194485 at 1,2 +Id : 201008, {_}: inverse (greatest_lower_bound (inverse ?193412) ?193413) =<= least_upper_bound (inverse (greatest_lower_bound (inverse ?193412) ?193413)) ?193412 [193413, 193412] by Super 195668 with 2156 at 2,3 +Id : 201035, {_}: inverse (greatest_lower_bound (inverse ?193516) ?193517) =<= least_upper_bound (inverse (greatest_lower_bound ?193517 (inverse ?193516))) ?193516 [193517, 193516] by Super 201008 with 10 at 1,1,3 +Id : 762291, {_}: inverse (greatest_lower_bound (inverse ?693163) identity) =>= least_upper_bound identity ?693163 [693163] by Demod 762290 with 201035 at 2 +Id : 18116, {_}: multiply ?20080 (inverse (multiply (inverse ?20081) ?20080)) =>= ?20081 [20081, 20080] by Super 2194 with 2238 at 1,2 +Id : 20397, {_}: multiply ?22035 (inverse (multiply ?22036 ?22035)) =>= inverse ?22036 [22036, 22035] by Super 18116 with 2156 at 1,1,2,2 +Id : 267, {_}: multiply (greatest_lower_bound ?710 (inverse ?711)) ?711 =>= greatest_lower_bound (multiply ?710 ?711) identity [711, 710] by Super 265 with 6 at 2,3 +Id : 287, {_}: multiply (greatest_lower_bound ?710 (inverse ?711)) ?711 =>= greatest_lower_bound identity (multiply ?710 ?711) [711, 710] by Demod 267 with 10 at 3 +Id : 20404, {_}: multiply ?22056 (inverse (greatest_lower_bound identity (multiply ?22055 ?22056))) =>= inverse (greatest_lower_bound ?22055 (inverse ?22056)) [22055, 22056] by Super 20397 with 287 at 1,2,2 +Id : 271, {_}: multiply (greatest_lower_bound (inverse ?727) ?726) ?727 =>= greatest_lower_bound identity (multiply ?726 ?727) [726, 727] by Super 265 with 6 at 1,3 +Id : 20403, {_}: multiply ?22053 (inverse (greatest_lower_bound identity (multiply ?22052 ?22053))) =>= inverse (greatest_lower_bound (inverse ?22053) ?22052) [22052, 22053] by Super 20397 with 271 at 1,2,2 +Id : 354211, {_}: inverse (greatest_lower_bound (inverse ?22056) ?22055) =?= inverse (greatest_lower_bound ?22055 (inverse ?22056)) [22055, 22056] by Demod 20404 with 20403 at 2 +Id : 763705, {_}: inverse (greatest_lower_bound identity (inverse ?694794)) =>= least_upper_bound identity ?694794 [694794] by Demod 762291 with 354211 at 2 +Id : 763707, {_}: inverse (greatest_lower_bound identity ?694797) =<= least_upper_bound identity (inverse ?694797) [694797] by Super 763705 with 2156 at 2,1,2 +Id : 766509, {_}: multiply (least_upper_bound identity ?11957) (inverse (greatest_lower_bound identity ?11957)) =>= least_upper_bound ?11957 (inverse ?11957) [11957] by Demod 383800 with 763707 at 2,2 +Id : 383797, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (inverse ?12325) [12325] by Demod 10289 with 382808 at 3 +Id : 766508, {_}: multiply (inverse (greatest_lower_bound identity ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (inverse ?12325) [12325] by Demod 383797 with 763707 at 1,2 +Id : 768092, {_}: least_upper_bound a (inverse a) === least_upper_bound a (inverse a) [] by Demod 768091 with 766508 at 3 +Id : 768091, {_}: least_upper_bound a (inverse a) =<= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound identity a) [] by Demod 298 with 766509 at 2 +Id : 298, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound identity a) [] by Demod 297 with 12 at 2,3 +Id : 297, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound a identity) [] by Demod 296 with 10 at 1,1,3 +Id : 296, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by Demod 295 with 10 at 1,2,2 +Id : 295, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by Demod 2 with 12 at 1,2 +Id : 2, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21x +% SZS output end CNFRefutation for GRP184-3.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + glb_absorbtion is 80 + greatest_lower_bound is 88 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 95 + inverse is 91 + least_upper_bound is 94 + left_identity is 92 + left_inverse is 90 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 96 + p22a_1 is 75 + p22a_2 is 74 + p22a_3 is 73 + prove_p22a is 93 + symmetry_of_glb is 87 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: inverse identity =>= identity [] by p22a_1 + Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p22a_2 ?51 + Id : 38, {_}: + inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) + [54, 53] by p22a_3 ?53 ?54 +Goal + Id : 2, {_}: + least_upper_bound (least_upper_bound (multiply a b) identity) + (multiply (least_upper_bound a identity) + (least_upper_bound b identity)) + =>= + multiply (least_upper_bound a identity) + (least_upper_bound b identity) + [] by prove_p22a +Last chance: 1246061240.31 +Last chance: all is indexed 1246062610.72 +Last chance: failed over 100 goal 1246062611.07 +FAILURE in 0 iterations +% SZS status Timeout for GRP185-2.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + glb_absorbtion is 80 + greatest_lower_bound is 93 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 95 + inverse is 90 + least_upper_bound is 94 + left_identity is 91 + left_inverse is 89 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 96 + prove_p22b is 92 + symmetry_of_glb is 87 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Goal + Id : 2, {_}: + greatest_lower_bound (least_upper_bound (multiply a b) identity) + (multiply (least_upper_bound a identity) + (least_upper_bound b identity)) + =>= + least_upper_bound (multiply a b) identity + [] by prove_p22b +Last chance: 1246062912.35 +Last chance: all is indexed 1246064177.36 +Last chance: failed over 100 goal 1246064177.45 +FAILURE in 0 iterations +% SZS status Timeout for GRP185-3.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + glb_absorbtion is 80 + greatest_lower_bound is 92 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 95 + inverse is 93 + least_upper_bound is 94 + left_identity is 90 + left_inverse is 89 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 96 + prove_p23 is 91 + symmetry_of_glb is 87 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Goal + Id : 2, {_}: + least_upper_bound (multiply a b) identity + =<= + multiply a (inverse (greatest_lower_bound a (inverse b))) + [] by prove_p23 +Found proof, 54.277350s +% SZS status Unsatisfiable for GRP186-1.p +% SZS output start CNFRefutation for GRP186-1.p +Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 +Id : 194, {_}: multiply ?539 (greatest_lower_bound ?540 ?541) =<= greatest_lower_bound (multiply ?539 ?540) (multiply ?539 ?541) [541, 540, 539] by monotony_glb1 ?539 ?540 ?541 +Id : 26, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 +Id : 125, {_}: least_upper_bound ?350 (greatest_lower_bound ?350 ?351) =>= ?350 [351, 350] by lub_absorbtion ?350 ?351 +Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 +Id : 143, {_}: greatest_lower_bound ?403 (least_upper_bound ?403 ?404) =>= ?403 [404, 403] by glb_absorbtion ?403 ?404 +Id : 30, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 +Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 +Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 +Id : 32, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Id : 28, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 +Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 +Id : 228, {_}: multiply (least_upper_bound ?618 ?619) ?620 =<= least_upper_bound (multiply ?618 ?620) (multiply ?619 ?620) [620, 619, 618] by monotony_lub2 ?618 ?619 ?620 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 37, {_}: multiply (multiply ?58 ?59) ?60 =?= multiply ?58 (multiply ?59 ?60) [60, 59, 58] by associativity ?58 ?59 ?60 +Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 +Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 +Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 163, {_}: multiply ?463 (least_upper_bound ?464 ?465) =<= least_upper_bound (multiply ?463 ?464) (multiply ?463 ?465) [465, 464, 463] by monotony_lub1 ?463 ?464 ?465 +Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 +Id : 1397, {_}: multiply (inverse ?2611) (least_upper_bound ?2611 ?2612) =>= least_upper_bound identity (multiply (inverse ?2611) ?2612) [2612, 2611] by Super 163 with 6 at 1,3 +Id : 120, {_}: least_upper_bound (greatest_lower_bound ?332 ?333) ?332 =>= ?332 [333, 332] by Super 12 with 22 at 3 +Id : 1403, {_}: multiply (inverse (greatest_lower_bound ?2630 ?2629)) ?2630 =<= least_upper_bound identity (multiply (inverse (greatest_lower_bound ?2630 ?2629)) ?2630) [2629, 2630] by Super 1397 with 120 at 2,2 +Id : 137, {_}: greatest_lower_bound (least_upper_bound ?382 ?383) ?382 =>= ?382 [383, 382] by Super 10 with 24 at 3 +Id : 39, {_}: multiply (multiply ?65 (inverse ?66)) ?66 =>= multiply ?65 identity [66, 65] by Super 37 with 6 at 2,3 +Id : 1222, {_}: multiply (multiply ?2303 (inverse ?2304)) ?2304 =>= multiply ?2303 identity [2304, 2303] by Super 37 with 6 at 2,3 +Id : 1225, {_}: multiply identity ?2310 =<= multiply (inverse (inverse ?2310)) identity [2310] by Super 1222 with 6 at 1,2 +Id : 1240, {_}: ?2310 =<= multiply (inverse (inverse ?2310)) identity [2310] by Demod 1225 with 4 at 2 +Id : 38, {_}: multiply (multiply ?62 identity) ?63 =>= multiply ?62 ?63 [63, 62] by Super 37 with 4 at 2,3 +Id : 1245, {_}: multiply ?2332 ?2333 =<= multiply (inverse (inverse ?2332)) ?2333 [2333, 2332] by Super 38 with 1240 at 1,2 +Id : 1261, {_}: ?2310 =<= multiply ?2310 identity [2310] by Demod 1240 with 1245 at 3 +Id : 1262, {_}: multiply (multiply ?65 (inverse ?66)) ?66 =>= ?65 [66, 65] by Demod 39 with 1261 at 3 +Id : 234, {_}: multiply (least_upper_bound (inverse ?642) ?641) ?642 =>= least_upper_bound identity (multiply ?641 ?642) [641, 642] by Super 228 with 6 at 1,3 +Id : 1630, {_}: multiply (least_upper_bound identity (multiply ?2984 (inverse ?2985))) ?2985 =>= least_upper_bound (inverse (inverse ?2985)) ?2984 [2985, 2984] by Super 1262 with 234 at 1,2 +Id : 1277, {_}: inverse (inverse ?2419) =<= multiply ?2419 identity [2419] by Super 1261 with 1245 at 3 +Id : 1283, {_}: inverse (inverse ?2419) =>= ?2419 [2419] by Demod 1277 with 1261 at 3 +Id : 59624, {_}: multiply (least_upper_bound identity (multiply ?78799 (inverse ?78800))) ?78800 =>= least_upper_bound ?78800 ?78799 [78800, 78799] by Demod 1630 with 1283 at 1,3 +Id : 59667, {_}: multiply (multiply (inverse (greatest_lower_bound (inverse ?78935) ?78934)) (inverse ?78935)) ?78935 =>= least_upper_bound ?78935 (inverse (greatest_lower_bound (inverse ?78935) ?78934)) [78934, 78935] by Super 59624 with 1403 at 1,2 +Id : 59764, {_}: multiply (inverse (greatest_lower_bound (inverse ?78935) ?78934)) (multiply (inverse ?78935) ?78935) =>= least_upper_bound ?78935 (inverse (greatest_lower_bound (inverse ?78935) ?78934)) [78934, 78935] by Demod 59667 with 8 at 2 +Id : 1311, {_}: multiply (multiply ?2436 ?2435) (inverse ?2435) =>= ?2436 [2435, 2436] by Super 1262 with 1283 at 2,1,2 +Id : 46, {_}: multiply identity ?93 =<= multiply (inverse ?92) (multiply ?92 ?93) [92, 93] by Super 37 with 6 at 1,2 +Id : 55, {_}: ?93 =<= multiply (inverse ?92) (multiply ?92 ?93) [92, 93] by Demod 46 with 4 at 2 +Id : 1907, {_}: inverse ?3391 =<= multiply (inverse (multiply ?3390 ?3391)) ?3390 [3390, 3391] by Super 55 with 1311 at 2,3 +Id : 2602, {_}: multiply (inverse ?4415) (inverse ?4416) =>= inverse (multiply ?4416 ?4415) [4416, 4415] by Super 1311 with 1907 at 1,2 +Id : 2683, {_}: multiply (inverse (multiply ?4589 ?4588)) ?4590 =<= multiply (inverse ?4588) (multiply (inverse ?4589) ?4590) [4590, 4588, 4589] by Super 8 with 2602 at 1,2 +Id : 59765, {_}: multiply (inverse (multiply ?78935 (greatest_lower_bound (inverse ?78935) ?78934))) ?78935 =>= least_upper_bound ?78935 (inverse (greatest_lower_bound (inverse ?78935) ?78934)) [78934, 78935] by Demod 59764 with 2683 at 2 +Id : 59766, {_}: inverse (greatest_lower_bound (inverse ?78935) ?78934) =<= least_upper_bound ?78935 (inverse (greatest_lower_bound (inverse ?78935) ?78934)) [78934, 78935] by Demod 59765 with 1907 at 2 +Id : 75243, {_}: greatest_lower_bound (inverse (greatest_lower_bound (inverse ?90061) ?90062)) ?90061 =>= ?90061 [90062, 90061] by Super 137 with 59766 at 1,2 +Id : 75245, {_}: greatest_lower_bound (inverse (greatest_lower_bound ?90066 ?90067)) (inverse ?90066) =>= inverse ?90066 [90067, 90066] by Super 75243 with 1283 at 1,1,1,2 +Id : 90405, {_}: multiply (inverse (greatest_lower_bound (inverse (greatest_lower_bound ?103908 ?103909)) (inverse ?103908))) (inverse (greatest_lower_bound ?103908 ?103909)) =>= least_upper_bound identity (multiply (inverse (inverse ?103908)) (inverse (greatest_lower_bound ?103908 ?103909))) [103909, 103908] by Super 1403 with 75245 at 1,1,2,3 +Id : 90576, {_}: inverse (multiply (greatest_lower_bound ?103908 ?103909) (greatest_lower_bound (inverse (greatest_lower_bound ?103908 ?103909)) (inverse ?103908))) =>= least_upper_bound identity (multiply (inverse (inverse ?103908)) (inverse (greatest_lower_bound ?103908 ?103909))) [103909, 103908] by Demod 90405 with 2602 at 2 +Id : 1272, {_}: multiply ?2401 (inverse ?2401) =>= identity [2401] by Super 6 with 1245 at 2 +Id : 1323, {_}: multiply ?2456 (greatest_lower_bound (inverse ?2456) ?2457) =>= greatest_lower_bound identity (multiply ?2456 ?2457) [2457, 2456] by Super 28 with 1272 at 1,3 +Id : 90577, {_}: inverse (greatest_lower_bound identity (multiply (greatest_lower_bound ?103908 ?103909) (inverse ?103908))) =<= least_upper_bound identity (multiply (inverse (inverse ?103908)) (inverse (greatest_lower_bound ?103908 ?103909))) [103909, 103908] by Demod 90576 with 1323 at 1,2 +Id : 1321, {_}: multiply (greatest_lower_bound ?2450 ?2451) (inverse ?2450) =>= greatest_lower_bound identity (multiply ?2451 (inverse ?2450)) [2451, 2450] by Super 32 with 1272 at 1,3 +Id : 90578, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity (multiply ?103909 (inverse ?103908)))) =<= least_upper_bound identity (multiply (inverse (inverse ?103908)) (inverse (greatest_lower_bound ?103908 ?103909))) [103908, 103909] by Demod 90577 with 1321 at 2,1,2 +Id : 110, {_}: greatest_lower_bound ?310 (greatest_lower_bound ?310 ?311) =>= greatest_lower_bound ?310 ?311 [311, 310] by Super 14 with 20 at 1,3 +Id : 90579, {_}: inverse (greatest_lower_bound identity (multiply ?103909 (inverse ?103908))) =<= least_upper_bound identity (multiply (inverse (inverse ?103908)) (inverse (greatest_lower_bound ?103908 ?103909))) [103908, 103909] by Demod 90578 with 110 at 1,2 +Id : 90580, {_}: inverse (greatest_lower_bound identity (multiply ?103909 (inverse ?103908))) =<= least_upper_bound identity (inverse (multiply (greatest_lower_bound ?103908 ?103909) (inverse ?103908))) [103908, 103909] by Demod 90579 with 2602 at 2,3 +Id : 2693, {_}: multiply (inverse ?4622) (inverse ?4623) =>= inverse (multiply ?4623 ?4622) [4623, 4622] by Super 1311 with 1907 at 1,2 +Id : 2697, {_}: multiply ?4632 (inverse ?4633) =<= inverse (multiply ?4633 (inverse ?4632)) [4633, 4632] by Super 2693 with 1283 at 1,2 +Id : 90581, {_}: inverse (greatest_lower_bound identity (multiply ?103909 (inverse ?103908))) =<= least_upper_bound identity (multiply ?103908 (inverse (greatest_lower_bound ?103908 ?103909))) [103908, 103909] by Demod 90580 with 2697 at 2,3 +Id : 2159, {_}: multiply (least_upper_bound ?3809 ?3810) (inverse ?3809) =>= least_upper_bound identity (multiply ?3810 (inverse ?3809)) [3810, 3809] by Super 30 with 1272 at 1,3 +Id : 2167, {_}: multiply ?3833 (inverse (greatest_lower_bound ?3833 ?3832)) =<= least_upper_bound identity (multiply ?3833 (inverse (greatest_lower_bound ?3833 ?3832))) [3832, 3833] by Super 2159 with 120 at 1,2 +Id : 241130, {_}: inverse (greatest_lower_bound identity (multiply ?281248 (inverse ?281249))) =?= multiply ?281249 (inverse (greatest_lower_bound ?281249 ?281248)) [281249, 281248] by Demod 90581 with 2167 at 3 +Id : 241323, {_}: inverse (greatest_lower_bound identity (inverse (multiply ?281886 ?281885))) =<= multiply ?281886 (inverse (greatest_lower_bound ?281886 (inverse ?281885))) [281885, 281886] by Super 241130 with 2602 at 2,1,2 +Id : 1908, {_}: multiply (multiply ?3393 ?3394) (inverse ?3394) =>= ?3393 [3394, 3393] by Super 1262 with 1283 at 2,1,2 +Id : 1918, {_}: multiply (least_upper_bound identity (multiply ?3421 ?3422)) (inverse ?3422) =>= least_upper_bound (inverse ?3422) ?3421 [3422, 3421] by Super 1908 with 234 at 1,2 +Id : 169, {_}: multiply (inverse ?486) (least_upper_bound ?486 ?487) =>= least_upper_bound identity (multiply (inverse ?486) ?487) [487, 486] by Super 163 with 6 at 1,3 +Id : 1396, {_}: least_upper_bound ?2608 ?2609 =<= multiply (inverse (inverse ?2608)) (least_upper_bound identity (multiply (inverse ?2608) ?2609)) [2609, 2608] by Super 55 with 169 at 2,3 +Id : 1416, {_}: least_upper_bound ?2608 ?2609 =<= multiply ?2608 (least_upper_bound identity (multiply (inverse ?2608) ?2609)) [2609, 2608] by Demod 1396 with 1283 at 1,3 +Id : 512, {_}: least_upper_bound (greatest_lower_bound ?1197 ?1198) ?1197 =>= ?1197 [1198, 1197] by Super 12 with 22 at 3 +Id : 513, {_}: least_upper_bound (greatest_lower_bound ?1201 ?1200) ?1200 =>= ?1200 [1200, 1201] by Super 512 with 10 at 1,2 +Id : 1407, {_}: multiply (inverse (greatest_lower_bound ?2641 ?2642)) ?2642 =<= least_upper_bound identity (multiply (inverse (greatest_lower_bound ?2641 ?2642)) ?2642) [2642, 2641] by Super 1397 with 513 at 2,2 +Id : 144, {_}: greatest_lower_bound ?406 (least_upper_bound ?407 ?406) =>= ?406 [407, 406] by Super 143 with 12 at 2,2 +Id : 12520, {_}: multiply (inverse (greatest_lower_bound ?25685 ?25686)) ?25685 =<= least_upper_bound identity (multiply (inverse (greatest_lower_bound ?25685 ?25686)) ?25685) [25686, 25685] by Super 1397 with 120 at 2,2 +Id : 12560, {_}: multiply (inverse (greatest_lower_bound identity ?25830)) identity =>= least_upper_bound identity (inverse (greatest_lower_bound identity ?25830)) [25830] by Super 12520 with 1261 at 2,3 +Id : 12795, {_}: inverse (greatest_lower_bound identity ?25965) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?25965)) [25965] by Demod 12560 with 1261 at 2 +Id : 12796, {_}: inverse (greatest_lower_bound identity ?25967) =<= least_upper_bound identity (inverse (greatest_lower_bound ?25967 identity)) [25967] by Super 12795 with 10 at 1,2,3 +Id : 20061, {_}: least_upper_bound identity (least_upper_bound (inverse (greatest_lower_bound ?34946 identity)) ?34947) =>= least_upper_bound (inverse (greatest_lower_bound identity ?34946)) ?34947 [34947, 34946] by Super 16 with 12796 at 1,3 +Id : 20078, {_}: least_upper_bound identity (least_upper_bound ?35005 (inverse (greatest_lower_bound ?35004 identity))) =>= least_upper_bound (inverse (greatest_lower_bound identity ?35004)) ?35005 [35004, 35005] by Super 20061 with 12 at 2,2 +Id : 126, {_}: least_upper_bound ?353 (greatest_lower_bound ?354 ?353) =>= ?353 [354, 353] by Super 125 with 10 at 2,2 +Id : 547, {_}: least_upper_bound ?1258 ?1256 =<= least_upper_bound (least_upper_bound ?1258 ?1256) (greatest_lower_bound ?1257 ?1256) [1257, 1256, 1258] by Super 16 with 126 at 2,2 +Id : 570, {_}: least_upper_bound ?1258 ?1256 =<= least_upper_bound (greatest_lower_bound ?1257 ?1256) (least_upper_bound ?1258 ?1256) [1257, 1256, 1258] by Demod 547 with 12 at 3 +Id : 12745, {_}: inverse (greatest_lower_bound identity ?25830) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?25830)) [25830] by Demod 12560 with 1261 at 2 +Id : 12983, {_}: greatest_lower_bound identity (inverse (greatest_lower_bound identity ?26133)) =>= identity [26133] by Super 24 with 12745 at 2,2 +Id : 12984, {_}: greatest_lower_bound identity (inverse (greatest_lower_bound ?26135 identity)) =>= identity [26135] by Super 12983 with 10 at 1,2,2 +Id : 13334, {_}: least_upper_bound ?26447 (inverse (greatest_lower_bound ?26446 identity)) =<= least_upper_bound identity (least_upper_bound ?26447 (inverse (greatest_lower_bound ?26446 identity))) [26446, 26447] by Super 570 with 12984 at 1,3 +Id : 33938, {_}: least_upper_bound ?35005 (inverse (greatest_lower_bound ?35004 identity)) =?= least_upper_bound (inverse (greatest_lower_bound identity ?35004)) ?35005 [35004, 35005] by Demod 20078 with 13334 at 2 +Id : 59877, {_}: inverse (greatest_lower_bound (inverse ?79280) identity) =<= least_upper_bound (inverse (greatest_lower_bound identity (inverse ?79280))) ?79280 [79280] by Super 33938 with 59766 at 2 +Id : 13166, {_}: inverse (greatest_lower_bound identity ?26300) =<= least_upper_bound identity (inverse (greatest_lower_bound ?26300 identity)) [26300] by Super 12795 with 10 at 1,2,3 +Id : 588, {_}: greatest_lower_bound ?1337 ?1335 =<= greatest_lower_bound (greatest_lower_bound ?1337 (least_upper_bound ?1335 ?1336)) ?1335 [1336, 1335, 1337] by Super 14 with 137 at 2,2 +Id : 13179, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound ?26330 (least_upper_bound identity ?26331))) =>= least_upper_bound identity (inverse (greatest_lower_bound ?26330 identity)) [26331, 26330] by Super 13166 with 588 at 1,2,3 +Id : 13288, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound ?26330 (least_upper_bound identity ?26331))) =>= inverse (greatest_lower_bound identity ?26330) [26331, 26330] by Demod 13179 with 12796 at 3 +Id : 508, {_}: least_upper_bound ?1185 ?1183 =<= least_upper_bound (least_upper_bound ?1185 (greatest_lower_bound ?1183 ?1184)) ?1183 [1184, 1183, 1185] by Super 16 with 120 at 2,2 +Id : 139, {_}: greatest_lower_bound ?388 (greatest_lower_bound (least_upper_bound ?388 ?389) ?390) =>= greatest_lower_bound ?388 ?390 [390, 389, 388] by Super 14 with 24 at 1,3 +Id : 12760, {_}: greatest_lower_bound identity (greatest_lower_bound (inverse (greatest_lower_bound identity ?25876)) ?25877) =>= greatest_lower_bound identity ?25877 [25877, 25876] by Super 139 with 12745 at 1,2,2 +Id : 13743, {_}: least_upper_bound ?26971 identity =<= least_upper_bound (least_upper_bound ?26971 (greatest_lower_bound identity ?26970)) identity [26970, 26971] by Super 508 with 12760 at 2,1,3 +Id : 13824, {_}: least_upper_bound ?26971 identity =<= least_upper_bound identity (least_upper_bound ?26971 (greatest_lower_bound identity ?26970)) [26970, 26971] by Demod 13743 with 12 at 3 +Id : 14000, {_}: greatest_lower_bound ?27303 identity =<= greatest_lower_bound (greatest_lower_bound ?27303 (least_upper_bound ?27301 identity)) identity [27301, 27303] by Super 588 with 13824 at 2,1,3 +Id : 15451, {_}: greatest_lower_bound ?29213 identity =<= greatest_lower_bound identity (greatest_lower_bound ?29213 (least_upper_bound ?29214 identity)) [29214, 29213] by Demod 14000 with 10 at 3 +Id : 15452, {_}: greatest_lower_bound ?29216 identity =<= greatest_lower_bound identity (greatest_lower_bound ?29216 (least_upper_bound identity ?29217)) [29217, 29216] by Super 15451 with 12 at 2,2,3 +Id : 21667, {_}: inverse (greatest_lower_bound ?26330 identity) =?= inverse (greatest_lower_bound identity ?26330) [26330] by Demod 13288 with 15452 at 1,2 +Id : 60032, {_}: inverse (greatest_lower_bound identity (inverse ?79280)) =<= least_upper_bound (inverse (greatest_lower_bound identity (inverse ?79280))) ?79280 [79280] by Demod 59877 with 21667 at 2 +Id : 61973, {_}: greatest_lower_bound ?80555 (inverse (greatest_lower_bound identity (inverse ?80555))) =>= ?80555 [80555] by Super 144 with 60032 at 2,2 +Id : 61975, {_}: greatest_lower_bound (inverse ?80558) (inverse (greatest_lower_bound identity ?80558)) =>= inverse ?80558 [80558] by Super 61973 with 1283 at 2,1,2,2 +Id : 64087, {_}: multiply (inverse (greatest_lower_bound (inverse ?81915) (inverse (greatest_lower_bound identity ?81915)))) (inverse (greatest_lower_bound identity ?81915)) =>= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Super 1407 with 61975 at 1,1,2,3 +Id : 64168, {_}: inverse (multiply (greatest_lower_bound identity ?81915) (greatest_lower_bound (inverse ?81915) (inverse (greatest_lower_bound identity ?81915)))) =>= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64087 with 2602 at 2 +Id : 1322, {_}: multiply ?2453 (greatest_lower_bound ?2454 (inverse ?2453)) =>= greatest_lower_bound (multiply ?2453 ?2454) identity [2454, 2453] by Super 28 with 1272 at 2,3 +Id : 1343, {_}: multiply ?2453 (greatest_lower_bound ?2454 (inverse ?2453)) =>= greatest_lower_bound identity (multiply ?2453 ?2454) [2454, 2453] by Demod 1322 with 10 at 3 +Id : 64169, {_}: inverse (greatest_lower_bound identity (multiply (greatest_lower_bound identity ?81915) (inverse ?81915))) =<= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64168 with 1343 at 1,2 +Id : 1320, {_}: multiply (greatest_lower_bound ?2448 ?2447) (inverse ?2447) =>= greatest_lower_bound (multiply ?2448 (inverse ?2447)) identity [2447, 2448] by Super 32 with 1272 at 2,3 +Id : 1344, {_}: multiply (greatest_lower_bound ?2448 ?2447) (inverse ?2447) =>= greatest_lower_bound identity (multiply ?2448 (inverse ?2447)) [2447, 2448] by Demod 1320 with 10 at 3 +Id : 64170, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity (multiply identity (inverse ?81915)))) =<= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64169 with 1344 at 2,1,2 +Id : 64171, {_}: inverse (greatest_lower_bound identity (multiply identity (inverse ?81915))) =<= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64170 with 110 at 1,2 +Id : 64172, {_}: inverse (greatest_lower_bound identity (inverse ?81915)) =<= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64171 with 4 at 2,1,2 +Id : 64173, {_}: inverse (greatest_lower_bound identity (inverse ?81915)) =<= least_upper_bound identity (inverse (multiply (greatest_lower_bound identity ?81915) (inverse ?81915))) [81915] by Demod 64172 with 2602 at 2,3 +Id : 64174, {_}: inverse (greatest_lower_bound identity (inverse ?81915)) =<= least_upper_bound identity (multiply ?81915 (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64173 with 2697 at 2,3 +Id : 1328, {_}: multiply ?2469 (least_upper_bound ?2470 (inverse ?2469)) =>= least_upper_bound (multiply ?2469 ?2470) identity [2470, 2469] by Super 26 with 1272 at 2,3 +Id : 1339, {_}: multiply ?2469 (least_upper_bound ?2470 (inverse ?2469)) =>= least_upper_bound identity (multiply ?2469 ?2470) [2470, 2469] by Demod 1328 with 12 at 3 +Id : 60418, {_}: multiply ?79661 (inverse (greatest_lower_bound identity (inverse (inverse ?79661)))) =<= least_upper_bound identity (multiply ?79661 (inverse (greatest_lower_bound identity (inverse (inverse ?79661))))) [79661] by Super 1339 with 60032 at 2,2 +Id : 60787, {_}: multiply ?79661 (inverse (greatest_lower_bound identity ?79661)) =<= least_upper_bound identity (multiply ?79661 (inverse (greatest_lower_bound identity (inverse (inverse ?79661))))) [79661] by Demod 60418 with 1283 at 2,1,2,2 +Id : 60788, {_}: multiply ?79661 (inverse (greatest_lower_bound identity ?79661)) =<= least_upper_bound identity (multiply ?79661 (inverse (greatest_lower_bound identity ?79661))) [79661] by Demod 60787 with 1283 at 2,1,2,2,3 +Id : 79553, {_}: inverse (greatest_lower_bound identity (inverse ?81915)) =<= multiply ?81915 (inverse (greatest_lower_bound identity ?81915)) [81915] by Demod 64174 with 60788 at 3 +Id : 79566, {_}: multiply (inverse (greatest_lower_bound identity (inverse ?93969))) (greatest_lower_bound identity ?93969) =>= ?93969 [93969] by Super 1262 with 79553 at 1,2 +Id : 210019, {_}: least_upper_bound (greatest_lower_bound identity (inverse ?259211)) (greatest_lower_bound identity ?259211) =<= multiply (greatest_lower_bound identity (inverse ?259211)) (least_upper_bound identity ?259211) [259211] by Super 1416 with 79566 at 2,2,3 +Id : 210576, {_}: multiply (least_upper_bound identity (least_upper_bound (greatest_lower_bound identity (inverse ?259634)) (greatest_lower_bound identity ?259634))) (inverse (least_upper_bound identity ?259634)) =>= least_upper_bound (inverse (least_upper_bound identity ?259634)) (greatest_lower_bound identity (inverse ?259634)) [259634] by Super 1918 with 210019 at 2,1,2 +Id : 122, {_}: least_upper_bound ?338 (least_upper_bound (greatest_lower_bound ?338 ?339) ?340) =>= least_upper_bound ?338 ?340 [340, 339, 338] by Super 16 with 22 at 1,3 +Id : 210728, {_}: multiply (least_upper_bound identity (greatest_lower_bound identity ?259634)) (inverse (least_upper_bound identity ?259634)) =>= least_upper_bound (inverse (least_upper_bound identity ?259634)) (greatest_lower_bound identity (inverse ?259634)) [259634] by Demod 210576 with 122 at 1,2 +Id : 210729, {_}: multiply identity (inverse (least_upper_bound identity ?259634)) =<= least_upper_bound (inverse (least_upper_bound identity ?259634)) (greatest_lower_bound identity (inverse ?259634)) [259634] by Demod 210728 with 22 at 1,2 +Id : 210730, {_}: inverse (least_upper_bound identity ?259634) =<= least_upper_bound (inverse (least_upper_bound identity ?259634)) (greatest_lower_bound identity (inverse ?259634)) [259634] by Demod 210729 with 4 at 2 +Id : 210731, {_}: inverse (least_upper_bound identity ?259634) =<= least_upper_bound (greatest_lower_bound identity (inverse ?259634)) (inverse (least_upper_bound identity ?259634)) [259634] by Demod 210730 with 12 at 3 +Id : 425033, {_}: greatest_lower_bound (inverse (least_upper_bound identity ?443021)) (greatest_lower_bound identity (inverse ?443021)) =>= greatest_lower_bound identity (inverse ?443021) [443021] by Super 137 with 210731 at 1,2 +Id : 425426, {_}: greatest_lower_bound (greatest_lower_bound identity (inverse ?443021)) (inverse (least_upper_bound identity ?443021)) =>= greatest_lower_bound identity (inverse ?443021) [443021] by Demod 425033 with 10 at 2 +Id : 425427, {_}: greatest_lower_bound identity (greatest_lower_bound (inverse ?443021) (inverse (least_upper_bound identity ?443021))) =>= greatest_lower_bound identity (inverse ?443021) [443021] by Demod 425426 with 14 at 2 +Id : 441, {_}: greatest_lower_bound ?1042 (greatest_lower_bound ?1042 ?1043) =>= greatest_lower_bound ?1042 ?1043 [1043, 1042] by Super 14 with 20 at 1,3 +Id : 997, {_}: greatest_lower_bound ?1977 (greatest_lower_bound ?1978 ?1977) =>= greatest_lower_bound ?1977 ?1978 [1978, 1977] by Super 441 with 10 at 2,2 +Id : 1008, {_}: greatest_lower_bound ?2012 (greatest_lower_bound ?2010 (greatest_lower_bound ?2011 ?2012)) =>= greatest_lower_bound ?2012 (greatest_lower_bound ?2010 ?2011) [2011, 2010, 2012] by Super 997 with 14 at 2,2 +Id : 196, {_}: multiply (inverse ?547) (greatest_lower_bound ?546 ?547) =>= greatest_lower_bound (multiply (inverse ?547) ?546) identity [546, 547] by Super 194 with 6 at 2,3 +Id : 215, {_}: multiply (inverse ?547) (greatest_lower_bound ?546 ?547) =>= greatest_lower_bound identity (multiply (inverse ?547) ?546) [546, 547] by Demod 196 with 10 at 3 +Id : 145, {_}: greatest_lower_bound ?411 (least_upper_bound (least_upper_bound ?411 ?409) ?410) =>= ?411 [410, 409, 411] by Super 143 with 16 at 2,2 +Id : 13972, {_}: greatest_lower_bound identity (least_upper_bound (least_upper_bound ?27209 identity) ?27211) =>= identity [27211, 27209] by Super 145 with 13824 at 1,2,2 +Id : 14608, {_}: multiply (inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966)) identity =<= greatest_lower_bound identity (multiply (inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966)) identity) [27966, 27965] by Super 215 with 13972 at 2,2 +Id : 14746, {_}: inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966) =<= greatest_lower_bound identity (multiply (inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966)) identity) [27966, 27965] by Demod 14608 with 1261 at 2 +Id : 14747, {_}: inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966) =<= greatest_lower_bound identity (inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966)) [27966, 27965] by Demod 14746 with 1261 at 2,3 +Id : 14621, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound ?28005 identity) ?28006) =>= least_upper_bound (least_upper_bound ?28005 identity) ?28006 [28006, 28005] by Super 513 with 13972 at 1,2 +Id : 371, {_}: least_upper_bound ?890 (least_upper_bound ?890 ?891) =>= least_upper_bound ?890 ?891 [891, 890] by Super 16 with 18 at 1,3 +Id : 372, {_}: least_upper_bound ?893 (least_upper_bound ?894 ?893) =>= least_upper_bound ?893 ?894 [894, 893] by Super 371 with 12 at 2,2 +Id : 846, {_}: least_upper_bound ?1742 (least_upper_bound (least_upper_bound ?1743 ?1742) ?1744) =>= least_upper_bound (least_upper_bound ?1742 ?1743) ?1744 [1744, 1743, 1742] by Super 16 with 372 at 1,3 +Id : 14731, {_}: least_upper_bound (least_upper_bound identity ?28005) ?28006 =?= least_upper_bound (least_upper_bound ?28005 identity) ?28006 [28006, 28005] by Demod 14621 with 846 at 2 +Id : 14732, {_}: least_upper_bound identity (least_upper_bound ?28005 ?28006) =<= least_upper_bound (least_upper_bound ?28005 identity) ?28006 [28006, 28005] by Demod 14731 with 16 at 2 +Id : 26166, {_}: inverse (least_upper_bound identity (least_upper_bound ?27965 ?27966)) =<= greatest_lower_bound identity (inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966)) [27966, 27965] by Demod 14747 with 14732 at 1,2 +Id : 26240, {_}: inverse (least_upper_bound identity (least_upper_bound ?42502 ?42503)) =<= greatest_lower_bound identity (inverse (least_upper_bound identity (least_upper_bound ?42502 ?42503))) [42503, 42502] by Demod 26166 with 14732 at 1,2,3 +Id : 26243, {_}: inverse (least_upper_bound identity (least_upper_bound ?42512 ?42512)) =>= greatest_lower_bound identity (inverse (least_upper_bound identity ?42512)) [42512] by Super 26240 with 18 at 2,1,2,3 +Id : 26484, {_}: inverse (least_upper_bound identity ?42512) =<= greatest_lower_bound identity (inverse (least_upper_bound identity ?42512)) [42512] by Demod 26243 with 18 at 2,1,2 +Id : 26733, {_}: greatest_lower_bound (inverse (least_upper_bound identity ?42901)) (greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901))) =>= greatest_lower_bound (inverse (least_upper_bound identity ?42901)) (greatest_lower_bound ?42902 identity) [42902, 42901] by Super 1008 with 26484 at 2,2,2 +Id : 26831, {_}: greatest_lower_bound (greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901))) (inverse (least_upper_bound identity ?42901)) =>= greatest_lower_bound (inverse (least_upper_bound identity ?42901)) (greatest_lower_bound ?42902 identity) [42901, 42902] by Demod 26733 with 10 at 2 +Id : 112, {_}: greatest_lower_bound ?317 ?316 =<= greatest_lower_bound (greatest_lower_bound ?317 ?316) ?316 [316, 317] by Super 14 with 20 at 2,2 +Id : 26832, {_}: greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901)) =<= greatest_lower_bound (inverse (least_upper_bound identity ?42901)) (greatest_lower_bound ?42902 identity) [42901, 42902] by Demod 26831 with 112 at 2 +Id : 26833, {_}: greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901)) =<= greatest_lower_bound (greatest_lower_bound ?42902 identity) (inverse (least_upper_bound identity ?42901)) [42901, 42902] by Demod 26832 with 10 at 3 +Id : 594, {_}: greatest_lower_bound (least_upper_bound ?1355 ?1356) ?1355 =>= ?1355 [1356, 1355] by Super 10 with 24 at 3 +Id : 595, {_}: greatest_lower_bound (least_upper_bound ?1359 ?1358) ?1358 =>= ?1358 [1358, 1359] by Super 594 with 12 at 1,2 +Id : 14013, {_}: least_upper_bound ?27351 identity =<= least_upper_bound identity (least_upper_bound ?27351 (greatest_lower_bound identity ?27352)) [27352, 27351] by Demod 13743 with 12 at 3 +Id : 15143, {_}: least_upper_bound ?28845 identity =<= least_upper_bound identity (least_upper_bound ?28845 (greatest_lower_bound ?28846 identity)) [28846, 28845] by Super 14013 with 10 at 2,2,3 +Id : 15162, {_}: least_upper_bound (greatest_lower_bound (greatest_lower_bound ?28908 identity) ?28907) identity =>= least_upper_bound identity (greatest_lower_bound ?28908 identity) [28907, 28908] by Super 15143 with 120 at 2,3 +Id : 15331, {_}: least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?28908 identity) ?28907) =>= least_upper_bound identity (greatest_lower_bound ?28908 identity) [28907, 28908] by Demod 15162 with 12 at 2 +Id : 15332, {_}: least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?28908 identity) ?28907) =>= identity [28907, 28908] by Demod 15331 with 126 at 3 +Id : 16566, {_}: greatest_lower_bound identity (greatest_lower_bound (greatest_lower_bound ?30606 identity) ?30607) =>= greatest_lower_bound (greatest_lower_bound ?30606 identity) ?30607 [30607, 30606] by Super 595 with 15332 at 1,2 +Id : 442, {_}: greatest_lower_bound ?1045 (greatest_lower_bound ?1046 ?1045) =>= greatest_lower_bound ?1045 ?1046 [1046, 1045] by Super 441 with 10 at 2,2 +Id : 988, {_}: greatest_lower_bound ?1947 (greatest_lower_bound (greatest_lower_bound ?1948 ?1947) ?1949) =>= greatest_lower_bound (greatest_lower_bound ?1947 ?1948) ?1949 [1949, 1948, 1947] by Super 14 with 442 at 1,3 +Id : 16667, {_}: greatest_lower_bound (greatest_lower_bound identity ?30606) ?30607 =?= greatest_lower_bound (greatest_lower_bound ?30606 identity) ?30607 [30607, 30606] by Demod 16566 with 988 at 2 +Id : 16668, {_}: greatest_lower_bound identity (greatest_lower_bound ?30606 ?30607) =<= greatest_lower_bound (greatest_lower_bound ?30606 identity) ?30607 [30607, 30606] by Demod 16667 with 14 at 2 +Id : 26834, {_}: greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901)) =<= greatest_lower_bound identity (greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901))) [42901, 42902] by Demod 26833 with 16668 at 3 +Id : 425428, {_}: greatest_lower_bound (inverse ?443021) (inverse (least_upper_bound identity ?443021)) =>= greatest_lower_bound identity (inverse ?443021) [443021] by Demod 425427 with 26834 at 2 +Id : 100, {_}: least_upper_bound ?291 ?290 =<= least_upper_bound (least_upper_bound ?291 ?290) ?290 [290, 291] by Super 16 with 18 at 2,2 +Id : 1412, {_}: multiply (inverse (least_upper_bound ?2659 ?2660)) (least_upper_bound ?2659 ?2660) =>= least_upper_bound identity (multiply (inverse (least_upper_bound ?2659 ?2660)) ?2660) [2660, 2659] by Super 1397 with 100 at 2,2 +Id : 1437, {_}: identity =<= least_upper_bound identity (multiply (inverse (least_upper_bound ?2659 ?2660)) ?2660) [2660, 2659] by Demod 1412 with 6 at 2 +Id : 59670, {_}: multiply identity ?78944 =<= least_upper_bound ?78944 (inverse (least_upper_bound ?78943 (inverse ?78944))) [78943, 78944] by Super 59624 with 1437 at 1,2 +Id : 59771, {_}: ?78944 =<= least_upper_bound ?78944 (inverse (least_upper_bound ?78943 (inverse ?78944))) [78943, 78944] by Demod 59670 with 4 at 2 +Id : 89100, {_}: greatest_lower_bound ?102689 (inverse (least_upper_bound ?102690 (inverse ?102689))) =>= inverse (least_upper_bound ?102690 (inverse ?102689)) [102690, 102689] by Super 595 with 59771 at 1,2 +Id : 89102, {_}: greatest_lower_bound (inverse ?102694) (inverse (least_upper_bound ?102695 ?102694)) =>= inverse (least_upper_bound ?102695 (inverse (inverse ?102694))) [102695, 102694] by Super 89100 with 1283 at 2,1,2,2 +Id : 89528, {_}: greatest_lower_bound (inverse ?102694) (inverse (least_upper_bound ?102695 ?102694)) =>= inverse (least_upper_bound ?102695 ?102694) [102695, 102694] by Demod 89102 with 1283 at 2,1,3 +Id : 425429, {_}: inverse (least_upper_bound identity ?443021) =>= greatest_lower_bound identity (inverse ?443021) [443021] by Demod 425428 with 89528 at 2 +Id : 426630, {_}: inverse (greatest_lower_bound identity (inverse ?443891)) =>= least_upper_bound identity ?443891 [443891] by Super 1283 with 425429 at 1,2 +Id : 428479, {_}: least_upper_bound identity (multiply a b) === least_upper_bound identity (multiply a b) [] by Demod 243250 with 426630 at 3 +Id : 243250, {_}: least_upper_bound identity (multiply a b) =<= inverse (greatest_lower_bound identity (inverse (multiply a b))) [] by Demod 289 with 241323 at 3 +Id : 289, {_}: least_upper_bound identity (multiply a b) =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by Demod 2 with 12 at 2 +Id : 2, {_}: least_upper_bound (multiply a b) identity =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by prove_p23 +% SZS output end CNFRefutation for GRP186-1.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + glb_absorbtion is 80 + greatest_lower_bound is 92 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 95 + inverse is 93 + least_upper_bound is 94 + left_identity is 90 + left_inverse is 89 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 96 + p23_1 is 75 + p23_2 is 74 + p23_3 is 73 + prove_p23 is 91 + symmetry_of_glb is 87 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: inverse identity =>= identity [] by p23_1 + Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p23_2 ?51 + Id : 38, {_}: + inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) + [54, 53] by p23_3 ?53 ?54 +Goal + Id : 2, {_}: + least_upper_bound (multiply a b) identity + =<= + multiply a (inverse (greatest_lower_bound a (inverse b))) + [] by prove_p23 +Found proof, 98.278709s +% SZS status Unsatisfiable for GRP186-2.p +% SZS output start CNFRefutation for GRP186-2.p +Id : 131, {_}: least_upper_bound ?356 (greatest_lower_bound ?356 ?357) =>= ?356 [357, 356] by lub_absorbtion ?356 ?357 +Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 +Id : 26, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 +Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 +Id : 30, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 +Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 +Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 +Id : 32, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Id : 28, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 +Id : 38, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p23_3 ?53 ?54 +Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 +Id : 234, {_}: multiply (least_upper_bound ?624 ?625) ?626 =<= least_upper_bound (multiply ?624 ?626) (multiply ?625 ?626) [626, 625, 624] by monotony_lub2 ?624 ?625 ?626 +Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p23_2 ?51 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 34, {_}: inverse identity =>= identity [] by p23_1 +Id : 316, {_}: inverse (multiply ?814 ?815) =<= multiply (inverse ?815) (inverse ?814) [815, 814] by p23_3 ?814 ?815 +Id : 43, {_}: multiply (multiply ?64 ?65) ?66 =?= multiply ?64 (multiply ?65 ?66) [66, 65, 64] by associativity ?64 ?65 ?66 +Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 +Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 +Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 169, {_}: multiply ?469 (least_upper_bound ?470 ?471) =<= least_upper_bound (multiply ?469 ?470) (multiply ?469 ?471) [471, 470, 469] by monotony_lub1 ?469 ?470 ?471 +Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 +Id : 1363, {_}: multiply (inverse ?2558) (least_upper_bound ?2558 ?2559) =>= least_upper_bound identity (multiply (inverse ?2558) ?2559) [2559, 2558] by Super 169 with 6 at 1,3 +Id : 650, {_}: least_upper_bound (greatest_lower_bound ?1395 ?1396) ?1395 =>= ?1395 [1396, 1395] by Super 12 with 22 at 3 +Id : 651, {_}: least_upper_bound (greatest_lower_bound ?1399 ?1398) ?1398 =>= ?1398 [1398, 1399] by Super 650 with 10 at 1,2 +Id : 1373, {_}: multiply (inverse (greatest_lower_bound ?2588 ?2589)) ?2589 =<= least_upper_bound identity (multiply (inverse (greatest_lower_bound ?2588 ?2589)) ?2589) [2589, 2588] by Super 1363 with 651 at 2,2 +Id : 45, {_}: multiply (multiply ?71 (inverse ?72)) ?72 =>= multiply ?71 identity [72, 71] by Super 43 with 6 at 2,3 +Id : 317, {_}: inverse (multiply identity ?817) =<= multiply (inverse ?817) identity [817] by Super 316 with 34 at 2,3 +Id : 341, {_}: inverse ?863 =<= multiply (inverse ?863) identity [863] by Demod 317 with 4 at 1,2 +Id : 343, {_}: inverse (inverse ?866) =<= multiply ?866 identity [866] by Super 341 with 36 at 1,3 +Id : 354, {_}: ?866 =<= multiply ?866 identity [866] by Demod 343 with 36 at 2 +Id : 1260, {_}: multiply (multiply ?71 (inverse ?72)) ?72 =>= ?71 [72, 71] by Demod 45 with 354 at 3 +Id : 240, {_}: multiply (least_upper_bound (inverse ?648) ?647) ?648 =>= least_upper_bound identity (multiply ?647 ?648) [647, 648] by Super 234 with 6 at 1,3 +Id : 1623, {_}: multiply (least_upper_bound identity (multiply ?2972 (inverse ?2973))) ?2973 =>= least_upper_bound (inverse (inverse ?2973)) ?2972 [2973, 2972] by Super 1260 with 240 at 1,2 +Id : 139882, {_}: multiply (least_upper_bound identity (multiply ?153893 (inverse ?153894))) ?153894 =>= least_upper_bound ?153894 ?153893 [153894, 153893] by Demod 1623 with 36 at 1,3 +Id : 126, {_}: least_upper_bound (greatest_lower_bound ?338 ?339) ?338 =>= ?338 [339, 338] by Super 12 with 22 at 3 +Id : 1369, {_}: multiply (inverse (greatest_lower_bound ?2577 ?2576)) ?2577 =<= least_upper_bound identity (multiply (inverse (greatest_lower_bound ?2577 ?2576)) ?2577) [2576, 2577] by Super 1363 with 126 at 2,2 +Id : 139933, {_}: multiply (multiply (inverse (greatest_lower_bound (inverse ?154061) ?154060)) (inverse ?154061)) ?154061 =>= least_upper_bound ?154061 (inverse (greatest_lower_bound (inverse ?154061) ?154060)) [154060, 154061] by Super 139882 with 1369 at 1,2 +Id : 140037, {_}: multiply (inverse (greatest_lower_bound (inverse ?154061) ?154060)) (multiply (inverse ?154061) ?154061) =>= least_upper_bound ?154061 (inverse (greatest_lower_bound (inverse ?154061) ?154060)) [154060, 154061] by Demod 139933 with 8 at 2 +Id : 311, {_}: multiply (inverse (multiply ?794 ?795)) ?796 =<= multiply (inverse ?795) (multiply (inverse ?794) ?796) [796, 795, 794] by Super 8 with 38 at 1,2 +Id : 140038, {_}: multiply (inverse (multiply ?154061 (greatest_lower_bound (inverse ?154061) ?154060))) ?154061 =>= least_upper_bound ?154061 (inverse (greatest_lower_bound (inverse ?154061) ?154060)) [154060, 154061] by Demod 140037 with 311 at 2 +Id : 1275, {_}: multiply (multiply ?2378 (inverse ?2379)) ?2379 =>= ?2378 [2379, 2378] by Demod 45 with 354 at 3 +Id : 1285, {_}: multiply (inverse (multiply ?2408 ?2407)) ?2408 =>= inverse ?2407 [2407, 2408] by Super 1275 with 38 at 1,2 +Id : 140039, {_}: inverse (greatest_lower_bound (inverse ?154061) ?154060) =<= least_upper_bound ?154061 (inverse (greatest_lower_bound (inverse ?154061) ?154060)) [154060, 154061] by Demod 140038 with 1285 at 2 +Id : 160759, {_}: greatest_lower_bound ?168171 (inverse (greatest_lower_bound (inverse ?168171) ?168172)) =>= ?168171 [168172, 168171] by Super 24 with 140039 at 2,2 +Id : 160761, {_}: greatest_lower_bound (inverse ?168176) (inverse (greatest_lower_bound ?168176 ?168177)) =>= inverse ?168176 [168177, 168176] by Super 160759 with 36 at 1,1,2,2 +Id : 178590, {_}: multiply (inverse (greatest_lower_bound (inverse ?184996) (inverse (greatest_lower_bound ?184996 ?184997)))) (inverse (greatest_lower_bound ?184996 ?184997)) =>= least_upper_bound identity (multiply (inverse (inverse ?184996)) (inverse (greatest_lower_bound ?184996 ?184997))) [184997, 184996] by Super 1373 with 160761 at 1,1,2,3 +Id : 178788, {_}: inverse (multiply (greatest_lower_bound ?184996 ?184997) (greatest_lower_bound (inverse ?184996) (inverse (greatest_lower_bound ?184996 ?184997)))) =>= least_upper_bound identity (multiply (inverse (inverse ?184996)) (inverse (greatest_lower_bound ?184996 ?184997))) [184997, 184996] by Demod 178590 with 38 at 2 +Id : 299, {_}: multiply ?763 (inverse ?763) =>= identity [763] by Super 6 with 36 at 1,2 +Id : 392, {_}: multiply ?921 (greatest_lower_bound ?922 (inverse ?921)) =>= greatest_lower_bound (multiply ?921 ?922) identity [922, 921] by Super 28 with 299 at 2,3 +Id : 417, {_}: multiply ?921 (greatest_lower_bound ?922 (inverse ?921)) =>= greatest_lower_bound identity (multiply ?921 ?922) [922, 921] by Demod 392 with 10 at 3 +Id : 178789, {_}: inverse (greatest_lower_bound identity (multiply (greatest_lower_bound ?184996 ?184997) (inverse ?184996))) =<= least_upper_bound identity (multiply (inverse (inverse ?184996)) (inverse (greatest_lower_bound ?184996 ?184997))) [184997, 184996] by Demod 178788 with 417 at 1,2 +Id : 391, {_}: multiply (greatest_lower_bound ?918 ?919) (inverse ?918) =>= greatest_lower_bound identity (multiply ?919 (inverse ?918)) [919, 918] by Super 32 with 299 at 1,3 +Id : 178790, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity (multiply ?184997 (inverse ?184996)))) =<= least_upper_bound identity (multiply (inverse (inverse ?184996)) (inverse (greatest_lower_bound ?184996 ?184997))) [184996, 184997] by Demod 178789 with 391 at 2,1,2 +Id : 116, {_}: greatest_lower_bound ?316 (greatest_lower_bound ?316 ?317) =>= greatest_lower_bound ?316 ?317 [317, 316] by Super 14 with 20 at 1,3 +Id : 178791, {_}: inverse (greatest_lower_bound identity (multiply ?184997 (inverse ?184996))) =<= least_upper_bound identity (multiply (inverse (inverse ?184996)) (inverse (greatest_lower_bound ?184996 ?184997))) [184996, 184997] by Demod 178790 with 116 at 1,2 +Id : 178792, {_}: inverse (greatest_lower_bound identity (multiply ?184997 (inverse ?184996))) =<= least_upper_bound identity (inverse (multiply (greatest_lower_bound ?184996 ?184997) (inverse ?184996))) [184996, 184997] by Demod 178791 with 38 at 2,3 +Id : 320, {_}: inverse (multiply ?825 (inverse ?824)) =>= multiply ?824 (inverse ?825) [824, 825] by Super 316 with 36 at 1,3 +Id : 178793, {_}: inverse (greatest_lower_bound identity (multiply ?184997 (inverse ?184996))) =<= least_upper_bound identity (multiply ?184996 (inverse (greatest_lower_bound ?184996 ?184997))) [184996, 184997] by Demod 178792 with 320 at 2,3 +Id : 2114, {_}: multiply (least_upper_bound ?3753 ?3754) (inverse ?3753) =>= least_upper_bound identity (multiply ?3754 (inverse ?3753)) [3754, 3753] by Super 30 with 299 at 1,3 +Id : 2124, {_}: multiply ?3785 (inverse (greatest_lower_bound ?3785 ?3784)) =<= least_upper_bound identity (multiply ?3785 (inverse (greatest_lower_bound ?3785 ?3784))) [3784, 3785] by Super 2114 with 126 at 1,2 +Id : 517036, {_}: inverse (greatest_lower_bound identity (multiply ?520378 (inverse ?520379))) =?= multiply ?520379 (inverse (greatest_lower_bound ?520379 ?520378)) [520379, 520378] by Demod 178793 with 2124 at 3 +Id : 517346, {_}: inverse (greatest_lower_bound identity (inverse (multiply ?521360 ?521359))) =<= multiply ?521360 (inverse (greatest_lower_bound ?521360 (inverse ?521359))) [521359, 521360] by Super 517036 with 38 at 2,1,2 +Id : 143, {_}: greatest_lower_bound (least_upper_bound ?388 ?389) ?388 =>= ?388 [389, 388] by Super 10 with 24 at 3 +Id : 394, {_}: multiply (multiply ?928 ?927) (inverse ?927) =>= multiply ?928 identity [927, 928] by Super 8 with 299 at 2,3 +Id : 2350, {_}: multiply (multiply ?4107 ?4108) (inverse ?4108) =>= ?4107 [4108, 4107] by Demod 394 with 354 at 3 +Id : 2362, {_}: multiply (least_upper_bound identity (multiply ?4143 ?4144)) (inverse ?4144) =>= least_upper_bound (inverse ?4144) ?4143 [4144, 4143] by Super 2350 with 240 at 1,2 +Id : 52, {_}: multiply identity ?99 =<= multiply (inverse ?98) (multiply ?98 ?99) [98, 99] by Super 43 with 6 at 1,2 +Id : 61, {_}: ?99 =<= multiply (inverse ?98) (multiply ?98 ?99) [98, 99] by Demod 52 with 4 at 2 +Id : 175, {_}: multiply (inverse ?492) (least_upper_bound ?492 ?493) =>= least_upper_bound identity (multiply (inverse ?492) ?493) [493, 492] by Super 169 with 6 at 1,3 +Id : 1362, {_}: least_upper_bound ?2555 ?2556 =<= multiply (inverse (inverse ?2555)) (least_upper_bound identity (multiply (inverse ?2555) ?2556)) [2556, 2555] by Super 61 with 175 at 2,3 +Id : 1384, {_}: least_upper_bound ?2555 ?2556 =<= multiply ?2555 (least_upper_bound identity (multiply (inverse ?2555) ?2556)) [2556, 2555] by Demod 1362 with 36 at 1,3 +Id : 327, {_}: inverse ?817 =<= multiply (inverse ?817) identity [817] by Demod 317 with 4 at 1,2 +Id : 338, {_}: multiply (inverse ?854) (least_upper_bound identity ?855) =<= least_upper_bound (inverse ?854) (multiply (inverse ?854) ?855) [855, 854] by Super 26 with 327 at 1,3 +Id : 332, {_}: multiply (inverse ?838) (greatest_lower_bound ?839 identity) =<= greatest_lower_bound (multiply (inverse ?838) ?839) (inverse ?838) [839, 838] by Super 28 with 327 at 2,3 +Id : 350, {_}: multiply (inverse ?838) (greatest_lower_bound ?839 identity) =<= greatest_lower_bound (inverse ?838) (multiply (inverse ?838) ?839) [839, 838] by Demod 332 with 10 at 3 +Id : 333, {_}: multiply (inverse ?841) (greatest_lower_bound identity ?842) =<= greatest_lower_bound (inverse ?841) (multiply (inverse ?841) ?842) [842, 841] by Super 28 with 327 at 1,3 +Id : 3646, {_}: multiply (inverse ?838) (greatest_lower_bound ?839 identity) =?= multiply (inverse ?838) (greatest_lower_bound identity ?839) [839, 838] by Demod 350 with 333 at 3 +Id : 3670, {_}: multiply (inverse (greatest_lower_bound ?5927 identity)) (greatest_lower_bound identity ?5927) =>= identity [5927] by Super 6 with 3646 at 2 +Id : 5362, {_}: multiply (inverse (greatest_lower_bound ?8279 identity)) (least_upper_bound identity (greatest_lower_bound identity ?8279)) =>= least_upper_bound (inverse (greatest_lower_bound ?8279 identity)) identity [8279] by Super 338 with 3670 at 2,3 +Id : 5430, {_}: multiply (inverse (greatest_lower_bound ?8279 identity)) identity =>= least_upper_bound (inverse (greatest_lower_bound ?8279 identity)) identity [8279] by Demod 5362 with 22 at 2,2 +Id : 5431, {_}: inverse (greatest_lower_bound ?8279 identity) =<= least_upper_bound (inverse (greatest_lower_bound ?8279 identity)) identity [8279] by Demod 5430 with 354 at 2 +Id : 5432, {_}: inverse (greatest_lower_bound ?8279 identity) =<= least_upper_bound identity (inverse (greatest_lower_bound ?8279 identity)) [8279] by Demod 5431 with 12 at 3 +Id : 5579, {_}: least_upper_bound ?8466 (inverse (greatest_lower_bound ?8465 identity)) =<= least_upper_bound (least_upper_bound ?8466 identity) (inverse (greatest_lower_bound ?8465 identity)) [8465, 8466] by Super 16 with 5432 at 2,2 +Id : 5622, {_}: least_upper_bound ?8466 (inverse (greatest_lower_bound ?8465 identity)) =<= least_upper_bound (inverse (greatest_lower_bound ?8465 identity)) (least_upper_bound ?8466 identity) [8465, 8466] by Demod 5579 with 12 at 3 +Id : 400, {_}: multiply (least_upper_bound ?944 ?943) (inverse ?943) =>= least_upper_bound (multiply ?944 (inverse ?943)) identity [943, 944] by Super 30 with 299 at 2,3 +Id : 412, {_}: multiply (least_upper_bound ?944 ?943) (inverse ?943) =>= least_upper_bound identity (multiply ?944 (inverse ?943)) [943, 944] by Demod 400 with 12 at 3 +Id : 337, {_}: multiply (inverse ?851) (least_upper_bound ?852 identity) =<= least_upper_bound (multiply (inverse ?851) ?852) (inverse ?851) [852, 851] by Super 26 with 327 at 2,3 +Id : 347, {_}: multiply (inverse ?851) (least_upper_bound ?852 identity) =<= least_upper_bound (inverse ?851) (multiply (inverse ?851) ?852) [852, 851] by Demod 337 with 12 at 3 +Id : 3431, {_}: multiply (inverse ?851) (least_upper_bound ?852 identity) =?= multiply (inverse ?851) (least_upper_bound identity ?852) [852, 851] by Demod 347 with 338 at 3 +Id : 3454, {_}: multiply (inverse (least_upper_bound ?5686 identity)) (least_upper_bound identity ?5686) =>= identity [5686] by Super 6 with 3431 at 2 +Id : 4555, {_}: multiply (inverse (least_upper_bound ?7520 identity)) (least_upper_bound identity (least_upper_bound identity ?7520)) =>= least_upper_bound (inverse (least_upper_bound ?7520 identity)) identity [7520] by Super 338 with 3454 at 2,3 +Id : 104, {_}: least_upper_bound ?290 (least_upper_bound ?290 ?291) =>= least_upper_bound ?290 ?291 [291, 290] by Super 16 with 18 at 1,3 +Id : 4621, {_}: multiply (inverse (least_upper_bound ?7520 identity)) (least_upper_bound identity ?7520) =>= least_upper_bound (inverse (least_upper_bound ?7520 identity)) identity [7520] by Demod 4555 with 104 at 2,2 +Id : 4622, {_}: identity =<= least_upper_bound (inverse (least_upper_bound ?7520 identity)) identity [7520] by Demod 4621 with 3454 at 2 +Id : 4773, {_}: identity =<= least_upper_bound identity (inverse (least_upper_bound ?7713 identity)) [7713] by Demod 4622 with 12 at 3 +Id : 4780, {_}: identity =<= least_upper_bound identity (inverse (least_upper_bound ?7726 (least_upper_bound ?7727 identity))) [7727, 7726] by Super 4773 with 16 at 1,2,3 +Id : 6791, {_}: multiply identity (inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity)))) =<= least_upper_bound identity (multiply identity (inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity))))) [9675, 9674] by Super 412 with 4780 at 1,2 +Id : 6824, {_}: inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity))) =<= least_upper_bound identity (multiply identity (inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity))))) [9675, 9674] by Demod 6791 with 4 at 2 +Id : 6825, {_}: least_upper_bound ?9674 (least_upper_bound ?9675 identity) =<= least_upper_bound identity (multiply identity (inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity))))) [9675, 9674] by Demod 6824 with 36 at 2 +Id : 6826, {_}: least_upper_bound ?9674 (least_upper_bound ?9675 identity) =<= least_upper_bound identity (inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity)))) [9675, 9674] by Demod 6825 with 4 at 2,3 +Id : 6913, {_}: least_upper_bound ?9827 (least_upper_bound ?9828 identity) =<= least_upper_bound identity (least_upper_bound ?9827 (least_upper_bound ?9828 identity)) [9828, 9827] by Demod 6826 with 36 at 2,3 +Id : 6922, {_}: least_upper_bound ?9854 (least_upper_bound ?9855 identity) =<= least_upper_bound identity (least_upper_bound (least_upper_bound ?9855 identity) ?9854) [9855, 9854] by Super 6913 with 12 at 2,3 +Id : 502, {_}: least_upper_bound (least_upper_bound ?1064 ?1065) ?1064 =>= least_upper_bound ?1064 ?1065 [1065, 1064] by Super 12 with 104 at 3 +Id : 6917, {_}: least_upper_bound ?9839 (least_upper_bound (least_upper_bound identity ?9838) identity) =?= least_upper_bound identity (least_upper_bound ?9839 (least_upper_bound identity ?9838)) [9838, 9839] by Super 6913 with 502 at 2,2,3 +Id : 6992, {_}: least_upper_bound ?9839 (least_upper_bound identity (least_upper_bound identity ?9838)) =?= least_upper_bound identity (least_upper_bound ?9839 (least_upper_bound identity ?9838)) [9838, 9839] by Demod 6917 with 12 at 2,2 +Id : 6993, {_}: least_upper_bound ?9839 (least_upper_bound identity ?9838) =<= least_upper_bound identity (least_upper_bound ?9839 (least_upper_bound identity ?9838)) [9838, 9839] by Demod 6992 with 104 at 2,2 +Id : 6914, {_}: least_upper_bound ?9830 (least_upper_bound ?9831 identity) =<= least_upper_bound identity (least_upper_bound ?9830 (least_upper_bound identity ?9831)) [9831, 9830] by Super 6913 with 12 at 2,2,3 +Id : 7479, {_}: least_upper_bound ?9839 (least_upper_bound identity ?9838) =?= least_upper_bound ?9839 (least_upper_bound ?9838 identity) [9838, 9839] by Demod 6993 with 6914 at 3 +Id : 7163, {_}: least_upper_bound ?10110 (least_upper_bound ?10111 identity) =<= least_upper_bound identity (least_upper_bound ?10110 (least_upper_bound identity ?10111)) [10111, 10110] by Super 6913 with 12 at 2,2,3 +Id : 7180, {_}: least_upper_bound ?10164 (least_upper_bound ?10165 identity) =<= least_upper_bound identity (least_upper_bound (least_upper_bound ?10164 identity) ?10165) [10165, 10164] by Super 7163 with 16 at 2,3 +Id : 8147, {_}: least_upper_bound ?11328 (least_upper_bound ?11329 identity) =?= least_upper_bound ?11329 (least_upper_bound ?11328 identity) [11329, 11328] by Demod 7180 with 6922 at 3 +Id : 8150, {_}: least_upper_bound (greatest_lower_bound identity ?11336) (least_upper_bound ?11337 identity) =>= least_upper_bound ?11337 identity [11337, 11336] by Super 8147 with 126 at 2,3 +Id : 8900, {_}: least_upper_bound (greatest_lower_bound identity ?11839) (least_upper_bound identity ?11840) =>= least_upper_bound ?11840 identity [11840, 11839] by Super 7479 with 8150 at 3 +Id : 10250, {_}: least_upper_bound (greatest_lower_bound identity ?13083) (least_upper_bound (least_upper_bound identity ?13084) ?13085) =>= least_upper_bound (least_upper_bound ?13084 identity) ?13085 [13085, 13084, 13083] by Super 16 with 8900 at 1,3 +Id : 10334, {_}: least_upper_bound (greatest_lower_bound identity ?13083) (least_upper_bound identity (least_upper_bound ?13084 ?13085)) =>= least_upper_bound (least_upper_bound ?13084 identity) ?13085 [13085, 13084, 13083] by Demod 10250 with 16 at 2,2 +Id : 10335, {_}: least_upper_bound (least_upper_bound ?13084 ?13085) identity =?= least_upper_bound (least_upper_bound ?13084 identity) ?13085 [13085, 13084] by Demod 10334 with 8900 at 2 +Id : 10336, {_}: least_upper_bound identity (least_upper_bound ?13084 ?13085) =<= least_upper_bound (least_upper_bound ?13084 identity) ?13085 [13085, 13084] by Demod 10335 with 12 at 2 +Id : 10485, {_}: least_upper_bound ?9854 (least_upper_bound ?9855 identity) =<= least_upper_bound identity (least_upper_bound identity (least_upper_bound ?9855 ?9854)) [9855, 9854] by Demod 6922 with 10336 at 2,3 +Id : 10492, {_}: least_upper_bound ?9854 (least_upper_bound ?9855 identity) =?= least_upper_bound identity (least_upper_bound ?9855 ?9854) [9855, 9854] by Demod 10485 with 104 at 3 +Id : 18158, {_}: least_upper_bound ?21052 (inverse (greatest_lower_bound ?21053 identity)) =<= least_upper_bound identity (least_upper_bound ?21052 (inverse (greatest_lower_bound ?21053 identity))) [21053, 21052] by Demod 5622 with 10492 at 3 +Id : 577, {_}: greatest_lower_bound (greatest_lower_bound ?1234 ?1235) ?1234 =>= greatest_lower_bound ?1234 ?1235 [1235, 1234] by Super 10 with 116 at 3 +Id : 18162, {_}: least_upper_bound ?21064 (inverse (greatest_lower_bound (greatest_lower_bound identity ?21063) identity)) =?= least_upper_bound identity (least_upper_bound ?21064 (inverse (greatest_lower_bound identity ?21063))) [21063, 21064] by Super 18158 with 577 at 1,2,2,3 +Id : 5589, {_}: inverse (greatest_lower_bound ?8486 identity) =<= least_upper_bound identity (inverse (greatest_lower_bound ?8486 identity)) [8486] by Demod 5431 with 12 at 3 +Id : 5593, {_}: inverse (greatest_lower_bound (greatest_lower_bound identity ?8493) identity) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?8493)) [8493] by Super 5589 with 577 at 1,2,3 +Id : 5675, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity ?8493)) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?8493)) [8493] by Demod 5593 with 10 at 1,2 +Id : 5676, {_}: inverse (greatest_lower_bound identity ?8493) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?8493)) [8493] by Demod 5675 with 116 at 1,2 +Id : 5590, {_}: inverse (greatest_lower_bound ?8488 identity) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?8488)) [8488] by Super 5589 with 10 at 1,2,3 +Id : 5940, {_}: inverse (greatest_lower_bound identity ?8493) =?= inverse (greatest_lower_bound ?8493 identity) [8493] by Demod 5676 with 5590 at 3 +Id : 18288, {_}: least_upper_bound ?21064 (inverse (greatest_lower_bound identity (greatest_lower_bound identity ?21063))) =?= least_upper_bound identity (least_upper_bound ?21064 (inverse (greatest_lower_bound identity ?21063))) [21063, 21064] by Demod 18162 with 5940 at 2,2 +Id : 18289, {_}: least_upper_bound ?21064 (inverse (greatest_lower_bound identity ?21063)) =<= least_upper_bound identity (least_upper_bound ?21064 (inverse (greatest_lower_bound identity ?21063))) [21063, 21064] by Demod 18288 with 116 at 1,2,2 +Id : 5804, {_}: least_upper_bound ?8608 (inverse (greatest_lower_bound ?8607 identity)) =<= least_upper_bound (least_upper_bound ?8608 identity) (inverse (greatest_lower_bound identity ?8607)) [8607, 8608] by Super 16 with 5590 at 2,2 +Id : 5849, {_}: least_upper_bound ?8608 (inverse (greatest_lower_bound ?8607 identity)) =<= least_upper_bound (inverse (greatest_lower_bound identity ?8607)) (least_upper_bound ?8608 identity) [8607, 8608] by Demod 5804 with 12 at 3 +Id : 19653, {_}: least_upper_bound ?8608 (inverse (greatest_lower_bound ?8607 identity)) =<= least_upper_bound identity (least_upper_bound ?8608 (inverse (greatest_lower_bound identity ?8607))) [8607, 8608] by Demod 5849 with 10492 at 3 +Id : 50221, {_}: least_upper_bound ?21064 (inverse (greatest_lower_bound identity ?21063)) =?= least_upper_bound ?21064 (inverse (greatest_lower_bound ?21063 identity)) [21063, 21064] by Demod 18289 with 19653 at 3 +Id : 140157, {_}: least_upper_bound ?154397 (inverse (greatest_lower_bound identity (inverse ?154397))) =>= inverse (greatest_lower_bound (inverse ?154397) identity) [154397] by Super 50221 with 140039 at 3 +Id : 140328, {_}: least_upper_bound ?154397 (inverse (greatest_lower_bound identity (inverse ?154397))) =>= inverse (greatest_lower_bound identity (inverse ?154397)) [154397] by Demod 140157 with 5940 at 3 +Id : 141908, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?155586))) ?155586 =>= ?155586 [155586] by Super 143 with 140328 at 1,2 +Id : 141910, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity ?155589)) (inverse ?155589) =>= inverse ?155589 [155589] by Super 141908 with 36 at 2,1,1,2 +Id : 144996, {_}: multiply (inverse (greatest_lower_bound (inverse (greatest_lower_bound identity ?157076)) (inverse ?157076))) (inverse (greatest_lower_bound identity ?157076)) =>= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Super 1369 with 141910 at 1,1,2,3 +Id : 145323, {_}: inverse (multiply (greatest_lower_bound identity ?157076) (greatest_lower_bound (inverse (greatest_lower_bound identity ?157076)) (inverse ?157076))) =>= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 144996 with 38 at 2 +Id : 393, {_}: multiply ?924 (greatest_lower_bound (inverse ?924) ?925) =>= greatest_lower_bound identity (multiply ?924 ?925) [925, 924] by Super 28 with 299 at 1,3 +Id : 145324, {_}: inverse (greatest_lower_bound identity (multiply (greatest_lower_bound identity ?157076) (inverse ?157076))) =<= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 145323 with 393 at 1,2 +Id : 390, {_}: multiply (greatest_lower_bound ?916 ?915) (inverse ?915) =>= greatest_lower_bound (multiply ?916 (inverse ?915)) identity [915, 916] by Super 32 with 299 at 2,3 +Id : 418, {_}: multiply (greatest_lower_bound ?916 ?915) (inverse ?915) =>= greatest_lower_bound identity (multiply ?916 (inverse ?915)) [915, 916] by Demod 390 with 10 at 3 +Id : 145325, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity (multiply identity (inverse ?157076)))) =<= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 145324 with 418 at 2,1,2 +Id : 145326, {_}: inverse (greatest_lower_bound identity (multiply identity (inverse ?157076))) =<= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 145325 with 116 at 1,2 +Id : 145327, {_}: inverse (greatest_lower_bound identity (inverse ?157076)) =<= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 145326 with 4 at 2,1,2 +Id : 145328, {_}: inverse (greatest_lower_bound identity (inverse ?157076)) =<= least_upper_bound identity (inverse (multiply (greatest_lower_bound identity ?157076) (inverse ?157076))) [157076] by Demod 145327 with 38 at 2,3 +Id : 145329, {_}: inverse (greatest_lower_bound identity (inverse ?157076)) =<= least_upper_bound identity (multiply ?157076 (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 145328 with 320 at 2,3 +Id : 399, {_}: multiply ?940 (least_upper_bound (inverse ?940) ?941) =>= least_upper_bound identity (multiply ?940 ?941) [941, 940] by Super 26 with 299 at 1,3 +Id : 140842, {_}: multiply ?154994 (inverse (greatest_lower_bound identity (inverse (inverse ?154994)))) =<= least_upper_bound identity (multiply ?154994 (inverse (greatest_lower_bound identity (inverse (inverse ?154994))))) [154994] by Super 399 with 140328 at 2,2 +Id : 141158, {_}: multiply ?154994 (inverse (greatest_lower_bound identity ?154994)) =<= least_upper_bound identity (multiply ?154994 (inverse (greatest_lower_bound identity (inverse (inverse ?154994))))) [154994] by Demod 140842 with 36 at 2,1,2,2 +Id : 141159, {_}: multiply ?154994 (inverse (greatest_lower_bound identity ?154994)) =<= least_upper_bound identity (multiply ?154994 (inverse (greatest_lower_bound identity ?154994))) [154994] by Demod 141158 with 36 at 2,1,2,2,3 +Id : 165997, {_}: inverse (greatest_lower_bound identity (inverse ?157076)) =<= multiply ?157076 (inverse (greatest_lower_bound identity ?157076)) [157076] by Demod 145329 with 141159 at 3 +Id : 166015, {_}: multiply (inverse (greatest_lower_bound identity (inverse ?173131))) (greatest_lower_bound identity ?173131) =>= ?173131 [173131] by Super 1260 with 165997 at 1,2 +Id : 396771, {_}: least_upper_bound (greatest_lower_bound identity (inverse ?441901)) (greatest_lower_bound identity ?441901) =<= multiply (greatest_lower_bound identity (inverse ?441901)) (least_upper_bound identity ?441901) [441901] by Super 1384 with 166015 at 2,2,3 +Id : 397621, {_}: multiply (least_upper_bound identity (least_upper_bound (greatest_lower_bound identity (inverse ?442410)) (greatest_lower_bound identity ?442410))) (inverse (least_upper_bound identity ?442410)) =>= least_upper_bound (inverse (least_upper_bound identity ?442410)) (greatest_lower_bound identity (inverse ?442410)) [442410] by Super 2362 with 396771 at 2,1,2 +Id : 128, {_}: least_upper_bound ?344 (least_upper_bound (greatest_lower_bound ?344 ?345) ?346) =>= least_upper_bound ?344 ?346 [346, 345, 344] by Super 16 with 22 at 1,3 +Id : 397861, {_}: multiply (least_upper_bound identity (greatest_lower_bound identity ?442410)) (inverse (least_upper_bound identity ?442410)) =>= least_upper_bound (inverse (least_upper_bound identity ?442410)) (greatest_lower_bound identity (inverse ?442410)) [442410] by Demod 397621 with 128 at 1,2 +Id : 397862, {_}: multiply identity (inverse (least_upper_bound identity ?442410)) =<= least_upper_bound (inverse (least_upper_bound identity ?442410)) (greatest_lower_bound identity (inverse ?442410)) [442410] by Demod 397861 with 22 at 1,2 +Id : 397863, {_}: inverse (least_upper_bound identity ?442410) =<= least_upper_bound (inverse (least_upper_bound identity ?442410)) (greatest_lower_bound identity (inverse ?442410)) [442410] by Demod 397862 with 4 at 2 +Id : 397864, {_}: inverse (least_upper_bound identity ?442410) =<= least_upper_bound (greatest_lower_bound identity (inverse ?442410)) (inverse (least_upper_bound identity ?442410)) [442410] by Demod 397863 with 12 at 3 +Id : 697689, {_}: greatest_lower_bound (inverse (least_upper_bound identity ?666285)) (greatest_lower_bound identity (inverse ?666285)) =>= greatest_lower_bound identity (inverse ?666285) [666285] by Super 143 with 397864 at 1,2 +Id : 698150, {_}: greatest_lower_bound (greatest_lower_bound identity (inverse ?666285)) (inverse (least_upper_bound identity ?666285)) =>= greatest_lower_bound identity (inverse ?666285) [666285] by Demod 697689 with 10 at 2 +Id : 698151, {_}: greatest_lower_bound identity (greatest_lower_bound (inverse ?666285) (inverse (least_upper_bound identity ?666285))) =>= greatest_lower_bound identity (inverse ?666285) [666285] by Demod 698150 with 14 at 2 +Id : 4574, {_}: multiply (inverse (least_upper_bound ?7568 identity)) (greatest_lower_bound identity (least_upper_bound identity ?7568)) =>= greatest_lower_bound (inverse (least_upper_bound ?7568 identity)) identity [7568] by Super 333 with 3454 at 2,3 +Id : 4596, {_}: multiply (inverse (least_upper_bound ?7568 identity)) identity =>= greatest_lower_bound (inverse (least_upper_bound ?7568 identity)) identity [7568] by Demod 4574 with 24 at 2,2 +Id : 4597, {_}: inverse (least_upper_bound ?7568 identity) =<= greatest_lower_bound (inverse (least_upper_bound ?7568 identity)) identity [7568] by Demod 4596 with 354 at 2 +Id : 4680, {_}: inverse (least_upper_bound ?7650 identity) =<= greatest_lower_bound identity (inverse (least_upper_bound ?7650 identity)) [7650] by Demod 4597 with 10 at 3 +Id : 4681, {_}: inverse (least_upper_bound ?7652 identity) =<= greatest_lower_bound identity (inverse (least_upper_bound identity ?7652)) [7652] by Super 4680 with 12 at 1,2,3 +Id : 4945, {_}: greatest_lower_bound ?7822 (inverse (least_upper_bound ?7821 identity)) =<= greatest_lower_bound (greatest_lower_bound ?7822 identity) (inverse (least_upper_bound identity ?7821)) [7821, 7822] by Super 14 with 4681 at 2,2 +Id : 732, {_}: greatest_lower_bound (least_upper_bound ?1553 ?1554) ?1553 =>= ?1553 [1554, 1553] by Super 10 with 24 at 3 +Id : 733, {_}: greatest_lower_bound (least_upper_bound ?1557 ?1556) ?1556 =>= ?1556 [1556, 1557] by Super 732 with 12 at 1,2 +Id : 8152, {_}: least_upper_bound (greatest_lower_bound ?11342 identity) (least_upper_bound ?11343 identity) =>= least_upper_bound ?11343 identity [11343, 11342] by Super 8147 with 651 at 2,3 +Id : 9033, {_}: least_upper_bound ?11999 identity =<= least_upper_bound (least_upper_bound (greatest_lower_bound ?11998 identity) ?11999) identity [11998, 11999] by Super 16 with 8152 at 2 +Id : 11655, {_}: least_upper_bound ?14440 identity =<= least_upper_bound identity (least_upper_bound (greatest_lower_bound ?14441 identity) ?14440) [14441, 14440] by Demod 9033 with 12 at 3 +Id : 11666, {_}: least_upper_bound (greatest_lower_bound (greatest_lower_bound ?14473 identity) ?14472) identity =>= least_upper_bound identity (greatest_lower_bound ?14473 identity) [14472, 14473] by Super 11655 with 22 at 2,3 +Id : 11846, {_}: least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?14473 identity) ?14472) =>= least_upper_bound identity (greatest_lower_bound ?14473 identity) [14472, 14473] by Demod 11666 with 12 at 2 +Id : 132, {_}: least_upper_bound ?359 (greatest_lower_bound ?360 ?359) =>= ?359 [360, 359] by Super 131 with 10 at 2,2 +Id : 11847, {_}: least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?14473 identity) ?14472) =>= identity [14472, 14473] by Demod 11846 with 132 at 3 +Id : 13334, {_}: greatest_lower_bound identity (greatest_lower_bound (greatest_lower_bound ?16294 identity) ?16295) =>= greatest_lower_bound (greatest_lower_bound ?16294 identity) ?16295 [16295, 16294] by Super 733 with 11847 at 1,2 +Id : 13335, {_}: greatest_lower_bound identity (greatest_lower_bound (greatest_lower_bound identity ?16297) ?16298) =>= greatest_lower_bound (greatest_lower_bound ?16297 identity) ?16298 [16298, 16297] by Super 13334 with 10 at 1,2,2 +Id : 13417, {_}: greatest_lower_bound identity (greatest_lower_bound identity (greatest_lower_bound ?16297 ?16298)) =>= greatest_lower_bound (greatest_lower_bound ?16297 identity) ?16298 [16298, 16297] by Demod 13335 with 14 at 2,2 +Id : 13418, {_}: greatest_lower_bound identity (greatest_lower_bound ?16297 ?16298) =<= greatest_lower_bound (greatest_lower_bound ?16297 identity) ?16298 [16298, 16297] by Demod 13417 with 116 at 2 +Id : 16433, {_}: greatest_lower_bound ?7822 (inverse (least_upper_bound ?7821 identity)) =<= greatest_lower_bound identity (greatest_lower_bound ?7822 (inverse (least_upper_bound identity ?7821))) [7821, 7822] by Demod 4945 with 13418 at 3 +Id : 698152, {_}: greatest_lower_bound (inverse ?666285) (inverse (least_upper_bound ?666285 identity)) =>= greatest_lower_bound identity (inverse ?666285) [666285] by Demod 698151 with 16433 at 2 +Id : 1371, {_}: multiply (inverse (least_upper_bound ?2583 ?2582)) (least_upper_bound ?2583 ?2582) =>= least_upper_bound identity (multiply (inverse (least_upper_bound ?2583 ?2582)) ?2583) [2582, 2583] by Super 1363 with 502 at 2,2 +Id : 1403, {_}: identity =<= least_upper_bound identity (multiply (inverse (least_upper_bound ?2583 ?2582)) ?2583) [2582, 2583] by Demod 1371 with 6 at 2 +Id : 139935, {_}: multiply identity ?154067 =<= least_upper_bound ?154067 (inverse (least_upper_bound (inverse ?154067) ?154066)) [154066, 154067] by Super 139882 with 1403 at 1,2 +Id : 140043, {_}: ?154067 =<= least_upper_bound ?154067 (inverse (least_upper_bound (inverse ?154067) ?154066)) [154066, 154067] by Demod 139935 with 4 at 2 +Id : 171519, {_}: greatest_lower_bound ?178895 (inverse (least_upper_bound (inverse ?178895) ?178896)) =>= inverse (least_upper_bound (inverse ?178895) ?178896) [178896, 178895] by Super 733 with 140043 at 1,2 +Id : 171521, {_}: greatest_lower_bound (inverse ?178900) (inverse (least_upper_bound ?178900 ?178901)) =>= inverse (least_upper_bound (inverse (inverse ?178900)) ?178901) [178901, 178900] by Super 171519 with 36 at 1,1,2,2 +Id : 172001, {_}: greatest_lower_bound (inverse ?178900) (inverse (least_upper_bound ?178900 ?178901)) =>= inverse (least_upper_bound ?178900 ?178901) [178901, 178900] by Demod 171521 with 36 at 1,1,3 +Id : 698153, {_}: inverse (least_upper_bound ?666285 identity) =>= greatest_lower_bound identity (inverse ?666285) [666285] by Demod 698152 with 172001 at 2 +Id : 699473, {_}: inverse (greatest_lower_bound identity (inverse ?667289)) =>= least_upper_bound ?667289 identity [667289] by Super 36 with 698153 at 1,2 +Id : 702706, {_}: least_upper_bound identity (multiply a b) === least_upper_bound identity (multiply a b) [] by Demod 702705 with 12 at 3 +Id : 702705, {_}: least_upper_bound identity (multiply a b) =<= least_upper_bound (multiply a b) identity [] by Demod 520020 with 699473 at 3 +Id : 520020, {_}: least_upper_bound identity (multiply a b) =<= inverse (greatest_lower_bound identity (inverse (multiply a b))) [] by Demod 329 with 517346 at 3 +Id : 329, {_}: least_upper_bound identity (multiply a b) =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by Demod 2 with 12 at 2 +Id : 2, {_}: least_upper_bound (multiply a b) identity =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by prove_p23 +% SZS output end CNFRefutation for GRP186-2.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 90 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + glb_absorbtion is 80 + greatest_lower_bound is 89 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 94 + inverse is 92 + least_upper_bound is 87 + left_identity is 93 + left_inverse is 91 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 96 + p33_1 is 75 + prove_p33 is 95 + symmetry_of_glb is 88 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: + greatest_lower_bound (least_upper_bound a (inverse a)) + (least_upper_bound b (inverse b)) + =>= + identity + [] by p33_1 +Goal + Id : 2, {_}: multiply a b =>= multiply b a [] by prove_p33 +Last chance: 1246064633.01 +Last chance: all is indexed 1246065282.69 +Last chance: failed over 100 goal 1246065282.71 +FAILURE in 0 iterations +% SZS status Timeout for GRP187-1.p +Order + == is 100 + _ is 99 + a is 98 + b is 97 + c is 95 + identity is 93 + left_division is 90 + left_division_multiply is 88 + left_identity is 92 + left_inverse is 83 + moufang1 is 82 + multiply is 96 + multiply_left_division is 89 + multiply_right_division is 86 + prove_moufang2 is 94 + right_division is 87 + right_division_multiply is 85 + right_identity is 91 + right_inverse is 84 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 + Id : 8, {_}: + multiply ?6 (left_division ?6 ?7) =>= ?7 + [7, 6] by multiply_left_division ?6 ?7 + Id : 10, {_}: + left_division ?9 (multiply ?9 ?10) =>= ?10 + [10, 9] by left_division_multiply ?9 ?10 + Id : 12, {_}: + multiply (right_division ?12 ?13) ?13 =>= ?12 + [13, 12] by multiply_right_division ?12 ?13 + Id : 14, {_}: + right_division (multiply ?15 ?16) ?16 =>= ?15 + [16, 15] by right_division_multiply ?15 ?16 + Id : 16, {_}: + multiply ?18 (right_inverse ?18) =>= identity + [18] by right_inverse ?18 + Id : 18, {_}: + multiply (left_inverse ?20) ?20 =>= identity + [20] by left_inverse ?20 + Id : 20, {_}: + multiply (multiply ?22 (multiply ?23 ?24)) ?22 + =?= + multiply (multiply ?22 ?23) (multiply ?24 ?22) + [24, 23, 22] by moufang1 ?22 ?23 ?24 +Goal + Id : 2, {_}: + multiply (multiply (multiply a b) c) b + =>= + multiply a (multiply b (multiply c b)) + [] by prove_moufang2 +Last chance: 1246065587.09 +Last chance: all is indexed 1246067443.39 +Goal subsumed +Found proof, 2161.793582s +% SZS status Unsatisfiable for GRP200-1.p +% SZS output start CNFRefutation for GRP200-1.p +Id : 8, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 +Id : 43, {_}: right_division (multiply ?78 ?79) ?79 =>= ?78 [79, 78] by right_division_multiply ?78 ?79 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 16, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 +Id : 12, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 +Id : 6, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 +Id : 18, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 +Id : 66, {_}: multiply (multiply ?133 (multiply ?134 ?135)) ?133 =?= multiply (multiply ?133 ?134) (multiply ?135 ?133) [135, 134, 133] by moufang1 ?133 ?134 ?135 +Id : 14, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 +Id : 10, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 +Id : 20, {_}: multiply (multiply ?22 (multiply ?23 ?24)) ?22 =?= multiply (multiply ?22 ?23) (multiply ?24 ?22) [24, 23, 22] by moufang1 ?22 ?23 ?24 +Id : 72, {_}: multiply (multiply ?154 (multiply ?155 (left_inverse ?154))) ?154 =>= multiply (multiply ?154 ?155) identity [155, 154] by Super 66 with 18 at 2,3 +Id : 105, {_}: multiply (multiply ?154 (multiply ?155 (left_inverse ?154))) ?154 =>= multiply ?154 ?155 [155, 154] by Demod 72 with 6 at 3 +Id : 251, {_}: right_division (multiply ?379 ?380) ?379 =<= multiply ?379 (multiply ?380 (left_inverse ?379)) [380, 379] by Super 14 with 105 at 1,2 +Id : 348, {_}: left_division ?485 (right_division (multiply ?485 ?486) ?485) =>= multiply ?486 (left_inverse ?485) [486, 485] by Super 10 with 251 at 2,2 +Id : 259, {_}: multiply (multiply ?406 (multiply ?407 (left_inverse ?406))) ?406 =>= multiply ?406 ?407 [407, 406] by Demod 72 with 6 at 3 +Id : 263, {_}: multiply (multiply ?417 ?416) ?417 =<= multiply ?417 (right_division ?416 (left_inverse ?417)) [416, 417] by Super 259 with 12 at 2,1,2 +Id : 354, {_}: right_division (multiply ?505 ?506) ?505 =<= multiply ?505 (multiply ?506 (left_inverse ?505)) [506, 505] by Super 14 with 105 at 1,2 +Id : 264, {_}: multiply (multiply ?419 identity) ?419 =?= multiply ?419 (left_inverse (left_inverse ?419)) [419] by Super 259 with 18 at 2,1,2 +Id : 282, {_}: multiply ?419 ?419 =<= multiply ?419 (left_inverse (left_inverse ?419)) [419] by Demod 264 with 6 at 1,2 +Id : 299, {_}: left_division ?448 (multiply ?448 ?448) =>= left_inverse (left_inverse ?448) [448] by Super 10 with 282 at 2,2 +Id : 308, {_}: ?448 =<= left_inverse (left_inverse ?448) [448] by Demod 299 with 10 at 2 +Id : 356, {_}: right_division (multiply (left_inverse ?510) ?511) (left_inverse ?510) =>= multiply (left_inverse ?510) (multiply ?511 ?510) [511, 510] by Super 354 with 308 at 2,2,3 +Id : 429, {_}: multiply (multiply ?579 (multiply (left_inverse ?579) ?580)) ?579 =?= multiply ?579 (multiply (left_inverse ?579) (multiply ?580 ?579)) [580, 579] by Super 263 with 356 at 2,3 +Id : 443, {_}: multiply (multiply ?579 (left_inverse ?579)) (multiply ?580 ?579) =?= multiply ?579 (multiply (left_inverse ?579) (multiply ?580 ?579)) [580, 579] by Demod 429 with 20 at 2 +Id : 56, {_}: left_division (left_inverse ?106) identity =>= ?106 [106] by Super 10 with 18 at 2,2 +Id : 50, {_}: left_division ?95 identity =>= right_inverse ?95 [95] by Super 10 with 16 at 2,2 +Id : 202, {_}: right_inverse (left_inverse ?106) =>= ?106 [106] by Demod 56 with 50 at 2 +Id : 323, {_}: right_inverse ?467 =>= left_inverse ?467 [467] by Super 202 with 308 at 1,2 +Id : 332, {_}: multiply ?18 (left_inverse ?18) =>= identity [18] by Demod 16 with 323 at 2,2 +Id : 444, {_}: multiply identity (multiply ?580 ?579) =<= multiply ?579 (multiply (left_inverse ?579) (multiply ?580 ?579)) [579, 580] by Demod 443 with 332 at 1,2 +Id : 445, {_}: multiply ?580 ?579 =<= multiply ?579 (multiply (left_inverse ?579) (multiply ?580 ?579)) [579, 580] by Demod 444 with 4 at 2 +Id : 1799, {_}: left_division ?1898 (right_division (multiply ?1897 ?1898) ?1898) =<= multiply (multiply (left_inverse ?1898) (multiply ?1897 ?1898)) (left_inverse ?1898) [1897, 1898] by Super 348 with 445 at 1,2,2 +Id : 1864, {_}: left_division ?1898 ?1897 =<= multiply (multiply (left_inverse ?1898) (multiply ?1897 ?1898)) (left_inverse ?1898) [1897, 1898] by Demod 1799 with 14 at 2,2 +Id : 393, {_}: multiply (multiply ?551 ?552) ?551 =<= multiply ?551 (right_division ?552 (left_inverse ?551)) [552, 551] by Super 259 with 12 at 2,1,2 +Id : 395, {_}: multiply (multiply (left_inverse ?556) ?557) (left_inverse ?556) =>= multiply (left_inverse ?556) (right_division ?557 ?556) [557, 556] by Super 393 with 308 at 2,2,3 +Id : 1865, {_}: left_division ?1898 ?1897 =<= multiply (left_inverse ?1898) (right_division (multiply ?1897 ?1898) ?1898) [1897, 1898] by Demod 1864 with 395 at 3 +Id : 1866, {_}: left_division ?1898 ?1897 =<= multiply (left_inverse ?1898) ?1897 [1897, 1898] by Demod 1865 with 14 at 2,3 +Id : 1942, {_}: multiply (multiply ?2034 (multiply ?2035 (left_inverse ?2033))) ?2034 =>= multiply (multiply ?2034 ?2035) (left_division ?2033 ?2034) [2033, 2035, 2034] by Super 20 with 1866 at 2,3 +Id : 1961, {_}: left_division ?2091 ?2092 =<= multiply (left_inverse ?2091) ?2092 [2092, 2091] by Demod 1865 with 14 at 2,3 +Id : 1963, {_}: left_division (left_inverse ?2096) ?2097 =>= multiply ?2096 ?2097 [2097, 2096] by Super 1961 with 308 at 1,3 +Id : 391, {_}: left_division ?545 (multiply (multiply ?545 ?546) ?545) =>= right_division ?546 (left_inverse ?545) [546, 545] by Super 10 with 263 at 2,2 +Id : 8162, {_}: multiply (multiply ?7520 (multiply ?7521 (left_inverse ?7522))) ?7520 =>= multiply (multiply ?7520 ?7521) (left_division ?7522 ?7520) [7522, 7521, 7520] by Super 20 with 1866 at 2,3 +Id : 8170, {_}: multiply (multiply ?7554 (left_inverse ?7555)) ?7554 =<= multiply (multiply ?7554 identity) (left_division ?7555 ?7554) [7555, 7554] by Super 8162 with 4 at 2,1,2 +Id : 8237, {_}: multiply (multiply ?7554 (left_inverse ?7555)) ?7554 =>= multiply ?7554 (left_division ?7555 ?7554) [7555, 7554] by Demod 8170 with 6 at 1,3 +Id : 46, {_}: right_division ?85 (left_division ?86 ?85) =>= ?86 [86, 85] by Super 43 with 8 at 1,2 +Id : 87, {_}: multiply (multiply ?211 identity) ?211 =<= multiply (multiply ?211 ?212) (multiply (right_inverse ?212) ?211) [212, 211] by Super 66 with 16 at 2,1,2 +Id : 120, {_}: multiply ?211 ?211 =<= multiply (multiply ?211 ?212) (multiply (right_inverse ?212) ?211) [212, 211] by Demod 87 with 6 at 1,2 +Id : 1158, {_}: multiply ?211 ?211 =<= multiply (multiply ?211 ?212) (multiply (left_inverse ?212) ?211) [212, 211] by Demod 120 with 323 at 1,2,3 +Id : 1253, {_}: left_division (multiply ?1294 ?1295) (multiply ?1294 ?1294) =>= multiply (left_inverse ?1295) ?1294 [1295, 1294] by Super 10 with 1158 at 2,2 +Id : 1260, {_}: left_division ?1311 (multiply ?1312 ?1312) =<= multiply (left_inverse (left_division ?1312 ?1311)) ?1312 [1312, 1311] by Super 1253 with 8 at 1,2 +Id : 1310, {_}: right_division (left_division ?1373 (multiply ?1374 ?1374)) ?1374 =>= left_inverse (left_division ?1374 ?1373) [1374, 1373] by Super 14 with 1260 at 1,2 +Id : 2751, {_}: right_division (multiply ?3003 (multiply ?3004 ?3004)) ?3004 =>= left_inverse (left_division ?3004 (left_inverse ?3003)) [3004, 3003] by Super 1310 with 1963 at 1,2 +Id : 2759, {_}: right_division (multiply (multiply ?3027 (multiply ?3026 ?3027)) ?3027) ?3027 =>= left_inverse (left_division ?3027 (left_inverse (multiply ?3027 ?3026))) [3026, 3027] by Super 2751 with 20 at 1,2 +Id : 2904, {_}: multiply ?3141 (multiply ?3142 ?3141) =<= left_inverse (left_division ?3141 (left_inverse (multiply ?3141 ?3142))) [3142, 3141] by Demod 2759 with 14 at 2 +Id : 2907, {_}: multiply ?3149 (multiply (left_division ?3149 ?3148) ?3149) =>= left_inverse (left_division ?3149 (left_inverse ?3148)) [3148, 3149] by Super 2904 with 8 at 1,2,1,3 +Id : 4946, {_}: left_division ?4933 (left_inverse (left_division ?4933 (left_inverse ?4934))) =>= multiply (left_division ?4933 ?4934) ?4933 [4934, 4933] by Super 10 with 2907 at 2,2 +Id : 5074, {_}: left_division ?5067 (left_inverse (left_division ?5067 ?5068)) =<= multiply (left_division ?5067 (left_inverse ?5068)) ?5067 [5068, 5067] by Super 4946 with 308 at 2,1,2,2 +Id : 2787, {_}: multiply ?3027 (multiply ?3026 ?3027) =<= left_inverse (left_division ?3027 (left_inverse (multiply ?3027 ?3026))) [3026, 3027] by Demod 2759 with 14 at 2 +Id : 2896, {_}: left_division ?3111 (left_inverse (multiply ?3111 ?3112)) =>= left_inverse (multiply ?3111 (multiply ?3112 ?3111)) [3112, 3111] by Super 308 with 2787 at 1,3 +Id : 5085, {_}: left_division ?5102 (left_inverse (left_division ?5102 (multiply ?5102 ?5101))) =<= multiply (left_inverse (multiply ?5102 (multiply ?5101 ?5102))) ?5102 [5101, 5102] by Super 5074 with 2896 at 1,3 +Id : 5138, {_}: left_division ?5102 (left_inverse ?5101) =<= multiply (left_inverse (multiply ?5102 (multiply ?5101 ?5102))) ?5102 [5101, 5102] by Demod 5085 with 10 at 1,2,2 +Id : 5139, {_}: left_division ?5102 (left_inverse ?5101) =<= left_division (multiply ?5102 (multiply ?5101 ?5102)) ?5102 [5101, 5102] by Demod 5138 with 1866 at 3 +Id : 6213, {_}: right_division ?5851 (left_division ?5851 (left_inverse ?5852)) =>= multiply ?5851 (multiply ?5852 ?5851) [5852, 5851] by Super 46 with 5139 at 2,2 +Id : 6217, {_}: right_division ?5864 (left_division ?5864 ?5863) =<= multiply ?5864 (multiply (left_inverse ?5863) ?5864) [5863, 5864] by Super 6213 with 308 at 2,2,2 +Id : 6264, {_}: right_division ?5864 (left_division ?5864 ?5863) =<= multiply ?5864 (left_division ?5863 ?5864) [5863, 5864] by Demod 6217 with 1866 at 2,3 +Id : 8238, {_}: multiply (multiply ?7554 (left_inverse ?7555)) ?7554 =>= right_division ?7554 (left_division ?7554 ?7555) [7555, 7554] by Demod 8237 with 6264 at 3 +Id : 8310, {_}: left_division ?7723 (right_division ?7723 (left_division ?7723 ?7724)) =>= right_division (left_inverse ?7724) (left_inverse ?7723) [7724, 7723] by Super 391 with 8238 at 2,2 +Id : 6327, {_}: left_division ?5945 (right_division ?5945 (left_division ?5945 ?5946)) =>= left_division ?5946 ?5945 [5946, 5945] by Super 10 with 6264 at 2,2 +Id : 8507, {_}: left_division ?7882 ?7883 =<= right_division (left_inverse ?7882) (left_inverse ?7883) [7883, 7882] by Demod 8310 with 6327 at 2 +Id : 8511, {_}: left_division ?7895 (left_inverse ?7894) =>= right_division (left_inverse ?7895) ?7894 [7894, 7895] by Super 8507 with 308 at 2,3 +Id : 8660, {_}: right_division (left_inverse (left_inverse ?7973)) ?7972 =>= multiply ?7973 (left_inverse ?7972) [7972, 7973] by Super 1963 with 8511 at 2 +Id : 8725, {_}: right_division ?7973 ?7972 =<= multiply ?7973 (left_inverse ?7972) [7972, 7973] by Demod 8660 with 308 at 1,2 +Id : 9105, {_}: multiply (multiply ?2034 (right_division ?2035 ?2033)) ?2034 =?= multiply (multiply ?2034 ?2035) (left_division ?2033 ?2034) [2033, 2035, 2034] by Demod 1942 with 8725 at 2,1,2 +Id : 2111, {_}: right_division (left_division ?2205 ?2206) ?2206 =>= left_inverse ?2205 [2206, 2205] by Super 14 with 1866 at 1,2 +Id : 38, {_}: left_division (right_division ?64 ?65) ?64 =>= ?65 [65, 64] by Super 10 with 12 at 2,2 +Id : 2114, {_}: right_division ?2213 ?2214 =<= left_inverse (right_division ?2214 ?2213) [2214, 2213] by Super 2111 with 38 at 1,2 +Id : 8385, {_}: left_division ?7724 ?7723 =<= right_division (left_inverse ?7724) (left_inverse ?7723) [7723, 7724] by Demod 8310 with 6327 at 2 +Id : 8499, {_}: right_division (left_inverse ?7861) (left_inverse ?7860) =>= left_inverse (left_division ?7860 ?7861) [7860, 7861] by Super 2114 with 8385 at 1,3 +Id : 8852, {_}: left_division ?8187 ?8188 =<= left_inverse (left_division ?8188 ?8187) [8188, 8187] by Demod 8499 with 8385 at 2 +Id : 8853, {_}: left_division (multiply ?8191 ?8190) ?8191 =>= left_inverse ?8190 [8190, 8191] by Super 8852 with 10 at 1,3 +Id : 9898, {_}: multiply (multiply ?9062 (right_division ?9064 (multiply ?9062 ?9063))) ?9062 =>= multiply (multiply ?9062 ?9064) (left_inverse ?9063) [9063, 9064, 9062] by Super 9105 with 8853 at 2,3 +Id : 9970, {_}: multiply (multiply ?9062 (right_division ?9064 (multiply ?9062 ?9063))) ?9062 =>= right_division (multiply ?9062 ?9064) ?9063 [9063, 9064, 9062] by Demod 9898 with 8725 at 3 +Id : 8518, {_}: left_division (left_inverse ?7917) ?7918 =>= right_division ?7917 (left_inverse ?7918) [7918, 7917] by Super 8507 with 308 at 1,3 +Id : 8952, {_}: multiply ?8332 ?8333 =<= right_division ?8332 (left_inverse ?8333) [8333, 8332] by Demod 8518 with 1963 at 2 +Id : 8956, {_}: multiply ?8345 (right_division ?8344 ?8343) =>= right_division ?8345 (right_division ?8343 ?8344) [8343, 8344, 8345] by Super 8952 with 2114 at 2,3 +Id : 95690, {_}: multiply (right_division ?9062 (right_division (multiply ?9062 ?9063) ?9064)) ?9062 =>= right_division (multiply ?9062 ?9064) ?9063 [9064, 9063, 9062] by Demod 9970 with 8956 at 1,2 +Id : 2150, {_}: left_division (right_division ?2249 ?2250) ?2251 =<= multiply (right_division ?2250 ?2249) ?2251 [2251, 2250, 2249] by Super 1963 with 2114 at 1,2 +Id : 95691, {_}: left_division (right_division (right_division (multiply ?9062 ?9063) ?9064) ?9062) ?9062 =>= right_division (multiply ?9062 ?9064) ?9063 [9064, 9063, 9062] by Demod 95690 with 2150 at 2 +Id : 9121, {_}: multiply (right_division ?7554 ?7555) ?7554 =>= right_division ?7554 (left_division ?7554 ?7555) [7555, 7554] by Demod 8238 with 8725 at 1,2 +Id : 9127, {_}: left_division (right_division ?7555 ?7554) ?7554 =>= right_division ?7554 (left_division ?7554 ?7555) [7554, 7555] by Demod 9121 with 2150 at 2 +Id : 95777, {_}: right_division ?99014 (left_division ?99014 (right_division (multiply ?99014 ?99015) ?99016)) =>= right_division (multiply ?99014 ?99016) ?99015 [99016, 99015, 99014] by Demod 95691 with 9127 at 2 +Id : 95822, {_}: right_division ?99197 (left_division ?99197 ?99196) =<= right_division (multiply ?99197 (left_division ?99196 (multiply ?99197 ?99198))) ?99198 [99198, 99196, 99197] by Super 95777 with 46 at 2,2,2 +Id : 8545, {_}: left_division ?7861 ?7860 =<= left_inverse (left_division ?7860 ?7861) [7860, 7861] by Demod 8499 with 8385 at 2 +Id : 8958, {_}: multiply ?8352 (left_division ?8351 ?8350) =>= right_division ?8352 (left_division ?8350 ?8351) [8350, 8351, 8352] by Super 8952 with 8545 at 2,3 +Id : 392711, {_}: right_division ?377317 (left_division ?377317 ?377318) =<= right_division (right_division ?377317 (left_division (multiply ?377317 ?377319) ?377318)) ?377319 [377319, 377318, 377317] by Demod 95822 with 8958 at 1,3 +Id : 85, {_}: multiply (multiply ?204 ?203) ?204 =<= multiply (multiply ?204 ?205) (multiply (left_division ?205 ?203) ?204) [205, 203, 204] by Super 66 with 8 at 2,1,2 +Id : 8498, {_}: left_division (right_division (left_inverse ?7857) (left_inverse ?7856)) ?7858 =>= multiply (left_division ?7856 ?7857) ?7858 [7858, 7856, 7857] by Super 2150 with 8385 at 1,3 +Id : 8546, {_}: left_division (left_division ?7857 ?7856) ?7858 =<= multiply (left_division ?7856 ?7857) ?7858 [7858, 7856, 7857] by Demod 8498 with 8385 at 1,2 +Id : 60291, {_}: multiply (multiply ?204 ?203) ?204 =<= multiply (multiply ?204 ?205) (left_division (left_division ?203 ?205) ?204) [205, 203, 204] by Demod 85 with 8546 at 2,3 +Id : 60292, {_}: multiply (multiply ?204 ?203) ?204 =<= right_division (multiply ?204 ?205) (left_division ?204 (left_division ?203 ?205)) [205, 203, 204] by Demod 60291 with 8958 at 3 +Id : 60311, {_}: left_division (multiply (multiply ?63053 ?63054) ?63053) (multiply ?63053 ?63055) =>= left_division ?63053 (left_division ?63054 ?63055) [63055, 63054, 63053] by Super 38 with 60292 at 1,2 +Id : 392811, {_}: right_division (multiply ?377704 ?377702) (left_division (multiply ?377704 ?377702) (multiply ?377704 ?377703)) =>= right_division (right_division (multiply ?377704 ?377702) (left_division ?377704 (left_division ?377702 ?377703))) ?377704 [377703, 377702, 377704] by Super 392711 with 60311 at 2,1,3 +Id : 8860, {_}: left_division ?8210 (left_inverse ?8209) =>= left_inverse (multiply ?8209 ?8210) [8209, 8210] by Super 8852 with 1963 at 1,3 +Id : 8887, {_}: right_division (left_inverse ?8210) ?8209 =>= left_inverse (multiply ?8209 ?8210) [8209, 8210] by Demod 8860 with 8511 at 2 +Id : 9474, {_}: multiply (multiply ?8644 (left_inverse (multiply ?8643 ?8642))) ?8644 =?= multiply (multiply ?8644 (left_inverse ?8642)) (left_division ?8643 ?8644) [8642, 8643, 8644] by Super 9105 with 8887 at 2,1,2 +Id : 9504, {_}: multiply (right_division ?8644 (multiply ?8643 ?8642)) ?8644 =<= multiply (multiply ?8644 (left_inverse ?8642)) (left_division ?8643 ?8644) [8642, 8643, 8644] by Demod 9474 with 8725 at 1,2 +Id : 9505, {_}: left_division (right_division (multiply ?8643 ?8642) ?8644) ?8644 =<= multiply (multiply ?8644 (left_inverse ?8642)) (left_division ?8643 ?8644) [8644, 8642, 8643] by Demod 9504 with 2150 at 2 +Id : 9506, {_}: right_division ?8644 (left_division ?8644 (multiply ?8643 ?8642)) =<= multiply (multiply ?8644 (left_inverse ?8642)) (left_division ?8643 ?8644) [8642, 8643, 8644] by Demod 9505 with 9127 at 2 +Id : 9507, {_}: right_division ?8644 (left_division ?8644 (multiply ?8643 ?8642)) =<= multiply (right_division ?8644 ?8642) (left_division ?8643 ?8644) [8642, 8643, 8644] by Demod 9506 with 8725 at 1,3 +Id : 9508, {_}: right_division ?8644 (left_division ?8644 (multiply ?8643 ?8642)) =<= left_division (right_division ?8642 ?8644) (left_division ?8643 ?8644) [8642, 8643, 8644] by Demod 9507 with 2150 at 3 +Id : 10427, {_}: left_division (right_division ?9734 ?9735) (left_division ?9732 ?9733) =>= right_division (right_division ?9735 ?9734) (left_division ?9733 ?9732) [9733, 9732, 9735, 9734] by Super 2150 with 8958 at 3 +Id : 16292, {_}: right_division ?8644 (left_division ?8644 (multiply ?8643 ?8642)) =?= right_division (right_division ?8644 ?8642) (left_division ?8644 ?8643) [8642, 8643, 8644] by Demod 9508 with 10427 at 3 +Id : 393302, {_}: right_division (right_division (multiply ?377704 ?377702) ?377703) (left_division (multiply ?377704 ?377702) ?377704) =?= right_division (right_division (multiply ?377704 ?377702) (left_division ?377704 (left_division ?377702 ?377703))) ?377704 [377703, 377702, 377704] by Demod 392811 with 16292 at 2 +Id : 393303, {_}: right_division (right_division (multiply ?377704 ?377702) ?377703) (left_inverse ?377702) =<= right_division (right_division (multiply ?377704 ?377702) (left_division ?377704 (left_division ?377702 ?377703))) ?377704 [377703, 377702, 377704] by Demod 393302 with 8853 at 2,2 +Id : 8584, {_}: multiply ?7917 ?7918 =<= right_division ?7917 (left_inverse ?7918) [7918, 7917] by Demod 8518 with 1963 at 2 +Id : 393304, {_}: multiply (right_division (multiply ?377704 ?377702) ?377703) ?377702 =<= right_division (right_division (multiply ?377704 ?377702) (left_division ?377704 (left_division ?377702 ?377703))) ?377704 [377703, 377702, 377704] by Demod 393303 with 8584 at 2 +Id : 393305, {_}: left_division (right_division ?377703 (multiply ?377704 ?377702)) ?377702 =<= right_division (right_division (multiply ?377704 ?377702) (left_division ?377704 (left_division ?377702 ?377703))) ?377704 [377702, 377704, 377703] by Demod 393304 with 2150 at 2 +Id : 8144, {_}: right_division (multiply (multiply ?7446 ?7447) (left_division ?7448 ?7446)) ?7446 =>= multiply ?7446 (multiply ?7447 (left_inverse ?7448)) [7448, 7447, 7446] by Super 14 with 1942 at 1,2 +Id : 82754, {_}: right_division (right_division (multiply ?7446 ?7447) (left_division ?7446 ?7448)) ?7446 =>= multiply ?7446 (multiply ?7447 (left_inverse ?7448)) [7448, 7447, 7446] by Demod 8144 with 8958 at 1,2 +Id : 82755, {_}: right_division (right_division (multiply ?7446 ?7447) (left_division ?7446 ?7448)) ?7446 =>= multiply ?7446 (right_division ?7447 ?7448) [7448, 7447, 7446] by Demod 82754 with 8725 at 2,3 +Id : 82756, {_}: right_division (right_division (multiply ?7446 ?7447) (left_division ?7446 ?7448)) ?7446 =>= right_division ?7446 (right_division ?7448 ?7447) [7448, 7447, 7446] by Demod 82755 with 8956 at 3 +Id : 393655, {_}: left_division (right_division ?378971 (multiply ?378972 ?378973)) ?378973 =>= right_division ?378972 (right_division (left_division ?378973 ?378971) ?378973) [378973, 378972, 378971] by Demod 393305 with 82756 at 3 +Id : 393708, {_}: left_division (left_inverse (multiply (multiply ?379185 ?379186) ?379184)) ?379186 =>= right_division ?379185 (right_division (left_division ?379186 (left_inverse ?379184)) ?379186) [379184, 379186, 379185] by Super 393655 with 8887 at 1,2 +Id : 394347, {_}: multiply (multiply (multiply ?379185 ?379186) ?379184) ?379186 =<= right_division ?379185 (right_division (left_division ?379186 (left_inverse ?379184)) ?379186) [379184, 379186, 379185] by Demod 393708 with 1963 at 2 +Id : 9439, {_}: left_division ?7895 (left_inverse ?7894) =>= left_inverse (multiply ?7894 ?7895) [7894, 7895] by Demod 8511 with 8887 at 3 +Id : 394348, {_}: multiply (multiply (multiply ?379185 ?379186) ?379184) ?379186 =<= right_division ?379185 (right_division (left_inverse (multiply ?379184 ?379186)) ?379186) [379184, 379186, 379185] by Demod 394347 with 9439 at 1,2,3 +Id : 394349, {_}: multiply (multiply (multiply ?379185 ?379186) ?379184) ?379186 =<= right_division ?379185 (left_inverse (multiply ?379186 (multiply ?379184 ?379186))) [379184, 379186, 379185] by Demod 394348 with 8887 at 2,3 +Id : 394350, {_}: multiply (multiply (multiply ?379185 ?379186) ?379184) ?379186 =?= multiply ?379185 (multiply ?379186 (multiply ?379184 ?379186)) [379184, 379186, 379185] by Demod 394349 with 8584 at 3 +Id : 992665, {_}: multiply a (multiply b (multiply c b)) === multiply a (multiply b (multiply c b)) [] by Super 2 with 394350 at 2 +Id : 2, {_}: multiply (multiply (multiply a b) c) b =>= multiply a (multiply b (multiply c b)) [] by prove_moufang2 +% SZS output end CNFRefutation for GRP200-1.p +Order + == is 100 + _ is 99 + a is 98 + b is 97 + c is 96 + identity is 93 + left_division is 90 + left_division_multiply is 88 + left_identity is 92 + left_inverse is 83 + moufang3 is 82 + multiply is 95 + multiply_left_division is 89 + multiply_right_division is 86 + prove_moufang1 is 94 + right_division is 87 + right_division_multiply is 85 + right_identity is 91 + right_inverse is 84 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 + Id : 8, {_}: + multiply ?6 (left_division ?6 ?7) =>= ?7 + [7, 6] by multiply_left_division ?6 ?7 + Id : 10, {_}: + left_division ?9 (multiply ?9 ?10) =>= ?10 + [10, 9] by left_division_multiply ?9 ?10 + Id : 12, {_}: + multiply (right_division ?12 ?13) ?13 =>= ?12 + [13, 12] by multiply_right_division ?12 ?13 + Id : 14, {_}: + right_division (multiply ?15 ?16) ?16 =>= ?15 + [16, 15] by right_division_multiply ?15 ?16 + Id : 16, {_}: + multiply ?18 (right_inverse ?18) =>= identity + [18] by right_inverse ?18 + Id : 18, {_}: + multiply (left_inverse ?20) ?20 =>= identity + [20] by left_inverse ?20 + Id : 20, {_}: + multiply (multiply (multiply ?22 ?23) ?22) ?24 + =?= + multiply ?22 (multiply ?23 (multiply ?22 ?24)) + [24, 23, 22] by moufang3 ?22 ?23 ?24 +Goal + Id : 2, {_}: + multiply (multiply a (multiply b c)) a + =>= + multiply (multiply a b) (multiply c a) + [] by prove_moufang1 +Last chance: 1246067751.11 +Last chance: all is indexed 1246069777.56 +Goal subsumed +Found proof, 2330.385313s +% SZS status Unsatisfiable for GRP202-1.p +% SZS output start CNFRefutation for GRP202-1.p +Id : 43, {_}: right_division (multiply ?78 ?79) ?79 =>= ?78 [79, 78] by right_division_multiply ?78 ?79 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 18, {_}: multiply (left_inverse ?20) ?20 =>= identity [20] by left_inverse ?20 +Id : 8, {_}: multiply ?6 (left_division ?6 ?7) =>= ?7 [7, 6] by multiply_left_division ?6 ?7 +Id : 6, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 +Id : 16, {_}: multiply ?18 (right_inverse ?18) =>= identity [18] by right_inverse ?18 +Id : 68, {_}: multiply (multiply (multiply ?140 ?141) ?140) ?142 =?= multiply ?140 (multiply ?141 (multiply ?140 ?142)) [142, 141, 140] by moufang3 ?140 ?141 ?142 +Id : 14, {_}: right_division (multiply ?15 ?16) ?16 =>= ?15 [16, 15] by right_division_multiply ?15 ?16 +Id : 20, {_}: multiply (multiply (multiply ?22 ?23) ?22) ?24 =?= multiply ?22 (multiply ?23 (multiply ?22 ?24)) [24, 23, 22] by moufang3 ?22 ?23 ?24 +Id : 12, {_}: multiply (right_division ?12 ?13) ?13 =>= ?12 [13, 12] by multiply_right_division ?12 ?13 +Id : 10, {_}: left_division ?9 (multiply ?9 ?10) =>= ?10 [10, 9] by left_division_multiply ?9 ?10 +Id : 38, {_}: left_division (right_division ?64 ?65) ?64 =>= ?65 [65, 64] by Super 10 with 12 at 2,2 +Id : 73, {_}: multiply (multiply (multiply ?158 ?159) ?158) (right_inverse ?158) =>= multiply ?158 (multiply ?159 identity) [159, 158] by Super 68 with 16 at 2,2,3 +Id : 106, {_}: multiply (multiply (multiply ?158 ?159) ?158) (right_inverse ?158) =>= multiply ?158 ?159 [159, 158] by Demod 73 with 6 at 2,3 +Id : 302, {_}: right_division (multiply ?452 ?453) (right_inverse ?452) =>= multiply (multiply ?452 ?453) ?452 [453, 452] by Super 14 with 106 at 1,2 +Id : 307, {_}: right_division ?464 (right_inverse ?465) =<= multiply (multiply ?465 (left_division ?465 ?464)) ?465 [465, 464] by Super 302 with 8 at 1,2 +Id : 362, {_}: right_division ?516 (right_inverse ?517) =>= multiply ?516 ?517 [517, 516] by Demod 307 with 8 at 1,3 +Id : 56, {_}: left_division (left_inverse ?106) identity =>= ?106 [106] by Super 10 with 18 at 2,2 +Id : 50, {_}: left_division ?95 identity =>= right_inverse ?95 [95] by Super 10 with 16 at 2,2 +Id : 200, {_}: right_inverse (left_inverse ?106) =>= ?106 [106] by Demod 56 with 50 at 2 +Id : 363, {_}: right_division ?520 ?519 =<= multiply ?520 (left_inverse ?519) [519, 520] by Super 362 with 200 at 2,2 +Id : 421, {_}: multiply (multiply (multiply ?562 ?564) ?562) (left_inverse ?563) =>= multiply ?562 (multiply ?564 (right_division ?562 ?563)) [563, 564, 562] by Super 20 with 363 at 2,2,3 +Id : 650, {_}: right_division (multiply (multiply ?862 ?863) ?862) ?864 =<= multiply ?862 (multiply ?863 (right_division ?862 ?864)) [864, 863, 862] by Demod 421 with 363 at 2 +Id : 657, {_}: right_division (multiply (multiply ?887 identity) ?887) ?888 =>= multiply ?887 (right_division ?887 ?888) [888, 887] by Super 650 with 4 at 2,3 +Id : 692, {_}: right_division (multiply ?940 ?940) ?941 =<= multiply ?940 (right_division ?940 ?941) [941, 940] by Demod 657 with 6 at 1,1,2 +Id : 46, {_}: right_division ?85 (left_division ?86 ?85) =>= ?86 [86, 85] by Super 43 with 8 at 1,2 +Id : 695, {_}: right_division (multiply ?949 ?949) (left_division ?948 ?949) =>= multiply ?949 ?948 [948, 949] by Super 692 with 46 at 2,3 +Id : 1572, {_}: left_division (multiply ?1757 ?1758) (multiply ?1757 ?1757) =>= left_division ?1758 ?1757 [1758, 1757] by Super 38 with 695 at 1,2 +Id : 1580, {_}: left_division ?1779 (multiply (right_division ?1779 ?1780) (right_division ?1779 ?1780)) =>= left_division ?1780 (right_division ?1779 ?1780) [1780, 1779] by Super 1572 with 12 at 1,2 +Id : 88, {_}: multiply (multiply identity ?215) ?216 =<= multiply ?215 (multiply (right_inverse ?215) (multiply ?215 ?216)) [216, 215] by Super 68 with 16 at 1,1,2 +Id : 121, {_}: multiply ?215 ?216 =<= multiply ?215 (multiply (right_inverse ?215) (multiply ?215 ?216)) [216, 215] by Demod 88 with 4 at 1,2 +Id : 44, {_}: right_division ?81 ?81 =>= identity [81] by Super 43 with 4 at 1,2 +Id : 328, {_}: right_division ?464 (right_inverse ?465) =>= multiply ?464 ?465 [465, 464] by Demod 307 with 8 at 1,3 +Id : 357, {_}: multiply (right_inverse ?503) ?503 =>= identity [503] by Super 44 with 328 at 2 +Id : 376, {_}: right_division identity ?536 =>= right_inverse ?536 [536] by Super 14 with 357 at 1,2 +Id : 55, {_}: right_division identity ?104 =>= left_inverse ?104 [104] by Super 14 with 18 at 1,2 +Id : 395, {_}: left_inverse ?536 =<= right_inverse ?536 [536] by Demod 376 with 55 at 2 +Id : 2631, {_}: multiply ?215 ?216 =<= multiply ?215 (multiply (left_inverse ?215) (multiply ?215 ?216)) [216, 215] by Demod 121 with 395 at 1,2,3 +Id : 2643, {_}: left_division ?2950 (multiply ?2950 ?2951) =<= multiply (left_inverse ?2950) (multiply ?2950 ?2951) [2951, 2950] by Super 10 with 2631 at 2,2 +Id : 2675, {_}: ?2951 =<= multiply (left_inverse ?2950) (multiply ?2950 ?2951) [2950, 2951] by Demod 2643 with 10 at 2 +Id : 2822, {_}: left_division (left_inverse ?3188) ?3189 =>= multiply ?3188 ?3189 [3189, 3188] by Super 10 with 2675 at 2,2 +Id : 407, {_}: left_inverse (left_inverse ?106) =>= ?106 [106] by Demod 200 with 395 at 2 +Id : 2823, {_}: left_division ?3191 ?3192 =<= multiply (left_inverse ?3191) ?3192 [3192, 3191] by Super 2822 with 407 at 1,2 +Id : 2737, {_}: left_division (left_inverse ?3048) ?3047 =>= multiply ?3048 ?3047 [3047, 3048] by Super 10 with 2675 at 2,2 +Id : 361, {_}: left_division (multiply ?513 ?514) ?513 =>= right_inverse ?514 [514, 513] by Super 38 with 328 at 1,2 +Id : 487, {_}: left_division (multiply ?513 ?514) ?513 =>= left_inverse ?514 [514, 513] by Demod 361 with 395 at 3 +Id : 2742, {_}: left_division ?3064 (left_inverse ?3065) =>= left_inverse (multiply ?3065 ?3064) [3065, 3064] by Super 487 with 2675 at 1,2 +Id : 2875, {_}: left_inverse (multiply ?3221 (left_inverse ?3222)) =>= multiply ?3222 (left_inverse ?3221) [3222, 3221] by Super 2737 with 2742 at 2 +Id : 2943, {_}: left_inverse (right_division ?3221 ?3222) =<= multiply ?3222 (left_inverse ?3221) [3222, 3221] by Demod 2875 with 363 at 1,2 +Id : 2944, {_}: left_inverse (right_division ?3221 ?3222) =>= right_division ?3222 ?3221 [3222, 3221] by Demod 2943 with 363 at 3 +Id : 3156, {_}: left_division (right_division ?3443 ?3444) ?3445 =<= multiply (right_division ?3444 ?3443) ?3445 [3445, 3444, 3443] by Super 2823 with 2944 at 1,3 +Id : 23022, {_}: left_division ?1779 (left_division (right_division ?1780 ?1779) (right_division ?1779 ?1780)) =>= left_division ?1780 (right_division ?1779 ?1780) [1780, 1779] by Demod 1580 with 3156 at 2,2 +Id : 3157, {_}: right_division ?3449 (right_division ?3447 ?3448) =<= multiply ?3449 (right_division ?3448 ?3447) [3448, 3447, 3449] by Super 363 with 2944 at 2,3 +Id : 3956, {_}: left_division (right_division ?4457 ?4458) (right_division ?4456 ?4455) =>= right_division (right_division ?4458 ?4457) (right_division ?4455 ?4456) [4455, 4456, 4458, 4457] by Super 3156 with 3157 at 3 +Id : 23023, {_}: left_division ?1779 (right_division (right_division ?1779 ?1780) (right_division ?1780 ?1779)) =>= left_division ?1780 (right_division ?1779 ?1780) [1780, 1779] by Demod 23022 with 3956 at 2,2 +Id : 492, {_}: left_division (multiply ?638 ?639) ?638 =>= left_inverse ?639 [639, 638] by Demod 361 with 395 at 3 +Id : 495, {_}: left_division ?645 ?646 =<= left_inverse (left_division ?646 ?645) [646, 645] by Super 492 with 8 at 1,2 +Id : 403, {_}: left_division ?95 identity =>= left_inverse ?95 [95] by Demod 50 with 395 at 3 +Id : 2980, {_}: multiply (multiply (multiply ?3354 (left_inverse ?3353)) ?3354) ?3355 =>= multiply ?3354 (left_division ?3353 (multiply ?3354 ?3355)) [3355, 3353, 3354] by Super 20 with 2823 at 2,3 +Id : 3069, {_}: multiply (multiply (right_division ?3354 ?3353) ?3354) ?3355 =?= multiply ?3354 (left_division ?3353 (multiply ?3354 ?3355)) [3355, 3353, 3354] by Demod 2980 with 363 at 1,1,2 +Id : 408, {_}: right_division ?464 (left_inverse ?465) =>= multiply ?464 ?465 [465, 464] by Demod 328 with 395 at 2,2 +Id : 514, {_}: right_division ?671 (left_division ?669 ?670) =<= multiply ?671 (left_division ?670 ?669) [670, 669, 671] by Super 408 with 495 at 2,2 +Id : 3070, {_}: multiply (multiply (right_division ?3354 ?3353) ?3354) ?3355 =>= right_division ?3354 (left_division (multiply ?3354 ?3355) ?3353) [3355, 3353, 3354] by Demod 3069 with 514 at 3 +Id : 4877, {_}: multiply (left_division (right_division ?3353 ?3354) ?3354) ?3355 =>= right_division ?3354 (left_division (multiply ?3354 ?3355) ?3353) [3355, 3354, 3353] by Demod 3070 with 3156 at 1,2 +Id : 2825, {_}: left_division (left_division ?3196 ?3197) ?3198 =<= multiply (left_division ?3197 ?3196) ?3198 [3198, 3197, 3196] by Super 2822 with 495 at 1,2 +Id : 4878, {_}: left_division (left_division ?3354 (right_division ?3353 ?3354)) ?3355 =>= right_division ?3354 (left_division (multiply ?3354 ?3355) ?3353) [3355, 3353, 3354] by Demod 4877 with 2825 at 2 +Id : 4885, {_}: right_division ?5383 (left_division (multiply ?5383 identity) ?5384) =>= left_inverse (left_division ?5383 (right_division ?5384 ?5383)) [5384, 5383] by Super 403 with 4878 at 2 +Id : 4962, {_}: right_division ?5383 (left_division ?5383 ?5384) =<= left_inverse (left_division ?5383 (right_division ?5384 ?5383)) [5384, 5383] by Demod 4885 with 6 at 1,2,2 +Id : 4963, {_}: right_division ?5383 (left_division ?5383 ?5384) =<= left_division (right_division ?5384 ?5383) ?5383 [5384, 5383] by Demod 4962 with 495 at 3 +Id : 5068, {_}: left_division ?5634 (right_division ?5635 ?5634) =<= left_inverse (right_division ?5634 (left_division ?5634 ?5635)) [5635, 5634] by Super 495 with 4963 at 1,3 +Id : 5126, {_}: left_division ?5634 (right_division ?5635 ?5634) =>= right_division (left_division ?5634 ?5635) ?5634 [5635, 5634] by Demod 5068 with 2944 at 3 +Id : 23066, {_}: left_division ?25029 (right_division (right_division ?25029 ?25030) (right_division ?25030 ?25029)) =>= right_division (left_division ?25030 ?25029) ?25030 [25030, 25029] by Demod 23023 with 5126 at 3 +Id : 2978, {_}: right_division (left_inverse ?3346) ?3347 =<= left_division ?3346 (left_inverse ?3347) [3347, 3346] by Super 363 with 2823 at 3 +Id : 3081, {_}: right_division (left_inverse ?3346) ?3347 =>= left_inverse (multiply ?3347 ?3346) [3347, 3346] by Demod 2978 with 2742 at 3 +Id : 23086, {_}: left_division ?25090 (right_division (right_division ?25090 (left_inverse ?25089)) (left_inverse (multiply ?25090 ?25089))) =>= right_division (left_division (left_inverse ?25089) ?25090) (left_inverse ?25089) [25089, 25090] by Super 23066 with 3081 at 2,2,2 +Id : 23342, {_}: left_division ?25090 (multiply (right_division ?25090 (left_inverse ?25089)) (multiply ?25090 ?25089)) =>= right_division (left_division (left_inverse ?25089) ?25090) (left_inverse ?25089) [25089, 25090] by Demod 23086 with 408 at 2,2 +Id : 23343, {_}: left_division ?25090 (left_division (right_division (left_inverse ?25089) ?25090) (multiply ?25090 ?25089)) =>= right_division (left_division (left_inverse ?25089) ?25090) (left_inverse ?25089) [25089, 25090] by Demod 23342 with 3156 at 2,2 +Id : 23344, {_}: left_division ?25090 (left_division (left_inverse (multiply ?25090 ?25089)) (multiply ?25090 ?25089)) =>= right_division (left_division (left_inverse ?25089) ?25090) (left_inverse ?25089) [25089, 25090] by Demod 23343 with 3081 at 1,2,2 +Id : 23345, {_}: left_division ?25090 (multiply (multiply ?25090 ?25089) (multiply ?25090 ?25089)) =>= right_division (left_division (left_inverse ?25089) ?25090) (left_inverse ?25089) [25089, 25090] by Demod 23344 with 2737 at 2,2 +Id : 23346, {_}: left_division ?25090 (multiply (multiply ?25090 ?25089) (multiply ?25090 ?25089)) =>= multiply (left_division (left_inverse ?25089) ?25090) ?25089 [25089, 25090] by Demod 23345 with 408 at 3 +Id : 23347, {_}: left_division ?25090 (multiply (multiply ?25090 ?25089) (multiply ?25090 ?25089)) =>= left_division (left_division ?25090 (left_inverse ?25089)) ?25089 [25089, 25090] by Demod 23346 with 2825 at 3 +Id : 23348, {_}: left_division ?25090 (multiply (multiply ?25090 ?25089) (multiply ?25090 ?25089)) =>= left_division (left_inverse (multiply ?25089 ?25090)) ?25089 [25089, 25090] by Demod 23347 with 2742 at 1,3 +Id : 23349, {_}: left_division ?25090 (multiply (multiply ?25090 ?25089) (multiply ?25090 ?25089)) =>= multiply (multiply ?25089 ?25090) ?25089 [25089, 25090] by Demod 23348 with 2737 at 3 +Id : 1876, {_}: left_division (right_division ?2132 ?2133) (multiply ?2132 ?2132) =>= left_division (left_inverse ?2133) ?2132 [2133, 2132] by Super 1572 with 363 at 1,2 +Id : 1882, {_}: left_division ?2150 (multiply (multiply ?2150 ?2151) (multiply ?2150 ?2151)) =>= left_division (left_inverse ?2151) (multiply ?2150 ?2151) [2151, 2150] by Super 1876 with 14 at 1,2 +Id : 24844, {_}: left_division ?2150 (multiply (multiply ?2150 ?2151) (multiply ?2150 ?2151)) =>= multiply ?2151 (multiply ?2150 ?2151) [2151, 2150] by Demod 1882 with 2737 at 3 +Id : 189960, {_}: multiply ?25089 (multiply ?25090 ?25089) =?= multiply (multiply ?25089 ?25090) ?25089 [25090, 25089] by Demod 23349 with 24844 at 2 +Id : 2985, {_}: right_division (left_division ?3370 ?3371) ?3371 =>= left_inverse ?3370 [3371, 3370] by Super 14 with 2823 at 1,2 +Id : 4879, {_}: right_division (right_division ?5359 (left_division (multiply ?5359 ?5361) ?5360)) ?5361 =>= left_inverse (left_division ?5359 (right_division ?5360 ?5359)) [5360, 5361, 5359] by Super 2985 with 4878 at 1,2 +Id : 4974, {_}: right_division (right_division ?5359 (left_division (multiply ?5359 ?5361) ?5360)) ?5361 =>= left_division (right_division ?5360 ?5359) ?5359 [5360, 5361, 5359] by Demod 4879 with 495 at 3 +Id : 41940, {_}: right_division (right_division ?5359 (left_division (multiply ?5359 ?5361) ?5360)) ?5361 =>= right_division ?5359 (left_division ?5359 ?5360) [5360, 5361, 5359] by Demod 4974 with 4963 at 3 +Id : 41979, {_}: right_division ?43925 (left_division ?43925 ?43926) =<= multiply (right_division ?43925 (left_division (multiply ?43925 (left_inverse ?43927)) ?43926)) ?43927 [43927, 43926, 43925] by Super 408 with 41940 at 2 +Id : 42108, {_}: right_division ?43925 (left_division ?43925 ?43926) =<= left_division (right_division (left_division (multiply ?43925 (left_inverse ?43927)) ?43926) ?43925) ?43927 [43927, 43926, 43925] by Demod 41979 with 3156 at 3 +Id : 42109, {_}: right_division ?43925 (left_division ?43925 ?43926) =<= left_division (right_division (left_division (right_division ?43925 ?43927) ?43926) ?43925) ?43927 [43927, 43926, 43925] by Demod 42108 with 363 at 1,1,1,3 +Id : 42000, {_}: right_division (right_division ?44019 (left_division (multiply ?44019 ?44020) ?44021)) ?44020 =>= right_division ?44019 (left_division ?44019 ?44021) [44021, 44020, 44019] by Demod 4974 with 4963 at 3 +Id : 42010, {_}: right_division (right_division (left_inverse ?44060) (left_division (left_division ?44060 ?44061) ?44062)) ?44061 =>= right_division (left_inverse ?44060) (left_division (left_inverse ?44060) ?44062) [44062, 44061, 44060] by Super 42000 with 2823 at 1,2,1,2 +Id : 42174, {_}: right_division (left_inverse (multiply (left_division (left_division ?44060 ?44061) ?44062) ?44060)) ?44061 =>= right_division (left_inverse ?44060) (left_division (left_inverse ?44060) ?44062) [44062, 44061, 44060] by Demod 42010 with 3081 at 1,2 +Id : 42175, {_}: left_inverse (multiply ?44061 (multiply (left_division (left_division ?44060 ?44061) ?44062) ?44060)) =>= right_division (left_inverse ?44060) (left_division (left_inverse ?44060) ?44062) [44062, 44060, 44061] by Demod 42174 with 3081 at 2 +Id : 42176, {_}: left_inverse (multiply ?44061 (left_division (left_division ?44062 (left_division ?44060 ?44061)) ?44060)) =>= right_division (left_inverse ?44060) (left_division (left_inverse ?44060) ?44062) [44060, 44062, 44061] by Demod 42175 with 2825 at 2,1,2 +Id : 42177, {_}: left_inverse (right_division ?44061 (left_division ?44060 (left_division ?44062 (left_division ?44060 ?44061)))) =>= right_division (left_inverse ?44060) (left_division (left_inverse ?44060) ?44062) [44062, 44060, 44061] by Demod 42176 with 514 at 1,2 +Id : 42178, {_}: right_division (left_division ?44060 (left_division ?44062 (left_division ?44060 ?44061))) ?44061 =>= right_division (left_inverse ?44060) (left_division (left_inverse ?44060) ?44062) [44061, 44062, 44060] by Demod 42177 with 2944 at 2 +Id : 42179, {_}: right_division (left_division ?44060 (left_division ?44062 (left_division ?44060 ?44061))) ?44061 =>= left_inverse (multiply (left_division (left_inverse ?44060) ?44062) ?44060) [44061, 44062, 44060] by Demod 42178 with 3081 at 3 +Id : 42180, {_}: right_division (left_division ?44060 (left_division ?44062 (left_division ?44060 ?44061))) ?44061 =>= left_inverse (left_division (left_division ?44062 (left_inverse ?44060)) ?44060) [44061, 44062, 44060] by Demod 42179 with 2825 at 1,3 +Id : 42181, {_}: right_division (left_division ?44060 (left_division ?44062 (left_division ?44060 ?44061))) ?44061 =>= left_division ?44060 (left_division ?44062 (left_inverse ?44060)) [44061, 44062, 44060] by Demod 42180 with 495 at 3 +Id : 42182, {_}: right_division (left_division ?44060 (left_division ?44062 (left_division ?44060 ?44061))) ?44061 =>= left_division ?44060 (left_inverse (multiply ?44060 ?44062)) [44061, 44062, 44060] by Demod 42181 with 2742 at 2,3 +Id : 42183, {_}: right_division (left_division ?44060 (left_division ?44062 (left_division ?44060 ?44061))) ?44061 =>= left_inverse (multiply (multiply ?44060 ?44062) ?44060) [44061, 44062, 44060] by Demod 42182 with 2742 at 3 +Id : 265196, {_}: right_division ?249956 (left_division ?249956 (left_division ?249955 (left_division (right_division ?249956 ?249957) ?249956))) =?= left_division (left_inverse (multiply (multiply (right_division ?249956 ?249957) ?249955) (right_division ?249956 ?249957))) ?249957 [249957, 249955, 249956] by Super 42109 with 42183 at 1,3 +Id : 265432, {_}: right_division ?249956 (left_division ?249956 (left_division ?249955 ?249957)) =<= left_division (left_inverse (multiply (multiply (right_division ?249956 ?249957) ?249955) (right_division ?249956 ?249957))) ?249957 [249957, 249955, 249956] by Demod 265196 with 38 at 2,2,2,2 +Id : 265433, {_}: right_division ?249956 (left_division ?249956 (left_division ?249955 ?249957)) =<= multiply (multiply (multiply (right_division ?249956 ?249957) ?249955) (right_division ?249956 ?249957)) ?249957 [249957, 249955, 249956] by Demod 265432 with 2737 at 3 +Id : 265434, {_}: right_division ?249956 (left_division ?249956 (left_division ?249955 ?249957)) =<= multiply (right_division ?249956 ?249957) (multiply ?249955 (multiply (right_division ?249956 ?249957) ?249957)) [249957, 249955, 249956] by Demod 265433 with 20 at 3 +Id : 265435, {_}: right_division ?249956 (left_division ?249956 (left_division ?249955 ?249957)) =<= left_division (right_division ?249957 ?249956) (multiply ?249955 (multiply (right_division ?249956 ?249957) ?249957)) [249957, 249955, 249956] by Demod 265434 with 3156 at 3 +Id : 265436, {_}: right_division ?249956 (left_division ?249956 (left_division ?249955 ?249957)) =<= left_division (right_division ?249957 ?249956) (multiply ?249955 (left_division (right_division ?249957 ?249956) ?249957)) [249957, 249955, 249956] by Demod 265435 with 3156 at 2,2,3 +Id : 265437, {_}: right_division ?249956 (left_division ?249956 (left_division ?249955 ?249957)) =<= left_division (right_division ?249957 ?249956) (right_division ?249955 (left_division ?249957 (right_division ?249957 ?249956))) [249957, 249955, 249956] by Demod 265436 with 514 at 2,3 +Id : 265438, {_}: right_division ?249956 (left_division ?249956 (left_division ?249955 ?249957)) =<= right_division (right_division ?249956 ?249957) (right_division (left_division ?249957 (right_division ?249957 ?249956)) ?249955) [249957, 249955, 249956] by Demod 265437 with 3956 at 3 +Id : 427, {_}: left_division ?583 (right_division ?583 ?584) =>= left_inverse ?584 [584, 583] by Super 10 with 363 at 2,2 +Id : 265439, {_}: right_division ?249956 (left_division ?249956 (left_division ?249955 ?249957)) =<= right_division (right_division ?249956 ?249957) (right_division (left_inverse ?249956) ?249955) [249957, 249955, 249956] by Demod 265438 with 427 at 1,2,3 +Id : 265440, {_}: right_division ?249956 (left_division ?249956 (left_division ?249955 ?249957)) =<= right_division (right_division ?249956 ?249957) (left_inverse (multiply ?249955 ?249956)) [249957, 249955, 249956] by Demod 265439 with 3081 at 2,3 +Id : 265441, {_}: right_division ?249956 (left_division ?249956 (left_division ?249955 ?249957)) =<= multiply (right_division ?249956 ?249957) (multiply ?249955 ?249956) [249957, 249955, 249956] by Demod 265440 with 408 at 3 +Id : 267669, {_}: right_division ?251794 (left_division ?251794 (left_division ?251795 ?251796)) =<= left_division (right_division ?251796 ?251794) (multiply ?251795 ?251794) [251796, 251795, 251794] by Demod 265441 with 3156 at 3 +Id : 267708, {_}: right_division ?251955 (left_division ?251955 (left_division ?251956 (left_inverse ?251954))) =<= left_division (left_inverse (multiply ?251955 ?251954)) (multiply ?251956 ?251955) [251954, 251956, 251955] by Super 267669 with 3081 at 1,3 +Id : 268416, {_}: right_division ?251955 (left_division ?251955 (left_inverse (multiply ?251954 ?251956))) =<= left_division (left_inverse (multiply ?251955 ?251954)) (multiply ?251956 ?251955) [251956, 251954, 251955] by Demod 267708 with 2742 at 2,2,2 +Id : 268417, {_}: right_division ?251955 (left_inverse (multiply (multiply ?251954 ?251956) ?251955)) =<= left_division (left_inverse (multiply ?251955 ?251954)) (multiply ?251956 ?251955) [251956, 251954, 251955] by Demod 268416 with 2742 at 2,2 +Id : 268418, {_}: multiply ?251955 (multiply (multiply ?251954 ?251956) ?251955) =<= left_division (left_inverse (multiply ?251955 ?251954)) (multiply ?251956 ?251955) [251956, 251954, 251955] by Demod 268417 with 408 at 2 +Id : 268419, {_}: multiply ?251955 (multiply (multiply ?251954 ?251956) ?251955) =?= multiply (multiply ?251955 ?251954) (multiply ?251956 ?251955) [251956, 251954, 251955] by Demod 268418 with 2737 at 3 +Id : 997758, {_}: multiply (multiply a b) (multiply c a) === multiply (multiply a b) (multiply c a) [] by Super 190709 with 268419 at 2 +Id : 190709, {_}: multiply a (multiply (multiply b c) a) =<= multiply (multiply a b) (multiply c a) [] by Demod 2 with 189960 at 2 +Id : 2, {_}: multiply (multiply a (multiply b c)) a =>= multiply (multiply a b) (multiply c a) [] by prove_moufang1 +% SZS output end CNFRefutation for GRP202-1.p +Order + == is 100 + _ is 99 + a2 is 95 + b2 is 98 + inverse is 97 + multiply is 96 + prove_these_axioms_2 is 94 + single_axiom is 93 +Facts + Id : 4, {_}: + multiply ?2 + (inverse + (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) + (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) + =>= + ?4 + [4, 3, 2] by single_axiom ?2 ?3 ?4 +Goal + Id : 2, {_}: + multiply (multiply (inverse b2) b2) a2 =>= a2 + [] by prove_these_axioms_2 +Last chance: 1246070086.51 +Last chance: all is indexed 1246072016.7 +Last chance: failed over 100 goal 1246072026.66 +FAILURE in 0 iterations +% SZS status Timeout for GRP404-1.p +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + inverse is 93 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 92 +Facts + Id : 4, {_}: + multiply ?2 + (inverse + (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) + (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) + =>= + ?4 + [4, 3, 2] by single_axiom ?2 ?3 ?4 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 220.388793s +% SZS status Unsatisfiable for GRP405-1.p +% SZS output start CNFRefutation for GRP405-1.p +Id : 4, {_}: multiply ?2 (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) =>= ?4 [4, 3, 2] by single_axiom ?2 ?3 ?4 +Id : 5, {_}: multiply ?6 (inverse (multiply (inverse (multiply (inverse (multiply ?6 ?7)) ?8)) (inverse (multiply ?7 (multiply (inverse ?7) ?7))))) =>= ?8 [8, 7, 6] by single_axiom ?6 ?7 ?8 +Id : 7, {_}: multiply ?17 (inverse (multiply (inverse ?16) (inverse (multiply ?18 (multiply (inverse ?18) ?18))))) =?= inverse (multiply (inverse (multiply (inverse (multiply (inverse (multiply ?17 ?18)) ?15)) ?16)) (inverse (multiply ?15 (multiply (inverse ?15) ?15)))) [15, 18, 16, 17] by Super 5 with 4 at 1,1,1,2,2 +Id : 40, {_}: multiply (inverse (multiply ?213 ?214)) (multiply ?213 (inverse (multiply (inverse ?215) (inverse (multiply ?214 (multiply (inverse ?214) ?214)))))) =>= ?215 [215, 214, 213] by Super 4 with 7 at 2,2 +Id : 64, {_}: multiply (inverse (multiply ?350 ?351)) (multiply ?350 (multiply ?352 (inverse (multiply (inverse ?353) (inverse (multiply ?354 (multiply (inverse ?354) ?354))))))) =>= multiply (inverse (multiply (inverse (multiply ?352 ?354)) ?351)) ?353 [354, 353, 352, 351, 350] by Super 40 with 7 at 2,2,2 +Id : 124, {_}: multiply (inverse (multiply ?685 ?686)) (multiply ?685 ?687) =?= multiply (inverse (multiply (inverse (multiply ?688 ?689)) ?686)) (multiply (inverse (multiply ?688 ?689)) ?687) [689, 688, 687, 686, 685] by Super 64 with 4 at 2,2,2 +Id : 70, {_}: multiply (inverse (multiply ?400 ?401)) (multiply ?400 ?399) =?= multiply (inverse (multiply (inverse (multiply ?402 ?403)) ?401)) (multiply (inverse (multiply ?402 ?403)) ?399) [403, 402, 399, 401, 400] by Super 64 with 4 at 2,2,2 +Id : 155, {_}: multiply (inverse (multiply ?925 ?926)) (multiply ?925 ?927) =?= multiply (inverse (multiply ?924 ?926)) (multiply ?924 ?927) [924, 927, 926, 925] by Super 124 with 70 at 3 +Id : 113, {_}: multiply ?598 (inverse (multiply (inverse (multiply (inverse (multiply ?598 ?599)) ?597)) (inverse (multiply ?599 (multiply (inverse ?599) ?599))))) =?= inverse (multiply (inverse (multiply (inverse (multiply ?595 ?596)) (multiply ?595 ?597))) (inverse (multiply ?596 (multiply (inverse ?596) ?596)))) [596, 595, 597, 599, 598] by Super 7 with 70 at 1,1,1,3 +Id : 176, {_}: ?597 =<= inverse (multiply (inverse (multiply (inverse (multiply ?595 ?596)) (multiply ?595 ?597))) (inverse (multiply ?596 (multiply (inverse ?596) ?596)))) [596, 595, 597] by Demod 113 with 4 at 2 +Id : 9637, {_}: multiply (inverse (multiply ?67788 (inverse (multiply ?67789 (multiply (inverse ?67789) ?67789))))) (multiply ?67788 ?67790) =?= multiply ?67791 (multiply (inverse (multiply (inverse (multiply ?67792 ?67789)) (multiply ?67792 ?67791))) ?67790) [67792, 67791, 67790, 67789, 67788] by Super 155 with 176 at 1,3 +Id : 10194, {_}: multiply ?72717 (multiply (inverse (multiply (inverse (multiply ?72718 ?72719)) (multiply ?72718 ?72717))) ?72720) =?= multiply ?72721 (multiply (inverse (multiply (inverse (multiply ?72722 ?72719)) (multiply ?72722 ?72721))) ?72720) [72722, 72721, 72720, 72719, 72718, 72717] by Super 9637 with 176 at 1,2 +Id : 10232, {_}: multiply ?73113 (multiply (inverse (multiply (inverse (multiply ?73114 (inverse (multiply (inverse (multiply (inverse (multiply ?73117 ?73111)) ?73112)) (inverse (multiply ?73111 (multiply (inverse ?73111) ?73111))))))) (multiply ?73114 ?73113))) ?73115) =?= multiply ?73116 (multiply (inverse (multiply (inverse ?73112) (multiply ?73117 ?73116))) ?73115) [73116, 73115, 73112, 73111, 73117, 73114, 73113] by Super 10194 with 4 at 1,1,1,1,2,3 +Id : 227, {_}: multiply (inverse (multiply ?1261 ?1262)) (multiply ?1261 ?1263) =?= multiply (inverse (multiply ?1264 ?1262)) (multiply ?1264 ?1263) [1264, 1263, 1262, 1261] by Super 124 with 70 at 3 +Id : 234, {_}: multiply (inverse (multiply ?1309 (inverse (multiply (inverse (multiply (inverse (multiply ?1311 ?1307)) ?1308)) (inverse (multiply ?1307 (multiply (inverse ?1307) ?1307))))))) (multiply ?1309 ?1310) =>= multiply (inverse ?1308) (multiply ?1311 ?1310) [1310, 1308, 1307, 1311, 1309] by Super 227 with 4 at 1,1,3 +Id : 10841, {_}: multiply ?78382 (multiply (inverse (multiply (inverse ?78383) (multiply ?78384 ?78382))) ?78385) =?= multiply ?78386 (multiply (inverse (multiply (inverse ?78383) (multiply ?78384 ?78386))) ?78385) [78386, 78385, 78384, 78383, 78382] by Demod 10232 with 234 at 1,1,2,2 +Id : 10882, {_}: multiply ?78768 (multiply (inverse (multiply (inverse (multiply (inverse (multiply (inverse (multiply ?78766 ?78767)) (multiply ?78766 ?78765))) (inverse (multiply ?78767 (multiply (inverse ?78767) ?78767))))) (multiply ?78769 ?78768))) ?78770) =?= multiply ?78771 (multiply (inverse (multiply ?78765 (multiply ?78769 ?78771))) ?78770) [78771, 78770, 78769, 78765, 78767, 78766, 78768] by Super 10841 with 176 at 1,1,1,2,3 +Id : 11114, {_}: multiply ?78768 (multiply (inverse (multiply ?78765 (multiply ?78769 ?78768))) ?78770) =?= multiply ?78771 (multiply (inverse (multiply ?78765 (multiply ?78769 ?78771))) ?78770) [78771, 78770, 78769, 78765, 78768] by Demod 10882 with 176 at 1,1,1,2,2 +Id : 11923, {_}: multiply ?86959 (inverse (multiply (inverse (multiply ?86960 (multiply (inverse (multiply ?86961 (multiply ?86962 ?86960))) ?86963))) (inverse (multiply ?86964 (multiply (inverse ?86964) ?86964))))) =>= multiply (inverse (multiply ?86961 (multiply ?86962 (inverse (multiply ?86959 ?86964))))) ?86963 [86964, 86963, 86962, 86961, 86960, 86959] by Super 4 with 11114 at 1,1,1,2,2 +Id : 31525, {_}: multiply ?228038 (multiply ?228039 (inverse (multiply (inverse (multiply (inverse (multiply ?228040 (multiply ?228041 (inverse (multiply (inverse (multiply ?228039 ?228042)) ?228043))))) ?228044)) (inverse (multiply ?228042 (multiply (inverse ?228042) ?228042)))))) =>= multiply (inverse (multiply ?228040 (multiply ?228041 (inverse (multiply ?228038 ?228043))))) ?228044 [228044, 228043, 228042, 228041, 228040, 228039, 228038] by Super 11923 with 7 at 2,2 +Id : 31856, {_}: multiply ?231713 (multiply ?231714 (inverse (multiply (inverse (multiply (inverse (multiply ?231714 ?231716)) ?231717)) (inverse (multiply ?231716 (multiply (inverse ?231716) ?231716)))))) =?= multiply (inverse (multiply (inverse (multiply ?231715 ?231712)) (multiply ?231715 (inverse (multiply ?231713 ?231717))))) (inverse (multiply ?231712 (multiply (inverse ?231712) ?231712))) [231712, 231715, 231717, 231716, 231714, 231713] by Super 31525 with 176 at 1,1,2,2,2 +Id : 32694, {_}: multiply ?234105 ?234106 =<= multiply (inverse (multiply (inverse (multiply ?234107 ?234108)) (multiply ?234107 (inverse (multiply ?234105 ?234106))))) (inverse (multiply ?234108 (multiply (inverse ?234108) ?234108))) [234108, 234107, 234106, 234105] by Demod 31856 with 4 at 2,2 +Id : 32770, {_}: multiply ?234751 (inverse (multiply (inverse (multiply (inverse (multiply ?234751 ?234749)) ?234750)) (inverse (multiply ?234749 (multiply (inverse ?234749) ?234749))))) =?= multiply (inverse (multiply (inverse (multiply ?234752 ?234753)) (multiply ?234752 (inverse ?234750)))) (inverse (multiply ?234753 (multiply (inverse ?234753) ?234753))) [234753, 234752, 234750, 234749, 234751] by Super 32694 with 4 at 1,2,2,1,1,3 +Id : 33040, {_}: ?234750 =<= multiply (inverse (multiply (inverse (multiply ?234752 ?234753)) (multiply ?234752 (inverse ?234750)))) (inverse (multiply ?234753 (multiply (inverse ?234753) ?234753))) [234753, 234752, 234750] by Demod 32770 with 4 at 2 +Id : 15, {_}: multiply (inverse (multiply ?60 ?62)) (multiply ?60 (inverse (multiply (inverse ?61) (inverse (multiply ?62 (multiply (inverse ?62) ?62)))))) =>= ?61 [61, 62, 60] by Super 4 with 7 at 2,2 +Id : 11333, {_}: multiply ?82186 (inverse (multiply (inverse (multiply ?82185 (multiply (inverse (multiply ?82182 (multiply ?82183 ?82185))) ?82184))) (inverse (multiply ?82187 (multiply (inverse ?82187) ?82187))))) =>= multiply (inverse (multiply ?82182 (multiply ?82183 (inverse (multiply ?82186 ?82187))))) ?82184 [82187, 82184, 82183, 82182, 82185, 82186] by Super 4 with 11114 at 1,1,1,2,2 +Id : 33373, {_}: multiply ?237625 (inverse (multiply (inverse (multiply (inverse ?237622) ?237622)) (inverse (multiply ?237626 (multiply (inverse ?237626) ?237626))))) =?= multiply (inverse (multiply (inverse (multiply ?237623 ?237624)) (multiply ?237623 (inverse (multiply ?237625 ?237626))))) (inverse (multiply ?237624 (multiply (inverse ?237624) ?237624))) [237624, 237623, 237626, 237622, 237625] by Super 11333 with 33040 at 2,1,1,1,2,2 +Id : 33632, {_}: multiply ?237625 (inverse (multiply (inverse (multiply (inverse ?237622) ?237622)) (inverse (multiply ?237626 (multiply (inverse ?237626) ?237626))))) =>= multiply ?237625 ?237626 [237626, 237622, 237625] by Demod 33373 with 33040 at 3 +Id : 33860, {_}: multiply (inverse (multiply ?240296 ?240298)) (multiply ?240296 ?240298) =?= multiply (inverse ?240297) ?240297 [240297, 240298, 240296] by Super 15 with 33632 at 2,2 +Id : 40668, {_}: ?278603 =<= multiply (inverse (multiply (inverse ?278604) ?278604)) (inverse (multiply (inverse ?278603) (multiply (inverse (inverse ?278603)) (inverse ?278603)))) [278604, 278603] by Super 33040 with 33860 at 1,1,3 +Id : 35324, {_}: multiply (inverse (multiply ?248214 ?248215)) (multiply ?248214 ?248215) =?= multiply (inverse ?248216) ?248216 [248216, 248215, 248214] by Super 15 with 33632 at 2,2 +Id : 35547, {_}: multiply (inverse ?249874) ?249874 =?= multiply (inverse ?249877) ?249877 [249877, 249874] by Super 35324 with 33860 at 2 +Id : 40715, {_}: ?278907 =<= multiply (inverse (multiply (inverse ?278908) ?278908)) (inverse (multiply (inverse ?278907) (multiply (inverse ?278906) ?278906))) [278906, 278908, 278907] by Super 40668 with 35547 at 2,1,2,3 +Id : 300, {_}: ?1622 =<= inverse (multiply (inverse (multiply (inverse (multiply ?1623 ?1624)) (multiply ?1623 ?1622))) (inverse (multiply ?1624 (multiply (inverse ?1624) ?1624)))) [1624, 1623, 1622] by Demod 113 with 4 at 2 +Id : 305, {_}: ?1655 =<= inverse (multiply (inverse (multiply (inverse (multiply ?1656 (multiply ?1652 ?1653))) (multiply ?1656 ?1655))) (inverse (multiply (multiply ?1652 ?1653) (multiply (inverse (multiply ?1654 ?1653)) (multiply ?1654 ?1653))))) [1654, 1653, 1652, 1656, 1655] by Super 300 with 155 at 2,1,2,1,3 +Id : 11337, {_}: multiply (inverse (multiply ?82211 (multiply ?82212 ?82210))) ?82213 =<= inverse (multiply (inverse (multiply (inverse (multiply ?82210 ?82215)) (multiply ?82214 (multiply (inverse (multiply ?82211 (multiply ?82212 ?82214))) ?82213)))) (inverse (multiply ?82215 (multiply (inverse ?82215) ?82215)))) [82214, 82215, 82213, 82210, 82212, 82211] by Super 176 with 11114 at 2,1,1,1,3 +Id : 14547, {_}: multiply ?104639 (multiply (inverse (multiply ?104634 (multiply ?104635 ?104636))) ?104637) =<= multiply (inverse (multiply ?104640 (multiply ?104641 (inverse (multiply ?104639 ?104638))))) (multiply (inverse (multiply ?104634 (multiply ?104635 (inverse (multiply ?104640 (multiply ?104641 (inverse (multiply ?104636 ?104638)))))))) ?104637) [104638, 104641, 104640, 104637, 104636, 104635, 104634, 104639] by Super 11333 with 11337 at 2,2 +Id : 368, {_}: multiply (inverse (multiply ?1959 (multiply ?1960 (inverse (multiply (inverse ?1961) (inverse (multiply ?1962 (multiply (inverse ?1962) ?1962)))))))) (multiply ?1959 ?1963) =>= multiply (inverse ?1961) (multiply (inverse (multiply ?1960 ?1962)) ?1963) [1963, 1962, 1961, 1960, 1959] by Super 124 with 15 at 1,1,3 +Id : 384, {_}: multiply (inverse (multiply ?2092 (multiply ?2093 (inverse (multiply ?2089 (inverse (multiply ?2094 (multiply (inverse ?2094) ?2094)))))))) (multiply ?2092 ?2095) =?= multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2090 ?2091)) (multiply ?2090 ?2089))) (inverse (multiply ?2091 (multiply (inverse ?2091) ?2091))))) (multiply (inverse (multiply ?2093 ?2094)) ?2095) [2091, 2090, 2095, 2094, 2089, 2093, 2092] by Super 368 with 176 at 1,1,2,2,1,1,2 +Id : 409, {_}: multiply (inverse (multiply ?2092 (multiply ?2093 (inverse (multiply ?2089 (inverse (multiply ?2094 (multiply (inverse ?2094) ?2094)))))))) (multiply ?2092 ?2095) =>= multiply ?2089 (multiply (inverse (multiply ?2093 ?2094)) ?2095) [2095, 2094, 2089, 2093, 2092] by Demod 384 with 176 at 1,3 +Id : 11831, {_}: multiply (inverse (multiply ?86031 (multiply ?86037 (inverse (multiply ?86038 (inverse (multiply ?86039 (multiply (inverse ?86039) ?86039)))))))) (multiply (inverse (multiply ?86033 (multiply ?86034 (inverse (multiply ?86031 ?86036))))) ?86035) =?= multiply ?86038 (multiply (inverse (multiply ?86037 ?86039)) (inverse (multiply (inverse (multiply ?86032 (multiply (inverse (multiply ?86033 (multiply ?86034 ?86032))) ?86035))) (inverse (multiply ?86036 (multiply (inverse ?86036) ?86036)))))) [86032, 86035, 86036, 86034, 86033, 86039, 86038, 86037, 86031] by Super 409 with 11333 at 2,2 +Id : 12202, {_}: multiply (inverse (multiply ?86031 (multiply ?86037 (inverse (multiply ?86038 (inverse (multiply ?86039 (multiply (inverse ?86039) ?86039)))))))) (multiply (inverse (multiply ?86033 (multiply ?86034 (inverse (multiply ?86031 ?86036))))) ?86035) =>= multiply ?86038 (multiply (inverse (multiply ?86033 (multiply ?86034 (inverse (multiply (inverse (multiply ?86037 ?86039)) ?86036))))) ?86035) [86035, 86036, 86034, 86033, 86039, 86038, 86037, 86031] by Demod 11831 with 11333 at 2,3 +Id : 18076, {_}: multiply ?132847 (multiply (inverse (multiply ?132848 (multiply ?132849 ?132850))) ?132851) =<= multiply ?132847 (multiply (inverse (multiply ?132848 (multiply ?132849 (inverse (multiply (inverse (multiply ?132853 ?132846)) (multiply ?132853 (inverse (multiply ?132850 (inverse (multiply ?132846 (multiply (inverse ?132846) ?132846))))))))))) ?132851) [132846, 132853, 132851, 132850, 132849, 132848, 132847] by Super 14547 with 12202 at 3 +Id : 21064, {_}: multiply ?157169 (inverse (multiply (inverse (multiply (inverse (multiply ?157169 ?157170)) (multiply (inverse (multiply ?157163 (multiply ?157164 ?157165))) ?157166))) (inverse (multiply ?157170 (multiply (inverse ?157170) ?157170))))) =?= multiply (inverse (multiply ?157163 (multiply ?157164 (inverse (multiply (inverse (multiply ?157167 ?157168)) (multiply ?157167 (inverse (multiply ?157165 (inverse (multiply ?157168 (multiply (inverse ?157168) ?157168))))))))))) ?157166 [157168, 157167, 157166, 157165, 157164, 157163, 157170, 157169] by Super 4 with 18076 at 1,1,1,2,2 +Id : 21742, {_}: multiply (inverse (multiply ?157163 (multiply ?157164 ?157165))) ?157166 =<= multiply (inverse (multiply ?157163 (multiply ?157164 (inverse (multiply (inverse (multiply ?157167 ?157168)) (multiply ?157167 (inverse (multiply ?157165 (inverse (multiply ?157168 (multiply (inverse ?157168) ?157168))))))))))) ?157166 [157168, 157167, 157166, 157165, 157164, 157163] by Demod 21064 with 4 at 2 +Id : 22341, {_}: inverse (multiply (inverse (multiply ?165075 ?165076)) (multiply ?165075 (inverse (multiply ?165074 (inverse (multiply ?165076 (multiply (inverse ?165076) ?165076))))))) =?= inverse (multiply (inverse (multiply (inverse (multiply ?165073 (multiply ?165077 ?165078))) (multiply ?165073 ?165074))) (inverse (multiply (multiply ?165077 ?165078) (multiply (inverse (multiply ?165079 ?165078)) (multiply ?165079 ?165078))))) [165079, 165078, 165077, 165073, 165074, 165076, 165075] by Super 305 with 21742 at 1,3 +Id : 22802, {_}: inverse (multiply (inverse (multiply ?165075 ?165076)) (multiply ?165075 (inverse (multiply ?165074 (inverse (multiply ?165076 (multiply (inverse ?165076) ?165076))))))) =>= ?165074 [165074, 165076, 165075] by Demod 22341 with 305 at 3 +Id : 38026, {_}: inverse (multiply (inverse (multiply ?263789 ?263790)) (multiply ?263789 ?263790)) =?= inverse (multiply (inverse ?263791) ?263791) [263791, 263790, 263789] by Super 22802 with 33632 at 2,1,2 +Id : 38262, {_}: inverse (multiply (inverse ?265529) ?265529) =?= inverse (multiply (inverse ?265532) ?265532) [265532, 265529] by Super 38026 with 35547 at 1,2 +Id : 38507, {_}: multiply (inverse ?265709) ?265709 =?= multiply (inverse (multiply (inverse ?265708) ?265708)) (multiply (inverse ?265707) ?265707) [265707, 265708, 265709] by Super 35547 with 38262 at 1,3 +Id : 40747, {_}: multiply (inverse ?279111) ?279111 =?= multiply (inverse (multiply (inverse ?279112) ?279112)) (inverse (multiply (inverse ?279110) ?279110)) [279110, 279112, 279111] by Super 40668 with 38507 at 1,2,3 +Id : 41831, {_}: multiply (inverse ?285057) (inverse (multiply (inverse (multiply (inverse ?285056) ?285056)) (inverse (multiply ?285057 (multiply (inverse ?285057) ?285057))))) =?= inverse (multiply (inverse ?285058) ?285058) [285058, 285056, 285057] by Super 4 with 40747 at 1,1,1,2,2 +Id : 33864, {_}: multiply ?240317 (inverse (multiply (inverse (multiply (inverse (multiply ?240317 ?240318)) ?240316)) (inverse (multiply ?240318 (multiply (inverse ?240318) ?240318))))) =?= inverse (multiply (inverse (multiply (inverse ?240315) ?240315)) (inverse (multiply ?240316 (multiply (inverse ?240316) ?240316)))) [240315, 240316, 240318, 240317] by Super 4 with 33632 at 1,1,1,2,2 +Id : 36969, {_}: ?257201 =<= inverse (multiply (inverse (multiply (inverse ?257202) ?257202)) (inverse (multiply ?257201 (multiply (inverse ?257201) ?257201)))) [257202, 257201] by Demod 33864 with 4 at 2 +Id : 37018, {_}: ?257524 =<= inverse (multiply (inverse (multiply (inverse ?257525) ?257525)) (inverse (multiply ?257524 (multiply (inverse ?257523) ?257523)))) [257523, 257525, 257524] by Super 36969 with 35547 at 2,1,2,1,3 +Id : 42424, {_}: multiply (inverse ?285057) ?285057 =?= inverse (multiply (inverse ?285058) ?285058) [285058, 285057] by Demod 41831 with 37018 at 2,2 +Id : 59456, {_}: ?377115 =<= multiply (inverse (inverse (multiply (inverse ?377116) ?377116))) (inverse (multiply (inverse ?377115) (multiply (inverse ?377117) ?377117))) [377117, 377116, 377115] by Super 40715 with 42424 at 1,1,3 +Id : 59618, {_}: multiply (inverse ?378144) ?378141 =<= multiply (inverse (inverse (multiply (inverse ?378143) ?378143))) (inverse (multiply (inverse (multiply ?378142 ?378141)) (multiply ?378142 ?378144))) [378142, 378143, 378141, 378144] by Super 59456 with 155 at 1,2,3 +Id : 293, {_}: multiply ?1577 ?1574 =<= inverse (multiply (inverse (multiply (inverse (multiply (inverse (multiply ?1577 ?1576)) ?1578)) (multiply (inverse (multiply ?1575 ?1576)) (multiply ?1575 ?1574)))) (inverse (multiply ?1578 (multiply (inverse ?1578) ?1578)))) [1575, 1578, 1576, 1574, 1577] by Super 7 with 176 at 2,2 +Id : 49313, {_}: ?325983 =<= multiply (multiply (inverse ?325984) ?325984) (inverse (multiply (inverse ?325983) (multiply (inverse ?325985) ?325985))) [325985, 325984, 325983] by Super 40715 with 42424 at 1,3 +Id : 70497, {_}: multiply (inverse ?433725) ?433726 =<= multiply (multiply (inverse ?433727) ?433727) (inverse (multiply (inverse (multiply ?433728 ?433726)) (multiply ?433728 ?433725))) [433728, 433727, 433726, 433725] by Super 49313 with 155 at 1,2,3 +Id : 104522, {_}: multiply (inverse ?611346) ?611347 =<= multiply (multiply (inverse ?611348) ?611348) (inverse (multiply (multiply (inverse ?611349) ?611349) (multiply (inverse ?611347) ?611346))) [611349, 611348, 611347, 611346] by Super 70497 with 42424 at 1,1,2,3 +Id : 104531, {_}: multiply (inverse ?611424) (multiply (inverse ?611422) ?611422) =?= multiply (multiply (inverse ?611425) ?611425) (inverse (multiply (multiply (inverse ?611426) ?611426) (multiply (inverse (multiply (inverse ?611423) ?611423)) ?611424))) [611423, 611426, 611425, 611422, 611424] by Super 104522 with 38262 at 1,2,1,2,3 +Id : 70690, {_}: multiply (inverse ?435205) ?435206 =<= multiply (multiply (inverse ?435207) ?435207) (inverse (multiply (multiply (inverse ?435204) ?435204) (multiply (inverse ?435206) ?435205))) [435204, 435207, 435206, 435205] by Super 70497 with 42424 at 1,1,2,3 +Id : 105085, {_}: multiply (inverse ?611424) (multiply (inverse ?611422) ?611422) =?= multiply (inverse ?611424) (multiply (inverse ?611423) ?611423) [611423, 611422, 611424] by Demod 104531 with 70690 at 3 +Id : 105821, {_}: multiply ?618521 (multiply (inverse ?618519) ?618519) =?= inverse (multiply (inverse (multiply (inverse (multiply (inverse (multiply ?618521 ?618522)) ?618523)) (multiply (inverse (multiply (inverse ?618518) ?618522)) (multiply (inverse ?618518) (multiply (inverse ?618520) ?618520))))) (inverse (multiply ?618523 (multiply (inverse ?618523) ?618523)))) [618520, 618518, 618523, 618522, 618519, 618521] by Super 293 with 105085 at 2,2,1,1,1,3 +Id : 108557, {_}: multiply ?634262 (multiply (inverse ?634263) ?634263) =?= multiply ?634262 (multiply (inverse ?634264) ?634264) [634264, 634263, 634262] by Demod 105821 with 293 at 3 +Id : 108677, {_}: multiply ?635011 (multiply (inverse ?635012) ?635012) =?= multiply ?635011 (inverse (multiply (inverse ?635010) ?635010)) [635010, 635012, 635011] by Super 108557 with 42424 at 2,3 +Id : 41162, {_}: ?281232 =<= multiply (inverse (multiply (inverse ?281233) ?281233)) (inverse (multiply (inverse ?281232) (multiply (inverse ?281234) ?281234))) [281234, 281233, 281232] by Super 40668 with 35547 at 2,1,2,3 +Id : 41252, {_}: multiply (inverse ?281896) ?281893 =<= multiply (inverse (multiply (inverse ?281895) ?281895)) (inverse (multiply (inverse (multiply ?281894 ?281893)) (multiply ?281894 ?281896))) [281894, 281895, 281893, 281896] by Super 41162 with 155 at 1,2,3 +Id : 104693, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?612594 ?612592)) (multiply ?612594 ?612591)))) (multiply (inverse ?612593) ?612593) =?= multiply (multiply (inverse ?612595) ?612595) (inverse (multiply (multiply (inverse ?612596) ?612596) (multiply (inverse ?612591) ?612592))) [612596, 612595, 612593, 612591, 612592, 612594] by Super 104522 with 41252 at 2,1,2,3 +Id : 105218, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?612594 ?612592)) (multiply ?612594 ?612591)))) (multiply (inverse ?612593) ?612593) =>= multiply (inverse ?612592) ?612591 [612593, 612591, 612592, 612594] by Demod 104693 with 70690 at 3 +Id : 118665, {_}: multiply (inverse ?687026) ?687027 =<= multiply (inverse (inverse (multiply (inverse (multiply ?687025 ?687026)) (multiply ?687025 ?687027)))) (inverse (multiply (inverse ?687029) ?687029)) [687029, 687025, 687027, 687026] by Super 108677 with 105218 at 2 +Id : 118666, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?687031 ?687032)) (multiply ?687031 ?687033)))) (multiply (inverse ?687034) ?687034) =>= multiply (inverse ?687032) ?687033 [687034, 687033, 687032, 687031] by Demod 104693 with 70690 at 3 +Id : 202978, {_}: multiply (inverse (inverse (multiply (multiply (inverse ?1106072) ?1106072) (multiply (inverse ?1106073) ?1106074)))) (multiply (inverse ?1106075) ?1106075) =>= multiply (inverse ?1106073) ?1106074 [1106075, 1106074, 1106073, 1106072] by Super 118666 with 42424 at 1,1,1,1,2 +Id : 203337, {_}: multiply (inverse (inverse (multiply (multiply (inverse ?1108543) ?1108543) ?1108542))) (multiply (inverse ?1108545) ?1108545) =?= multiply (inverse ?1108544) (inverse (multiply (inverse (multiply (inverse (multiply (inverse ?1108544) ?1108541)) ?1108542)) (inverse (multiply ?1108541 (multiply (inverse ?1108541) ?1108541))))) [1108541, 1108544, 1108545, 1108542, 1108543] by Super 202978 with 4 at 2,1,1,1,2 +Id : 203960, {_}: multiply (inverse (inverse (multiply (multiply (inverse ?1108543) ?1108543) ?1108542))) (multiply (inverse ?1108545) ?1108545) =>= ?1108542 [1108545, 1108542, 1108543] by Demod 203337 with 4 at 3 +Id : 204499, {_}: ?1113563 =<= multiply (inverse (inverse (multiply (multiply (inverse ?1113562) ?1113562) ?1113563))) (inverse (multiply (inverse ?1113565) ?1113565)) [1113565, 1113562, 1113563] by Super 108677 with 203960 at 2 +Id : 42548, {_}: ?289376 =<= multiply (multiply (inverse ?289374) ?289374) (inverse (multiply (inverse ?289376) (multiply (inverse ?289377) ?289377))) [289377, 289374, 289376] by Super 40715 with 42424 at 1,3 +Id : 204490, {_}: inverse (multiply (multiply (inverse ?1113513) ?1113513) ?1113514) =?= multiply (multiply (inverse ?1113516) ?1113516) (inverse ?1113514) [1113516, 1113514, 1113513] by Super 42548 with 203960 at 1,2,3 +Id : 209225, {_}: ?1138104 =<= multiply (inverse (multiply (multiply (inverse ?1138103) ?1138103) (inverse ?1138104))) (inverse (multiply (inverse ?1138106) ?1138106)) [1138106, 1138103, 1138104] by Super 204499 with 204490 at 1,1,3 +Id : 232, {_}: multiply (inverse (multiply ?1297 ?1298)) (multiply ?1297 (multiply ?1293 ?1295)) =?= multiply (inverse (multiply (inverse (multiply ?1293 ?1294)) ?1298)) (multiply (inverse (multiply ?1296 ?1294)) (multiply ?1296 ?1295)) [1296, 1294, 1295, 1293, 1298, 1297] by Super 227 with 155 at 2,3 +Id : 210415, {_}: multiply (inverse (multiply (multiply (inverse ?1144394) ?1144394) (inverse ?1144395))) (multiply (inverse ?1144396) ?1144396) =>= ?1144395 [1144396, 1144395, 1144394] by Super 203960 with 204490 at 1,1,2 +Id : 210932, {_}: multiply (inverse (multiply (inverse (multiply (inverse ?1147471) ?1147471)) (inverse ?1147473))) (multiply (inverse ?1147474) ?1147474) =>= ?1147473 [1147474, 1147473, 1147471] by Super 210415 with 42424 at 1,1,1,2 +Id : 224465, {_}: multiply (inverse (multiply ?1210775 (inverse ?1210776))) (multiply ?1210775 (multiply (inverse ?1210777) ?1210777)) =>= ?1210776 [1210777, 1210776, 1210775] by Super 232 with 210932 at 3 +Id : 224626, {_}: multiply (inverse (multiply ?1211759 (inverse ?1211760))) (multiply ?1211759 (inverse (multiply (inverse ?1211758) ?1211758))) =>= ?1211760 [1211758, 1211760, 1211759] by Super 224465 with 42424 at 2,2,2 +Id : 227024, {_}: ?1221988 =<= inverse (multiply (inverse ?1221988) (multiply (inverse (inverse ?1221988)) (inverse ?1221988))) [1221988] by Super 15 with 224626 at 2 +Id : 228909, {_}: ?1228455 =<= multiply (multiply (inverse ?1228456) ?1228456) ?1228455 [1228456, 1228455] by Super 42548 with 227024 at 2,3 +Id : 230161, {_}: ?1138104 =<= multiply (inverse (inverse ?1138104)) (inverse (multiply (inverse ?1138106) ?1138106)) [1138106, 1138104] by Demod 209225 with 228909 at 1,1,3 +Id : 230162, {_}: multiply (inverse ?687026) ?687027 =<= multiply (inverse (multiply ?687025 ?687026)) (multiply ?687025 ?687027) [687025, 687027, 687026] by Demod 118665 with 230161 at 3 +Id : 230229, {_}: multiply (inverse ?378144) ?378141 =<= multiply (inverse (inverse (multiply (inverse ?378143) ?378143))) (inverse (multiply (inverse ?378141) ?378144)) [378143, 378141, 378144] by Demod 59618 with 230162 at 1,2,3 +Id : 70571, {_}: multiply (inverse (inverse (multiply (inverse ?434316) ?434316))) ?434317 =?= multiply (multiply (inverse ?434318) ?434318) (inverse (multiply (inverse (multiply (inverse (multiply (inverse ?434315) ?434315)) ?434317)) (multiply (inverse ?434314) ?434314))) [434314, 434315, 434318, 434317, 434316] by Super 70497 with 40747 at 2,1,2,3 +Id : 70940, {_}: multiply (inverse (inverse (multiply (inverse ?434316) ?434316))) ?434317 =?= multiply (inverse (multiply (inverse ?434315) ?434315)) ?434317 [434315, 434317, 434316] by Demod 70571 with 42548 at 3 +Id : 204504, {_}: multiply (inverse (inverse (multiply (multiply (inverse ?1113587) ?1113587) ?1113588))) (multiply (inverse ?1113589) ?1113589) =>= ?1113588 [1113589, 1113588, 1113587] by Demod 203337 with 4 at 3 +Id : 204894, {_}: multiply (inverse (inverse (multiply (inverse (multiply (inverse ?1115926) ?1115926)) ?1115928))) (multiply (inverse ?1115929) ?1115929) =>= ?1115928 [1115929, 1115928, 1115926] by Super 204504 with 42424 at 1,1,1,1,2 +Id : 222906, {_}: multiply (inverse (multiply ?1203249 (inverse ?1203248))) (multiply ?1203249 (multiply (inverse ?1203247) ?1203247)) =>= ?1203248 [1203247, 1203248, 1203249] by Super 232 with 210932 at 3 +Id : 230230, {_}: multiply (inverse (inverse ?1203248)) (multiply (inverse ?1203247) ?1203247) =>= ?1203248 [1203247, 1203248] by Demod 222906 with 230162 at 2 +Id : 230233, {_}: multiply (inverse (multiply (inverse ?1115926) ?1115926)) ?1115928 =>= ?1115928 [1115928, 1115926] by Demod 204894 with 230230 at 2 +Id : 230259, {_}: multiply (inverse (inverse (multiply (inverse ?434316) ?434316))) ?434317 =>= ?434317 [434317, 434316] by Demod 70940 with 230233 at 3 +Id : 230302, {_}: multiply (inverse ?378144) ?378141 =<= inverse (multiply (inverse ?378141) ?378144) [378141, 378144] by Demod 230229 with 230259 at 3 +Id : 230467, {_}: multiply ?17 (multiply (inverse (inverse (multiply ?18 (multiply (inverse ?18) ?18)))) ?16) =?= inverse (multiply (inverse (multiply (inverse (multiply (inverse (multiply ?17 ?18)) ?15)) ?16)) (inverse (multiply ?15 (multiply (inverse ?15) ?15)))) [15, 16, 18, 17] by Demod 7 with 230302 at 2,2 +Id : 230468, {_}: multiply ?17 (multiply (inverse (inverse (multiply ?18 (multiply (inverse ?18) ?18)))) ?16) =?= multiply (inverse (inverse (multiply ?15 (multiply (inverse ?15) ?15)))) (multiply (inverse (multiply (inverse (multiply ?17 ?18)) ?15)) ?16) [15, 16, 18, 17] by Demod 230467 with 230302 at 3 +Id : 230469, {_}: multiply ?17 (multiply (inverse (inverse (multiply ?18 (multiply (inverse ?18) ?18)))) ?16) =?= multiply (inverse (inverse (multiply ?15 (multiply (inverse ?15) ?15)))) (multiply (multiply (inverse ?15) (multiply ?17 ?18)) ?16) [15, 16, 18, 17] by Demod 230468 with 230302 at 1,2,3 +Id : 43162, {_}: ?293590 =<= inverse (multiply (inverse (inverse (multiply (inverse ?293589) ?293589))) (inverse (multiply ?293590 (multiply (inverse ?293591) ?293591)))) [293591, 293589, 293590] by Super 37018 with 42424 at 1,1,1,3 +Id : 230270, {_}: ?293590 =<= inverse (inverse (multiply ?293590 (multiply (inverse ?293591) ?293591))) [293591, 293590] by Demod 43162 with 230259 at 1,3 +Id : 230643, {_}: multiply ?17 (multiply ?18 ?16) =<= multiply (inverse (inverse (multiply ?15 (multiply (inverse ?15) ?15)))) (multiply (multiply (inverse ?15) (multiply ?17 ?18)) ?16) [15, 16, 18, 17] by Demod 230469 with 230270 at 1,2,2 +Id : 230644, {_}: multiply ?17 (multiply ?18 ?16) =<= multiply ?15 (multiply (multiply (inverse ?15) (multiply ?17 ?18)) ?16) [15, 16, 18, 17] by Demod 230643 with 230270 at 1,3 +Id : 298, {_}: multiply (inverse (multiply ?1613 (inverse (multiply ?1612 (multiply (inverse ?1612) ?1612))))) (multiply ?1613 ?1614) =?= multiply ?1610 (multiply (inverse (multiply (inverse (multiply ?1611 ?1612)) (multiply ?1611 ?1610))) ?1614) [1611, 1610, 1614, 1612, 1613] by Super 155 with 176 at 1,3 +Id : 230219, {_}: multiply (inverse (inverse (multiply ?1612 (multiply (inverse ?1612) ?1612)))) ?1614 =?= multiply ?1610 (multiply (inverse (multiply (inverse (multiply ?1611 ?1612)) (multiply ?1611 ?1610))) ?1614) [1611, 1610, 1614, 1612] by Demod 298 with 230162 at 2 +Id : 230220, {_}: multiply (inverse (inverse (multiply ?1612 (multiply (inverse ?1612) ?1612)))) ?1614 =?= multiply ?1610 (multiply (inverse (multiply (inverse ?1612) ?1610)) ?1614) [1610, 1614, 1612] by Demod 230219 with 230162 at 1,1,2,3 +Id : 230678, {_}: multiply ?1612 ?1614 =<= multiply ?1610 (multiply (inverse (multiply (inverse ?1612) ?1610)) ?1614) [1610, 1614, 1612] by Demod 230220 with 230270 at 1,2 +Id : 230679, {_}: multiply ?1612 ?1614 =<= multiply ?1610 (multiply (multiply (inverse ?1610) ?1612) ?1614) [1610, 1614, 1612] by Demod 230678 with 230302 at 1,2,3 +Id : 230680, {_}: multiply ?17 (multiply ?18 ?16) =?= multiply (multiply ?17 ?18) ?16 [16, 18, 17] by Demod 230644 with 230679 at 3 +Id : 231308, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 230680 at 2 +Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 +% SZS output end CNFRefutation for GRP405-1.p +Order + == is 100 + _ is 99 + a2 is 95 + b2 is 98 + inverse is 97 + multiply is 96 + prove_these_axioms_2 is 94 + single_axiom is 93 +Facts + Id : 4, {_}: + inverse + (multiply + (inverse + (multiply ?2 + (inverse + (multiply (inverse ?3) + (multiply (inverse ?4) + (inverse (multiply (inverse ?4) ?4))))))) + (multiply ?2 ?4)) + =>= + ?3 + [4, 3, 2] by single_axiom ?2 ?3 ?4 +Goal + Id : 2, {_}: + multiply (multiply (inverse b2) b2) a2 =>= a2 + [] by prove_these_axioms_2 +Found proof, 13.442565s +% SZS status Unsatisfiable for GRP422-1.p +% SZS output start CNFRefutation for GRP422-1.p +Id : 5, {_}: inverse (multiply (inverse (multiply ?6 (inverse (multiply (inverse ?7) (multiply (inverse ?8) (inverse (multiply (inverse ?8) ?8))))))) (multiply ?6 ?8)) =>= ?7 [8, 7, 6] by single_axiom ?6 ?7 ?8 +Id : 4, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 +Id : 20, {_}: inverse (multiply (inverse (multiply ?72 ?73)) (multiply ?72 ?74)) =?= multiply (inverse ?74) (inverse (multiply (inverse ?73) (multiply (inverse (inverse (multiply (inverse ?74) ?74))) (inverse (multiply (inverse (inverse (multiply (inverse ?74) ?74))) (inverse (multiply (inverse ?74) ?74))))))) [74, 73, 72] by Super 5 with 4 at 2,1,1,1,2 +Id : 9, {_}: inverse (multiply (inverse (multiply ?29 ?28)) (multiply ?29 ?30)) =?= multiply (inverse ?30) (inverse (multiply (inverse ?28) (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse ?30) ?30))))))) [30, 28, 29] by Super 5 with 4 at 2,1,1,1,2 +Id : 35, {_}: inverse (multiply (inverse (multiply ?156 ?157)) (multiply ?156 ?158)) =?= inverse (multiply (inverse (multiply ?155 ?157)) (multiply ?155 ?158)) [155, 158, 157, 156] by Super 20 with 9 at 3 +Id : 59, {_}: inverse (multiply (inverse (multiply ?228 (inverse (multiply (inverse (multiply (inverse (multiply ?227 ?225)) (multiply ?227 ?226))) (multiply (inverse ?229) (inverse (multiply (inverse ?229) ?229))))))) (multiply ?228 ?229)) =?= multiply (inverse (multiply ?224 ?225)) (multiply ?224 ?226) [224, 229, 226, 225, 227, 228] by Super 4 with 35 at 1,1,2,1,1,1,2 +Id : 156, {_}: multiply (inverse (multiply ?725 ?726)) (multiply ?725 ?727) =?= multiply (inverse (multiply ?728 ?726)) (multiply ?728 ?727) [728, 727, 726, 725] by Demod 59 with 4 at 2 +Id : 163, {_}: multiply (inverse (multiply ?773 (multiply ?770 ?772))) (multiply ?773 ?774) =?= multiply ?771 (multiply (inverse (multiply ?770 (inverse (multiply (inverse ?771) (multiply (inverse ?772) (inverse (multiply (inverse ?772) ?772))))))) ?774) [771, 774, 772, 770, 773] by Super 156 with 4 at 1,3 +Id : 55, {_}: inverse (multiply (inverse (multiply ?201 (inverse (multiply (inverse ?202) (multiply (inverse (multiply ?198 ?199)) (inverse (multiply (inverse (multiply ?200 ?199)) (multiply ?200 ?199)))))))) (multiply ?201 (multiply ?198 ?199))) =>= ?202 [200, 199, 198, 202, 201] by Super 4 with 35 at 2,2,1,2,1,1,1,2 +Id : 3142, {_}: inverse (multiply (inverse (multiply ?22079 (inverse (multiply (inverse (multiply ?22076 (multiply ?22077 ?22078))) (multiply ?22076 (inverse (multiply (inverse (multiply ?22081 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))) (multiply ?22081 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))))))))) (multiply ?22079 (multiply ?22077 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078)))))))) =>= ?22080 [22080, 22081, 22078, 22077, 22076, 22079] by Super 55 with 163 at 1,2,1,1,1,2 +Id : 290, {_}: inverse (multiply (inverse (multiply ?1309 (inverse (multiply (inverse (multiply ?1310 ?1311)) (multiply ?1310 (inverse (multiply (inverse ?1312) ?1312))))))) (multiply ?1309 ?1312)) =>= multiply (inverse ?1312) ?1311 [1312, 1311, 1310, 1309] by Super 4 with 35 at 2,1,1,1,2 +Id : 110, {_}: multiply (inverse (multiply ?227 ?225)) (multiply ?227 ?226) =?= multiply (inverse (multiply ?224 ?225)) (multiply ?224 ?226) [224, 226, 225, 227] by Demod 59 with 4 at 2 +Id : 300, {_}: inverse (multiply (inverse (multiply ?1382 (inverse (multiply (inverse (multiply ?1383 ?1384)) (multiply ?1383 (inverse (multiply (inverse (multiply ?1381 ?1380)) (multiply ?1381 ?1380)))))))) (multiply ?1382 (multiply ?1379 ?1380))) =>= multiply (inverse (multiply ?1379 ?1380)) ?1384 [1379, 1380, 1381, 1384, 1383, 1382] by Super 290 with 110 at 1,2,2,1,2,1,1,1,2 +Id : 3323, {_}: multiply (inverse (multiply ?22077 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))) (multiply ?22077 ?22078) =>= ?22080 [22078, 22080, 22077] by Demod 3142 with 300 at 2 +Id : 3887, {_}: multiply (inverse (multiply ?27309 (multiply ?27310 ?27311))) (multiply ?27309 (multiply ?27310 ?27311)) =?= multiply (inverse ?27312) ?27312 [27312, 27311, 27310, 27309] by Super 163 with 3323 at 2,3 +Id : 3460, {_}: multiply (inverse (multiply ?24443 (multiply ?24440 ?24442))) (multiply ?24443 (multiply ?24440 ?24442)) =?= multiply (inverse ?24441) ?24441 [24441, 24442, 24440, 24443] by Super 163 with 3323 at 2,3 +Id : 3992, {_}: multiply (inverse ?28111) ?28111 =?= multiply (inverse ?28115) ?28115 [28115, 28111] by Super 3887 with 3460 at 2 +Id : 157, {_}: multiply (inverse (multiply ?734 ?735)) (multiply ?734 (multiply ?730 ?732)) =?= multiply (inverse (multiply (inverse (multiply ?730 ?731)) ?735)) (multiply (inverse (multiply ?733 ?731)) (multiply ?733 ?732)) [733, 731, 732, 730, 735, 734] by Super 156 with 110 at 2,3 +Id : 160, {_}: multiply (inverse (multiply ?754 (multiply ?750 ?752))) (multiply ?754 ?755) =?= multiply (inverse (multiply (inverse (multiply ?753 ?751)) (multiply ?753 ?752))) (multiply (inverse (multiply ?750 ?751)) ?755) [751, 753, 755, 752, 750, 754] by Super 156 with 110 at 1,1,3 +Id : 587, {_}: multiply (inverse (multiply ?3234 (multiply ?3232 ?3231))) (multiply ?3234 (multiply ?3232 ?3235)) =?= multiply (inverse (multiply ?3229 (multiply ?3230 ?3231))) (multiply ?3229 (multiply ?3230 ?3235)) [3230, 3229, 3235, 3231, 3232, 3234] by Super 157 with 160 at 3 +Id : 61, {_}: inverse (multiply (inverse (multiply ?240 (inverse (multiply (inverse (multiply ?239 ?238)) (multiply ?239 (inverse (multiply (inverse ?241) ?241))))))) (multiply ?240 ?241)) =>= multiply (inverse ?241) ?238 [241, 238, 239, 240] by Super 4 with 35 at 2,1,1,1,2 +Id : 4188, {_}: multiply (inverse (multiply ?29120 ?29121)) (multiply ?29120 ?29118) =?= multiply (inverse (multiply (inverse ?29118) ?29121)) (multiply (inverse ?29119) ?29119) [29119, 29118, 29121, 29120] by Super 110 with 3992 at 2,3 +Id : 10540, {_}: inverse (multiply (inverse (multiply ?66148 (inverse (multiply (inverse (multiply (inverse (multiply ?66144 ?66145)) (multiply ?66144 ?66146))) (multiply (inverse (multiply (inverse ?66146) ?66145)) (inverse (multiply (inverse ?66149) ?66149))))))) (multiply ?66148 ?66149)) =?= multiply (inverse ?66149) (multiply (inverse ?66147) ?66147) [66147, 66149, 66146, 66145, 66144, 66148] by Super 61 with 4188 at 1,1,1,2,1,1,1,2 +Id : 306, {_}: inverse (multiply (inverse (multiply ?1422 (inverse (multiply (inverse (multiply (inverse (multiply ?1421 ?1419)) (multiply ?1421 ?1420))) (multiply (inverse (multiply ?1418 ?1419)) (inverse (multiply (inverse ?1423) ?1423))))))) (multiply ?1422 ?1423)) =>= multiply (inverse ?1423) (multiply ?1418 ?1420) [1423, 1418, 1420, 1419, 1421, 1422] by Super 290 with 110 at 1,1,1,2,1,1,1,2 +Id : 10986, {_}: multiply (inverse ?66149) (multiply (inverse ?66146) ?66146) =?= multiply (inverse ?66149) (multiply (inverse ?66147) ?66147) [66147, 66146, 66149] by Demod 10540 with 306 at 2 +Id : 18, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?64 ?65)) (multiply ?64 ?66)))) (multiply (inverse ?66) (inverse (multiply (inverse ?66) ?66)))) =>= ?65 [66, 65, 64] by Super 4 with 9 at 1,1,1,2 +Id : 20513, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?122739 ?122740)) (multiply ?122739 ?122741)))) (multiply (inverse ?122741) (inverse (multiply (inverse ?122742) ?122742)))) =>= ?122740 [122742, 122741, 122740, 122739] by Super 18 with 3992 at 1,2,2,1,2 +Id : 23232, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?138627 ?138628)) (multiply ?138627 (inverse (multiply (inverse ?138629) ?138629)))))) (multiply (inverse ?138630) ?138630)) =>= ?138628 [138630, 138629, 138628, 138627] by Super 20513 with 3992 at 2,1,2 +Id : 20104, {_}: multiply (inverse (multiply ?120500 (inverse (multiply (inverse (inverse ?120501)) (multiply (inverse ?120502) (inverse (multiply (inverse ?120503) ?120503))))))) (multiply ?120500 ?120502) =>= ?120501 [120503, 120502, 120501, 120500] by Super 3323 with 3992 at 1,2,2,1,2,1,1,2 +Id : 20225, {_}: multiply (inverse (multiply ?121420 (inverse (multiply (inverse (inverse ?121421)) (multiply (inverse ?121419) ?121419))))) (multiply ?121420 (inverse (multiply (inverse ?121422) ?121422))) =>= ?121421 [121422, 121419, 121421, 121420] by Super 20104 with 3992 at 2,1,2,1,1,2 +Id : 23426, {_}: inverse (multiply (inverse (inverse ?140049)) (multiply (inverse ?140053) ?140053)) =?= inverse (multiply (inverse (inverse ?140049)) (multiply (inverse ?140050) ?140050)) [140050, 140053, 140049] by Super 23232 with 20225 at 1,1,1,1,2 +Id : 4770, {_}: inverse (multiply (inverse (multiply ?32594 ?32595)) (multiply ?32594 ?32595)) =?= inverse (multiply (inverse ?32596) ?32596) [32596, 32595, 32594] by Super 35 with 3992 at 1,3 +Id : 4818, {_}: inverse (multiply (inverse (multiply (inverse ?32938) ?32938)) (multiply (inverse ?32937) ?32937)) =?= inverse (multiply (inverse ?32939) ?32939) [32939, 32937, 32938] by Super 4770 with 3992 at 2,1,2 +Id : 21029, {_}: inverse (multiply (inverse (multiply ?125759 (inverse (multiply (inverse ?125760) (multiply (inverse ?125761) (inverse (multiply (inverse ?125762) ?125762))))))) (multiply ?125759 ?125761)) =>= ?125760 [125762, 125761, 125760, 125759] by Super 4 with 3992 at 1,2,2,1,2,1,1,1,2 +Id : 21146, {_}: inverse (multiply (inverse (multiply ?126647 (inverse (multiply (inverse ?126648) (multiply (inverse ?126646) ?126646))))) (multiply ?126647 (inverse (multiply (inverse ?126649) ?126649)))) =>= ?126648 [126649, 126646, 126648, 126647] by Super 21029 with 3992 at 2,1,2,1,1,1,2 +Id : 26499, {_}: multiply (inverse ?155764) ?155764 =?= inverse (multiply (inverse ?155765) ?155765) [155765, 155764] by Super 4818 with 21146 at 2 +Id : 4144, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?28920 ?28921)) (multiply ?28920 ?28918)))) (multiply (inverse ?28918) (inverse (multiply (inverse ?28919) ?28919)))) =>= ?28921 [28919, 28918, 28921, 28920] by Super 18 with 3992 at 1,2,2,1,2 +Id : 27501, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?161353) ?161353))) (multiply (inverse (inverse (multiply (inverse ?161354) (multiply (inverse ?161355) ?161355)))) (inverse (multiply (inverse ?161356) ?161356)))) =>= ?161354 [161356, 161355, 161354, 161353] by Super 21146 with 26499 at 1,1,1,2 +Id : 5969, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?38946) ?38946))) (multiply (inverse ?38947) (inverse (multiply (inverse ?38947) ?38947)))) =>= ?38947 [38947, 38946] by Super 18 with 3992 at 1,1,1,1,2 +Id : 5995, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?39112) ?39112))) (multiply (inverse ?39113) (inverse (multiply (inverse ?39111) ?39111)))) =>= ?39113 [39111, 39113, 39112] by Super 5969 with 3992 at 1,2,2,1,2 +Id : 27636, {_}: inverse (multiply (inverse ?161354) (multiply (inverse ?161355) ?161355)) =>= ?161354 [161355, 161354] by Demod 27501 with 5995 at 2 +Id : 28099, {_}: inverse (multiply (inverse (multiply ?126647 ?126648)) (multiply ?126647 (inverse (multiply (inverse ?126649) ?126649)))) =>= ?126648 [126649, 126648, 126647] by Demod 21146 with 27636 at 2,1,1,1,2 +Id : 28101, {_}: inverse (multiply (inverse (multiply ?240 ?238)) (multiply ?240 ?241)) =>= multiply (inverse ?241) ?238 [241, 238, 240] by Demod 61 with 28099 at 2,1,1,1,2 +Id : 28103, {_}: inverse (multiply (inverse (multiply (inverse ?28918) ?28921)) (multiply (inverse ?28918) (inverse (multiply (inverse ?28919) ?28919)))) =>= ?28921 [28919, 28921, 28918] by Demod 4144 with 28101 at 1,1,1,2 +Id : 28104, {_}: multiply (inverse (inverse (multiply (inverse ?28919) ?28919))) ?28921 =>= ?28921 [28921, 28919] by Demod 28103 with 28101 at 2 +Id : 28383, {_}: a2 === a2 [] by Demod 27989 with 28104 at 2 +Id : 27989, {_}: multiply (inverse (inverse (multiply (inverse ?163408) ?163408))) a2 =>= a2 [163408] by Super 27714 with 26499 at 1,1,2 +Id : 27714, {_}: multiply (inverse (multiply (inverse ?162124) ?162124)) a2 =>= a2 [162124] by Super 24198 with 26499 at 1,2 +Id : 24198, {_}: multiply (multiply (inverse (multiply (inverse (inverse ?143636)) (multiply (inverse ?143638) ?143638))) (multiply (inverse (inverse ?143636)) (multiply (inverse ?143639) ?143639))) a2 =>= a2 [143639, 143638, 143636] by Super 11949 with 23426 at 1,1,2 +Id : 11949, {_}: multiply (multiply (inverse (multiply (inverse ?73741) (multiply (inverse ?73744) ?73744))) (multiply (inverse ?73741) (multiply (inverse ?73743) ?73743))) a2 =>= a2 [73743, 73744, 73741] by Super 5806 with 10986 at 2,1,2 +Id : 5806, {_}: multiply (multiply (inverse (multiply ?38037 (multiply (inverse ?38038) ?38038))) (multiply ?38037 (multiply (inverse ?38036) ?38036))) a2 =>= a2 [38036, 38038, 38037] by Super 4426 with 3992 at 2,2,1,2 +Id : 4426, {_}: multiply (multiply (inverse (multiply ?30432 (multiply ?30433 ?30431))) (multiply ?30432 (multiply ?30433 ?30431))) a2 =>= a2 [30431, 30433, 30432] by Super 4403 with 587 at 1,2 +Id : 4403, {_}: multiply (multiply (inverse ?30303) ?30303) a2 =>= a2 [30303] by Super 2 with 3992 at 1,2 +Id : 2, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 +% SZS output end CNFRefutation for GRP422-1.p +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + inverse is 93 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 92 +Facts + Id : 4, {_}: + inverse + (multiply + (inverse + (multiply ?2 + (inverse + (multiply (inverse ?3) + (multiply (inverse ?4) + (inverse (multiply (inverse ?4) ?4))))))) + (multiply ?2 ?4)) + =>= + ?3 + [4, 3, 2] by single_axiom ?2 ?3 ?4 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 11.146148s +% SZS status Unsatisfiable for GRP423-1.p +% SZS output start CNFRefutation for GRP423-1.p +Id : 5, {_}: inverse (multiply (inverse (multiply ?6 (inverse (multiply (inverse ?7) (multiply (inverse ?8) (inverse (multiply (inverse ?8) ?8))))))) (multiply ?6 ?8)) =>= ?7 [8, 7, 6] by single_axiom ?6 ?7 ?8 +Id : 4, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 +Id : 20, {_}: inverse (multiply (inverse (multiply ?72 ?73)) (multiply ?72 ?74)) =?= multiply (inverse ?74) (inverse (multiply (inverse ?73) (multiply (inverse (inverse (multiply (inverse ?74) ?74))) (inverse (multiply (inverse (inverse (multiply (inverse ?74) ?74))) (inverse (multiply (inverse ?74) ?74))))))) [74, 73, 72] by Super 5 with 4 at 2,1,1,1,2 +Id : 9, {_}: inverse (multiply (inverse (multiply ?29 ?28)) (multiply ?29 ?30)) =?= multiply (inverse ?30) (inverse (multiply (inverse ?28) (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse ?30) ?30))))))) [30, 28, 29] by Super 5 with 4 at 2,1,1,1,2 +Id : 35, {_}: inverse (multiply (inverse (multiply ?156 ?157)) (multiply ?156 ?158)) =?= inverse (multiply (inverse (multiply ?155 ?157)) (multiply ?155 ?158)) [155, 158, 157, 156] by Super 20 with 9 at 3 +Id : 59, {_}: inverse (multiply (inverse (multiply ?228 (inverse (multiply (inverse (multiply (inverse (multiply ?227 ?225)) (multiply ?227 ?226))) (multiply (inverse ?229) (inverse (multiply (inverse ?229) ?229))))))) (multiply ?228 ?229)) =?= multiply (inverse (multiply ?224 ?225)) (multiply ?224 ?226) [224, 229, 226, 225, 227, 228] by Super 4 with 35 at 1,1,2,1,1,1,2 +Id : 156, {_}: multiply (inverse (multiply ?725 ?726)) (multiply ?725 ?727) =?= multiply (inverse (multiply ?728 ?726)) (multiply ?728 ?727) [728, 727, 726, 725] by Demod 59 with 4 at 2 +Id : 163, {_}: multiply (inverse (multiply ?773 (multiply ?770 ?772))) (multiply ?773 ?774) =?= multiply ?771 (multiply (inverse (multiply ?770 (inverse (multiply (inverse ?771) (multiply (inverse ?772) (inverse (multiply (inverse ?772) ?772))))))) ?774) [771, 774, 772, 770, 773] by Super 156 with 4 at 1,3 +Id : 110, {_}: multiply (inverse (multiply ?227 ?225)) (multiply ?227 ?226) =?= multiply (inverse (multiply ?224 ?225)) (multiply ?224 ?226) [224, 226, 225, 227] by Demod 59 with 4 at 2 +Id : 55, {_}: inverse (multiply (inverse (multiply ?201 (inverse (multiply (inverse ?202) (multiply (inverse (multiply ?198 ?199)) (inverse (multiply (inverse (multiply ?200 ?199)) (multiply ?200 ?199)))))))) (multiply ?201 (multiply ?198 ?199))) =>= ?202 [200, 199, 198, 202, 201] by Super 4 with 35 at 2,2,1,2,1,1,1,2 +Id : 3142, {_}: inverse (multiply (inverse (multiply ?22079 (inverse (multiply (inverse (multiply ?22076 (multiply ?22077 ?22078))) (multiply ?22076 (inverse (multiply (inverse (multiply ?22081 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))) (multiply ?22081 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))))))))) (multiply ?22079 (multiply ?22077 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078)))))))) =>= ?22080 [22080, 22081, 22078, 22077, 22076, 22079] by Super 55 with 163 at 1,2,1,1,1,2 +Id : 290, {_}: inverse (multiply (inverse (multiply ?1309 (inverse (multiply (inverse (multiply ?1310 ?1311)) (multiply ?1310 (inverse (multiply (inverse ?1312) ?1312))))))) (multiply ?1309 ?1312)) =>= multiply (inverse ?1312) ?1311 [1312, 1311, 1310, 1309] by Super 4 with 35 at 2,1,1,1,2 +Id : 300, {_}: inverse (multiply (inverse (multiply ?1382 (inverse (multiply (inverse (multiply ?1383 ?1384)) (multiply ?1383 (inverse (multiply (inverse (multiply ?1381 ?1380)) (multiply ?1381 ?1380)))))))) (multiply ?1382 (multiply ?1379 ?1380))) =>= multiply (inverse (multiply ?1379 ?1380)) ?1384 [1379, 1380, 1381, 1384, 1383, 1382] by Super 290 with 110 at 1,2,2,1,2,1,1,1,2 +Id : 3323, {_}: multiply (inverse (multiply ?22077 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))) (multiply ?22077 ?22078) =>= ?22080 [22078, 22080, 22077] by Demod 3142 with 300 at 2 +Id : 3887, {_}: multiply (inverse (multiply ?27309 (multiply ?27310 ?27311))) (multiply ?27309 (multiply ?27310 ?27311)) =?= multiply (inverse ?27312) ?27312 [27312, 27311, 27310, 27309] by Super 163 with 3323 at 2,3 +Id : 3460, {_}: multiply (inverse (multiply ?24443 (multiply ?24440 ?24442))) (multiply ?24443 (multiply ?24440 ?24442)) =?= multiply (inverse ?24441) ?24441 [24441, 24442, 24440, 24443] by Super 163 with 3323 at 2,3 +Id : 3992, {_}: multiply (inverse ?28111) ?28111 =?= multiply (inverse ?28115) ?28115 [28115, 28111] by Super 3887 with 3460 at 2 +Id : 4190, {_}: multiply (inverse (multiply ?29130 ?29128)) (multiply ?29130 ?29131) =?= multiply (inverse (multiply (inverse ?29129) ?29129)) (multiply (inverse ?29128) ?29131) [29129, 29131, 29128, 29130] by Super 110 with 3992 at 1,1,3 +Id : 18, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?64 ?65)) (multiply ?64 ?66)))) (multiply (inverse ?66) (inverse (multiply (inverse ?66) ?66)))) =>= ?65 [66, 65, 64] by Super 4 with 9 at 1,1,1,2 +Id : 4144, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?28920 ?28921)) (multiply ?28920 ?28918)))) (multiply (inverse ?28918) (inverse (multiply (inverse ?28919) ?28919)))) =>= ?28921 [28919, 28918, 28921, 28920] by Super 18 with 3992 at 1,2,2,1,2 +Id : 61, {_}: inverse (multiply (inverse (multiply ?240 (inverse (multiply (inverse (multiply ?239 ?238)) (multiply ?239 (inverse (multiply (inverse ?241) ?241))))))) (multiply ?240 ?241)) =>= multiply (inverse ?241) ?238 [241, 238, 239, 240] by Super 4 with 35 at 2,1,1,1,2 +Id : 14797, {_}: inverse (multiply (inverse (multiply ?88631 (inverse (multiply (inverse ?88632) (multiply (inverse ?88633) (inverse (multiply (inverse ?88634) ?88634))))))) (multiply ?88631 ?88633)) =>= ?88632 [88634, 88633, 88632, 88631] by Super 4 with 3992 at 1,2,2,1,2,1,1,1,2 +Id : 14914, {_}: inverse (multiply (inverse (multiply ?89519 (inverse (multiply (inverse ?89520) (multiply (inverse ?89518) ?89518))))) (multiply ?89519 (inverse (multiply (inverse ?89521) ?89521)))) =>= ?89520 [89521, 89518, 89520, 89519] by Super 14797 with 3992 at 2,1,2,1,1,1,2 +Id : 4605, {_}: inverse (multiply (inverse (multiply ?31655 ?31656)) (multiply ?31655 ?31656)) =?= inverse (multiply (inverse ?31657) ?31657) [31657, 31656, 31655] by Super 35 with 3992 at 1,3 +Id : 4653, {_}: inverse (multiply (inverse (multiply (inverse ?31999) ?31999)) (multiply (inverse ?31998) ?31998)) =?= inverse (multiply (inverse ?32000) ?32000) [32000, 31998, 31999] by Super 4605 with 3992 at 2,1,2 +Id : 18958, {_}: multiply (inverse ?111309) ?111309 =?= inverse (multiply (inverse ?111310) ?111310) [111310, 111309] by Super 4653 with 14914 at 2 +Id : 19832, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?116164) ?116164))) (multiply (inverse (inverse (multiply (inverse ?116165) (multiply (inverse ?116166) ?116166)))) (inverse (multiply (inverse ?116167) ?116167)))) =>= ?116165 [116167, 116166, 116165, 116164] by Super 14914 with 18958 at 1,1,1,2 +Id : 5672, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?37316) ?37316))) (multiply (inverse ?37317) (inverse (multiply (inverse ?37317) ?37317)))) =>= ?37317 [37317, 37316] by Super 18 with 3992 at 1,1,1,1,2 +Id : 5698, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?37482) ?37482))) (multiply (inverse ?37483) (inverse (multiply (inverse ?37481) ?37481)))) =>= ?37483 [37481, 37483, 37482] by Super 5672 with 3992 at 1,2,2,1,2 +Id : 19967, {_}: inverse (multiply (inverse ?116165) (multiply (inverse ?116166) ?116166)) =>= ?116165 [116166, 116165] by Demod 19832 with 5698 at 2 +Id : 20043, {_}: inverse (multiply (inverse (multiply ?89519 ?89520)) (multiply ?89519 (inverse (multiply (inverse ?89521) ?89521)))) =>= ?89520 [89521, 89520, 89519] by Demod 14914 with 19967 at 2,1,1,1,2 +Id : 20045, {_}: inverse (multiply (inverse (multiply ?240 ?238)) (multiply ?240 ?241)) =>= multiply (inverse ?241) ?238 [241, 238, 240] by Demod 61 with 20043 at 2,1,1,1,2 +Id : 20047, {_}: inverse (multiply (inverse (multiply (inverse ?28918) ?28921)) (multiply (inverse ?28918) (inverse (multiply (inverse ?28919) ?28919)))) =>= ?28921 [28919, 28921, 28918] by Demod 4144 with 20045 at 1,1,1,2 +Id : 20048, {_}: multiply (inverse (inverse (multiply (inverse ?28919) ?28919))) ?28921 =>= ?28921 [28921, 28919] by Demod 20047 with 20045 at 2 +Id : 20166, {_}: multiply (inverse (multiply (inverse ?117322) ?117322)) ?117323 =>= ?117323 [117323, 117322] by Super 20048 with 19967 at 1,1,2 +Id : 20329, {_}: multiply (inverse (multiply ?29130 ?29128)) (multiply ?29130 ?29131) =>= multiply (inverse ?29128) ?29131 [29131, 29128, 29130] by Demod 4190 with 20166 at 3 +Id : 20341, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (inverse (multiply (inverse ?771) (multiply (inverse ?772) (inverse (multiply (inverse ?772) ?772))))))) ?774) [771, 774, 772, 770] by Demod 163 with 20329 at 2 +Id : 20330, {_}: inverse (multiply (inverse ?238) ?241) =>= multiply (inverse ?241) ?238 [241, 238] by Demod 20045 with 20329 at 1,2 +Id : 20355, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (multiply (inverse (multiply (inverse ?772) (inverse (multiply (inverse ?772) ?772)))) ?771))) ?774) [771, 774, 772, 770] by Demod 20341 with 20330 at 2,1,1,2,3 +Id : 20356, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (multiply (multiply (inverse (inverse (multiply (inverse ?772) ?772))) ?772) ?771))) ?774) [771, 774, 772, 770] by Demod 20355 with 20330 at 1,2,1,1,2,3 +Id : 20357, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (multiply (multiply (inverse (multiply (inverse ?772) ?772)) ?772) ?771))) ?774) [771, 774, 772, 770] by Demod 20356 with 20330 at 1,1,1,2,1,1,2,3 +Id : 20358, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (multiply (multiply (multiply (inverse ?772) ?772) ?772) ?771))) ?774) [771, 774, 772, 770] by Demod 20357 with 20330 at 1,1,2,1,1,2,3 +Id : 20377, {_}: multiply (multiply (inverse ?117322) ?117322) ?117323 =>= ?117323 [117323, 117322] by Demod 20166 with 20330 at 1,2 +Id : 20385, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (multiply ?772 ?771))) ?774) [771, 774, 772, 770] by Demod 20358 with 20377 at 1,2,1,1,2,3 +Id : 20405, {_}: multiply (inverse (multiply (multiply (inverse ?117787) ?117787) ?117788)) ?117789 =?= multiply ?117790 (multiply (inverse (multiply ?117788 ?117790)) ?117789) [117790, 117789, 117788, 117787] by Super 20385 with 20377 at 1,1,2,3 +Id : 20523, {_}: multiply (inverse ?118011) ?118012 =<= multiply ?118013 (multiply (inverse (multiply ?118011 ?118013)) ?118012) [118013, 118012, 118011] by Demod 20405 with 20377 at 1,1,2 +Id : 20527, {_}: multiply (inverse (inverse (multiply ?118030 ?118031))) ?118033 =<= multiply (multiply ?118030 ?118032) (multiply (inverse (multiply (inverse ?118031) ?118032)) ?118033) [118032, 118033, 118031, 118030] by Super 20523 with 20329 at 1,1,2,3 +Id : 20587, {_}: multiply (inverse (inverse (multiply ?118030 ?118031))) ?118033 =<= multiply (multiply ?118030 ?118032) (multiply (multiply (inverse ?118032) ?118031) ?118033) [118032, 118033, 118031, 118030] by Demod 20527 with 20330 at 1,2,3 +Id : 3464, {_}: multiply (inverse (multiply ?24465 (inverse (multiply (inverse (inverse ?24466)) (multiply (inverse ?24467) (inverse (multiply (inverse ?24467) ?24467))))))) (multiply ?24465 ?24467) =>= ?24466 [24467, 24466, 24465] by Demod 3142 with 300 at 2 +Id : 12890, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?78617 (inverse ?78618))) (multiply ?78617 ?78619)))) (multiply (inverse ?78619) (inverse (multiply (inverse ?78619) ?78619))) =>= ?78618 [78619, 78618, 78617] by Super 3464 with 9 at 1,1,2 +Id : 13250, {_}: multiply (inverse (inverse (multiply (inverse ?80376) ?80376))) (multiply (inverse (inverse ?80377)) (inverse (multiply (inverse (inverse ?80377)) (inverse ?80377)))) =>= ?80377 [80377, 80376] by Super 12890 with 3992 at 1,1,1,2 +Id : 13299, {_}: multiply (inverse (inverse (multiply (inverse ?80682) ?80682))) (multiply (inverse (inverse ?80683)) (inverse (multiply (inverse ?80681) ?80681))) =>= ?80683 [80681, 80683, 80682] by Super 13250 with 3992 at 1,2,2,2 +Id : 209, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?973 ?974)) (multiply ?973 ?975)))) (multiply (inverse ?975) (inverse (multiply (inverse ?975) ?975)))) =>= ?974 [975, 974, 973] by Super 4 with 9 at 1,1,1,2 +Id : 228, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply (inverse (multiply ?1090 ?1088)) (multiply ?1090 ?1089))) (multiply (inverse (multiply ?1087 ?1088)) ?1091)))) (multiply (inverse ?1091) (inverse (multiply (inverse ?1091) ?1091)))) =>= multiply ?1087 ?1089 [1091, 1087, 1089, 1088, 1090] by Super 209 with 110 at 1,1,1,1,1,1,2 +Id : 20052, {_}: inverse (multiply (inverse (inverse (multiply (multiply (inverse ?1089) ?1088) (multiply (inverse (multiply ?1087 ?1088)) ?1091)))) (multiply (inverse ?1091) (inverse (multiply (inverse ?1091) ?1091)))) =>= multiply ?1087 ?1089 [1091, 1087, 1088, 1089] by Demod 228 with 20045 at 1,1,1,1,1,2 +Id : 87, {_}: inverse (multiply (inverse (multiply ?396 ?397)) (multiply ?396 ?398)) =?= inverse (multiply (inverse (multiply ?399 ?397)) (multiply ?399 ?398)) [399, 398, 397, 396] by Super 20 with 9 at 3 +Id : 92, {_}: inverse (multiply (inverse (multiply ?429 (multiply ?425 ?427))) (multiply ?429 ?430)) =?= inverse (multiply (inverse (multiply (inverse (multiply ?428 ?426)) (multiply ?428 ?427))) (multiply (inverse (multiply ?425 ?426)) ?430)) [426, 428, 430, 427, 425, 429] by Super 87 with 35 at 1,1,3 +Id : 20057, {_}: multiply (inverse ?430) (multiply ?425 ?427) =<= inverse (multiply (inverse (multiply (inverse (multiply ?428 ?426)) (multiply ?428 ?427))) (multiply (inverse (multiply ?425 ?426)) ?430)) [426, 428, 427, 425, 430] by Demod 92 with 20045 at 2 +Id : 20058, {_}: multiply (inverse ?430) (multiply ?425 ?427) =<= inverse (multiply (multiply (inverse ?427) ?426) (multiply (inverse (multiply ?425 ?426)) ?430)) [426, 427, 425, 430] by Demod 20057 with 20045 at 1,1,3 +Id : 20064, {_}: inverse (multiply (inverse (multiply (inverse ?1091) (multiply ?1087 ?1089))) (multiply (inverse ?1091) (inverse (multiply (inverse ?1091) ?1091)))) =>= multiply ?1087 ?1089 [1089, 1087, 1091] by Demod 20052 with 20058 at 1,1,1,2 +Id : 20065, {_}: multiply (inverse (inverse (multiply (inverse ?1091) ?1091))) (multiply ?1087 ?1089) =>= multiply ?1087 ?1089 [1089, 1087, 1091] by Demod 20064 with 20045 at 2 +Id : 20068, {_}: multiply (inverse (inverse ?80683)) (inverse (multiply (inverse ?80681) ?80681)) =>= ?80683 [80681, 80683] by Demod 13299 with 20065 at 2 +Id : 20372, {_}: multiply (inverse (inverse ?80683)) (multiply (inverse ?80681) ?80681) =>= ?80683 [80681, 80683] by Demod 20068 with 20330 at 2,2 +Id : 20427, {_}: multiply (inverse ?117788) ?117789 =<= multiply ?117790 (multiply (inverse (multiply ?117788 ?117790)) ?117789) [117790, 117789, 117788] by Demod 20405 with 20377 at 1,1,2 +Id : 20499, {_}: multiply (inverse ?117898) (multiply ?117898 (inverse (inverse ?117899))) =>= ?117899 [117899, 117898] by Super 20372 with 20427 at 2 +Id : 4166, {_}: inverse (multiply (inverse (multiply ?29022 (inverse (multiply (inverse ?29023) (multiply (inverse ?29020) (inverse (multiply (inverse ?29021) ?29021))))))) (multiply ?29022 ?29020)) =>= ?29023 [29021, 29020, 29023, 29022] by Super 4 with 3992 at 1,2,2,1,2,1,1,1,2 +Id : 20061, {_}: multiply (inverse ?29020) (inverse (multiply (inverse ?29023) (multiply (inverse ?29020) (inverse (multiply (inverse ?29021) ?29021))))) =>= ?29023 [29021, 29023, 29020] by Demod 4166 with 20045 at 2 +Id : 20368, {_}: multiply (inverse ?29020) (multiply (inverse (multiply (inverse ?29020) (inverse (multiply (inverse ?29021) ?29021)))) ?29023) =>= ?29023 [29023, 29021, 29020] by Demod 20061 with 20330 at 2,2 +Id : 20369, {_}: multiply (inverse ?29020) (multiply (multiply (inverse (inverse (multiply (inverse ?29021) ?29021))) ?29020) ?29023) =>= ?29023 [29023, 29021, 29020] by Demod 20368 with 20330 at 1,2,2 +Id : 20370, {_}: multiply (inverse ?29020) (multiply (multiply (inverse (multiply (inverse ?29021) ?29021)) ?29020) ?29023) =>= ?29023 [29023, 29021, 29020] by Demod 20369 with 20330 at 1,1,1,2,2 +Id : 20371, {_}: multiply (inverse ?29020) (multiply (multiply (multiply (inverse ?29021) ?29021) ?29020) ?29023) =>= ?29023 [29023, 29021, 29020] by Demod 20370 with 20330 at 1,1,2,2 +Id : 20379, {_}: multiply (inverse ?29020) (multiply ?29020 ?29023) =>= ?29023 [29023, 29020] by Demod 20371 with 20377 at 1,2,2 +Id : 20582, {_}: inverse (inverse ?117899) =>= ?117899 [117899] by Demod 20499 with 20379 at 2 +Id : 32543, {_}: multiply (multiply ?118030 ?118031) ?118033 =<= multiply (multiply ?118030 ?118032) (multiply (multiply (inverse ?118032) ?118031) ?118033) [118032, 118033, 118031, 118030] by Demod 20587 with 20582 at 1,2 +Id : 20530, {_}: multiply (inverse (multiply (inverse ?118044) ?118044)) ?118045 =?= multiply ?118046 (multiply (inverse ?118046) ?118045) [118046, 118045, 118044] by Super 20523 with 20377 at 1,1,2,3 +Id : 20593, {_}: multiply (multiply (inverse ?118044) ?118044) ?118045 =?= multiply ?118046 (multiply (inverse ?118046) ?118045) [118046, 118045, 118044] by Demod 20530 with 20330 at 1,2 +Id : 20594, {_}: ?118045 =<= multiply ?118046 (multiply (inverse ?118046) ?118045) [118046, 118045] by Demod 20593 with 20377 at 2 +Id : 20765, {_}: multiply (inverse ?118471) (multiply ?118472 ?118473) =<= multiply (inverse (multiply (inverse ?118472) ?118471)) ?118473 [118473, 118472, 118471] by Super 20329 with 20594 at 1,1,2 +Id : 20804, {_}: multiply (inverse ?118471) (multiply ?118472 ?118473) =<= multiply (multiply (inverse ?118471) ?118472) ?118473 [118473, 118472, 118471] by Demod 20765 with 20330 at 1,3 +Id : 32544, {_}: multiply (multiply ?118030 ?118031) ?118033 =<= multiply (multiply ?118030 ?118032) (multiply (inverse ?118032) (multiply ?118031 ?118033)) [118032, 118033, 118031, 118030] by Demod 32543 with 20804 at 2,3 +Id : 20531, {_}: multiply (inverse (inverse ?118048)) ?118050 =<= multiply (multiply ?118048 ?118049) (multiply (inverse ?118049) ?118050) [118049, 118050, 118048] by Super 20523 with 20379 at 1,1,2,3 +Id : 22088, {_}: multiply ?118048 ?118050 =<= multiply (multiply ?118048 ?118049) (multiply (inverse ?118049) ?118050) [118049, 118050, 118048] by Demod 20531 with 20582 at 1,2 +Id : 32545, {_}: multiply (multiply ?118030 ?118031) ?118033 =?= multiply ?118030 (multiply ?118031 ?118033) [118033, 118031, 118030] by Demod 32544 with 22088 at 3 +Id : 33073, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 32545 at 2 +Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 +% SZS output end CNFRefutation for GRP423-1.p +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + inverse is 93 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 92 +Facts + Id : 4, {_}: + inverse + (multiply ?2 + (multiply ?3 + (multiply (multiply ?4 (inverse ?4)) + (inverse (multiply ?5 (multiply ?2 ?3)))))) + =>= + ?5 + [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 19.895017s +% SZS status Unsatisfiable for GRP444-1.p +% SZS output start CNFRefutation for GRP444-1.p +Id : 5, {_}: inverse (multiply ?7 (multiply ?8 (multiply (multiply ?9 (inverse ?9)) (inverse (multiply ?10 (multiply ?7 ?8)))))) =>= ?10 [10, 9, 8, 7] by single_axiom ?7 ?8 ?9 ?10 +Id : 4, {_}: inverse (multiply ?2 (multiply ?3 (multiply (multiply ?4 (inverse ?4)) (inverse (multiply ?5 (multiply ?2 ?3)))))) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 +Id : 6, {_}: inverse (multiply ?14 (multiply (multiply (multiply ?12 (inverse ?12)) (inverse (multiply ?13 (multiply ?16 ?14)))) (multiply (multiply ?15 (inverse ?15)) ?13))) =>= ?16 [15, 16, 13, 12, 14] by Super 5 with 4 at 2,2,2,1,2 +Id : 9, {_}: inverse (multiply (multiply (multiply ?32 (inverse ?32)) (inverse (multiply ?33 (multiply ?34 ?31)))) (multiply (multiply (multiply ?35 (inverse ?35)) ?33) (multiply (multiply ?36 (inverse ?36)) ?34))) =>= ?31 [36, 35, 31, 34, 33, 32] by Super 4 with 6 at 2,2,2,1,2 +Id : 11, {_}: inverse (multiply ?47 (multiply (multiply (multiply ?48 (inverse ?48)) (inverse (multiply ?49 (multiply ?50 ?47)))) (multiply (multiply ?51 (inverse ?51)) ?49))) =>= ?50 [51, 50, 49, 48, 47] by Super 5 with 4 at 2,2,2,1,2 +Id : 15, {_}: inverse (multiply (multiply (multiply ?82 (inverse ?82)) ?80) (multiply (multiply (multiply ?83 (inverse ?83)) ?81) (multiply (multiply ?85 (inverse ?85)) ?84))) =?= multiply (multiply ?79 (inverse ?79)) (inverse (multiply ?80 (multiply ?81 ?84))) [79, 84, 85, 81, 83, 80, 82] by Super 11 with 6 at 2,1,2,1,2 +Id : 70, {_}: multiply (multiply ?656 (inverse ?656)) (inverse (multiply (inverse (multiply ?653 (multiply ?655 ?657))) (multiply ?653 ?655))) =>= ?657 [657, 655, 653, 656] by Super 9 with 15 at 2 +Id : 7, {_}: inverse (multiply ?22 (multiply ?23 (multiply (multiply (multiply ?18 (multiply ?19 (multiply (multiply ?20 (inverse ?20)) (inverse (multiply ?21 (multiply ?18 ?19)))))) ?21) (inverse (multiply ?24 (multiply ?22 ?23)))))) =>= ?24 [24, 21, 20, 19, 18, 23, 22] by Super 5 with 4 at 2,1,2,2,1,2 +Id : 141, {_}: multiply (multiply ?1411 (inverse ?1411)) (inverse (multiply (inverse (multiply ?1412 (multiply ?1413 ?1414))) (multiply ?1412 ?1413))) =>= ?1414 [1414, 1413, 1412, 1411] by Super 9 with 15 at 2 +Id : 147, {_}: multiply (multiply ?1460 (inverse ?1460)) (inverse (multiply ?1458 (multiply ?1461 (multiply (multiply ?1456 (inverse ?1456)) (inverse (multiply ?1457 (multiply ?1458 ?1461))))))) =?= multiply (multiply ?1459 (inverse ?1459)) ?1457 [1459, 1457, 1456, 1461, 1458, 1460] by Super 141 with 6 at 1,1,2,2 +Id : 163, {_}: multiply (multiply ?1460 (inverse ?1460)) ?1457 =?= multiply (multiply ?1459 (inverse ?1459)) ?1457 [1459, 1457, 1460] by Demod 147 with 4 at 2,2 +Id : 237, {_}: inverse (multiply ?2095 (multiply ?2096 (multiply (multiply (multiply ?2097 (multiply ?2098 (multiply (multiply ?2099 (inverse ?2099)) (inverse (multiply ?2100 (multiply ?2097 ?2098)))))) ?2100) (inverse (multiply (multiply ?2094 (inverse ?2094)) (multiply ?2095 ?2096)))))) =?= multiply ?2093 (inverse ?2093) [2093, 2094, 2100, 2099, 2098, 2097, 2096, 2095] by Super 7 with 163 at 1,2,2,2,1,2 +Id : 290, {_}: multiply ?2094 (inverse ?2094) =?= multiply ?2093 (inverse ?2093) [2093, 2094] by Demod 237 with 7 at 2 +Id : 326, {_}: multiply (multiply ?2479 (inverse ?2479)) (inverse (multiply (inverse (multiply ?2477 (multiply (inverse ?2477) ?2480))) (multiply ?2478 (inverse ?2478)))) =>= ?2480 [2478, 2480, 2477, 2479] by Super 70 with 290 at 2,1,2,2 +Id : 328, {_}: multiply (multiply ?2489 (inverse ?2489)) (inverse (multiply (inverse (multiply ?2490 (multiply ?2488 (inverse ?2488)))) (multiply ?2490 ?2487))) =>= inverse ?2487 [2487, 2488, 2490, 2489] by Super 70 with 290 at 2,1,1,1,2,2 +Id : 604, {_}: inverse (multiply ?3845 (multiply ?3847 (inverse ?3847))) =?= inverse (multiply ?3845 (multiply ?3846 (inverse ?3846))) [3846, 3847, 3845] by Super 4 with 328 at 2,2,1,2 +Id : 792, {_}: inverse (multiply ?4988 (multiply (inverse ?4988) ?4987)) =?= inverse (multiply ?4986 (multiply (inverse ?4986) ?4987)) [4986, 4987, 4988] by Super 4 with 326 at 2,2,1,2 +Id : 870, {_}: inverse (multiply ?5461 (multiply ?5463 (inverse ?5463))) =?= inverse (multiply ?5462 (multiply (inverse ?5462) (inverse (inverse ?5461)))) [5462, 5463, 5461] by Super 604 with 792 at 3 +Id : 2786, {_}: inverse (multiply (inverse ?15453) (multiply ?15454 (multiply (multiply ?15455 (inverse ?15455)) (inverse (multiply ?15456 (multiply (inverse ?15456) ?15454)))))) =>= ?15453 [15456, 15455, 15454, 15453] by Super 6 with 326 at 1,2,1,2 +Id : 2859, {_}: inverse (multiply (inverse ?15956) (multiply (inverse (inverse (inverse (multiply ?15954 (multiply (inverse ?15954) ?15955))))) ?15955)) =>= ?15956 [15955, 15954, 15956] by Super 2786 with 326 at 2,2,1,2 +Id : 3662, {_}: inverse (multiply (inverse (inverse (inverse (multiply ?19641 (multiply (inverse ?19641) ?19642))))) (multiply ?19642 (multiply (multiply ?19643 (inverse ?19643)) ?19640))) =>= inverse ?19640 [19640, 19643, 19642, 19641] by Super 4 with 2859 at 2,2,2,1,2 +Id : 13794, {_}: inverse (inverse (multiply ?72764 (multiply (inverse (inverse (inverse (multiply ?72761 (multiply (inverse ?72761) ?72762))))) ?72762))) =>= ?72764 [72762, 72761, 72764] by Super 4 with 3662 at 2 +Id : 3676, {_}: multiply (multiply ?19736 (inverse ?19736)) (multiply (inverse (inverse (inverse (multiply ?19734 (multiply (inverse ?19734) ?19735))))) (multiply ?19737 (inverse ?19737))) =>= inverse ?19735 [19737, 19735, 19734, 19736] by Super 328 with 2859 at 2,2 +Id : 16741, {_}: inverse (inverse (inverse (multiply ?88187 (inverse ?88187)))) =?= multiply ?88186 (inverse ?88186) [88186, 88187] by Super 13794 with 3676 at 1,1,2 +Id : 17199, {_}: inverse (multiply ?90662 (multiply ?90661 (inverse ?90661))) =?= inverse (multiply ?90662 (inverse (inverse (inverse (multiply ?90660 (inverse ?90660)))))) [90660, 90661, 90662] by Super 870 with 16741 at 2,1,3 +Id : 3671, {_}: multiply (multiply ?19707 (inverse ?19707)) (multiply (inverse (inverse (inverse (multiply ?19705 (multiply (inverse ?19705) ?19706))))) (multiply ?19706 ?19708)) =>= ?19708 [19708, 19706, 19705, 19707] by Super 70 with 2859 at 2,2 +Id : 2874, {_}: inverse (multiply (inverse (multiply ?16071 (multiply (inverse ?16071) (inverse (inverse ?16069))))) (multiply ?16072 (multiply (multiply ?16073 (inverse ?16073)) (inverse (multiply ?16074 (multiply (inverse ?16074) ?16072)))))) =?= multiply ?16069 (multiply ?16070 (inverse ?16070)) [16070, 16074, 16073, 16072, 16069, 16071] by Super 2786 with 870 at 1,1,2 +Id : 790, {_}: inverse (multiply (inverse ?4975) (multiply ?4974 (multiply (multiply ?4976 (inverse ?4976)) (inverse (multiply ?4973 (multiply (inverse ?4973) ?4974)))))) =>= ?4975 [4973, 4976, 4974, 4975] by Super 6 with 326 at 1,2,1,2 +Id : 2903, {_}: multiply ?16071 (multiply (inverse ?16071) (inverse (inverse ?16069))) =?= multiply ?16069 (multiply ?16070 (inverse ?16070)) [16070, 16069, 16071] by Demod 2874 with 790 at 2 +Id : 17213, {_}: multiply ?90740 (inverse ?90740) =?= multiply (inverse (inverse (multiply ?90738 (inverse ?90738)))) (multiply ?90739 (inverse ?90739)) [90739, 90738, 90740] by Super 290 with 16741 at 2,3 +Id : 20625, {_}: multiply ?106744 (multiply (inverse ?106744) (inverse (inverse (inverse (inverse (multiply ?106742 (inverse ?106742))))))) =?= multiply ?106741 (inverse ?106741) [106741, 106742, 106744] by Super 2903 with 17213 at 3 +Id : 31961, {_}: multiply (multiply ?163343 (inverse ?163343)) (multiply (inverse (inverse (inverse (multiply ?163344 (multiply (inverse ?163344) ?163340))))) (multiply ?163342 (inverse ?163342))) =?= multiply (inverse ?163340) (inverse (inverse (inverse (inverse (multiply ?163341 (inverse ?163341)))))) [163341, 163342, 163340, 163344, 163343] by Super 3671 with 20625 at 2,2,2 +Id : 32420, {_}: inverse ?163340 =<= multiply (inverse ?163340) (inverse (inverse (inverse (inverse (multiply ?163341 (inverse ?163341)))))) [163341, 163340] by Demod 31961 with 3676 at 2 +Id : 32623, {_}: inverse (multiply (inverse ?166463) (multiply (inverse (inverse (inverse (multiply ?166461 (inverse ?166461))))) (inverse (inverse (inverse (inverse (multiply ?166462 (inverse ?166462)))))))) =>= ?166463 [166462, 166461, 166463] by Super 2859 with 32420 at 2,1,1,1,1,2,1,2 +Id : 32947, {_}: inverse (multiply (inverse ?166463) (inverse (inverse (inverse (multiply ?166461 (inverse ?166461)))))) =>= ?166463 [166461, 166463] by Demod 32623 with 32420 at 2,1,2 +Id : 34867, {_}: inverse (multiply (inverse ?172645) (multiply ?172647 (inverse ?172647))) =>= ?172645 [172647, 172645] by Super 17199 with 32947 at 3 +Id : 35297, {_}: multiply (multiply ?2479 (inverse ?2479)) (multiply ?2477 (multiply (inverse ?2477) ?2480)) =>= ?2480 [2480, 2477, 2479] by Demod 326 with 34867 at 2,2 +Id : 35489, {_}: inverse (multiply (inverse ?174505) (multiply ?174506 (inverse ?174506))) =>= ?174505 [174506, 174505] by Super 17199 with 32947 at 3 +Id : 616, {_}: multiply (multiply ?3943 (inverse ?3943)) (inverse (multiply (inverse (multiply ?3944 (multiply ?3945 (inverse ?3945)))) (multiply ?3944 ?3946))) =>= inverse ?3946 [3946, 3945, 3944, 3943] by Super 70 with 290 at 2,1,1,1,2,2 +Id : 619, {_}: multiply (multiply ?3962 (inverse ?3962)) (inverse (multiply (inverse (multiply ?3963 (multiply ?3964 (inverse ?3964)))) (multiply ?3961 (inverse ?3961)))) =>= inverse (inverse ?3963) [3961, 3964, 3963, 3962] by Super 616 with 290 at 2,1,2,2 +Id : 35296, {_}: multiply (multiply ?3962 (inverse ?3962)) (multiply ?3963 (multiply ?3964 (inverse ?3964))) =>= inverse (inverse ?3963) [3964, 3963, 3962] by Demod 619 with 34867 at 2,2 +Id : 35298, {_}: inverse (inverse (inverse (inverse (inverse (multiply ?19734 (multiply (inverse ?19734) ?19735)))))) =>= inverse ?19735 [19735, 19734] by Demod 3676 with 35296 at 2 +Id : 35615, {_}: inverse (multiply (inverse ?175100) (multiply ?175101 (inverse ?175101))) =?= inverse (inverse (inverse (inverse (multiply ?175099 (multiply (inverse ?175099) ?175100))))) [175099, 175101, 175100] by Super 35489 with 35298 at 1,1,2 +Id : 35759, {_}: ?175100 =<= inverse (inverse (inverse (inverse (multiply ?175099 (multiply (inverse ?175099) ?175100))))) [175099, 175100] by Demod 35615 with 34867 at 2 +Id : 14284, {_}: inverse (inverse (multiply ?75692 (multiply (inverse (inverse (inverse (multiply ?75693 (multiply (inverse ?75693) ?75694))))) ?75694))) =>= ?75692 [75694, 75693, 75692] by Super 4 with 3662 at 2 +Id : 14330, {_}: inverse (inverse (multiply ?75974 (multiply (inverse (inverse (inverse (multiply ?75975 (multiply ?75973 (inverse ?75973)))))) (inverse (inverse ?75975))))) =>= ?75974 [75973, 75975, 75974] by Super 14284 with 290 at 2,1,1,1,1,2,1,1,2 +Id : 36610, {_}: inverse (inverse (multiply ?177975 (multiply (inverse (inverse (inverse (multiply (inverse (inverse (inverse (multiply ?177974 (multiply (inverse ?177974) ?177973))))) (multiply ?177976 (inverse ?177976)))))) (inverse ?177973)))) =>= ?177975 [177976, 177973, 177974, 177975] by Super 14330 with 35759 at 1,2,2,1,1,2 +Id : 36795, {_}: inverse (inverse (multiply ?177975 (multiply (inverse (inverse (inverse (inverse (multiply ?177974 (multiply (inverse ?177974) ?177973)))))) (inverse ?177973)))) =>= ?177975 [177973, 177974, 177975] by Demod 36610 with 34867 at 1,1,1,2,1,1,2 +Id : 37525, {_}: inverse (inverse (multiply ?181200 (multiply ?181201 (inverse ?181201)))) =>= ?181200 [181201, 181200] by Demod 36795 with 35759 at 1,2,1,1,2 +Id : 37547, {_}: inverse (inverse (multiply ?181321 (multiply (inverse (inverse (multiply ?181319 (inverse ?181319)))) (multiply ?181320 (inverse ?181320))))) =>= ?181321 [181320, 181319, 181321] by Super 37525 with 16741 at 2,2,1,1,2 +Id : 36638, {_}: ?178102 =<= inverse (inverse (inverse (inverse (multiply ?178103 (multiply (inverse ?178103) ?178102))))) [178103, 178102] by Demod 35615 with 34867 at 2 +Id : 36754, {_}: multiply (inverse (inverse (multiply ?178614 (inverse ?178614)))) ?178615 =>= inverse (inverse (inverse (inverse ?178615))) [178615, 178614] by Super 36638 with 35297 at 1,1,1,1,3 +Id : 37663, {_}: inverse (inverse (multiply ?181321 (inverse (inverse (inverse (inverse (multiply ?181320 (inverse ?181320)))))))) =>= ?181321 [181320, 181321] by Demod 37547 with 36754 at 2,1,1,2 +Id : 32690, {_}: inverse ?166743 =<= multiply (inverse ?166743) (inverse (inverse (inverse (inverse (multiply ?166744 (inverse ?166744)))))) [166744, 166743] by Demod 31961 with 3676 at 2 +Id : 32829, {_}: inverse (multiply ?167379 (multiply ?167380 (multiply (multiply ?167381 (inverse ?167381)) (inverse (multiply ?167382 (multiply ?167379 ?167380)))))) =?= multiply ?167382 (inverse (inverse (inverse (inverse (multiply ?167383 (inverse ?167383)))))) [167383, 167382, 167381, 167380, 167379] by Super 32690 with 4 at 1,3 +Id : 33031, {_}: ?167382 =<= multiply ?167382 (inverse (inverse (inverse (inverse (multiply ?167383 (inverse ?167383)))))) [167383, 167382] by Demod 32829 with 4 at 2 +Id : 37664, {_}: inverse (inverse ?181321) =>= ?181321 [181321] by Demod 37663 with 33031 at 1,1,2 +Id : 37819, {_}: ?175100 =<= inverse (inverse (multiply ?175099 (multiply (inverse ?175099) ?175100))) [175099, 175100] by Demod 35759 with 37664 at 3 +Id : 37820, {_}: ?175100 =<= multiply ?175099 (multiply (inverse ?175099) ?175100) [175099, 175100] by Demod 37819 with 37664 at 3 +Id : 37837, {_}: multiply (multiply ?2479 (inverse ?2479)) ?2480 =>= ?2480 [2480, 2479] by Demod 35297 with 37820 at 2,2 +Id : 37843, {_}: inverse (multiply ?2 (multiply ?3 (inverse (multiply ?5 (multiply ?2 ?3))))) =>= ?5 [5, 3, 2] by Demod 4 with 37837 at 2,2,1,2 +Id : 37841, {_}: inverse (multiply ?14 (multiply (inverse (multiply ?13 (multiply ?16 ?14))) (multiply (multiply ?15 (inverse ?15)) ?13))) =>= ?16 [15, 16, 13, 14] by Demod 6 with 37837 at 1,2,1,2 +Id : 37842, {_}: inverse (multiply ?14 (multiply (inverse (multiply ?13 (multiply ?16 ?14))) ?13)) =>= ?16 [16, 13, 14] by Demod 37841 with 37837 at 2,2,1,2 +Id : 13762, {_}: inverse (multiply (inverse ?72514) (multiply ?72515 (multiply (multiply ?72516 (inverse ?72516)) (inverse (multiply ?72517 (multiply (inverse ?72517) ?72515)))))) =?= multiply (inverse (inverse (inverse (multiply ?72511 (multiply (inverse ?72511) ?72512))))) (multiply ?72512 (multiply (multiply ?72513 (inverse ?72513)) ?72514)) [72513, 72512, 72511, 72517, 72516, 72515, 72514] by Super 790 with 3662 at 1,1,2 +Id : 14092, {_}: ?72514 =<= multiply (inverse (inverse (inverse (multiply ?72511 (multiply (inverse ?72511) ?72512))))) (multiply ?72512 (multiply (multiply ?72513 (inverse ?72513)) ?72514)) [72513, 72512, 72511, 72514] by Demod 13762 with 790 at 2 +Id : 37791, {_}: ?72514 =<= multiply (inverse (multiply ?72511 (multiply (inverse ?72511) ?72512))) (multiply ?72512 (multiply (multiply ?72513 (inverse ?72513)) ?72514)) [72513, 72512, 72511, 72514] by Demod 14092 with 37664 at 1,3 +Id : 37888, {_}: ?72514 =<= multiply (inverse ?72512) (multiply ?72512 (multiply (multiply ?72513 (inverse ?72513)) ?72514)) [72513, 72512, 72514] by Demod 37791 with 37820 at 1,1,3 +Id : 37889, {_}: ?72514 =<= multiply (inverse ?72512) (multiply ?72512 ?72514) [72512, 72514] by Demod 37888 with 37837 at 2,2,3 +Id : 37945, {_}: multiply (multiply (inverse ?181731) ?181731) ?181732 =>= ?181732 [181732, 181731] by Super 37837 with 37664 at 2,1,2 +Id : 37993, {_}: inverse (multiply (multiply (inverse ?181852) ?181852) (multiply ?181853 (inverse (multiply ?181854 ?181853)))) =>= ?181854 [181854, 181853, 181852] by Super 37843 with 37945 at 2,1,2,2,1,2 +Id : 38039, {_}: inverse (multiply ?181853 (inverse (multiply ?181854 ?181853))) =>= ?181854 [181854, 181853] by Demod 37993 with 37945 at 1,2 +Id : 38275, {_}: inverse ?182456 =<= multiply ?182455 (inverse (multiply ?182456 ?182455)) [182455, 182456] by Super 37664 with 38039 at 1,2 +Id : 38457, {_}: inverse (multiply ?182870 ?182871) =<= multiply (inverse ?182871) (inverse ?182870) [182871, 182870] by Super 37889 with 38275 at 2,3 +Id : 38459, {_}: inverse (multiply (inverse ?182877) ?182878) =>= multiply (inverse ?182878) ?182877 [182878, 182877] by Super 38457 with 37664 at 2,3 +Id : 38608, {_}: multiply (inverse (multiply (inverse (multiply ?183123 (multiply ?183124 (inverse ?183122)))) ?183123)) ?183122 =>= ?183124 [183122, 183124, 183123] by Super 37842 with 38459 at 2 +Id : 38646, {_}: multiply (multiply (inverse ?183123) (multiply ?183123 (multiply ?183124 (inverse ?183122)))) ?183122 =>= ?183124 [183122, 183124, 183123] by Demod 38608 with 38459 at 1,2 +Id : 38647, {_}: multiply (multiply ?183124 (inverse ?183122)) ?183122 =>= ?183124 [183122, 183124] by Demod 38646 with 37889 at 1,2 +Id : 39562, {_}: inverse (multiply ?184856 (multiply ?184857 (inverse ?184858))) =>= multiply ?184858 (inverse (multiply ?184856 ?184857)) [184858, 184857, 184856] by Super 37843 with 38647 at 1,2,2,1,2 +Id : 39573, {_}: inverse (multiply ?184910 (inverse ?184909)) =<= multiply (multiply ?184909 ?184911) (inverse (multiply ?184910 ?184911)) [184911, 184909, 184910] by Super 39562 with 38275 at 2,1,2 +Id : 38360, {_}: inverse (multiply ?182630 (inverse ?182631)) =>= multiply ?182631 (inverse ?182630) [182631, 182630] by Super 37820 with 38275 at 2,3 +Id : 40719, {_}: multiply ?186598 (inverse ?186599) =<= multiply (multiply ?186598 ?186600) (inverse (multiply ?186599 ?186600)) [186600, 186599, 186598] by Demod 39573 with 38360 at 2 +Id : 37844, {_}: inverse (multiply (inverse (multiply ?33 (multiply ?34 ?31))) (multiply (multiply (multiply ?35 (inverse ?35)) ?33) (multiply (multiply ?36 (inverse ?36)) ?34))) =>= ?31 [36, 35, 31, 34, 33] by Demod 9 with 37837 at 1,1,2 +Id : 37845, {_}: inverse (multiply (inverse (multiply ?33 (multiply ?34 ?31))) (multiply ?33 (multiply (multiply ?36 (inverse ?36)) ?34))) =>= ?31 [36, 31, 34, 33] by Demod 37844 with 37837 at 1,2,1,2 +Id : 37846, {_}: inverse (multiply (inverse (multiply ?33 (multiply ?34 ?31))) (multiply ?33 ?34)) =>= ?31 [31, 34, 33] by Demod 37845 with 37837 at 2,2,1,2 +Id : 38597, {_}: multiply (inverse (multiply ?33 ?34)) (multiply ?33 (multiply ?34 ?31)) =>= ?31 [31, 34, 33] by Demod 37846 with 38459 at 2 +Id : 40727, {_}: multiply ?186633 (inverse (inverse (multiply ?186630 ?186631))) =<= multiply (multiply ?186633 (multiply ?186630 (multiply ?186631 ?186632))) (inverse ?186632) [186632, 186631, 186630, 186633] by Super 40719 with 38597 at 1,2,3 +Id : 40827, {_}: multiply ?186633 (multiply ?186630 ?186631) =<= multiply (multiply ?186633 (multiply ?186630 (multiply ?186631 ?186632))) (inverse ?186632) [186632, 186631, 186630, 186633] by Demod 40727 with 37664 at 2,2 +Id : 38369, {_}: inverse ?182667 =<= multiply ?182668 (inverse (multiply ?182667 ?182668)) [182668, 182667] by Super 37664 with 38039 at 1,2 +Id : 38383, {_}: inverse ?182710 =<= multiply (inverse (multiply ?182709 ?182710)) (inverse (inverse ?182709)) [182709, 182710] by Super 38369 with 38275 at 1,2,3 +Id : 38416, {_}: inverse ?182710 =<= multiply (inverse (multiply ?182709 ?182710)) ?182709 [182709, 182710] by Demod 38383 with 37664 at 2,3 +Id : 38850, {_}: inverse (multiply ?183591 (multiply ?183592 (inverse ?183590))) =>= multiply ?183590 (inverse (multiply ?183591 ?183592)) [183590, 183592, 183591] by Super 37843 with 38647 at 1,2,2,1,2 +Id : 39557, {_}: inverse (multiply ?184829 (inverse ?184830)) =<= multiply (multiply ?184830 (inverse (multiply ?184828 ?184829))) ?184828 [184828, 184830, 184829] by Super 38416 with 38850 at 1,3 +Id : 40495, {_}: multiply ?186270 (inverse ?186271) =<= multiply (multiply ?186270 (inverse (multiply ?186272 ?186271))) ?186272 [186272, 186271, 186270] by Demod 39557 with 38360 at 2 +Id : 38758, {_}: inverse ?183471 =<= multiply (inverse (multiply ?183472 ?183471)) ?183472 [183472, 183471] by Demod 38383 with 37664 at 2,3 +Id : 38773, {_}: inverse (multiply ?183521 (inverse (multiply ?183522 (multiply ?183523 ?183521)))) =>= multiply ?183522 ?183523 [183523, 183522, 183521] by Super 38758 with 37843 at 1,3 +Id : 38833, {_}: multiply (multiply ?183522 (multiply ?183523 ?183521)) (inverse ?183521) =>= multiply ?183522 ?183523 [183521, 183523, 183522] by Demod 38773 with 38360 at 2 +Id : 40530, {_}: multiply (multiply ?186419 (multiply ?186420 (multiply ?186422 ?186421))) (inverse ?186421) =>= multiply (multiply ?186419 ?186420) ?186422 [186421, 186422, 186420, 186419] by Super 40495 with 38833 at 1,3 +Id : 56629, {_}: multiply ?186633 (multiply ?186630 ?186631) =?= multiply (multiply ?186633 ?186630) ?186631 [186631, 186630, 186633] by Demod 40827 with 40530 at 3 +Id : 57301, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 56629 at 2 +Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 +% SZS output end CNFRefutation for GRP444-1.p +Order + == is 100 + _ is 99 + a2 is 95 + b2 is 98 + divide is 93 + inverse is 97 + multiply is 96 + prove_these_axioms_2 is 94 + single_axiom is 92 +Facts + Id : 4, {_}: + divide + (divide (divide ?2 ?2) + (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) + ?4 + =>= + ?3 + [4, 3, 2] by single_axiom ?2 ?3 ?4 + Id : 6, {_}: + multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) + [8, 7, 6] by multiply ?6 ?7 ?8 + Id : 8, {_}: + inverse ?10 =<= divide (divide ?11 ?11) ?10 + [11, 10] by inverse ?10 ?11 +Goal + Id : 2, {_}: + multiply (multiply (inverse b2) b2) a2 =>= a2 + [] by prove_these_axioms_2 +Found proof, 0.103879s +% SZS status Unsatisfiable for GRP452-1.p +% SZS output start CNFRefutation for GRP452-1.p +Id : 39, {_}: inverse ?93 =<= divide (divide ?94 ?94) ?93 [94, 93] by inverse ?93 ?94 +Id : 4, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 +Id : 8, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 +Id : 6, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 +Id : 33, {_}: multiply ?6 ?7 =<= divide ?6 (inverse ?7) [7, 6] by Demod 6 with 8 at 2,3 +Id : 45, {_}: multiply (divide ?108 ?108) ?109 =>= inverse (inverse ?109) [109, 108] by Super 33 with 8 at 3 +Id : 47, {_}: multiply (multiply (inverse ?114) ?114) ?115 =>= inverse (inverse ?115) [115, 114] by Super 45 with 33 at 1,2 +Id : 34, {_}: divide (inverse (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 4 with 8 at 1,2 +Id : 35, {_}: divide (inverse (divide ?2 (divide ?3 (divide (inverse ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 34 with 8 at 1,2,2,1,1,2 +Id : 40, {_}: inverse ?97 =<= divide (inverse (divide ?96 ?96)) ?97 [96, 97] by Super 39 with 8 at 1,3 +Id : 52, {_}: divide (inverse (divide (divide ?127 ?127) (divide ?128 (inverse ?126)))) ?126 =>= ?128 [126, 128, 127] by Super 35 with 40 at 2,2,1,1,2 +Id : 62, {_}: divide (inverse (inverse (divide ?128 (inverse ?126)))) ?126 =>= ?128 [126, 128] by Demod 52 with 8 at 1,1,2 +Id : 63, {_}: divide (inverse (inverse (multiply ?128 ?126))) ?126 =>= ?128 [126, 128] by Demod 62 with 33 at 1,1,1,2 +Id : 265, {_}: divide (inverse (divide ?664 ?665)) ?666 =<= inverse (inverse (multiply ?665 (divide (inverse ?664) ?666))) [666, 665, 664] by Super 35 with 63 at 2,1,1,2 +Id : 269, {_}: divide (inverse (divide ?684 ?685)) (inverse ?683) =<= inverse (inverse (multiply ?685 (multiply (inverse ?684) ?683))) [683, 685, 684] by Super 265 with 33 at 2,1,1,3 +Id : 285, {_}: multiply (inverse (divide ?684 ?685)) ?683 =<= inverse (inverse (multiply ?685 (multiply (inverse ?684) ?683))) [683, 685, 684] by Demod 269 with 33 at 2 +Id : 36, {_}: multiply (divide ?82 ?82) ?83 =>= inverse (inverse ?83) [83, 82] by Super 33 with 8 at 3 +Id : 270, {_}: divide (inverse (divide (divide ?687 ?687) ?688)) ?689 =>= inverse (inverse (multiply ?688 (inverse ?689))) [689, 688, 687] by Super 265 with 40 at 2,1,1,3 +Id : 286, {_}: divide (inverse (inverse ?688)) ?689 =<= inverse (inverse (multiply ?688 (inverse ?689))) [689, 688] by Demod 270 with 8 at 1,1,2 +Id : 306, {_}: divide (divide (inverse (inverse ?778)) ?779) (inverse ?779) =>= ?778 [779, 778] by Super 63 with 286 at 1,2 +Id : 319, {_}: multiply (divide (inverse (inverse ?778)) ?779) ?779 =>= ?778 [779, 778] by Demod 306 with 33 at 2 +Id : 743, {_}: ?1513 =<= inverse (inverse (inverse (inverse ?1513))) [1513] by Super 36 with 319 at 2 +Id : 138, {_}: divide (inverse (divide ?349 ?348)) ?350 =<= inverse (inverse (multiply ?348 (divide (inverse ?349) ?350))) [350, 348, 349] by Super 35 with 63 at 2,1,1,2 +Id : 1751, {_}: multiply ?3407 (divide (inverse ?3408) ?3409) =<= inverse (inverse (divide (inverse (divide ?3408 ?3407)) ?3409)) [3409, 3408, 3407] by Super 743 with 138 at 1,1,3 +Id : 1830, {_}: multiply ?3532 (divide (inverse ?3532) ?3533) =>= inverse (inverse (inverse ?3533)) [3533, 3532] by Super 1751 with 40 at 1,1,3 +Id : 682, {_}: ?1380 =<= inverse (inverse (inverse (inverse ?1380))) [1380] by Super 36 with 319 at 2 +Id : 735, {_}: multiply ?1490 (inverse (inverse (inverse ?1489))) =>= divide ?1490 ?1489 [1489, 1490] by Super 33 with 682 at 2,3 +Id : 742, {_}: multiply (divide ?1510 ?1511) ?1511 =>= inverse (inverse ?1510) [1511, 1510] by Super 319 with 682 at 1,1,2 +Id : 868, {_}: inverse (inverse ?1672) =<= divide (divide ?1672 (inverse (inverse (inverse ?1673)))) ?1673 [1673, 1672] by Super 735 with 742 at 2 +Id : 1203, {_}: inverse (inverse ?2233) =<= divide (multiply ?2233 (inverse (inverse ?2234))) ?2234 [2234, 2233] by Demod 868 with 33 at 1,3 +Id : 55, {_}: multiply (inverse (inverse (divide ?138 ?138))) ?139 =>= inverse (inverse ?139) [139, 138] by Super 36 with 40 at 1,2 +Id : 1217, {_}: inverse (inverse (inverse (inverse (divide ?2285 ?2285)))) =?= divide (inverse (inverse (inverse (inverse ?2286)))) ?2286 [2286, 2285] by Super 1203 with 55 at 1,3 +Id : 1250, {_}: divide ?2285 ?2285 =?= divide (inverse (inverse (inverse (inverse ?2286)))) ?2286 [2286, 2285] by Demod 1217 with 682 at 2 +Id : 1251, {_}: divide ?2285 ?2285 =?= divide ?2286 ?2286 [2286, 2285] by Demod 1250 with 682 at 1,3 +Id : 1840, {_}: multiply ?3573 (divide ?3572 ?3572) =?= inverse (inverse (inverse (inverse ?3573))) [3572, 3573] by Super 1830 with 1251 at 2,2 +Id : 1879, {_}: multiply ?3573 (divide ?3572 ?3572) =>= ?3573 [3572, 3573] by Demod 1840 with 682 at 3 +Id : 1919, {_}: multiply (inverse (divide ?3678 ?3679)) (divide ?3677 ?3677) =>= inverse (inverse (multiply ?3679 (inverse ?3678))) [3677, 3679, 3678] by Super 285 with 1879 at 2,1,1,3 +Id : 1946, {_}: inverse (divide ?3678 ?3679) =<= inverse (inverse (multiply ?3679 (inverse ?3678))) [3679, 3678] by Demod 1919 with 1879 at 2 +Id : 1947, {_}: inverse (divide ?3678 ?3679) =<= divide (inverse (inverse ?3679)) ?3678 [3679, 3678] by Demod 1946 with 286 at 3 +Id : 1966, {_}: inverse (divide ?126 (multiply ?128 ?126)) =>= ?128 [128, 126] by Demod 63 with 1947 at 2 +Id : 748, {_}: multiply ?1528 (inverse ?1529) =<= inverse (inverse (divide (inverse (inverse ?1528)) ?1529)) [1529, 1528] by Super 743 with 286 at 1,1,3 +Id : 1970, {_}: multiply ?1528 (inverse ?1529) =<= inverse (inverse (inverse (divide ?1529 ?1528))) [1529, 1528] by Demod 748 with 1947 at 1,1,3 +Id : 50, {_}: inverse ?121 =<= divide (inverse (inverse (divide ?120 ?120))) ?121 [120, 121] by Super 8 with 40 at 1,3 +Id : 1967, {_}: inverse ?121 =<= inverse (divide ?121 (divide ?120 ?120)) [120, 121] by Demod 50 with 1947 at 3 +Id : 1903, {_}: divide ?3630 (divide ?3629 ?3629) =>= inverse (inverse ?3630) [3629, 3630] by Super 742 with 1879 at 2 +Id : 2257, {_}: inverse ?121 =<= inverse (inverse (inverse ?121)) [121] by Demod 1967 with 1903 at 1,3 +Id : 2261, {_}: multiply ?1528 (inverse ?1529) =<= inverse (divide ?1529 ?1528) [1529, 1528] by Demod 1970 with 2257 at 3 +Id : 2271, {_}: multiply (multiply ?128 ?126) (inverse ?126) =>= ?128 [126, 128] by Demod 1966 with 2261 at 2 +Id : 869, {_}: multiply (divide ?1675 ?1676) ?1676 =>= inverse (inverse ?1675) [1676, 1675] by Super 319 with 682 at 1,1,2 +Id : 873, {_}: multiply (multiply ?1689 ?1688) (inverse ?1688) =>= inverse (inverse ?1689) [1688, 1689] by Super 869 with 33 at 1,2 +Id : 2276, {_}: inverse (inverse ?128) =>= ?128 [128] by Demod 2271 with 873 at 2 +Id : 2434, {_}: a2 === a2 [] by Demod 85 with 2276 at 2 +Id : 85, {_}: inverse (inverse a2) =>= a2 [] by Demod 2 with 47 at 2 +Id : 2, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 +% SZS output end CNFRefutation for GRP452-1.p +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + divide is 93 + inverse is 91 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 92 +Facts + Id : 4, {_}: + divide + (divide (divide ?2 ?2) + (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) + ?4 + =>= + ?3 + [4, 3, 2] by single_axiom ?2 ?3 ?4 + Id : 6, {_}: + multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) + [8, 7, 6] by multiply ?6 ?7 ?8 + Id : 8, {_}: + inverse ?10 =<= divide (divide ?11 ?11) ?10 + [11, 10] by inverse ?10 ?11 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 0.111823s +% SZS status Unsatisfiable for GRP453-1.p +% SZS output start CNFRefutation for GRP453-1.p +Id : 6, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 +Id : 39, {_}: inverse ?93 =<= divide (divide ?94 ?94) ?93 [94, 93] by inverse ?93 ?94 +Id : 8, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 +Id : 4, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 +Id : 34, {_}: divide (inverse (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 4 with 8 at 1,2 +Id : 35, {_}: divide (inverse (divide ?2 (divide ?3 (divide (inverse ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 34 with 8 at 1,2,2,1,1,2 +Id : 40, {_}: inverse ?97 =<= divide (inverse (divide ?96 ?96)) ?97 [96, 97] by Super 39 with 8 at 1,3 +Id : 52, {_}: divide (inverse (divide (divide ?127 ?127) (divide ?128 (inverse ?126)))) ?126 =>= ?128 [126, 128, 127] by Super 35 with 40 at 2,2,1,1,2 +Id : 62, {_}: divide (inverse (inverse (divide ?128 (inverse ?126)))) ?126 =>= ?128 [126, 128] by Demod 52 with 8 at 1,1,2 +Id : 33, {_}: multiply ?6 ?7 =<= divide ?6 (inverse ?7) [7, 6] by Demod 6 with 8 at 2,3 +Id : 63, {_}: divide (inverse (inverse (multiply ?128 ?126))) ?126 =>= ?128 [126, 128] by Demod 62 with 33 at 1,1,1,2 +Id : 264, {_}: divide (inverse (divide ?664 ?665)) ?666 =<= inverse (inverse (multiply ?665 (divide (inverse ?664) ?666))) [666, 665, 664] by Super 35 with 63 at 2,1,1,2 +Id : 268, {_}: divide (inverse (divide ?684 ?685)) (inverse ?683) =<= inverse (inverse (multiply ?685 (multiply (inverse ?684) ?683))) [683, 685, 684] by Super 264 with 33 at 2,1,1,3 +Id : 284, {_}: multiply (inverse (divide ?684 ?685)) ?683 =<= inverse (inverse (multiply ?685 (multiply (inverse ?684) ?683))) [683, 685, 684] by Demod 268 with 33 at 2 +Id : 269, {_}: divide (inverse (divide (divide ?687 ?687) ?688)) ?689 =>= inverse (inverse (multiply ?688 (inverse ?689))) [689, 688, 687] by Super 264 with 40 at 2,1,1,3 +Id : 285, {_}: divide (inverse (inverse ?688)) ?689 =<= inverse (inverse (multiply ?688 (inverse ?689))) [689, 688] by Demod 269 with 8 at 1,1,2 +Id : 307, {_}: divide (inverse (inverse ?786)) ?787 =<= inverse (inverse (multiply ?786 (inverse ?787))) [787, 786] by Demod 269 with 8 at 1,1,2 +Id : 36, {_}: multiply (divide ?82 ?82) ?83 =>= inverse (inverse ?83) [83, 82] by Super 33 with 8 at 3 +Id : 310, {_}: divide (inverse (inverse (divide ?798 ?798))) ?799 =>= inverse (inverse (inverse (inverse (inverse ?799)))) [799, 798] by Super 307 with 36 at 1,1,3 +Id : 50, {_}: inverse ?121 =<= divide (inverse (inverse (divide ?120 ?120))) ?121 [120, 121] by Super 8 with 40 at 1,3 +Id : 325, {_}: inverse ?799 =<= inverse (inverse (inverse (inverse (inverse ?799)))) [799] by Demod 310 with 50 at 2 +Id : 332, {_}: multiply ?837 (inverse (inverse (inverse (inverse ?836)))) =>= divide ?837 (inverse ?836) [836, 837] by Super 33 with 325 at 2,3 +Id : 354, {_}: multiply ?837 (inverse (inverse (inverse (inverse ?836)))) =>= multiply ?837 ?836 [836, 837] by Demod 332 with 33 at 3 +Id : 364, {_}: divide (inverse (inverse ?880)) (inverse (inverse (inverse ?881))) =>= inverse (inverse (multiply ?880 ?881)) [881, 880] by Super 285 with 354 at 1,1,3 +Id : 423, {_}: multiply (inverse (inverse ?880)) (inverse (inverse ?881)) =>= inverse (inverse (multiply ?880 ?881)) [881, 880] by Demod 364 with 33 at 2 +Id : 448, {_}: divide (inverse (inverse (inverse (inverse ?1012)))) (inverse ?1013) =>= inverse (inverse (inverse (inverse (multiply ?1012 ?1013)))) [1013, 1012] by Super 285 with 423 at 1,1,3 +Id : 470, {_}: multiply (inverse (inverse (inverse (inverse ?1012)))) ?1013 =>= inverse (inverse (inverse (inverse (multiply ?1012 ?1013)))) [1013, 1012] by Demod 448 with 33 at 2 +Id : 499, {_}: divide (inverse (inverse (inverse (inverse (inverse (inverse (multiply ?1108 ?1109))))))) ?1109 =>= inverse (inverse (inverse (inverse ?1108))) [1109, 1108] by Super 63 with 470 at 1,1,1,2 +Id : 519, {_}: divide (inverse (inverse (multiply ?1108 ?1109))) ?1109 =>= inverse (inverse (inverse (inverse ?1108))) [1109, 1108] by Demod 499 with 325 at 1,2 +Id : 571, {_}: ?1204 =<= inverse (inverse (inverse (inverse ?1204))) [1204] by Demod 519 with 63 at 2 +Id : 137, {_}: divide (inverse (divide ?349 ?348)) ?350 =<= inverse (inverse (multiply ?348 (divide (inverse ?349) ?350))) [350, 348, 349] by Super 35 with 63 at 2,1,1,2 +Id : 1535, {_}: multiply ?2972 (divide (inverse ?2973) ?2974) =<= inverse (inverse (divide (inverse (divide ?2973 ?2972)) ?2974)) [2974, 2973, 2972] by Super 571 with 137 at 1,1,3 +Id : 1610, {_}: multiply ?3089 (divide (inverse ?3089) ?3090) =>= inverse (inverse (inverse ?3090)) [3090, 3089] by Super 1535 with 40 at 1,1,3 +Id : 520, {_}: ?1108 =<= inverse (inverse (inverse (inverse ?1108))) [1108] by Demod 519 with 63 at 2 +Id : 565, {_}: multiply ?1187 (inverse (inverse (inverse ?1186))) =>= divide ?1187 ?1186 [1186, 1187] by Super 33 with 520 at 2,3 +Id : 590, {_}: divide (inverse (inverse ?1228)) (inverse (inverse ?1229)) =>= inverse (inverse (divide ?1228 ?1229)) [1229, 1228] by Super 285 with 565 at 1,1,3 +Id : 652, {_}: multiply (inverse (inverse ?1228)) (inverse ?1229) =>= inverse (inverse (divide ?1228 ?1229)) [1229, 1228] by Demod 590 with 33 at 2 +Id : 676, {_}: divide (inverse (inverse (inverse (inverse (divide ?1336 ?1337))))) (inverse ?1337) =>= inverse (inverse ?1336) [1337, 1336] by Super 63 with 652 at 1,1,1,2 +Id : 716, {_}: multiply (inverse (inverse (inverse (inverse (divide ?1336 ?1337))))) ?1337 =>= inverse (inverse ?1336) [1337, 1336] by Demod 676 with 33 at 2 +Id : 717, {_}: multiply (divide ?1336 ?1337) ?1337 =>= inverse (inverse ?1336) [1337, 1336] by Demod 716 with 520 at 1,2 +Id : 729, {_}: inverse (inverse ?1423) =<= divide (divide ?1423 (inverse (inverse (inverse ?1424)))) ?1424 [1424, 1423] by Super 565 with 717 at 2 +Id : 1120, {_}: inverse (inverse ?2062) =<= divide (multiply ?2062 (inverse (inverse ?2063))) ?2063 [2063, 2062] by Demod 729 with 33 at 1,3 +Id : 55, {_}: multiply (inverse (inverse (divide ?138 ?138))) ?139 =>= inverse (inverse ?139) [139, 138] by Super 36 with 40 at 1,2 +Id : 1134, {_}: inverse (inverse (inverse (inverse (divide ?2114 ?2114)))) =?= divide (inverse (inverse (inverse (inverse ?2115)))) ?2115 [2115, 2114] by Super 1120 with 55 at 1,3 +Id : 1167, {_}: divide ?2114 ?2114 =?= divide (inverse (inverse (inverse (inverse ?2115)))) ?2115 [2115, 2114] by Demod 1134 with 520 at 2 +Id : 1168, {_}: divide ?2114 ?2114 =?= divide ?2115 ?2115 [2115, 2114] by Demod 1167 with 520 at 1,3 +Id : 1620, {_}: multiply ?3130 (divide ?3129 ?3129) =>= inverse (inverse (inverse (inverse ?3130))) [3129, 3130] by Super 1610 with 1168 at 2,2 +Id : 1658, {_}: multiply ?3130 (divide ?3129 ?3129) =>= ?3130 [3129, 3130] by Demod 1620 with 520 at 3 +Id : 1679, {_}: multiply (inverse (divide ?3178 ?3179)) (divide ?3177 ?3177) =>= inverse (inverse (multiply ?3179 (inverse ?3178))) [3177, 3179, 3178] by Super 284 with 1658 at 2,1,1,3 +Id : 1729, {_}: inverse (divide ?3178 ?3179) =<= inverse (inverse (multiply ?3179 (inverse ?3178))) [3179, 3178] by Demod 1679 with 1658 at 2 +Id : 1730, {_}: inverse (divide ?3178 ?3179) =<= divide (inverse (inverse ?3179)) ?3178 [3179, 3178] by Demod 1729 with 285 at 3 +Id : 1760, {_}: multiply (inverse (inverse ?3336)) ?3337 =>= inverse (divide (inverse ?3337) ?3336) [3337, 3336] by Super 33 with 1730 at 3 +Id : 1861, {_}: multiply (inverse (divide (inverse ?3480) ?3482)) ?3481 =<= inverse (inverse (multiply ?3482 (inverse (divide (inverse ?3481) ?3480)))) [3481, 3482, 3480] by Super 284 with 1760 at 2,1,1,3 +Id : 1743, {_}: inverse (divide ?689 ?688) =<= inverse (inverse (multiply ?688 (inverse ?689))) [688, 689] by Demod 285 with 1730 at 2 +Id : 1928, {_}: multiply (inverse (divide (inverse ?3480) ?3482)) ?3481 =>= inverse (divide (divide (inverse ?3481) ?3480) ?3482) [3481, 3482, 3480] by Demod 1861 with 1743 at 3 +Id : 1740, {_}: inverse (divide ?126 (multiply ?128 ?126)) =>= ?128 [128, 126] by Demod 63 with 1730 at 2 +Id : 1855, {_}: inverse (divide ?3461 (inverse (divide (inverse ?3461) ?3460))) =>= inverse (inverse ?3460) [3460, 3461] by Super 1740 with 1760 at 2,1,2 +Id : 1942, {_}: inverse (multiply ?3461 (divide (inverse ?3461) ?3460)) =>= inverse (inverse ?3460) [3460, 3461] by Demod 1855 with 33 at 1,2 +Id : 1552, {_}: multiply ?3041 (divide (inverse ?3041) ?3042) =>= inverse (inverse (inverse ?3042)) [3042, 3041] by Super 1535 with 40 at 1,1,3 +Id : 1943, {_}: inverse (inverse (inverse (inverse ?3460))) =>= inverse (inverse ?3460) [3460] by Demod 1942 with 1552 at 1,2 +Id : 1944, {_}: ?3460 =<= inverse (inverse ?3460) [3460] by Demod 1943 with 520 at 2 +Id : 1988, {_}: multiply ?1187 (inverse ?1186) =>= divide ?1187 ?1186 [1186, 1187] by Demod 565 with 1944 at 2,2 +Id : 1992, {_}: inverse (divide ?689 ?688) =<= multiply ?688 (inverse ?689) [688, 689] by Demod 1743 with 1944 at 3 +Id : 1998, {_}: inverse (divide ?1186 ?1187) =>= divide ?1187 ?1186 [1187, 1186] by Demod 1988 with 1992 at 2 +Id : 2689, {_}: multiply (divide ?3482 (inverse ?3480)) ?3481 =<= inverse (divide (divide (inverse ?3481) ?3480) ?3482) [3481, 3480, 3482] by Demod 1928 with 1998 at 1,2 +Id : 2690, {_}: multiply (multiply ?3482 ?3480) ?3481 =<= inverse (divide (divide (inverse ?3481) ?3480) ?3482) [3481, 3480, 3482] by Demod 2689 with 33 at 1,2 +Id : 2691, {_}: multiply (multiply ?3482 ?3480) ?3481 =<= divide ?3482 (divide (inverse ?3481) ?3480) [3481, 3480, 3482] by Demod 2690 with 1998 at 3 +Id : 2002, {_}: divide (multiply ?128 ?126) ?126 =>= ?128 [126, 128] by Demod 1740 with 1998 at 2 +Id : 1619, {_}: multiply (inverse (multiply ?3126 ?3127)) ?3126 =>= inverse (inverse (inverse ?3127)) [3127, 3126] by Super 1610 with 63 at 2,2 +Id : 2085, {_}: multiply (inverse (multiply ?3126 ?3127)) ?3126 =>= inverse ?3127 [3127, 3126] by Demod 1619 with 1944 at 3 +Id : 2092, {_}: divide (inverse ?3663) ?3662 =>= inverse (multiply ?3662 ?3663) [3662, 3663] by Super 2002 with 2085 at 1,2 +Id : 2692, {_}: multiply (multiply ?3482 ?3480) ?3481 =<= divide ?3482 (inverse (multiply ?3480 ?3481)) [3481, 3480, 3482] by Demod 2691 with 2092 at 2,3 +Id : 2693, {_}: multiply (multiply ?3482 ?3480) ?3481 =?= multiply ?3482 (multiply ?3480 ?3481) [3481, 3480, 3482] by Demod 2692 with 33 at 3 +Id : 2797, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 2693 at 2 +Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 +% SZS output end CNFRefutation for GRP453-1.p +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + divide is 93 + inverse is 92 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 91 +Facts + Id : 4, {_}: + divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) + (divide (divide ?5 ?4) ?2) + =>= + ?3 + [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 + Id : 6, {_}: + multiply ?7 ?8 =<= divide ?7 (inverse ?8) + [8, 7] by multiply ?7 ?8 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 127.901553s +% SZS status Unsatisfiable for GRP471-1.p +% SZS output start CNFRefutation for GRP471-1.p +Id : 7, {_}: divide (inverse (divide ?10 (divide ?11 (divide ?12 ?13)))) (divide (divide ?13 ?12) ?10) =>= ?11 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 +Id : 6, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 +Id : 4, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 +Id : 466, {_}: divide (inverse (divide (inverse ?2074) (divide ?2075 (divide ?2076 ?2077)))) (multiply (divide ?2077 ?2076) ?2074) =>= ?2075 [2077, 2076, 2075, 2074] by Super 4 with 6 at 2,2 +Id : 2222, {_}: divide (inverse ?10322) (multiply (divide ?10323 ?10324) (divide (divide ?10324 ?10323) (divide ?10322 (divide ?10325 ?10326)))) =>= divide ?10326 ?10325 [10326, 10325, 10324, 10323, 10322] by Super 466 with 4 at 1,1,2 +Id : 498, {_}: divide (inverse ?2307) (multiply (divide ?2311 ?2310) (divide (divide ?2310 ?2311) (divide ?2307 (divide ?2308 ?2309)))) =>= divide ?2309 ?2308 [2309, 2308, 2310, 2311, 2307] by Super 466 with 4 at 1,1,2 +Id : 2240, {_}: divide (inverse ?10483) (multiply (divide ?10484 ?10485) (divide (divide ?10485 ?10484) (divide ?10483 (divide ?10482 ?10481)))) =?= divide (multiply (divide ?10479 ?10480) (divide (divide ?10480 ?10479) (divide ?10478 (divide ?10481 ?10482)))) (inverse ?10478) [10478, 10480, 10479, 10481, 10482, 10485, 10484, 10483] by Super 2222 with 498 at 2,2,2,2,2 +Id : 2367, {_}: divide ?10481 ?10482 =<= divide (multiply (divide ?10479 ?10480) (divide (divide ?10480 ?10479) (divide ?10478 (divide ?10481 ?10482)))) (inverse ?10478) [10478, 10480, 10479, 10482, 10481] by Demod 2240 with 498 at 2 +Id : 2430, {_}: divide ?11142 ?11143 =<= multiply (multiply (divide ?11144 ?11145) (divide (divide ?11145 ?11144) (divide ?11146 (divide ?11142 ?11143)))) ?11146 [11146, 11145, 11144, 11143, 11142] by Demod 2367 with 6 at 3 +Id : 2431, {_}: divide (inverse (divide ?11148 (divide ?11149 (divide ?11150 ?11151)))) (divide (divide ?11151 ?11150) ?11148) =?= multiply (multiply (divide ?11152 ?11153) (divide (divide ?11153 ?11152) (divide ?11154 ?11149))) ?11154 [11154, 11153, 11152, 11151, 11150, 11149, 11148] by Super 2430 with 4 at 2,2,2,1,3 +Id : 2616, {_}: ?11858 =<= multiply (multiply (divide ?11859 ?11860) (divide (divide ?11860 ?11859) (divide ?11861 ?11858))) ?11861 [11861, 11860, 11859, 11858] by Demod 2431 with 4 at 2 +Id : 2673, {_}: ?12297 =<= multiply (multiply (multiply ?12298 ?12296) (divide (divide (inverse ?12296) ?12298) (divide ?12299 ?12297))) ?12299 [12299, 12296, 12298, 12297] by Super 2616 with 6 at 1,1,3 +Id : 398, {_}: divide (inverse (divide ?1784 (divide ?1785 (divide (inverse ?1786) ?1787)))) (divide (multiply ?1787 ?1786) ?1784) =>= ?1785 [1787, 1786, 1785, 1784] by Super 4 with 6 at 1,2,2 +Id : 1221, {_}: divide (inverse (divide ?5281 (divide ?5282 (multiply (inverse ?5283) ?5284)))) (divide (multiply (inverse ?5284) ?5283) ?5281) =>= ?5282 [5284, 5283, 5282, 5281] by Super 398 with 6 at 2,2,1,1,2 +Id : 15, {_}: divide (inverse (divide ?58 (divide ?59 (multiply ?56 ?57)))) (divide (divide (inverse ?57) ?56) ?58) =>= ?59 [57, 56, 59, 58] by Super 4 with 6 at 2,2,1,1,2 +Id : 1238, {_}: divide (inverse ?5406) (divide (multiply (inverse ?5410) ?5409) (inverse (divide (multiply (inverse ?5409) ?5410) (divide ?5406 (multiply ?5407 ?5408))))) =>= divide (inverse ?5408) ?5407 [5408, 5407, 5409, 5410, 5406] by Super 1221 with 15 at 1,1,2 +Id : 1282, {_}: divide (inverse ?5406) (multiply (multiply (inverse ?5410) ?5409) (divide (multiply (inverse ?5409) ?5410) (divide ?5406 (multiply ?5407 ?5408)))) =>= divide (inverse ?5408) ?5407 [5408, 5407, 5409, 5410, 5406] by Demod 1238 with 6 at 2,2 +Id : 2872, {_}: ?12927 =<= multiply (multiply (divide (inverse ?12928) ?12929) (divide (multiply ?12929 ?12928) (divide ?12930 ?12927))) ?12930 [12930, 12929, 12928, 12927] by Super 2616 with 6 at 1,2,1,3 +Id : 3248, {_}: ?15081 =<= multiply (multiply (multiply (inverse ?15082) ?15083) (divide (multiply (inverse ?15083) ?15082) (divide ?15084 ?15081))) ?15084 [15084, 15083, 15082, 15081] by Super 2872 with 6 at 1,1,3 +Id : 10, {_}: divide (inverse (divide ?32 ?29)) (divide (divide ?33 (divide ?31 ?30)) ?32) =>= inverse (divide ?33 (divide ?29 (divide ?30 ?31))) [30, 31, 33, 29, 32] by Super 7 with 4 at 2,1,1,2 +Id : 22, {_}: inverse (divide ?98 (divide (divide ?101 (divide (divide ?99 ?100) ?98)) (divide ?100 ?99))) =>= ?101 [100, 99, 101, 98] by Super 4 with 10 at 2 +Id : 313, {_}: multiply ?1410 (divide ?1406 (divide (divide ?1407 (divide (divide ?1408 ?1409) ?1406)) (divide ?1409 ?1408))) =>= divide ?1410 ?1407 [1409, 1408, 1407, 1406, 1410] by Super 6 with 22 at 2,3 +Id : 13731, {_}: divide ?59402 ?59403 =<= multiply (divide (multiply (inverse ?59404) ?59405) ?59406) (divide ?59406 (divide (divide ?59403 ?59402) (multiply (inverse ?59405) ?59404))) [59406, 59405, 59404, 59403, 59402] by Super 3248 with 313 at 1,3 +Id : 13819, {_}: divide ?60191 ?60192 =<= multiply (multiply (multiply (inverse ?60193) ?60194) ?60190) (divide (inverse ?60190) (divide (divide ?60192 ?60191) (multiply (inverse ?60194) ?60193))) [60190, 60194, 60193, 60192, 60191] by Super 13731 with 6 at 1,3 +Id : 318, {_}: inverse (divide ?1446 (divide (divide ?1447 (divide (divide ?1448 ?1449) ?1446)) (divide ?1449 ?1448))) =>= ?1447 [1449, 1448, 1447, 1446] by Super 4 with 10 at 2 +Id : 1006, {_}: inverse (inverse (divide ?4256 (divide ?4257 (divide (inverse (divide (divide ?4258 ?4259) ?4257)) (divide ?4259 ?4258))))) =>= ?4256 [4259, 4258, 4257, 4256] by Super 318 with 10 at 1,2 +Id : 10788, {_}: inverse (inverse (inverse (divide ?46213 (divide ?46214 (divide ?46215 ?46216))))) =<= inverse (divide (divide (inverse (divide (divide ?46217 ?46218) (divide ?46213 (divide ?46216 ?46215)))) (divide ?46218 ?46217)) ?46214) [46218, 46217, 46216, 46215, 46214, 46213] by Super 1006 with 10 at 1,1,2 +Id : 31179, {_}: inverse (inverse (inverse (divide (divide ?147814 (divide (divide ?147815 ?147816) (divide ?147817 ?147818))) (divide ?147819 (divide ?147815 ?147816))))) =>= inverse (divide (divide ?147814 (divide ?147818 ?147817)) ?147819) [147819, 147818, 147817, 147816, 147815, 147814] by Super 10788 with 22 at 1,1,1,3 +Id : 23, {_}: divide (inverse (divide ?103 ?104)) (divide (divide ?105 (divide ?106 ?107)) ?103) =>= inverse (divide ?105 (divide ?104 (divide ?107 ?106))) [107, 106, 105, 104, 103] by Super 7 with 4 at 2,1,1,2 +Id : 32, {_}: divide (inverse (multiply ?171 ?170)) (divide (divide ?172 (divide ?173 ?174)) ?171) =>= inverse (divide ?172 (divide (inverse ?170) (divide ?174 ?173))) [174, 173, 172, 170, 171] by Super 23 with 6 at 1,1,2 +Id : 346, {_}: inverse (inverse (divide ?1643 (divide (inverse ?1642) (divide (inverse (multiply (divide ?1645 ?1644) ?1642)) (divide ?1644 ?1645))))) =>= ?1643 [1644, 1645, 1642, 1643] by Super 318 with 32 at 1,2 +Id : 31311, {_}: inverse (divide ?149137 (divide (divide (inverse (multiply (divide ?149135 ?149136) ?149134)) (divide ?149136 ?149135)) (divide ?149138 ?149139))) =>= inverse (divide (divide ?149137 (divide ?149139 ?149138)) (inverse ?149134)) [149139, 149138, 149134, 149136, 149135, 149137] by Super 31179 with 346 at 1,2 +Id : 57522, {_}: inverse (divide ?312686 (divide (divide (inverse (multiply (divide ?312687 ?312688) ?312689)) (divide ?312688 ?312687)) (divide ?312690 ?312691))) =>= inverse (multiply (divide ?312686 (divide ?312691 ?312690)) ?312689) [312691, 312690, 312689, 312688, 312687, 312686] by Demod 31311 with 6 at 1,3 +Id : 3434, {_}: divide ?16101 ?16102 =<= multiply (divide (divide ?16103 ?16104) ?16105) (divide ?16105 (divide (divide ?16102 ?16101) (divide ?16104 ?16103))) [16105, 16104, 16103, 16102, 16101] by Super 2430 with 313 at 1,3 +Id : 3646, {_}: divide (inverse ?16919) ?16920 =<= multiply (divide (divide ?16921 ?16922) ?16923) (divide ?16923 (divide (multiply ?16920 ?16919) (divide ?16922 ?16921))) [16923, 16922, 16921, 16920, 16919] by Super 3434 with 6 at 1,2,2,3 +Id : 3697, {_}: divide (inverse ?17353) ?17354 =<= multiply (divide (multiply ?17355 ?17352) ?17356) (divide ?17356 (divide (multiply ?17354 ?17353) (divide (inverse ?17352) ?17355))) [17356, 17352, 17355, 17354, 17353] by Super 3646 with 6 at 1,1,3 +Id : 154000, {_}: inverse (divide ?867821 (divide (divide (inverse (divide (inverse ?867822) ?867823)) (divide ?867824 (multiply ?867825 ?867826))) (divide ?867827 ?867828))) =>= inverse (multiply (divide ?867821 (divide ?867828 ?867827)) (divide ?867824 (divide (multiply ?867823 ?867822) (divide (inverse ?867826) ?867825)))) [867828, 867827, 867826, 867825, 867824, 867823, 867822, 867821] by Super 57522 with 3697 at 1,1,1,2,1,2 +Id : 412, {_}: divide (inverse ?1885) (divide (multiply ?1889 ?1888) (inverse (divide (divide (inverse ?1888) ?1889) (divide ?1885 (divide ?1886 ?1887))))) =>= divide ?1887 ?1886 [1887, 1886, 1888, 1889, 1885] by Super 398 with 4 at 1,1,2 +Id : 440, {_}: divide (inverse ?1885) (multiply (multiply ?1889 ?1888) (divide (divide (inverse ?1888) ?1889) (divide ?1885 (divide ?1886 ?1887)))) =>= divide ?1887 ?1886 [1887, 1886, 1888, 1889, 1885] by Demod 412 with 6 at 2,2 +Id : 154130, {_}: inverse (divide ?869515 (divide (divide (inverse (divide (inverse ?869516) ?869517)) (divide ?869514 ?869513)) (divide ?869518 ?869519))) =<= inverse (multiply (divide ?869515 (divide ?869519 ?869518)) (divide (inverse ?869510) (divide (multiply ?869517 ?869516) (divide (inverse (divide (divide (inverse ?869512) ?869511) (divide ?869510 (divide ?869513 ?869514)))) (multiply ?869511 ?869512))))) [869511, 869512, 869510, 869519, 869518, 869513, 869514, 869517, 869516, 869515] by Super 154000 with 440 at 2,1,2,1,2 +Id : 31180, {_}: inverse (inverse (inverse (divide (divide ?147825 (divide (divide (inverse (divide ?147821 (divide ?147822 (divide ?147823 ?147824)))) (divide (divide ?147824 ?147823) ?147821)) (divide ?147826 ?147827))) (divide ?147828 ?147822)))) =>= inverse (divide (divide ?147825 (divide ?147827 ?147826)) ?147828) [147828, 147827, 147826, 147824, 147823, 147822, 147821, 147825] by Super 31179 with 4 at 2,2,1,1,1,2 +Id : 31662, {_}: inverse (inverse (inverse (divide (divide ?150376 (divide ?150377 (divide ?150378 ?150379))) (divide ?150380 ?150377)))) =>= inverse (divide (divide ?150376 (divide ?150379 ?150378)) ?150380) [150380, 150379, 150378, 150377, 150376] by Demod 31180 with 4 at 1,2,1,1,1,1,2 +Id : 399, {_}: divide (inverse (divide (inverse ?1789) (divide ?1790 (divide (inverse ?1791) ?1792)))) (multiply (multiply ?1792 ?1791) ?1789) =>= ?1790 [1792, 1791, 1790, 1789] by Super 398 with 6 at 2,2 +Id : 31677, {_}: inverse (inverse (inverse (divide (divide ?150512 (divide (multiply (multiply ?150511 ?150510) ?150508) (divide ?150513 ?150514))) ?150509))) =<= inverse (divide (divide ?150512 (divide ?150514 ?150513)) (inverse (divide (inverse ?150508) (divide ?150509 (divide (inverse ?150510) ?150511))))) [150509, 150514, 150513, 150508, 150510, 150511, 150512] by Super 31662 with 399 at 2,1,1,1,2 +Id : 31809, {_}: inverse (inverse (inverse (divide (divide ?150512 (divide (multiply (multiply ?150511 ?150510) ?150508) (divide ?150513 ?150514))) ?150509))) =<= inverse (multiply (divide ?150512 (divide ?150514 ?150513)) (divide (inverse ?150508) (divide ?150509 (divide (inverse ?150510) ?150511)))) [150509, 150514, 150513, 150508, 150510, 150511, 150512] by Demod 31677 with 6 at 1,3 +Id : 154818, {_}: inverse (divide ?869515 (divide (divide (inverse (divide (inverse ?869516) ?869517)) (divide ?869514 ?869513)) (divide ?869518 ?869519))) =<= inverse (inverse (inverse (divide (divide ?869515 (divide (multiply (multiply (multiply ?869511 ?869512) (divide (divide (inverse ?869512) ?869511) (divide ?869510 (divide ?869513 ?869514)))) ?869510) (divide ?869518 ?869519))) (multiply ?869517 ?869516)))) [869510, 869512, 869511, 869519, 869518, 869513, 869514, 869517, 869516, 869515] by Demod 154130 with 31809 at 3 +Id : 155388, {_}: inverse (divide ?877204 (divide (divide (inverse (divide (inverse ?877205) ?877206)) (divide ?877207 ?877208)) (divide ?877209 ?877210))) =>= inverse (inverse (inverse (divide (divide ?877204 (divide (divide ?877208 ?877207) (divide ?877209 ?877210))) (multiply ?877206 ?877205)))) [877210, 877209, 877208, 877207, 877206, 877205, 877204] by Demod 154818 with 2673 at 1,2,1,1,1,1,3 +Id : 155389, {_}: inverse (divide ?877216 (divide (divide (inverse (divide (inverse ?877217) ?877218)) (divide ?877219 ?877220)) ?877213)) =<= inverse (inverse (inverse (divide (divide ?877216 (divide (divide ?877220 ?877219) (divide (inverse (divide ?877212 (divide ?877213 (divide ?877214 ?877215)))) (divide (divide ?877215 ?877214) ?877212)))) (multiply ?877218 ?877217)))) [877215, 877214, 877212, 877213, 877220, 877219, 877218, 877217, 877216] by Super 155388 with 4 at 2,2,1,2 +Id : 156615, {_}: inverse (divide ?885441 (divide (divide (inverse (divide (inverse ?885442) ?885443)) (divide ?885444 ?885445)) ?885446)) =>= inverse (inverse (inverse (divide (divide ?885441 (divide (divide ?885445 ?885444) ?885446)) (multiply ?885443 ?885442)))) [885446, 885445, 885444, 885443, 885442, 885441] by Demod 155389 with 4 at 2,2,1,1,1,1,3 +Id : 156655, {_}: inverse (divide ?885869 (divide (divide (inverse (divide ?885866 ?885870)) (divide ?885871 ?885872)) ?885873)) =<= inverse (inverse (inverse (divide (divide ?885869 (divide (divide ?885872 ?885871) ?885873)) (multiply ?885870 (divide ?885865 (divide (divide ?885866 (divide (divide ?885867 ?885868) ?885865)) (divide ?885868 ?885867))))))) [885868, 885867, 885865, 885873, 885872, 885871, 885870, 885866, 885869] by Super 156615 with 22 at 1,1,1,1,2,1,2 +Id : 157579, {_}: inverse (divide ?891923 (divide (divide (inverse (divide ?891924 ?891925)) (divide ?891926 ?891927)) ?891928)) =<= inverse (inverse (inverse (divide (divide ?891923 (divide (divide ?891927 ?891926) ?891928)) (divide ?891925 ?891924)))) [891928, 891927, 891926, 891925, 891924, 891923] by Demod 156655 with 313 at 2,1,1,1,3 +Id : 157660, {_}: inverse (divide (inverse (divide ?892784 ?892778)) (divide (divide (inverse (divide ?892781 ?892782)) (divide (divide ?892779 ?892780) ?892783)) ?892784)) =>= inverse (inverse (inverse (divide (inverse (divide ?892783 (divide ?892778 (divide ?892780 ?892779)))) (divide ?892782 ?892781)))) [892783, 892780, 892779, 892782, 892781, 892778, 892784] by Super 157579 with 10 at 1,1,1,1,3 +Id : 164761, {_}: inverse (inverse (divide (inverse (divide ?938345 ?938346)) (divide ?938347 (divide ?938348 (divide ?938349 ?938350))))) =<= inverse (inverse (inverse (divide (inverse (divide ?938348 (divide ?938347 (divide ?938350 ?938349)))) (divide ?938346 ?938345)))) [938350, 938349, 938348, 938347, 938346, 938345] by Demod 157660 with 10 at 1,2 +Id : 345, {_}: inverse (inverse (divide ?1638 (divide ?1637 (divide (inverse (divide (divide ?1640 ?1639) ?1637)) (divide ?1639 ?1640))))) =>= ?1638 [1639, 1640, 1637, 1638] by Super 318 with 10 at 1,2 +Id : 31310, {_}: inverse (divide ?149129 (divide (divide (inverse (divide (divide ?149127 ?149128) ?149132)) (divide ?149128 ?149127)) (divide ?149130 ?149131))) =>= inverse (divide (divide ?149129 (divide ?149131 ?149130)) ?149132) [149131, 149130, 149132, 149128, 149127, 149129] by Super 31179 with 345 at 1,2 +Id : 164877, {_}: inverse (inverse (divide (inverse (divide ?939554 ?939555)) (divide (divide (inverse (divide (divide ?939551 ?939552) ?939553)) (divide ?939552 ?939551)) (divide ?939556 (divide ?939557 ?939558))))) =>= inverse (inverse (inverse (divide (inverse (divide (divide ?939556 (divide ?939557 ?939558)) ?939553)) (divide ?939555 ?939554)))) [939558, 939557, 939556, 939553, 939552, 939551, 939555, 939554] by Super 164761 with 31310 at 1,1,1,1,3 +Id : 177719, {_}: inverse (inverse (divide (divide (inverse (divide ?1018267 ?1018268)) (divide (divide ?1018269 ?1018270) ?1018271)) ?1018272)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1018271 (divide ?1018269 ?1018270)) ?1018272)) (divide ?1018268 ?1018267)))) [1018272, 1018271, 1018270, 1018269, 1018268, 1018267] by Demod 164877 with 31310 at 1,2 +Id : 177759, {_}: inverse (inverse (divide (divide (inverse (divide ?1018695 ?1018696)) (divide (divide (inverse (divide ?1018691 (divide ?1018692 (divide ?1018693 ?1018694)))) (divide (divide ?1018694 ?1018693) ?1018691)) ?1018697)) ?1018698)) =>= inverse (inverse (inverse (divide (inverse (divide (divide ?1018697 ?1018692) ?1018698)) (divide ?1018696 ?1018695)))) [1018698, 1018697, 1018694, 1018693, 1018692, 1018691, 1018696, 1018695] by Super 177719 with 4 at 2,1,1,1,1,1,1,3 +Id : 178625, {_}: inverse (inverse (divide (divide (inverse (divide ?1023630 ?1023631)) (divide ?1023632 ?1023633)) ?1023634)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1023633 ?1023632) ?1023634)) (divide ?1023631 ?1023630)))) [1023634, 1023633, 1023632, 1023631, 1023630] by Demod 177759 with 4 at 1,2,1,1,1,2 +Id : 180647, {_}: inverse (inverse (divide (divide (inverse (divide ?1035759 ?1035760)) (divide (inverse ?1035761) ?1035762)) ?1035763)) =>= inverse (inverse (inverse (divide (inverse (divide (multiply ?1035762 ?1035761) ?1035763)) (divide ?1035760 ?1035759)))) [1035763, 1035762, 1035761, 1035760, 1035759] by Super 178625 with 6 at 1,1,1,1,1,1,3 +Id : 180814, {_}: inverse (inverse (divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592)) =<= inverse (inverse (inverse (divide (inverse (divide (multiply (inverse ?1037588) ?1037591) ?1037592)) (divide ?1037590 ?1037589)))) [1037592, 1037588, 1037591, 1037590, 1037589] by Super 180647 with 6 at 2,1,1,1,2 +Id : 187329, {_}: multiply ?1072739 (inverse (inverse (divide (inverse (divide (multiply (inverse ?1072737) ?1072736) ?1072738)) (divide ?1072735 ?1072734)))) =>= divide ?1072739 (inverse (inverse (divide (divide (inverse (divide ?1072734 ?1072735)) (multiply (inverse ?1072736) ?1072737)) ?1072738))) [1072734, 1072735, 1072738, 1072736, 1072737, 1072739] by Super 6 with 180814 at 2,3 +Id : 187880, {_}: multiply ?1072739 (inverse (inverse (divide (inverse (divide (multiply (inverse ?1072737) ?1072736) ?1072738)) (divide ?1072735 ?1072734)))) =>= multiply ?1072739 (inverse (divide (divide (inverse (divide ?1072734 ?1072735)) (multiply (inverse ?1072736) ?1072737)) ?1072738)) [1072734, 1072735, 1072738, 1072736, 1072737, 1072739] by Demod 187329 with 6 at 3 +Id : 276296, {_}: inverse (inverse (divide (inverse (divide ?1501612 (divide ?1501613 ?1501614))) (divide ?1501615 (divide ?1501612 (divide ?1501613 ?1501614))))) =>= inverse (inverse (inverse ?1501615)) [1501615, 1501614, 1501613, 1501612] by Super 164761 with 4 at 1,1,1,3 +Id : 276336, {_}: inverse (inverse (divide (inverse (divide (inverse (divide ?1501959 (divide ?1501956 (divide ?1501957 ?1501958)))) (divide (divide ?1501958 ?1501957) ?1501959))) (divide ?1501960 ?1501956))) =>= inverse (inverse (inverse ?1501960)) [1501960, 1501958, 1501957, 1501956, 1501959] by Super 276296 with 4 at 2,2,1,1,2 +Id : 277437, {_}: inverse (inverse (divide (inverse ?1506460) (divide ?1506461 ?1506460))) =>= inverse (inverse (inverse ?1506461)) [1506461, 1506460] by Demod 276336 with 4 at 1,1,1,1,2 +Id : 411, {_}: divide (inverse (divide ?1881 (divide ?1882 (multiply (inverse ?1883) ?1880)))) (divide (multiply (inverse ?1880) ?1883) ?1881) =>= ?1882 [1880, 1883, 1882, 1881] by Super 398 with 6 at 2,2,1,1,2 +Id : 277453, {_}: inverse (inverse (divide (inverse (divide (multiply (inverse ?1506555) ?1506554) ?1506552)) ?1506553)) =<= inverse (inverse (inverse (inverse (divide ?1506552 (divide ?1506553 (multiply (inverse ?1506554) ?1506555)))))) [1506553, 1506552, 1506554, 1506555] by Super 277437 with 411 at 2,1,1,2 +Id : 339, {_}: inverse (divide (inverse ?1603) (divide (divide ?1604 (multiply (divide ?1605 ?1606) ?1603)) (divide ?1606 ?1605))) =>= ?1604 [1606, 1605, 1604, 1603] by Super 318 with 6 at 2,1,2,1,2 +Id : 298734, {_}: inverse ?1602430 =<= inverse (inverse (inverse (divide ?1602430 (multiply (divide ?1602431 ?1602432) (divide ?1602432 ?1602431))))) [1602432, 1602431, 1602430] by Super 277437 with 339 at 1,2 +Id : 277476, {_}: inverse (inverse (divide (inverse (inverse ?1506721)) (multiply ?1506722 ?1506721))) =>= inverse (inverse (inverse ?1506722)) [1506722, 1506721] by Super 277437 with 6 at 2,1,1,2 +Id : 298855, {_}: inverse (inverse (inverse (divide ?1603311 ?1603310))) =<= inverse (inverse (inverse (inverse (divide ?1603310 ?1603311)))) [1603310, 1603311] by Super 298734 with 277476 at 1,3 +Id : 299275, {_}: inverse (inverse (divide (inverse (divide (multiply (inverse ?1506555) ?1506554) ?1506552)) ?1506553)) =>= inverse (inverse (inverse (divide (divide ?1506553 (multiply (inverse ?1506554) ?1506555)) ?1506552))) [1506553, 1506552, 1506554, 1506555] by Demod 277453 with 298855 at 3 +Id : 299281, {_}: multiply ?1072739 (inverse (inverse (inverse (divide (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737)) ?1072738)))) =>= multiply ?1072739 (inverse (divide (divide (inverse (divide ?1072734 ?1072735)) (multiply (inverse ?1072736) ?1072737)) ?1072738)) [1072738, 1072737, 1072736, 1072734, 1072735, 1072739] by Demod 187880 with 299275 at 2,2 +Id : 299680, {_}: inverse (inverse (inverse (divide ?1606480 ?1606481))) =<= inverse (inverse (inverse (inverse (divide ?1606481 ?1606480)))) [1606481, 1606480] by Super 298734 with 277476 at 1,3 +Id : 299719, {_}: inverse (inverse (inverse (divide (inverse ?1606741) ?1606742))) =>= inverse (inverse (inverse (inverse (multiply ?1606742 ?1606741)))) [1606742, 1606741] by Super 299680 with 6 at 1,1,1,1,3 +Id : 300712, {_}: inverse (inverse (inverse (divide ?1610501 (inverse ?1610500)))) =<= inverse (inverse (inverse (inverse (inverse (multiply ?1610501 ?1610500))))) [1610500, 1610501] by Super 298855 with 299719 at 1,3 +Id : 303239, {_}: inverse (inverse (inverse (multiply ?1620581 ?1620582))) =<= inverse (inverse (inverse (inverse (inverse (multiply ?1620581 ?1620582))))) [1620582, 1620581] by Demod 300712 with 6 at 1,1,1,2 +Id : 2523, {_}: ?11149 =<= multiply (multiply (divide ?11152 ?11153) (divide (divide ?11153 ?11152) (divide ?11154 ?11149))) ?11154 [11154, 11153, 11152, 11149] by Demod 2431 with 4 at 2 +Id : 303314, {_}: inverse (inverse (inverse (multiply (multiply (divide ?1621150 ?1621151) (divide (divide ?1621151 ?1621150) (divide ?1621152 ?1621149))) ?1621152))) =>= inverse (inverse (inverse (inverse (inverse ?1621149)))) [1621149, 1621152, 1621151, 1621150] by Super 303239 with 2523 at 1,1,1,1,1,3 +Id : 304462, {_}: inverse (inverse (inverse ?1624383)) =<= inverse (inverse (inverse (inverse (inverse ?1624383)))) [1624383] by Demod 303314 with 2523 at 1,1,1,2 +Id : 304463, {_}: inverse (inverse (inverse (divide ?1624385 (divide (divide ?1624386 (divide (divide ?1624387 ?1624388) ?1624385)) (divide ?1624388 ?1624387))))) =>= inverse (inverse (inverse (inverse ?1624386))) [1624388, 1624387, 1624386, 1624385] by Super 304462 with 22 at 1,1,1,1,3 +Id : 305044, {_}: inverse (inverse ?1624386) =<= inverse (inverse (inverse (inverse ?1624386))) [1624386] by Demod 304463 with 22 at 1,1,2 +Id : 309508, {_}: inverse (inverse (inverse (divide ?1603311 ?1603310))) =>= inverse (inverse (divide ?1603310 ?1603311)) [1603310, 1603311] by Demod 298855 with 305044 at 3 +Id : 309601, {_}: multiply ?1072739 (inverse (inverse (divide ?1072738 (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737))))) =<= multiply ?1072739 (inverse (divide (divide (inverse (divide ?1072734 ?1072735)) (multiply (inverse ?1072736) ?1072737)) ?1072738)) [1072737, 1072736, 1072734, 1072735, 1072738, 1072739] by Demod 299281 with 309508 at 2,2 +Id : 310013, {_}: inverse (inverse ?1628964) =<= inverse (inverse (inverse (inverse ?1628964))) [1628964] by Demod 304463 with 22 at 1,1,2 +Id : 310154, {_}: inverse (inverse (divide ?1629909 (divide ?1629910 (divide (inverse (divide (divide ?1629911 ?1629912) ?1629910)) (divide ?1629912 ?1629911))))) =>= inverse (inverse ?1629909) [1629912, 1629911, 1629910, 1629909] by Super 310013 with 345 at 1,1,3 +Id : 310837, {_}: ?1629909 =<= inverse (inverse ?1629909) [1629909] by Demod 310154 with 345 at 2 +Id : 311136, {_}: multiply ?1072739 (divide ?1072738 (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737))) =<= multiply ?1072739 (inverse (divide (divide (inverse (divide ?1072734 ?1072735)) (multiply (inverse ?1072736) ?1072737)) ?1072738)) [1072737, 1072736, 1072734, 1072735, 1072738, 1072739] by Demod 309601 with 310837 at 2,2 +Id : 299278, {_}: inverse (inverse (divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592)) =<= inverse (inverse (inverse (inverse (divide (divide (divide ?1037590 ?1037589) (multiply (inverse ?1037591) ?1037588)) ?1037592)))) [1037592, 1037588, 1037591, 1037590, 1037589] by Demod 180814 with 299275 at 1,3 +Id : 299285, {_}: inverse (inverse (divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592)) =>= inverse (inverse (inverse (divide ?1037592 (divide (divide ?1037590 ?1037589) (multiply (inverse ?1037591) ?1037588))))) [1037592, 1037588, 1037591, 1037590, 1037589] by Demod 299278 with 298855 at 3 +Id : 309533, {_}: inverse (inverse (divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592)) =>= inverse (inverse (divide (divide (divide ?1037590 ?1037589) (multiply (inverse ?1037591) ?1037588)) ?1037592)) [1037592, 1037588, 1037591, 1037590, 1037589] by Demod 299285 with 309508 at 3 +Id : 311173, {_}: divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592 =<= inverse (inverse (divide (divide (divide ?1037590 ?1037589) (multiply (inverse ?1037591) ?1037588)) ?1037592)) [1037592, 1037588, 1037591, 1037590, 1037589] by Demod 309533 with 310837 at 2 +Id : 311174, {_}: divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592 =>= divide (divide (divide ?1037590 ?1037589) (multiply (inverse ?1037591) ?1037588)) ?1037592 [1037592, 1037588, 1037591, 1037590, 1037589] by Demod 311173 with 310837 at 3 +Id : 311184, {_}: multiply ?1072739 (divide ?1072738 (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737))) =<= multiply ?1072739 (inverse (divide (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737)) ?1072738)) [1072737, 1072736, 1072734, 1072735, 1072738, 1072739] by Demod 311136 with 311174 at 1,2,3 +Id : 328, {_}: inverse (divide ?1523 (divide (divide ?1524 (divide (divide (inverse ?1522) ?1525) ?1523)) (multiply ?1525 ?1522))) =>= ?1524 [1525, 1522, 1524, 1523] by Super 318 with 6 at 2,2,1,2 +Id : 5095, {_}: multiply ?23662 (divide ?23663 (divide (divide ?23664 (divide (divide (inverse ?23665) ?23666) ?23663)) (multiply ?23666 ?23665))) =>= divide ?23662 ?23664 [23666, 23665, 23664, 23663, 23662] by Super 6 with 328 at 2,3 +Id : 5148, {_}: multiply ?24110 (inverse (divide ?24111 (divide ?24109 (divide (inverse (divide (multiply ?24113 ?24112) ?24109)) (divide (inverse ?24112) ?24113))))) =>= divide ?24110 ?24111 [24112, 24113, 24109, 24111, 24110] by Super 5095 with 10 at 2,2 +Id : 722, {_}: inverse (divide ?3136 (divide (divide ?3137 (divide (divide (inverse ?3138) ?3139) ?3136)) (multiply ?3139 ?3138))) =>= ?3137 [3139, 3138, 3137, 3136] by Super 318 with 6 at 2,2,1,2 +Id : 746, {_}: inverse (inverse (divide ?3302 (divide ?3301 (divide (inverse (divide (multiply ?3304 ?3303) ?3301)) (divide (inverse ?3303) ?3304))))) =>= ?3302 [3303, 3304, 3301, 3302] by Super 722 with 10 at 1,2 +Id : 311071, {_}: divide ?3302 (divide ?3301 (divide (inverse (divide (multiply ?3304 ?3303) ?3301)) (divide (inverse ?3303) ?3304))) =>= ?3302 [3303, 3304, 3301, 3302] by Demod 746 with 310837 at 2 +Id : 311292, {_}: multiply ?24110 (inverse ?24111) =>= divide ?24110 ?24111 [24111, 24110] by Demod 5148 with 311071 at 1,2,2 +Id : 311301, {_}: multiply ?1072739 (divide ?1072738 (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737))) =>= divide ?1072739 (divide (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737)) ?1072738) [1072737, 1072736, 1072734, 1072735, 1072738, 1072739] by Demod 311184 with 311292 at 3 +Id : 311313, {_}: divide ?60191 ?60192 =<= divide (multiply (multiply (inverse ?60193) ?60194) ?60190) (divide (divide (divide ?60192 ?60191) (multiply (inverse ?60194) ?60193)) (inverse ?60190)) [60190, 60194, 60193, 60192, 60191] by Demod 13819 with 311301 at 3 +Id : 311314, {_}: divide ?60191 ?60192 =<= divide (multiply (multiply (inverse ?60193) ?60194) ?60190) (multiply (divide (divide ?60192 ?60191) (multiply (inverse ?60194) ?60193)) ?60190) [60190, 60194, 60193, 60192, 60191] by Demod 311313 with 6 at 2,3 +Id : 54, {_}: divide (inverse (divide ?250 ?251)) (divide (divide ?252 (multiply ?253 ?254)) ?250) =>= inverse (divide ?252 (divide ?251 (divide (inverse ?254) ?253))) [254, 253, 252, 251, 250] by Super 23 with 6 at 2,1,2,2 +Id : 55, {_}: divide (inverse (divide (inverse ?256) ?257)) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= inverse (divide ?258 (divide ?257 (divide (inverse ?260) ?259))) [260, 259, 258, 257, 256] by Super 54 with 6 at 2,2 +Id : 311016, {_}: inverse (divide ?1603311 ?1603310) =<= inverse (inverse (divide ?1603310 ?1603311)) [1603310, 1603311] by Demod 309508 with 310837 at 2 +Id : 311017, {_}: inverse (divide ?1603311 ?1603310) =>= divide ?1603310 ?1603311 [1603310, 1603311] by Demod 311016 with 310837 at 3 +Id : 311424, {_}: divide (divide ?257 (inverse ?256)) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= inverse (divide ?258 (divide ?257 (divide (inverse ?260) ?259))) [260, 259, 258, 256, 257] by Demod 55 with 311017 at 1,2 +Id : 311425, {_}: divide (divide ?257 (inverse ?256)) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= divide (divide ?257 (divide (inverse ?260) ?259)) ?258 [260, 259, 258, 256, 257] by Demod 311424 with 311017 at 3 +Id : 311594, {_}: divide (multiply ?257 ?256) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= divide (divide ?257 (divide (inverse ?260) ?259)) ?258 [260, 259, 258, 256, 257] by Demod 311425 with 6 at 1,2 +Id : 311596, {_}: divide ?60191 ?60192 =<= divide (divide (multiply (inverse ?60193) ?60194) (divide (inverse ?60193) (inverse ?60194))) (divide ?60192 ?60191) [60194, 60193, 60192, 60191] by Demod 311314 with 311594 at 3 +Id : 179540, {_}: inverse (inverse (divide (divide (inverse (divide (inverse ?1029056) ?1029057)) (divide ?1029058 ?1029059)) ?1029060)) =>= inverse (inverse (inverse (divide (inverse (divide (divide ?1029059 ?1029058) ?1029060)) (multiply ?1029057 ?1029056)))) [1029060, 1029059, 1029058, 1029057, 1029056] by Super 178625 with 6 at 2,1,1,1,3 +Id : 186333, {_}: inverse (inverse (divide (divide (inverse (multiply (inverse ?1068110) ?1068111)) (divide ?1068112 ?1068113)) ?1068114)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1068113 ?1068112) ?1068114)) (multiply (inverse ?1068111) ?1068110)))) [1068114, 1068113, 1068112, 1068111, 1068110] by Super 179540 with 6 at 1,1,1,1,1,2 +Id : 186556, {_}: inverse (inverse (divide (divide (inverse (multiply (inverse ?1070554) ?1070555)) (divide (inverse ?1070553) ?1070556)) ?1070557)) =>= inverse (inverse (inverse (divide (inverse (divide (multiply ?1070556 ?1070553) ?1070557)) (multiply (inverse ?1070555) ?1070554)))) [1070557, 1070556, 1070553, 1070555, 1070554] by Super 186333 with 6 at 1,1,1,1,1,1,3 +Id : 179745, {_}: inverse (inverse (divide (divide (inverse (multiply (inverse ?1031254) ?1031253)) (divide ?1031255 ?1031256)) ?1031257)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1031256 ?1031255) ?1031257)) (multiply (inverse ?1031253) ?1031254)))) [1031257, 1031256, 1031255, 1031253, 1031254] by Super 179540 with 6 at 1,1,1,1,1,2 +Id : 277438, {_}: inverse (inverse (divide (inverse (divide (divide ?1506466 ?1506465) ?1506463)) ?1506464)) =<= inverse (inverse (inverse (inverse (divide ?1506463 (divide ?1506464 (divide ?1506465 ?1506466)))))) [1506464, 1506463, 1506465, 1506466] by Super 277437 with 4 at 2,1,1,2 +Id : 299272, {_}: inverse (inverse (divide (inverse (divide (divide ?1506466 ?1506465) ?1506463)) ?1506464)) =>= inverse (inverse (inverse (divide (divide ?1506464 (divide ?1506465 ?1506466)) ?1506463))) [1506464, 1506463, 1506465, 1506466] by Demod 277438 with 298855 at 3 +Id : 299290, {_}: inverse (inverse (divide (divide (inverse (multiply (inverse ?1031254) ?1031253)) (divide ?1031255 ?1031256)) ?1031257)) =<= inverse (inverse (inverse (inverse (divide (divide (multiply (inverse ?1031253) ?1031254) (divide ?1031255 ?1031256)) ?1031257)))) [1031257, 1031256, 1031255, 1031253, 1031254] by Demod 179745 with 299272 at 1,3 +Id : 299299, {_}: inverse (inverse (divide (divide (inverse (multiply (inverse ?1031254) ?1031253)) (divide ?1031255 ?1031256)) ?1031257)) =>= inverse (inverse (inverse (divide ?1031257 (divide (multiply (inverse ?1031253) ?1031254) (divide ?1031255 ?1031256))))) [1031257, 1031256, 1031255, 1031253, 1031254] by Demod 299290 with 298855 at 3 +Id : 299300, {_}: inverse (inverse (inverse (divide ?1070557 (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556))))) =?= inverse (inverse (inverse (divide (inverse (divide (multiply ?1070556 ?1070553) ?1070557)) (multiply (inverse ?1070555) ?1070554)))) [1070556, 1070553, 1070554, 1070555, 1070557] by Demod 186556 with 299299 at 2 +Id : 300336, {_}: inverse (inverse (inverse (divide ?1070557 (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556))))) =>= inverse (inverse (inverse (inverse (multiply (multiply (inverse ?1070555) ?1070554) (divide (multiply ?1070556 ?1070553) ?1070557))))) [1070556, 1070553, 1070554, 1070555, 1070557] by Demod 299300 with 299719 at 3 +Id : 309498, {_}: inverse (inverse (inverse (divide ?1070557 (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556))))) =>= inverse (inverse (multiply (multiply (inverse ?1070555) ?1070554) (divide (multiply ?1070556 ?1070553) ?1070557))) [1070556, 1070553, 1070554, 1070555, 1070557] by Demod 300336 with 305044 at 3 +Id : 309684, {_}: inverse (inverse (divide (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556)) ?1070557)) =>= inverse (inverse (multiply (multiply (inverse ?1070555) ?1070554) (divide (multiply ?1070556 ?1070553) ?1070557))) [1070557, 1070556, 1070553, 1070554, 1070555] by Demod 309498 with 309508 at 2 +Id : 311181, {_}: divide (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556)) ?1070557 =<= inverse (inverse (multiply (multiply (inverse ?1070555) ?1070554) (divide (multiply ?1070556 ?1070553) ?1070557))) [1070557, 1070556, 1070553, 1070554, 1070555] by Demod 309684 with 310837 at 2 +Id : 311182, {_}: divide (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556)) ?1070557 =>= multiply (multiply (inverse ?1070555) ?1070554) (divide (multiply ?1070556 ?1070553) ?1070557) [1070557, 1070556, 1070553, 1070554, 1070555] by Demod 311181 with 310837 at 3 +Id : 311600, {_}: divide ?60191 ?60192 =<= multiply (multiply (inverse ?60193) ?60194) (divide (multiply (inverse ?60194) ?60193) (divide ?60192 ?60191)) [60194, 60193, 60192, 60191] by Demod 311596 with 311182 at 3 +Id : 311603, {_}: divide (inverse ?5406) (divide (multiply ?5407 ?5408) ?5406) =>= divide (inverse ?5408) ?5407 [5408, 5407, 5406] by Demod 1282 with 311600 at 2,2 +Id : 276834, {_}: inverse (inverse (divide (inverse ?1501956) (divide ?1501960 ?1501956))) =>= inverse (inverse (inverse ?1501960)) [1501960, 1501956] by Demod 276336 with 4 at 1,1,1,1,2 +Id : 311035, {_}: divide (inverse ?1501956) (divide ?1501960 ?1501956) =>= inverse (inverse (inverse ?1501960)) [1501960, 1501956] by Demod 276834 with 310837 at 2 +Id : 311036, {_}: divide (inverse ?1501956) (divide ?1501960 ?1501956) =>= inverse ?1501960 [1501960, 1501956] by Demod 311035 with 310837 at 3 +Id : 311604, {_}: inverse (multiply ?5407 ?5408) =<= divide (inverse ?5408) ?5407 [5408, 5407] by Demod 311603 with 311036 at 2 +Id : 311708, {_}: ?12297 =<= multiply (multiply (multiply ?12298 ?12296) (divide (inverse (multiply ?12298 ?12296)) (divide ?12299 ?12297))) ?12299 [12299, 12296, 12298, 12297] by Demod 2673 with 311604 at 1,2,1,3 +Id : 311709, {_}: ?12297 =<= multiply (multiply (multiply ?12298 ?12296) (inverse (multiply (divide ?12299 ?12297) (multiply ?12298 ?12296)))) ?12299 [12299, 12296, 12298, 12297] by Demod 311708 with 311604 at 2,1,3 +Id : 311866, {_}: ?12297 =<= multiply (divide (multiply ?12298 ?12296) (multiply (divide ?12299 ?12297) (multiply ?12298 ?12296))) ?12299 [12299, 12296, 12298, 12297] by Demod 311709 with 311292 at 1,3 +Id : 311110, {_}: divide (inverse (inverse ?1506721)) (multiply ?1506722 ?1506721) =>= inverse (inverse (inverse ?1506722)) [1506722, 1506721] by Demod 277476 with 310837 at 2 +Id : 311111, {_}: divide ?1506721 (multiply ?1506722 ?1506721) =>= inverse (inverse (inverse ?1506722)) [1506722, 1506721] by Demod 311110 with 310837 at 1,2 +Id : 311112, {_}: divide ?1506721 (multiply ?1506722 ?1506721) =>= inverse ?1506722 [1506722, 1506721] by Demod 311111 with 310837 at 3 +Id : 311867, {_}: ?12297 =<= multiply (inverse (divide ?12299 ?12297)) ?12299 [12299, 12297] by Demod 311866 with 311112 at 1,3 +Id : 311868, {_}: ?12297 =<= multiply (divide ?12297 ?12299) ?12299 [12299, 12297] by Demod 311867 with 311017 at 1,3 +Id : 31329, {_}: inverse (inverse (inverse (divide (divide ?147825 (divide ?147822 (divide ?147826 ?147827))) (divide ?147828 ?147822)))) =>= inverse (divide (divide ?147825 (divide ?147827 ?147826)) ?147828) [147828, 147827, 147826, 147822, 147825] by Demod 31180 with 4 at 1,2,1,1,1,1,2 +Id : 31603, {_}: multiply ?149797 (inverse (inverse (divide (divide ?149792 (divide ?149793 (divide ?149794 ?149795))) (divide ?149796 ?149793)))) =>= divide ?149797 (inverse (divide (divide ?149792 (divide ?149795 ?149794)) ?149796)) [149796, 149795, 149794, 149793, 149792, 149797] by Super 6 with 31329 at 2,3 +Id : 33302, {_}: multiply ?159935 (inverse (inverse (divide (divide ?159936 (divide ?159937 (divide ?159938 ?159939))) (divide ?159940 ?159937)))) =>= multiply ?159935 (divide (divide ?159936 (divide ?159939 ?159938)) ?159940) [159940, 159939, 159938, 159937, 159936, 159935] by Demod 31603 with 6 at 3 +Id : 33303, {_}: multiply ?159946 (inverse (inverse (divide (divide ?159947 (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949))) ?159943))) =>= multiply ?159946 (divide (divide ?159947 (divide ?159949 ?159948)) (inverse (divide ?159942 (divide ?159943 (divide ?159944 ?159945))))) [159943, 159949, 159948, 159942, 159944, 159945, 159947, 159946] by Super 33302 with 4 at 2,1,1,2,2 +Id : 33719, {_}: multiply ?159946 (inverse (inverse (divide (divide ?159947 (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949))) ?159943))) =>= multiply ?159946 (multiply (divide ?159947 (divide ?159949 ?159948)) (divide ?159942 (divide ?159943 (divide ?159944 ?159945)))) [159943, 159949, 159948, 159942, 159944, 159945, 159947, 159946] by Demod 33303 with 6 at 2,3 +Id : 311080, {_}: multiply ?159946 (divide (divide ?159947 (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949))) ?159943) =<= multiply ?159946 (multiply (divide ?159947 (divide ?159949 ?159948)) (divide ?159942 (divide ?159943 (divide ?159944 ?159945)))) [159943, 159949, 159948, 159942, 159944, 159945, 159947, 159946] by Demod 33719 with 310837 at 2,2 +Id : 158025, {_}: inverse (inverse (divide (inverse (divide ?892781 ?892782)) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))))) =<= inverse (inverse (inverse (divide (inverse (divide ?892783 (divide ?892778 (divide ?892780 ?892779)))) (divide ?892782 ?892781)))) [892780, 892779, 892783, 892778, 892782, 892781] by Demod 157660 with 10 at 1,2 +Id : 300347, {_}: inverse (inverse (divide (inverse (divide ?892781 ?892782)) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))))) =<= inverse (inverse (inverse (inverse (multiply (divide ?892782 ?892781) (divide ?892783 (divide ?892778 (divide ?892780 ?892779))))))) [892780, 892779, 892783, 892778, 892782, 892781] by Demod 158025 with 299719 at 3 +Id : 309517, {_}: inverse (inverse (divide (inverse (divide ?892781 ?892782)) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))))) =>= inverse (inverse (multiply (divide ?892782 ?892781) (divide ?892783 (divide ?892778 (divide ?892780 ?892779))))) [892780, 892779, 892783, 892778, 892782, 892781] by Demod 300347 with 305044 at 3 +Id : 311023, {_}: divide (inverse (divide ?892781 ?892782)) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))) =<= inverse (inverse (multiply (divide ?892782 ?892781) (divide ?892783 (divide ?892778 (divide ?892780 ?892779))))) [892780, 892779, 892783, 892778, 892782, 892781] by Demod 309517 with 310837 at 2 +Id : 311024, {_}: divide (inverse (divide ?892781 ?892782)) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))) =>= multiply (divide ?892782 ?892781) (divide ?892783 (divide ?892778 (divide ?892780 ?892779))) [892780, 892779, 892783, 892778, 892782, 892781] by Demod 311023 with 310837 at 3 +Id : 311478, {_}: divide (divide ?892782 ?892781) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))) =<= multiply (divide ?892782 ?892781) (divide ?892783 (divide ?892778 (divide ?892780 ?892779))) [892780, 892779, 892783, 892778, 892781, 892782] by Demod 311024 with 311017 at 1,2 +Id : 311484, {_}: multiply ?159946 (divide (divide ?159947 (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949))) ?159943) =?= multiply ?159946 (divide (divide ?159947 (divide ?159949 ?159948)) (divide ?159943 (divide ?159942 (divide ?159945 ?159944)))) [159943, 159949, 159948, 159942, 159944, 159945, 159947, 159946] by Demod 311080 with 311478 at 2,3 +Id : 31729, {_}: inverse (inverse (inverse (divide (divide ?150997 ?150994) (divide ?150999 (inverse (divide ?150998 (divide ?150994 (divide ?150995 ?150996)))))))) =>= inverse (divide (divide ?150997 (divide ?150998 (divide ?150996 ?150995))) ?150999) [150996, 150995, 150998, 150999, 150994, 150997] by Super 31662 with 4 at 2,1,1,1,1,2 +Id : 36383, {_}: inverse (inverse (inverse (divide (divide ?176720 ?176721) (multiply ?176722 (divide ?176723 (divide ?176721 (divide ?176724 ?176725))))))) =>= inverse (divide (divide ?176720 (divide ?176723 (divide ?176725 ?176724))) ?176722) [176725, 176724, 176723, 176722, 176721, 176720] by Demod 31729 with 6 at 2,1,1,1,2 +Id : 36463, {_}: inverse (inverse (inverse (divide ?177473 (multiply ?177476 (divide ?177477 (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479))))))) =>= inverse (divide (divide (inverse (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) (divide ?177477 (divide ?177479 ?177478))) ?177476) [177479, 177478, 177472, 177474, 177475, 177477, 177476, 177473] by Super 36383 with 4 at 1,1,1,1,2 +Id : 309587, {_}: inverse (inverse (divide (multiply ?177476 (divide ?177477 (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)))) ?177473)) =<= inverse (divide (divide (inverse (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) (divide ?177477 (divide ?177479 ?177478))) ?177476) [177473, 177479, 177478, 177472, 177474, 177475, 177477, 177476] by Demod 36463 with 309508 at 2 +Id : 311007, {_}: divide (multiply ?177476 (divide ?177477 (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)))) ?177473 =<= inverse (divide (divide (inverse (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) (divide ?177477 (divide ?177479 ?177478))) ?177476) [177473, 177479, 177478, 177472, 177474, 177475, 177477, 177476] by Demod 309587 with 310837 at 2 +Id : 178159, {_}: inverse (inverse (divide (divide (inverse (divide ?1018695 ?1018696)) (divide ?1018692 ?1018697)) ?1018698)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1018697 ?1018692) ?1018698)) (divide ?1018696 ?1018695)))) [1018698, 1018697, 1018692, 1018696, 1018695] by Demod 177759 with 4 at 1,2,1,1,1,2 +Id : 178479, {_}: multiply ?1021991 (inverse (inverse (divide (inverse (divide (divide ?1021989 ?1021988) ?1021990)) (divide ?1021987 ?1021986)))) =>= divide ?1021991 (inverse (inverse (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990))) [1021986, 1021987, 1021990, 1021988, 1021989, 1021991] by Super 6 with 178159 at 2,3 +Id : 178887, {_}: multiply ?1021991 (inverse (inverse (divide (inverse (divide (divide ?1021989 ?1021988) ?1021990)) (divide ?1021987 ?1021986)))) =>= multiply ?1021991 (inverse (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990)) [1021986, 1021987, 1021990, 1021988, 1021989, 1021991] by Demod 178479 with 6 at 3 +Id : 299293, {_}: multiply ?1021991 (inverse (inverse (inverse (divide (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989)) ?1021990)))) =>= multiply ?1021991 (inverse (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990)) [1021990, 1021989, 1021988, 1021986, 1021987, 1021991] by Demod 178887 with 299272 at 2,2 +Id : 309531, {_}: multiply ?1021991 (inverse (inverse (divide ?1021990 (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989))))) =<= multiply ?1021991 (inverse (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990)) [1021989, 1021988, 1021986, 1021987, 1021990, 1021991] by Demod 299293 with 309508 at 2,2 +Id : 311175, {_}: multiply ?1021991 (divide ?1021990 (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989))) =<= multiply ?1021991 (inverse (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990)) [1021989, 1021988, 1021986, 1021987, 1021990, 1021991] by Demod 309531 with 310837 at 2,2 +Id : 311300, {_}: multiply ?1021991 (divide ?1021990 (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989))) =<= divide ?1021991 (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990) [1021989, 1021988, 1021986, 1021987, 1021990, 1021991] by Demod 311175 with 311292 at 3 +Id : 311471, {_}: multiply ?1021991 (divide ?1021990 (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989))) =>= divide ?1021991 (divide (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989)) ?1021990) [1021989, 1021988, 1021986, 1021987, 1021990, 1021991] by Demod 311300 with 311017 at 1,1,2,3 +Id : 312117, {_}: divide (divide ?177476 (divide (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)) ?177477)) ?177473 =<= inverse (divide (divide (inverse (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) (divide ?177477 (divide ?177479 ?177478))) ?177476) [177473, 177477, 177479, 177478, 177472, 177474, 177475, 177476] by Demod 311007 with 311471 at 1,2 +Id : 312118, {_}: divide (divide ?177476 (divide (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)) ?177477)) ?177473 =<= divide ?177476 (divide (inverse (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) (divide ?177477 (divide ?177479 ?177478))) [177473, 177477, 177479, 177478, 177472, 177474, 177475, 177476] by Demod 312117 with 311017 at 3 +Id : 312119, {_}: divide (divide ?177476 (divide (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)) ?177477)) ?177473 =<= divide ?177476 (inverse (multiply (divide ?177477 (divide ?177479 ?177478)) (divide ?177472 (divide ?177473 (divide ?177474 ?177475))))) [177473, 177477, 177479, 177478, 177472, 177474, 177475, 177476] by Demod 312118 with 311604 at 2,3 +Id : 312120, {_}: divide (divide ?177476 (divide (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)) ?177477)) ?177473 =<= multiply ?177476 (multiply (divide ?177477 (divide ?177479 ?177478)) (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) [177473, 177477, 177479, 177478, 177472, 177474, 177475, 177476] by Demod 312119 with 6 at 3 +Id : 312121, {_}: divide (divide ?177476 (divide (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)) ?177477)) ?177473 =<= multiply ?177476 (divide (divide ?177477 (divide ?177479 ?177478)) (divide ?177473 (divide ?177472 (divide ?177475 ?177474)))) [177473, 177477, 177479, 177478, 177472, 177474, 177475, 177476] by Demod 312120 with 311478 at 2,3 +Id : 312122, {_}: multiply ?159946 (divide (divide ?159947 (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949))) ?159943) =>= divide (divide ?159946 (divide (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949)) ?159947)) ?159943 [159943, 159949, 159948, 159942, 159944, 159945, 159947, 159946] by Demod 311484 with 312121 at 3 +Id : 26, {_}: divide (inverse (divide ?127 ?128)) (divide (divide ?129 (multiply ?130 ?126)) ?127) =>= inverse (divide ?129 (divide ?128 (divide (inverse ?126) ?130))) [126, 130, 129, 128, 127] by Super 23 with 6 at 2,1,2,2 +Id : 673, {_}: inverse (divide ?2882 (divide (divide ?2883 (divide (multiply ?2884 ?2885) ?2882)) (divide (inverse ?2885) ?2884))) =>= ?2883 [2885, 2884, 2883, 2882] by Super 4 with 26 at 2 +Id : 1528, {_}: inverse (divide ?6677 (divide (divide ?6678 (divide (multiply (inverse ?6679) ?6680) ?6677)) (multiply (inverse ?6680) ?6679))) =>= ?6678 [6680, 6679, 6678, 6677] by Super 673 with 6 at 2,2,1,2 +Id : 1549, {_}: inverse (inverse (divide ?6831 (divide (inverse ?6830) (divide (inverse (multiply (multiply (inverse ?6833) ?6832) ?6830)) (multiply (inverse ?6832) ?6833))))) =>= ?6831 [6832, 6833, 6830, 6831] by Super 1528 with 32 at 1,2 +Id : 311073, {_}: divide ?6831 (divide (inverse ?6830) (divide (inverse (multiply (multiply (inverse ?6833) ?6832) ?6830)) (multiply (inverse ?6832) ?6833))) =>= ?6831 [6832, 6833, 6830, 6831] by Demod 1549 with 310837 at 2 +Id : 311743, {_}: divide ?6831 (inverse (multiply (divide (inverse (multiply (multiply (inverse ?6833) ?6832) ?6830)) (multiply (inverse ?6832) ?6833)) ?6830)) =>= ?6831 [6830, 6832, 6833, 6831] by Demod 311073 with 311604 at 2,2 +Id : 311744, {_}: divide ?6831 (inverse (multiply (inverse (multiply (multiply (inverse ?6832) ?6833) (multiply (multiply (inverse ?6833) ?6832) ?6830))) ?6830)) =>= ?6831 [6830, 6833, 6832, 6831] by Demod 311743 with 311604 at 1,1,2,2 +Id : 311850, {_}: multiply ?6831 (multiply (inverse (multiply (multiply (inverse ?6832) ?6833) (multiply (multiply (inverse ?6833) ?6832) ?6830))) ?6830) =>= ?6831 [6830, 6833, 6832, 6831] by Demod 311744 with 6 at 2 +Id : 179801, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1031802) ?1031803)) (divide ?1031804 ?1031805)) ?1031801)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1031805 ?1031804) (inverse ?1031801))) (multiply ?1031803 ?1031802)))) [1031801, 1031805, 1031804, 1031803, 1031802] by Super 179540 with 6 at 1,1,2 +Id : 182767, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1047817) ?1047818)) (divide ?1047819 ?1047820)) ?1047821)) =>= inverse (inverse (inverse (divide (inverse (multiply (divide ?1047820 ?1047819) ?1047821)) (multiply ?1047818 ?1047817)))) [1047821, 1047820, 1047819, 1047818, 1047817] by Demod 179801 with 6 at 1,1,1,1,1,3 +Id : 190010, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1087858) ?1087859)) (multiply ?1087860 ?1087861)) ?1087862)) =<= inverse (inverse (inverse (divide (inverse (multiply (divide (inverse ?1087861) ?1087860) ?1087862)) (multiply ?1087859 ?1087858)))) [1087862, 1087861, 1087860, 1087859, 1087858] by Super 182767 with 6 at 2,1,1,1,2 +Id : 190267, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1090617) ?1090618)) (multiply (inverse ?1090616) ?1090619)) ?1090620)) =>= inverse (inverse (inverse (divide (inverse (multiply (multiply (inverse ?1090619) ?1090616) ?1090620)) (multiply ?1090618 ?1090617)))) [1090620, 1090619, 1090616, 1090618, 1090617] by Super 190010 with 6 at 1,1,1,1,1,1,3 +Id : 182806, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1048196) ?1048197)) (multiply ?1048198 ?1048195)) ?1048199)) =<= inverse (inverse (inverse (divide (inverse (multiply (divide (inverse ?1048195) ?1048198) ?1048199)) (multiply ?1048197 ?1048196)))) [1048199, 1048195, 1048198, 1048197, 1048196] by Super 182767 with 6 at 2,1,1,1,2 +Id : 490, {_}: divide (inverse (divide (inverse ?2255) (divide ?2256 (multiply ?2257 ?2254)))) (multiply (divide (inverse ?2254) ?2257) ?2255) =>= ?2256 [2254, 2257, 2256, 2255] by Super 466 with 6 at 2,2,1,1,2 +Id : 277455, {_}: inverse (inverse (divide (inverse (multiply (divide (inverse ?1506566) ?1506565) ?1506563)) ?1506564)) =<= inverse (inverse (inverse (inverse (divide (inverse ?1506563) (divide ?1506564 (multiply ?1506565 ?1506566)))))) [1506564, 1506563, 1506565, 1506566] by Super 277437 with 490 at 2,1,1,2 +Id : 299269, {_}: inverse (inverse (divide (inverse (multiply (divide (inverse ?1506566) ?1506565) ?1506563)) ?1506564)) =>= inverse (inverse (inverse (divide (divide ?1506564 (multiply ?1506565 ?1506566)) (inverse ?1506563)))) [1506564, 1506563, 1506565, 1506566] by Demod 277455 with 298855 at 3 +Id : 299304, {_}: inverse (inverse (divide (inverse (multiply (divide (inverse ?1506566) ?1506565) ?1506563)) ?1506564)) =>= inverse (inverse (inverse (multiply (divide ?1506564 (multiply ?1506565 ?1506566)) ?1506563))) [1506564, 1506563, 1506565, 1506566] by Demod 299269 with 6 at 1,1,1,3 +Id : 299306, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1048196) ?1048197)) (multiply ?1048198 ?1048195)) ?1048199)) =>= inverse (inverse (inverse (inverse (multiply (divide (multiply ?1048197 ?1048196) (multiply ?1048198 ?1048195)) ?1048199)))) [1048199, 1048195, 1048198, 1048197, 1048196] by Demod 182806 with 299304 at 1,3 +Id : 299307, {_}: inverse (inverse (inverse (inverse (multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620)))) =<= inverse (inverse (inverse (divide (inverse (multiply (multiply (inverse ?1090619) ?1090616) ?1090620)) (multiply ?1090618 ?1090617)))) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 190267 with 299306 at 2 +Id : 300335, {_}: inverse (inverse (inverse (inverse (multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620)))) =<= inverse (inverse (inverse (inverse (multiply (multiply ?1090618 ?1090617) (multiply (multiply (inverse ?1090619) ?1090616) ?1090620))))) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 299307 with 299719 at 3 +Id : 309523, {_}: inverse (inverse (multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620)) =<= inverse (inverse (inverse (inverse (multiply (multiply ?1090618 ?1090617) (multiply (multiply (inverse ?1090619) ?1090616) ?1090620))))) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 300335 with 305044 at 2 +Id : 309524, {_}: inverse (inverse (multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620)) =<= inverse (inverse (multiply (multiply ?1090618 ?1090617) (multiply (multiply (inverse ?1090619) ?1090616) ?1090620))) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 309523 with 305044 at 3 +Id : 311029, {_}: multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620 =<= inverse (inverse (multiply (multiply ?1090618 ?1090617) (multiply (multiply (inverse ?1090619) ?1090616) ?1090620))) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 309524 with 310837 at 2 +Id : 311030, {_}: multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620 =<= multiply (multiply ?1090618 ?1090617) (multiply (multiply (inverse ?1090619) ?1090616) ?1090620) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 311029 with 310837 at 3 +Id : 311851, {_}: multiply ?6831 (multiply (inverse (multiply (divide (multiply (inverse ?6832) ?6833) (multiply (inverse ?6832) ?6833)) ?6830)) ?6830) =>= ?6831 [6830, 6833, 6832, 6831] by Demod 311850 with 311030 at 1,1,2,2 +Id : 692, {_}: inverse (inverse (divide ?3016 (divide (inverse ?3015) (divide (inverse (multiply (divide (inverse ?3018) ?3017) ?3015)) (multiply ?3017 ?3018))))) =>= ?3016 [3017, 3018, 3015, 3016] by Super 673 with 32 at 1,2 +Id : 277278, {_}: inverse (inverse (inverse (inverse ?1505137))) =<= inverse (divide (inverse (multiply (divide (inverse ?1505138) ?1505139) ?1505137)) (multiply ?1505139 ?1505138)) [1505139, 1505138, 1505137] by Super 692 with 276834 at 2 +Id : 309511, {_}: inverse (inverse ?1505137) =<= inverse (divide (inverse (multiply (divide (inverse ?1505138) ?1505139) ?1505137)) (multiply ?1505139 ?1505138)) [1505139, 1505138, 1505137] by Demod 277278 with 305044 at 2 +Id : 311129, {_}: ?1505137 =<= inverse (divide (inverse (multiply (divide (inverse ?1505138) ?1505139) ?1505137)) (multiply ?1505139 ?1505138)) [1505139, 1505138, 1505137] by Demod 309511 with 310837 at 2 +Id : 311117, {_}: divide (inverse (multiply (divide (inverse ?1506566) ?1506565) ?1506563)) ?1506564 =<= inverse (inverse (inverse (multiply (divide ?1506564 (multiply ?1506565 ?1506566)) ?1506563))) [1506564, 1506563, 1506565, 1506566] by Demod 299304 with 310837 at 2 +Id : 311118, {_}: divide (inverse (multiply (divide (inverse ?1506566) ?1506565) ?1506563)) ?1506564 =>= inverse (multiply (divide ?1506564 (multiply ?1506565 ?1506566)) ?1506563) [1506564, 1506563, 1506565, 1506566] by Demod 311117 with 310837 at 3 +Id : 311205, {_}: ?1505137 =<= inverse (inverse (multiply (divide (multiply ?1505139 ?1505138) (multiply ?1505139 ?1505138)) ?1505137)) [1505138, 1505139, 1505137] by Demod 311129 with 311118 at 1,3 +Id : 311206, {_}: ?1505137 =<= multiply (divide (multiply ?1505139 ?1505138) (multiply ?1505139 ?1505138)) ?1505137 [1505138, 1505139, 1505137] by Demod 311205 with 310837 at 3 +Id : 311852, {_}: multiply ?6831 (multiply (inverse ?6830) ?6830) =>= ?6831 [6830, 6831] by Demod 311851 with 311206 at 1,1,2,2 +Id : 312318, {_}: multiply ?1630838 (multiply ?1630837 (inverse ?1630837)) =>= ?1630838 [1630837, 1630838] by Super 311852 with 310837 at 1,2,2 +Id : 312456, {_}: multiply ?1630838 (divide ?1630837 ?1630837) =>= ?1630838 [1630837, 1630838] by Demod 312318 with 311292 at 2,2 +Id : 312737, {_}: divide (divide ?1631485 (divide (divide (divide (divide ?1631486 ?1631487) ?1631488) (divide (divide ?1631486 ?1631487) ?1631488)) ?1631489)) ?1631489 =>= ?1631485 [1631489, 1631488, 1631487, 1631486, 1631485] by Super 312121 with 312456 at 3 +Id : 164905, {_}: inverse (inverse (divide (inverse (divide ?939850 (divide ?939851 ?939852))) (divide ?939849 (divide ?939850 (divide ?939851 ?939852))))) =>= inverse (inverse (inverse ?939849)) [939849, 939852, 939851, 939850] by Super 164761 with 4 at 1,1,1,3 +Id : 276099, {_}: inverse (inverse (inverse ?1499672)) =<= inverse (divide (inverse (divide (divide ?1499671 ?1499670) ?1499672)) (divide ?1499670 ?1499671)) [1499670, 1499671, 1499672] by Super 345 with 164905 at 2 +Id : 311033, {_}: inverse ?1499672 =<= inverse (divide (inverse (divide (divide ?1499671 ?1499670) ?1499672)) (divide ?1499670 ?1499671)) [1499670, 1499671, 1499672] by Demod 276099 with 310837 at 2 +Id : 309603, {_}: inverse (inverse (divide (inverse (divide (divide ?1506466 ?1506465) ?1506463)) ?1506464)) =>= inverse (inverse (divide ?1506463 (divide ?1506464 (divide ?1506465 ?1506466)))) [1506464, 1506463, 1506465, 1506466] by Demod 299272 with 309508 at 3 +Id : 311134, {_}: divide (inverse (divide (divide ?1506466 ?1506465) ?1506463)) ?1506464 =<= inverse (inverse (divide ?1506463 (divide ?1506464 (divide ?1506465 ?1506466)))) [1506464, 1506463, 1506465, 1506466] by Demod 309603 with 310837 at 2 +Id : 311135, {_}: divide (inverse (divide (divide ?1506466 ?1506465) ?1506463)) ?1506464 =>= divide ?1506463 (divide ?1506464 (divide ?1506465 ?1506466)) [1506464, 1506463, 1506465, 1506466] by Demod 311134 with 310837 at 3 +Id : 311365, {_}: inverse ?1499672 =<= inverse (divide ?1499672 (divide (divide ?1499670 ?1499671) (divide ?1499670 ?1499671))) [1499671, 1499670, 1499672] by Demod 311033 with 311135 at 1,3 +Id : 311372, {_}: inverse ?1499672 =<= divide (divide (divide ?1499670 ?1499671) (divide ?1499670 ?1499671)) ?1499672 [1499671, 1499670, 1499672] by Demod 311365 with 311017 at 3 +Id : 313817, {_}: divide (divide ?1631485 (inverse ?1631489)) ?1631489 =>= ?1631485 [1631489, 1631485] by Demod 312737 with 311372 at 2,1,2 +Id : 313818, {_}: divide (multiply ?1631485 ?1631489) ?1631489 =>= ?1631485 [1631489, 1631485] by Demod 313817 with 6 at 1,2 +Id : 317392, {_}: multiply ?1642981 (divide ?1642980 ?1642987) =<= divide (divide ?1642981 (divide (divide (divide (divide ?1642982 ?1642983) ?1642984) (divide ?1642985 ?1642986)) (multiply ?1642980 (divide (divide (divide ?1642982 ?1642983) ?1642984) (divide ?1642985 ?1642986))))) ?1642987 [1642986, 1642985, 1642984, 1642983, 1642982, 1642987, 1642980, 1642981] by Super 312122 with 313818 at 1,2,2 +Id : 318522, {_}: multiply ?1642981 (divide ?1642980 ?1642987) =<= divide (divide ?1642981 (inverse ?1642980)) ?1642987 [1642987, 1642980, 1642981] by Demod 317392 with 311112 at 2,1,3 +Id : 318523, {_}: multiply ?1642981 (divide ?1642980 ?1642987) =>= divide (multiply ?1642981 ?1642980) ?1642987 [1642987, 1642980, 1642981] by Demod 318522 with 6 at 1,3 +Id : 311394, {_}: divide (divide ?1506463 (divide ?1506466 ?1506465)) ?1506464 =?= divide ?1506463 (divide ?1506464 (divide ?1506465 ?1506466)) [1506464, 1506465, 1506466, 1506463] by Demod 311135 with 311017 at 1,2 +Id : 277640, {_}: inverse ?1508034 =<= inverse (inverse (inverse (divide ?1508034 (multiply (divide ?1508035 ?1508036) (divide ?1508036 ?1508035))))) [1508036, 1508035, 1508034] by Super 277437 with 339 at 1,2 +Id : 309536, {_}: inverse ?1508034 =<= inverse (inverse (divide (multiply (divide ?1508035 ?1508036) (divide ?1508036 ?1508035)) ?1508034)) [1508036, 1508035, 1508034] by Demod 277640 with 309508 at 3 +Id : 310975, {_}: inverse ?1508034 =<= divide (multiply (divide ?1508035 ?1508036) (divide ?1508036 ?1508035)) ?1508034 [1508036, 1508035, 1508034] by Demod 309536 with 310837 at 3 +Id : 312719, {_}: inverse ?1631352 =<= divide (divide ?1631351 ?1631351) ?1631352 [1631351, 1631352] by Super 310975 with 312456 at 1,3 +Id : 314397, {_}: divide (divide ?1637990 (divide ?1637991 ?1637992)) (divide ?1637989 ?1637989) =>= divide ?1637990 (inverse (divide ?1637992 ?1637991)) [1637989, 1637992, 1637991, 1637990] by Super 311394 with 312719 at 2,3 +Id : 311378, {_}: divide ?3302 (divide ?3301 (divide (divide ?3301 (multiply ?3304 ?3303)) (divide (inverse ?3303) ?3304))) =>= ?3302 [3303, 3304, 3301, 3302] by Demod 311071 with 311017 at 1,2,2,2 +Id : 312063, {_}: divide ?3302 (divide ?3301 (divide (divide ?3301 (multiply ?3304 ?3303)) (inverse (multiply ?3304 ?3303)))) =>= ?3302 [3303, 3304, 3301, 3302] by Demod 311378 with 311604 at 2,2,2,2 +Id : 312064, {_}: divide ?3302 (divide ?3301 (multiply (divide ?3301 (multiply ?3304 ?3303)) (multiply ?3304 ?3303))) =>= ?3302 [3303, 3304, 3301, 3302] by Demod 312063 with 6 at 2,2,2 +Id : 312065, {_}: divide ?3302 (divide ?3301 ?3301) =>= ?3302 [3301, 3302] by Demod 312064 with 311868 at 2,2,2 +Id : 314879, {_}: divide ?1637990 (divide ?1637991 ?1637992) =<= divide ?1637990 (inverse (divide ?1637992 ?1637991)) [1637992, 1637991, 1637990] by Demod 314397 with 312065 at 2 +Id : 314880, {_}: divide ?1637990 (divide ?1637991 ?1637992) =<= multiply ?1637990 (divide ?1637992 ?1637991) [1637992, 1637991, 1637990] by Demod 314879 with 6 at 3 +Id : 320415, {_}: divide ?1642981 (divide ?1642987 ?1642980) =?= divide (multiply ?1642981 ?1642980) ?1642987 [1642980, 1642987, 1642981] by Demod 318523 with 314880 at 2 +Id : 343753, {_}: multiply ?1701701 ?1701702 =<= multiply (divide ?1701701 (divide ?1701703 ?1701702)) ?1701703 [1701703, 1701702, 1701701] by Super 311868 with 320415 at 1,3 +Id : 311818, {_}: divide (multiply ?257 ?256) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= divide (divide ?257 (inverse (multiply ?259 ?260))) ?258 [260, 259, 258, 256, 257] by Demod 311594 with 311604 at 2,1,3 +Id : 311820, {_}: divide (multiply ?257 ?256) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= divide (multiply ?257 (multiply ?259 ?260)) ?258 [260, 259, 258, 256, 257] by Demod 311818 with 6 at 1,3 +Id : 317517, {_}: divide (multiply ?1643886 ?1643887) (multiply ?1643885 ?1643887) =?= divide (multiply ?1643886 (multiply ?1643888 ?1643889)) (multiply ?1643885 (multiply ?1643888 ?1643889)) [1643889, 1643888, 1643885, 1643887, 1643886] by Super 311820 with 313818 at 1,2,2 +Id : 32072, {_}: inverse (inverse (inverse (divide (divide ?152561 (divide ?152562 (multiply ?152563 ?152564))) (divide ?152565 ?152562)))) =>= inverse (divide (divide ?152561 (divide (inverse ?152564) ?152563)) ?152565) [152565, 152564, 152563, 152562, 152561] by Super 31662 with 6 at 2,2,1,1,1,1,2 +Id : 691, {_}: inverse (inverse (divide ?3011 (divide ?3010 (divide (inverse (divide (divide (inverse ?3013) ?3012) ?3010)) (multiply ?3012 ?3013))))) =>= ?3011 [3012, 3013, 3010, 3011] by Super 673 with 10 at 1,2 +Id : 32186, {_}: inverse (divide ?153559 (divide (divide (inverse (divide (divide (inverse ?153557) ?153558) ?153562)) (multiply ?153558 ?153557)) (multiply ?153560 ?153561))) =>= inverse (divide (divide ?153559 (divide (inverse ?153561) ?153560)) ?153562) [153561, 153560, 153562, 153558, 153557, 153559] by Super 32072 with 691 at 1,2 +Id : 311187, {_}: inverse (divide ?153559 (divide (divide ?153562 (divide (multiply ?153558 ?153557) (divide ?153558 (inverse ?153557)))) (multiply ?153560 ?153561))) =>= inverse (divide (divide ?153559 (divide (inverse ?153561) ?153560)) ?153562) [153561, 153560, 153557, 153558, 153562, 153559] by Demod 32186 with 311135 at 1,2,1,2 +Id : 311196, {_}: inverse (divide ?153559 (divide (divide ?153562 (divide (multiply ?153558 ?153557) (multiply ?153558 ?153557))) (multiply ?153560 ?153561))) =>= inverse (divide (divide ?153559 (divide (inverse ?153561) ?153560)) ?153562) [153561, 153560, 153557, 153558, 153562, 153559] by Demod 311187 with 6 at 2,2,1,2,1,2 +Id : 311391, {_}: divide (divide (divide ?153562 (divide (multiply ?153558 ?153557) (multiply ?153558 ?153557))) (multiply ?153560 ?153561)) ?153559 =>= inverse (divide (divide ?153559 (divide (inverse ?153561) ?153560)) ?153562) [153559, 153561, 153560, 153557, 153558, 153562] by Demod 311196 with 311017 at 2 +Id : 311392, {_}: divide (divide (divide ?153562 (divide (multiply ?153558 ?153557) (multiply ?153558 ?153557))) (multiply ?153560 ?153561)) ?153559 =>= divide ?153562 (divide ?153559 (divide (inverse ?153561) ?153560)) [153559, 153561, 153560, 153557, 153558, 153562] by Demod 311391 with 311017 at 3 +Id : 312039, {_}: divide (divide (divide ?153562 (divide (multiply ?153558 ?153557) (multiply ?153558 ?153557))) (multiply ?153560 ?153561)) ?153559 =>= divide ?153562 (divide ?153559 (inverse (multiply ?153560 ?153561))) [153559, 153561, 153560, 153557, 153558, 153562] by Demod 311392 with 311604 at 2,2,3 +Id : 312040, {_}: divide (divide (divide ?153562 (divide (multiply ?153558 ?153557) (multiply ?153558 ?153557))) (multiply ?153560 ?153561)) ?153559 =>= divide ?153562 (multiply ?153559 (multiply ?153560 ?153561)) [153559, 153561, 153560, 153557, 153558, 153562] by Demod 312039 with 6 at 2,3 +Id : 312075, {_}: divide (divide ?153562 (multiply ?153560 ?153561)) ?153559 =?= divide ?153562 (multiply ?153559 (multiply ?153560 ?153561)) [153559, 153561, 153560, 153562] by Demod 312040 with 312065 at 1,1,2 +Id : 318365, {_}: divide (multiply ?1643886 ?1643887) (multiply ?1643885 ?1643887) =?= divide (divide (multiply ?1643886 (multiply ?1643888 ?1643889)) (multiply ?1643888 ?1643889)) ?1643885 [1643889, 1643888, 1643885, 1643887, 1643886] by Demod 317517 with 312075 at 3 +Id : 318366, {_}: divide (multiply ?1643886 ?1643887) (multiply ?1643885 ?1643887) =>= divide ?1643886 ?1643885 [1643885, 1643887, 1643886] by Demod 318365 with 313818 at 1,3 +Id : 343774, {_}: multiply ?1701846 (multiply ?1701845 ?1701844) =<= multiply (divide ?1701846 (divide ?1701843 ?1701845)) (multiply ?1701843 ?1701844) [1701843, 1701844, 1701845, 1701846] by Super 343753 with 318366 at 2,1,3 +Id : 178704, {_}: inverse (inverse (divide (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) (inverse ?1024392))) =>= inverse (inverse (inverse (divide (inverse (multiply (divide ?1024396 ?1024395) ?1024392)) (divide ?1024394 ?1024393)))) [1024392, 1024396, 1024395, 1024394, 1024393] by Super 178625 with 6 at 1,1,1,1,1,3 +Id : 179107, {_}: inverse (inverse (multiply (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) ?1024392)) =<= inverse (inverse (inverse (divide (inverse (multiply (divide ?1024396 ?1024395) ?1024392)) (divide ?1024394 ?1024393)))) [1024392, 1024396, 1024395, 1024394, 1024393] by Demod 178704 with 6 at 1,1,2 +Id : 300345, {_}: inverse (inverse (multiply (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) ?1024392)) =<= inverse (inverse (inverse (inverse (multiply (divide ?1024394 ?1024393) (multiply (divide ?1024396 ?1024395) ?1024392))))) [1024392, 1024396, 1024395, 1024394, 1024393] by Demod 179107 with 299719 at 3 +Id : 309518, {_}: inverse (inverse (multiply (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) ?1024392)) =>= inverse (inverse (multiply (divide ?1024394 ?1024393) (multiply (divide ?1024396 ?1024395) ?1024392))) [1024392, 1024396, 1024395, 1024394, 1024393] by Demod 300345 with 305044 at 3 +Id : 311123, {_}: multiply (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) ?1024392 =<= inverse (inverse (multiply (divide ?1024394 ?1024393) (multiply (divide ?1024396 ?1024395) ?1024392))) [1024392, 1024396, 1024395, 1024394, 1024393] by Demod 309518 with 310837 at 2 +Id : 311124, {_}: multiply (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) ?1024392 =>= multiply (divide ?1024394 ?1024393) (multiply (divide ?1024396 ?1024395) ?1024392) [1024392, 1024396, 1024395, 1024394, 1024393] by Demod 311123 with 310837 at 3 +Id : 311459, {_}: multiply (divide (divide ?1024394 ?1024393) (divide ?1024395 ?1024396)) ?1024392 =?= multiply (divide ?1024394 ?1024393) (multiply (divide ?1024396 ?1024395) ?1024392) [1024392, 1024396, 1024395, 1024393, 1024394] by Demod 311124 with 311017 at 1,1,2 +Id : 314145, {_}: multiply (divide (divide ?1636195 ?1636196) (inverse ?1636193)) ?1636197 =<= multiply (divide ?1636195 ?1636196) (multiply (divide ?1636193 (divide ?1636194 ?1636194)) ?1636197) [1636194, 1636197, 1636193, 1636196, 1636195] by Super 311459 with 312719 at 2,1,2 +Id : 315602, {_}: multiply (multiply (divide ?1636195 ?1636196) ?1636193) ?1636197 =<= multiply (divide ?1636195 ?1636196) (multiply (divide ?1636193 (divide ?1636194 ?1636194)) ?1636197) [1636194, 1636197, 1636193, 1636196, 1636195] by Demod 314145 with 6 at 1,2 +Id : 315603, {_}: multiply (multiply (divide ?1636195 ?1636196) ?1636193) ?1636197 =>= multiply (divide ?1636195 ?1636196) (multiply ?1636193 ?1636197) [1636197, 1636193, 1636196, 1636195] by Demod 315602 with 312065 at 1,2,3 +Id : 320945, {_}: multiply ?1653480 ?1653482 =<= multiply (divide ?1653480 (divide ?1653481 ?1653482)) ?1653481 [1653481, 1653482, 1653480] by Super 311868 with 320415 at 1,3 +Id : 343542, {_}: multiply (multiply ?1699948 ?1699949) ?1699951 =<= multiply (divide ?1699948 (divide ?1699950 ?1699949)) (multiply ?1699950 ?1699951) [1699950, 1699951, 1699949, 1699948] by Super 315603 with 320945 at 1,2 +Id : 394401, {_}: multiply ?1701846 (multiply ?1701845 ?1701844) =?= multiply (multiply ?1701846 ?1701845) ?1701844 [1701844, 1701845, 1701846] by Demod 343774 with 343542 at 3 +Id : 395259, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 394401 at 2 +Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 +% SZS output end CNFRefutation for GRP471-1.p +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + divide is 93 + inverse is 92 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 91 +Facts + Id : 4, {_}: + divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) + (divide ?3 ?2) + =>= + ?5 + [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 + Id : 6, {_}: + multiply ?7 ?8 =<= divide ?7 (inverse ?8) + [8, 7] by multiply ?7 ?8 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 10.874059s +% SZS status Unsatisfiable for GRP477-1.p +% SZS output start CNFRefutation for GRP477-1.p +Id : 6, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 +Id : 7, {_}: divide (inverse (divide (divide (divide ?10 ?11) ?12) (divide ?13 ?12))) (divide ?11 ?10) =>= ?13 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 +Id : 4, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 +Id : 9, {_}: divide (inverse (divide (divide (divide ?26 ?27) (divide ?23 ?22)) ?25)) (divide ?27 ?26) =?= inverse (divide (divide (divide ?22 ?23) ?24) (divide ?25 ?24)) [24, 25, 22, 23, 27, 26] by Super 7 with 4 at 2,1,1,2 +Id : 8947, {_}: inverse (divide (divide (divide ?66899 ?66900) ?66901) (divide (divide ?66902 (divide ?66900 ?66899)) ?66901)) =>= ?66902 [66902, 66901, 66900, 66899] by Super 4 with 9 at 2 +Id : 9487, {_}: inverse (divide (divide (divide (inverse ?70062) ?70063) ?70064) (divide (divide ?70065 (multiply ?70063 ?70062)) ?70064)) =>= ?70065 [70065, 70064, 70063, 70062] by Super 8947 with 6 at 2,1,2,1,2 +Id : 13, {_}: divide (inverse (divide (divide (divide ?48 ?49) (inverse ?47)) (multiply ?46 ?47))) (divide ?49 ?48) =>= ?46 [46, 47, 49, 48] by Super 4 with 6 at 2,1,1,2 +Id : 23, {_}: divide (inverse (divide (multiply (divide ?88 ?89) ?90) (multiply ?91 ?90))) (divide ?89 ?88) =>= ?91 [91, 90, 89, 88] by Demod 13 with 6 at 1,1,1,2 +Id : 27, {_}: divide (inverse (divide (multiply ?115 ?116) (multiply ?117 ?116))) (divide (divide ?113 ?112) (inverse (divide (divide (divide ?112 ?113) ?114) (divide ?115 ?114)))) =>= ?117 [114, 112, 113, 117, 116, 115] by Super 23 with 4 at 1,1,1,1,2 +Id : 35, {_}: divide (inverse (divide (multiply ?115 ?116) (multiply ?117 ?116))) (multiply (divide ?113 ?112) (divide (divide (divide ?112 ?113) ?114) (divide ?115 ?114))) =>= ?117 [114, 112, 113, 117, 116, 115] by Demod 27 with 6 at 2,2 +Id : 9506, {_}: inverse (divide (divide (divide (inverse (divide (divide (divide ?70226 ?70225) ?70227) (divide ?70222 ?70227))) (divide ?70225 ?70226)) ?70228) (divide ?70224 ?70228)) =?= inverse (divide (multiply ?70222 ?70223) (multiply ?70224 ?70223)) [70223, 70224, 70228, 70222, 70227, 70225, 70226] by Super 9487 with 35 at 1,2,1,2 +Id : 9604, {_}: inverse (divide (divide ?70222 ?70228) (divide ?70224 ?70228)) =?= inverse (divide (multiply ?70222 ?70223) (multiply ?70224 ?70223)) [70223, 70224, 70228, 70222] by Demod 9506 with 4 at 1,1,1,2 +Id : 27713, {_}: divide (divide (inverse (divide (divide (divide ?169617 ?169618) (divide ?169619 ?169620)) ?169621)) (divide ?169618 ?169617)) (divide ?169619 ?169620) =>= ?169621 [169621, 169620, 169619, 169618, 169617] by Super 4 with 9 at 1,2 +Id : 27714, {_}: divide (divide (inverse (divide (divide (divide ?169627 ?169628) (divide (inverse (divide (divide (divide ?169623 ?169624) ?169625) (divide ?169626 ?169625))) (divide ?169624 ?169623))) ?169629)) (divide ?169628 ?169627)) ?169626 =>= ?169629 [169629, 169626, 169625, 169624, 169623, 169628, 169627] by Super 27713 with 4 at 2,2 +Id : 28344, {_}: divide (divide (inverse (divide (divide (divide ?173215 ?173216) ?173217) ?173218)) (divide ?173216 ?173215)) ?173217 =>= ?173218 [173218, 173217, 173216, 173215] by Demod 27714 with 4 at 2,1,1,1,1,2 +Id : 28449, {_}: divide (divide (inverse (multiply (divide (divide ?174106 ?174107) ?174108) ?174105)) (divide ?174107 ?174106)) ?174108 =>= inverse ?174105 [174105, 174108, 174107, 174106] by Super 28344 with 6 at 1,1,1,2 +Id : 28805, {_}: multiply (divide (inverse (multiply (divide (divide ?175142 ?175143) (inverse ?175145)) ?175144)) (divide ?175143 ?175142)) ?175145 =>= inverse ?175144 [175144, 175145, 175143, 175142] by Super 6 with 28449 at 3 +Id : 29852, {_}: multiply (divide (inverse (multiply (multiply (divide ?180549 ?180550) ?180551) ?180552)) (divide ?180550 ?180549)) ?180551 =>= inverse ?180552 [180552, 180551, 180550, 180549] by Demod 28805 with 6 at 1,1,1,1,2 +Id : 33202, {_}: multiply (divide (inverse (multiply (multiply (divide (inverse ?199058) ?199059) ?199060) ?199061)) (multiply ?199059 ?199058)) ?199060 =>= inverse ?199061 [199061, 199060, 199059, 199058] by Super 29852 with 6 at 2,1,2 +Id : 33304, {_}: multiply (divide (inverse (multiply (multiply (multiply (inverse ?199942) ?199941) ?199943) ?199944)) (multiply (inverse ?199941) ?199942)) ?199943 =>= inverse ?199944 [199944, 199943, 199941, 199942] by Super 33202 with 6 at 1,1,1,1,1,2 +Id : 43, {_}: divide (inverse (divide (divide (divide (inverse ?171) ?172) ?173) (divide ?174 ?173))) (multiply ?172 ?171) =>= ?174 [174, 173, 172, 171] by Super 4 with 6 at 2,2 +Id : 48, {_}: divide (inverse (divide (divide ?205 ?206) (divide ?207 ?206))) (multiply (divide ?203 ?202) (divide (divide (divide ?202 ?203) ?204) (divide ?205 ?204))) =>= ?207 [204, 202, 203, 207, 206, 205] by Super 43 with 4 at 1,1,1,1,2 +Id : 8271, {_}: inverse (divide (divide (divide ?62998 ?62997) ?62999) (divide (divide ?63000 (divide ?62997 ?62998)) ?62999)) =>= ?63000 [63000, 62999, 62997, 62998] by Super 4 with 9 at 2 +Id : 8914, {_}: divide ?66588 (multiply (divide ?66589 ?66590) (divide (divide (divide ?66590 ?66589) ?66591) (divide (divide ?66585 ?66586) ?66591))) =>= divide ?66588 (divide ?66586 ?66585) [66586, 66585, 66591, 66590, 66589, 66588] by Super 48 with 8271 at 1,2 +Id : 27904, {_}: divide (divide (inverse (divide (divide (divide ?171441 ?171442) (divide ?171443 ?171444)) (divide ?171440 ?171439))) (divide ?171442 ?171441)) (divide ?171443 ?171444) =?= multiply (divide ?171436 ?171437) (divide (divide (divide ?171437 ?171436) ?171438) (divide (divide ?171439 ?171440) ?171438)) [171438, 171437, 171436, 171439, 171440, 171444, 171443, 171442, 171441] by Super 27713 with 8914 at 1,1,1,2 +Id : 8270, {_}: divide (divide (inverse (divide (divide (divide ?62988 ?62989) (divide ?62990 ?62991)) ?62992)) (divide ?62989 ?62988)) (divide ?62990 ?62991) =>= ?62992 [62992, 62991, 62990, 62989, 62988] by Super 4 with 9 at 1,2 +Id : 28135, {_}: divide ?171440 ?171439 =<= multiply (divide ?171436 ?171437) (divide (divide (divide ?171437 ?171436) ?171438) (divide (divide ?171439 ?171440) ?171438)) [171438, 171437, 171436, 171439, 171440] by Demod 27904 with 8270 at 2 +Id : 18, {_}: divide (inverse (divide (multiply (divide ?48 ?49) ?47) (multiply ?46 ?47))) (divide ?49 ?48) =>= ?46 [46, 47, 49, 48] by Demod 13 with 6 at 1,1,1,2 +Id : 22, {_}: divide (inverse (divide (divide ?84 ?85) (divide ?86 ?85))) (divide (divide ?82 ?81) (inverse (divide (multiply (divide ?81 ?82) ?83) (multiply ?84 ?83)))) =>= ?86 [83, 81, 82, 86, 85, 84] by Super 4 with 18 at 1,1,1,1,2 +Id : 32, {_}: divide (inverse (divide (divide ?84 ?85) (divide ?86 ?85))) (multiply (divide ?82 ?81) (divide (multiply (divide ?81 ?82) ?83) (multiply ?84 ?83))) =>= ?86 [83, 81, 82, 86, 85, 84] by Demod 22 with 6 at 2,2 +Id : 8902, {_}: divide ?66500 (multiply (divide ?66501 ?66502) (divide (multiply (divide ?66502 ?66501) ?66503) (multiply (divide ?66497 ?66498) ?66503))) =>= divide ?66500 (divide ?66498 ?66497) [66498, 66497, 66503, 66502, 66501, 66500] by Super 32 with 8271 at 1,2 +Id : 27903, {_}: divide (divide (inverse (divide (divide (divide ?171431 ?171432) (divide ?171433 ?171434)) (divide ?171430 ?171429))) (divide ?171432 ?171431)) (divide ?171433 ?171434) =?= multiply (divide ?171426 ?171427) (divide (multiply (divide ?171427 ?171426) ?171428) (multiply (divide ?171429 ?171430) ?171428)) [171428, 171427, 171426, 171429, 171430, 171434, 171433, 171432, 171431] by Super 27713 with 8902 at 1,1,1,2 +Id : 28134, {_}: divide ?171430 ?171429 =<= multiply (divide ?171426 ?171427) (divide (multiply (divide ?171427 ?171426) ?171428) (multiply (divide ?171429 ?171430) ?171428)) [171428, 171427, 171426, 171429, 171430] by Demod 27903 with 8270 at 2 +Id : 34242, {_}: divide (divide (inverse (divide ?204167 ?204168)) (divide ?204171 ?204170)) ?204172 =<= inverse (divide (multiply (divide ?204172 (divide ?204170 ?204171)) ?204169) (multiply (divide ?204168 ?204167) ?204169)) [204169, 204172, 204170, 204171, 204168, 204167] by Super 28449 with 28134 at 1,1,1,2 +Id : 34778, {_}: divide (divide (divide (inverse (divide ?206532 ?206533)) (divide ?206534 ?206535)) ?206536) (divide (divide ?206535 ?206534) ?206536) =>= divide ?206533 ?206532 [206536, 206535, 206534, 206533, 206532] by Super 18 with 34242 at 1,2 +Id : 54527, {_}: divide ?300655 ?300656 =<= multiply (divide (divide ?300655 ?300656) (inverse (divide ?300653 ?300654))) (divide ?300654 ?300653) [300654, 300653, 300656, 300655] by Super 28135 with 34778 at 2,3 +Id : 55213, {_}: divide ?304381 ?304382 =<= multiply (multiply (divide ?304381 ?304382) (divide ?304383 ?304384)) (divide ?304384 ?304383) [304384, 304383, 304382, 304381] by Demod 54527 with 6 at 1,3 +Id : 55316, {_}: divide (inverse (divide (divide (divide ?305230 ?305231) ?305232) (divide ?305233 ?305232))) (divide ?305231 ?305230) =?= multiply (multiply ?305233 (divide ?305234 ?305235)) (divide ?305235 ?305234) [305235, 305234, 305233, 305232, 305231, 305230] by Super 55213 with 4 at 1,1,3 +Id : 55555, {_}: ?305233 =<= multiply (multiply ?305233 (divide ?305234 ?305235)) (divide ?305235 ?305234) [305235, 305234, 305233] by Demod 55316 with 4 at 2 +Id : 27948, {_}: divide (divide (inverse (divide (divide (divide ?169627 ?169628) ?169626) ?169629)) (divide ?169628 ?169627)) ?169626 =>= ?169629 [169629, 169626, 169628, 169627] by Demod 27714 with 4 at 2,1,1,1,1,2 +Id : 28234, {_}: multiply (divide (inverse (divide (divide (divide ?172298 ?172299) (inverse ?172301)) ?172300)) (divide ?172299 ?172298)) ?172301 =>= ?172300 [172300, 172301, 172299, 172298] by Super 6 with 27948 at 3 +Id : 28487, {_}: multiply (divide (inverse (divide (multiply (divide ?172298 ?172299) ?172301) ?172300)) (divide ?172299 ?172298)) ?172301 =>= ?172300 [172300, 172301, 172299, 172298] by Demod 28234 with 6 at 1,1,1,1,2 +Id : 9011, {_}: inverse (divide (divide (divide ?67439 ?67440) (inverse ?67438)) (multiply (divide ?67441 (divide ?67440 ?67439)) ?67438)) =>= ?67441 [67441, 67438, 67440, 67439] by Super 8947 with 6 at 2,1,2 +Id : 9220, {_}: inverse (divide (multiply (divide ?68482 ?68483) ?68484) (multiply (divide ?68485 (divide ?68483 ?68482)) ?68484)) =>= ?68485 [68485, 68484, 68483, 68482] by Demod 9011 with 6 at 1,1,2 +Id : 9262, {_}: inverse (divide (multiply (divide (inverse ?68840) ?68841) ?68842) (multiply (divide ?68843 (multiply ?68841 ?68840)) ?68842)) =>= ?68843 [68843, 68842, 68841, 68840] by Super 9220 with 6 at 2,1,2,1,2 +Id : 34818, {_}: inverse (divide (divide (divide ?206982 (divide ?206981 ?206980)) ?206984) (divide (divide ?206979 ?206978) ?206984)) =>= divide (divide (inverse (divide ?206978 ?206979)) (divide ?206980 ?206981)) ?206982 [206978, 206979, 206984, 206980, 206981, 206982] by Super 9604 with 34242 at 3 +Id : 54516, {_}: inverse (divide ?300558 ?300557) =<= divide (divide (inverse (divide ?300559 ?300560)) (divide ?300560 ?300559)) (inverse (divide ?300557 ?300558)) [300560, 300559, 300557, 300558] by Super 34818 with 34778 at 1,2 +Id : 54778, {_}: inverse (divide ?300558 ?300557) =<= multiply (divide (inverse (divide ?300559 ?300560)) (divide ?300560 ?300559)) (divide ?300557 ?300558) [300560, 300559, 300557, 300558] by Demod 54516 with 6 at 3 +Id : 58787, {_}: inverse (divide (inverse (divide ?321392 ?321393)) (multiply (divide ?321396 (multiply (divide ?321395 ?321394) (divide ?321394 ?321395))) (divide ?321393 ?321392))) =>= ?321396 [321394, 321395, 321396, 321393, 321392] by Super 9262 with 54778 at 1,1,2 +Id : 12, {_}: divide (inverse (divide (divide (divide (inverse ?42) ?41) ?43) (divide ?44 ?43))) (multiply ?41 ?42) =>= ?44 [44, 43, 41, 42] by Super 4 with 6 at 2,2 +Id : 54402, {_}: divide (inverse (divide ?299508 ?299507)) (multiply (divide ?299509 ?299510) (divide ?299507 ?299508)) =>= divide ?299510 ?299509 [299510, 299509, 299507, 299508] by Super 12 with 34778 at 1,1,2 +Id : 59136, {_}: inverse (divide (multiply (divide ?321395 ?321394) (divide ?321394 ?321395)) ?321396) =>= ?321396 [321396, 321394, 321395] by Demod 58787 with 54402 at 1,2 +Id : 59503, {_}: multiply (divide ?323772 (divide ?323771 ?323770)) (divide ?323771 ?323770) =>= ?323772 [323770, 323771, 323772] by Super 28487 with 59136 at 1,1,2 +Id : 60069, {_}: divide ?327147 (divide ?327148 ?327149) =<= multiply ?327147 (divide ?327149 ?327148) [327149, 327148, 327147] by Super 55555 with 59503 at 1,3 +Id : 60669, {_}: multiply (divide (inverse (divide (multiply (multiply (inverse ?329868) ?329869) ?329870) (divide ?329866 ?329867))) (multiply (inverse ?329869) ?329868)) ?329870 =>= inverse (divide ?329867 ?329866) [329867, 329866, 329870, 329869, 329868] by Super 33304 with 60069 at 1,1,1,2 +Id : 29399, {_}: multiply (divide (inverse (divide (multiply (divide ?178179 ?178180) ?178181) ?178182)) (divide ?178180 ?178179)) ?178181 =>= ?178182 [178182, 178181, 178180, 178179] by Demod 28234 with 6 at 1,1,1,1,2 +Id : 32341, {_}: multiply (divide (inverse (divide (multiply (divide (inverse ?194066) ?194067) ?194068) ?194069)) (multiply ?194067 ?194066)) ?194068 =>= ?194069 [194069, 194068, 194067, 194066] by Super 29399 with 6 at 2,1,2 +Id : 32441, {_}: multiply (divide (inverse (divide (multiply (multiply (inverse ?194936) ?194935) ?194937) ?194938)) (multiply (inverse ?194935) ?194936)) ?194937 =>= ?194938 [194938, 194937, 194935, 194936] by Super 32341 with 6 at 1,1,1,1,1,2 +Id : 61017, {_}: divide ?329866 ?329867 =<= inverse (divide ?329867 ?329866) [329867, 329866] by Demod 60669 with 32441 at 2 +Id : 61512, {_}: divide (divide ?70224 ?70228) (divide ?70222 ?70228) =?= inverse (divide (multiply ?70222 ?70223) (multiply ?70224 ?70223)) [70223, 70222, 70228, 70224] by Demod 9604 with 61017 at 2 +Id : 61513, {_}: divide (divide ?70224 ?70228) (divide ?70222 ?70228) =?= divide (multiply ?70224 ?70223) (multiply ?70222 ?70223) [70223, 70222, 70228, 70224] by Demod 61512 with 61017 at 3 +Id : 60072, {_}: multiply (divide ?327160 (divide ?327161 ?327162)) (divide ?327161 ?327162) =>= ?327160 [327162, 327161, 327160] by Super 28487 with 59136 at 1,1,2 +Id : 60073, {_}: multiply (divide ?327168 (divide (inverse (divide (divide (divide ?327164 ?327165) ?327166) (divide ?327167 ?327166))) (divide ?327165 ?327164))) ?327167 =>= ?327168 [327167, 327166, 327165, 327164, 327168] by Super 60072 with 4 at 2,2 +Id : 64649, {_}: multiply (divide ?338211 ?338212) ?338212 =>= ?338211 [338212, 338211] by Demod 60073 with 4 at 2,1,2 +Id : 61711, {_}: divide ?332019 ?332020 =<= inverse (divide ?332020 ?332019) [332020, 332019] by Demod 60669 with 32441 at 2 +Id : 61786, {_}: divide (inverse ?332481) ?332482 =>= inverse (multiply ?332482 ?332481) [332482, 332481] by Super 61711 with 6 at 1,3 +Id : 64688, {_}: multiply (inverse (multiply ?338450 ?338449)) ?338450 =>= inverse ?338449 [338449, 338450] by Super 64649 with 61786 at 1,2 +Id : 70472, {_}: divide (divide ?351323 ?351324) (divide (inverse (multiply ?351321 ?351322)) ?351324) =>= divide (multiply ?351323 ?351321) (inverse ?351322) [351322, 351321, 351324, 351323] by Super 61513 with 64688 at 2,3 +Id : 70841, {_}: divide (divide ?351323 ?351324) (inverse (multiply ?351324 (multiply ?351321 ?351322))) =>= divide (multiply ?351323 ?351321) (inverse ?351322) [351322, 351321, 351324, 351323] by Demod 70472 with 61786 at 2,2 +Id : 70842, {_}: multiply (divide ?351323 ?351324) (multiply ?351324 (multiply ?351321 ?351322)) =>= divide (multiply ?351323 ?351321) (inverse ?351322) [351322, 351321, 351324, 351323] by Demod 70841 with 6 at 2 +Id : 70843, {_}: multiply (divide ?351323 ?351324) (multiply ?351324 (multiply ?351321 ?351322)) =>= multiply (multiply ?351323 ?351321) ?351322 [351322, 351321, 351324, 351323] by Demod 70842 with 6 at 3 +Id : 67, {_}: divide (inverse (divide (divide (multiply ?287 ?288) ?289) (divide ?290 ?289))) (divide (inverse ?288) ?287) =>= ?290 [290, 289, 288, 287] by Super 4 with 6 at 1,1,1,1,2 +Id : 14, {_}: divide (inverse (divide (divide (multiply ?51 ?52) ?53) (divide ?54 ?53))) (divide (inverse ?52) ?51) =>= ?54 [54, 53, 52, 51] by Super 4 with 6 at 1,1,1,1,2 +Id : 70, {_}: divide (inverse (divide (divide (multiply (divide (inverse ?307) ?306) (divide (divide (multiply ?306 ?307) ?308) (divide ?309 ?308))) ?310) (divide ?311 ?310))) ?309 =>= ?311 [311, 310, 309, 308, 306, 307] by Super 67 with 14 at 2,2 +Id : 60413, {_}: divide (inverse (divide (divide (divide (divide (inverse ?307) ?306) (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308))) ?310) (divide ?311 ?310))) ?309 =>= ?311 [311, 310, 308, 309, 306, 307] by Demod 70 with 60069 at 1,1,1,1,2 +Id : 61462, {_}: divide (divide (divide ?311 ?310) (divide (divide (divide (inverse ?307) ?306) (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308))) ?310)) ?309 =>= ?311 [308, 309, 306, 307, 310, 311] by Demod 60413 with 61017 at 1,2 +Id : 62183, {_}: divide (divide (divide ?311 ?310) (divide (divide (inverse (multiply ?306 ?307)) (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308))) ?310)) ?309 =>= ?311 [308, 309, 307, 306, 310, 311] by Demod 61462 with 61786 at 1,1,2,1,2 +Id : 62184, {_}: divide (divide (divide ?311 ?310) (divide (inverse (multiply (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308)) (multiply ?306 ?307))) ?310)) ?309 =>= ?311 [307, 306, 308, 309, 310, 311] by Demod 62183 with 61786 at 1,2,1,2 +Id : 62185, {_}: divide (divide (divide ?311 ?310) (inverse (multiply ?310 (multiply (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308)) (multiply ?306 ?307))))) ?309 =>= ?311 [307, 306, 308, 309, 310, 311] by Demod 62184 with 61786 at 2,1,2 +Id : 62194, {_}: divide (multiply (divide ?311 ?310) (multiply ?310 (multiply (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308)) (multiply ?306 ?307)))) ?309 =>= ?311 [307, 306, 308, 309, 310, 311] by Demod 62185 with 6 at 1,2 +Id : 61520, {_}: divide (divide (divide ?54 ?53) (divide (multiply ?51 ?52) ?53)) (divide (inverse ?52) ?51) =>= ?54 [52, 51, 53, 54] by Demod 14 with 61017 at 1,2 +Id : 62166, {_}: divide (divide (divide ?54 ?53) (divide (multiply ?51 ?52) ?53)) (inverse (multiply ?51 ?52)) =>= ?54 [52, 51, 53, 54] by Demod 61520 with 61786 at 2,2 +Id : 62205, {_}: multiply (divide (divide ?54 ?53) (divide (multiply ?51 ?52) ?53)) (multiply ?51 ?52) =>= ?54 [52, 51, 53, 54] by Demod 62166 with 6 at 2 +Id : 62206, {_}: divide (multiply (divide ?311 ?310) (multiply ?310 ?309)) ?309 =>= ?311 [309, 310, 311] by Demod 62194 with 62205 at 2,2,1,2 +Id : 64698, {_}: multiply ?338511 ?338513 =<= multiply (divide ?338511 ?338512) (multiply ?338512 ?338513) [338512, 338513, 338511] by Super 64649 with 62206 at 1,2 +Id : 88169, {_}: multiply ?351323 (multiply ?351321 ?351322) =?= multiply (multiply ?351323 ?351321) ?351322 [351322, 351321, 351323] by Demod 70843 with 64698 at 2 +Id : 88454, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 88169 at 2 +Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 +% SZS output end CNFRefutation for GRP477-1.p +Order + == is 100 + _ is 99 + a2 is 95 + b2 is 98 + inverse is 97 + multiply is 96 + prove_these_axioms_2 is 94 + single_axiom is 93 +Facts + Id : 4, {_}: + multiply + (inverse + (multiply + (inverse + (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) + (multiply (inverse (multiply ?4 ?5)) + (multiply ?4 + (inverse + (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) + ?7 + =>= + ?6 + [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 +Goal + Id : 2, {_}: + multiply (multiply (inverse b2) b2) a2 =>= a2 + [] by prove_these_axioms_2 +Last chance: 1246072731.81 +Last chance: all is indexed 1246074535.38 +Last chance: failed over 100 goal 1246074535.38 +FAILURE in 0 iterations +% SZS status Timeout for GRP506-1.p +Order + == is 100 + _ is 99 + a is 98 + b is 97 + inverse is 94 + multiply is 96 + prove_these_axioms_4 is 95 + single_axiom is 93 +Facts + Id : 4, {_}: + multiply + (inverse + (multiply + (inverse + (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) + (multiply (inverse (multiply ?4 ?5)) + (multiply ?4 + (inverse + (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) + ?7 + =>= + ?6 + [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 +Goal + Id : 2, {_}: multiply a b =>= multiply b a [] by prove_these_axioms_4 +Last chance: 1246074836.94 +Last chance: all is indexed 1246076623.31 +Last chance: failed over 100 goal 1246076623.31 +FAILURE in 0 iterations +% SZS status Timeout for GRP508-1.p +Order + == is 100 + _ is 99 + a is 98 + join is 95 + meet is 97 + prove_normal_axioms_1 is 96 + single_axiom is 94 +Facts + Id : 4, {_}: + join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) + (meet + (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) + (meet + (join + (meet ?3 + (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) + (meet ?8 + (join ?3 + (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) + (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) + (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) + =>= + ?3 + [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 +Goal + Id : 2, {_}: meet a a =>= a [] by prove_normal_axioms_1 +Found proof, 13.503938s +% SZS status Unsatisfiable for LAT080-1.p +% SZS output start CNFRefutation for LAT080-1.p +Id : 4, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 +Id : 5, {_}: join (meet (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12) (meet (join (meet ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)) (meet (join (meet ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)) (meet ?16 (join ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)))) (join ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)))) (join (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12)) =>= ?11 [16, 15, 14, 13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 ?14 ?15 ?16 +Id : 39, {_}: join (meet (join (meet ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) (join ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))))) ?290) (meet (join (meet ?287 (join (join (meet ?291 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) ?292)) (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))))) (meet ?289 (join ?287 (join (join (meet ?291 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) ?292)) (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))))))) (join (join (meet ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) (join ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))))) ?290)) =>= join (meet ?288 ?289) (meet ?289 (join ?288 ?289)) [292, 291, 290, 289, 288, 287] by Super 5 with 4 at 1,2,1,2,2 +Id : 42, {_}: join (meet (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 318, 317, 323] by Super 39 with 4 at 2,2,2,1,2,2,2 +Id : 126, {_}: join (meet (join (meet ?323 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 317, 318, 323] by Demod 42 with 4 at 2,1,1,1,2 +Id : 127, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 317, 318, 323] by Demod 126 with 4 at 1,2,1,1,2 +Id : 128, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 322, 321, 320, 319, 317, 325, 324, 318, 323] by Demod 127 with 4 at 2,2,2,1,1,2 +Id : 129, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 322, 321, 320, 319, 317, 325, 324, 318, 323] by Demod 128 with 4 at 2,1,1,2,1,1,2,2 +Id : 130, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 129 with 4 at 1,2,1,2,1,1,2,2 +Id : 131, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 130 with 4 at 2,2,1,1,2,2 +Id : 132, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 131 with 4 at 2,1,1,2,2,2,1,2,2 +Id : 133, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 132 with 4 at 1,2,1,2,2,2,1,2,2 +Id : 134, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 133 with 4 at 2,2,2,2,1,2,2 +Id : 135, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 134 with 4 at 2,1,1,2,2,2 +Id : 136, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324)) =?= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 135 with 4 at 1,2,1,2,2,2 +Id : 714, {_}: join (meet (join (meet ?1381 ?1382) (meet ?1382 (join ?1381 ?1382))) ?1383) (meet (join (meet ?1381 (join (join (meet ?1384 ?1382) (meet ?1382 ?1385)) ?1382)) (meet (join (meet ?1386 (join (join (meet ?1387 ?1382) (meet ?1382 ?1388)) ?1382)) (meet (join (meet ?1382 (meet (meet (join ?1387 (join ?1382 ?1388)) (join ?1389 ?1382)) ?1382)) (meet ?1390 (join ?1382 (meet (meet (join ?1387 (join ?1382 ?1388)) (join ?1389 ?1382)) ?1382)))) (join ?1386 (join (join (meet ?1387 ?1382) (meet ?1382 ?1388)) ?1382)))) (join ?1381 (join (join (meet ?1384 ?1382) (meet ?1382 ?1385)) ?1382)))) (join (join (meet ?1381 ?1382) (meet ?1382 (join ?1381 ?1382))) ?1383)) =>= ?1382 [1390, 1389, 1388, 1387, 1386, 1385, 1384, 1383, 1382, 1381] by Demod 136 with 4 at 3 +Id : 1147, {_}: join (meet (join (meet (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511) (meet ?2511 (join (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511))) ?2512) (meet ?2511 (join (join (meet (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511) (meet ?2511 (join (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511))) ?2512)) =>= ?2511 [2512, 2511, 2510] by Super 714 with 4 at 1,2,2 +Id : 748, {_}: join (meet (join (meet (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912) (meet ?1912 (join (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912))) ?1913) (meet ?1912 (join (join (meet (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912) (meet ?1912 (join (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912))) ?1913)) =>= ?1912 [1913, 1912, 1916] by Super 714 with 4 at 1,2,2 +Id : 1164, {_}: join (meet (join (meet (join (meet (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643) (meet ?2643 (join (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643))) ?2643) (meet ?2643 (join (join (meet (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643) (meet ?2643 (join (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643))) ?2643))) ?2644) (meet ?2643 (join ?2643 ?2644)) =>= ?2643 [2644, 2643, 2642] by Super 1147 with 748 at 1,2,2,2 +Id : 1544, {_}: join (meet ?2643 ?2644) (meet ?2643 (join ?2643 ?2644)) =>= ?2643 [2644, 2643] by Demod 1164 with 748 at 1,1,2 +Id : 13, {_}: join (meet (join (meet ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) (join ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))))) ?113) (meet (join (meet ?112 (join (join (meet ?114 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) ?115)) (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))))) (meet ?107 (join ?112 (join (join (meet ?114 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) ?115)) (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))))))) (join (join (meet ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) (join ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))))) ?113)) =>= join (meet ?106 ?107) (meet ?107 (join ?106 ?107)) [115, 114, 113, 107, 106, 112] by Super 5 with 4 at 1,2,1,2,2 +Id : 1092, {_}: join (meet (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2039, 2038, 2040] by Super 13 with 748 at 2,2,2,1,2,2,2 +Id : 1218, {_}: join (meet (join (meet ?2040 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2038, 2039, 2040] by Demod 1092 with 748 at 2,1,1,1,2 +Id : 1219, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2038, 2039, 2040] by Demod 1218 with 748 at 1,2,1,1,2 +Id : 1220, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2038, 2042, 2041, 2039, 2040] by Demod 1219 with 748 at 2,2,2,1,1,2 +Id : 1221, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2038, 2042, 2041, 2039, 2040] by Demod 1220 with 748 at 2,1,1,2,1,1,2,2 +Id : 1222, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1221 with 748 at 1,2,1,2,1,1,2,2 +Id : 1223, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1222 with 748 at 2,2,1,1,2,2 +Id : 1224, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1223 with 748 at 2,1,1,2,2,2,1,2,2 +Id : 1225, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1224 with 748 at 1,2,1,2,2,2,1,2,2 +Id : 1226, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1225 with 748 at 2,2,2,2,1,2,2 +Id : 1227, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1226 with 748 at 2,1,1,2,2,2 +Id : 1228, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =?= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1227 with 748 at 1,2,1,2,2,2 +Id : 2531, {_}: join (meet (join (meet ?4434 ?4435) (meet ?4435 (join ?4434 ?4435))) ?4436) (meet (join (meet ?4434 (join (join (meet ?4437 ?4435) (meet ?4435 ?4438)) ?4435)) (meet ?4435 (join ?4434 (join (join (meet ?4437 ?4435) (meet ?4435 ?4438)) ?4435)))) (join (join (meet ?4434 ?4435) (meet ?4435 (join ?4434 ?4435))) ?4436)) =>= ?4435 [4438, 4437, 4436, 4435, 4434] by Demod 1228 with 748 at 3 +Id : 2540, {_}: join (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))))) ?4515) (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))))) (join ?4510 ?4515)) =>= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4517, 4516, 4515, 4514, 4513, 4512, 4511, 4510, 4509] by Super 2531 with 4 at 1,2,2,2 +Id : 2926, {_}: join (meet ?4510 ?4515) (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))))) (join ?4510 ?4515)) =>= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4517, 4514, 4513, 4512, 4511, 4516, 4509, 4515, 4510] by Demod 2540 with 4 at 1,1,2 +Id : 2927, {_}: join (meet ?4510 ?4515) (meet ?4510 (join ?4510 ?4515)) =?= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4514, 4513, 4512, 4511, 4509, 4515, 4510] by Demod 2926 with 4 at 1,2,2 +Id : 2928, {_}: ?4510 =<= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4514, 4513, 4512, 4511, 4509, 4510] by Demod 2927 with 1544 at 2 +Id : 4152, {_}: ?6409 =<= join (meet ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409)) (meet ?6413 (join ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409))) [6413, 6412, 6411, 6410, 6409] by Super 1544 with 2928 at 2 +Id : 1229, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =>= ?2039 [2043, 2042, 2041, 2039, 2040] by Demod 1228 with 748 at 3 +Id : 2544, {_}: join (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))))) ?4551) (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))))) (join ?4548 ?4551)) =>= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4553, 4552, 4551, 4550, 4549, 4548, 4547] by Super 2531 with 1229 at 1,2,2,2 +Id : 2938, {_}: join (meet ?4548 ?4551) (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))))) (join ?4548 ?4551)) =>= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4553, 4550, 4549, 4552, 4547, 4551, 4548] by Demod 2544 with 1229 at 1,1,2 +Id : 2939, {_}: join (meet ?4548 ?4551) (meet ?4548 (join ?4548 ?4551)) =?= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4550, 4549, 4547, 4551, 4548] by Demod 2938 with 1229 at 1,2,2 +Id : 2940, {_}: ?4548 =<= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4550, 4549, 4547, 4548] by Demod 2939 with 1544 at 2 +Id : 2998, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet ?2039 (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =>= ?2039 [2041, 2039, 2040] by Demod 1229 with 2940 at 1,2,2 +Id : 4435, {_}: join (meet ?7069 ?7068) (meet ?7068 (join ?7069 ?7068)) =>= ?7068 [7068, 7069] by Super 2998 with 4152 at 2 +Id : 4973, {_}: ?7997 =<= meet (meet (join ?7998 (join ?7997 ?7999)) (join ?8000 ?7997)) ?7997 [8000, 7999, 7998, 7997] by Super 4152 with 4435 at 3 +Id : 7418, {_}: meet ?10627 ?10628 =<= meet (meet (join ?10629 ?10627) (join ?10630 (meet ?10627 ?10628))) (meet ?10627 ?10628) [10630, 10629, 10628, 10627] by Super 4973 with 1544 at 2,1,1,3 +Id : 3035, {_}: ?5143 =<= join (meet ?5144 (join (join (meet ?5145 ?5143) (meet ?5143 ?5146)) ?5143)) (meet ?5143 (join ?5144 (join (join (meet ?5145 ?5143) (meet ?5143 ?5146)) ?5143))) [5146, 5145, 5144, 5143] by Demod 2939 with 1544 at 2 +Id : 3039, {_}: ?5175 =<= join (meet ?5174 (join (join (meet ?5175 ?5175) (meet ?5175 (join ?5175 ?5175))) ?5175)) (meet ?5175 (join ?5174 (join ?5175 ?5175))) [5174, 5175] by Super 3035 with 1544 at 1,2,2,2,3 +Id : 3217, {_}: ?5175 =<= join (meet ?5174 (join ?5175 ?5175)) (meet ?5175 (join ?5174 (join ?5175 ?5175))) [5174, 5175] by Demod 3039 with 1544 at 1,2,1,3 +Id : 4899, {_}: ?7757 =<= meet (meet (join ?7758 (join ?7757 ?7759)) (join ?7760 ?7757)) ?7757 [7760, 7759, 7758, 7757] by Super 4152 with 4435 at 3 +Id : 4939, {_}: ?6409 =<= join (meet ?6409 ?6409) (meet ?6413 (join ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409))) [6412, 6411, 6410, 6413, 6409] by Demod 4152 with 4899 at 2,1,3 +Id : 4940, {_}: ?6409 =<= join (meet ?6409 ?6409) (meet ?6413 (join ?6409 ?6409)) [6413, 6409] by Demod 4939 with 4899 at 2,2,2,3 +Id : 4941, {_}: ?7815 =<= join (meet ?7815 ?7815) (join ?7815 ?7815) [7815] by Super 4940 with 4899 at 2,3 +Id : 5068, {_}: ?8129 =<= join (meet (meet ?8129 ?8129) (join ?8129 ?8129)) (meet ?8129 ?8129) [8129] by Super 3217 with 4941 at 2,2,3 +Id : 5072, {_}: ?8141 =<= meet (meet ?8141 (join ?8142 ?8141)) ?8141 [8142, 8141] by Super 4899 with 4941 at 1,1,3 +Id : 5084, {_}: join ?8151 (meet ?8151 (join (meet ?8151 (join ?8152 ?8151)) ?8151)) =>= ?8151 [8152, 8151] by Super 4435 with 5072 at 1,2 +Id : 5705, {_}: ?8954 =<= meet (meet (join ?8955 ?8954) (join ?8956 ?8954)) ?8954 [8956, 8955, 8954] by Super 4899 with 5084 at 2,1,1,3 +Id : 5955, {_}: join ?9293 ?9293 =<= meet (meet (join ?9294 (join ?9293 ?9293)) ?9293) (join ?9293 ?9293) [9294, 9293] by Super 5705 with 4941 at 2,1,3 +Id : 5957, {_}: join ?9299 ?9299 =<= meet (meet ?9299 ?9299) (join ?9299 ?9299) [9299] by Super 5955 with 4941 at 1,1,3 +Id : 6022, {_}: ?8129 =<= join (join ?8129 ?8129) (meet ?8129 ?8129) [8129] by Demod 5068 with 5957 at 1,3 +Id : 7628, {_}: meet ?11050 ?11050 =<= meet (meet (join ?11051 ?11050) ?11050) (meet ?11050 ?11050) [11051, 11050] by Super 7418 with 6022 at 2,1,3 +Id : 6024, {_}: join (join ?9306 ?9306) (meet (join ?9306 ?9306) (join (meet ?9306 ?9306) (join ?9306 ?9306))) =>= join ?9306 ?9306 [9306] by Super 4435 with 5957 at 1,2 +Id : 6144, {_}: join (join ?9306 ?9306) (meet (join ?9306 ?9306) ?9306) =>= join ?9306 ?9306 [9306] by Demod 6024 with 4941 at 2,2,2 +Id : 6187, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join (meet (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444)) (meet (join ?9444 ?9444) ?9444))) =>= meet (join ?9444 ?9444) ?9444 [9444] by Super 5084 with 6144 at 2,1,2,2,2 +Id : 5117, {_}: ?8275 =<= meet (meet ?8275 (join ?8276 ?8275)) ?8275 [8276, 8275] by Super 4899 with 4941 at 1,1,3 +Id : 5128, {_}: join ?8312 ?8312 =<= meet (meet (join ?8312 ?8312) ?8312) (join ?8312 ?8312) [8312] by Super 5117 with 4941 at 2,1,3 +Id : 6199, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join (join ?9444 ?9444) (meet (join ?9444 ?9444) ?9444))) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6187 with 5128 at 1,2,2,2 +Id : 6200, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444)) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6199 with 6144 at 2,2,2 +Id : 6201, {_}: join (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6200 with 5128 at 2,2 +Id : 6718, {_}: ?10018 =<= meet (meet (meet (join ?10018 ?10018) ?10018) (join ?10019 ?10018)) ?10018 [10019, 10018] by Super 4899 with 6201 at 1,1,3 +Id : 6736, {_}: ?10071 =<= meet (join ?10071 ?10071) ?10071 [10071] by Super 6718 with 5128 at 1,3 +Id : 7650, {_}: meet ?11113 ?11113 =<= meet ?11113 (meet ?11113 ?11113) [11113] by Super 7628 with 6736 at 1,3 +Id : 7731, {_}: join (meet ?11160 ?11160) (meet ?11160 (join ?11160 (meet ?11160 ?11160))) =>= ?11160 [11160] by Super 1544 with 7650 at 1,2 +Id : 6841, {_}: join ?10124 (meet (join ?10124 ?10124) (join (join ?10124 ?10124) ?10124)) =>= join ?10124 ?10124 [10124] by Super 1544 with 6736 at 1,2 +Id : 6817, {_}: join (join ?9306 ?9306) ?9306 =>= join ?9306 ?9306 [9306] by Demod 6144 with 6736 at 2,2 +Id : 6906, {_}: join ?10124 (meet (join ?10124 ?10124) (join ?10124 ?10124)) =>= join ?10124 ?10124 [10124] by Demod 6841 with 6817 at 2,2,2 +Id : 1656, {_}: join (meet ?3234 ?3235) (meet ?3234 (join ?3234 ?3235)) =>= ?3234 [3235, 3234] by Demod 1164 with 748 at 1,1,2 +Id : 1661, {_}: join (meet (meet ?3267 ?3268) (meet ?3267 (join ?3267 ?3268))) (meet (meet ?3267 ?3268) ?3267) =>= meet ?3267 ?3268 [3268, 3267] by Super 1656 with 1544 at 2,2,2 +Id : 8992, {_}: meet ?12671 (join ?12672 ?12672) =<= meet (meet (join ?12673 ?12671) ?12672) (meet ?12671 (join ?12672 ?12672)) [12673, 12672, 12671] by Super 7418 with 4940 at 2,1,3 +Id : 6822, {_}: join ?9444 (join ?9444 ?9444) =<= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6201 with 6736 at 1,2 +Id : 6823, {_}: join ?9444 (join ?9444 ?9444) =>= ?9444 [9444] by Demod 6822 with 6736 at 3 +Id : 9646, {_}: meet (join ?13551 ?13551) (join ?13552 ?13552) =<= meet (meet ?13551 ?13552) (meet (join ?13551 ?13551) (join ?13552 ?13552)) [13552, 13551] by Super 8992 with 6823 at 1,1,3 +Id : 9670, {_}: meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624)) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624))) [13624] by Super 9646 with 7650 at 1,3 +Id : 6333, {_}: meet ?9575 ?9575 =<= meet (meet (join ?9576 (meet ?9575 ?9575)) ?9575) (meet ?9575 ?9575) [9576, 9575] by Super 5705 with 5068 at 2,1,3 +Id : 6336, {_}: meet ?9583 ?9583 =<= meet (meet ?9583 ?9583) (meet ?9583 ?9583) [9583] by Super 6333 with 6022 at 1,1,3 +Id : 6405, {_}: meet ?9659 ?9659 =<= join (join (meet ?9659 ?9659) (meet ?9659 ?9659)) (meet ?9659 ?9659) [9659] by Super 6022 with 6336 at 2,3 +Id : 7013, {_}: meet ?9659 ?9659 =<= join (meet ?9659 ?9659) (meet ?9659 ?9659) [9659] by Demod 6405 with 6817 at 3 +Id : 9768, {_}: meet (join ?13624 ?13624) (meet ?13624 ?13624) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624))) [13624] by Demod 9670 with 7013 at 2,2 +Id : 9769, {_}: meet (join ?13624 ?13624) (meet ?13624 ?13624) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (meet ?13624 ?13624)) [13624] by Demod 9768 with 7013 at 2,2,3 +Id : 10286, {_}: join (meet (meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))) (meet (meet ?14243 ?14243) (join (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Super 1661 with 9769 at 1,2,2 +Id : 10416, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet (meet ?14243 ?14243) (join (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10286 with 9769 at 1,1,2 +Id : 7044, {_}: meet ?10282 ?10282 =<= join (meet (meet ?10282 ?10282) (meet ?10282 ?10282)) (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Super 4940 with 7013 at 2,2,3 +Id : 7086, {_}: meet ?10282 ?10282 =<= join (meet ?10282 ?10282) (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Demod 7044 with 6336 at 1,3 +Id : 10417, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet (meet ?14243 ?14243) (meet ?14243 ?14243))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10416 with 7086 at 2,2,1,2 +Id : 10418, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10417 with 6336 at 2,1,2 +Id : 7467, {_}: meet ?10854 ?10854 =<= meet (meet (join ?10855 ?10854) (meet ?10854 ?10854)) (meet ?10854 ?10854) [10855, 10854] by Super 7418 with 7013 at 2,1,3 +Id : 10419, {_}: join (meet ?14243 ?14243) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10418 with 7467 at 1,2 +Id : 10420, {_}: meet ?14243 ?14243 =<= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10419 with 7086 at 2 +Id : 10421, {_}: meet ?14243 ?14243 =<= meet (join ?14243 ?14243) (meet ?14243 ?14243) [14243] by Demod 10420 with 9769 at 3 +Id : 10483, {_}: join (meet (meet (join ?14359 ?14359) (meet ?14359 ?14359)) (meet (join ?14359 ?14359) (join (join ?14359 ?14359) (meet ?14359 ?14359)))) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Super 1661 with 10421 at 1,2,2 +Id : 10517, {_}: join (meet (meet ?14359 ?14359) (meet (join ?14359 ?14359) (join (join ?14359 ?14359) (meet ?14359 ?14359)))) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10483 with 10421 at 1,1,2 +Id : 10518, {_}: join (meet (meet ?14359 ?14359) (meet (join ?14359 ?14359) ?14359)) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10517 with 6022 at 2,2,1,2 +Id : 10519, {_}: join (meet (meet ?14359 ?14359) ?14359) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10518 with 6736 at 2,1,2 +Id : 10520, {_}: join (meet (meet ?14359 ?14359) ?14359) (join ?14359 ?14359) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10519 with 5957 at 2,2 +Id : 10521, {_}: join (meet (meet ?14359 ?14359) ?14359) (join ?14359 ?14359) =>= meet ?14359 ?14359 [14359] by Demod 10520 with 10421 at 3 +Id : 10992, {_}: join (meet (meet (meet ?14539 ?14539) ?14539) (join ?14539 ?14539)) (meet (join ?14539 ?14539) (meet ?14539 ?14539)) =>= join ?14539 ?14539 [14539] by Super 4435 with 10521 at 2,2,2 +Id : 8999, {_}: meet (meet ?12702 ?12702) (join ?12702 ?12702) =<= meet (meet (join ?12703 (meet ?12702 ?12702)) ?12702) (join ?12702 ?12702) [12703, 12702] by Super 8992 with 5957 at 2,3 +Id : 10037, {_}: join ?14089 ?14089 =<= meet (meet (join ?14090 (meet ?14089 ?14089)) ?14089) (join ?14089 ?14089) [14090, 14089] by Demod 8999 with 5957 at 2 +Id : 10046, {_}: join ?14111 ?14111 =<= meet (meet (meet ?14111 ?14111) ?14111) (join ?14111 ?14111) [14111] by Super 10037 with 7013 at 1,1,3 +Id : 11120, {_}: join (join ?14539 ?14539) (meet (join ?14539 ?14539) (meet ?14539 ?14539)) =>= join ?14539 ?14539 [14539] by Demod 10992 with 10046 at 1,2 +Id : 11121, {_}: join (join ?14539 ?14539) (meet ?14539 ?14539) =>= join ?14539 ?14539 [14539] by Demod 11120 with 10421 at 2,2 +Id : 11122, {_}: ?14539 =<= join ?14539 ?14539 [14539] by Demod 11121 with 6022 at 2 +Id : 11192, {_}: join ?10124 (meet ?10124 (join ?10124 ?10124)) =>= join ?10124 ?10124 [10124] by Demod 6906 with 11122 at 1,2,2 +Id : 11193, {_}: join ?10124 (meet ?10124 ?10124) =>= join ?10124 ?10124 [10124] by Demod 11192 with 11122 at 2,2,2 +Id : 11194, {_}: join ?10124 (meet ?10124 ?10124) =>= ?10124 [10124] by Demod 11193 with 11122 at 3 +Id : 11206, {_}: join (meet ?11160 ?11160) (meet ?11160 ?11160) =>= ?11160 [11160] by Demod 7731 with 11194 at 2,2,2 +Id : 11207, {_}: meet ?11160 ?11160 =>= ?11160 [11160] by Demod 11206 with 11122 at 2 +Id : 11456, {_}: a === a [] by Demod 2 with 11207 at 2 +Id : 2, {_}: meet a a =>= a [] by prove_normal_axioms_1 +% SZS output end CNFRefutation for LAT080-1.p +Order + == is 100 + _ is 99 + a is 98 + b is 97 + join is 95 + meet is 96 + prove_normal_axioms_8 is 94 + single_axiom is 93 +Facts + Id : 4, {_}: + join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) + (meet + (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) + (meet + (join + (meet ?3 + (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) + (meet ?8 + (join ?3 + (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) + (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) + (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) + =>= + ?3 + [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 +Goal + Id : 2, {_}: join a (meet a b) =>= a [] by prove_normal_axioms_8 +Found proof, 13.641729s +% SZS status Unsatisfiable for LAT087-1.p +% SZS output start CNFRefutation for LAT087-1.p +Id : 4, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 +Id : 5, {_}: join (meet (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12) (meet (join (meet ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)) (meet (join (meet ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)) (meet ?16 (join ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)))) (join ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)))) (join (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12)) =>= ?11 [16, 15, 14, 13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 ?14 ?15 ?16 +Id : 39, {_}: join (meet (join (meet ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) (join ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))))) ?290) (meet (join (meet ?287 (join (join (meet ?291 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) ?292)) (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))))) (meet ?289 (join ?287 (join (join (meet ?291 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) ?292)) (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))))))) (join (join (meet ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) (join ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))))) ?290)) =>= join (meet ?288 ?289) (meet ?289 (join ?288 ?289)) [292, 291, 290, 289, 288, 287] by Super 5 with 4 at 1,2,1,2,2 +Id : 42, {_}: join (meet (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 318, 317, 323] by Super 39 with 4 at 2,2,2,1,2,2,2 +Id : 126, {_}: join (meet (join (meet ?323 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 317, 318, 323] by Demod 42 with 4 at 2,1,1,1,2 +Id : 127, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 317, 318, 323] by Demod 126 with 4 at 1,2,1,1,2 +Id : 128, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 322, 321, 320, 319, 317, 325, 324, 318, 323] by Demod 127 with 4 at 2,2,2,1,1,2 +Id : 129, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 322, 321, 320, 319, 317, 325, 324, 318, 323] by Demod 128 with 4 at 2,1,1,2,1,1,2,2 +Id : 130, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 129 with 4 at 1,2,1,2,1,1,2,2 +Id : 131, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 130 with 4 at 2,2,1,1,2,2 +Id : 132, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 131 with 4 at 2,1,1,2,2,2,1,2,2 +Id : 133, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 132 with 4 at 1,2,1,2,2,2,1,2,2 +Id : 134, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 133 with 4 at 2,2,2,2,1,2,2 +Id : 135, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 134 with 4 at 2,1,1,2,2,2 +Id : 136, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324)) =?= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 135 with 4 at 1,2,1,2,2,2 +Id : 714, {_}: join (meet (join (meet ?1381 ?1382) (meet ?1382 (join ?1381 ?1382))) ?1383) (meet (join (meet ?1381 (join (join (meet ?1384 ?1382) (meet ?1382 ?1385)) ?1382)) (meet (join (meet ?1386 (join (join (meet ?1387 ?1382) (meet ?1382 ?1388)) ?1382)) (meet (join (meet ?1382 (meet (meet (join ?1387 (join ?1382 ?1388)) (join ?1389 ?1382)) ?1382)) (meet ?1390 (join ?1382 (meet (meet (join ?1387 (join ?1382 ?1388)) (join ?1389 ?1382)) ?1382)))) (join ?1386 (join (join (meet ?1387 ?1382) (meet ?1382 ?1388)) ?1382)))) (join ?1381 (join (join (meet ?1384 ?1382) (meet ?1382 ?1385)) ?1382)))) (join (join (meet ?1381 ?1382) (meet ?1382 (join ?1381 ?1382))) ?1383)) =>= ?1382 [1390, 1389, 1388, 1387, 1386, 1385, 1384, 1383, 1382, 1381] by Demod 136 with 4 at 3 +Id : 1147, {_}: join (meet (join (meet (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511) (meet ?2511 (join (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511))) ?2512) (meet ?2511 (join (join (meet (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511) (meet ?2511 (join (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511))) ?2512)) =>= ?2511 [2512, 2511, 2510] by Super 714 with 4 at 1,2,2 +Id : 748, {_}: join (meet (join (meet (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912) (meet ?1912 (join (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912))) ?1913) (meet ?1912 (join (join (meet (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912) (meet ?1912 (join (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912))) ?1913)) =>= ?1912 [1913, 1912, 1916] by Super 714 with 4 at 1,2,2 +Id : 1164, {_}: join (meet (join (meet (join (meet (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643) (meet ?2643 (join (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643))) ?2643) (meet ?2643 (join (join (meet (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643) (meet ?2643 (join (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643))) ?2643))) ?2644) (meet ?2643 (join ?2643 ?2644)) =>= ?2643 [2644, 2643, 2642] by Super 1147 with 748 at 1,2,2,2 +Id : 1544, {_}: join (meet ?2643 ?2644) (meet ?2643 (join ?2643 ?2644)) =>= ?2643 [2644, 2643] by Demod 1164 with 748 at 1,1,2 +Id : 13, {_}: join (meet (join (meet ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) (join ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))))) ?113) (meet (join (meet ?112 (join (join (meet ?114 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) ?115)) (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))))) (meet ?107 (join ?112 (join (join (meet ?114 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) ?115)) (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))))))) (join (join (meet ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) (join ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))))) ?113)) =>= join (meet ?106 ?107) (meet ?107 (join ?106 ?107)) [115, 114, 113, 107, 106, 112] by Super 5 with 4 at 1,2,1,2,2 +Id : 1092, {_}: join (meet (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2039, 2038, 2040] by Super 13 with 748 at 2,2,2,1,2,2,2 +Id : 1218, {_}: join (meet (join (meet ?2040 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2038, 2039, 2040] by Demod 1092 with 748 at 2,1,1,1,2 +Id : 1219, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2038, 2039, 2040] by Demod 1218 with 748 at 1,2,1,1,2 +Id : 1220, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2038, 2042, 2041, 2039, 2040] by Demod 1219 with 748 at 2,2,2,1,1,2 +Id : 1221, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2038, 2042, 2041, 2039, 2040] by Demod 1220 with 748 at 2,1,1,2,1,1,2,2 +Id : 1222, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1221 with 748 at 1,2,1,2,1,1,2,2 +Id : 1223, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1222 with 748 at 2,2,1,1,2,2 +Id : 1224, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1223 with 748 at 2,1,1,2,2,2,1,2,2 +Id : 1225, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1224 with 748 at 1,2,1,2,2,2,1,2,2 +Id : 1226, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1225 with 748 at 2,2,2,2,1,2,2 +Id : 1227, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1226 with 748 at 2,1,1,2,2,2 +Id : 1228, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =?= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1227 with 748 at 1,2,1,2,2,2 +Id : 2531, {_}: join (meet (join (meet ?4434 ?4435) (meet ?4435 (join ?4434 ?4435))) ?4436) (meet (join (meet ?4434 (join (join (meet ?4437 ?4435) (meet ?4435 ?4438)) ?4435)) (meet ?4435 (join ?4434 (join (join (meet ?4437 ?4435) (meet ?4435 ?4438)) ?4435)))) (join (join (meet ?4434 ?4435) (meet ?4435 (join ?4434 ?4435))) ?4436)) =>= ?4435 [4438, 4437, 4436, 4435, 4434] by Demod 1228 with 748 at 3 +Id : 1229, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =>= ?2039 [2043, 2042, 2041, 2039, 2040] by Demod 1228 with 748 at 3 +Id : 2544, {_}: join (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))))) ?4551) (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))))) (join ?4548 ?4551)) =>= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4553, 4552, 4551, 4550, 4549, 4548, 4547] by Super 2531 with 1229 at 1,2,2,2 +Id : 2938, {_}: join (meet ?4548 ?4551) (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))))) (join ?4548 ?4551)) =>= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4553, 4550, 4549, 4552, 4547, 4551, 4548] by Demod 2544 with 1229 at 1,1,2 +Id : 2939, {_}: join (meet ?4548 ?4551) (meet ?4548 (join ?4548 ?4551)) =?= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4550, 4549, 4547, 4551, 4548] by Demod 2938 with 1229 at 1,2,2 +Id : 2940, {_}: ?4548 =<= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4550, 4549, 4547, 4548] by Demod 2939 with 1544 at 2 +Id : 2998, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet ?2039 (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =>= ?2039 [2041, 2039, 2040] by Demod 1229 with 2940 at 1,2,2 +Id : 2540, {_}: join (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))))) ?4515) (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))))) (join ?4510 ?4515)) =>= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4517, 4516, 4515, 4514, 4513, 4512, 4511, 4510, 4509] by Super 2531 with 4 at 1,2,2,2 +Id : 2926, {_}: join (meet ?4510 ?4515) (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))))) (join ?4510 ?4515)) =>= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4517, 4514, 4513, 4512, 4511, 4516, 4509, 4515, 4510] by Demod 2540 with 4 at 1,1,2 +Id : 2927, {_}: join (meet ?4510 ?4515) (meet ?4510 (join ?4510 ?4515)) =?= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4514, 4513, 4512, 4511, 4509, 4515, 4510] by Demod 2926 with 4 at 1,2,2 +Id : 2928, {_}: ?4510 =<= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4514, 4513, 4512, 4511, 4509, 4510] by Demod 2927 with 1544 at 2 +Id : 4152, {_}: ?6409 =<= join (meet ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409)) (meet ?6413 (join ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409))) [6413, 6412, 6411, 6410, 6409] by Super 1544 with 2928 at 2 +Id : 4435, {_}: join (meet ?7069 ?7068) (meet ?7068 (join ?7069 ?7068)) =>= ?7068 [7068, 7069] by Super 2998 with 4152 at 2 +Id : 1656, {_}: join (meet ?3234 ?3235) (meet ?3234 (join ?3234 ?3235)) =>= ?3234 [3235, 3234] by Demod 1164 with 748 at 1,1,2 +Id : 1661, {_}: join (meet (meet ?3267 ?3268) (meet ?3267 (join ?3267 ?3268))) (meet (meet ?3267 ?3268) ?3267) =>= meet ?3267 ?3268 [3268, 3267] by Super 1656 with 1544 at 2,2,2 +Id : 4973, {_}: ?7997 =<= meet (meet (join ?7998 (join ?7997 ?7999)) (join ?8000 ?7997)) ?7997 [8000, 7999, 7998, 7997] by Super 4152 with 4435 at 3 +Id : 7418, {_}: meet ?10627 ?10628 =<= meet (meet (join ?10629 ?10627) (join ?10630 (meet ?10627 ?10628))) (meet ?10627 ?10628) [10630, 10629, 10628, 10627] by Super 4973 with 1544 at 2,1,1,3 +Id : 4899, {_}: ?7757 =<= meet (meet (join ?7758 (join ?7757 ?7759)) (join ?7760 ?7757)) ?7757 [7760, 7759, 7758, 7757] by Super 4152 with 4435 at 3 +Id : 4939, {_}: ?6409 =<= join (meet ?6409 ?6409) (meet ?6413 (join ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409))) [6412, 6411, 6410, 6413, 6409] by Demod 4152 with 4899 at 2,1,3 +Id : 4940, {_}: ?6409 =<= join (meet ?6409 ?6409) (meet ?6413 (join ?6409 ?6409)) [6413, 6409] by Demod 4939 with 4899 at 2,2,2,3 +Id : 8992, {_}: meet ?12671 (join ?12672 ?12672) =<= meet (meet (join ?12673 ?12671) ?12672) (meet ?12671 (join ?12672 ?12672)) [12673, 12672, 12671] by Super 7418 with 4940 at 2,1,3 +Id : 4941, {_}: ?7815 =<= join (meet ?7815 ?7815) (join ?7815 ?7815) [7815] by Super 4940 with 4899 at 2,3 +Id : 5072, {_}: ?8141 =<= meet (meet ?8141 (join ?8142 ?8141)) ?8141 [8142, 8141] by Super 4899 with 4941 at 1,1,3 +Id : 5084, {_}: join ?8151 (meet ?8151 (join (meet ?8151 (join ?8152 ?8151)) ?8151)) =>= ?8151 [8152, 8151] by Super 4435 with 5072 at 1,2 +Id : 5705, {_}: ?8954 =<= meet (meet (join ?8955 ?8954) (join ?8956 ?8954)) ?8954 [8956, 8955, 8954] by Super 4899 with 5084 at 2,1,1,3 +Id : 5955, {_}: join ?9293 ?9293 =<= meet (meet (join ?9294 (join ?9293 ?9293)) ?9293) (join ?9293 ?9293) [9294, 9293] by Super 5705 with 4941 at 2,1,3 +Id : 5957, {_}: join ?9299 ?9299 =<= meet (meet ?9299 ?9299) (join ?9299 ?9299) [9299] by Super 5955 with 4941 at 1,1,3 +Id : 6024, {_}: join (join ?9306 ?9306) (meet (join ?9306 ?9306) (join (meet ?9306 ?9306) (join ?9306 ?9306))) =>= join ?9306 ?9306 [9306] by Super 4435 with 5957 at 1,2 +Id : 6144, {_}: join (join ?9306 ?9306) (meet (join ?9306 ?9306) ?9306) =>= join ?9306 ?9306 [9306] by Demod 6024 with 4941 at 2,2,2 +Id : 6187, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join (meet (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444)) (meet (join ?9444 ?9444) ?9444))) =>= meet (join ?9444 ?9444) ?9444 [9444] by Super 5084 with 6144 at 2,1,2,2,2 +Id : 5117, {_}: ?8275 =<= meet (meet ?8275 (join ?8276 ?8275)) ?8275 [8276, 8275] by Super 4899 with 4941 at 1,1,3 +Id : 5128, {_}: join ?8312 ?8312 =<= meet (meet (join ?8312 ?8312) ?8312) (join ?8312 ?8312) [8312] by Super 5117 with 4941 at 2,1,3 +Id : 6199, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join (join ?9444 ?9444) (meet (join ?9444 ?9444) ?9444))) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6187 with 5128 at 1,2,2,2 +Id : 6200, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444)) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6199 with 6144 at 2,2,2 +Id : 6201, {_}: join (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6200 with 5128 at 2,2 +Id : 6718, {_}: ?10018 =<= meet (meet (meet (join ?10018 ?10018) ?10018) (join ?10019 ?10018)) ?10018 [10019, 10018] by Super 4899 with 6201 at 1,1,3 +Id : 6736, {_}: ?10071 =<= meet (join ?10071 ?10071) ?10071 [10071] by Super 6718 with 5128 at 1,3 +Id : 6822, {_}: join ?9444 (join ?9444 ?9444) =<= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6201 with 6736 at 1,2 +Id : 6823, {_}: join ?9444 (join ?9444 ?9444) =>= ?9444 [9444] by Demod 6822 with 6736 at 3 +Id : 9646, {_}: meet (join ?13551 ?13551) (join ?13552 ?13552) =<= meet (meet ?13551 ?13552) (meet (join ?13551 ?13551) (join ?13552 ?13552)) [13552, 13551] by Super 8992 with 6823 at 1,1,3 +Id : 3035, {_}: ?5143 =<= join (meet ?5144 (join (join (meet ?5145 ?5143) (meet ?5143 ?5146)) ?5143)) (meet ?5143 (join ?5144 (join (join (meet ?5145 ?5143) (meet ?5143 ?5146)) ?5143))) [5146, 5145, 5144, 5143] by Demod 2939 with 1544 at 2 +Id : 3039, {_}: ?5175 =<= join (meet ?5174 (join (join (meet ?5175 ?5175) (meet ?5175 (join ?5175 ?5175))) ?5175)) (meet ?5175 (join ?5174 (join ?5175 ?5175))) [5174, 5175] by Super 3035 with 1544 at 1,2,2,2,3 +Id : 3217, {_}: ?5175 =<= join (meet ?5174 (join ?5175 ?5175)) (meet ?5175 (join ?5174 (join ?5175 ?5175))) [5174, 5175] by Demod 3039 with 1544 at 1,2,1,3 +Id : 5068, {_}: ?8129 =<= join (meet (meet ?8129 ?8129) (join ?8129 ?8129)) (meet ?8129 ?8129) [8129] by Super 3217 with 4941 at 2,2,3 +Id : 6022, {_}: ?8129 =<= join (join ?8129 ?8129) (meet ?8129 ?8129) [8129] by Demod 5068 with 5957 at 1,3 +Id : 7628, {_}: meet ?11050 ?11050 =<= meet (meet (join ?11051 ?11050) ?11050) (meet ?11050 ?11050) [11051, 11050] by Super 7418 with 6022 at 2,1,3 +Id : 7650, {_}: meet ?11113 ?11113 =<= meet ?11113 (meet ?11113 ?11113) [11113] by Super 7628 with 6736 at 1,3 +Id : 9670, {_}: meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624)) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624))) [13624] by Super 9646 with 7650 at 1,3 +Id : 6333, {_}: meet ?9575 ?9575 =<= meet (meet (join ?9576 (meet ?9575 ?9575)) ?9575) (meet ?9575 ?9575) [9576, 9575] by Super 5705 with 5068 at 2,1,3 +Id : 6336, {_}: meet ?9583 ?9583 =<= meet (meet ?9583 ?9583) (meet ?9583 ?9583) [9583] by Super 6333 with 6022 at 1,1,3 +Id : 6405, {_}: meet ?9659 ?9659 =<= join (join (meet ?9659 ?9659) (meet ?9659 ?9659)) (meet ?9659 ?9659) [9659] by Super 6022 with 6336 at 2,3 +Id : 6817, {_}: join (join ?9306 ?9306) ?9306 =>= join ?9306 ?9306 [9306] by Demod 6144 with 6736 at 2,2 +Id : 7013, {_}: meet ?9659 ?9659 =<= join (meet ?9659 ?9659) (meet ?9659 ?9659) [9659] by Demod 6405 with 6817 at 3 +Id : 9768, {_}: meet (join ?13624 ?13624) (meet ?13624 ?13624) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624))) [13624] by Demod 9670 with 7013 at 2,2 +Id : 9769, {_}: meet (join ?13624 ?13624) (meet ?13624 ?13624) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (meet ?13624 ?13624)) [13624] by Demod 9768 with 7013 at 2,2,3 +Id : 10286, {_}: join (meet (meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))) (meet (meet ?14243 ?14243) (join (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Super 1661 with 9769 at 1,2,2 +Id : 10416, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet (meet ?14243 ?14243) (join (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10286 with 9769 at 1,1,2 +Id : 7044, {_}: meet ?10282 ?10282 =<= join (meet (meet ?10282 ?10282) (meet ?10282 ?10282)) (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Super 4940 with 7013 at 2,2,3 +Id : 7086, {_}: meet ?10282 ?10282 =<= join (meet ?10282 ?10282) (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Demod 7044 with 6336 at 1,3 +Id : 10417, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet (meet ?14243 ?14243) (meet ?14243 ?14243))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10416 with 7086 at 2,2,1,2 +Id : 10418, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10417 with 6336 at 2,1,2 +Id : 7467, {_}: meet ?10854 ?10854 =<= meet (meet (join ?10855 ?10854) (meet ?10854 ?10854)) (meet ?10854 ?10854) [10855, 10854] by Super 7418 with 7013 at 2,1,3 +Id : 10419, {_}: join (meet ?14243 ?14243) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10418 with 7467 at 1,2 +Id : 10420, {_}: meet ?14243 ?14243 =<= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10419 with 7086 at 2 +Id : 10421, {_}: meet ?14243 ?14243 =<= meet (join ?14243 ?14243) (meet ?14243 ?14243) [14243] by Demod 10420 with 9769 at 3 +Id : 10483, {_}: join (meet (meet (join ?14359 ?14359) (meet ?14359 ?14359)) (meet (join ?14359 ?14359) (join (join ?14359 ?14359) (meet ?14359 ?14359)))) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Super 1661 with 10421 at 1,2,2 +Id : 10517, {_}: join (meet (meet ?14359 ?14359) (meet (join ?14359 ?14359) (join (join ?14359 ?14359) (meet ?14359 ?14359)))) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10483 with 10421 at 1,1,2 +Id : 10518, {_}: join (meet (meet ?14359 ?14359) (meet (join ?14359 ?14359) ?14359)) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10517 with 6022 at 2,2,1,2 +Id : 10519, {_}: join (meet (meet ?14359 ?14359) ?14359) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10518 with 6736 at 2,1,2 +Id : 10520, {_}: join (meet (meet ?14359 ?14359) ?14359) (join ?14359 ?14359) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10519 with 5957 at 2,2 +Id : 10521, {_}: join (meet (meet ?14359 ?14359) ?14359) (join ?14359 ?14359) =>= meet ?14359 ?14359 [14359] by Demod 10520 with 10421 at 3 +Id : 10992, {_}: join (meet (meet (meet ?14539 ?14539) ?14539) (join ?14539 ?14539)) (meet (join ?14539 ?14539) (meet ?14539 ?14539)) =>= join ?14539 ?14539 [14539] by Super 4435 with 10521 at 2,2,2 +Id : 8999, {_}: meet (meet ?12702 ?12702) (join ?12702 ?12702) =<= meet (meet (join ?12703 (meet ?12702 ?12702)) ?12702) (join ?12702 ?12702) [12703, 12702] by Super 8992 with 5957 at 2,3 +Id : 10037, {_}: join ?14089 ?14089 =<= meet (meet (join ?14090 (meet ?14089 ?14089)) ?14089) (join ?14089 ?14089) [14090, 14089] by Demod 8999 with 5957 at 2 +Id : 10046, {_}: join ?14111 ?14111 =<= meet (meet (meet ?14111 ?14111) ?14111) (join ?14111 ?14111) [14111] by Super 10037 with 7013 at 1,1,3 +Id : 11120, {_}: join (join ?14539 ?14539) (meet (join ?14539 ?14539) (meet ?14539 ?14539)) =>= join ?14539 ?14539 [14539] by Demod 10992 with 10046 at 1,2 +Id : 11121, {_}: join (join ?14539 ?14539) (meet ?14539 ?14539) =>= join ?14539 ?14539 [14539] by Demod 11120 with 10421 at 2,2 +Id : 11122, {_}: ?14539 =<= join ?14539 ?14539 [14539] by Demod 11121 with 6022 at 2 +Id : 11280, {_}: ?14616 =<= join (meet (join (join (meet ?14617 ?14616) (meet ?14616 ?14618)) ?14616) (join (join (meet ?14617 ?14616) (meet ?14616 ?14618)) ?14616)) (meet ?14616 (join (join (meet ?14617 ?14616) (meet ?14616 ?14618)) ?14616)) [14618, 14617, 14616] by Super 2940 with 11122 at 2,2,3 +Id : 7731, {_}: join (meet ?11160 ?11160) (meet ?11160 (join ?11160 (meet ?11160 ?11160))) =>= ?11160 [11160] by Super 1544 with 7650 at 1,2 +Id : 6841, {_}: join ?10124 (meet (join ?10124 ?10124) (join (join ?10124 ?10124) ?10124)) =>= join ?10124 ?10124 [10124] by Super 1544 with 6736 at 1,2 +Id : 6906, {_}: join ?10124 (meet (join ?10124 ?10124) (join ?10124 ?10124)) =>= join ?10124 ?10124 [10124] by Demod 6841 with 6817 at 2,2,2 +Id : 11192, {_}: join ?10124 (meet ?10124 (join ?10124 ?10124)) =>= join ?10124 ?10124 [10124] by Demod 6906 with 11122 at 1,2,2 +Id : 11193, {_}: join ?10124 (meet ?10124 ?10124) =>= join ?10124 ?10124 [10124] by Demod 11192 with 11122 at 2,2,2 +Id : 11194, {_}: join ?10124 (meet ?10124 ?10124) =>= ?10124 [10124] by Demod 11193 with 11122 at 3 +Id : 11206, {_}: join (meet ?11160 ?11160) (meet ?11160 ?11160) =>= ?11160 [11160] by Demod 7731 with 11194 at 2,2,2 +Id : 11207, {_}: meet ?11160 ?11160 =>= ?11160 [11160] by Demod 11206 with 11122 at 2 +Id : 11417, {_}: ?14616 =<= join (join (join (meet ?14617 ?14616) (meet ?14616 ?14618)) ?14616) (meet ?14616 (join (join (meet ?14617 ?14616) (meet ?14616 ?14618)) ?14616)) [14618, 14617, 14616] by Demod 11280 with 11207 at 1,3 +Id : 11210, {_}: ?10282 =<= join (meet ?10282 ?10282) (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Demod 7086 with 11207 at 2 +Id : 11211, {_}: ?10282 =<= join ?10282 (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Demod 11210 with 11207 at 1,3 +Id : 11212, {_}: ?10282 =<= join ?10282 (meet ?10283 ?10282) [10283, 10282] by Demod 11211 with 11207 at 2,2,3 +Id : 12052, {_}: ?15606 =<= join (join (meet ?15607 ?15606) (meet ?15606 ?15608)) ?15606 [15608, 15607, 15606] by Demod 11417 with 11212 at 3 +Id : 12070, {_}: ?15688 =<= join (join ?15688 (meet ?15688 ?15689)) ?15688 [15689, 15688] by Super 12052 with 11207 at 1,1,3 +Id : 12545, {_}: join (meet (join ?16137 (meet ?16137 ?16138)) ?16137) (meet (join ?16137 (meet ?16137 ?16138)) ?16137) =>= join ?16137 (meet ?16137 ?16138) [16138, 16137] by Super 1544 with 12070 at 2,2,2 +Id : 12628, {_}: meet (join ?16137 (meet ?16137 ?16138)) ?16137 =>= join ?16137 (meet ?16137 ?16138) [16138, 16137] by Demod 12545 with 11122 at 2 +Id : 11515, {_}: ?14875 =<= meet (meet (join ?14876 (join ?14875 ?14877)) ?14875) ?14875 [14877, 14876, 14875] by Super 4899 with 11122 at 2,1,3 +Id : 11529, {_}: ?14934 =<= meet (meet (join ?14934 ?14935) ?14934) ?14934 [14935, 14934] by Super 11515 with 11122 at 1,1,3 +Id : 12090, {_}: ?15773 =<= join (meet ?15774 ?15773) ?15773 [15774, 15773] by Super 12052 with 11212 at 1,3 +Id : 12194, {_}: join (meet (meet ?15862 ?15861) ?15861) (meet (meet ?15862 ?15861) ?15861) =>= meet ?15862 ?15861 [15861, 15862] by Super 1544 with 12090 at 2,2,2 +Id : 12248, {_}: meet (meet ?15862 ?15861) ?15861 =>= meet ?15862 ?15861 [15861, 15862] by Demod 12194 with 11122 at 2 +Id : 12318, {_}: ?14934 =<= meet (join ?14934 ?14935) ?14934 [14935, 14934] by Demod 11529 with 12248 at 3 +Id : 12629, {_}: ?16137 =<= join ?16137 (meet ?16137 ?16138) [16138, 16137] by Demod 12628 with 12318 at 2 +Id : 12769, {_}: a === a [] by Demod 2 with 12629 at 2 +Id : 2, {_}: join a (meet a b) =>= a [] by prove_normal_axioms_8 +% SZS output end CNFRefutation for LAT087-1.p +Order + == is 100 + _ is 99 + a is 97 + b is 98 + join is 94 + meet is 96 + prove_wal_axioms_2 is 95 + single_axiom is 93 +Facts + Id : 4, {_}: + join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) + (meet + (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) + (meet + (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) + (meet ?7 + (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) + (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) + (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) + =>= + ?3 + [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 +Goal + Id : 2, {_}: meet b a =>= meet a b [] by prove_wal_axioms_2 +Found proof, 13.145365s +% SZS status Unsatisfiable for LAT093-1.p +% SZS output start CNFRefutation for LAT093-1.p +Id : 4, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 +Id : 5, {_}: join (meet (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11) (meet (join (meet ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)) (meet (join (meet ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)) (meet ?14 (join ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)))) (join ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)))) (join (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11)) =>= ?10 [14, 13, 12, 11, 10, 9] by single_axiom ?9 ?10 ?11 ?12 ?13 ?14 +Id : 33, {_}: join (meet (join (meet ?215 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217)))) (meet (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))) (join ?215 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217)))))) ?218) (meet (join (meet ?215 (join (join (meet (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))) ?219) (meet ?220 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))))) (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))))) (meet ?217 (join ?215 (join (join (meet (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))) ?219) (meet ?220 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))))) (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))))))) (join (join (meet ?215 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217)))) (meet (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))) (join ?215 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217)))))) ?218)) =>= join (meet ?216 ?217) (meet ?217 (join ?216 ?217)) [220, 219, 218, 217, 216, 215] by Super 5 with 4 at 1,2,1,2,2 +Id : 36, {_}: join (meet (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))))) ?250) (meet (join (meet ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [252, 251, 250, 248, 247, 246, 245, 244, 249] by Super 33 with 4 at 2,2,2,1,2,2,2 +Id : 118, {_}: join (meet (join (meet ?249 ?245) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))))) ?250) (meet (join (meet ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [252, 251, 250, 248, 247, 246, 244, 245, 249] by Demod 36 with 4 at 2,1,1,1,2 +Id : 119, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))))) ?250) (meet (join (meet ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [252, 251, 250, 248, 247, 246, 244, 245, 249] by Demod 118 with 4 at 1,2,1,1,2 +Id : 120, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [252, 251, 248, 247, 246, 244, 250, 245, 249] by Demod 119 with 4 at 2,2,2,1,1,2 +Id : 121, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 120 with 4 at 1,1,1,2,1,1,2,2 +Id : 122, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 121 with 4 at 2,2,1,2,1,1,2,2 +Id : 123, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 122 with 4 at 2,2,1,1,2,2 +Id : 124, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet ?245 ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 123 with 4 at 1,1,1,2,2,2,1,2,2 +Id : 125, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 124 with 4 at 2,2,1,2,2,2,1,2,2 +Id : 126, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 125 with 4 at 2,2,2,2,1,2,2 +Id : 127, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)))) (join (join (meet ?249 ?245) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 126 with 4 at 2,1,1,2,2,2 +Id : 128, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)))) (join (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250)) =?= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 127 with 4 at 1,2,1,2,2,2 +Id : 704, {_}: join (meet (join (meet ?1213 ?1214) (meet ?1214 (join ?1213 ?1214))) ?1215) (meet (join (meet ?1213 (join (join (meet ?1214 ?1216) (meet ?1217 ?1214)) ?1214)) (meet (join (meet ?1218 (join (join (meet ?1214 ?1219) (meet ?1220 ?1214)) ?1214)) (meet (join (meet ?1214 (meet (meet (join ?1214 ?1219) (join ?1220 ?1214)) ?1214)) (meet ?1221 (join ?1214 (meet (meet (join ?1214 ?1219) (join ?1220 ?1214)) ?1214)))) (join ?1218 (join (join (meet ?1214 ?1219) (meet ?1220 ?1214)) ?1214)))) (join ?1213 (join (join (meet ?1214 ?1216) (meet ?1217 ?1214)) ?1214)))) (join (join (meet ?1213 ?1214) (meet ?1214 (join ?1213 ?1214))) ?1215)) =>= ?1214 [1221, 1220, 1219, 1218, 1217, 1216, 1215, 1214, 1213] by Demod 128 with 4 at 3 +Id : 1103, {_}: join (meet (join (meet (join (meet ?2031 ?2032) (meet ?2032 (join ?2031 ?2032))) ?2032) (meet ?2032 (join (join (meet ?2031 ?2032) (meet ?2032 (join ?2031 ?2032))) ?2032))) ?2033) (meet ?2032 (join (join (meet (join (meet ?2031 ?2032) (meet ?2032 (join ?2031 ?2032))) ?2032) (meet ?2032 (join (join (meet ?2031 ?2032) (meet ?2032 (join ?2031 ?2032))) ?2032))) ?2033)) =>= ?2032 [2033, 2032, 2031] by Super 704 with 4 at 1,2,2 +Id : 726, {_}: join (meet (join (meet (join (meet ?1536 ?1532) (meet ?1532 (join ?1536 ?1532))) ?1532) (meet ?1532 (join (join (meet ?1536 ?1532) (meet ?1532 (join ?1536 ?1532))) ?1532))) ?1533) (meet ?1532 (join (join (meet (join (meet ?1536 ?1532) (meet ?1532 (join ?1536 ?1532))) ?1532) (meet ?1532 (join (join (meet ?1536 ?1532) (meet ?1532 (join ?1536 ?1532))) ?1532))) ?1533)) =>= ?1532 [1533, 1532, 1536] by Super 704 with 4 at 1,2,2 +Id : 1120, {_}: join (meet (join (meet (join (meet (join (meet ?2155 ?2156) (meet ?2156 (join ?2155 ?2156))) ?2156) (meet ?2156 (join (join (meet ?2155 ?2156) (meet ?2156 (join ?2155 ?2156))) ?2156))) ?2156) (meet ?2156 (join (join (meet (join (meet ?2155 ?2156) (meet ?2156 (join ?2155 ?2156))) ?2156) (meet ?2156 (join (join (meet ?2155 ?2156) (meet ?2156 (join ?2155 ?2156))) ?2156))) ?2156))) ?2157) (meet ?2156 (join ?2156 ?2157)) =>= ?2156 [2157, 2156, 2155] by Super 1103 with 726 at 1,2,2,2 +Id : 1492, {_}: join (meet ?2156 ?2157) (meet ?2156 (join ?2156 ?2157)) =>= ?2156 [2157, 2156] by Demod 1120 with 726 at 1,1,2 +Id : 12, {_}: join (meet (join (meet ?86 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82)))) (meet (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))) (join ?86 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82)))))) ?87) (meet (join (meet ?86 (join (join (meet (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))) ?88) (meet ?89 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))))) (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))))) (meet ?82 (join ?86 (join (join (meet (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))) ?88) (meet ?89 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))))) (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))))))) (join (join (meet ?86 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82)))) (meet (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))) (join ?86 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82)))))) ?87)) =>= join (meet ?81 ?82) (meet ?82 (join ?81 ?82)) [89, 88, 87, 82, 81, 86] by Super 5 with 4 at 1,2,1,2,2 +Id : 1056, {_}: join (meet (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))))) ?1649) (meet (join (meet ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1651, 1650, 1649, 1647, 1646, 1648] by Super 12 with 726 at 2,2,2,1,2,2,2 +Id : 1168, {_}: join (meet (join (meet ?1648 ?1647) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))))) ?1649) (meet (join (meet ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1651, 1650, 1649, 1646, 1647, 1648] by Demod 1056 with 726 at 2,1,1,1,2 +Id : 1169, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))))) ?1649) (meet (join (meet ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1651, 1650, 1649, 1646, 1647, 1648] by Demod 1168 with 726 at 1,2,1,1,2 +Id : 1170, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1651, 1650, 1646, 1649, 1647, 1648] by Demod 1169 with 726 at 2,2,2,1,1,2 +Id : 1171, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1170 with 726 at 1,1,1,2,1,1,2,2 +Id : 1172, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1171 with 726 at 2,2,1,2,1,1,2,2 +Id : 1173, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1172 with 726 at 2,2,1,1,2,2 +Id : 1174, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1173 with 726 at 1,1,1,2,2,2,1,2,2 +Id : 1175, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1174 with 726 at 2,2,1,2,2,2,1,2,2 +Id : 1176, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1175 with 726 at 2,2,2,2,1,2,2 +Id : 1177, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)))) (join (join (meet ?1648 ?1647) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1176 with 726 at 2,1,1,2,2,2 +Id : 1178, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)))) (join (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649)) =?= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1177 with 726 at 1,2,1,2,2,2 +Id : 1179, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)))) (join (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649)) =>= ?1647 [1651, 1650, 1649, 1647, 1648] by Demod 1178 with 726 at 3 +Id : 2457, {_}: join (meet (join (meet ?3744 ?3745) (meet ?3745 (join ?3744 ?3745))) ?3746) (meet (join (meet ?3744 (join (join (meet ?3745 ?3747) (meet ?3748 ?3745)) ?3745)) (meet ?3745 (join ?3744 (join (join (meet ?3745 ?3747) (meet ?3748 ?3745)) ?3745)))) (join (join (meet ?3744 ?3745) (meet ?3745 (join ?3744 ?3745))) ?3746)) =>= ?3745 [3748, 3747, 3746, 3745, 3744] by Demod 1178 with 726 at 3 +Id : 2470, {_}: join (meet (join (meet (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))))) (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) (join (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))))))) ?3857) (meet (join (meet (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (join (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) ?3858) (meet ?3859 (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) (join (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (join (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) ?3858) (meet ?3859 (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))))) (join ?3854 ?3857)) =>= join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))) [3859, 3858, 3857, 3856, 3855, 3854, 3853] by Super 2457 with 1179 at 1,2,2,2 +Id : 2846, {_}: join (meet ?3854 ?3857) (meet (join (meet (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (join (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) ?3858) (meet ?3859 (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) (join (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (join (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) ?3858) (meet ?3859 (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))))) (join ?3854 ?3857)) =>= join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))) [3859, 3858, 3856, 3855, 3853, 3857, 3854] by Demod 2470 with 1179 at 1,1,2 +Id : 2847, {_}: join (meet ?3854 ?3857) (meet ?3854 (join ?3854 ?3857)) =?= join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))) [3856, 3855, 3853, 3857, 3854] by Demod 2846 with 1179 at 1,2,2 +Id : 2848, {_}: ?3854 =<= join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))) [3856, 3855, 3853, 3854] by Demod 2847 with 1492 at 2 +Id : 2894, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet ?1647 (join (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649)) =>= ?1647 [1649, 1647, 1648] by Demod 1179 with 2848 at 1,2,2 +Id : 2466, {_}: join (meet (join (meet (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))))) (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) (join (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))))))) ?3822) (meet (join (meet (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (join (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) ?3823) (meet ?3824 (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) (join (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (join (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) ?3823) (meet ?3824 (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))))) (join ?3818 ?3822)) =>= join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))) [3824, 3823, 3822, 3821, 3820, 3819, 3818, 3817] by Super 2457 with 4 at 1,2,2,2 +Id : 2834, {_}: join (meet ?3818 ?3822) (meet (join (meet (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (join (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) ?3823) (meet ?3824 (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) (join (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (join (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) ?3823) (meet ?3824 (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))))) (join ?3818 ?3822)) =>= join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))) [3824, 3823, 3821, 3820, 3819, 3817, 3822, 3818] by Demod 2466 with 4 at 1,1,2 +Id : 2835, {_}: join (meet ?3818 ?3822) (meet ?3818 (join ?3818 ?3822)) =?= join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))) [3821, 3820, 3819, 3817, 3822, 3818] by Demod 2834 with 4 at 1,2,2 +Id : 2836, {_}: ?3818 =<= join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))) [3821, 3820, 3819, 3817, 3818] by Demod 2835 with 1492 at 2 +Id : 3353, {_}: ?4683 =<= join (meet ?4683 (meet (meet (join ?4683 ?4684) (join ?4685 ?4683)) ?4683)) (meet ?4686 (join ?4683 (meet (meet (join ?4683 ?4684) (join ?4685 ?4683)) ?4683))) [4686, 4685, 4684, 4683] by Super 2894 with 2836 at 2 +Id : 3629, {_}: join (meet ?5382 ?5381) (meet ?5381 (join ?5382 ?5381)) =>= ?5381 [5381, 5382] by Super 2894 with 3353 at 2 +Id : 4066, {_}: ?5811 =<= meet (meet (join ?5811 ?5812) (join ?5813 ?5811)) ?5811 [5813, 5812, 5811] by Super 3353 with 3629 at 3 +Id : 4517, {_}: meet ?6536 ?6537 =<= meet (meet ?6537 (join ?6538 (meet ?6536 ?6537))) (meet ?6536 ?6537) [6538, 6537, 6536] by Super 4066 with 3629 at 1,1,3 +Id : 4020, {_}: ?5649 =<= meet (meet (join ?5649 ?5650) (join ?5651 ?5649)) ?5649 [5651, 5650, 5649] by Super 3353 with 3629 at 3 +Id : 4518, {_}: meet (meet (join ?6542 ?6540) (join ?6541 ?6542)) ?6542 =<= meet (meet ?6542 (join ?6543 (meet (meet (join ?6542 ?6540) (join ?6541 ?6542)) ?6542))) ?6542 [6543, 6541, 6540, 6542] by Super 4517 with 4020 at 2,3 +Id : 4585, {_}: ?6542 =<= meet (meet ?6542 (join ?6543 (meet (meet (join ?6542 ?6540) (join ?6541 ?6542)) ?6542))) ?6542 [6541, 6540, 6543, 6542] by Demod 4518 with 4020 at 2 +Id : 4586, {_}: ?6542 =<= meet (meet ?6542 (join ?6543 ?6542)) ?6542 [6543, 6542] by Demod 4585 with 4020 at 2,2,1,3 +Id : 1596, {_}: join (meet ?2660 ?2661) (meet ?2660 (join ?2660 ?2661)) =>= ?2660 [2661, 2660] by Demod 1120 with 726 at 1,1,2 +Id : 1601, {_}: join (meet (meet ?2691 ?2692) (meet ?2691 (join ?2691 ?2692))) (meet (meet ?2691 ?2692) ?2691) =>= meet ?2691 ?2692 [2692, 2691] by Super 1596 with 1492 at 2,2,2 +Id : 4161, {_}: meet ?6000 ?6001 =<= meet (meet ?6000 (join ?6002 (meet ?6000 ?6001))) (meet ?6000 ?6001) [6002, 6001, 6000] by Super 4066 with 1492 at 1,1,3 +Id : 4166, {_}: meet ?6025 (join ?6025 ?6024) =<= meet (meet ?6025 ?6025) (meet ?6025 (join ?6025 ?6024)) [6024, 6025] by Super 4161 with 1492 at 2,1,3 +Id : 4239, {_}: join (meet ?6108 (join ?6108 ?6108)) (meet (meet ?6108 ?6108) ?6108) =>= meet ?6108 ?6108 [6108] by Super 1601 with 4166 at 1,2 +Id : 1974, {_}: join (meet (meet (meet ?2899 ?2900) (meet ?2899 (join ?2899 ?2900))) (meet (meet ?2899 ?2900) ?2899)) (meet (meet (meet ?2899 ?2900) (meet ?2899 (join ?2899 ?2900))) (meet ?2899 ?2900)) =>= meet (meet ?2899 ?2900) (meet ?2899 (join ?2899 ?2900)) [2900, 2899] by Super 1492 with 1601 at 2,2,2 +Id : 4530, {_}: meet ?6595 (join ?6595 ?6594) =<= meet (meet (join ?6595 ?6594) ?6595) (meet ?6595 (join ?6595 ?6594)) [6594, 6595] by Super 4517 with 1492 at 2,1,3 +Id : 4634, {_}: join ?6728 (meet ?6728 (join (meet ?6728 (join ?6729 ?6728)) ?6728)) =>= ?6728 [6729, 6728] by Super 3629 with 4586 at 1,2 +Id : 5854, {_}: meet ?8039 (join ?8039 (meet ?8039 (join (meet ?8039 (join ?8040 ?8039)) ?8039))) =<= meet (meet (join ?8039 (meet ?8039 (join (meet ?8039 (join ?8040 ?8039)) ?8039))) ?8039) (meet ?8039 ?8039) [8040, 8039] by Super 4530 with 4634 at 2,2,3 +Id : 5885, {_}: meet ?8039 ?8039 =<= meet (meet (join ?8039 (meet ?8039 (join (meet ?8039 (join ?8040 ?8039)) ?8039))) ?8039) (meet ?8039 ?8039) [8040, 8039] by Demod 5854 with 4634 at 2,2 +Id : 5886, {_}: meet ?8039 ?8039 =<= meet (meet ?8039 ?8039) (meet ?8039 ?8039) [8039] by Demod 5885 with 4634 at 1,1,3 +Id : 5940, {_}: join (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet ?8123 ?8123))) (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet ?8123 ?8123)) =>= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Super 1974 with 5886 at 2,2,2 +Id : 6002, {_}: join (meet (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet ?8123 ?8123))) (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet ?8123 ?8123)) =>= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 5940 with 4166 at 1,1,2 +Id : 6003, {_}: join (meet (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) (meet (meet ?8123 ?8123) (meet ?8123 ?8123))) (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet ?8123 ?8123)) =>= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 6002 with 5886 at 1,2,1,2 +Id : 6004, {_}: join (meet (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) (meet ?8123 ?8123)) (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet ?8123 ?8123)) =>= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 6003 with 5886 at 2,1,2 +Id : 6005, {_}: join (meet ?8123 ?8123) (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet ?8123 ?8123)) =>= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 6004 with 4586 at 1,2 +Id : 6006, {_}: join (meet ?8123 ?8123) (meet (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) (meet ?8123 ?8123)) =<= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 6005 with 4166 at 1,2,2 +Id : 6007, {_}: join (meet ?8123 ?8123) (meet ?8123 ?8123) =<= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 6006 with 4586 at 2,2 +Id : 6008, {_}: join (meet ?8123 ?8123) (meet ?8123 ?8123) =<= meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)) [8123] by Demod 6007 with 4166 at 3 +Id : 7068, {_}: join (join (meet ?9355 ?9355) (meet ?9355 ?9355)) (meet (meet (meet ?9355 ?9355) (meet ?9355 ?9355)) (meet ?9355 ?9355)) =>= meet (meet ?9355 ?9355) (meet ?9355 ?9355) [9355] by Super 4239 with 6008 at 1,2 +Id : 7098, {_}: join (join (meet ?9355 ?9355) (meet ?9355 ?9355)) (meet (meet ?9355 ?9355) (meet ?9355 ?9355)) =>= meet (meet ?9355 ?9355) (meet ?9355 ?9355) [9355] by Demod 7068 with 5886 at 1,2,2 +Id : 7099, {_}: join (join (meet ?9355 ?9355) (meet ?9355 ?9355)) (meet ?9355 ?9355) =>= meet (meet ?9355 ?9355) (meet ?9355 ?9355) [9355] by Demod 7098 with 5886 at 2,2 +Id : 7100, {_}: join (join (meet ?9355 ?9355) (meet ?9355 ?9355)) (meet ?9355 ?9355) =>= meet ?9355 ?9355 [9355] by Demod 7099 with 5886 at 3 +Id : 7401, {_}: meet ?9521 ?9521 =<= meet (meet (join (meet ?9521 ?9521) ?9522) (meet ?9521 ?9521)) (meet ?9521 ?9521) [9522, 9521] by Super 4020 with 7100 at 2,1,3 +Id : 13724, {_}: join (meet ?15407 ?15407) (meet (meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407)) (join (meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407)) (meet ?15407 ?15407))) =>= meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407) [15408, 15407] by Super 1492 with 7401 at 1,2 +Id : 4041, {_}: ?4683 =<= join (meet ?4683 ?4683) (meet ?4686 (join ?4683 (meet (meet (join ?4683 ?4684) (join ?4685 ?4683)) ?4683))) [4685, 4684, 4686, 4683] by Demod 3353 with 4020 at 2,1,3 +Id : 4042, {_}: ?4683 =<= join (meet ?4683 ?4683) (meet ?4686 (join ?4683 ?4683)) [4686, 4683] by Demod 4041 with 4020 at 2,2,2,3 +Id : 4536, {_}: meet ?6617 (join ?6616 ?6616) =<= meet (meet (join ?6616 ?6616) ?6616) (meet ?6617 (join ?6616 ?6616)) [6616, 6617] by Super 4517 with 4042 at 2,1,3 +Id : 7400, {_}: join (meet (join (meet ?9519 ?9519) (meet ?9519 ?9519)) (meet ?9519 ?9519)) (meet (meet ?9519 ?9519) (meet ?9519 ?9519)) =>= meet ?9519 ?9519 [9519] by Super 3629 with 7100 at 2,2,2 +Id : 7034, {_}: meet ?9263 ?9263 =<= meet (join (meet ?9263 ?9263) (meet ?9263 ?9263)) (meet ?9263 ?9263) [9263] by Super 4586 with 6008 at 1,3 +Id : 7430, {_}: join (meet ?9519 ?9519) (meet (meet ?9519 ?9519) (meet ?9519 ?9519)) =>= meet ?9519 ?9519 [9519] by Demod 7400 with 7034 at 1,2 +Id : 7431, {_}: join (meet ?9519 ?9519) (meet ?9519 ?9519) =>= meet ?9519 ?9519 [9519] by Demod 7430 with 5886 at 2,2 +Id : 7539, {_}: meet ?9566 (join (meet ?9565 ?9565) (meet ?9565 ?9565)) =<= meet (meet (join (meet ?9565 ?9565) (meet ?9565 ?9565)) (meet ?9565 ?9565)) (meet ?9566 (meet ?9565 ?9565)) [9565, 9566] by Super 4536 with 7431 at 2,2,3 +Id : 7732, {_}: meet ?9566 (meet ?9565 ?9565) =<= meet (meet (join (meet ?9565 ?9565) (meet ?9565 ?9565)) (meet ?9565 ?9565)) (meet ?9566 (meet ?9565 ?9565)) [9565, 9566] by Demod 7539 with 7431 at 2,2 +Id : 7733, {_}: meet ?9566 (meet ?9565 ?9565) =<= meet (meet (meet ?9565 ?9565) (meet ?9565 ?9565)) (meet ?9566 (meet ?9565 ?9565)) [9565, 9566] by Demod 7732 with 7431 at 1,1,3 +Id : 7734, {_}: meet ?9566 (meet ?9565 ?9565) =<= meet (meet ?9565 ?9565) (meet ?9566 (meet ?9565 ?9565)) [9565, 9566] by Demod 7733 with 5886 at 1,3 +Id : 7988, {_}: join (meet ?9921 (meet ?9922 ?9922)) (meet (meet ?9922 ?9922) (join (meet ?9922 ?9922) (meet ?9921 (meet ?9922 ?9922)))) =>= meet ?9922 ?9922 [9922, 9921] by Super 1492 with 7734 at 1,2 +Id : 7550, {_}: meet ?9591 ?9591 =<= join (meet (meet ?9591 ?9591) (meet ?9591 ?9591)) (meet ?9592 (meet ?9591 ?9591)) [9592, 9591] by Super 4042 with 7431 at 2,2,3 +Id : 7707, {_}: meet ?9591 ?9591 =<= join (meet ?9591 ?9591) (meet ?9592 (meet ?9591 ?9591)) [9592, 9591] by Demod 7550 with 5886 at 1,3 +Id : 8067, {_}: join (meet ?9921 (meet ?9922 ?9922)) (meet (meet ?9922 ?9922) (meet ?9922 ?9922)) =>= meet ?9922 ?9922 [9922, 9921] by Demod 7988 with 7707 at 2,2,2 +Id : 8068, {_}: join (meet ?9921 (meet ?9922 ?9922)) (meet ?9922 ?9922) =>= meet ?9922 ?9922 [9922, 9921] by Demod 8067 with 5886 at 2,2 +Id : 13909, {_}: join (meet ?15407 ?15407) (meet (meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407)) (meet ?15407 ?15407)) =>= meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407) [15408, 15407] by Demod 13724 with 8068 at 2,2,2 +Id : 13910, {_}: meet ?15407 ?15407 =<= meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407) [15408, 15407] by Demod 13909 with 7707 at 2 +Id : 5848, {_}: join (meet ?8021 (meet ?8021 (join (meet ?8021 (join ?8022 ?8021)) ?8021))) (meet ?8021 ?8021) =>= ?8021 [8022, 8021] by Super 1492 with 4634 at 2,2,2 +Id : 4640, {_}: ?6750 =<= meet (meet ?6750 (join ?6751 ?6750)) ?6750 [6751, 6750] by Demod 4585 with 4020 at 2,2,1,3 +Id : 4645, {_}: meet ?6768 (join ?6767 ?6768) =<= meet (meet (meet ?6768 (join ?6767 ?6768)) ?6768) (meet ?6768 (join ?6767 ?6768)) [6767, 6768] by Super 4640 with 3629 at 2,1,3 +Id : 4708, {_}: meet ?6768 (join ?6767 ?6768) =<= meet ?6768 (meet ?6768 (join ?6767 ?6768)) [6767, 6768] by Demod 4645 with 4586 at 1,3 +Id : 5910, {_}: join (meet ?8021 (join (meet ?8021 (join ?8022 ?8021)) ?8021)) (meet ?8021 ?8021) =>= ?8021 [8022, 8021] by Demod 5848 with 4708 at 1,2 +Id : 9401, {_}: meet (meet ?11248 ?11249) ?11248 =<= meet (meet (meet ?11248 ?11249) (meet ?11248 ?11249)) (meet (meet ?11248 ?11249) ?11248) [11249, 11248] by Super 4161 with 1601 at 2,1,3 +Id : 9402, {_}: meet (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253) (meet (join ?11253 ?11251) (join ?11252 ?11253)) =<= meet (meet (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253) (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253)) (meet ?11253 (meet (join ?11253 ?11251) (join ?11252 ?11253))) [11252, 11251, 11253] by Super 9401 with 4020 at 1,2,3 +Id : 9552, {_}: meet ?11253 (meet (join ?11253 ?11251) (join ?11252 ?11253)) =<= meet (meet (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253) (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253)) (meet ?11253 (meet (join ?11253 ?11251) (join ?11252 ?11253))) [11252, 11251, 11253] by Demod 9402 with 4020 at 1,2 +Id : 9553, {_}: meet ?11253 (meet (join ?11253 ?11251) (join ?11252 ?11253)) =<= meet (meet ?11253 (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253)) (meet ?11253 (meet (join ?11253 ?11251) (join ?11252 ?11253))) [11252, 11251, 11253] by Demod 9552 with 4020 at 1,1,3 +Id : 18238, {_}: meet ?19914 (meet (join ?19914 ?19915) (join ?19916 ?19914)) =<= meet (meet ?19914 ?19914) (meet ?19914 (meet (join ?19914 ?19915) (join ?19916 ?19914))) [19916, 19915, 19914] by Demod 9553 with 4020 at 2,1,3 +Id : 11581, {_}: meet ?13378 (join ?13379 ?13379) =<= meet (meet (meet ?13378 (join ?13379 ?13379)) ?13379) (meet ?13378 (join ?13379 ?13379)) [13379, 13378] by Super 4640 with 4042 at 2,1,3 +Id : 11600, {_}: meet (join ?13442 ?13441) (join ?13442 ?13442) =<= meet ?13442 (meet (join ?13442 ?13441) (join ?13442 ?13442)) [13441, 13442] by Super 11581 with 4020 at 1,3 +Id : 18285, {_}: meet ?20107 (meet (join ?20107 ?20106) (join ?20107 ?20107)) =<= meet (meet ?20107 ?20107) (meet (join ?20107 ?20106) (join ?20107 ?20107)) [20106, 20107] by Super 18238 with 11600 at 2,3 +Id : 18491, {_}: meet (join ?20107 ?20106) (join ?20107 ?20107) =<= meet (meet ?20107 ?20107) (meet (join ?20107 ?20106) (join ?20107 ?20107)) [20106, 20107] by Demod 18285 with 11600 at 2 +Id : 18514, {_}: join (meet (join ?20180 ?20181) (join ?20180 ?20180)) (meet (meet (join ?20180 ?20181) (join ?20180 ?20180)) (join (meet ?20180 ?20180) (meet (join ?20180 ?20181) (join ?20180 ?20180)))) =>= meet (join ?20180 ?20181) (join ?20180 ?20180) [20181, 20180] by Super 3629 with 18491 at 1,2 +Id : 18667, {_}: join (meet (join ?20180 ?20181) (join ?20180 ?20180)) (meet (meet (join ?20180 ?20181) (join ?20180 ?20180)) ?20180) =>= meet (join ?20180 ?20181) (join ?20180 ?20180) [20181, 20180] by Demod 18514 with 4042 at 2,2,2 +Id : 18856, {_}: join (meet (join ?20559 ?20560) (join ?20559 ?20559)) ?20559 =>= meet (join ?20559 ?20560) (join ?20559 ?20559) [20560, 20559] by Demod 18667 with 4020 at 2,2 +Id : 4044, {_}: join ?5696 (meet ?5696 (join (meet (join ?5696 ?5697) (join ?5698 ?5696)) ?5696)) =>= ?5696 [5698, 5697, 5696] by Super 3629 with 4020 at 1,2 +Id : 18864, {_}: join (meet ?20588 (join ?20588 ?20588)) ?20588 =<= meet (join ?20588 (meet ?20588 (join (meet (join ?20588 ?20586) (join ?20587 ?20588)) ?20588))) (join ?20588 ?20588) [20587, 20586, 20588] by Super 18856 with 4044 at 1,1,2 +Id : 19017, {_}: join (meet ?20588 (join ?20588 ?20588)) ?20588 =>= meet ?20588 (join ?20588 ?20588) [20588] by Demod 18864 with 4044 at 1,3 +Id : 19112, {_}: join (meet ?20758 (meet ?20758 (join ?20758 ?20758))) (meet ?20758 ?20758) =>= ?20758 [20758] by Super 5910 with 19017 at 2,1,2 +Id : 19134, {_}: join (meet ?20758 (join ?20758 ?20758)) (meet ?20758 ?20758) =>= ?20758 [20758] by Demod 19112 with 4708 at 1,2 +Id : 12695, {_}: ?14373 =<= join (meet ?14375 (join (join (meet ?14373 (join (meet ?14373 (join ?14374 ?14373)) ?14373)) (meet ?14373 ?14373)) ?14373)) (meet ?14373 (join ?14375 (join ?14373 ?14373))) [14374, 14375, 14373] by Super 2848 with 5910 at 1,2,2,2,3 +Id : 12774, {_}: ?14373 =<= join (meet ?14375 (join ?14373 ?14373)) (meet ?14373 (join ?14375 (join ?14373 ?14373))) [14375, 14373] by Demod 12695 with 5910 at 1,2,1,3 +Id : 23235, {_}: join ?23859 ?23859 =>= ?23859 [23859] by Super 4042 with 12774 at 3 +Id : 23429, {_}: join (meet ?20758 ?20758) (meet ?20758 ?20758) =>= ?20758 [20758] by Demod 19134 with 23235 at 2,1,2 +Id : 23430, {_}: meet ?20758 ?20758 =>= ?20758 [20758] by Demod 23429 with 23235 at 2 +Id : 23444, {_}: ?15407 =<= meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407) [15408, 15407] by Demod 13910 with 23430 at 2 +Id : 23445, {_}: ?15407 =<= meet (join ?15407 ?15408) (meet ?15407 ?15407) [15408, 15407] by Demod 23444 with 23430 at 1,1,3 +Id : 23446, {_}: ?15407 =<= meet (join ?15407 ?15408) ?15407 [15408, 15407] by Demod 23445 with 23430 at 2,3 +Id : 23618, {_}: ?24079 =<= join (meet (join (join (meet ?24079 ?24080) (meet ?24081 ?24079)) ?24079) (join (join (meet ?24079 ?24080) (meet ?24081 ?24079)) ?24079)) (meet ?24079 (join (join (meet ?24079 ?24080) (meet ?24081 ?24079)) ?24079)) [24081, 24080, 24079] by Super 2848 with 23235 at 2,2,3 +Id : 23720, {_}: ?24079 =<= join (join (join (meet ?24079 ?24080) (meet ?24081 ?24079)) ?24079) (meet ?24079 (join (join (meet ?24079 ?24080) (meet ?24081 ?24079)) ?24079)) [24081, 24080, 24079] by Demod 23618 with 23430 at 1,3 +Id : 23476, {_}: ?9591 =<= join (meet ?9591 ?9591) (meet ?9592 (meet ?9591 ?9591)) [9592, 9591] by Demod 7707 with 23430 at 2 +Id : 23477, {_}: ?9591 =<= join ?9591 (meet ?9592 (meet ?9591 ?9591)) [9592, 9591] by Demod 23476 with 23430 at 1,3 +Id : 23478, {_}: ?9591 =<= join ?9591 (meet ?9592 ?9591) [9592, 9591] by Demod 23477 with 23430 at 2,2,3 +Id : 23792, {_}: ?24251 =<= join (join (meet ?24251 ?24252) (meet ?24253 ?24251)) ?24251 [24253, 24252, 24251] by Demod 23720 with 23478 at 3 +Id : 23793, {_}: ?24256 =<= join (join (meet ?24256 ?24255) ?24256) ?24256 [24255, 24256] by Super 23792 with 23430 at 2,1,3 +Id : 23892, {_}: join (meet ?24386 ?24387) ?24386 =<= meet ?24386 (join (meet ?24386 ?24387) ?24386) [24387, 24386] by Super 23446 with 23793 at 1,3 +Id : 24037, {_}: ?24612 =<= meet (join (meet ?24612 ?24613) ?24612) ?24612 [24613, 24612] by Super 4586 with 23892 at 1,3 +Id : 23902, {_}: join (meet (join (meet ?24420 ?24421) ?24420) ?24420) (meet (join (meet ?24420 ?24421) ?24420) ?24420) =>= join (meet ?24420 ?24421) ?24420 [24421, 24420] by Super 1492 with 23793 at 2,2,2 +Id : 23961, {_}: meet (join (meet ?24420 ?24421) ?24420) ?24420 =>= join (meet ?24420 ?24421) ?24420 [24421, 24420] by Demod 23902 with 23235 at 2 +Id : 24344, {_}: ?24612 =<= join (meet ?24612 ?24613) ?24612 [24613, 24612] by Demod 24037 with 23961 at 3 +Id : 24361, {_}: join (meet (meet ?24861 ?24862) ?24861) (meet (meet ?24861 ?24862) ?24861) =>= meet ?24861 ?24862 [24862, 24861] by Super 1492 with 24344 at 2,2,2 +Id : 24421, {_}: meet (meet ?24861 ?24862) ?24861 =>= meet ?24861 ?24862 [24862, 24861] by Demod 24361 with 23235 at 2 +Id : 4078, {_}: meet ?5865 ?5866 =<= meet (meet ?5866 (join ?5867 (meet ?5865 ?5866))) (meet ?5865 ?5866) [5867, 5866, 5865] by Super 4066 with 3629 at 1,1,3 +Id : 24583, {_}: ?25104 =<= join ?25104 (meet ?25104 ?25105) [25105, 25104] by Super 23478 with 24421 at 2,3 +Id : 24726, {_}: meet ?25313 ?25314 =<= meet (meet ?25314 ?25313) (meet ?25313 ?25314) [25314, 25313] by Super 4078 with 24583 at 2,1,3 +Id : 24889, {_}: meet (meet ?25590 ?25591) (meet ?25591 ?25590) =?= meet (meet ?25591 ?25590) (meet ?25590 ?25591) [25591, 25590] by Super 24421 with 24726 at 1,2 +Id : 24922, {_}: meet ?25591 ?25590 =<= meet (meet ?25591 ?25590) (meet ?25590 ?25591) [25590, 25591] by Demod 24889 with 24726 at 2 +Id : 24923, {_}: meet ?25591 ?25590 =?= meet ?25590 ?25591 [25590, 25591] by Demod 24922 with 24726 at 3 +Id : 25184, {_}: meet a b === meet a b [] by Demod 2 with 24923 at 2 +Id : 2, {_}: meet b a =>= meet a b [] by prove_wal_axioms_2 +% SZS output end CNFRefutation for LAT093-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H7 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H6 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?26 ?28)) + =<= + meet ?26 + (join ?27 + (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))) + [28, 27, 26] by equation_H7 ?26 ?27 ?28 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join (meet a (join b (meet a c))) (meet c (join a b))) + [] by prove_H6 +Last chance: 1246076965.33 +Last chance: all is indexed 1246077716. +Last chance: failed over 100 goal 1246077716. +FAILURE in 0 iterations +% SZS status Timeout for LAT138-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H21 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H2 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + join (meet ?26 ?27) (meet ?26 ?28) + =<= + meet ?26 + (join (meet ?27 (join ?26 (meet ?27 ?28))) + (meet ?28 (join ?26 ?27))) + [28, 27, 26] by equation_H21 ?26 ?27 ?28 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) + [] by prove_H2 +Last chance: 1246078016.26 +Last chance: all is indexed 1246078786.2 +Last chance: failed over 100 goal 1246078786.2 +FAILURE in 0 iterations +% SZS status Timeout for LAT140-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 89 + absorption2 is 88 + associativity_of_join is 84 + associativity_of_meet is 85 + b is 97 + c is 96 + commutativity_of_join is 86 + commutativity_of_meet is 87 + d is 95 + equation_H34 is 83 + idempotence_of_join is 90 + idempotence_of_meet is 91 + join is 93 + meet is 94 + prove_H28 is 92 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 ?29)) + =<= + meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) + [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a (meet c d))) + =<= + meet a (join b (meet c (meet d (join a (meet b d))))) + [] by prove_H28 +Last chance: 1246079087.04 +Last chance: all is indexed 1246079747.64 +Last chance: failed over 100 goal 1246079747.65 +FAILURE in 0 iterations +% SZS status Timeout for LAT146-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H34 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H7 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 ?29)) + =<= + meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) + [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join b (meet a (join (meet a b) (meet c (join a b))))) + [] by prove_H7 +Last chance: 1246080050.64 +Last chance: all is indexed 1246080823.29 +Last chance: failed over 100 goal 1246080823.29 +FAILURE in 0 iterations +% SZS status Timeout for LAT148-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H40 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H6 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) + =<= + meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27))))) + [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join (meet a (join b (meet a c))) (meet c (join a b))) + [] by prove_H6 +Last chance: 1246081123.41 +Last chance: all is indexed 1246081806.12 +Last chance: failed over 100 goal 1246081806.12 +FAILURE in 0 iterations +% SZS status Timeout for LAT152-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H49 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H6 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) + =<= + meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29)))) + [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join (meet a (join b (meet a c))) (meet c (join a b))) + [] by prove_H6 +Last chance: 1246082106.73 +Last chance: all is indexed 1246082875.19 +Last chance: failed over 100 goal 1246082875.19 +FAILURE in 0 iterations +% SZS status Timeout for LAT156-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H50 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H7 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) + =<= + meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) + [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join b (meet a (join (meet a b) (meet c (join a b))))) + [] by prove_H7 +Last chance: 1246083177.41 +Last chance: all is indexed 1246083936.64 +Last chance: failed over 100 goal 1246083936.64 +FAILURE in 0 iterations +% SZS status Timeout for LAT159-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H76 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H6 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) + =<= + meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) + [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join (meet a (join b (meet a c))) (meet c (join a b))) + [] by prove_H6 +Last chance: 1246084236.73 +Last chance: all is indexed 1246084965.23 +Last chance: failed over 100 goal 1246084965.24 +FAILURE in 0 iterations +% SZS status Timeout for LAT164-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 89 + absorption2 is 88 + associativity_of_join is 84 + associativity_of_meet is 85 + b is 97 + c is 96 + commutativity_of_join is 86 + commutativity_of_meet is 87 + d is 95 + equation_H76 is 83 + idempotence_of_join is 90 + idempotence_of_meet is 91 + join is 94 + meet is 93 + prove_H77 is 92 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) + =<= + meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) + [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet c (join b d))) + =<= + meet a (join b (meet c (join d (meet a (meet b c))))) + [] by prove_H77 +Last chance: 1246085265.76 +Last chance: all is indexed 1246086029.27 +Last chance: failed over 100 goal 1246086029.27 +FAILURE in 0 iterations +% SZS status Timeout for LAT165-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 89 + absorption2 is 88 + associativity_of_join is 84 + associativity_of_meet is 85 + b is 97 + c is 96 + commutativity_of_join is 86 + commutativity_of_meet is 87 + d is 95 + equation_H77 is 83 + idempotence_of_join is 90 + idempotence_of_meet is 91 + join is 94 + meet is 93 + prove_H78 is 92 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) + =<= + meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 (meet ?27 ?28))))) + [29, 28, 27, 26] by equation_H77 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet c (join b d))) + =<= + meet a (join b (meet c (join d (meet b (join a d))))) + [] by prove_H78 +Last chance: 1246086331.52 +Last chance: all is indexed 1246087040.97 +Last chance: failed over 100 goal 1246087040.97 +FAILURE in 0 iterations +% SZS status Timeout for LAT166-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H21_dual is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 95 + meet is 94 + prove_H58 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet (join ?26 ?27) (join ?26 ?28) + =<= + join ?26 + (meet (join ?27 (meet ?26 (join ?27 ?28))) + (join ?28 (meet ?26 ?27))) + [28, 27, 26] by equation_H21_dual ?26 ?27 ?28 +Goal + Id : 2, {_}: + meet a (join b c) + =<= + meet a (join b (meet (join a b) (join c (meet a b)))) + [] by prove_H58 +Last chance: 1246087341.15 +Last chance: all is indexed 1246088084.75 +Last chance: failed over 100 goal 1246088084.75 +FAILURE in 0 iterations +% SZS status Timeout for LAT169-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H49_dual is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 95 + meet is 94 + prove_H58 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) + =<= + join ?26 (meet ?27 (meet (join ?26 ?28) (join ?28 (meet ?27 ?29)))) + [29, 28, 27, 26] by equation_H49_dual ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b c) + =<= + meet a (join b (meet (join a b) (join c (meet a b)))) + [] by prove_H58 +Last chance: 1246088386.61 +Last chance: all is indexed 1246089088.1 +Last chance: failed over 100 goal 1246089088.1 +FAILURE in 0 iterations +% SZS status Timeout for LAT170-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 89 + absorption2 is 88 + associativity_of_join is 84 + associativity_of_meet is 85 + b is 97 + c is 96 + commutativity_of_join is 86 + commutativity_of_meet is 87 + d is 95 + equation_H76_dual is 83 + idempotence_of_join is 90 + idempotence_of_meet is 91 + join is 94 + meet is 93 + prove_H40 is 92 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + join ?26 (meet ?27 (join ?28 (meet ?27 ?29))) + =<= + join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27)))) + [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet c (join a d))) + =<= + meet a (join b (meet c (join d (meet c (join a b))))) + [] by prove_H40 +Last chance: 1246089390.3 +Last chance: all is indexed 1246090126.61 +Last chance: failed over 100 goal 1246090126.62 +FAILURE in 0 iterations +% SZS status Timeout for LAT173-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 89 + absorption2 is 88 + associativity_of_join is 84 + associativity_of_meet is 85 + b is 97 + c is 96 + commutativity_of_join is 86 + commutativity_of_meet is 87 + d is 95 + equation_H79_dual is 83 + idempotence_of_join is 90 + idempotence_of_meet is 91 + join is 93 + meet is 94 + prove_H32 is 92 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) + =<= + join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29)) + [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a (meet c d))) + =<= + meet a (join b (meet c (join (meet a d) (meet b d)))) + [] by prove_H32 +Last chance: 1246090428.09 +Last chance: all is indexed 1246091152.16 +Last chance: failed over 100 goal 1246091152.16 +FAILURE in 0 iterations +% SZS status Timeout for LAT175-1.p +Order + == is 100 + _ is 99 + a is 97 + a_times_b_is_c is 80 + add is 92 + additive_identity is 93 + additive_inverse is 89 + associativity_for_addition is 86 + associativity_for_multiplication is 84 + b is 98 + c is 95 + commutativity_for_addition is 85 + distribute1 is 83 + distribute2 is 82 + left_additive_identity is 91 + left_additive_inverse is 88 + multiply is 96 + prove_commutativity is 94 + right_additive_identity is 90 + right_additive_inverse is 87 + x_cubed_is_x is 81 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + add (additive_inverse ?6) ?6 =>= additive_identity + [6] by left_additive_inverse ?6 + Id : 10, {_}: + add ?8 (additive_inverse ?8) =>= additive_identity + [8] by right_additive_inverse ?8 + Id : 12, {_}: + add ?10 (add ?11 ?12) =?= add (add ?10 ?11) ?12 + [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 + Id : 14, {_}: + add ?14 ?15 =?= add ?15 ?14 + [15, 14] by commutativity_for_addition ?14 ?15 + Id : 16, {_}: + multiply ?17 (multiply ?18 ?19) =?= multiply (multiply ?17 ?18) ?19 + [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 + Id : 18, {_}: + multiply ?21 (add ?22 ?23) + =<= + add (multiply ?21 ?22) (multiply ?21 ?23) + [23, 22, 21] by distribute1 ?21 ?22 ?23 + Id : 20, {_}: + multiply (add ?25 ?26) ?27 + =<= + add (multiply ?25 ?27) (multiply ?26 ?27) + [27, 26, 25] by distribute2 ?25 ?26 ?27 + Id : 22, {_}: multiply ?29 (multiply ?29 ?29) =>= ?29 [29] by x_cubed_is_x ?29 + Id : 24, {_}: multiply a b =>= c [] by a_times_b_is_c +Goal + Id : 2, {_}: multiply b a =>= c [] by prove_commutativity +Last chance: 1246091452.34 +Last chance: all is indexed 1246092379.97 +Last chance: failed over 100 goal 1246092379.97 +FAILURE in 0 iterations +% SZS status Timeout for RNG009-7.p +Order + == is 100 + _ is 99 + add is 94 + additive_identity is 91 + additive_inverse is 85 + additive_inverse_additive_inverse is 82 + associativity_for_addition is 78 + associator is 93 + commutativity_for_addition is 79 + commutator is 75 + distribute1 is 81 + distribute2 is 80 + left_additive_identity is 90 + left_additive_inverse is 84 + left_alternative is 76 + left_multiplicative_zero is 87 + multiply is 88 + prove_linearised_form1 is 92 + right_additive_identity is 89 + right_additive_inverse is 83 + right_alternative is 77 + right_multiplicative_zero is 86 + u is 96 + v is 95 + x is 98 + y is 97 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 +Goal + Id : 2, {_}: + associator x y (add u v) + =<= + add (associator x y u) (associator x y v) + [] by prove_linearised_form1 +Last chance: 1246092681.04 +Last chance: all is indexed 1246093632.21 +Last chance: failed over 100 goal 1246093632.21 +FAILURE in 0 iterations +% SZS status Timeout for RNG019-6.p +Order + == is 100 + _ is 99 + add is 94 + additive_identity is 91 + additive_inverse is 85 + additive_inverse_additive_inverse is 82 + associativity_for_addition is 78 + associator is 93 + commutativity_for_addition is 79 + commutator is 75 + distribute1 is 81 + distribute2 is 80 + distributivity_of_difference1 is 71 + distributivity_of_difference2 is 70 + distributivity_of_difference3 is 69 + distributivity_of_difference4 is 68 + inverse_product1 is 73 + inverse_product2 is 72 + left_additive_identity is 90 + left_additive_inverse is 84 + left_alternative is 76 + left_multiplicative_zero is 87 + multiply is 88 + product_of_inverses is 74 + prove_linearised_form1 is 92 + right_additive_identity is 89 + right_additive_inverse is 83 + right_alternative is 77 + right_multiplicative_zero is 86 + u is 96 + v is 95 + x is 98 + y is 97 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 + Id : 34, {_}: + multiply (additive_inverse ?44) (additive_inverse ?45) + =>= + multiply ?44 ?45 + [45, 44] by product_of_inverses ?44 ?45 + Id : 36, {_}: + multiply (additive_inverse ?47) ?48 + =>= + additive_inverse (multiply ?47 ?48) + [48, 47] by inverse_product1 ?47 ?48 + Id : 38, {_}: + multiply ?50 (additive_inverse ?51) + =>= + additive_inverse (multiply ?50 ?51) + [51, 50] by inverse_product2 ?50 ?51 + Id : 40, {_}: + multiply ?53 (add ?54 (additive_inverse ?55)) + =<= + add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) + [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 + Id : 42, {_}: + multiply (add ?57 (additive_inverse ?58)) ?59 + =<= + add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) + [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 + Id : 44, {_}: + multiply (additive_inverse ?61) (add ?62 ?63) + =<= + add (additive_inverse (multiply ?61 ?62)) + (additive_inverse (multiply ?61 ?63)) + [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 + Id : 46, {_}: + multiply (add ?65 ?66) (additive_inverse ?67) + =<= + add (additive_inverse (multiply ?65 ?67)) + (additive_inverse (multiply ?66 ?67)) + [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 +Goal + Id : 2, {_}: + associator x y (add u v) + =<= + add (associator x y u) (associator x y v) + [] by prove_linearised_form1 +Last chance: 1246093932.41 +Last chance: all is indexed 1246095402.48 +Last chance: failed over 100 goal 1246095402.49 +FAILURE in 0 iterations +% SZS status Timeout for RNG019-7.p +Order + == is 100 + _ is 99 + add is 95 + additive_identity is 91 + additive_inverse is 85 + additive_inverse_additive_inverse is 82 + associativity_for_addition is 78 + associator is 93 + commutativity_for_addition is 79 + commutator is 75 + distribute1 is 81 + distribute2 is 80 + left_additive_identity is 90 + left_additive_inverse is 84 + left_alternative is 76 + left_multiplicative_zero is 87 + multiply is 88 + prove_linearised_form2 is 92 + right_additive_identity is 89 + right_additive_inverse is 83 + right_alternative is 77 + right_multiplicative_zero is 86 + u is 97 + v is 96 + x is 98 + y is 94 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 +Goal + Id : 2, {_}: + associator x (add u v) y + =<= + add (associator x u y) (associator x v y) + [] by prove_linearised_form2 +Last chance: 1246095704.23 +Last chance: all is indexed 1246096665.27 +Last chance: failed over 100 goal 1246096665.27 +FAILURE in 0 iterations +% SZS status Timeout for RNG020-6.p +Order + == is 100 + _ is 99 + a is 98 + add is 92 + additive_identity is 90 + additive_inverse is 91 + additive_inverse_additive_inverse is 82 + associativity_for_addition is 78 + associator is 93 + b is 97 + c is 95 + commutativity_for_addition is 79 + commutator is 75 + d is 94 + distribute1 is 81 + distribute2 is 80 + left_additive_identity is 88 + left_additive_inverse is 84 + left_alternative is 76 + left_multiplicative_zero is 86 + multiply is 96 + prove_teichmuller_identity is 89 + right_additive_identity is 87 + right_additive_inverse is 83 + right_alternative is 77 + right_multiplicative_zero is 85 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 +Goal + Id : 2, {_}: + add + (add (associator (multiply a b) c d) + (associator a b (multiply c d))) + (additive_inverse + (add + (add (associator a (multiply b c) d) + (multiply a (associator b c d))) + (multiply (associator a b c) d))) + =>= + additive_identity + [] by prove_teichmuller_identity +Last chance: 1246096966.68 +Last chance: all is indexed 1246097932.32 +Last chance: failed over 100 goal 1246097932.59 +FAILURE in 0 iterations +% SZS status Timeout for RNG026-6.p +Order + == is 100 + _ is 99 + add is 92 + additive_identity is 93 + additive_inverse is 87 + additive_inverse_additive_inverse is 84 + associativity_for_addition is 80 + associator is 77 + commutativity_for_addition is 81 + commutator is 76 + cx is 97 + cy is 96 + cz is 98 + distribute1 is 83 + distribute2 is 82 + distributivity_of_difference1 is 72 + distributivity_of_difference2 is 71 + distributivity_of_difference3 is 70 + distributivity_of_difference4 is 69 + inverse_product1 is 74 + inverse_product2 is 73 + left_additive_identity is 91 + left_additive_inverse is 86 + left_alternative is 78 + left_multiplicative_zero is 89 + multiply is 95 + product_of_inverses is 75 + prove_right_moufang is 94 + right_additive_identity is 90 + right_additive_inverse is 85 + right_alternative is 79 + right_multiplicative_zero is 88 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 + Id : 34, {_}: + multiply (additive_inverse ?44) (additive_inverse ?45) + =>= + multiply ?44 ?45 + [45, 44] by product_of_inverses ?44 ?45 + Id : 36, {_}: + multiply (additive_inverse ?47) ?48 + =>= + additive_inverse (multiply ?47 ?48) + [48, 47] by inverse_product1 ?47 ?48 + Id : 38, {_}: + multiply ?50 (additive_inverse ?51) + =>= + additive_inverse (multiply ?50 ?51) + [51, 50] by inverse_product2 ?50 ?51 + Id : 40, {_}: + multiply ?53 (add ?54 (additive_inverse ?55)) + =<= + add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) + [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 + Id : 42, {_}: + multiply (add ?57 (additive_inverse ?58)) ?59 + =<= + add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) + [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 + Id : 44, {_}: + multiply (additive_inverse ?61) (add ?62 ?63) + =<= + add (additive_inverse (multiply ?61 ?62)) + (additive_inverse (multiply ?61 ?63)) + [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 + Id : 46, {_}: + multiply (add ?65 ?66) (additive_inverse ?67) + =<= + add (additive_inverse (multiply ?65 ?67)) + (additive_inverse (multiply ?66 ?67)) + [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 +Goal + Id : 2, {_}: + multiply cz (multiply cx (multiply cy cx)) + =<= + multiply (multiply (multiply cz cx) cy) cx + [] by prove_right_moufang +Last chance: 1246098233.93 +Last chance: all is indexed 1246099724.05 +Last chance: failed over 100 goal 1246099724.05 +FAILURE in 0 iterations +% SZS status Timeout for RNG027-7.p +Order + == is 100 + _ is 99 + add is 91 + additive_identity is 92 + additive_inverse is 86 + additive_inverse_additive_inverse is 83 + associativity_for_addition is 79 + associator is 94 + commutativity_for_addition is 80 + commutator is 76 + distribute1 is 82 + distribute2 is 81 + distributivity_of_difference1 is 72 + distributivity_of_difference2 is 71 + distributivity_of_difference3 is 70 + distributivity_of_difference4 is 69 + inverse_product1 is 74 + inverse_product2 is 73 + left_additive_identity is 90 + left_additive_inverse is 85 + left_alternative is 77 + left_multiplicative_zero is 88 + multiply is 96 + product_of_inverses is 75 + prove_left_moufang is 93 + right_additive_identity is 89 + right_additive_inverse is 84 + right_alternative is 78 + right_multiplicative_zero is 87 + x is 98 + y is 97 + z is 95 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 + Id : 34, {_}: + multiply (additive_inverse ?44) (additive_inverse ?45) + =>= + multiply ?44 ?45 + [45, 44] by product_of_inverses ?44 ?45 + Id : 36, {_}: + multiply (additive_inverse ?47) ?48 + =>= + additive_inverse (multiply ?47 ?48) + [48, 47] by inverse_product1 ?47 ?48 + Id : 38, {_}: + multiply ?50 (additive_inverse ?51) + =>= + additive_inverse (multiply ?50 ?51) + [51, 50] by inverse_product2 ?50 ?51 + Id : 40, {_}: + multiply ?53 (add ?54 (additive_inverse ?55)) + =<= + add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) + [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 + Id : 42, {_}: + multiply (add ?57 (additive_inverse ?58)) ?59 + =<= + add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) + [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 + Id : 44, {_}: + multiply (additive_inverse ?61) (add ?62 ?63) + =<= + add (additive_inverse (multiply ?61 ?62)) + (additive_inverse (multiply ?61 ?63)) + [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 + Id : 46, {_}: + multiply (add ?65 ?66) (additive_inverse ?67) + =<= + add (additive_inverse (multiply ?65 ?67)) + (additive_inverse (multiply ?66 ?67)) + [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 +Goal + Id : 2, {_}: + associator x (multiply y x) z =<= multiply x (associator x y z) + [] by prove_left_moufang +Last chance: 1246100026.03 +Last chance: all is indexed 1246101492.29 +Last chance: failed over 100 goal 1246101492.29 +FAILURE in 0 iterations +% SZS status Timeout for RNG028-9.p +Order + == is 100 + _ is 99 + add is 92 + additive_identity is 93 + additive_inverse is 87 + additive_inverse_additive_inverse is 84 + associativity_for_addition is 80 + associator is 77 + commutativity_for_addition is 81 + commutator is 76 + distribute1 is 83 + distribute2 is 82 + distributivity_of_difference1 is 72 + distributivity_of_difference2 is 71 + distributivity_of_difference3 is 70 + distributivity_of_difference4 is 69 + inverse_product1 is 74 + inverse_product2 is 73 + left_additive_identity is 91 + left_additive_inverse is 86 + left_alternative is 78 + left_multiplicative_zero is 89 + multiply is 96 + product_of_inverses is 75 + prove_middle_moufang is 94 + right_additive_identity is 90 + right_additive_inverse is 85 + right_alternative is 79 + right_multiplicative_zero is 88 + x is 98 + y is 97 + z is 95 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 + Id : 34, {_}: + multiply (additive_inverse ?44) (additive_inverse ?45) + =>= + multiply ?44 ?45 + [45, 44] by product_of_inverses ?44 ?45 + Id : 36, {_}: + multiply (additive_inverse ?47) ?48 + =>= + additive_inverse (multiply ?47 ?48) + [48, 47] by inverse_product1 ?47 ?48 + Id : 38, {_}: + multiply ?50 (additive_inverse ?51) + =>= + additive_inverse (multiply ?50 ?51) + [51, 50] by inverse_product2 ?50 ?51 + Id : 40, {_}: + multiply ?53 (add ?54 (additive_inverse ?55)) + =<= + add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) + [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 + Id : 42, {_}: + multiply (add ?57 (additive_inverse ?58)) ?59 + =<= + add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) + [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 + Id : 44, {_}: + multiply (additive_inverse ?61) (add ?62 ?63) + =<= + add (additive_inverse (multiply ?61 ?62)) + (additive_inverse (multiply ?61 ?63)) + [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 + Id : 46, {_}: + multiply (add ?65 ?66) (additive_inverse ?67) + =<= + add (additive_inverse (multiply ?65 ?67)) + (additive_inverse (multiply ?66 ?67)) + [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 +Goal + Id : 2, {_}: + multiply (multiply x y) (multiply z x) + =<= + multiply (multiply x (multiply y z)) x + [] by prove_middle_moufang +Last chance: 1246101794.55 +Last chance: all is indexed 1246103287.97 +Last chance: failed over 100 goal 1246103287.97 +FAILURE in 0 iterations +% SZS status Timeout for RNG029-7.p +Order + == is 100 + _ is 99 + a is 97 + a_times_b_is_c is 80 + add is 92 + additive_identity is 93 + additive_inverse is 89 + associativity_for_addition is 86 + associativity_for_multiplication is 84 + b is 98 + c is 95 + commutativity_for_addition is 85 + distribute1 is 83 + distribute2 is 82 + left_additive_identity is 91 + left_additive_inverse is 88 + multiply is 96 + prove_commutativity is 94 + right_additive_identity is 90 + right_additive_inverse is 87 + x_fourthed_is_x is 81 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + add (additive_inverse ?6) ?6 =>= additive_identity + [6] by left_additive_inverse ?6 + Id : 10, {_}: + add ?8 (additive_inverse ?8) =>= additive_identity + [8] by right_additive_inverse ?8 + Id : 12, {_}: + add ?10 (add ?11 ?12) =?= add (add ?10 ?11) ?12 + [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 + Id : 14, {_}: + add ?14 ?15 =?= add ?15 ?14 + [15, 14] by commutativity_for_addition ?14 ?15 + Id : 16, {_}: + multiply ?17 (multiply ?18 ?19) =?= multiply (multiply ?17 ?18) ?19 + [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 + Id : 18, {_}: + multiply ?21 (add ?22 ?23) + =<= + add (multiply ?21 ?22) (multiply ?21 ?23) + [23, 22, 21] by distribute1 ?21 ?22 ?23 + Id : 20, {_}: + multiply (add ?25 ?26) ?27 + =<= + add (multiply ?25 ?27) (multiply ?26 ?27) + [27, 26, 25] by distribute2 ?25 ?26 ?27 + Id : 22, {_}: + multiply ?29 (multiply ?29 (multiply ?29 ?29)) =>= ?29 + [29] by x_fourthed_is_x ?29 + Id : 24, {_}: multiply a b =>= c [] by a_times_b_is_c +Goal + Id : 2, {_}: multiply b a =>= c [] by prove_commutativity +Last chance: 1246103588.12 +Last chance: all is indexed 1246104654.48 +Last chance: failed over 100 goal 1246104654.5 +FAILURE in 0 iterations +% SZS status Timeout for RNG035-7.p +Order + == is 100 + _ is 99 + a is 98 + absorbtion is 88 + add is 95 + associativity_of_add is 92 + b is 97 + c is 90 + commutativity_of_add is 93 + d is 89 + negate is 96 + prove_huntingtons_axiom is 94 + robbins_axiom is 91 +Facts + Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 + Id : 6, {_}: + add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) + [7, 6, 5] by associativity_of_add ?5 ?6 ?7 + Id : 8, {_}: + negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) + =>= + ?9 + [10, 9] by robbins_axiom ?9 ?10 + Id : 10, {_}: add c d =>= d [] by absorbtion +Goal + Id : 2, {_}: + add (negate (add a (negate b))) (negate (add (negate a) (negate b))) + =>= + b + [] by prove_huntingtons_axiom +Last chance: 1246104961.92 +Last chance: all is indexed 1246105219.5 +Last chance: failed over 100 goal 1246105219.5 +FAILURE in 0 iterations +% SZS status Timeout for ROB006-1.p +Order + == is 100 + _ is 99 + absorbtion is 90 + add is 98 + associativity_of_add is 95 + c is 92 + commutativity_of_add is 96 + d is 91 + negate is 94 + prove_idempotence is 97 + robbins_axiom is 93 +Facts + Id : 4, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4 + Id : 6, {_}: + add (add ?6 ?7) ?8 =?= add ?6 (add ?7 ?8) + [8, 7, 6] by associativity_of_add ?6 ?7 ?8 + Id : 8, {_}: + negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11)))) + =>= + ?10 + [11, 10] by robbins_axiom ?10 ?11 + Id : 10, {_}: add c d =>= d [] by absorbtion +Goal + Id : 2, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1 +Last chance: 1246105523. +Last chance: all is indexed 1246105812.88 +Last chance: failed over 100 goal 1246105960.3 +FAILURE in 0 iterations +% SZS status Timeout for ROB006-2.p diff --git a/helm/software/components/binaries/matitaprover/log.090629 b/helm/software/components/binaries/matitaprover/log.090629 new file mode 100644 index 000000000..eddec3606 --- /dev/null +++ b/helm/software/components/binaries/matitaprover/log.090629 @@ -0,0 +1,8081 @@ +Order + == is 100 + _ is 99 + a is 98 + add is 93 + additive_id1 is 77 + additive_id2 is 76 + additive_identity is 82 + additive_inverse1 is 84 + additive_inverse2 is 83 + b is 97 + c is 96 + commutativity_of_add is 92 + commutativity_of_multiply is 91 + distributivity1 is 90 + distributivity2 is 89 + distributivity3 is 88 + distributivity4 is 87 + inverse is 86 + multiplicative_id1 is 79 + multiplicative_id2 is 78 + multiplicative_identity is 85 + multiplicative_inverse1 is 81 + multiplicative_inverse2 is 80 + multiply is 95 + prove_associativity is 94 +Facts + Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 + Id : 6, {_}: + multiply ?5 ?6 =?= multiply ?6 ?5 + [6, 5] by commutativity_of_multiply ?5 ?6 + Id : 8, {_}: + add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10) + [10, 9, 8] by distributivity1 ?8 ?9 ?10 + Id : 10, {_}: + add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14) + [14, 13, 12] by distributivity2 ?12 ?13 ?14 + Id : 12, {_}: + multiply (add ?16 ?17) ?18 + =<= + add (multiply ?16 ?18) (multiply ?17 ?18) + [18, 17, 16] by distributivity3 ?16 ?17 ?18 + Id : 14, {_}: + multiply ?20 (add ?21 ?22) + =<= + add (multiply ?20 ?21) (multiply ?20 ?22) + [22, 21, 20] by distributivity4 ?20 ?21 ?22 + Id : 16, {_}: + add ?24 (inverse ?24) =>= multiplicative_identity + [24] by additive_inverse1 ?24 + Id : 18, {_}: + add (inverse ?26) ?26 =>= multiplicative_identity + [26] by additive_inverse2 ?26 + Id : 20, {_}: + multiply ?28 (inverse ?28) =>= additive_identity + [28] by multiplicative_inverse1 ?28 + Id : 22, {_}: + multiply (inverse ?30) ?30 =>= additive_identity + [30] by multiplicative_inverse2 ?30 + Id : 24, {_}: + multiply ?32 multiplicative_identity =>= ?32 + [32] by multiplicative_id1 ?32 + Id : 26, {_}: + multiply multiplicative_identity ?34 =>= ?34 + [34] by multiplicative_id2 ?34 + Id : 28, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36 + Id : 30, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38 +Goal + Id : 2, {_}: + multiply a (multiply b c) =<= multiply (multiply a b) c + [] by prove_associativity +Found proof, 49.803119s +% SZS status Unsatisfiable for BOO007-2.p +% SZS output start CNFRefutation for BOO007-2.p +Id : 22, {_}: multiply (inverse ?30) ?30 =>= additive_identity [30] by multiplicative_inverse2 ?30 +Id : 24, {_}: multiply ?32 multiplicative_identity =>= ?32 [32] by multiplicative_id1 ?32 +Id : 69, {_}: multiply (add ?160 ?161) ?162 =<= add (multiply ?160 ?162) (multiply ?161 ?162) [162, 161, 160] by distributivity3 ?160 ?161 ?162 +Id : 28, {_}: add ?36 additive_identity =>= ?36 [36] by additive_id1 ?36 +Id : 16, {_}: add ?24 (inverse ?24) =>= multiplicative_identity [24] by additive_inverse1 ?24 +Id : 10, {_}: add ?12 (multiply ?13 ?14) =<= multiply (add ?12 ?13) (add ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 +Id : 26, {_}: multiply multiplicative_identity ?34 =>= ?34 [34] by multiplicative_id2 ?34 +Id : 18, {_}: add (inverse ?26) ?26 =>= multiplicative_identity [26] by additive_inverse2 ?26 +Id : 8, {_}: add (multiply ?8 ?9) ?10 =<= multiply (add ?8 ?10) (add ?9 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 +Id : 30, {_}: add additive_identity ?38 =>= ?38 [38] by additive_id2 ?38 +Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 +Id : 20, {_}: multiply ?28 (inverse ?28) =>= additive_identity [28] by multiplicative_inverse1 ?28 +Id : 14, {_}: multiply ?20 (add ?21 ?22) =<= add (multiply ?20 ?21) (multiply ?20 ?22) [22, 21, 20] by distributivity4 ?20 ?21 ?22 +Id : 12, {_}: multiply (add ?16 ?17) ?18 =<= add (multiply ?16 ?18) (multiply ?17 ?18) [18, 17, 16] by distributivity3 ?16 ?17 ?18 +Id : 6, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 +Id : 151, {_}: multiply ?356 (add ?357 (inverse ?356)) =>= add (multiply ?356 ?357) additive_identity [357, 356] by Super 14 with 20 at 2,3 +Id : 157, {_}: multiply ?356 (add ?357 (inverse ?356)) =>= add additive_identity (multiply ?356 ?357) [357, 356] by Demod 151 with 4 at 3 +Id : 3270, {_}: multiply ?3107 (add ?3108 (inverse ?3107)) =>= multiply ?3107 ?3108 [3108, 3107] by Demod 157 with 30 at 3 +Id : 136, {_}: add (multiply (inverse ?335) ?336) ?335 =>= multiply multiplicative_identity (add ?336 ?335) [336, 335] by Super 8 with 18 at 1,3 +Id : 2697, {_}: add (multiply (inverse ?335) ?336) ?335 =>= add ?336 ?335 [336, 335] by Demod 136 with 26 at 3 +Id : 3279, {_}: multiply ?3129 (add ?3128 (inverse ?3129)) =<= multiply ?3129 (multiply (inverse (inverse ?3129)) ?3128) [3128, 3129] by Super 3270 with 2697 at 2,2 +Id : 3256, {_}: multiply ?356 (add ?357 (inverse ?356)) =>= multiply ?356 ?357 [357, 356] by Demod 157 with 30 at 3 +Id : 3316, {_}: multiply ?3129 ?3128 =<= multiply ?3129 (multiply (inverse (inverse ?3129)) ?3128) [3128, 3129] by Demod 3279 with 3256 at 2 +Id : 135, {_}: add (multiply ?333 (inverse ?332)) ?332 =>= multiply (add ?333 ?332) multiplicative_identity [332, 333] by Super 8 with 18 at 2,3 +Id : 141, {_}: add (multiply ?333 (inverse ?332)) ?332 =>= multiply multiplicative_identity (add ?333 ?332) [332, 333] by Demod 135 with 6 at 3 +Id : 2790, {_}: add (multiply ?333 (inverse ?332)) ?332 =>= add ?333 ?332 [332, 333] by Demod 141 with 26 at 3 +Id : 152, {_}: multiply ?359 (add (inverse ?359) ?360) =>= add additive_identity (multiply ?359 ?360) [360, 359] by Super 14 with 20 at 1,3 +Id : 2899, {_}: multiply ?2812 (add (inverse ?2812) ?2813) =>= multiply ?2812 ?2813 [2813, 2812] by Demod 152 with 30 at 3 +Id : 122, {_}: add ?311 (multiply (inverse ?311) ?312) =>= multiply multiplicative_identity (add ?311 ?312) [312, 311] by Super 10 with 16 at 1,3 +Id : 1484, {_}: add ?1608 (multiply (inverse ?1608) ?1609) =>= add ?1608 ?1609 [1609, 1608] by Demod 122 with 26 at 3 +Id : 1488, {_}: add ?1618 additive_identity =<= add ?1618 (inverse (inverse ?1618)) [1618] by Super 1484 with 20 at 2,2 +Id : 1524, {_}: ?1618 =<= add ?1618 (inverse (inverse ?1618)) [1618] by Demod 1488 with 28 at 2 +Id : 2914, {_}: multiply ?2849 (inverse ?2849) =<= multiply ?2849 (inverse (inverse (inverse ?2849))) [2849] by Super 2899 with 1524 at 2,2 +Id : 2987, {_}: additive_identity =<= multiply ?2849 (inverse (inverse (inverse ?2849))) [2849] by Demod 2914 with 20 at 2 +Id : 3172, {_}: add additive_identity (inverse (inverse ?3022)) =?= add ?3022 (inverse (inverse ?3022)) [3022] by Super 2790 with 2987 at 1,2 +Id : 3182, {_}: inverse (inverse ?3022) =<= add ?3022 (inverse (inverse ?3022)) [3022] by Demod 3172 with 30 at 2 +Id : 3183, {_}: inverse (inverse ?3022) =>= ?3022 [3022] by Demod 3182 with 1524 at 3 +Id : 3317, {_}: multiply ?3129 ?3128 =<= multiply ?3129 (multiply ?3129 ?3128) [3128, 3129] by Demod 3316 with 3183 at 1,2,3 +Id : 3479, {_}: multiply (multiply ?3373 ?3374) ?3373 =>= multiply ?3373 ?3374 [3374, 3373] by Super 6 with 3317 at 3 +Id : 3807, {_}: multiply (add ?3814 (multiply ?3812 ?3813)) ?3812 =>= add (multiply ?3814 ?3812) (multiply ?3812 ?3813) [3813, 3812, 3814] by Super 12 with 3479 at 2,3 +Id : 70, {_}: multiply (add ?164 ?165) ?166 =<= add (multiply ?164 ?166) (multiply ?166 ?165) [166, 165, 164] by Super 69 with 6 at 2,3 +Id : 27040, {_}: multiply (add ?32987 (multiply ?32988 ?32989)) ?32988 =>= multiply (add ?32987 ?32989) ?32988 [32989, 32988, 32987] by Demod 3807 with 70 at 3 +Id : 27129, {_}: multiply (multiply (add ?33340 ?33341) ?33342) ?33341 =?= multiply (add (multiply ?33340 ?33342) ?33342) ?33341 [33342, 33341, 33340] by Super 27040 with 12 at 1,2 +Id : 1722, {_}: add (multiply ?1843 ?1842) (inverse (inverse ?1842)) =<= multiply (add ?1843 (inverse (inverse ?1842))) ?1842 [1842, 1843] by Super 8 with 1524 at 2,3 +Id : 1739, {_}: add (inverse (inverse ?1842)) (multiply ?1843 ?1842) =<= multiply (add ?1843 (inverse (inverse ?1842))) ?1842 [1843, 1842] by Demod 1722 with 4 at 2 +Id : 6934, {_}: add ?1842 (multiply ?1843 ?1842) =<= multiply (add ?1843 (inverse (inverse ?1842))) ?1842 [1843, 1842] by Demod 1739 with 3183 at 1,2 +Id : 6935, {_}: add ?1842 (multiply ?1843 ?1842) =<= multiply (add ?1843 ?1842) ?1842 [1843, 1842] by Demod 6934 with 3183 at 2,1,3 +Id : 235, {_}: add (multiply ?485 additive_identity) ?484 =<= multiply (add ?485 ?484) ?484 [484, 485] by Super 8 with 30 at 2,3 +Id : 498, {_}: multiply ?740 (add ?739 ?740) =>= add (multiply ?739 additive_identity) ?740 [739, 740] by Super 6 with 235 at 3 +Id : 236, {_}: add (multiply additive_identity ?488) ?487 =<= multiply ?487 (add ?488 ?487) [487, 488] by Super 8 with 30 at 1,3 +Id : 968, {_}: add (multiply additive_identity ?739) ?740 =?= add (multiply ?739 additive_identity) ?740 [740, 739] by Demod 498 with 236 at 2 +Id : 450, {_}: add ?682 (multiply additive_identity ?683) =<= multiply ?682 (add ?682 ?683) [683, 682] by Super 10 with 28 at 1,3 +Id : 453, {_}: add (inverse ?690) (multiply additive_identity ?690) =>= multiply (inverse ?690) multiplicative_identity [690] by Super 450 with 18 at 2,3 +Id : 478, {_}: add (inverse ?690) (multiply additive_identity ?690) =>= multiply multiplicative_identity (inverse ?690) [690] by Demod 453 with 6 at 3 +Id : 479, {_}: add (inverse ?690) (multiply additive_identity ?690) =>= inverse ?690 [690] by Demod 478 with 26 at 3 +Id : 2879, {_}: multiply ?359 (add (inverse ?359) ?360) =>= multiply ?359 ?360 [360, 359] by Demod 152 with 30 at 3 +Id : 2886, {_}: add (inverse (add (inverse additive_identity) ?2774)) (multiply additive_identity ?2774) =>= inverse (add (inverse additive_identity) ?2774) [2774] by Super 479 with 2879 at 2,2 +Id : 221, {_}: inverse additive_identity =>= multiplicative_identity [] by Super 18 with 28 at 2 +Id : 2945, {_}: add (inverse (add multiplicative_identity ?2774)) (multiply additive_identity ?2774) =>= inverse (add (inverse additive_identity) ?2774) [2774] by Demod 2886 with 221 at 1,1,1,2 +Id : 1490, {_}: add ?1622 (inverse ?1622) =>= add ?1622 multiplicative_identity [1622] by Super 1484 with 24 at 2,2 +Id : 1526, {_}: multiplicative_identity =<= add ?1622 multiplicative_identity [1622] by Demod 1490 with 16 at 2 +Id : 1546, {_}: add multiplicative_identity ?1675 =>= multiplicative_identity [1675] by Super 4 with 1526 at 3 +Id : 2946, {_}: add (inverse multiplicative_identity) (multiply additive_identity ?2774) =>= inverse (add (inverse additive_identity) ?2774) [2774] by Demod 2945 with 1546 at 1,1,2 +Id : 183, {_}: inverse multiplicative_identity =>= additive_identity [] by Super 22 with 24 at 2 +Id : 2947, {_}: add additive_identity (multiply additive_identity ?2774) =>= inverse (add (inverse additive_identity) ?2774) [2774] by Demod 2946 with 183 at 1,2 +Id : 2948, {_}: multiply additive_identity ?2774 =<= inverse (add (inverse additive_identity) ?2774) [2774] by Demod 2947 with 30 at 2 +Id : 2949, {_}: multiply additive_identity ?2774 =<= inverse (add multiplicative_identity ?2774) [2774] by Demod 2948 with 221 at 1,1,3 +Id : 2950, {_}: multiply additive_identity ?2774 =>= inverse multiplicative_identity [2774] by Demod 2949 with 1546 at 1,3 +Id : 2951, {_}: multiply additive_identity ?2774 =>= additive_identity [2774] by Demod 2950 with 183 at 3 +Id : 3009, {_}: add additive_identity ?740 =<= add (multiply ?739 additive_identity) ?740 [739, 740] by Demod 968 with 2951 at 1,2 +Id : 3029, {_}: ?740 =<= add (multiply ?739 additive_identity) ?740 [739, 740] by Demod 3009 with 30 at 2 +Id : 3031, {_}: ?484 =<= multiply (add ?485 ?484) ?484 [485, 484] by Demod 235 with 3029 at 2 +Id : 6936, {_}: add ?1842 (multiply ?1843 ?1842) =>= ?1842 [1843, 1842] by Demod 6935 with 3031 at 3 +Id : 6956, {_}: add (multiply ?7059 ?7058) ?7058 =>= ?7058 [7058, 7059] by Super 4 with 6936 at 3 +Id : 52241, {_}: multiply (multiply (add ?83798 ?83799) ?83800) ?83799 =>= multiply ?83800 ?83799 [83800, 83799, 83798] by Demod 27129 with 6956 at 1,3 +Id : 52270, {_}: multiply (multiply ?83922 ?83923) (multiply ?83921 ?83922) =>= multiply ?83923 (multiply ?83921 ?83922) [83921, 83923, 83922] by Super 52241 with 6936 at 1,1,2 +Id : 3280, {_}: multiply ?3132 (add ?3131 (inverse ?3132)) =<= multiply ?3132 (multiply ?3131 (inverse (inverse ?3132))) [3131, 3132] by Super 3270 with 2790 at 2,2 +Id : 3318, {_}: multiply ?3132 ?3131 =<= multiply ?3132 (multiply ?3131 (inverse (inverse ?3132))) [3131, 3132] by Demod 3280 with 3256 at 2 +Id : 3319, {_}: multiply ?3132 ?3131 =<= multiply ?3132 (multiply ?3131 ?3132) [3131, 3132] by Demod 3318 with 3183 at 2,2,3 +Id : 3542, {_}: multiply ?3472 (add ?3474 (multiply ?3473 ?3472)) =>= add (multiply ?3472 ?3474) (multiply ?3472 ?3473) [3473, 3474, 3472] by Super 14 with 3319 at 2,3 +Id : 23927, {_}: multiply ?27205 (add ?27206 (multiply ?27207 ?27205)) =>= multiply ?27205 (add ?27206 ?27207) [27207, 27206, 27205] by Demod 3542 with 14 at 3 +Id : 24009, {_}: multiply ?27527 (multiply ?27528 (add ?27526 ?27527)) =?= multiply ?27527 (add (multiply ?27528 ?27526) ?27528) [27526, 27528, 27527] by Super 23927 with 14 at 2,2 +Id : 7091, {_}: add (multiply ?7292 ?7293) ?7293 =>= ?7293 [7293, 7292] by Super 4 with 6936 at 3 +Id : 7092, {_}: add (multiply ?7296 ?7295) ?7296 =>= ?7296 [7295, 7296] by Super 7091 with 6 at 1,2 +Id : 49144, {_}: multiply ?77879 (multiply ?77880 (add ?77881 ?77879)) =>= multiply ?77879 ?77880 [77881, 77880, 77879] by Demod 24009 with 7092 at 2,3 +Id : 6968, {_}: add ?7096 (multiply ?7097 ?7096) =>= ?7096 [7097, 7096] by Demod 6935 with 3031 at 3 +Id : 6969, {_}: add ?7099 (multiply ?7099 ?7100) =>= ?7099 [7100, 7099] by Super 6968 with 6 at 2,2 +Id : 49175, {_}: multiply (multiply ?78012 ?78010) (multiply ?78011 ?78012) =>= multiply (multiply ?78012 ?78010) ?78011 [78011, 78010, 78012] by Super 49144 with 6969 at 2,2,2 +Id : 77462, {_}: multiply (multiply ?134082 ?134083) ?134084 =?= multiply ?134083 (multiply ?134084 ?134082) [134084, 134083, 134082] by Demod 52270 with 49175 at 2 +Id : 77468, {_}: multiply (multiply (add (inverse ?134104) ?134102) ?134103) ?134104 =>= multiply ?134103 (multiply ?134104 ?134102) [134103, 134102, 134104] by Super 77462 with 2879 at 2,3 +Id : 3544, {_}: multiply (multiply ?3481 ?3480) ?3480 =>= multiply ?3480 ?3481 [3480, 3481] by Super 6 with 3319 at 3 +Id : 3902, {_}: multiply (add ?3943 (multiply ?3941 ?3942)) ?3942 =>= add (multiply ?3943 ?3942) (multiply ?3942 ?3941) [3942, 3941, 3943] by Super 12 with 3544 at 2,3 +Id : 27853, {_}: multiply (add ?34448 (multiply ?34449 ?34450)) ?34450 =>= multiply (add ?34448 ?34449) ?34450 [34450, 34449, 34448] by Demod 3902 with 70 at 3 +Id : 27945, {_}: multiply (multiply ?34816 (add ?34815 ?34817)) ?34817 =?= multiply (add (multiply ?34816 ?34815) ?34816) ?34817 [34817, 34815, 34816] by Super 27853 with 14 at 1,2 +Id : 53412, {_}: multiply (multiply ?86132 (add ?86133 ?86134)) ?86134 =>= multiply ?86132 ?86134 [86134, 86133, 86132] by Demod 27945 with 7092 at 1,3 +Id : 53441, {_}: multiply (multiply ?86256 ?86257) (multiply ?86255 ?86257) =>= multiply ?86256 (multiply ?86255 ?86257) [86255, 86257, 86256] by Super 53412 with 6936 at 2,1,2 +Id : 49173, {_}: multiply (multiply ?78002 ?78004) (multiply ?78003 ?78004) =>= multiply (multiply ?78002 ?78004) ?78003 [78003, 78004, 78002] by Super 49144 with 6936 at 2,2,2 +Id : 79216, {_}: multiply (multiply ?86256 ?86257) ?86255 =?= multiply ?86256 (multiply ?86255 ?86257) [86255, 86257, 86256] by Demod 53441 with 49173 at 2 +Id : 290220, {_}: multiply (add (inverse ?134104) ?134102) (multiply ?134104 ?134103) =>= multiply ?134103 (multiply ?134104 ?134102) [134103, 134102, 134104] by Demod 77468 with 79216 at 2 +Id : 148, {_}: multiply (add ?349 ?350) (inverse ?349) =>= add additive_identity (multiply ?350 (inverse ?349)) [350, 349] by Super 12 with 20 at 1,3 +Id : 160, {_}: multiply (inverse ?349) (add ?349 ?350) =>= add additive_identity (multiply ?350 (inverse ?349)) [350, 349] by Demod 148 with 6 at 2 +Id : 4141, {_}: multiply (inverse ?4194) (add ?4194 ?4195) =>= multiply ?4195 (inverse ?4194) [4195, 4194] by Demod 160 with 30 at 3 +Id : 3259, {_}: add (multiply (inverse ?3073) ?3072) ?3073 =<= add (add ?3072 (inverse (inverse ?3073))) ?3073 [3072, 3073] by Super 2697 with 3256 at 1,2 +Id : 3300, {_}: add ?3072 ?3073 =<= add (add ?3072 (inverse (inverse ?3073))) ?3073 [3073, 3072] by Demod 3259 with 2697 at 2 +Id : 3301, {_}: add ?3072 ?3073 =<= add (add ?3072 ?3073) ?3073 [3073, 3072] by Demod 3300 with 3183 at 2,1,3 +Id : 4158, {_}: multiply (inverse (add ?4240 ?4241)) (add ?4240 ?4241) =>= multiply ?4241 (inverse (add ?4240 ?4241)) [4241, 4240] by Super 4141 with 3301 at 2,2 +Id : 4229, {_}: additive_identity =<= multiply ?4241 (inverse (add ?4240 ?4241)) [4240, 4241] by Demod 4158 with 22 at 2 +Id : 5045, {_}: multiply (inverse (add ?4937 ?4936)) ?4936 =>= additive_identity [4936, 4937] by Super 6 with 4229 at 3 +Id : 7219, {_}: multiply (inverse ?7487) (multiply ?7487 ?7488) =>= additive_identity [7488, 7487] by Super 5045 with 6969 at 1,1,2 +Id : 7871, {_}: multiply (add (inverse ?8300) ?8302) (multiply ?8300 ?8301) =>= add additive_identity (multiply ?8302 (multiply ?8300 ?8301)) [8301, 8302, 8300] by Super 12 with 7219 at 1,3 +Id : 7967, {_}: multiply (add (inverse ?8300) ?8302) (multiply ?8300 ?8301) =>= multiply ?8302 (multiply ?8300 ?8301) [8301, 8302, 8300] by Demod 7871 with 30 at 3 +Id : 290221, {_}: multiply ?134102 (multiply ?134104 ?134103) =?= multiply ?134103 (multiply ?134104 ?134102) [134103, 134104, 134102] by Demod 290220 with 7967 at 2 +Id : 166, {_}: multiply (add (inverse ?383) ?384) ?383 =>= add additive_identity (multiply ?384 ?383) [384, 383] by Super 12 with 22 at 1,3 +Id : 4249, {_}: multiply (add (inverse ?383) ?384) ?383 =>= multiply ?384 ?383 [384, 383] by Demod 166 with 30 at 3 +Id : 77480, {_}: multiply (multiply ?134153 ?134154) (add (inverse ?134153) ?134152) =>= multiply ?134154 (multiply ?134152 ?134153) [134152, 134154, 134153] by Super 77462 with 4249 at 2,3 +Id : 77935, {_}: multiply (add (inverse ?134153) ?134152) (multiply ?134153 ?134154) =>= multiply ?134154 (multiply ?134152 ?134153) [134154, 134152, 134153] by Demod 77480 with 6 at 2 +Id : 295050, {_}: multiply ?134152 (multiply ?134153 ?134154) =?= multiply ?134154 (multiply ?134152 ?134153) [134154, 134153, 134152] by Demod 77935 with 7967 at 2 +Id : 3012, {_}: add additive_identity ?487 =<= multiply ?487 (add ?488 ?487) [488, 487] by Demod 236 with 2951 at 1,2 +Id : 3025, {_}: ?487 =<= multiply ?487 (add ?488 ?487) [488, 487] by Demod 3012 with 30 at 2 +Id : 6954, {_}: add ?7050 (multiply ?7052 (multiply ?7051 ?7050)) =>= multiply (add ?7050 ?7052) ?7050 [7051, 7052, 7050] by Super 10 with 6936 at 2,3 +Id : 219, {_}: add ?458 (multiply ?459 additive_identity) =<= multiply (add ?458 ?459) ?458 [459, 458] by Super 10 with 28 at 2,3 +Id : 310, {_}: multiply ?527 (add ?527 ?528) =>= add ?527 (multiply ?528 additive_identity) [528, 527] by Super 6 with 219 at 3 +Id : 220, {_}: add ?461 (multiply additive_identity ?462) =<= multiply ?461 (add ?461 ?462) [462, 461] by Super 10 with 28 at 1,3 +Id : 632, {_}: add ?527 (multiply additive_identity ?528) =?= add ?527 (multiply ?528 additive_identity) [528, 527] by Demod 310 with 220 at 2 +Id : 3013, {_}: add ?527 additive_identity =<= add ?527 (multiply ?528 additive_identity) [528, 527] by Demod 632 with 2951 at 2,2 +Id : 3021, {_}: ?527 =<= add ?527 (multiply ?528 additive_identity) [528, 527] by Demod 3013 with 28 at 2 +Id : 3024, {_}: ?458 =<= multiply (add ?458 ?459) ?458 [459, 458] by Demod 219 with 3021 at 2 +Id : 7015, {_}: add ?7050 (multiply ?7052 (multiply ?7051 ?7050)) =>= ?7050 [7051, 7052, 7050] by Demod 6954 with 3024 at 3 +Id : 54601, {_}: multiply ?88480 (multiply ?88481 ?88482) =<= multiply (multiply ?88480 (multiply ?88481 ?88482)) ?88482 [88482, 88481, 88480] by Super 3025 with 7015 at 2,3 +Id : 54602, {_}: multiply ?88484 (multiply ?88485 ?88486) =<= multiply (multiply ?88484 (multiply ?88486 ?88485)) ?88486 [88486, 88485, 88484] by Super 54601 with 6 at 2,1,3 +Id : 7204, {_}: add ?7439 (multiply ?7441 (multiply ?7439 ?7440)) =>= multiply (add ?7439 ?7441) ?7439 [7440, 7441, 7439] by Super 10 with 6969 at 2,3 +Id : 7269, {_}: add ?7439 (multiply ?7441 (multiply ?7439 ?7440)) =>= ?7439 [7440, 7441, 7439] by Demod 7204 with 3024 at 3 +Id : 30112, {_}: multiply ?38749 (multiply ?38748 ?38750) =<= multiply (multiply ?38749 (multiply ?38748 ?38750)) ?38748 [38750, 38748, 38749] by Super 3025 with 7269 at 2,3 +Id : 81336, {_}: multiply ?88484 (multiply ?88485 ?88486) =?= multiply ?88484 (multiply ?88486 ?88485) [88486, 88485, 88484] by Demod 54602 with 30112 at 3 +Id : 297313, {_}: multiply c (multiply b a) === multiply c (multiply b a) [] by Demod 297312 with 81336 at 2 +Id : 297312, {_}: multiply c (multiply a b) =>= multiply c (multiply b a) [] by Demod 292477 with 295050 at 2 +Id : 292477, {_}: multiply b (multiply c a) =>= multiply c (multiply b a) [] by Demod 255 with 290221 at 2 +Id : 255, {_}: multiply a (multiply c b) =>= multiply c (multiply b a) [] by Demod 254 with 6 at 2,3 +Id : 254, {_}: multiply a (multiply c b) =>= multiply c (multiply a b) [] by Demod 253 with 6 at 3 +Id : 253, {_}: multiply a (multiply c b) =<= multiply (multiply a b) c [] by Demod 2 with 6 at 2,2 +Id : 2, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity +% SZS output end CNFRefutation for BOO007-2.p +Order + == is 100 + _ is 99 + a is 98 + add is 93 + additive_id1 is 87 + additive_identity is 88 + additive_inverse1 is 83 + b is 97 + c is 96 + commutativity_of_add is 92 + commutativity_of_multiply is 91 + distributivity1 is 90 + distributivity2 is 89 + inverse is 84 + multiplicative_id1 is 85 + multiplicative_identity is 86 + multiplicative_inverse1 is 82 + multiply is 95 + prove_associativity is 94 +Facts + Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 + Id : 6, {_}: + multiply ?5 ?6 =?= multiply ?6 ?5 + [6, 5] by commutativity_of_multiply ?5 ?6 + Id : 8, {_}: + add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10) + [10, 9, 8] by distributivity1 ?8 ?9 ?10 + Id : 10, {_}: + multiply ?12 (add ?13 ?14) + =<= + add (multiply ?12 ?13) (multiply ?12 ?14) + [14, 13, 12] by distributivity2 ?12 ?13 ?14 + Id : 12, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16 + Id : 14, {_}: + multiply ?18 multiplicative_identity =>= ?18 + [18] by multiplicative_id1 ?18 + Id : 16, {_}: + add ?20 (inverse ?20) =>= multiplicative_identity + [20] by additive_inverse1 ?20 + Id : 18, {_}: + multiply ?22 (inverse ?22) =>= additive_identity + [22] by multiplicative_inverse1 ?22 +Goal + Id : 2, {_}: + multiply a (multiply b c) =<= multiply (multiply a b) c + [] by prove_associativity +Found proof, 75.486209s +% SZS status Unsatisfiable for BOO007-4.p +% SZS output start CNFRefutation for BOO007-4.p +Id : 14, {_}: multiply ?18 multiplicative_identity =>= ?18 [18] by multiplicative_id1 ?18 +Id : 16, {_}: add ?20 (inverse ?20) =>= multiplicative_identity [20] by additive_inverse1 ?20 +Id : 8, {_}: add ?8 (multiply ?9 ?10) =<= multiply (add ?8 ?9) (add ?8 ?10) [10, 9, 8] by distributivity1 ?8 ?9 ?10 +Id : 12, {_}: add ?16 additive_identity =>= ?16 [16] by additive_id1 ?16 +Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 +Id : 18, {_}: multiply ?22 (inverse ?22) =>= additive_identity [22] by multiplicative_inverse1 ?22 +Id : 10, {_}: multiply ?12 (add ?13 ?14) =<= add (multiply ?12 ?13) (multiply ?12 ?14) [14, 13, 12] by distributivity2 ?12 ?13 ?14 +Id : 6, {_}: multiply ?5 ?6 =?= multiply ?6 ?5 [6, 5] by commutativity_of_multiply ?5 ?6 +Id : 81, {_}: multiply ?187 (add (inverse ?187) ?188) =>= add additive_identity (multiply ?187 ?188) [188, 187] by Super 10 with 18 at 1,3 +Id : 57, {_}: add additive_identity ?136 =>= ?136 [136] by Super 4 with 12 at 3 +Id : 2041, {_}: multiply ?187 (add (inverse ?187) ?188) =>= multiply ?187 ?188 [188, 187] by Demod 81 with 57 at 3 +Id : 2049, {_}: multiply (add (inverse ?1798) ?1799) ?1798 =>= multiply ?1798 ?1799 [1799, 1798] by Super 6 with 2041 at 3 +Id : 72, {_}: add ?169 (multiply (inverse ?169) ?170) =>= multiply multiplicative_identity (add ?169 ?170) [170, 169] by Super 8 with 16 at 1,3 +Id : 65, {_}: multiply multiplicative_identity ?154 =>= ?154 [154] by Super 6 with 14 at 3 +Id : 1065, {_}: add ?169 (multiply (inverse ?169) ?170) =>= add ?169 ?170 [170, 169] by Demod 72 with 65 at 3 +Id : 80, {_}: multiply ?184 (add ?185 (inverse ?184)) =>= add (multiply ?184 ?185) additive_identity [185, 184] by Super 10 with 18 at 2,3 +Id : 88, {_}: multiply ?184 (add ?185 (inverse ?184)) =>= add additive_identity (multiply ?184 ?185) [185, 184] by Demod 80 with 4 at 3 +Id : 2371, {_}: multiply ?184 (add ?185 (inverse ?184)) =>= multiply ?184 ?185 [185, 184] by Demod 88 with 57 at 3 +Id : 2380, {_}: add ?2048 (multiply (inverse ?2048) ?2047) =<= add ?2048 (add ?2047 (inverse (inverse ?2048))) [2047, 2048] by Super 1065 with 2371 at 2,2 +Id : 2402, {_}: add ?2048 ?2047 =<= add ?2048 (add ?2047 (inverse (inverse ?2048))) [2047, 2048] by Demod 2380 with 1065 at 2 +Id : 71, {_}: add ?166 (multiply ?167 (inverse ?166)) =>= multiply (add ?166 ?167) multiplicative_identity [167, 166] by Super 8 with 16 at 2,3 +Id : 79, {_}: add ?166 (multiply ?167 (inverse ?166)) =>= multiply multiplicative_identity (add ?166 ?167) [167, 166] by Demod 71 with 6 at 3 +Id : 1969, {_}: add ?166 (multiply ?167 (inverse ?166)) =>= add ?166 ?167 [167, 166] by Demod 79 with 65 at 3 +Id : 2056, {_}: multiply ?1815 (add (inverse ?1815) ?1816) =>= multiply ?1815 ?1816 [1816, 1815] by Demod 81 with 57 at 3 +Id : 1077, {_}: add ?1042 (multiply (inverse ?1042) ?1043) =>= add ?1042 ?1043 [1043, 1042] by Demod 72 with 65 at 3 +Id : 1082, {_}: add ?1054 additive_identity =<= add ?1054 (inverse (inverse ?1054)) [1054] by Super 1077 with 18 at 2,2 +Id : 1115, {_}: ?1054 =<= add ?1054 (inverse (inverse ?1054)) [1054] by Demod 1082 with 12 at 2 +Id : 2072, {_}: multiply ?1854 (inverse ?1854) =<= multiply ?1854 (inverse (inverse (inverse ?1854))) [1854] by Super 2056 with 1115 at 2,2 +Id : 2140, {_}: additive_identity =<= multiply ?1854 (inverse (inverse (inverse ?1854))) [1854] by Demod 2072 with 18 at 2 +Id : 2304, {_}: add (inverse (inverse ?1984)) additive_identity =?= add (inverse (inverse ?1984)) ?1984 [1984] by Super 1969 with 2140 at 2,2 +Id : 2314, {_}: add additive_identity (inverse (inverse ?1984)) =<= add (inverse (inverse ?1984)) ?1984 [1984] by Demod 2304 with 4 at 2 +Id : 2315, {_}: inverse (inverse ?1984) =<= add (inverse (inverse ?1984)) ?1984 [1984] by Demod 2314 with 57 at 2 +Id : 1260, {_}: add (inverse (inverse ?1219)) ?1219 =>= ?1219 [1219] by Super 4 with 1115 at 3 +Id : 2316, {_}: inverse (inverse ?1984) =>= ?1984 [1984] by Demod 2315 with 1260 at 3 +Id : 2403, {_}: add ?2048 ?2047 =<= add ?2048 (add ?2047 ?2048) [2047, 2048] by Demod 2402 with 2316 at 2,2,3 +Id : 2435, {_}: add ?2108 (multiply ?2110 (add ?2109 ?2108)) =<= multiply (add ?2108 ?2110) (add ?2108 ?2109) [2109, 2110, 2108] by Super 8 with 2403 at 2,3 +Id : 2463, {_}: add ?2108 (multiply ?2110 (add ?2109 ?2108)) =>= add ?2108 (multiply ?2110 ?2109) [2109, 2110, 2108] by Demod 2435 with 8 at 3 +Id : 18875, {_}: multiply (add (inverse ?19839) (multiply ?19837 ?19838)) ?19839 =?= multiply ?19839 (multiply ?19837 (add ?19838 (inverse ?19839))) [19838, 19837, 19839] by Super 2049 with 2463 at 1,2 +Id : 151787, {_}: multiply ?278411 (multiply ?278412 ?278413) =<= multiply ?278411 (multiply ?278412 (add ?278413 (inverse ?278411))) [278413, 278412, 278411] by Demod 18875 with 2049 at 2 +Id : 1071, {_}: add (multiply (inverse ?1025) ?1026) ?1025 =>= add ?1025 ?1026 [1026, 1025] by Super 4 with 1065 at 3 +Id : 151803, {_}: multiply ?278483 (multiply ?278484 (multiply (inverse (inverse ?278483)) ?278482)) =>= multiply ?278483 (multiply ?278484 (add (inverse ?278483) ?278482)) [278482, 278484, 278483] by Super 151787 with 1071 at 2,2,3 +Id : 152295, {_}: multiply ?278483 (multiply ?278484 (multiply ?278483 ?278482)) =<= multiply ?278483 (multiply ?278484 (add (inverse ?278483) ?278482)) [278482, 278484, 278483] by Demod 151803 with 2316 at 1,2,2,2 +Id : 228, {_}: add ?322 (multiply ?323 additive_identity) =<= multiply (add ?322 ?323) ?322 [323, 322] by Super 8 with 12 at 2,3 +Id : 229, {_}: add ?325 (multiply ?326 additive_identity) =<= multiply (add ?326 ?325) ?325 [326, 325] by Super 228 with 4 at 1,3 +Id : 331, {_}: add ?429 (multiply additive_identity ?430) =<= multiply ?429 (add ?429 ?430) [430, 429] by Super 8 with 12 at 1,3 +Id : 332, {_}: add ?432 (multiply additive_identity ?433) =<= multiply ?432 (add ?433 ?432) [433, 432] by Super 331 with 4 at 2,3 +Id : 73, {_}: add (inverse ?172) ?172 =>= multiplicative_identity [172] by Super 4 with 16 at 3 +Id : 336, {_}: add (inverse ?441) (multiply additive_identity ?441) =>= multiply (inverse ?441) multiplicative_identity [441] by Super 331 with 73 at 2,3 +Id : 355, {_}: add (inverse ?441) (multiply additive_identity ?441) =>= multiply multiplicative_identity (inverse ?441) [441] by Demod 336 with 6 at 3 +Id : 356, {_}: add (inverse ?441) (multiply additive_identity ?441) =>= inverse ?441 [441] by Demod 355 with 65 at 3 +Id : 713, {_}: add (multiply additive_identity ?819) (multiply additive_identity (inverse ?819)) =>= multiply (multiply additive_identity ?819) (inverse ?819) [819] by Super 332 with 356 at 2,3 +Id : 726, {_}: multiply additive_identity (add ?819 (inverse ?819)) =<= multiply (multiply additive_identity ?819) (inverse ?819) [819] by Demod 713 with 10 at 2 +Id : 727, {_}: multiply additive_identity multiplicative_identity =<= multiply (multiply additive_identity ?819) (inverse ?819) [819] by Demod 726 with 16 at 2,2 +Id : 728, {_}: multiply multiplicative_identity additive_identity =<= multiply (multiply additive_identity ?819) (inverse ?819) [819] by Demod 727 with 6 at 2 +Id : 729, {_}: additive_identity =<= multiply (multiply additive_identity ?819) (inverse ?819) [819] by Demod 728 with 65 at 2 +Id : 730, {_}: additive_identity =<= multiply (inverse ?819) (multiply additive_identity ?819) [819] by Demod 729 with 6 at 3 +Id : 1088, {_}: add ?1069 additive_identity =<= add ?1069 (multiply additive_identity ?1069) [1069] by Super 1077 with 730 at 2,2 +Id : 1118, {_}: ?1069 =<= add ?1069 (multiply additive_identity ?1069) [1069] by Demod 1088 with 12 at 2 +Id : 1283, {_}: add (multiply additive_identity ?1241) (multiply additive_identity ?1241) =>= multiply (multiply additive_identity ?1241) ?1241 [1241] by Super 332 with 1118 at 2,3 +Id : 1319, {_}: multiply additive_identity (add ?1241 ?1241) =<= multiply (multiply additive_identity ?1241) ?1241 [1241] by Demod 1283 with 10 at 2 +Id : 82, {_}: multiply (inverse ?190) ?190 =>= additive_identity [190] by Super 6 with 18 at 3 +Id : 1083, {_}: add ?1056 additive_identity =?= add ?1056 ?1056 [1056] by Super 1077 with 82 at 2,2 +Id : 1116, {_}: ?1056 =<= add ?1056 ?1056 [1056] by Demod 1083 with 12 at 2 +Id : 1320, {_}: multiply additive_identity ?1241 =<= multiply (multiply additive_identity ?1241) ?1241 [1241] by Demod 1319 with 1116 at 2,2 +Id : 1567, {_}: multiply ?1480 (multiply additive_identity ?1480) =>= multiply additive_identity ?1480 [1480] by Super 6 with 1320 at 3 +Id : 2051, {_}: add (inverse (add (inverse additive_identity) ?1804)) (multiply additive_identity ?1804) =>= inverse (add (inverse additive_identity) ?1804) [1804] by Super 356 with 2041 at 2,2 +Id : 92, {_}: inverse additive_identity =>= multiplicative_identity [] by Super 16 with 57 at 2 +Id : 2095, {_}: add (inverse (add multiplicative_identity ?1804)) (multiply additive_identity ?1804) =>= inverse (add (inverse additive_identity) ?1804) [1804] by Demod 2051 with 92 at 1,1,1,2 +Id : 1081, {_}: add ?1052 (inverse ?1052) =>= add ?1052 multiplicative_identity [1052] by Super 1077 with 14 at 2,2 +Id : 1114, {_}: multiplicative_identity =<= add ?1052 multiplicative_identity [1052] by Demod 1081 with 16 at 2 +Id : 1133, {_}: add multiplicative_identity ?1095 =>= multiplicative_identity [1095] by Super 4 with 1114 at 3 +Id : 2096, {_}: add (inverse multiplicative_identity) (multiply additive_identity ?1804) =>= inverse (add (inverse additive_identity) ?1804) [1804] by Demod 2095 with 1133 at 1,1,2 +Id : 139, {_}: inverse multiplicative_identity =>= additive_identity [] by Super 18 with 65 at 2 +Id : 2097, {_}: add additive_identity (multiply additive_identity ?1804) =>= inverse (add (inverse additive_identity) ?1804) [1804] by Demod 2096 with 139 at 1,2 +Id : 2098, {_}: multiply additive_identity ?1804 =<= inverse (add (inverse additive_identity) ?1804) [1804] by Demod 2097 with 57 at 2 +Id : 2099, {_}: multiply additive_identity ?1804 =<= inverse (add multiplicative_identity ?1804) [1804] by Demod 2098 with 92 at 1,1,3 +Id : 2100, {_}: multiply additive_identity ?1804 =>= inverse multiplicative_identity [1804] by Demod 2099 with 1133 at 1,3 +Id : 2101, {_}: multiply additive_identity ?1804 =>= additive_identity [1804] by Demod 2100 with 139 at 3 +Id : 2167, {_}: multiply ?1480 additive_identity =?= multiply additive_identity ?1480 [1480] by Demod 1567 with 2101 at 2,2 +Id : 2168, {_}: multiply ?1480 additive_identity =>= additive_identity [1480] by Demod 2167 with 2101 at 3 +Id : 2174, {_}: add ?325 additive_identity =<= multiply (add ?326 ?325) ?325 [326, 325] by Demod 229 with 2168 at 2,2 +Id : 2180, {_}: ?325 =<= multiply (add ?326 ?325) ?325 [326, 325] by Demod 2174 with 12 at 2 +Id : 1258, {_}: add ?1213 (multiply ?1214 (inverse (inverse ?1213))) =>= multiply (add ?1213 ?1214) ?1213 [1214, 1213] by Super 8 with 1115 at 2,3 +Id : 55, {_}: add ?130 (multiply ?131 additive_identity) =<= multiply (add ?130 ?131) ?130 [131, 130] by Super 8 with 12 at 2,3 +Id : 1274, {_}: add ?1213 (multiply ?1214 (inverse (inverse ?1213))) =>= add ?1213 (multiply ?1214 additive_identity) [1214, 1213] by Demod 1258 with 55 at 3 +Id : 5845, {_}: add ?1213 (multiply ?1214 ?1213) =?= add ?1213 (multiply ?1214 additive_identity) [1214, 1213] by Demod 1274 with 2316 at 2,2,2 +Id : 5846, {_}: add ?1213 (multiply ?1214 ?1213) =>= add ?1213 additive_identity [1214, 1213] by Demod 5845 with 2168 at 2,3 +Id : 5877, {_}: add ?5881 (multiply ?5882 ?5881) =>= ?5881 [5882, 5881] by Demod 5846 with 12 at 3 +Id : 5878, {_}: add ?5884 (multiply ?5884 ?5885) =>= ?5884 [5885, 5884] by Super 5877 with 6 at 2,2 +Id : 6099, {_}: add ?6204 (multiply ?6206 (multiply ?6204 ?6205)) =>= multiply (add ?6204 ?6206) ?6204 [6205, 6206, 6204] by Super 8 with 5878 at 2,3 +Id : 2175, {_}: add ?130 additive_identity =<= multiply (add ?130 ?131) ?130 [131, 130] by Demod 55 with 2168 at 2,2 +Id : 2179, {_}: ?130 =<= multiply (add ?130 ?131) ?130 [131, 130] by Demod 2175 with 12 at 2 +Id : 6162, {_}: add ?6204 (multiply ?6206 (multiply ?6204 ?6205)) =>= ?6204 [6205, 6206, 6204] by Demod 6099 with 2179 at 3 +Id : 23650, {_}: multiply ?28445 (multiply ?28444 ?28446) =<= multiply ?28444 (multiply ?28445 (multiply ?28444 ?28446)) [28446, 28444, 28445] by Super 2180 with 6162 at 1,3 +Id : 152296, {_}: multiply ?278484 (multiply ?278483 ?278482) =<= multiply ?278483 (multiply ?278484 (add (inverse ?278483) ?278482)) [278482, 278483, 278484] by Demod 152295 with 23650 at 2 +Id : 2442, {_}: add ?2131 ?2132 =<= add ?2131 (add ?2132 ?2131) [2132, 2131] by Demod 2402 with 2316 at 2,2,3 +Id : 2443, {_}: add ?2134 ?2135 =<= add ?2134 (add ?2134 ?2135) [2135, 2134] by Super 2442 with 4 at 2,3 +Id : 2558, {_}: add ?2283 (multiply ?2285 (add ?2283 ?2284)) =<= multiply (add ?2283 ?2285) (add ?2283 ?2284) [2284, 2285, 2283] by Super 8 with 2443 at 2,3 +Id : 2593, {_}: add ?2283 (multiply ?2285 (add ?2283 ?2284)) =>= add ?2283 (multiply ?2285 ?2284) [2284, 2285, 2283] by Demod 2558 with 8 at 3 +Id : 19422, {_}: multiply (add (inverse ?20977) (multiply ?20975 ?20976)) ?20977 =?= multiply ?20977 (multiply ?20975 (add (inverse ?20977) ?20976)) [20976, 20975, 20977] by Super 2049 with 2593 at 1,2 +Id : 19552, {_}: multiply ?20977 (multiply ?20975 ?20976) =<= multiply ?20977 (multiply ?20975 (add (inverse ?20977) ?20976)) [20976, 20975, 20977] by Demod 19422 with 2049 at 2 +Id : 352787, {_}: multiply ?278484 (multiply ?278483 ?278482) =?= multiply ?278483 (multiply ?278484 ?278482) [278482, 278483, 278484] by Demod 152296 with 19552 at 3 +Id : 2159, {_}: add ?432 additive_identity =<= multiply ?432 (add ?433 ?432) [433, 432] by Demod 332 with 2101 at 2,2 +Id : 2194, {_}: ?432 =<= multiply ?432 (add ?433 ?432) [433, 432] by Demod 2159 with 12 at 2 +Id : 5847, {_}: add ?1213 (multiply ?1214 ?1213) =>= ?1213 [1214, 1213] by Demod 5846 with 12 at 3 +Id : 5862, {_}: add ?5837 (multiply ?5839 (multiply ?5838 ?5837)) =>= multiply (add ?5837 ?5839) ?5837 [5838, 5839, 5837] by Super 8 with 5847 at 2,3 +Id : 5925, {_}: add ?5837 (multiply ?5839 (multiply ?5838 ?5837)) =>= ?5837 [5838, 5839, 5837] by Demod 5862 with 2179 at 3 +Id : 36958, {_}: multiply ?53806 (multiply ?53807 ?53808) =<= multiply (multiply ?53806 (multiply ?53807 ?53808)) ?53808 [53808, 53807, 53806] by Super 2194 with 5925 at 2,3 +Id : 36959, {_}: multiply ?53810 (multiply ?53811 ?53812) =<= multiply (multiply ?53810 (multiply ?53812 ?53811)) ?53812 [53812, 53811, 53810] by Super 36958 with 6 at 2,1,3 +Id : 23651, {_}: multiply ?28449 (multiply ?28448 ?28450) =<= multiply (multiply ?28449 (multiply ?28448 ?28450)) ?28448 [28450, 28448, 28449] by Super 2194 with 6162 at 2,3 +Id : 58893, {_}: multiply ?53810 (multiply ?53811 ?53812) =?= multiply ?53810 (multiply ?53812 ?53811) [53812, 53811, 53810] by Demod 36959 with 23651 at 3 +Id : 355225, {_}: multiply c (multiply b a) === multiply c (multiply b a) [] by Demod 355224 with 58893 at 2 +Id : 355224, {_}: multiply c (multiply a b) =>= multiply c (multiply b a) [] by Demod 91 with 352787 at 2 +Id : 91, {_}: multiply a (multiply c b) =>= multiply c (multiply b a) [] by Demod 90 with 6 at 2,3 +Id : 90, {_}: multiply a (multiply c b) =>= multiply c (multiply a b) [] by Demod 89 with 6 at 3 +Id : 89, {_}: multiply a (multiply c b) =<= multiply (multiply a b) c [] by Demod 2 with 6 at 2,2 +Id : 2, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity +% SZS output end CNFRefutation for BOO007-4.p +Order + == is 100 + _ is 99 + a is 98 + add is 95 + additive_inverse is 83 + associativity_of_add is 80 + associativity_of_multiply is 79 + b is 97 + c is 96 + distributivity is 92 + inverse is 89 + l1 is 91 + l2 is 87 + l3 is 90 + l4 is 86 + multiplicative_inverse is 81 + multiply is 94 + n0 is 82 + n1 is 84 + property3 is 88 + property3_dual is 85 + prove_multiply_add_property is 93 +Facts + Id : 4, {_}: + add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) + =>= + multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) + [4, 3, 2] by distributivity ?2 ?3 ?4 + Id : 6, {_}: + add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 + [8, 7, 6] by l1 ?6 ?7 ?8 + Id : 8, {_}: + add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 + [12, 11, 10] by l3 ?10 ?11 ?12 + Id : 10, {_}: + multiply (add ?14 (inverse ?14)) ?15 =>= ?15 + [15, 14] by property3 ?14 ?15 + Id : 12, {_}: + multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17 + [19, 18, 17] by l2 ?17 ?18 ?19 + Id : 14, {_}: + multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22 + [23, 22, 21] by l4 ?21 ?22 ?23 + Id : 16, {_}: + add (multiply ?25 (inverse ?25)) ?26 =>= ?26 + [26, 25] by property3_dual ?25 ?26 + Id : 18, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28 + Id : 20, {_}: + multiply ?30 (inverse ?30) =>= n0 + [30] by multiplicative_inverse ?30 + Id : 22, {_}: + add (add ?32 ?33) ?34 =?= add ?32 (add ?33 ?34) + [34, 33, 32] by associativity_of_add ?32 ?33 ?34 + Id : 24, {_}: + multiply (multiply ?36 ?37) ?38 =?= multiply ?36 (multiply ?37 ?38) + [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38 +Goal + Id : 2, {_}: + multiply a (add b c) =<= add (multiply b a) (multiply c a) + [] by prove_multiply_add_property +Found proof, 19.854450s +% SZS status Unsatisfiable for BOO031-1.p +% SZS output start CNFRefutation for BOO031-1.p +Id : 16, {_}: add (multiply ?25 (inverse ?25)) ?26 =>= ?26 [26, 25] by property3_dual ?25 ?26 +Id : 20, {_}: multiply ?30 (inverse ?30) =>= n0 [30] by multiplicative_inverse ?30 +Id : 18, {_}: add ?28 (inverse ?28) =>= n1 [28] by additive_inverse ?28 +Id : 14, {_}: multiply (multiply (add ?21 ?22) (add ?22 ?23)) ?22 =>= ?22 [23, 22, 21] by l4 ?21 ?22 ?23 +Id : 10, {_}: multiply (add ?14 (inverse ?14)) ?15 =>= ?15 [15, 14] by property3 ?14 ?15 +Id : 64, {_}: multiply (multiply (add ?211 ?212) (add ?212 ?213)) ?212 =>= ?212 [213, 212, 211] by l4 ?211 ?212 ?213 +Id : 24, {_}: multiply (multiply ?36 ?37) ?38 =?= multiply ?36 (multiply ?37 ?38) [38, 37, 36] by associativity_of_multiply ?36 ?37 ?38 +Id : 4, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =>= multiply (add ?2 ?3) (multiply (add ?3 ?4) (add ?4 ?2)) [4, 3, 2] by distributivity ?2 ?3 ?4 +Id : 8, {_}: add (add (multiply ?10 ?11) (multiply ?11 ?12)) ?11 =>= ?11 [12, 11, 10] by l3 ?10 ?11 ?12 +Id : 12, {_}: multiply ?17 (add ?18 (add ?17 ?19)) =>= ?17 [19, 18, 17] by l2 ?17 ?18 ?19 +Id : 49, {_}: multiply ?140 (add ?141 (add ?140 ?142)) =>= ?140 [142, 141, 140] by l2 ?140 ?141 ?142 +Id : 6, {_}: add ?6 (multiply ?7 (multiply ?6 ?8)) =>= ?6 [8, 7, 6] by l1 ?6 ?7 ?8 +Id : 30, {_}: add (add (multiply ?60 ?61) (multiply ?61 ?62)) ?61 =>= ?61 [62, 61, 60] by l3 ?60 ?61 ?62 +Id : 22, {_}: add (add ?32 ?33) ?34 =?= add ?32 (add ?33 ?34) [34, 33, 32] by associativity_of_add ?32 ?33 ?34 +Id : 31, {_}: add (multiply ?65 ?66) ?66 =>= ?66 [66, 65] by Super 30 with 6 at 1,2 +Id : 51, {_}: multiply ?151 (add ?152 ?151) =>= ?151 [152, 151] by Super 49 with 6 at 2,2,2 +Id : 568, {_}: add ?1169 (add ?1170 ?1169) =>= add ?1170 ?1169 [1170, 1169] by Super 31 with 51 at 1,2 +Id : 1034, {_}: add (add ?2011 ?2012) ?2011 =>= add ?2012 ?2011 [2012, 2011] by Super 22 with 568 at 3 +Id : 47, {_}: add ?131 (multiply ?134 ?131) =>= ?131 [134, 131] by Super 6 with 12 at 2,2,2 +Id : 54, {_}: multiply ?165 (add ?165 ?166) =>= ?165 [166, 165] by Super 49 with 8 at 2,2 +Id : 673, {_}: add (add ?1383 ?1384) ?1383 =>= add ?1383 ?1384 [1384, 1383] by Super 47 with 54 at 2,2 +Id : 1524, {_}: add ?2011 ?2012 =?= add ?2012 ?2011 [2012, 2011] by Demod 1034 with 673 at 2 +Id : 161, {_}: add (multiply ?2 ?3) (add (multiply ?3 ?4) (multiply ?4 ?2)) =>= multiply (multiply (add ?2 ?3) (add ?3 ?4)) (add ?4 ?2) [4, 3, 2] by Demod 4 with 24 at 3 +Id : 727, {_}: multiply (add ?1499 ?1500) ?1500 =>= ?1500 [1500, 1499] by Super 64 with 12 at 1,2 +Id : 733, {_}: multiply ?1519 (multiply ?1518 ?1519) =>= multiply ?1518 ?1519 [1518, 1519] by Super 727 with 47 at 1,2 +Id : 1435, {_}: add (multiply ?2622 ?2620) (add (multiply ?2621 ?2620) (multiply (multiply ?2621 ?2620) ?2622)) =<= multiply (multiply (add ?2622 ?2620) (add ?2620 (multiply ?2621 ?2620))) (add (multiply ?2621 ?2620) ?2622) [2621, 2620, 2622] by Super 161 with 733 at 1,2,2 +Id : 34, {_}: add ?77 (multiply ?77 ?78) =>= ?77 [78, 77] by Super 6 with 10 at 2,2 +Id : 1478, {_}: add (multiply ?2622 ?2620) (multiply ?2621 ?2620) =<= multiply (multiply (add ?2622 ?2620) (add ?2620 (multiply ?2621 ?2620))) (add (multiply ?2621 ?2620) ?2622) [2621, 2620, 2622] by Demod 1435 with 34 at 2,2 +Id : 1479, {_}: add (multiply ?2622 ?2620) (multiply ?2621 ?2620) =<= multiply (multiply (add ?2622 ?2620) ?2620) (add (multiply ?2621 ?2620) ?2622) [2621, 2620, 2622] by Demod 1478 with 47 at 2,1,3 +Id : 72, {_}: multiply (add ?249 ?250) ?250 =>= ?250 [250, 249] by Super 64 with 12 at 1,2 +Id : 1480, {_}: add (multiply ?2622 ?2620) (multiply ?2621 ?2620) =>= multiply ?2620 (add (multiply ?2621 ?2620) ?2622) [2621, 2620, 2622] by Demod 1479 with 72 at 1,3 +Id : 7843, {_}: multiply ?13007 ?13008 =<= multiply ?13007 (multiply (add ?13009 ?13007) ?13008) [13009, 13008, 13007] by Super 24 with 51 at 1,2 +Id : 582, {_}: multiply ?1218 (add ?1219 ?1218) =>= ?1218 [1219, 1218] by Super 49 with 6 at 2,2,2 +Id : 587, {_}: multiply (multiply ?1235 ?1234) ?1235 =>= multiply ?1235 ?1234 [1234, 1235] by Super 582 with 34 at 2,2 +Id : 1123, {_}: multiply ?2124 ?2125 =<= multiply ?2124 (multiply ?2125 ?2124) [2125, 2124] by Super 24 with 587 at 2 +Id : 1768, {_}: multiply ?2124 ?2125 =?= multiply ?2125 ?2124 [2125, 2124] by Demod 1123 with 733 at 3 +Id : 7897, {_}: multiply ?13228 ?13229 =<= multiply ?13228 (multiply ?13229 (add ?13230 ?13228)) [13230, 13229, 13228] by Super 7843 with 1768 at 2,3 +Id : 586, {_}: multiply ?1232 ?1232 =>= ?1232 [1232] by Super 582 with 31 at 2,2 +Id : 618, {_}: multiply ?1282 ?1283 =<= multiply ?1282 (multiply ?1282 ?1283) [1283, 1282] by Super 24 with 586 at 1,2 +Id : 1266, {_}: add (multiply ?2366 ?2364) (add (multiply ?2364 ?2365) (multiply (multiply ?2364 ?2365) ?2366)) =<= multiply (multiply (add ?2366 ?2364) (add ?2364 (multiply ?2364 ?2365))) (add (multiply ?2364 ?2365) ?2366) [2365, 2364, 2366] by Super 161 with 618 at 1,2,2 +Id : 1308, {_}: add (multiply ?2366 ?2364) (multiply ?2364 ?2365) =<= multiply (multiply (add ?2366 ?2364) (add ?2364 (multiply ?2364 ?2365))) (add (multiply ?2364 ?2365) ?2366) [2365, 2364, 2366] by Demod 1266 with 34 at 2,2 +Id : 1309, {_}: add (multiply ?2366 ?2364) (multiply ?2364 ?2365) =<= multiply (multiply (add ?2366 ?2364) ?2364) (add (multiply ?2364 ?2365) ?2366) [2365, 2364, 2366] by Demod 1308 with 34 at 2,1,3 +Id : 16375, {_}: add (multiply ?29661 ?29662) (multiply ?29662 ?29663) =>= multiply ?29662 (add (multiply ?29662 ?29663) ?29661) [29663, 29662, 29661] by Demod 1309 with 72 at 1,3 +Id : 16381, {_}: add (multiply ?29687 (add ?29686 ?29688)) ?29688 =<= multiply (add ?29686 ?29688) (add (multiply (add ?29686 ?29688) ?29688) ?29687) [29688, 29686, 29687] by Super 16375 with 72 at 2,2 +Id : 16548, {_}: add (multiply ?29687 (add ?29686 ?29688)) ?29688 =>= multiply (add ?29686 ?29688) (add ?29688 ?29687) [29688, 29686, 29687] by Demod 16381 with 72 at 1,2,3 +Id : 91, {_}: multiply n1 ?15 =>= ?15 [15] by Demod 10 with 18 at 1,2 +Id : 101, {_}: n0 =<= inverse n1 [] by Super 91 with 20 at 2 +Id : 206, {_}: add n1 n0 =>= n1 [] by Super 18 with 101 at 2,2 +Id : 214, {_}: multiply n1 (add ?663 n1) =>= n1 [663] by Super 12 with 206 at 2,2,2 +Id : 222, {_}: add ?663 n1 =>= n1 [663] by Demod 214 with 91 at 2 +Id : 259, {_}: multiply ?726 (add ?727 n1) =>= ?726 [727, 726] by Super 12 with 222 at 2,2,2 +Id : 268, {_}: multiply ?726 n1 =>= ?726 [726] by Demod 259 with 222 at 2,2 +Id : 306, {_}: multiply (add ?801 n1) (add n1 ?802) =>= n1 [802, 801] by Super 14 with 268 at 2 +Id : 312, {_}: multiply n1 (add n1 ?802) =>= n1 [802] by Demod 306 with 222 at 1,2 +Id : 313, {_}: add n1 ?802 =>= n1 [802] by Demod 312 with 91 at 2 +Id : 390, {_}: multiply (multiply n1 (add ?884 ?885)) ?884 =>= ?884 [885, 884] by Super 14 with 313 at 1,1,2 +Id : 401, {_}: multiply n1 (multiply (add ?884 ?885) ?884) =>= ?884 [885, 884] by Demod 390 with 24 at 2 +Id : 402, {_}: multiply (add ?884 ?885) ?884 =>= ?884 [885, 884] by Demod 401 with 91 at 2 +Id : 827, {_}: multiply (multiply ?1658 (add ?1656 ?1657)) ?1656 =>= multiply ?1658 ?1656 [1657, 1656, 1658] by Super 24 with 402 at 2,3 +Id : 77, {_}: add (multiply ?268 ?267) (multiply (inverse ?267) ?268) =<= multiply (add ?268 ?267) (multiply (add ?267 (inverse ?267)) (add (inverse ?267) ?268)) [267, 268] by Super 4 with 16 at 2,2 +Id : 88, {_}: add (multiply ?268 ?267) (multiply (inverse ?267) ?268) =>= multiply (add ?268 ?267) (add (inverse ?267) ?268) [267, 268] by Demod 77 with 10 at 2,3 +Id : 1310, {_}: add (multiply ?2366 ?2364) (multiply ?2364 ?2365) =>= multiply ?2364 (add (multiply ?2364 ?2365) ?2366) [2365, 2364, 2366] by Demod 1309 with 72 at 1,3 +Id : 16342, {_}: add (multiply ?29521 ?29522) (multiply ?29520 ?29521) =>= multiply ?29521 (add (multiply ?29521 ?29522) ?29520) [29520, 29522, 29521] by Super 1524 with 1310 at 3 +Id : 51988, {_}: multiply ?268 (add (multiply ?268 ?267) (inverse ?267)) =?= multiply (add ?268 ?267) (add (inverse ?267) ?268) [267, 268] by Demod 88 with 16342 at 2 +Id : 51989, {_}: multiply ?268 (add (inverse ?267) (multiply ?268 ?267)) =?= multiply (add ?268 ?267) (add (inverse ?267) ?268) [267, 268] by Demod 51988 with 1524 at 2,2 +Id : 52070, {_}: multiply (multiply (add ?105798 ?105797) (add (inverse ?105797) ?105798)) (inverse ?105797) =>= multiply ?105798 (inverse ?105797) [105797, 105798] by Super 827 with 51989 at 1,2 +Id : 52559, {_}: multiply (add ?105798 ?105797) (inverse ?105797) =>= multiply ?105798 (inverse ?105797) [105797, 105798] by Demod 52070 with 827 at 2 +Id : 52560, {_}: multiply (inverse ?105797) (add ?105798 ?105797) =>= multiply ?105798 (inverse ?105797) [105798, 105797] by Demod 52559 with 1768 at 2 +Id : 54336, {_}: add (multiply ?108230 (inverse ?108229)) ?108229 =<= multiply (add ?108230 ?108229) (add ?108229 (inverse ?108229)) [108229, 108230] by Super 16548 with 52560 at 1,2 +Id : 54743, {_}: add (multiply ?108230 (inverse ?108229)) ?108229 =>= multiply (add ?108230 ?108229) n1 [108229, 108230] by Demod 54336 with 18 at 2,3 +Id : 55540, {_}: add (multiply ?110128 (inverse ?110129)) ?110129 =>= add ?110128 ?110129 [110129, 110128] by Demod 54743 with 268 at 3 +Id : 57387, {_}: add (multiply (inverse ?112946) ?112947) ?112946 =>= add ?112947 ?112946 [112947, 112946] by Super 55540 with 1768 at 1,2 +Id : 119, {_}: add (multiply ?10 ?11) (add (multiply ?11 ?12) ?11) =>= ?11 [12, 11, 10] by Demod 8 with 22 at 2 +Id : 216, {_}: multiply (multiply n1 (add n0 ?667)) n0 =>= n0 [667] by Super 14 with 206 at 1,1,2 +Id : 219, {_}: multiply n1 (multiply (add n0 ?667) n0) =>= n0 [667] by Demod 216 with 24 at 2 +Id : 220, {_}: multiply (add n0 ?667) n0 =>= n0 [667] by Demod 219 with 91 at 2 +Id : 100, {_}: add n0 ?26 =>= ?26 [26] by Demod 16 with 20 at 1,2 +Id : 221, {_}: multiply ?667 n0 =>= n0 [667] by Demod 220 with 100 at 1,2 +Id : 225, {_}: add ?674 (multiply ?675 n0) =>= ?674 [675, 674] by Super 6 with 221 at 2,2,2 +Id : 251, {_}: add ?674 n0 =>= ?674 [674] by Demod 225 with 221 at 2,2 +Id : 281, {_}: add (multiply ?753 n0) (multiply n0 ?754) =>= n0 [754, 753] by Super 119 with 251 at 2,2 +Id : 292, {_}: add n0 (multiply n0 ?754) =>= n0 [754] by Demod 281 with 221 at 1,2 +Id : 293, {_}: multiply n0 ?754 =>= n0 [754] by Demod 292 with 100 at 2 +Id : 338, {_}: add n0 (add (multiply ?829 ?830) ?829) =>= ?829 [830, 829] by Super 119 with 293 at 1,2 +Id : 377, {_}: add (multiply ?829 ?830) ?829 =>= ?829 [830, 829] by Demod 338 with 100 at 2 +Id : 38238, {_}: add (multiply ?76482 ?76483) (multiply ?76484 ?76482) =>= multiply ?76482 (add (multiply ?76482 ?76483) ?76484) [76484, 76483, 76482] by Super 1524 with 1310 at 3 +Id : 38322, {_}: add ?76856 (multiply ?76857 (add ?76856 ?76855)) =<= multiply (add ?76856 ?76855) (add (multiply (add ?76856 ?76855) ?76856) ?76857) [76855, 76857, 76856] by Super 38238 with 402 at 1,2 +Id : 47380, {_}: add ?97201 (multiply ?97202 (add ?97201 ?97203)) =>= multiply (add ?97201 ?97203) (add ?97201 ?97202) [97203, 97202, 97201] by Demod 38322 with 402 at 1,2,3 +Id : 47486, {_}: add ?97677 (multiply (add ?97677 ?97679) ?97678) =>= multiply (add ?97677 ?97679) (add ?97677 ?97678) [97678, 97679, 97677] by Super 47380 with 1768 at 2,2 +Id : 52196, {_}: multiply ?106255 (add (inverse ?106256) (multiply ?106255 ?106256)) =?= multiply (add ?106255 ?106256) (add (inverse ?106256) ?106255) [106256, 106255] by Demod 51988 with 1524 at 2,2 +Id : 52239, {_}: multiply ?106398 (add (inverse (inverse ?106398)) (multiply ?106398 (inverse ?106398))) =>= multiply n1 (add (inverse (inverse ?106398)) ?106398) [106398] by Super 52196 with 18 at 1,3 +Id : 52779, {_}: multiply ?106398 (add (inverse (inverse ?106398)) n0) =?= multiply n1 (add (inverse (inverse ?106398)) ?106398) [106398] by Demod 52239 with 20 at 2,2,2 +Id : 52780, {_}: multiply ?106398 (inverse (inverse ?106398)) =<= multiply n1 (add (inverse (inverse ?106398)) ?106398) [106398] by Demod 52779 with 251 at 2,2 +Id : 52781, {_}: multiply ?106398 (inverse (inverse ?106398)) =<= add (inverse (inverse ?106398)) ?106398 [106398] by Demod 52780 with 91 at 3 +Id : 53322, {_}: add (inverse (inverse ?107400)) (multiply (multiply ?107400 (inverse (inverse ?107400))) ?107401) =>= multiply (add (inverse (inverse ?107400)) ?107400) (add (inverse (inverse ?107400)) ?107401) [107401, 107400] by Super 47486 with 52781 at 1,2,2 +Id : 177, {_}: add ?561 (multiply (multiply ?560 ?561) ?562) =>= ?561 [562, 560, 561] by Super 6 with 24 at 2,2 +Id : 53342, {_}: inverse (inverse ?107400) =<= multiply (add (inverse (inverse ?107400)) ?107400) (add (inverse (inverse ?107400)) ?107401) [107401, 107400] by Demod 53322 with 177 at 2 +Id : 53343, {_}: inverse (inverse ?107400) =<= multiply (multiply ?107400 (inverse (inverse ?107400))) (add (inverse (inverse ?107400)) ?107401) [107401, 107400] by Demod 53342 with 52781 at 1,3 +Id : 670, {_}: multiply (multiply ?1373 ?1371) (add ?1371 ?1372) =>= multiply ?1373 ?1371 [1372, 1371, 1373] by Super 24 with 54 at 2,3 +Id : 53344, {_}: inverse (inverse ?107400) =<= multiply ?107400 (inverse (inverse ?107400)) [107400] by Demod 53343 with 670 at 3 +Id : 53988, {_}: add (inverse (inverse ?107962)) ?107962 =>= ?107962 [107962] by Super 377 with 53344 at 1,2 +Id : 53931, {_}: inverse (inverse ?106398) =<= add (inverse (inverse ?106398)) ?106398 [106398] by Demod 52781 with 53344 at 2 +Id : 54117, {_}: inverse (inverse ?107962) =>= ?107962 [107962] by Demod 53988 with 53931 at 2 +Id : 57388, {_}: add (multiply ?112949 ?112950) (inverse ?112949) =>= add ?112950 (inverse ?112949) [112950, 112949] by Super 57387 with 54117 at 1,1,2 +Id : 57660, {_}: add (inverse ?112949) (multiply ?112949 ?112950) =>= add ?112950 (inverse ?112949) [112950, 112949] by Demod 57388 with 1524 at 2 +Id : 1445, {_}: multiply ?2651 (multiply ?2652 ?2651) =>= multiply ?2652 ?2651 [2652, 2651] by Super 727 with 47 at 1,2 +Id : 18543, {_}: multiply ?33695 (multiply ?33696 (multiply ?33697 ?33695)) =>= multiply (multiply ?33696 ?33697) ?33695 [33697, 33696, 33695] by Super 1445 with 24 at 2,2 +Id : 1430, {_}: multiply (multiply ?2603 ?2601) (multiply ?2602 ?2601) =>= multiply ?2603 (multiply ?2602 ?2601) [2602, 2601, 2603] by Super 24 with 733 at 2,3 +Id : 18612, {_}: multiply ?33994 (multiply ?33993 (multiply ?33995 ?33994)) =?= multiply (multiply (multiply ?33993 ?33994) ?33995) ?33994 [33995, 33993, 33994] by Super 18543 with 1430 at 2,2 +Id : 1449, {_}: multiply ?2666 (multiply ?2664 (multiply ?2665 ?2666)) =>= multiply (multiply ?2664 ?2665) ?2666 [2665, 2664, 2666] by Super 1445 with 24 at 2,2 +Id : 18850, {_}: multiply (multiply ?33993 ?33995) ?33994 =<= multiply (multiply (multiply ?33993 ?33994) ?33995) ?33994 [33994, 33995, 33993] by Demod 18612 with 1449 at 2 +Id : 4399, {_}: multiply (multiply (multiply ?6795 ?6794) ?6796) ?6794 =>= multiply (multiply ?6795 ?6794) ?6796 [6796, 6794, 6795] by Super 51 with 177 at 2,2 +Id : 43487, {_}: multiply (multiply ?33993 ?33995) ?33994 =?= multiply (multiply ?33993 ?33994) ?33995 [33994, 33995, 33993] by Demod 18850 with 4399 at 3 +Id : 54429, {_}: multiply (multiply (inverse ?108571) ?108573) (add ?108572 ?108571) =>= multiply (multiply ?108572 (inverse ?108571)) ?108573 [108572, 108573, 108571] by Super 43487 with 52560 at 1,3 +Id : 54563, {_}: multiply (inverse ?108571) (multiply ?108573 (add ?108572 ?108571)) =>= multiply (multiply ?108572 (inverse ?108571)) ?108573 [108572, 108573, 108571] by Demod 54429 with 24 at 2 +Id : 728, {_}: multiply ?1504 (multiply ?1502 (multiply ?1504 ?1503)) =>= multiply ?1502 (multiply ?1504 ?1503) [1503, 1502, 1504] by Super 727 with 6 at 1,2 +Id : 9518, {_}: multiply (multiply ?16547 ?16548) (multiply ?16547 ?16549) =>= multiply ?16548 (multiply ?16547 ?16549) [16549, 16548, 16547] by Super 24 with 728 at 3 +Id : 1122, {_}: multiply (multiply ?2120 ?2121) ?2122 =<= multiply (multiply ?2120 ?2121) (multiply ?2120 ?2122) [2122, 2121, 2120] by Super 24 with 587 at 1,2 +Id : 30202, {_}: multiply (multiply ?16547 ?16548) ?16549 =?= multiply ?16548 (multiply ?16547 ?16549) [16549, 16548, 16547] by Demod 9518 with 1122 at 2 +Id : 54564, {_}: multiply (inverse ?108571) (multiply ?108573 (add ?108572 ?108571)) =>= multiply (inverse ?108571) (multiply ?108572 ?108573) [108572, 108573, 108571] by Demod 54563 with 30202 at 3 +Id : 145944, {_}: add (inverse (inverse ?250795)) (multiply (inverse ?250795) (multiply ?250797 ?250796)) =>= add (multiply ?250796 (add ?250797 ?250795)) (inverse (inverse ?250795)) [250796, 250797, 250795] by Super 57660 with 54564 at 2,2 +Id : 146263, {_}: add (multiply ?250797 ?250796) (inverse (inverse ?250795)) =<= add (multiply ?250796 (add ?250797 ?250795)) (inverse (inverse ?250795)) [250795, 250796, 250797] by Demod 145944 with 57660 at 2 +Id : 146264, {_}: add (inverse (inverse ?250795)) (multiply ?250797 ?250796) =<= add (multiply ?250796 (add ?250797 ?250795)) (inverse (inverse ?250795)) [250796, 250797, 250795] by Demod 146263 with 1524 at 2 +Id : 146265, {_}: add ?250795 (multiply ?250797 ?250796) =<= add (multiply ?250796 (add ?250797 ?250795)) (inverse (inverse ?250795)) [250796, 250797, 250795] by Demod 146264 with 54117 at 1,2 +Id : 146266, {_}: add ?250795 (multiply ?250797 ?250796) =<= add (inverse (inverse ?250795)) (multiply ?250796 (add ?250797 ?250795)) [250796, 250797, 250795] by Demod 146265 with 1524 at 3 +Id : 146267, {_}: add ?250795 (multiply ?250797 ?250796) =<= add ?250795 (multiply ?250796 (add ?250797 ?250795)) [250796, 250797, 250795] by Demod 146266 with 54117 at 1,3 +Id : 38316, {_}: add ?76835 (multiply ?76836 (add ?76834 ?76835)) =<= multiply (add ?76834 ?76835) (add (multiply (add ?76834 ?76835) ?76835) ?76836) [76834, 76836, 76835] by Super 38238 with 72 at 1,2 +Id : 38565, {_}: add ?76835 (multiply ?76836 (add ?76834 ?76835)) =>= multiply (add ?76834 ?76835) (add ?76835 ?76836) [76834, 76836, 76835] by Demod 38316 with 72 at 1,2,3 +Id : 146268, {_}: add ?250795 (multiply ?250797 ?250796) =<= multiply (add ?250797 ?250795) (add ?250795 ?250796) [250796, 250797, 250795] by Demod 146267 with 38565 at 3 +Id : 147010, {_}: multiply ?252446 (add ?252445 ?252444) =<= multiply ?252446 (add ?252444 (multiply ?252445 ?252446)) [252444, 252445, 252446] by Super 7897 with 146268 at 2,3 +Id : 152622, {_}: multiply a (add c b) === multiply a (add c b) [] by Demod 152621 with 1524 at 2,3 +Id : 152621, {_}: multiply a (add c b) =<= multiply a (add b c) [] by Demod 19333 with 147010 at 3 +Id : 19333, {_}: multiply a (add c b) =<= multiply a (add c (multiply b a)) [] by Demod 19332 with 1524 at 2,3 +Id : 19332, {_}: multiply a (add c b) =<= multiply a (add (multiply b a) c) [] by Demod 1703 with 1480 at 3 +Id : 1703, {_}: multiply a (add c b) =<= add (multiply c a) (multiply b a) [] by Demod 1702 with 1524 at 3 +Id : 1702, {_}: multiply a (add c b) =<= add (multiply b a) (multiply c a) [] by Demod 2 with 1524 at 2,2 +Id : 2, {_}: multiply a (add b c) =<= add (multiply b a) (multiply c a) [] by prove_multiply_add_property +% SZS output end CNFRefutation for BOO031-1.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + b is 96 + c is 94 + d is 93 + e is 92 + f is 91 + g is 90 + inverse is 97 + left_inverse is 85 + multiply is 95 + prove_single_axiom is 89 + right_inverse is 84 + ternary_multiply_1 is 87 + ternary_multiply_2 is 86 +Facts + Id : 4, {_}: + multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) + =>= + multiply ?2 ?3 (multiply ?4 ?5 ?6) + [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6 + Id : 6, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9 + Id : 8, {_}: + multiply ?11 ?11 ?12 =>= ?11 + [12, 11] by ternary_multiply_2 ?11 ?12 + Id : 10, {_}: + multiply (inverse ?14) ?14 ?15 =>= ?15 + [15, 14] by left_inverse ?14 ?15 + Id : 12, {_}: + multiply ?17 ?18 (inverse ?18) =>= ?17 + [18, 17] by right_inverse ?17 ?18 +Goal + Id : 2, {_}: + multiply (multiply a (inverse a) b) + (inverse (multiply (multiply c d e) f (multiply c d g))) + (multiply d (multiply g f e) c) + =>= + b + [] by prove_single_axiom +Found proof, 2.683225s +% SZS status Unsatisfiable for BOO034-1.p +% SZS output start CNFRefutation for BOO034-1.p +Id : 8, {_}: multiply ?11 ?11 ?12 =>= ?11 [12, 11] by ternary_multiply_2 ?11 ?12 +Id : 6, {_}: multiply ?8 ?9 ?9 =>= ?9 [9, 8] by ternary_multiply_1 ?8 ?9 +Id : 12, {_}: multiply ?17 ?18 (inverse ?18) =>= ?17 [18, 17] by right_inverse ?17 ?18 +Id : 10, {_}: multiply (inverse ?14) ?14 ?15 =>= ?15 [15, 14] by left_inverse ?14 ?15 +Id : 4, {_}: multiply (multiply ?2 ?3 ?4) ?5 (multiply ?2 ?3 ?6) =>= multiply ?2 ?3 (multiply ?4 ?5 ?6) [6, 5, 4, 3, 2] by associativity ?2 ?3 ?4 ?5 ?6 +Id : 75, {_}: multiply ?212 ?213 ?214 =<= multiply ?212 ?213 (multiply ?215 (multiply ?212 ?213 ?214) ?214) [215, 214, 213, 212] by Super 4 with 6 at 2 +Id : 84, {_}: multiply ?257 ?258 ?259 =<= multiply ?257 ?258 (multiply ?257 ?258 ?259) [259, 258, 257] by Super 75 with 8 at 3,3 +Id : 115, {_}: multiply (multiply ?285 ?286 ?288) ?289 (multiply ?285 ?286 ?287) =?= multiply ?285 ?286 (multiply ?288 ?289 (multiply ?285 ?286 ?287)) [287, 289, 288, 286, 285] by Super 4 with 84 at 3,2 +Id : 298, {_}: multiply ?735 ?736 (multiply ?737 ?738 ?739) =<= multiply ?735 ?736 (multiply ?737 ?738 (multiply ?735 ?736 ?739)) [739, 738, 737, 736, 735] by Demod 115 with 4 at 2 +Id : 184, {_}: multiply ?446 ?447 ?448 =<= multiply ?446 ?447 (multiply ?448 (multiply ?446 ?447 ?448) ?449) [449, 448, 447, 446] by Super 4 with 8 at 2 +Id : 189, {_}: multiply ?470 ?471 (inverse ?471) =<= multiply ?470 ?471 (multiply (inverse ?471) ?470 ?472) [472, 471, 470] by Super 184 with 12 at 2,3,3 +Id : 225, {_}: ?470 =<= multiply ?470 ?471 (multiply (inverse ?471) ?470 ?472) [472, 471, 470] by Demod 189 with 12 at 2 +Id : 321, {_}: multiply (inverse ?865) ?864 (multiply ?864 ?865 ?866) =>= multiply (inverse ?865) ?864 ?864 [866, 864, 865] by Super 298 with 225 at 3,3 +Id : 387, {_}: multiply (inverse ?963) ?964 (multiply ?964 ?963 ?965) =>= ?964 [965, 964, 963] by Demod 321 with 6 at 3 +Id : 389, {_}: multiply (inverse ?974) ?973 ?974 =>= ?973 [973, 974] by Super 387 with 6 at 3,2 +Id : 437, {_}: ?1071 =<= inverse (inverse ?1071) [1071] by Super 12 with 389 at 2 +Id : 462, {_}: multiply ?1119 (inverse ?1119) ?1120 =>= ?1120 [1120, 1119] by Super 10 with 437 at 1,2 +Id : 116, {_}: multiply (multiply ?291 ?292 ?293) ?294 (multiply ?291 ?292 ?295) =?= multiply ?291 ?292 (multiply (multiply ?291 ?292 ?293) ?294 ?295) [295, 294, 293, 292, 291] by Super 4 with 84 at 1,2 +Id : 12671, {_}: multiply ?19232 ?19233 (multiply ?19234 ?19235 ?19236) =<= multiply ?19232 ?19233 (multiply (multiply ?19232 ?19233 ?19234) ?19235 ?19236) [19236, 19235, 19234, 19233, 19232] by Demod 116 with 4 at 2 +Id : 80, {_}: multiply ?236 ?237 (inverse ?237) =<= multiply ?236 ?237 (multiply ?238 ?236 (inverse ?237)) [238, 237, 236] by Super 75 with 12 at 2,3,3 +Id : 105, {_}: ?236 =<= multiply ?236 ?237 (multiply ?238 ?236 (inverse ?237)) [238, 237, 236] by Demod 80 with 12 at 2 +Id : 996, {_}: ?2202 =<= multiply ?2202 (inverse ?2203) (multiply ?2204 ?2202 ?2203) [2204, 2203, 2202] by Super 105 with 437 at 3,3,3 +Id : 1012, {_}: ?2262 =<= multiply ?2262 (inverse (multiply ?2261 ?2263 (inverse ?2262))) ?2263 [2263, 2261, 2262] by Super 996 with 105 at 3,3 +Id : 459, {_}: ?1109 =<= multiply ?1109 (inverse ?1108) (multiply ?1108 ?1109 ?1110) [1110, 1108, 1109] by Super 225 with 437 at 1,3,3 +Id : 1017, {_}: inverse ?2283 =<= multiply (inverse ?2283) (inverse (multiply ?2283 ?2285 ?2284)) ?2285 [2284, 2285, 2283] by Super 996 with 459 at 3,3 +Id : 1909, {_}: ?3987 =<= multiply ?3987 (inverse (inverse ?3985)) (inverse (multiply ?3985 (inverse ?3987) ?3986)) [3986, 3985, 3987] by Super 1012 with 1017 at 1,2,3 +Id : 1996, {_}: ?3987 =<= multiply ?3987 ?3985 (inverse (multiply ?3985 (inverse ?3987) ?3986)) [3986, 3985, 3987] by Demod 1909 with 437 at 2,3 +Id : 2510, {_}: ?5132 =<= multiply ?5132 (multiply ?5132 (inverse ?5131) ?5133) ?5131 [5133, 5131, 5132] by Super 105 with 1996 at 3,3 +Id : 2812, {_}: multiply ?5719 (inverse (inverse ?5721)) ?5720 =<= multiply (multiply ?5719 (inverse (inverse ?5721)) ?5720) ?5721 ?5719 [5720, 5721, 5719] by Super 105 with 2510 at 3,3 +Id : 2874, {_}: multiply ?5719 ?5721 ?5720 =<= multiply (multiply ?5719 (inverse (inverse ?5721)) ?5720) ?5721 ?5719 [5720, 5721, 5719] by Demod 2812 with 437 at 2,2 +Id : 2875, {_}: multiply ?5719 ?5721 ?5720 =<= multiply (multiply ?5719 ?5721 ?5720) ?5721 ?5719 [5720, 5721, 5719] by Demod 2874 with 437 at 2,1,3 +Id : 12777, {_}: multiply ?19864 ?19863 (multiply ?19862 ?19863 ?19864) =?= multiply ?19864 ?19863 (multiply ?19864 ?19863 ?19862) [19862, 19863, 19864] by Super 12671 with 2875 at 3,3 +Id : 12993, {_}: multiply ?20226 ?20227 (multiply ?20228 ?20227 ?20226) =>= multiply ?20226 ?20227 ?20228 [20228, 20227, 20226] by Demod 12777 with 84 at 3 +Id : 19, {_}: multiply ?58 ?59 ?61 =<= multiply ?58 ?59 (multiply ?60 (multiply ?58 ?59 ?61) ?61) [60, 61, 59, 58] by Super 4 with 6 at 2 +Id : 463, {_}: multiply ?1122 ?1123 (inverse ?1122) =>= ?1123 [1123, 1122] by Super 389 with 437 at 1,2 +Id : 607, {_}: multiply ?1371 ?1372 (inverse ?1371) =<= multiply ?1371 ?1372 (multiply ?1373 ?1372 (inverse ?1371)) [1373, 1372, 1371] by Super 19 with 463 at 2,3,3 +Id : 625, {_}: ?1372 =<= multiply ?1371 ?1372 (multiply ?1373 ?1372 (inverse ?1371)) [1373, 1371, 1372] by Demod 607 with 463 at 2 +Id : 460, {_}: ?1113 =<= multiply ?1113 (inverse ?1112) (multiply ?1114 ?1113 ?1112) [1114, 1112, 1113] by Super 105 with 437 at 3,3,3 +Id : 1018, {_}: inverse ?2287 =<= multiply (inverse ?2287) (inverse (multiply ?2288 ?2289 ?2287)) ?2289 [2289, 2288, 2287] by Super 996 with 460 at 3,3 +Id : 2078, {_}: ?4356 =<= multiply ?4356 (inverse (inverse ?4354)) (inverse (multiply ?4355 (inverse ?4356) ?4354)) [4355, 4354, 4356] by Super 1012 with 1018 at 1,2,3 +Id : 2124, {_}: ?4356 =<= multiply ?4356 ?4354 (inverse (multiply ?4355 (inverse ?4356) ?4354)) [4355, 4354, 4356] by Demod 2078 with 437 at 2,3 +Id : 3650, {_}: ?7215 =<= multiply ?7215 (multiply ?7216 (inverse ?7214) ?7215) ?7214 [7214, 7216, 7215] by Super 105 with 2124 at 3,3 +Id : 4032, {_}: multiply ?7968 (inverse (inverse ?7969)) ?7967 =<= multiply ?7969 (multiply ?7968 (inverse (inverse ?7969)) ?7967) ?7967 [7967, 7969, 7968] by Super 625 with 3650 at 3,3 +Id : 4103, {_}: multiply ?7968 ?7969 ?7967 =<= multiply ?7969 (multiply ?7968 (inverse (inverse ?7969)) ?7967) ?7967 [7967, 7969, 7968] by Demod 4032 with 437 at 2,2 +Id : 4104, {_}: multiply ?7968 ?7969 ?7967 =<= multiply ?7969 (multiply ?7968 ?7969 ?7967) ?7967 [7967, 7969, 7968] by Demod 4103 with 437 at 2,2,3 +Id : 13062, {_}: multiply ?20502 (multiply ?20501 ?20503 ?20502) (multiply ?20501 ?20503 ?20502) =>= multiply ?20502 (multiply ?20501 ?20503 ?20502) ?20503 [20503, 20501, 20502] by Super 12993 with 4104 at 3,2 +Id : 13612, {_}: multiply ?21322 ?21323 ?21324 =<= multiply ?21324 (multiply ?21322 ?21323 ?21324) ?21323 [21324, 21323, 21322] by Demod 13062 with 6 at 2 +Id : 12903, {_}: multiply ?19864 ?19863 (multiply ?19862 ?19863 ?19864) =>= multiply ?19864 ?19863 ?19862 [19862, 19863, 19864] by Demod 12777 with 84 at 3 +Id : 13625, {_}: multiply ?21368 ?21369 (multiply ?21367 ?21369 ?21368) =<= multiply (multiply ?21367 ?21369 ?21368) (multiply ?21368 ?21369 ?21367) ?21369 [21367, 21369, 21368] by Super 13612 with 12903 at 2,3 +Id : 13783, {_}: multiply ?21368 ?21369 ?21367 =<= multiply (multiply ?21367 ?21369 ?21368) (multiply ?21368 ?21369 ?21367) ?21369 [21367, 21369, 21368] by Demod 13625 with 12903 at 2 +Id : 34256, {_}: multiply (multiply ?56219 ?56220 ?56221) ?56222 ?56219 =<= multiply ?56219 ?56220 (multiply ?56221 ?56222 (multiply ?56223 ?56219 (inverse ?56220))) [56223, 56222, 56221, 56220, 56219] by Super 4 with 105 at 3,2 +Id : 34781, {_}: multiply (multiply ?57676 ?57677 ?57678) ?57678 ?57676 =>= multiply ?57676 ?57677 ?57678 [57678, 57677, 57676] by Super 34256 with 8 at 3,3 +Id : 34858, {_}: multiply (multiply ?57992 ?57993 ?57994) ?57994 ?57993 =?= multiply ?57993 (multiply ?57992 ?57993 ?57994) ?57994 [57994, 57993, 57992] by Super 34781 with 4104 at 1,2 +Id : 35129, {_}: multiply (multiply ?57992 ?57993 ?57994) ?57994 ?57993 =>= multiply ?57992 ?57993 ?57994 [57994, 57993, 57992] by Demod 34858 with 4104 at 3 +Id : 36343, {_}: multiply (multiply ?60132 ?60133 ?60134) ?60134 ?60133 =<= multiply (multiply ?60133 ?60134 (multiply ?60132 ?60133 ?60134)) (multiply ?60132 ?60133 ?60134) ?60134 [60134, 60133, 60132] by Super 13783 with 35129 at 2,3 +Id : 36700, {_}: multiply ?60132 ?60133 ?60134 =<= multiply (multiply ?60133 ?60134 (multiply ?60132 ?60133 ?60134)) (multiply ?60132 ?60133 ?60134) ?60134 [60134, 60133, 60132] by Demod 36343 with 35129 at 2 +Id : 36701, {_}: multiply ?60132 ?60133 ?60134 =<= multiply ?60133 ?60134 (multiply ?60132 ?60133 ?60134) [60134, 60133, 60132] by Demod 36700 with 35129 at 3 +Id : 136, {_}: multiply ?291 ?292 (multiply ?293 ?294 ?295) =<= multiply ?291 ?292 (multiply (multiply ?291 ?292 ?293) ?294 ?295) [295, 294, 293, 292, 291] by Demod 116 with 4 at 2 +Id : 2796, {_}: multiply ?5648 (inverse (inverse ?5650)) ?5649 =<= multiply ?5650 (multiply ?5648 (inverse (inverse ?5650)) ?5649) ?5648 [5649, 5650, 5648] by Super 625 with 2510 at 3,3 +Id : 2887, {_}: multiply ?5648 ?5650 ?5649 =<= multiply ?5650 (multiply ?5648 (inverse (inverse ?5650)) ?5649) ?5648 [5649, 5650, 5648] by Demod 2796 with 437 at 2,2 +Id : 2888, {_}: multiply ?5648 ?5650 ?5649 =<= multiply ?5650 (multiply ?5648 ?5650 ?5649) ?5648 [5649, 5650, 5648] by Demod 2887 with 437 at 2,2,3 +Id : 34853, {_}: multiply (multiply ?57974 ?57973 ?57972) ?57974 ?57973 =?= multiply ?57973 (multiply ?57974 ?57973 ?57972) ?57974 [57972, 57973, 57974] by Super 34781 with 2888 at 1,2 +Id : 35120, {_}: multiply (multiply ?57974 ?57973 ?57972) ?57974 ?57973 =>= multiply ?57974 ?57973 ?57972 [57972, 57973, 57974] by Demod 34853 with 2888 at 3 +Id : 35775, {_}: multiply ?59268 ?59269 (multiply ?59270 ?59268 ?59269) =?= multiply ?59268 ?59269 (multiply ?59268 ?59269 ?59270) [59270, 59269, 59268] by Super 136 with 35120 at 3,3 +Id : 36064, {_}: multiply ?59268 ?59269 (multiply ?59270 ?59268 ?59269) =>= multiply ?59268 ?59269 ?59270 [59270, 59269, 59268] by Demod 35775 with 84 at 3 +Id : 37436, {_}: multiply ?60132 ?60133 ?60134 =?= multiply ?60133 ?60134 ?60132 [60134, 60133, 60132] by Demod 36701 with 36064 at 3 +Id : 25, {_}: multiply ?84 ?85 ?86 =<= multiply ?84 ?85 (multiply ?86 (multiply ?84 ?85 ?86) ?87) [87, 86, 85, 84] by Super 4 with 8 at 2 +Id : 317, {_}: multiply ?845 (multiply ?846 ?847 ?845) (multiply ?846 ?847 ?848) =?= multiply ?845 (multiply ?846 ?847 ?845) (multiply ?846 ?847 ?845) [848, 847, 846, 845] by Super 298 with 25 at 3,3 +Id : 24761, {_}: multiply ?36657 (multiply ?36658 ?36659 ?36657) (multiply ?36658 ?36659 ?36660) =>= multiply ?36658 ?36659 ?36657 [36660, 36659, 36658, 36657] by Demod 317 with 6 at 3 +Id : 24766, {_}: multiply ?36681 (multiply ?36682 ?36683 ?36681) ?36682 =>= multiply ?36682 ?36683 ?36681 [36683, 36682, 36681] by Super 24761 with 12 at 3,2 +Id : 37850, {_}: multiply ?63783 ?63784 (multiply ?63783 ?63785 ?63784) =>= multiply ?63783 ?63785 ?63784 [63785, 63784, 63783] by Super 24766 with 37436 at 2 +Id : 37801, {_}: multiply ?63587 ?63589 (multiply ?63587 ?63588 ?63589) =>= multiply ?63587 ?63589 ?63588 [63588, 63589, 63587] by Super 12903 with 37436 at 3,2 +Id : 41412, {_}: multiply ?63783 ?63784 ?63785 =?= multiply ?63783 ?63785 ?63784 [63785, 63784, 63783] by Demod 37850 with 37801 at 2 +Id : 42484, {_}: b === b [] by Demod 42483 with 12 at 2 +Id : 42483, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d c (multiply g f e))) =>= b [] by Demod 42482 with 41412 at 3,1,3,2 +Id : 42482, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d c (multiply g e f))) =>= b [] by Demod 42481 with 41412 at 1,3,2 +Id : 42481, {_}: multiply b (multiply d c (multiply g f e)) (inverse (multiply d (multiply g e f) c)) =>= b [] by Demod 42480 with 41412 at 2,2 +Id : 42480, {_}: multiply b (multiply d (multiply g f e) c) (inverse (multiply d (multiply g e f) c)) =>= b [] by Demod 38492 with 41412 at 2 +Id : 38492, {_}: multiply b (inverse (multiply d (multiply g e f) c)) (multiply d (multiply g f e) c) =>= b [] by Demod 38491 with 37436 at 2,1,2,2 +Id : 38491, {_}: multiply b (inverse (multiply d (multiply f g e) c)) (multiply d (multiply g f e) c) =>= b [] by Demod 38490 with 37436 at 2,1,2,2 +Id : 38490, {_}: multiply b (inverse (multiply d (multiply e f g) c)) (multiply d (multiply g f e) c) =>= b [] by Demod 595 with 37436 at 1,2,2 +Id : 595, {_}: multiply b (inverse (multiply c d (multiply e f g))) (multiply d (multiply g f e) c) =>= b [] by Demod 53 with 462 at 1,2 +Id : 53, {_}: multiply (multiply a (inverse a) b) (inverse (multiply c d (multiply e f g))) (multiply d (multiply g f e) c) =>= b [] by Demod 2 with 4 at 1,2,2 +Id : 2, {_}: multiply (multiply a (inverse a) b) (inverse (multiply (multiply c d e) f (multiply c d g))) (multiply d (multiply g f e) c) =>= b [] by prove_single_axiom +% SZS output end CNFRefutation for BOO034-1.p +Order + == is 100 + _ is 99 + a is 97 + add is 96 + b is 98 + dn1 is 93 + huntinton_1 is 95 + inverse is 94 +Facts + Id : 4, {_}: + inverse + (add (inverse (add (inverse (add ?2 ?3)) ?4)) + (inverse + (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) + =>= + ?4 + [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 +Goal + Id : 2, {_}: add b a =>= add a b [] by huntinton_1 +Found proof, 0.407895s +% SZS status Unsatisfiable for BOO072-1.p +% SZS output start CNFRefutation for BOO072-1.p +Id : 5, {_}: inverse (add (inverse (add (inverse (add ?7 ?8)) ?9)) (inverse (add ?7 (inverse (add (inverse ?9) (inverse (add ?9 ?10))))))) =>= ?9 [10, 9, 8, 7] by dn1 ?7 ?8 ?9 ?10 +Id : 4, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 +Id : 17, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?80)) ?81)) ?80)) ?82)) (inverse ?80))) ?80) =>= inverse ?80 [82, 81, 80] by Super 5 with 4 at 2,1,2 +Id : 22, {_}: inverse (add (inverse (add ?111 (inverse ?111))) ?111) =>= inverse ?111 [111] by Super 17 with 4 at 1,1,1,1,2 +Id : 36, {_}: inverse (add (inverse ?135) (inverse (add ?135 (inverse (add (inverse ?135) (inverse (add ?135 ?136))))))) =>= ?135 [136, 135] by Super 4 with 22 at 1,1,2 +Id : 57, {_}: inverse (add (inverse (add (inverse (add ?192 ?193)) ?190)) (inverse (add ?192 ?190))) =>= ?190 [190, 193, 192] by Super 4 with 36 at 2,1,2,1,2 +Id : 131, {_}: inverse (add (inverse (add (inverse (add ?400 ?401)) ?402)) (inverse (add ?400 ?402))) =>= ?402 [402, 401, 400] by Super 4 with 36 at 2,1,2,1,2 +Id : 141, {_}: inverse (add (inverse (add ?444 ?446)) (inverse (add (inverse ?444) ?446))) =>= ?446 [446, 444] by Super 131 with 36 at 1,1,1,1,2 +Id : 175, {_}: inverse (add ?545 (inverse (add ?544 (inverse (add (inverse ?544) ?545))))) =>= inverse (add (inverse ?544) ?545) [544, 545] by Super 57 with 141 at 1,1,2 +Id : 341, {_}: inverse (add (inverse ?894) (inverse (add ?894 (inverse (add (inverse ?894) (inverse ?894)))))) =>= ?894 [894] by Super 36 with 175 at 2,1,2,1,2 +Id : 390, {_}: inverse (add (inverse ?894) (inverse ?894)) =>= ?894 [894] by Demod 341 with 175 at 2 +Id : 176, {_}: inverse (add (inverse (add ?547 ?548)) (inverse (add (inverse ?547) ?548))) =>= ?548 [548, 547] by Super 131 with 36 at 1,1,1,1,2 +Id : 61, {_}: inverse (add (inverse ?208) (inverse (add ?208 (inverse (add (inverse ?208) (inverse (add ?208 ?209))))))) =>= ?208 [209, 208] by Super 4 with 22 at 1,1,2 +Id : 70, {_}: inverse (add (inverse ?244) (inverse (add ?244 ?244))) =>= ?244 [244] by Super 61 with 36 at 2,1,2,1,2 +Id : 189, {_}: inverse (add (inverse (add ?598 (inverse (add ?598 ?598)))) ?598) =>= inverse (add ?598 ?598) [598] by Super 176 with 70 at 2,1,2 +Id : 209, {_}: inverse (add (inverse (add ?635 ?635)) (inverse (add ?635 ?635))) =>= ?635 [635] by Super 57 with 189 at 1,1,2 +Id : 418, {_}: add ?635 ?635 =>= ?635 [635] by Demod 209 with 390 at 2 +Id : 441, {_}: inverse (inverse ?1072) =>= ?1072 [1072] by Demod 390 with 418 at 1,2 +Id : 447, {_}: inverse (inverse (add (inverse ?1092) ?1091)) =<= add ?1091 (inverse (add ?1092 (inverse (add (inverse ?1092) ?1091)))) [1091, 1092] by Super 441 with 175 at 1,2 +Id : 427, {_}: inverse (inverse ?894) =>= ?894 [894] by Demod 390 with 418 at 1,2 +Id : 835, {_}: add (inverse ?1599) ?1600 =<= add ?1600 (inverse (add ?1599 (inverse (add (inverse ?1599) ?1600)))) [1600, 1599] by Demod 447 with 427 at 2 +Id : 839, {_}: add (inverse (inverse ?1617)) ?1618 =<= add ?1618 (inverse (add (inverse ?1617) (inverse (add ?1617 ?1618)))) [1618, 1617] by Super 835 with 427 at 1,1,2,1,2,3 +Id : 866, {_}: add ?1617 ?1618 =<= add ?1618 (inverse (add (inverse ?1617) (inverse (add ?1617 ?1618)))) [1618, 1617] by Demod 839 with 427 at 1,2 +Id : 459, {_}: add (inverse ?1092) ?1091 =<= add ?1091 (inverse (add ?1092 (inverse (add (inverse ?1092) ?1091)))) [1091, 1092] by Demod 447 with 427 at 2 +Id : 8, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?28)) ?27)) ?28)) ?30)) (inverse ?28))) ?28) =>= inverse ?28 [30, 27, 28] by Super 5 with 4 at 2,1,2 +Id : 428, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add ?28 ?27)) ?28)) ?30)) (inverse ?28))) ?28) =>= inverse ?28 [30, 27, 28] by Demod 8 with 427 at 1,1,1,1,1,1,1,1,1,1,2 +Id : 443, {_}: inverse (inverse ?1079) =<= add (inverse (add ?1079 (inverse ?1079))) ?1079 [1079] by Super 441 with 22 at 1,2 +Id : 476, {_}: ?1141 =<= add (inverse (add ?1141 (inverse ?1141))) ?1141 [1141] by Demod 443 with 427 at 2 +Id : 483, {_}: inverse ?1163 =<= add (inverse (add (inverse ?1163) ?1163)) (inverse ?1163) [1163] by Super 476 with 427 at 2,1,1,3 +Id : 545, {_}: inverse (add (inverse (add (inverse (add (inverse (inverse ?1237)) ?1238)) (inverse (inverse ?1237)))) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Super 428 with 483 at 1,1,1,1,1,1,1,2 +Id : 596, {_}: inverse (add (inverse (add (inverse (add ?1237 ?1238)) (inverse (inverse ?1237)))) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Demod 545 with 427 at 1,1,1,1,1,1,2 +Id : 597, {_}: inverse (add (inverse (add (inverse (add ?1237 ?1238)) ?1237)) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Demod 596 with 427 at 2,1,1,1,2 +Id : 1828, {_}: inverse (add (inverse (add (inverse (add ?2824 ?2825)) ?2824)) (inverse ?2824)) =>= ?2824 [2825, 2824] by Demod 597 with 427 at 3 +Id : 1862, {_}: inverse (add ?2924 (inverse (inverse (add ?2923 ?2924)))) =>= inverse (add ?2923 ?2924) [2923, 2924] by Super 1828 with 57 at 1,1,2 +Id : 1957, {_}: inverse (add ?2924 (add ?2923 ?2924)) =>= inverse (add ?2923 ?2924) [2923, 2924] by Demod 1862 with 427 at 2,1,2 +Id : 1989, {_}: inverse (inverse (add ?3044 ?3043)) =<= add ?3043 (add ?3044 ?3043) [3043, 3044] by Super 427 with 1957 at 1,2 +Id : 2126, {_}: add ?3204 ?3205 =<= add ?3205 (add ?3204 ?3205) [3205, 3204] by Demod 1989 with 427 at 2 +Id : 733, {_}: inverse ?1452 =<= add (inverse (add ?1453 ?1452)) (inverse (add (inverse ?1453) ?1452)) [1453, 1452] by Super 441 with 141 at 1,2 +Id : 738, {_}: inverse ?1475 =<= add (inverse (add (inverse ?1474) ?1475)) (inverse (add ?1474 ?1475)) [1474, 1475] by Super 733 with 427 at 1,1,2,3 +Id : 2134, {_}: add (inverse (add (inverse ?3224) ?3223)) (inverse (add ?3224 ?3223)) =>= add (inverse (add ?3224 ?3223)) (inverse ?3223) [3223, 3224] by Super 2126 with 738 at 2,3 +Id : 2159, {_}: inverse ?3223 =<= add (inverse (add ?3224 ?3223)) (inverse ?3223) [3224, 3223] by Demod 2134 with 738 at 2 +Id : 2197, {_}: inverse (add (inverse (inverse ?3289)) (inverse (add ?3290 (inverse ?3289)))) =>= inverse ?3289 [3290, 3289] by Super 57 with 2159 at 1,1,1,2 +Id : 2249, {_}: inverse (add ?3289 (inverse (add ?3290 (inverse ?3289)))) =>= inverse ?3289 [3290, 3289] by Demod 2197 with 427 at 1,1,2 +Id : 2455, {_}: add (inverse ?3654) (inverse (add ?3653 (inverse (inverse ?3654)))) =<= add (inverse (add ?3653 (inverse (inverse ?3654)))) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Super 459 with 2249 at 2,1,2,3 +Id : 2497, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 (inverse (inverse ?3654)))) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Demod 2455 with 427 at 2,1,2,2 +Id : 2498, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 ?3654)) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Demod 2497 with 427 at 2,1,1,3 +Id : 2499, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 ?3654)) (inverse (add ?3654 ?3654)) [3653, 3654] by Demod 2498 with 427 at 2,1,2,3 +Id : 2500, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =?= add (inverse (add ?3653 ?3654)) (inverse ?3654) [3653, 3654] by Demod 2499 with 418 at 1,2,3 +Id : 2501, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =>= inverse ?3654 [3653, 3654] by Demod 2500 with 2159 at 3 +Id : 2761, {_}: add (inverse ?4078) (inverse (add ?4079 ?4078)) =>= inverse ?4078 [4079, 4078] by Demod 2500 with 2159 at 3 +Id : 2775, {_}: add (inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119))))))) ?4118 =>= inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119)))))) [4119, 4118, 4116] by Super 2761 with 4 at 2,2 +Id : 2871, {_}: add (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119))))) ?4118 =>= inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119)))))) [4119, 4118, 4116] by Demod 2775 with 427 at 1,2 +Id : 4872, {_}: add (add ?6485 (inverse (add (inverse ?6486) (inverse (add ?6486 ?6487))))) ?6486 =>= add ?6485 (inverse (add (inverse ?6486) (inverse (add ?6486 ?6487)))) [6487, 6486, 6485] by Demod 2871 with 427 at 3 +Id : 4906, {_}: add (inverse (inverse (add ?6624 ?6625))) ?6624 =<= add (inverse (inverse (add ?6624 ?6625))) (inverse (add (inverse ?6624) (inverse (add ?6624 ?6625)))) [6625, 6624] by Super 4872 with 2501 at 1,2 +Id : 5128, {_}: add (add ?6624 ?6625) ?6624 =<= add (inverse (inverse (add ?6624 ?6625))) (inverse (add (inverse ?6624) (inverse (add ?6624 ?6625)))) [6625, 6624] by Demod 4906 with 427 at 1,2 +Id : 5129, {_}: add (add ?6624 ?6625) ?6624 =>= inverse (inverse (add ?6624 ?6625)) [6625, 6624] by Demod 5128 with 2501 at 3 +Id : 5130, {_}: add (add ?6624 ?6625) ?6624 =>= add ?6624 ?6625 [6625, 6624] by Demod 5129 with 427 at 3 +Id : 5176, {_}: add (inverse ?6745) (inverse (add ?6745 ?6746)) =>= inverse ?6745 [6746, 6745] by Super 2501 with 5130 at 1,2,2 +Id : 5963, {_}: add ?1617 ?1618 =<= add ?1618 (inverse (inverse ?1617)) [1618, 1617] by Demod 866 with 5176 at 1,2,3 +Id : 5973, {_}: add ?1617 ?1618 =?= add ?1618 ?1617 [1618, 1617] by Demod 5963 with 427 at 2,3 +Id : 6201, {_}: add a b === add a b [] by Demod 2 with 5973 at 2 +Id : 2, {_}: add b a =>= add a b [] by huntinton_1 +% SZS output end CNFRefutation for BOO072-1.p +Order + == is 100 + _ is 99 + a is 98 + add is 96 + b is 97 + c is 95 + dn1 is 92 + huntinton_2 is 94 + inverse is 93 +Facts + Id : 4, {_}: + inverse + (add (inverse (add (inverse (add ?2 ?3)) ?4)) + (inverse + (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) + =>= + ?4 + [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 +Goal + Id : 2, {_}: add (add a b) c =>= add a (add b c) [] by huntinton_2 +Found proof, 88.886424s +% SZS status Unsatisfiable for BOO073-1.p +% SZS output start CNFRefutation for BOO073-1.p +Id : 5, {_}: inverse (add (inverse (add (inverse (add ?7 ?8)) ?9)) (inverse (add ?7 (inverse (add (inverse ?9) (inverse (add ?9 ?10))))))) =>= ?9 [10, 9, 8, 7] by dn1 ?7 ?8 ?9 ?10 +Id : 4, {_}: inverse (add (inverse (add (inverse (add ?2 ?3)) ?4)) (inverse (add ?2 (inverse (add (inverse ?4) (inverse (add ?4 ?5))))))) =>= ?4 [5, 4, 3, 2] by dn1 ?2 ?3 ?4 ?5 +Id : 17, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?80)) ?81)) ?80)) ?82)) (inverse ?80))) ?80) =>= inverse ?80 [82, 81, 80] by Super 5 with 4 at 2,1,2 +Id : 22, {_}: inverse (add (inverse (add ?111 (inverse ?111))) ?111) =>= inverse ?111 [111] by Super 17 with 4 at 1,1,1,1,2 +Id : 36, {_}: inverse (add (inverse ?135) (inverse (add ?135 (inverse (add (inverse ?135) (inverse (add ?135 ?136))))))) =>= ?135 [136, 135] by Super 4 with 22 at 1,1,2 +Id : 57, {_}: inverse (add (inverse (add (inverse (add ?192 ?193)) ?190)) (inverse (add ?192 ?190))) =>= ?190 [190, 193, 192] by Super 4 with 36 at 2,1,2,1,2 +Id : 131, {_}: inverse (add (inverse (add (inverse (add ?400 ?401)) ?402)) (inverse (add ?400 ?402))) =>= ?402 [402, 401, 400] by Super 4 with 36 at 2,1,2,1,2 +Id : 141, {_}: inverse (add (inverse (add ?444 ?446)) (inverse (add (inverse ?444) ?446))) =>= ?446 [446, 444] by Super 131 with 36 at 1,1,1,1,2 +Id : 175, {_}: inverse (add ?545 (inverse (add ?544 (inverse (add (inverse ?544) ?545))))) =>= inverse (add (inverse ?544) ?545) [544, 545] by Super 57 with 141 at 1,1,2 +Id : 341, {_}: inverse (add (inverse ?894) (inverse (add ?894 (inverse (add (inverse ?894) (inverse ?894)))))) =>= ?894 [894] by Super 36 with 175 at 2,1,2,1,2 +Id : 390, {_}: inverse (add (inverse ?894) (inverse ?894)) =>= ?894 [894] by Demod 341 with 175 at 2 +Id : 176, {_}: inverse (add (inverse (add ?547 ?548)) (inverse (add (inverse ?547) ?548))) =>= ?548 [548, 547] by Super 131 with 36 at 1,1,1,1,2 +Id : 61, {_}: inverse (add (inverse ?208) (inverse (add ?208 (inverse (add (inverse ?208) (inverse (add ?208 ?209))))))) =>= ?208 [209, 208] by Super 4 with 22 at 1,1,2 +Id : 70, {_}: inverse (add (inverse ?244) (inverse (add ?244 ?244))) =>= ?244 [244] by Super 61 with 36 at 2,1,2,1,2 +Id : 189, {_}: inverse (add (inverse (add ?598 (inverse (add ?598 ?598)))) ?598) =>= inverse (add ?598 ?598) [598] by Super 176 with 70 at 2,1,2 +Id : 209, {_}: inverse (add (inverse (add ?635 ?635)) (inverse (add ?635 ?635))) =>= ?635 [635] by Super 57 with 189 at 1,1,2 +Id : 418, {_}: add ?635 ?635 =>= ?635 [635] by Demod 209 with 390 at 2 +Id : 441, {_}: inverse (inverse ?1072) =>= ?1072 [1072] by Demod 390 with 418 at 1,2 +Id : 447, {_}: inverse (inverse (add (inverse ?1092) ?1091)) =<= add ?1091 (inverse (add ?1092 (inverse (add (inverse ?1092) ?1091)))) [1091, 1092] by Super 441 with 175 at 1,2 +Id : 427, {_}: inverse (inverse ?894) =>= ?894 [894] by Demod 390 with 418 at 1,2 +Id : 835, {_}: add (inverse ?1599) ?1600 =<= add ?1600 (inverse (add ?1599 (inverse (add (inverse ?1599) ?1600)))) [1600, 1599] by Demod 447 with 427 at 2 +Id : 839, {_}: add (inverse (inverse ?1617)) ?1618 =<= add ?1618 (inverse (add (inverse ?1617) (inverse (add ?1617 ?1618)))) [1618, 1617] by Super 835 with 427 at 1,1,2,1,2,3 +Id : 866, {_}: add ?1617 ?1618 =<= add ?1618 (inverse (add (inverse ?1617) (inverse (add ?1617 ?1618)))) [1618, 1617] by Demod 839 with 427 at 1,2 +Id : 459, {_}: add (inverse ?1092) ?1091 =<= add ?1091 (inverse (add ?1092 (inverse (add (inverse ?1092) ?1091)))) [1091, 1092] by Demod 447 with 427 at 2 +Id : 8, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add (inverse (inverse ?28)) ?27)) ?28)) ?30)) (inverse ?28))) ?28) =>= inverse ?28 [30, 27, 28] by Super 5 with 4 at 2,1,2 +Id : 428, {_}: inverse (add (inverse (add (inverse (add (inverse (add (inverse (add ?28 ?27)) ?28)) ?30)) (inverse ?28))) ?28) =>= inverse ?28 [30, 27, 28] by Demod 8 with 427 at 1,1,1,1,1,1,1,1,1,1,2 +Id : 443, {_}: inverse (inverse ?1079) =<= add (inverse (add ?1079 (inverse ?1079))) ?1079 [1079] by Super 441 with 22 at 1,2 +Id : 476, {_}: ?1141 =<= add (inverse (add ?1141 (inverse ?1141))) ?1141 [1141] by Demod 443 with 427 at 2 +Id : 483, {_}: inverse ?1163 =<= add (inverse (add (inverse ?1163) ?1163)) (inverse ?1163) [1163] by Super 476 with 427 at 2,1,1,3 +Id : 545, {_}: inverse (add (inverse (add (inverse (add (inverse (inverse ?1237)) ?1238)) (inverse (inverse ?1237)))) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Super 428 with 483 at 1,1,1,1,1,1,1,2 +Id : 596, {_}: inverse (add (inverse (add (inverse (add ?1237 ?1238)) (inverse (inverse ?1237)))) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Demod 545 with 427 at 1,1,1,1,1,1,2 +Id : 597, {_}: inverse (add (inverse (add (inverse (add ?1237 ?1238)) ?1237)) (inverse ?1237)) =>= inverse (inverse ?1237) [1238, 1237] by Demod 596 with 427 at 2,1,1,1,2 +Id : 1828, {_}: inverse (add (inverse (add (inverse (add ?2824 ?2825)) ?2824)) (inverse ?2824)) =>= ?2824 [2825, 2824] by Demod 597 with 427 at 3 +Id : 1862, {_}: inverse (add ?2924 (inverse (inverse (add ?2923 ?2924)))) =>= inverse (add ?2923 ?2924) [2923, 2924] by Super 1828 with 57 at 1,1,2 +Id : 1957, {_}: inverse (add ?2924 (add ?2923 ?2924)) =>= inverse (add ?2923 ?2924) [2923, 2924] by Demod 1862 with 427 at 2,1,2 +Id : 1989, {_}: inverse (inverse (add ?3044 ?3043)) =<= add ?3043 (add ?3044 ?3043) [3043, 3044] by Super 427 with 1957 at 1,2 +Id : 2126, {_}: add ?3204 ?3205 =<= add ?3205 (add ?3204 ?3205) [3205, 3204] by Demod 1989 with 427 at 2 +Id : 733, {_}: inverse ?1452 =<= add (inverse (add ?1453 ?1452)) (inverse (add (inverse ?1453) ?1452)) [1453, 1452] by Super 441 with 141 at 1,2 +Id : 738, {_}: inverse ?1475 =<= add (inverse (add (inverse ?1474) ?1475)) (inverse (add ?1474 ?1475)) [1474, 1475] by Super 733 with 427 at 1,1,2,3 +Id : 2134, {_}: add (inverse (add (inverse ?3224) ?3223)) (inverse (add ?3224 ?3223)) =>= add (inverse (add ?3224 ?3223)) (inverse ?3223) [3223, 3224] by Super 2126 with 738 at 2,3 +Id : 2159, {_}: inverse ?3223 =<= add (inverse (add ?3224 ?3223)) (inverse ?3223) [3224, 3223] by Demod 2134 with 738 at 2 +Id : 2197, {_}: inverse (add (inverse (inverse ?3289)) (inverse (add ?3290 (inverse ?3289)))) =>= inverse ?3289 [3290, 3289] by Super 57 with 2159 at 1,1,1,2 +Id : 2249, {_}: inverse (add ?3289 (inverse (add ?3290 (inverse ?3289)))) =>= inverse ?3289 [3290, 3289] by Demod 2197 with 427 at 1,1,2 +Id : 2455, {_}: add (inverse ?3654) (inverse (add ?3653 (inverse (inverse ?3654)))) =<= add (inverse (add ?3653 (inverse (inverse ?3654)))) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Super 459 with 2249 at 2,1,2,3 +Id : 2497, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 (inverse (inverse ?3654)))) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Demod 2455 with 427 at 2,1,2,2 +Id : 2498, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 ?3654)) (inverse (add ?3654 (inverse (inverse ?3654)))) [3653, 3654] by Demod 2497 with 427 at 2,1,1,3 +Id : 2499, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =<= add (inverse (add ?3653 ?3654)) (inverse (add ?3654 ?3654)) [3653, 3654] by Demod 2498 with 427 at 2,1,2,3 +Id : 2500, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =?= add (inverse (add ?3653 ?3654)) (inverse ?3654) [3653, 3654] by Demod 2499 with 418 at 1,2,3 +Id : 2501, {_}: add (inverse ?3654) (inverse (add ?3653 ?3654)) =>= inverse ?3654 [3653, 3654] by Demod 2500 with 2159 at 3 +Id : 2761, {_}: add (inverse ?4078) (inverse (add ?4079 ?4078)) =>= inverse ?4078 [4079, 4078] by Demod 2500 with 2159 at 3 +Id : 2775, {_}: add (inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119))))))) ?4118 =>= inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119)))))) [4119, 4118, 4116] by Super 2761 with 4 at 2,2 +Id : 2871, {_}: add (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119))))) ?4118 =>= inverse (inverse (add ?4116 (inverse (add (inverse ?4118) (inverse (add ?4118 ?4119)))))) [4119, 4118, 4116] by Demod 2775 with 427 at 1,2 +Id : 4872, {_}: add (add ?6485 (inverse (add (inverse ?6486) (inverse (add ?6486 ?6487))))) ?6486 =>= add ?6485 (inverse (add (inverse ?6486) (inverse (add ?6486 ?6487)))) [6487, 6486, 6485] by Demod 2871 with 427 at 3 +Id : 4906, {_}: add (inverse (inverse (add ?6624 ?6625))) ?6624 =<= add (inverse (inverse (add ?6624 ?6625))) (inverse (add (inverse ?6624) (inverse (add ?6624 ?6625)))) [6625, 6624] by Super 4872 with 2501 at 1,2 +Id : 5128, {_}: add (add ?6624 ?6625) ?6624 =<= add (inverse (inverse (add ?6624 ?6625))) (inverse (add (inverse ?6624) (inverse (add ?6624 ?6625)))) [6625, 6624] by Demod 4906 with 427 at 1,2 +Id : 5129, {_}: add (add ?6624 ?6625) ?6624 =>= inverse (inverse (add ?6624 ?6625)) [6625, 6624] by Demod 5128 with 2501 at 3 +Id : 5130, {_}: add (add ?6624 ?6625) ?6624 =>= add ?6624 ?6625 [6625, 6624] by Demod 5129 with 427 at 3 +Id : 5176, {_}: add (inverse ?6745) (inverse (add ?6745 ?6746)) =>= inverse ?6745 [6746, 6745] by Super 2501 with 5130 at 1,2,2 +Id : 5963, {_}: add ?1617 ?1618 =<= add ?1618 (inverse (inverse ?1617)) [1618, 1617] by Demod 866 with 5176 at 1,2,3 +Id : 5973, {_}: add ?1617 ?1618 =?= add ?1618 ?1617 [1618, 1617] by Demod 5963 with 427 at 2,3 +Id : 445, {_}: inverse ?1086 =<= add (inverse (add (inverse (add ?1084 ?1085)) ?1086)) (inverse (add ?1084 ?1086)) [1085, 1084, 1086] by Super 441 with 57 at 1,2 +Id : 3282, {_}: inverse ?4640 =<= add (inverse (add (inverse (add ?4641 ?4642)) ?4640)) (inverse (add ?4641 ?4640)) [4642, 4641, 4640] by Super 441 with 57 at 1,2 +Id : 3306, {_}: inverse ?4739 =<= add (inverse (add (inverse (add ?4738 ?4740)) ?4739)) (inverse (add ?4740 ?4739)) [4740, 4738, 4739] by Super 3282 with 866 at 1,1,1,1,3 +Id : 9402, {_}: inverse (inverse (add ?10628 ?10626)) =<= add (inverse (inverse ?10626)) (inverse (add (inverse (add ?10627 ?10628)) (inverse (add ?10628 ?10626)))) [10627, 10626, 10628] by Super 445 with 3306 at 1,1,3 +Id : 9643, {_}: add ?10628 ?10626 =<= add (inverse (inverse ?10626)) (inverse (add (inverse (add ?10627 ?10628)) (inverse (add ?10628 ?10626)))) [10627, 10626, 10628] by Demod 9402 with 427 at 2 +Id : 9644, {_}: add ?10628 ?10626 =<= add ?10626 (inverse (add (inverse (add ?10627 ?10628)) (inverse (add ?10628 ?10626)))) [10627, 10626, 10628] by Demod 9643 with 427 at 1,3 +Id : 3277, {_}: add (inverse (add (inverse (add ?4621 ?4622)) ?4620)) (inverse (add ?4621 ?4620)) =<= add (inverse (add ?4621 ?4620)) (inverse (add (inverse (inverse (add (inverse (add ?4621 ?4622)) ?4620))) (inverse (inverse ?4620)))) [4620, 4622, 4621] by Super 866 with 445 at 1,2,1,2,3 +Id : 3341, {_}: inverse ?4620 =<= add (inverse (add ?4621 ?4620)) (inverse (add (inverse (inverse (add (inverse (add ?4621 ?4622)) ?4620))) (inverse (inverse ?4620)))) [4622, 4621, 4620] by Demod 3277 with 445 at 2 +Id : 3342, {_}: inverse ?4620 =<= add (inverse (add ?4621 ?4620)) (inverse (add (add (inverse (add ?4621 ?4622)) ?4620) (inverse (inverse ?4620)))) [4622, 4621, 4620] by Demod 3341 with 427 at 1,1,2,3 +Id : 3343, {_}: inverse ?4620 =<= add (inverse (add ?4621 ?4620)) (inverse (add (add (inverse (add ?4621 ?4622)) ?4620) ?4620)) [4622, 4621, 4620] by Demod 3342 with 427 at 2,1,2,3 +Id : 2463, {_}: inverse (add ?3677 (inverse (add ?3678 (inverse ?3677)))) =>= inverse ?3677 [3678, 3677] by Demod 2197 with 427 at 1,1,2 +Id : 2485, {_}: inverse (add (add ?3744 ?3746) ?3746) =>= inverse (add ?3744 ?3746) [3746, 3744] by Super 2463 with 57 at 2,1,2 +Id : 2605, {_}: add (add ?3852 ?3853) ?3853 =<= add ?3853 (inverse (add (inverse (add ?3852 ?3853)) (inverse (add ?3852 ?3853)))) [3853, 3852] by Super 866 with 2485 at 2,1,2,3 +Id : 2630, {_}: add (add ?3852 ?3853) ?3853 =<= add ?3853 (inverse (inverse (add ?3852 ?3853))) [3853, 3852] by Demod 2605 with 418 at 1,2,3 +Id : 2631, {_}: add (add ?3852 ?3853) ?3853 =?= add ?3853 (add ?3852 ?3853) [3853, 3852] by Demod 2630 with 427 at 2,3 +Id : 2044, {_}: add ?3044 ?3043 =<= add ?3043 (add ?3044 ?3043) [3043, 3044] by Demod 1989 with 427 at 2 +Id : 2632, {_}: add (add ?3852 ?3853) ?3853 =>= add ?3852 ?3853 [3853, 3852] by Demod 2631 with 2044 at 3 +Id : 3344, {_}: inverse ?4620 =<= add (inverse (add ?4621 ?4620)) (inverse (add (inverse (add ?4621 ?4622)) ?4620)) [4622, 4621, 4620] by Demod 3343 with 2632 at 1,2,3 +Id : 9856, {_}: inverse (inverse (add (inverse (add ?11316 ?11317)) ?11315)) =<= add (inverse (inverse ?11315)) (inverse (add ?11316 (inverse (add (inverse (add ?11316 ?11317)) ?11315)))) [11315, 11317, 11316] by Super 445 with 3344 at 1,1,3 +Id : 10050, {_}: add (inverse (add ?11316 ?11317)) ?11315 =<= add (inverse (inverse ?11315)) (inverse (add ?11316 (inverse (add (inverse (add ?11316 ?11317)) ?11315)))) [11315, 11317, 11316] by Demod 9856 with 427 at 2 +Id : 10051, {_}: add (inverse (add ?11316 ?11317)) ?11315 =<= add ?11315 (inverse (add ?11316 (inverse (add (inverse (add ?11316 ?11317)) ?11315)))) [11315, 11317, 11316] by Demod 10050 with 427 at 1,3 +Id : 27274, {_}: add (inverse (add ?27240 ?27241)) ?27242 =<= add ?27242 (inverse (add ?27240 (inverse (add (inverse (add ?27240 ?27241)) ?27242)))) [27242, 27241, 27240] by Demod 10050 with 427 at 1,3 +Id : 446, {_}: inverse ?1089 =<= add (inverse (add ?1088 ?1089)) (inverse (add (inverse ?1088) ?1089)) [1088, 1089] by Super 441 with 141 at 1,2 +Id : 3303, {_}: inverse ?4728 =<= add (inverse (add (inverse (inverse ?4726)) ?4728)) (inverse (add (inverse (add ?4727 ?4726)) ?4728)) [4727, 4726, 4728] by Super 3282 with 446 at 1,1,1,1,3 +Id : 3407, {_}: inverse ?4728 =<= add (inverse (add ?4726 ?4728)) (inverse (add (inverse (add ?4727 ?4726)) ?4728)) [4727, 4726, 4728] by Demod 3303 with 427 at 1,1,1,3 +Id : 27388, {_}: add (inverse (add (inverse (add ?27678 ?27679)) ?27678)) ?27679 =>= add ?27679 (inverse (inverse ?27679)) [27679, 27678] by Super 27274 with 3407 at 1,2,3 +Id : 27835, {_}: add (inverse (add (inverse (add ?27678 ?27679)) ?27678)) ?27679 =>= add ?27679 ?27679 [27679, 27678] by Demod 27388 with 427 at 2,3 +Id : 27836, {_}: add (inverse (add (inverse (add ?27678 ?27679)) ?27678)) ?27679 =>= ?27679 [27679, 27678] by Demod 27835 with 418 at 3 +Id : 35831, {_}: add ?35916 (inverse (add (inverse (add ?35917 ?35916)) ?35917)) =>= ?35916 [35917, 35916] by Super 5973 with 27836 at 3 +Id : 35837, {_}: add ?35933 (inverse (add (inverse (add ?35933 ?35934)) ?35934)) =>= ?35933 [35934, 35933] by Super 35831 with 5973 at 1,1,1,2,2 +Id : 43017, {_}: add (inverse (add ?44930 ?44931)) ?44931 =>= add ?44931 (inverse ?44930) [44931, 44930] by Super 10051 with 35837 at 1,2,3 +Id : 43043, {_}: add (inverse (inverse ?45008)) (inverse ?45008) =<= add (inverse ?45008) (inverse (inverse (add ?45009 ?45008))) [45009, 45008] by Super 43017 with 2159 at 1,1,2 +Id : 43373, {_}: add ?45008 (inverse ?45008) =<= add (inverse ?45008) (inverse (inverse (add ?45009 ?45008))) [45009, 45008] by Demod 43043 with 427 at 1,2 +Id : 44805, {_}: add ?46602 (inverse ?46602) =<= add (inverse ?46602) (add ?46603 ?46602) [46603, 46602] by Demod 43373 with 427 at 2,3 +Id : 895, {_}: inverse (inverse (add ?1666 ?1665)) =<= add (inverse (inverse ?1665)) (inverse (add (inverse (inverse (add (inverse ?1666) ?1665))) (inverse (add ?1666 ?1665)))) [1665, 1666] by Super 446 with 738 at 1,1,3 +Id : 960, {_}: add ?1666 ?1665 =<= add (inverse (inverse ?1665)) (inverse (add (inverse (inverse (add (inverse ?1666) ?1665))) (inverse (add ?1666 ?1665)))) [1665, 1666] by Demod 895 with 427 at 2 +Id : 961, {_}: add ?1666 ?1665 =<= add ?1665 (inverse (add (inverse (inverse (add (inverse ?1666) ?1665))) (inverse (add ?1666 ?1665)))) [1665, 1666] by Demod 960 with 427 at 1,3 +Id : 962, {_}: add ?1666 ?1665 =<= add ?1665 (inverse (add (add (inverse ?1666) ?1665) (inverse (add ?1666 ?1665)))) [1665, 1666] by Demod 961 with 427 at 1,1,2,3 +Id : 5181, {_}: add (add ?6762 ?6763) ?6762 =<= add ?6762 (inverse (add (add (inverse (add ?6762 ?6763)) ?6762) (inverse (add ?6762 ?6763)))) [6763, 6762] by Super 962 with 5130 at 1,2,1,2,3 +Id : 5222, {_}: add ?6762 ?6763 =<= add ?6762 (inverse (add (add (inverse (add ?6762 ?6763)) ?6762) (inverse (add ?6762 ?6763)))) [6763, 6762] by Demod 5181 with 5130 at 2 +Id : 6255, {_}: add ?7893 ?7894 =<= add ?7893 (inverse (add (inverse (add ?7893 ?7894)) ?7893)) [7894, 7893] by Demod 5222 with 5130 at 1,2,3 +Id : 6261, {_}: add ?7910 ?7911 =<= add ?7910 (inverse (add (inverse (add ?7911 ?7910)) ?7910)) [7911, 7910] by Super 6255 with 5973 at 1,1,1,2,3 +Id : 27395, {_}: add (inverse (add ?27697 ?27698)) (inverse (add ?27698 ?27697)) =?= add (inverse (add ?27698 ?27697)) (inverse (add ?27698 ?27697)) [27698, 27697] by Super 27274 with 9644 at 1,2,3 +Id : 27857, {_}: add (inverse (add ?27697 ?27698)) (inverse (add ?27698 ?27697)) =>= inverse (add ?27698 ?27697) [27698, 27697] by Demod 27395 with 418 at 3 +Id : 28327, {_}: add (inverse (add ?28496 ?28495)) (inverse (add ?28495 ?28496)) =<= add (inverse (add ?28496 ?28495)) (inverse (add (inverse (inverse (add ?28496 ?28495))) (inverse (add ?28496 ?28495)))) [28495, 28496] by Super 6261 with 27857 at 1,1,1,2,3 +Id : 28628, {_}: inverse (add ?28495 ?28496) =<= add (inverse (add ?28496 ?28495)) (inverse (add (inverse (inverse (add ?28496 ?28495))) (inverse (add ?28496 ?28495)))) [28496, 28495] by Demod 28327 with 27857 at 2 +Id : 2450, {_}: inverse (inverse ?3637) =<= add ?3637 (inverse (add ?3638 (inverse ?3637))) [3638, 3637] by Super 427 with 2249 at 1,2 +Id : 2506, {_}: ?3637 =<= add ?3637 (inverse (add ?3638 (inverse ?3637))) [3638, 3637] by Demod 2450 with 427 at 2 +Id : 5163, {_}: ?6702 =<= add ?6702 (inverse (add (inverse ?6702) ?6701)) [6701, 6702] by Super 2506 with 5130 at 1,2,3 +Id : 28629, {_}: inverse (add ?28495 ?28496) =?= inverse (add ?28496 ?28495) [28496, 28495] by Demod 28628 with 5163 at 3 +Id : 44870, {_}: add (add ?46807 ?46808) (inverse (add ?46807 ?46808)) =<= add (inverse (add ?46808 ?46807)) (add ?46809 (add ?46807 ?46808)) [46809, 46808, 46807] by Super 44805 with 28629 at 1,3 +Id : 45240, {_}: add (inverse (add ?46807 ?46808)) (add ?46807 ?46808) =<= add (inverse (add ?46808 ?46807)) (add ?46809 (add ?46807 ?46808)) [46809, 46808, 46807] by Demod 44870 with 5973 at 2 +Id : 75570, {_}: inverse (add ?71946 (add ?71944 ?71945)) =<= add (inverse (add ?71945 (add ?71946 (add ?71944 ?71945)))) (inverse (add (inverse (add ?71944 ?71945)) (add ?71944 ?71945))) [71945, 71944, 71946] by Super 3344 with 45240 at 1,2,3 +Id : 2205, {_}: inverse ?3320 =<= add (inverse (add ?3321 ?3320)) (inverse ?3320) [3321, 3320] by Demod 2134 with 738 at 2 +Id : 2209, {_}: inverse (inverse ?3338) =<= add (inverse (add ?3339 (inverse ?3338))) ?3338 [3339, 3338] by Super 2205 with 427 at 2,3 +Id : 2281, {_}: ?3338 =<= add (inverse (add ?3339 (inverse ?3338))) ?3338 [3339, 3338] by Demod 2209 with 427 at 2 +Id : 5175, {_}: ?6743 =<= add (inverse (add (inverse ?6743) ?6742)) ?6743 [6742, 6743] by Super 2281 with 5130 at 1,1,3 +Id : 43053, {_}: add (inverse ?45043) ?45043 =<= add ?45043 (inverse (inverse (add (inverse ?45043) ?45042))) [45042, 45043] by Super 43017 with 5175 at 1,1,2 +Id : 43393, {_}: add (inverse ?45043) ?45043 =<= add ?45043 (add (inverse ?45043) ?45042) [45042, 45043] by Demod 43053 with 427 at 2,3 +Id : 46219, {_}: add (add (inverse ?47976) ?47977) ?47976 =>= add (inverse ?47976) ?47976 [47977, 47976] by Super 5973 with 43393 at 3 +Id : 2228, {_}: inverse (inverse (add ?3386 (inverse (add (inverse ?3388) (inverse (add ?3388 ?3389)))))) =<= add ?3388 (inverse (inverse (add ?3386 (inverse (add (inverse ?3388) (inverse (add ?3388 ?3389))))))) [3389, 3388, 3386] by Super 2205 with 4 at 1,3 +Id : 2327, {_}: add ?3386 (inverse (add (inverse ?3388) (inverse (add ?3388 ?3389)))) =<= add ?3388 (inverse (inverse (add ?3386 (inverse (add (inverse ?3388) (inverse (add ?3388 ?3389))))))) [3389, 3388, 3386] by Demod 2228 with 427 at 2 +Id : 4116, {_}: add ?5774 (inverse (add (inverse ?5775) (inverse (add ?5775 ?5776)))) =<= add ?5775 (add ?5774 (inverse (add (inverse ?5775) (inverse (add ?5775 ?5776))))) [5776, 5775, 5774] by Demod 2327 with 427 at 2,3 +Id : 4147, {_}: add (inverse (inverse (add ?5900 ?5901))) (inverse (add (inverse ?5900) (inverse (add ?5900 ?5901)))) =>= add ?5900 (inverse (inverse (add ?5900 ?5901))) [5901, 5900] by Super 4116 with 2501 at 2,3 +Id : 4368, {_}: inverse (inverse (add ?5900 ?5901)) =<= add ?5900 (inverse (inverse (add ?5900 ?5901))) [5901, 5900] by Demod 4147 with 2501 at 2 +Id : 4369, {_}: add ?5900 ?5901 =<= add ?5900 (inverse (inverse (add ?5900 ?5901))) [5901, 5900] by Demod 4368 with 427 at 2 +Id : 4370, {_}: add ?5900 ?5901 =<= add ?5900 (add ?5900 ?5901) [5901, 5900] by Demod 4369 with 427 at 2,3 +Id : 43050, {_}: add (inverse (add ?45034 ?45033)) (add ?45034 ?45033) =>= add (add ?45034 ?45033) (inverse ?45034) [45033, 45034] by Super 43017 with 4370 at 1,1,2 +Id : 43389, {_}: add (inverse (add ?45034 ?45033)) (add ?45034 ?45033) =>= add (inverse ?45034) (add ?45034 ?45033) [45033, 45034] by Demod 43050 with 5973 at 3 +Id : 43042, {_}: add (inverse (add ?45005 ?45006)) (add ?45005 ?45006) =>= add (add ?45005 ?45006) (inverse ?45006) [45006, 45005] by Super 43017 with 2044 at 1,1,2 +Id : 43372, {_}: add (inverse (add ?45005 ?45006)) (add ?45005 ?45006) =>= add (inverse ?45006) (add ?45005 ?45006) [45006, 45005] by Demod 43042 with 5973 at 3 +Id : 43374, {_}: add ?45008 (inverse ?45008) =<= add (inverse ?45008) (add ?45009 ?45008) [45009, 45008] by Demod 43373 with 427 at 2,3 +Id : 48043, {_}: add (inverse (add ?45005 ?45006)) (add ?45005 ?45006) =>= add ?45006 (inverse ?45006) [45006, 45005] by Demod 43372 with 43374 at 3 +Id : 49303, {_}: add ?45033 (inverse ?45033) =?= add (inverse ?45034) (add ?45034 ?45033) [45034, 45033] by Demod 43389 with 48043 at 2 +Id : 5166, {_}: inverse ?6709 =<= add (inverse (add ?6709 ?6710)) (inverse ?6709) [6710, 6709] by Super 2159 with 5130 at 1,1,3 +Id : 43052, {_}: add (inverse (inverse ?45039)) (inverse ?45039) =<= add (inverse ?45039) (inverse (inverse (add ?45039 ?45040))) [45040, 45039] by Super 43017 with 5166 at 1,1,2 +Id : 43391, {_}: add ?45039 (inverse ?45039) =<= add (inverse ?45039) (inverse (inverse (add ?45039 ?45040))) [45040, 45039] by Demod 43052 with 427 at 1,2 +Id : 43392, {_}: add ?45039 (inverse ?45039) =<= add (inverse ?45039) (add ?45039 ?45040) [45040, 45039] by Demod 43391 with 427 at 2,3 +Id : 49304, {_}: add ?45033 (inverse ?45033) =?= add ?45034 (inverse ?45034) [45034, 45033] by Demod 49303 with 43392 at 3 +Id : 49415, {_}: ?50953 =<= add (inverse (add ?50954 (inverse ?50954))) ?50953 [50954, 50953] by Super 2281 with 49304 at 1,1,3 +Id : 50053, {_}: add ?51918 (add ?51919 (inverse ?51919)) =?= add (inverse (add ?51919 (inverse ?51919))) (add ?51919 (inverse ?51919)) [51919, 51918] by Super 46219 with 49415 at 1,2 +Id : 50133, {_}: add ?51918 (add ?51919 (inverse ?51919)) =?= add (inverse ?51919) (inverse (inverse ?51919)) [51919, 51918] by Demod 50053 with 48043 at 3 +Id : 50134, {_}: add ?51918 (add ?51919 (inverse ?51919)) =>= add (inverse ?51919) ?51919 [51919, 51918] by Demod 50133 with 427 at 2,3 +Id : 50710, {_}: ?52352 =<= add ?52352 (inverse (add (inverse ?52351) ?52351)) [52351, 52352] by Super 5163 with 50134 at 1,2,3 +Id : 75914, {_}: inverse (add ?71946 (add ?71944 ?71945)) =<= inverse (add ?71945 (add ?71946 (add ?71944 ?71945))) [71945, 71944, 71946] by Demod 75570 with 50710 at 3 +Id : 77144, {_}: add ?73328 (add ?73326 (add ?73327 ?73328)) =<= add (add ?73326 (add ?73327 ?73328)) (inverse (add (inverse (add ?73329 ?73328)) (inverse (add ?73326 (add ?73327 ?73328))))) [73329, 73327, 73326, 73328] by Super 9644 with 75914 at 2,1,2,3 +Id : 77399, {_}: add ?73328 (add ?73326 (add ?73327 ?73328)) =<= add (inverse (add (inverse (add ?73329 ?73328)) (inverse (add ?73326 (add ?73327 ?73328))))) (add ?73326 (add ?73327 ?73328)) [73329, 73327, 73326, 73328] by Demod 77144 with 5973 at 3 +Id : 77889, {_}: add ?74480 (add ?74481 (add ?74482 ?74480)) =>= add ?74481 (add ?74482 ?74480) [74482, 74481, 74480] by Demod 77399 with 2281 at 3 +Id : 77893, {_}: add ?74496 (add ?74497 (add ?74496 ?74495)) =?= add ?74497 (add (add ?74496 ?74495) ?74496) [74495, 74497, 74496] by Super 77889 with 5130 at 2,2,2 +Id : 78169, {_}: add ?74496 (add ?74497 (add ?74496 ?74495)) =>= add ?74497 (add ?74496 ?74495) [74495, 74497, 74496] by Demod 77893 with 5130 at 2,3 +Id : 77895, {_}: add ?74503 (add ?74504 (add ?74503 ?74505)) =>= add ?74504 (add ?74505 ?74503) [74505, 74504, 74503] by Super 77889 with 5973 at 2,2,2 +Id : 80396, {_}: add ?74497 (add ?74495 ?74496) =?= add ?74497 (add ?74496 ?74495) [74496, 74495, 74497] by Demod 78169 with 77895 at 2 +Id : 80521, {_}: add (add (add ?78514 ?78515) ?78516) (add ?78515 ?78514) =>= add (add ?78514 ?78515) ?78516 [78516, 78515, 78514] by Super 5130 with 80396 at 2 +Id : 79247, {_}: add ?76425 (add ?76426 (add ?76425 ?76427)) =>= add ?76426 (add ?76427 ?76425) [76427, 76426, 76425] by Super 77889 with 5973 at 2,2,2 +Id : 79331, {_}: add ?76775 (add (add ?76775 ?76776) ?76774) =<= add (add (add ?76775 ?76776) ?76774) (add ?76776 ?76775) [76774, 76776, 76775] by Super 79247 with 5130 at 2,2 +Id : 79332, {_}: add ?76778 (add (add ?76778 ?76780) ?76779) =>= add ?76779 (add ?76780 ?76778) [76779, 76780, 76778] by Super 79247 with 5973 at 2,2 +Id : 135898, {_}: add ?76774 (add ?76776 ?76775) =<= add (add (add ?76775 ?76776) ?76774) (add ?76776 ?76775) [76775, 76776, 76774] by Demod 79331 with 79332 at 2 +Id : 140658, {_}: add ?78516 (add ?78515 ?78514) =?= add (add ?78514 ?78515) ?78516 [78514, 78515, 78516] by Demod 80521 with 135898 at 2 +Id : 43039, {_}: add (inverse (inverse ?44995)) (inverse (add ?44996 ?44995)) =<= add (inverse (add ?44996 ?44995)) (inverse (inverse (add (inverse (add ?44996 ?44997)) ?44995))) [44997, 44996, 44995] by Super 43017 with 445 at 1,1,2 +Id : 43360, {_}: add ?44995 (inverse (add ?44996 ?44995)) =<= add (inverse (add ?44996 ?44995)) (inverse (inverse (add (inverse (add ?44996 ?44997)) ?44995))) [44997, 44996, 44995] by Demod 43039 with 427 at 1,2 +Id : 43361, {_}: add ?44995 (inverse (add ?44996 ?44995)) =<= add (inverse (inverse (add (inverse (add ?44996 ?44997)) ?44995))) (inverse (add ?44996 ?44995)) [44997, 44996, 44995] by Demod 43360 with 5973 at 3 +Id : 43362, {_}: add ?44995 (inverse (add ?44996 ?44995)) =<= add (add (inverse (add ?44996 ?44997)) ?44995) (inverse (add ?44996 ?44995)) [44997, 44996, 44995] by Demod 43361 with 427 at 1,3 +Id : 43363, {_}: add ?44995 (inverse (add ?44996 ?44995)) =<= add (inverse (add ?44996 ?44995)) (add (inverse (add ?44996 ?44997)) ?44995) [44997, 44996, 44995] by Demod 43362 with 5973 at 3 +Id : 42258, {_}: add (inverse (add ?43873 ?43874)) ?43874 =>= add ?43874 (inverse ?43873) [43874, 43873] by Super 10051 with 35837 at 1,2,3 +Id : 42969, {_}: add ?44778 (inverse (add ?44777 ?44778)) =>= add ?44778 (inverse ?44777) [44777, 44778] by Super 5973 with 42258 at 3 +Id : 415299, {_}: add ?44995 (inverse ?44996) =<= add (inverse (add ?44996 ?44995)) (add (inverse (add ?44996 ?44997)) ?44995) [44997, 44996, 44995] by Demod 43363 with 42969 at 2 +Id : 415494, {_}: add (inverse (add ?628669 ?628668)) (add (inverse (add ?628669 ?628670)) ?628668) =<= add (add (inverse (add ?628669 ?628670)) ?628668) (inverse (add ?628669 (inverse (add ?628668 (inverse ?628669))))) [628670, 628668, 628669] by Super 10051 with 415299 at 1,2,1,2,3 +Id : 416655, {_}: add ?628668 (inverse ?628669) =<= add (add (inverse (add ?628669 ?628670)) ?628668) (inverse (add ?628669 (inverse (add ?628668 (inverse ?628669))))) [628670, 628669, 628668] by Demod 415494 with 415299 at 2 +Id : 416656, {_}: add ?628668 (inverse ?628669) =<= add (inverse (add ?628669 (inverse (add ?628668 (inverse ?628669))))) (add (inverse (add ?628669 ?628670)) ?628668) [628670, 628669, 628668] by Demod 416655 with 5973 at 3 +Id : 418876, {_}: add ?634385 (inverse ?634386) =<= add (inverse ?634386) (add (inverse (add ?634386 ?634387)) ?634385) [634387, 634386, 634385] by Demod 416656 with 2506 at 1,1,3 +Id : 9436, {_}: inverse ?10759 =<= add (inverse (add (inverse (add ?10760 ?10761)) ?10759)) (inverse (add ?10761 ?10759)) [10761, 10760, 10759] by Super 3282 with 866 at 1,1,1,1,3 +Id : 18533, {_}: inverse ?18554 =<= add (inverse (add (inverse (add ?18555 ?18556)) ?18554)) (inverse (add ?18554 ?18556)) [18556, 18555, 18554] by Super 9436 with 5973 at 1,2,3 +Id : 18582, {_}: inverse ?18755 =<= add (inverse (add (inverse ?18756) ?18755)) (inverse (add ?18755 ?18756)) [18756, 18755] by Super 18533 with 418 at 1,1,1,1,3 +Id : 19155, {_}: add (inverse (add ?19200 ?19201)) (inverse (add (inverse ?19201) ?19200)) =>= inverse ?19200 [19201, 19200] by Super 5973 with 18582 at 3 +Id : 418883, {_}: add ?634414 (inverse (inverse (add ?634412 ?634413))) =<= add (inverse (inverse (add ?634412 ?634413))) (add (inverse (inverse ?634412)) ?634414) [634413, 634412, 634414] by Super 418876 with 19155 at 1,1,2,3 +Id : 420154, {_}: add ?634414 (add ?634412 ?634413) =<= add (inverse (inverse (add ?634412 ?634413))) (add (inverse (inverse ?634412)) ?634414) [634413, 634412, 634414] by Demod 418883 with 427 at 2,2 +Id : 420155, {_}: add ?634414 (add ?634412 ?634413) =<= add (add ?634412 ?634413) (add (inverse (inverse ?634412)) ?634414) [634413, 634412, 634414] by Demod 420154 with 427 at 1,3 +Id : 420156, {_}: add ?634414 (add ?634412 ?634413) =<= add (add ?634412 ?634413) (add ?634412 ?634414) [634413, 634412, 634414] by Demod 420155 with 427 at 1,2,3 +Id : 421396, {_}: add (add ?637936 ?637935) (add ?637937 ?637936) =>= add ?637935 (add ?637936 ?637937) [637937, 637935, 637936] by Super 140658 with 420156 at 3 +Id : 421337, {_}: add (add ?637673 ?637674) (add ?637672 ?637673) =>= add ?637672 (add ?637673 ?637674) [637672, 637674, 637673] by Super 80396 with 420156 at 3 +Id : 428375, {_}: add ?637937 (add ?637936 ?637935) =?= add ?637935 (add ?637936 ?637937) [637935, 637936, 637937] by Demod 421396 with 421337 at 2 +Id : 421398, {_}: add ?637944 (add ?637945 ?637946) =<= add (add ?637944 ?637945) (add ?637945 ?637946) [637946, 637945, 637944] by Super 140658 with 420156 at 2 +Id : 418964, {_}: add ?634834 (inverse (inverse (add ?634833 ?634832))) =<= add (inverse (inverse (add ?634833 ?634832))) (add (inverse (inverse ?634832)) ?634834) [634832, 634833, 634834] by Super 418876 with 446 at 1,1,2,3 +Id : 420298, {_}: add ?634834 (add ?634833 ?634832) =<= add (inverse (inverse (add ?634833 ?634832))) (add (inverse (inverse ?634832)) ?634834) [634832, 634833, 634834] by Demod 418964 with 427 at 2,2 +Id : 420299, {_}: add ?634834 (add ?634833 ?634832) =<= add (add ?634833 ?634832) (add (inverse (inverse ?634832)) ?634834) [634832, 634833, 634834] by Demod 420298 with 427 at 1,3 +Id : 420300, {_}: add ?634834 (add ?634833 ?634832) =<= add (add ?634833 ?634832) (add ?634832 ?634834) [634832, 634833, 634834] by Demod 420299 with 427 at 1,2,3 +Id : 431824, {_}: add ?637944 (add ?637945 ?637946) =?= add ?637946 (add ?637944 ?637945) [637946, 637945, 637944] by Demod 421398 with 420300 at 3 +Id : 435227, {_}: add c (add b a) === add c (add b a) [] by Demod 435226 with 80396 at 3 +Id : 435226, {_}: add c (add b a) =<= add c (add a b) [] by Demod 431823 with 431824 at 3 +Id : 431823, {_}: add c (add b a) =<= add b (add c a) [] by Demod 6203 with 428375 at 3 +Id : 6203, {_}: add c (add b a) =<= add a (add c b) [] by Demod 6202 with 5973 at 2,3 +Id : 6202, {_}: add c (add b a) =<= add a (add b c) [] by Demod 6201 with 5973 at 2,2 +Id : 6201, {_}: add c (add a b) =<= add a (add b c) [] by Demod 2 with 5973 at 2 +Id : 2, {_}: add (add a b) c =>= add a (add b c) [] by huntinton_2 +% SZS output end CNFRefutation for BOO073-1.p +Order + == is 100 + _ is 99 + a is 98 + b is 97 + c is 96 + nand is 95 + prove_meredith_2_basis_2 is 94 + sh_1 is 93 +Facts + Id : 4, {_}: + nand (nand ?2 (nand (nand ?3 ?2) ?2)) (nand ?3 (nand ?4 ?2)) =>= ?3 + [4, 3, 2] by sh_1 ?2 ?3 ?4 +Goal + Id : 2, {_}: + nand a (nand b (nand a c)) =<= nand (nand (nand c b) b) a + [] by prove_meredith_2_basis_2 +Last chance: 1246125322.97 +Last chance: all is indexed 1246125342.97 +Last chance: failed over 100 goal 1246125342.97 +FAILURE in 0 iterations +% SZS status Timeout for BOO076-1.p +Order + == is 100 + _ is 99 + apply is 96 + b is 94 + b_definition is 93 + fixed_pt is 97 + prove_strong_fixed_point is 95 + strong_fixed_point is 98 + w is 92 + w_definition is 91 +Facts + Id : 4, {_}: + apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) + [4, 3, 2] by b_definition ?2 ?3 ?4 + Id : 6, {_}: + apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 + [7, 6] by w_definition ?6 ?7 + Id : 8, {_}: + strong_fixed_point + =<= + apply (apply b (apply w w)) (apply (apply b w) (apply (apply b b) b)) + [] by strong_fixed_point +Goal + Id : 2, {_}: + apply strong_fixed_point fixed_pt + =<= + apply fixed_pt (apply strong_fixed_point fixed_pt) + [] by prove_strong_fixed_point +Last chance: 1246125613.41 +Last chance: all is indexed 1246125633.41 +Last chance: failed over 100 goal 1246125633.41 +FAILURE in 0 iterations +% SZS status Timeout for COL003-12.p +Order + == is 100 + _ is 99 + apply is 97 + b is 95 + b_definition is 94 + f is 98 + prove_strong_fixed_point is 96 + w is 93 + w_definition is 92 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 + [8, 7] by w_definition ?7 ?8 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_strong_fixed_point ?1 +Last chance: 1246125903.86 +Last chance: all is indexed 1246125923.87 +Last chance: failed over 100 goal 1246125924.12 +FAILURE in 0 iterations +% SZS status Timeout for COL003-1.p +Order + == is 100 + _ is 99 + apply is 96 + b is 94 + b_definition is 93 + fixed_pt is 97 + prove_strong_fixed_point is 95 + strong_fixed_point is 98 + w is 92 + w_definition is 91 +Facts + Id : 4, {_}: + apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) + [4, 3, 2] by b_definition ?2 ?3 ?4 + Id : 6, {_}: + apply (apply w ?6) ?7 =?= apply (apply ?6 ?7) ?7 + [7, 6] by w_definition ?6 ?7 + Id : 8, {_}: + strong_fixed_point + =<= + apply (apply b (apply w w)) + (apply (apply b (apply b w)) (apply (apply b b) b)) + [] by strong_fixed_point +Goal + Id : 2, {_}: + apply strong_fixed_point fixed_pt + =<= + apply fixed_pt (apply strong_fixed_point fixed_pt) + [] by prove_strong_fixed_point +Last chance: 1246126194.44 +Last chance: all is indexed 1246126214.45 +Last chance: failed over 100 goal 1246126214.45 +FAILURE in 0 iterations +% SZS status Timeout for COL003-20.p +Order + == is 100 + _ is 99 + apply is 96 + fixed_pt is 97 + k is 92 + k_definition is 91 + prove_strong_fixed_point is 95 + s is 94 + s_definition is 93 + strong_fixed_point is 98 +Facts + Id : 4, {_}: + apply (apply (apply s ?2) ?3) ?4 + =?= + apply (apply ?2 ?4) (apply ?3 ?4) + [4, 3, 2] by s_definition ?2 ?3 ?4 + Id : 6, {_}: apply (apply k ?6) ?7 =>= ?6 [7, 6] by k_definition ?6 ?7 + Id : 8, {_}: + strong_fixed_point + =<= + apply + (apply s + (apply k + (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) + (apply (apply s (apply (apply s (apply k s)) k)) + (apply k + (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) + [] by strong_fixed_point +Goal + Id : 2, {_}: + apply strong_fixed_point fixed_pt + =<= + apply fixed_pt (apply strong_fixed_point fixed_pt) + [] by prove_strong_fixed_point +Last chance: 1246126485.35 +Last chance: all is indexed 1246126505.41 +Last chance: failed over 100 goal 1246126505.41 +FAILURE in 0 iterations +% SZS status Timeout for COL006-6.p +Order + == is 100 + _ is 99 + apply is 97 + combinator is 98 + o is 95 + o_definition is 94 + prove_fixed_point is 96 + q1 is 93 + q1_definition is 92 +Facts + Id : 4, {_}: + apply (apply o ?3) ?4 =?= apply ?4 (apply ?3 ?4) + [4, 3] by o_definition ?3 ?4 + Id : 6, {_}: + apply (apply (apply q1 ?6) ?7) ?8 =>= apply ?6 (apply ?8 ?7) + [8, 7, 6] by q1_definition ?6 ?7 ?8 +Goal + Id : 2, {_}: ?1 =<= apply combinator ?1 [1] by prove_fixed_point ?1 +Last chance: 1246126776.98 +Last chance: all is indexed 1246126796.99 +Last chance: failed over 100 goal 1246126797.08 +FAILURE in 0 iterations +% SZS status Timeout for COL011-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + c is 91 + c_definition is 90 + f is 98 + prove_fixed_point is 96 + s is 95 + s_definition is 94 +Facts + Id : 4, {_}: + apply (apply (apply s ?3) ?4) ?5 + =?= + apply (apply ?3 ?5) (apply ?4 ?5) + [5, 4, 3] by s_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) + [9, 8, 7] by b_definition ?7 ?8 ?9 + Id : 8, {_}: + apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12 + [13, 12, 11] by c_definition ?11 ?12 ?13 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_fixed_point ?1 +Last chance: 1246127067.89 +Last chance: all is indexed 1246127087.95 +Last chance: failed over 100 goal 1246127088.09 +FAILURE in 0 iterations +% SZS status Timeout for COL037-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 95 + b_definition is 94 + f is 98 + m is 93 + m_definition is 92 + prove_fixed_point is 96 + v is 91 + v_definition is 90 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: apply m ?7 =?= apply ?7 ?7 [7] by m_definition ?7 + Id : 8, {_}: + apply (apply (apply v ?9) ?10) ?11 =>= apply (apply ?11 ?9) ?10 + [11, 10, 9] by v_definition ?9 ?10 ?11 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_fixed_point ?1 +Last chance: 1246127360.45 +Last chance: all is indexed 1246127380.5 +Last chance: failed over 100 goal 1246127380.54 +FAILURE in 0 iterations +% SZS status Timeout for COL038-1.p +Order + == is 100 + _ is 99 + apply is 96 + b is 94 + b_definition is 93 + fixed_pt is 97 + h is 92 + h_definition is 91 + prove_strong_fixed_point is 95 + strong_fixed_point is 98 +Facts + Id : 4, {_}: + apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) + [4, 3, 2] by b_definition ?2 ?3 ?4 + Id : 6, {_}: + apply (apply (apply h ?6) ?7) ?8 + =?= + apply (apply (apply ?6 ?7) ?8) ?7 + [8, 7, 6] by h_definition ?6 ?7 ?8 + Id : 8, {_}: + strong_fixed_point + =<= + apply + (apply b + (apply + (apply b + (apply + (apply h + (apply (apply b (apply (apply b h) (apply b b))) + (apply h (apply (apply b h) (apply b b))))) h)) b)) b + [] by strong_fixed_point +Goal + Id : 2, {_}: + apply strong_fixed_point fixed_pt + =<= + apply fixed_pt (apply strong_fixed_point fixed_pt) + [] by prove_strong_fixed_point +Last chance: 1246127651.76 +Last chance: all is indexed 1246127671.76 +Last chance: failed over 100 goal 1246127671.76 +FAILURE in 0 iterations +% SZS status Timeout for COL043-3.p +Order + == is 100 + _ is 99 + apply is 96 + b is 94 + b_definition is 93 + fixed_pt is 97 + n is 92 + n_definition is 91 + prove_strong_fixed_point is 95 + strong_fixed_point is 98 +Facts + Id : 4, {_}: + apply (apply (apply b ?2) ?3) ?4 =>= apply ?2 (apply ?3 ?4) + [4, 3, 2] by b_definition ?2 ?3 ?4 + Id : 6, {_}: + apply (apply (apply n ?6) ?7) ?8 + =?= + apply (apply (apply ?6 ?8) ?7) ?8 + [8, 7, 6] by n_definition ?6 ?7 ?8 + Id : 8, {_}: + strong_fixed_point + =<= + apply + (apply b + (apply + (apply b + (apply + (apply n + (apply n + (apply (apply b (apply b b)) + (apply n (apply (apply b b) n))))) n)) b)) b + [] by strong_fixed_point +Goal + Id : 2, {_}: + apply strong_fixed_point fixed_pt + =<= + apply fixed_pt (apply strong_fixed_point fixed_pt) + [] by prove_strong_fixed_point +Last chance: 1246127942.43 +Last chance: all is indexed 1246127962.43 +Last chance: failed over 100 goal 1246127962.43 +FAILURE in 0 iterations +% SZS status Timeout for COL044-8.p +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + f is 98 + m is 91 + m_definition is 90 + prove_fixed_point is 96 + s is 95 + s_definition is 94 +Facts + Id : 4, {_}: + apply (apply (apply s ?3) ?4) ?5 + =?= + apply (apply ?3 ?5) (apply ?4 ?5) + [5, 4, 3] by s_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) + [9, 8, 7] by b_definition ?7 ?8 ?9 + Id : 8, {_}: apply m ?11 =?= apply ?11 ?11 [11] by m_definition ?11 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_fixed_point ?1 +Last chance: 1246128232.93 +Last chance: all is indexed 1246128253.01 +Last chance: failed over 100 goal 1246128253.19 +FAILURE in 0 iterations +% SZS status Timeout for COL046-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 95 + b_definition is 94 + f is 98 + m is 91 + m_definition is 90 + prove_strong_fixed_point is 96 + w is 93 + w_definition is 92 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply w ?7) ?8 =?= apply (apply ?7 ?8) ?8 + [8, 7] by w_definition ?7 ?8 + Id : 8, {_}: apply m ?10 =?= apply ?10 ?10 [10] by m_definition ?10 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_strong_fixed_point ?1 +Last chance: 1246128524.07 +Last chance: all is indexed 1246128544.07 +Last chance: failed over 100 goal 1246128544.25 +FAILURE in 0 iterations +% SZS status Timeout for COL049-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + c is 91 + c_definition is 90 + f is 98 + i is 89 + i_definition is 88 + prove_strong_fixed_point is 96 + s is 95 + s_definition is 94 +Facts + Id : 4, {_}: + apply (apply (apply s ?3) ?4) ?5 + =?= + apply (apply ?3 ?5) (apply ?4 ?5) + [5, 4, 3] by s_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) + [9, 8, 7] by b_definition ?7 ?8 ?9 + Id : 8, {_}: + apply (apply (apply c ?11) ?12) ?13 =>= apply (apply ?11 ?13) ?12 + [13, 12, 11] by c_definition ?11 ?12 ?13 + Id : 10, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15 +Goal + Id : 2, {_}: + apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) + [1] by prove_strong_fixed_point ?1 +Last chance: 1246128814.63 +Last chance: all is indexed 1246128834.73 +Goal subsumed +Found proof, 290.682237s +% SZS status Unsatisfiable for COL057-1.p +% SZS output start CNFRefutation for COL057-1.p +Id : 6, {_}: apply (apply (apply b ?7) ?8) ?9 =>= apply ?7 (apply ?8 ?9) [9, 8, 7] by b_definition ?7 ?8 ?9 +Id : 10, {_}: apply i ?15 =>= ?15 [15] by i_definition ?15 +Id : 4, {_}: apply (apply (apply s ?3) ?4) ?5 =?= apply (apply ?3 ?5) (apply ?4 ?5) [5, 4, 3] by s_definition ?3 ?4 ?5 +Id : 35, {_}: apply (apply (apply s i) ?113) ?112 =?= apply ?112 (apply ?113 ?112) [112, 113] by Super 4 with 10 at 1,3 +Id : 34, {_}: apply (apply (apply s ?110) i) ?109 =?= apply (apply ?110 ?109) ?109 [109, 110] by Super 4 with 10 at 2,3 +Id : 56, {_}: apply (apply (apply s (apply b ?164)) i) ?163 =?= apply ?164 (apply ?163 ?163) [163, 164] by Super 6 with 34 at 2 +Id : 761617, {_}: apply (apply (apply s i) (apply (apply (apply s (apply b (apply s i))) i) (apply (apply s (apply b (apply s i))) i))) (f (apply (apply (apply s (apply b (apply s i))) i) (apply (apply s (apply b (apply s i))) i))) === apply (apply (apply s i) (apply (apply (apply s (apply b (apply s i))) i) (apply (apply s (apply b (apply s i))) i))) (f (apply (apply (apply s (apply b (apply s i))) i) (apply (apply s (apply b (apply s i))) i))) [] by Super 4653 with 56 at 1,2 +Id : 4653, {_}: apply ?3570 (f ?3570) =<= apply (apply (apply s i) ?3570) (f ?3570) [3570] by Super 2 with 35 at 3 +Id : 2, {_}: apply ?1 (f ?1) =<= apply (f ?1) (apply ?1 (f ?1)) [1] by prove_strong_fixed_point ?1 +% SZS output end CNFRefutation for COL057-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + f is 98 + g is 96 + h is 95 + prove_q_combinator is 94 + t is 91 + t_definition is 90 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply t ?7) ?8 =>= apply ?8 ?7 + [8, 7] by t_definition ?7 ?8 +Goal + Id : 2, {_}: + apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) + =>= + apply (g ?1) (apply (f ?1) (h ?1)) + [1] by prove_q_combinator ?1 +Goal subsumed +Found proof, 0.123092s +% SZS status Unsatisfiable for COL060-1.p +% SZS output start CNFRefutation for COL060-1.p +Id : 6, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 +Id : 4, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 +Id : 410, {_}: apply (g (apply (apply b (apply t b)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t b)) (apply (apply b b) t))) (h (apply (apply b (apply t b)) (apply (apply b b) t)))) === apply (g (apply (apply b (apply t b)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t b)) (apply (apply b b) t))) (h (apply (apply b (apply t b)) (apply (apply b b) t)))) [] by Super 408 with 4 at 2 +Id : 408, {_}: apply (apply (apply ?1205 (g (apply (apply b (apply t ?1205)) (apply (apply b b) t)))) (f (apply (apply b (apply t ?1205)) (apply (apply b b) t)))) (h (apply (apply b (apply t ?1205)) (apply (apply b b) t))) =>= apply (g (apply (apply b (apply t ?1205)) (apply (apply b b) t))) (apply (f (apply (apply b (apply t ?1205)) (apply (apply b b) t))) (h (apply (apply b (apply t ?1205)) (apply (apply b b) t)))) [1205] by Super 389 with 6 at 1,2 +Id : 389, {_}: apply (apply (apply ?1151 (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (apply ?1152 (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) =>= apply (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (apply (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) [1152, 1151] by Super 50 with 4 at 1,2 +Id : 50, {_}: apply (apply (apply (apply ?123 (apply ?124 (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))))) ?125) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) =>= apply (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (apply (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) [125, 124, 123] by Super 25 with 4 at 1,1,1,2 +Id : 25, {_}: apply (apply (apply (apply ?58 (f (apply (apply b (apply t ?57)) ?58))) ?57) (g (apply (apply b (apply t ?57)) ?58))) (h (apply (apply b (apply t ?57)) ?58)) =>= apply (g (apply (apply b (apply t ?57)) ?58)) (apply (f (apply (apply b (apply t ?57)) ?58)) (h (apply (apply b (apply t ?57)) ?58))) [57, 58] by Super 11 with 6 at 1,1,2 +Id : 11, {_}: apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25)) =>= apply (g (apply (apply b ?24) ?25)) (apply (f (apply (apply b ?24) ?25)) (h (apply (apply b ?24) ?25))) [25, 24] by Super 2 with 4 at 1,1,2 +Id : 2, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (g ?1) (apply (f ?1) (h ?1)) [1] by prove_q_combinator ?1 +% SZS output end CNFRefutation for COL060-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + f is 98 + g is 96 + h is 95 + prove_q1_combinator is 94 + t is 91 + t_definition is 90 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply t ?7) ?8 =>= apply ?8 ?7 + [8, 7] by t_definition ?7 ?8 +Goal + Id : 2, {_}: + apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) + =>= + apply (f ?1) (apply (h ?1) (g ?1)) + [1] by prove_q1_combinator ?1 +Goal subsumed +Found proof, 0.122812s +% SZS status Unsatisfiable for COL061-1.p +% SZS output start CNFRefutation for COL061-1.p +Id : 6, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 +Id : 4, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 +Id : 410, {_}: apply (f (apply (apply b (apply t t)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) b))) (g (apply (apply b (apply t t)) (apply (apply b b) b)))) === apply (f (apply (apply b (apply t t)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) b))) (g (apply (apply b (apply t t)) (apply (apply b b) b)))) [] by Super 409 with 6 at 2,2 +Id : 409, {_}: apply (f (apply (apply b (apply t ?1207)) (apply (apply b b) b))) (apply (apply ?1207 (g (apply (apply b (apply t ?1207)) (apply (apply b b) b)))) (h (apply (apply b (apply t ?1207)) (apply (apply b b) b)))) =>= apply (f (apply (apply b (apply t ?1207)) (apply (apply b b) b))) (apply (h (apply (apply b (apply t ?1207)) (apply (apply b b) b))) (g (apply (apply b (apply t ?1207)) (apply (apply b b) b)))) [1207] by Super 389 with 4 at 2 +Id : 389, {_}: apply (apply (apply ?1151 (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (apply ?1152 (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) =>= apply (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (apply (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) [1152, 1151] by Super 50 with 4 at 1,2 +Id : 50, {_}: apply (apply (apply (apply ?123 (apply ?124 (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))))) ?125) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) =>= apply (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (apply (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) [125, 124, 123] by Super 25 with 4 at 1,1,1,2 +Id : 25, {_}: apply (apply (apply (apply ?58 (f (apply (apply b (apply t ?57)) ?58))) ?57) (g (apply (apply b (apply t ?57)) ?58))) (h (apply (apply b (apply t ?57)) ?58)) =>= apply (f (apply (apply b (apply t ?57)) ?58)) (apply (h (apply (apply b (apply t ?57)) ?58)) (g (apply (apply b (apply t ?57)) ?58))) [57, 58] by Super 11 with 6 at 1,1,2 +Id : 11, {_}: apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25)) =>= apply (f (apply (apply b ?24) ?25)) (apply (h (apply (apply b ?24) ?25)) (g (apply (apply b ?24) ?25))) [25, 24] by Super 2 with 4 at 1,1,2 +Id : 2, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (f ?1) (apply (h ?1) (g ?1)) [1] by prove_q1_combinator ?1 +% SZS output end CNFRefutation for COL061-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + f is 98 + g is 96 + h is 95 + prove_f_combinator is 94 + t is 91 + t_definition is 90 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply t ?7) ?8 =>= apply ?8 ?7 + [8, 7] by t_definition ?7 ?8 +Goal + Id : 2, {_}: + apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) + =>= + apply (apply (h ?1) (g ?1)) (f ?1) + [1] by prove_f_combinator ?1 +Goal subsumed +Found proof, 2.025852s +% SZS status Unsatisfiable for COL063-1.p +% SZS output start CNFRefutation for COL063-1.p +Id : 6, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 +Id : 4, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 +Id : 3084, {_}: apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) === apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t)))) [] by Super 3079 with 6 at 2 +Id : 3079, {_}: apply (apply ?9991 (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991))))) (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991))))) =>= apply (apply (h (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991)))) (g (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991))))) (f (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) ?9991)))) [9991] by Super 3059 with 6 at 2,2 +Id : 3059, {_}: apply (apply ?9940 (f (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (apply (apply ?9941 (g (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (h (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) =>= apply (apply (h (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940)))) (g (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (f (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940)))) [9941, 9940] by Super 405 with 4 at 2 +Id : 405, {_}: apply (apply (apply ?1195 (apply ?1196 (f (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))))) (apply ?1197 (g (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))))) (h (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) =>= apply (apply (h (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) (g (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196))))) (f (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) [1197, 1196, 1195] by Super 389 with 4 at 1,1,2 +Id : 389, {_}: apply (apply (apply ?1151 (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (apply ?1152 (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) =>= apply (apply (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) [1152, 1151] by Super 50 with 4 at 1,2 +Id : 50, {_}: apply (apply (apply (apply ?123 (apply ?124 (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))))) ?125) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) =>= apply (apply (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) [125, 124, 123] by Super 25 with 4 at 1,1,1,2 +Id : 25, {_}: apply (apply (apply (apply ?58 (f (apply (apply b (apply t ?57)) ?58))) ?57) (g (apply (apply b (apply t ?57)) ?58))) (h (apply (apply b (apply t ?57)) ?58)) =>= apply (apply (h (apply (apply b (apply t ?57)) ?58)) (g (apply (apply b (apply t ?57)) ?58))) (f (apply (apply b (apply t ?57)) ?58)) [57, 58] by Super 11 with 6 at 1,1,2 +Id : 11, {_}: apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25)) =>= apply (apply (h (apply (apply b ?24) ?25)) (g (apply (apply b ?24) ?25))) (f (apply (apply b ?24) ?25)) [25, 24] by Super 2 with 4 at 1,1,2 +Id : 2, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (g ?1)) (f ?1) [1] by prove_f_combinator ?1 +% SZS output end CNFRefutation for COL063-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 93 + b_definition is 92 + f is 98 + g is 96 + h is 95 + prove_v_combinator is 94 + t is 91 + t_definition is 90 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply t ?7) ?8 =>= apply ?8 ?7 + [8, 7] by t_definition ?7 ?8 +Goal + Id : 2, {_}: + apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) + =>= + apply (apply (h ?1) (f ?1)) (g ?1) + [1] by prove_v_combinator ?1 +Goal subsumed +Found proof, 14.670988s +% SZS status Unsatisfiable for COL064-1.p +% SZS output start CNFRefutation for COL064-1.p +Id : 6, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 +Id : 4, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 +Id : 10866, {_}: apply (apply (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) === apply (apply (h (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t)))) [] by Super 10865 with 6 at 2 +Id : 10865, {_}: apply (apply ?36992 (g (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t))))) (apply (h (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t))))) =>= apply (apply (h (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b b) ?36992))) (apply (apply b b) (apply (apply b b) t)))) [36992] by Super 3088 with 4 at 2 +Id : 3088, {_}: apply (apply (apply ?10013 (apply ?10014 (g (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))))) (h (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))) =>= apply (apply (h (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t (apply (apply b ?10013) ?10014))) (apply (apply b b) (apply (apply b b) t)))) [10014, 10013] by Super 3083 with 4 at 1,1,2 +Id : 3083, {_}: apply (apply (apply ?10003 (g (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t))))) (h (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t))))) (f (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t)))) =>= apply (apply (h (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t)))) (f (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t))))) (g (apply (apply b (apply t ?10003)) (apply (apply b b) (apply (apply b b) t)))) [10003] by Super 3059 with 6 at 2 +Id : 3059, {_}: apply (apply ?9940 (f (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (apply (apply ?9941 (g (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (h (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) =>= apply (apply (h (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940)))) (f (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940))))) (g (apply (apply b (apply t ?9941)) (apply (apply b b) (apply (apply b b) ?9940)))) [9941, 9940] by Super 405 with 4 at 2 +Id : 405, {_}: apply (apply (apply ?1195 (apply ?1196 (f (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))))) (apply ?1197 (g (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))))) (h (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) =>= apply (apply (h (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) (f (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196))))) (g (apply (apply b (apply t ?1197)) (apply (apply b b) (apply (apply b ?1195) ?1196)))) [1197, 1196, 1195] by Super 389 with 4 at 1,1,2 +Id : 389, {_}: apply (apply (apply ?1151 (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (apply ?1152 (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))))) (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) =>= apply (apply (h (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) (f (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151)))) (g (apply (apply b (apply t ?1152)) (apply (apply b b) ?1151))) [1152, 1151] by Super 50 with 4 at 1,2 +Id : 50, {_}: apply (apply (apply (apply ?123 (apply ?124 (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))))) ?125) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) =>= apply (apply (h (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) (f (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124)))) (g (apply (apply b (apply t ?125)) (apply (apply b ?123) ?124))) [125, 124, 123] by Super 25 with 4 at 1,1,1,2 +Id : 25, {_}: apply (apply (apply (apply ?58 (f (apply (apply b (apply t ?57)) ?58))) ?57) (g (apply (apply b (apply t ?57)) ?58))) (h (apply (apply b (apply t ?57)) ?58)) =>= apply (apply (h (apply (apply b (apply t ?57)) ?58)) (f (apply (apply b (apply t ?57)) ?58))) (g (apply (apply b (apply t ?57)) ?58)) [57, 58] by Super 11 with 6 at 1,1,2 +Id : 11, {_}: apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25)) =>= apply (apply (h (apply (apply b ?24) ?25)) (f (apply (apply b ?24) ?25))) (g (apply (apply b ?24) ?25)) [25, 24] by Super 2 with 4 at 1,1,2 +Id : 2, {_}: apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1) =>= apply (apply (h ?1) (f ?1)) (g ?1) [1] by prove_v_combinator ?1 +% SZS output end CNFRefutation for COL064-1.p +Order + == is 100 + _ is 99 + apply is 97 + b is 92 + b_definition is 91 + f is 98 + g is 96 + h is 95 + i is 94 + prove_g_combinator is 93 + t is 90 + t_definition is 89 +Facts + Id : 4, {_}: + apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) + [5, 4, 3] by b_definition ?3 ?4 ?5 + Id : 6, {_}: + apply (apply t ?7) ?8 =>= apply ?8 ?7 + [8, 7] by t_definition ?7 ?8 +Goal + Id : 2, {_}: + apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)) (i ?1) + =>= + apply (apply (f ?1) (i ?1)) (apply (g ?1) (h ?1)) + [1] by prove_g_combinator ?1 +Goal subsumed +Found proof, 71.486989s +% SZS status Unsatisfiable for COL065-1.p +% SZS output start CNFRefutation for COL065-1.p +Id : 6, {_}: apply (apply t ?7) ?8 =>= apply ?8 ?7 [8, 7] by t_definition ?7 ?8 +Id : 4, {_}: apply (apply (apply b ?3) ?4) ?5 =>= apply ?3 (apply ?4 ?5) [5, 4, 3] by b_definition ?3 ?4 ?5 +Id : 24512, {_}: apply (apply (f (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))))) (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))))) === apply (apply (f (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))))) (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t))))) [] by Super 24511 with 6 at 2 +Id : 24511, {_}: apply (apply ?78509 (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t)))))) (apply (f (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t))))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t))))) (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b b) ?78509))) (apply (apply b b) t))))) [78509] by Super 5051 with 4 at 2 +Id : 5051, {_}: apply (apply (apply ?14812 (apply ?14813 (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t))))))) (f (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t))))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t)))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t))))) (apply (g (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t (apply (apply b ?14812) ?14813))) (apply (apply b b) t))))) [14813, 14812] by Super 5049 with 4 at 1,1,2 +Id : 5049, {_}: apply (apply (apply ?14808 (apply (g (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t)))))) (f (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t))))) (i (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t)))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t)))) (i (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t))))) (apply (g (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t)))) (h (apply (apply b b) (apply (apply b (apply t ?14808)) (apply (apply b b) t))))) [14808] by Super 5030 with 6 at 1,2 +Id : 5030, {_}: apply (apply (apply ?14754 (f (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754))))) (apply ?14755 (apply (g (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754)))) (h (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754))))))) (i (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754)))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754)))) (i (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754))))) (apply (g (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754)))) (h (apply (apply b b) (apply (apply b (apply t ?14755)) (apply (apply b b) ?14754))))) [14755, 14754] by Super 388 with 4 at 1,2 +Id : 388, {_}: apply (apply (apply (apply ?1025 (apply ?1026 (f (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))))) ?1027) (apply (g (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))) (h (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))))) (i (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))) (i (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026))))) (apply (g (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026)))) (h (apply (apply b b) (apply (apply b (apply t ?1027)) (apply (apply b ?1025) ?1026))))) [1027, 1026, 1025] by Super 132 with 4 at 1,1,1,2 +Id : 132, {_}: apply (apply (apply (apply ?316 (f (apply (apply b b) (apply (apply b (apply t ?315)) ?316)))) ?315) (apply (g (apply (apply b b) (apply (apply b (apply t ?315)) ?316))) (h (apply (apply b b) (apply (apply b (apply t ?315)) ?316))))) (i (apply (apply b b) (apply (apply b (apply t ?315)) ?316))) =>= apply (apply (f (apply (apply b b) (apply (apply b (apply t ?315)) ?316))) (i (apply (apply b b) (apply (apply b (apply t ?315)) ?316)))) (apply (g (apply (apply b b) (apply (apply b (apply t ?315)) ?316))) (h (apply (apply b b) (apply (apply b (apply t ?315)) ?316)))) [315, 316] by Super 34 with 6 at 1,1,2 +Id : 34, {_}: apply (apply (apply ?76 (apply ?77 (f (apply (apply b b) (apply (apply b ?76) ?77))))) (apply (g (apply (apply b b) (apply (apply b ?76) ?77))) (h (apply (apply b b) (apply (apply b ?76) ?77))))) (i (apply (apply b b) (apply (apply b ?76) ?77))) =>= apply (apply (f (apply (apply b b) (apply (apply b ?76) ?77))) (i (apply (apply b b) (apply (apply b ?76) ?77)))) (apply (g (apply (apply b b) (apply (apply b ?76) ?77))) (h (apply (apply b b) (apply (apply b ?76) ?77)))) [77, 76] by Super 31 with 4 at 1,1,2 +Id : 31, {_}: apply (apply (apply ?69 (f (apply (apply b b) ?69))) (apply (g (apply (apply b b) ?69)) (h (apply (apply b b) ?69)))) (i (apply (apply b b) ?69)) =>= apply (apply (f (apply (apply b b) ?69)) (i (apply (apply b b) ?69))) (apply (g (apply (apply b b) ?69)) (h (apply (apply b b) ?69))) [69] by Super 11 with 4 at 1,2 +Id : 11, {_}: apply (apply (apply (apply ?24 (apply ?25 (f (apply (apply b ?24) ?25)))) (g (apply (apply b ?24) ?25))) (h (apply (apply b ?24) ?25))) (i (apply (apply b ?24) ?25)) =>= apply (apply (f (apply (apply b ?24) ?25)) (i (apply (apply b ?24) ?25))) (apply (g (apply (apply b ?24) ?25)) (h (apply (apply b ?24) ?25))) [25, 24] by Super 2 with 4 at 1,1,1,2 +Id : 2, {_}: apply (apply (apply (apply ?1 (f ?1)) (g ?1)) (h ?1)) (i ?1) =>= apply (apply (f ?1) (i ?1)) (apply (g ?1) (h ?1)) [1] by prove_g_combinator ?1 +% SZS output end CNFRefutation for COL065-1.p +Order + == is 100 + _ is 99 + a is 98 + b is 97 + c is 96 + group_axiom is 92 + inverse is 93 + multiply is 95 + prove_associativity is 94 +Facts + Id : 4, {_}: + multiply ?2 + (inverse + (multiply + (multiply + (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) + ?5) (inverse (multiply ?3 ?5)))) + =>= + ?4 + [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5 +Goal + Id : 2, {_}: + multiply a (multiply b c) =<= multiply (multiply a b) c + [] by prove_associativity +Found proof, 3.167539s +% SZS status Unsatisfiable for GRP014-1.p +% SZS output start CNFRefutation for GRP014-1.p +Id : 5, {_}: multiply ?7 (inverse (multiply (multiply (inverse (multiply (inverse ?8) (multiply (inverse ?7) ?9))) ?10) (inverse (multiply ?8 ?10)))) =>= ?9 [10, 9, 8, 7] by group_axiom ?7 ?8 ?9 ?10 +Id : 4, {_}: multiply ?2 (inverse (multiply (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5) (inverse (multiply ?3 ?5)))) =>= ?4 [5, 4, 3, 2] by group_axiom ?2 ?3 ?4 ?5 +Id : 7, {_}: multiply ?22 (inverse (multiply (multiply (inverse (multiply (inverse ?23) ?20)) ?24) (inverse (multiply ?23 ?24)))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?19) (multiply (inverse (inverse ?22)) ?20))) ?21) (inverse (multiply ?19 ?21))) [21, 19, 24, 20, 23, 22] by Super 5 with 4 at 2,1,1,1,1,2,2 +Id : 65, {_}: multiply (inverse ?586) (multiply ?586 (inverse (multiply (multiply (inverse (multiply (inverse ?587) ?588)) ?589) (inverse (multiply ?587 ?589))))) =>= ?588 [589, 588, 587, 586] by Super 4 with 7 at 2,2 +Id : 66, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?596) (multiply (inverse (inverse ?593)) (multiply (inverse ?593) ?598)))) ?597) (inverse (multiply ?596 ?597))) =>= ?598 [597, 598, 593, 596] by Super 4 with 7 at 2 +Id : 285, {_}: multiply (inverse ?2327) (multiply ?2327 ?2328) =?= multiply (inverse (inverse ?2329)) (multiply (inverse ?2329) ?2328) [2329, 2328, 2327] by Super 65 with 66 at 2,2,2 +Id : 188, {_}: multiply (inverse ?1696) (multiply ?1696 ?1694) =?= multiply (inverse (inverse ?1693)) (multiply (inverse ?1693) ?1694) [1693, 1694, 1696] by Super 65 with 66 at 2,2,2 +Id : 299, {_}: multiply (inverse ?2421) (multiply ?2421 ?2422) =?= multiply (inverse ?2420) (multiply ?2420 ?2422) [2420, 2422, 2421] by Super 285 with 188 at 3 +Id : 379, {_}: multiply ?2799 (inverse (multiply (multiply (inverse ?2798) (multiply ?2798 ?2797)) (inverse (multiply ?2800 (multiply (multiply (inverse ?2800) (multiply (inverse ?2799) ?2801)) ?2797))))) =>= ?2801 [2801, 2800, 2797, 2798, 2799] by Super 4 with 299 at 1,1,2,2 +Id : 550, {_}: multiply ?3835 (inverse (multiply (multiply (inverse (multiply (inverse ?3836) (multiply ?3836 ?3837))) ?3838) (inverse (multiply (inverse ?3835) ?3838)))) =>= ?3837 [3838, 3837, 3836, 3835] by Super 4 with 188 at 1,1,1,1,2,2 +Id : 2860, {_}: multiply ?17926 (inverse (multiply (multiply (inverse (multiply (inverse ?17927) (multiply ?17927 ?17928))) (multiply ?17926 ?17929)) (inverse (multiply (inverse ?17930) (multiply ?17930 ?17929))))) =>= ?17928 [17930, 17929, 17928, 17927, 17926] by Super 550 with 299 at 1,2,1,2,2 +Id : 2947, {_}: multiply (multiply (inverse ?18671) (multiply ?18671 ?18672)) (inverse (multiply ?18669 (inverse (multiply (inverse ?18673) (multiply ?18673 (inverse (multiply (multiply (inverse (multiply (inverse ?18668) ?18669)) ?18670) (inverse (multiply ?18668 ?18670))))))))) =>= ?18672 [18670, 18668, 18673, 18669, 18672, 18671] by Super 2860 with 65 at 1,1,2,2 +Id : 2989, {_}: multiply (multiply (inverse ?18671) (multiply ?18671 ?18672)) (inverse (multiply ?18669 (inverse ?18669))) =>= ?18672 [18669, 18672, 18671] by Demod 2947 with 65 at 1,2,1,2,2 +Id : 3000, {_}: multiply ?18805 (inverse (multiply (multiply (inverse ?18806) (multiply ?18806 (inverse (multiply ?18804 (inverse ?18804))))) (inverse (multiply (inverse ?18805) ?18803)))) =>= ?18803 [18803, 18804, 18806, 18805] by Super 379 with 2989 at 2,1,2,1,2,2 +Id : 7432, {_}: multiply (inverse ?40377) (multiply (multiply (inverse (inverse ?40377)) ?40378) (inverse (multiply ?40379 (inverse ?40379)))) =>= ?40378 [40379, 40378, 40377] by Super 65 with 3000 at 2,2 +Id : 3646, {_}: multiply ?23036 (inverse (multiply (multiply (inverse ?23037) (multiply ?23037 (inverse (multiply ?23038 (inverse ?23038))))) (inverse (multiply (inverse ?23036) ?23039)))) =>= ?23039 [23039, 23038, 23037, 23036] by Super 379 with 2989 at 2,1,2,1,2,2 +Id : 3702, {_}: multiply ?23470 (inverse (inverse (multiply ?23472 (inverse ?23472)))) =>= inverse (inverse ?23470) [23472, 23470] by Super 3646 with 2989 at 1,2,2 +Id : 3804, {_}: multiply (inverse ?23847) (multiply ?23847 (inverse (inverse (multiply ?23846 (inverse ?23846))))) =?= multiply (inverse ?23845) (inverse (inverse ?23845)) [23845, 23846, 23847] by Super 299 with 3702 at 2,3 +Id : 4420, {_}: multiply (inverse ?26554) (inverse (inverse ?26554)) =?= multiply (inverse ?26555) (inverse (inverse ?26555)) [26555, 26554] by Demod 3804 with 3702 at 2,2 +Id : 190, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1706) (multiply (inverse (inverse ?1707)) (multiply (inverse ?1707) ?1708)))) ?1709) (inverse (multiply ?1706 ?1709))) =>= ?1708 [1709, 1708, 1707, 1706] by Super 4 with 7 at 2 +Id : 198, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1772) (multiply (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?1768) (multiply (inverse (inverse ?1769)) (multiply (inverse ?1769) ?1770)))) ?1771) (inverse (multiply ?1768 ?1771))))) (multiply ?1770 ?1773)))) ?1774) (inverse (multiply ?1772 ?1774))) =>= ?1773 [1774, 1773, 1771, 1770, 1769, 1768, 1772] by Super 190 with 66 at 1,2,2,1,1,1,1,2 +Id : 223, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1772) (multiply (inverse ?1770) (multiply ?1770 ?1773)))) ?1774) (inverse (multiply ?1772 ?1774))) =>= ?1773 [1774, 1773, 1770, 1772] by Demod 198 with 66 at 1,1,2,1,1,1,1,2 +Id : 4421, {_}: multiply (inverse ?26561) (inverse (inverse ?26561)) =?= multiply (inverse (multiply (multiply (inverse (multiply (inverse ?26557) (multiply (inverse ?26558) (multiply ?26558 ?26559)))) ?26560) (inverse (multiply ?26557 ?26560)))) (inverse ?26559) [26560, 26559, 26558, 26557, 26561] by Super 4420 with 223 at 1,2,3 +Id : 4696, {_}: multiply (inverse ?27771) (inverse (inverse ?27771)) =?= multiply ?27772 (inverse ?27772) [27772, 27771] by Demod 4421 with 223 at 1,3 +Id : 4493, {_}: multiply (inverse ?26561) (inverse (inverse ?26561)) =?= multiply ?26559 (inverse ?26559) [26559, 26561] by Demod 4421 with 223 at 1,3 +Id : 4736, {_}: multiply ?27992 (inverse ?27992) =?= multiply ?27994 (inverse ?27994) [27994, 27992] by Super 4696 with 4493 at 2 +Id : 7526, {_}: multiply (inverse ?40902) (multiply ?40901 (inverse ?40901)) =>= inverse (inverse (inverse ?40902)) [40901, 40902] by Super 7432 with 4736 at 2,2 +Id : 7653, {_}: multiply (inverse ?41400) (multiply ?41400 (inverse ?41399)) =>= inverse (inverse (inverse ?41399)) [41399, 41400] by Super 299 with 7526 at 3 +Id : 8053, {_}: multiply ?18805 (inverse (multiply (inverse (inverse (inverse (multiply ?18804 (inverse ?18804))))) (inverse (multiply (inverse ?18805) ?18803)))) =>= ?18803 [18803, 18804, 18805] by Demod 3000 with 7653 at 1,1,2,2 +Id : 395, {_}: multiply (inverse ?2916) (multiply ?2916 (inverse (multiply (multiply (inverse (multiply (inverse ?2915) (multiply ?2915 ?2914))) ?2917) (inverse (multiply ?2913 ?2917))))) =>= multiply ?2913 ?2914 [2913, 2917, 2914, 2915, 2916] by Super 65 with 299 at 1,1,1,1,2,2,2 +Id : 8051, {_}: inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?2915) (multiply ?2915 ?2914))) ?2917) (inverse (multiply ?2913 ?2917))))) =>= multiply ?2913 ?2914 [2913, 2917, 2914, 2915] by Demod 395 with 7653 at 2 +Id : 8154, {_}: multiply (inverse ?43172) (multiply ?43172 (inverse ?43173)) =>= inverse (inverse (inverse ?43173)) [43173, 43172] by Super 299 with 7526 at 3 +Id : 474, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?3355) (multiply (inverse ?3356) (multiply ?3356 ?3357)))) ?3358) (inverse (multiply ?3355 ?3358))) =>= ?3357 [3358, 3357, 3356, 3355] by Demod 198 with 66 at 1,1,2,1,1,1,1,2 +Id : 505, {_}: inverse (multiply (multiply (inverse ?3589) (multiply ?3589 ?3588)) (inverse (multiply ?3590 (multiply (multiply (inverse ?3590) (multiply (inverse ?3591) (multiply ?3591 ?3592))) ?3588)))) =>= ?3592 [3592, 3591, 3590, 3588, 3589] by Super 474 with 299 at 1,1,2 +Id : 3283, {_}: inverse (multiply (multiply (inverse ?20660) (multiply ?20660 (inverse (multiply ?20661 (inverse ?20661))))) (inverse (multiply (inverse ?20662) (multiply ?20662 ?20663)))) =>= ?20663 [20663, 20662, 20661, 20660] by Super 505 with 2989 at 2,1,2,1,2 +Id : 251, {_}: multiply ?2088 (inverse (multiply (multiply (inverse (multiply (inverse ?2086) (multiply ?2086 ?2087))) ?2089) (inverse (multiply (inverse ?2088) ?2089)))) =>= ?2087 [2089, 2087, 2086, 2088] by Super 4 with 188 at 1,1,1,1,2,2 +Id : 3330, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?21019) (multiply ?21019 ?21020))) ?21020) (inverse (multiply (inverse ?21022) (multiply ?21022 ?21023)))) =>= ?21023 [21023, 21022, 21020, 21019] by Super 3283 with 251 at 2,1,1,2 +Id : 8160, {_}: multiply (inverse ?43212) (multiply ?43212 ?43211) =?= inverse (inverse (inverse (multiply (multiply (inverse (multiply (inverse ?43208) (multiply ?43208 ?43209))) ?43209) (inverse (multiply (inverse ?43210) (multiply ?43210 ?43211)))))) [43210, 43209, 43208, 43211, 43212] by Super 8154 with 3330 at 2,2,2 +Id : 8246, {_}: multiply (inverse ?43212) (multiply ?43212 ?43211) =>= inverse (inverse ?43211) [43211, 43212] by Demod 8160 with 3330 at 1,1,3 +Id : 8276, {_}: inverse (inverse (inverse (multiply (multiply (inverse (inverse (inverse ?2914))) ?2917) (inverse (multiply ?2913 ?2917))))) =>= multiply ?2913 ?2914 [2913, 2917, 2914] by Demod 8051 with 8246 at 1,1,1,1,1,1,2 +Id : 3034, {_}: multiply (multiply (inverse ?19018) (multiply ?19018 ?19019)) (inverse (multiply ?19020 (inverse ?19020))) =>= ?19019 [19020, 19019, 19018] by Demod 2947 with 65 at 1,2,1,2,2 +Id : 3049, {_}: multiply (multiply (inverse (inverse ?19126)) (multiply (inverse ?19128) (multiply ?19128 ?19127))) (inverse (multiply ?19129 (inverse ?19129))) =>= multiply ?19126 ?19127 [19129, 19127, 19128, 19126] by Super 3034 with 299 at 2,1,2 +Id : 7592, {_}: multiply (multiply (inverse (inverse ?41055)) (multiply (inverse (inverse ?41053)) (inverse (inverse (inverse ?41053))))) (inverse (multiply ?41056 (inverse ?41056))) =?= multiply ?41055 (multiply ?41054 (inverse ?41054)) [41054, 41056, 41053, 41055] by Super 3049 with 7526 at 2,2,1,2 +Id : 6756, {_}: multiply (multiply (inverse ?37293) (multiply ?37294 (inverse ?37294))) (inverse (multiply ?37295 (inverse ?37295))) =>= inverse ?37293 [37295, 37294, 37293] by Super 2989 with 4736 at 2,1,2 +Id : 6813, {_}: multiply (multiply ?37621 (multiply ?37623 (inverse ?37623))) (inverse (multiply ?37624 (inverse ?37624))) =?= inverse (multiply (multiply (inverse (multiply (inverse ?37619) (multiply (inverse ?37620) (multiply ?37620 ?37621)))) ?37622) (inverse (multiply ?37619 ?37622))) [37622, 37620, 37619, 37624, 37623, 37621] by Super 6756 with 223 at 1,1,2 +Id : 6857, {_}: multiply (multiply ?37621 (multiply ?37623 (inverse ?37623))) (inverse (multiply ?37624 (inverse ?37624))) =>= ?37621 [37624, 37623, 37621] by Demod 6813 with 223 at 3 +Id : 7919, {_}: inverse (inverse ?42462) =<= multiply ?42462 (multiply ?42463 (inverse ?42463)) [42463, 42462] by Demod 7592 with 6857 at 2 +Id : 2998, {_}: inverse (multiply (multiply (inverse ?18792) (multiply ?18792 (inverse (multiply ?18791 (inverse ?18791))))) (inverse (multiply (inverse ?18793) (multiply ?18793 ?18794)))) =>= ?18794 [18794, 18793, 18791, 18792] by Super 505 with 2989 at 2,1,2,1,2 +Id : 5265, {_}: inverse (multiply ?30443 (inverse ?30443)) =?= inverse (multiply ?30444 (inverse ?30444)) [30444, 30443] by Super 2998 with 4736 at 1,2 +Id : 5279, {_}: inverse (multiply ?30523 (inverse ?30523)) =?= inverse (inverse (inverse (inverse (multiply ?30522 (inverse ?30522))))) [30522, 30523] by Super 5265 with 3702 at 1,3 +Id : 7936, {_}: inverse (inverse ?42552) =<= multiply ?42552 (multiply (inverse (inverse (inverse (multiply ?42551 (inverse ?42551))))) (inverse (multiply ?42550 (inverse ?42550)))) [42550, 42551, 42552] by Super 7919 with 5279 at 2,2,3 +Id : 7778, {_}: inverse (inverse ?41055) =<= multiply ?41055 (multiply ?41054 (inverse ?41054)) [41054, 41055] by Demod 7592 with 6857 at 2 +Id : 7804, {_}: multiply (inverse (inverse ?37621)) (inverse (multiply ?37624 (inverse ?37624))) =>= ?37621 [37624, 37621] by Demod 6857 with 7778 at 1,2 +Id : 8036, {_}: inverse (inverse ?42552) =<= multiply ?42552 (inverse (multiply ?42551 (inverse ?42551))) [42551, 42552] by Demod 7936 with 7804 at 2,3 +Id : 8529, {_}: inverse (inverse (inverse (multiply (multiply (inverse (inverse (inverse ?44275))) (inverse (multiply ?44274 (inverse ?44274)))) (inverse (inverse (inverse ?44273)))))) =>= multiply ?44273 ?44275 [44273, 44274, 44275] by Super 8276 with 8036 at 1,2,1,1,1,2 +Id : 8588, {_}: inverse (inverse (inverse (multiply (inverse (inverse (inverse (inverse (inverse ?44275))))) (inverse (inverse (inverse ?44273)))))) =>= multiply ?44273 ?44275 [44273, 44275] by Demod 8529 with 8036 at 1,1,1,1,2 +Id : 401, {_}: multiply (inverse ?2949) (multiply ?2949 ?2950) =?= multiply (inverse ?2951) (multiply ?2951 ?2950) [2951, 2950, 2949] by Super 285 with 188 at 3 +Id : 407, {_}: multiply (inverse ?2992) (multiply ?2992 (multiply ?2989 ?2990)) =?= multiply (inverse (inverse ?2989)) (multiply (inverse ?2991) (multiply ?2991 ?2990)) [2991, 2990, 2989, 2992] by Super 401 with 299 at 2,3 +Id : 8291, {_}: inverse (inverse (multiply ?2989 ?2990)) =<= multiply (inverse (inverse ?2989)) (multiply (inverse ?2991) (multiply ?2991 ?2990)) [2991, 2990, 2989] by Demod 407 with 8246 at 2 +Id : 8292, {_}: inverse (inverse (multiply ?2989 ?2990)) =<= multiply (inverse (inverse ?2989)) (inverse (inverse ?2990)) [2990, 2989] by Demod 8291 with 8246 at 2,3 +Id : 8589, {_}: inverse (inverse (inverse (inverse (inverse (multiply (inverse (inverse (inverse ?44275))) (inverse ?44273)))))) =>= multiply ?44273 ?44275 [44273, 44275] by Demod 8588 with 8292 at 1,1,1,2 +Id : 8446, {_}: inverse (inverse (inverse (inverse ?37621))) =>= ?37621 [37621] by Demod 7804 with 8036 at 2 +Id : 8590, {_}: inverse (multiply (inverse (inverse (inverse ?44275))) (inverse ?44273)) =>= multiply ?44273 ?44275 [44273, 44275] by Demod 8589 with 8446 at 2 +Id : 8757, {_}: multiply ?18805 (multiply (multiply (inverse ?18805) ?18803) (multiply ?18804 (inverse ?18804))) =>= ?18803 [18804, 18803, 18805] by Demod 8053 with 8590 at 2,2 +Id : 8758, {_}: multiply ?18805 (inverse (inverse (multiply (inverse ?18805) ?18803))) =>= ?18803 [18803, 18805] by Demod 8757 with 7778 at 2,2 +Id : 8857, {_}: inverse (multiply (inverse (inverse (inverse ?44963))) (inverse ?44964)) =>= multiply ?44964 ?44963 [44964, 44963] by Demod 8589 with 8446 at 2 +Id : 8919, {_}: inverse (multiply ?45241 (inverse ?45242)) =>= multiply ?45242 (inverse ?45241) [45242, 45241] by Super 8857 with 8446 at 1,1,2 +Id : 9051, {_}: multiply ?2 (multiply (multiply ?3 ?5) (inverse (multiply (inverse (multiply (inverse ?3) (multiply (inverse ?2) ?4))) ?5))) =>= ?4 [4, 5, 3, 2] by Demod 4 with 8919 at 2,2 +Id : 137, {_}: multiply (inverse ?1284) (multiply ?1284 (inverse (multiply (multiply (inverse (multiply (inverse ?1285) ?1286)) ?1287) (inverse (multiply ?1285 ?1287))))) =>= ?1286 [1287, 1286, 1285, 1284] by Super 4 with 7 at 2,2 +Id : 156, {_}: multiply (inverse ?1443) (multiply ?1443 (multiply ?1439 (inverse (multiply (multiply (inverse (multiply (inverse ?1440) ?1441)) ?1442) (inverse (multiply ?1440 ?1442)))))) =>= multiply (inverse (inverse ?1439)) ?1441 [1442, 1441, 1440, 1439, 1443] by Super 137 with 7 at 2,2,2 +Id : 8285, {_}: inverse (inverse (multiply ?1439 (inverse (multiply (multiply (inverse (multiply (inverse ?1440) ?1441)) ?1442) (inverse (multiply ?1440 ?1442)))))) =>= multiply (inverse (inverse ?1439)) ?1441 [1442, 1441, 1440, 1439] by Demod 156 with 8246 at 2 +Id : 9071, {_}: inverse (multiply (multiply (multiply (inverse (multiply (inverse ?1440) ?1441)) ?1442) (inverse (multiply ?1440 ?1442))) (inverse ?1439)) =>= multiply (inverse (inverse ?1439)) ?1441 [1439, 1442, 1441, 1440] by Demod 8285 with 8919 at 1,2 +Id : 9072, {_}: multiply ?1439 (inverse (multiply (multiply (inverse (multiply (inverse ?1440) ?1441)) ?1442) (inverse (multiply ?1440 ?1442)))) =>= multiply (inverse (inverse ?1439)) ?1441 [1442, 1441, 1440, 1439] by Demod 9071 with 8919 at 2 +Id : 9073, {_}: multiply ?1439 (multiply (multiply ?1440 ?1442) (inverse (multiply (inverse (multiply (inverse ?1440) ?1441)) ?1442))) =>= multiply (inverse (inverse ?1439)) ?1441 [1441, 1442, 1440, 1439] by Demod 9072 with 8919 at 2,2 +Id : 9086, {_}: multiply (inverse (inverse ?2)) (multiply (inverse ?2) ?4) =>= ?4 [4, 2] by Demod 9051 with 9073 at 2 +Id : 9087, {_}: inverse (inverse ?4) =>= ?4 [4] by Demod 9086 with 8246 at 2 +Id : 9094, {_}: multiply ?18805 (multiply (inverse ?18805) ?18803) =>= ?18803 [18803, 18805] by Demod 8758 with 9087 at 2,2 +Id : 9160, {_}: inverse (multiply ?45446 (inverse ?45447)) =>= multiply ?45447 (inverse ?45446) [45447, 45446] by Super 8857 with 8446 at 1,1,2 +Id : 9162, {_}: inverse (multiply ?45454 ?45453) =<= multiply (inverse ?45453) (inverse ?45454) [45453, 45454] by Super 9160 with 9087 at 2,1,2 +Id : 9195, {_}: multiply ?45501 (inverse (multiply ?45500 ?45501)) =>= inverse ?45500 [45500, 45501] by Super 9094 with 9162 at 2,2 +Id : 8933, {_}: inverse ?45303 =<= multiply (inverse (multiply (inverse (inverse (inverse (inverse ?45304)))) ?45303)) ?45304 [45304, 45303] by Super 8857 with 8758 at 1,2 +Id : 9467, {_}: inverse ?46002 =<= multiply (inverse (multiply ?46003 ?46002)) ?46003 [46003, 46002] by Demod 8933 with 8446 at 1,1,1,3 +Id : 8287, {_}: inverse (multiply (multiply (inverse (multiply (inverse ?1772) (inverse (inverse ?1773)))) ?1774) (inverse (multiply ?1772 ?1774))) =>= ?1773 [1774, 1773, 1772] by Demod 223 with 8246 at 2,1,1,1,1,2 +Id : 9069, {_}: multiply (multiply ?1772 ?1774) (inverse (multiply (inverse (multiply (inverse ?1772) (inverse (inverse ?1773)))) ?1774)) =>= ?1773 [1773, 1774, 1772] by Demod 8287 with 8919 at 2 +Id : 9070, {_}: multiply (multiply ?1772 ?1774) (inverse (multiply (multiply (inverse ?1773) (inverse (inverse ?1772))) ?1774)) =>= ?1773 [1773, 1774, 1772] by Demod 9069 with 8919 at 1,1,2,2 +Id : 9090, {_}: multiply (multiply ?1772 ?1774) (inverse (multiply (multiply (inverse ?1773) ?1772) ?1774)) =>= ?1773 [1773, 1774, 1772] by Demod 9070 with 9087 at 2,1,1,2,2 +Id : 9469, {_}: inverse (inverse (multiply (multiply (inverse ?46010) ?46008) ?46009)) =>= multiply (inverse ?46010) (multiply ?46008 ?46009) [46009, 46008, 46010] by Super 9467 with 9090 at 1,1,3 +Id : 9509, {_}: multiply (multiply (inverse ?46010) ?46008) ?46009 =>= multiply (inverse ?46010) (multiply ?46008 ?46009) [46009, 46008, 46010] by Demod 9469 with 9087 at 2 +Id : 9851, {_}: multiply ?46565 (inverse (multiply (inverse ?46563) (multiply ?46564 ?46565))) =>= inverse (multiply (inverse ?46563) ?46564) [46564, 46563, 46565] by Super 9195 with 9509 at 1,2,2 +Id : 9213, {_}: inverse (multiply ?45576 ?45577) =<= multiply (inverse ?45577) (inverse ?45576) [45577, 45576] by Super 9160 with 9087 at 2,1,2 +Id : 9215, {_}: inverse (multiply (inverse ?45583) ?45584) =>= multiply (inverse ?45584) ?45583 [45584, 45583] by Super 9213 with 9087 at 2,3 +Id : 9934, {_}: multiply ?46565 (multiply (inverse (multiply ?46564 ?46565)) ?46563) =>= inverse (multiply (inverse ?46563) ?46564) [46563, 46564, 46565] by Demod 9851 with 9215 at 2,2 +Id : 12550, {_}: multiply ?50696 (multiply (inverse (multiply ?50697 ?50696)) ?50698) =>= multiply (inverse ?50697) ?50698 [50698, 50697, 50696] by Demod 9934 with 9215 at 3 +Id : 9075, {_}: inverse (inverse (multiply (multiply ?2913 ?2917) (inverse (multiply (inverse (inverse (inverse ?2914))) ?2917)))) =>= multiply ?2913 ?2914 [2914, 2917, 2913] by Demod 8276 with 8919 at 1,1,2 +Id : 9076, {_}: inverse (multiply (multiply (inverse (inverse (inverse ?2914))) ?2917) (inverse (multiply ?2913 ?2917))) =>= multiply ?2913 ?2914 [2913, 2917, 2914] by Demod 9075 with 8919 at 1,2 +Id : 9077, {_}: multiply (multiply ?2913 ?2917) (inverse (multiply (inverse (inverse (inverse ?2914))) ?2917)) =>= multiply ?2913 ?2914 [2914, 2917, 2913] by Demod 9076 with 8919 at 2 +Id : 9102, {_}: multiply (multiply ?2913 ?2917) (inverse (multiply (inverse ?2914) ?2917)) =>= multiply ?2913 ?2914 [2914, 2917, 2913] by Demod 9077 with 9087 at 1,1,2,2 +Id : 9248, {_}: multiply (multiply ?2913 ?2917) (multiply (inverse ?2917) ?2914) =>= multiply ?2913 ?2914 [2914, 2917, 2913] by Demod 9102 with 9215 at 2,2 +Id : 9533, {_}: multiply (inverse ?46084) (multiply (inverse (inverse (multiply ?46084 ?46083))) ?46085) =>= multiply ?46083 ?46085 [46085, 46083, 46084] by Super 9248 with 9195 at 1,2 +Id : 9598, {_}: multiply (inverse ?46084) (multiply (multiply ?46084 ?46083) ?46085) =>= multiply ?46083 ?46085 [46085, 46083, 46084] by Demod 9533 with 9087 at 1,2,2 +Id : 12590, {_}: multiply ?50874 (multiply ?50872 ?50873) =<= multiply (inverse ?50875) (multiply (multiply (multiply ?50875 ?50874) ?50872) ?50873) [50875, 50873, 50872, 50874] by Super 12550 with 9598 at 2,2 +Id : 12312, {_}: multiply (multiply ?50214 ?50215) ?50216 =<= multiply (inverse ?50213) (multiply (multiply (multiply ?50213 ?50214) ?50215) ?50216) [50213, 50216, 50215, 50214] by Super 9509 with 9598 at 1,2 +Id : 29878, {_}: multiply ?50874 (multiply ?50872 ?50873) =?= multiply (multiply ?50874 ?50872) ?50873 [50873, 50872, 50874] by Demod 12590 with 12312 at 3 +Id : 30629, {_}: multiply a (multiply b c) === multiply a (multiply b c) [] by Demod 2 with 29878 at 3 +Id : 2, {_}: multiply a (multiply b c) =<= multiply (multiply a b) c [] by prove_associativity +% SZS output end CNFRefutation for GRP014-1.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + associativity_of_commutator is 86 + b is 97 + c is 96 + commutator is 95 + identity is 92 + inverse is 90 + left_identity is 91 + left_inverse is 89 + multiply is 94 + name is 87 + prove_center is 93 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + commutator ?10 ?11 + =<= + multiply (inverse ?10) (multiply (inverse ?11) (multiply ?10 ?11)) + [11, 10] by name ?10 ?11 + Id : 12, {_}: + commutator (commutator ?13 ?14) ?15 + =?= + commutator ?13 (commutator ?14 ?15) + [15, 14, 13] by associativity_of_commutator ?13 ?14 ?15 +Goal + Id : 2, {_}: + multiply a (commutator b c) =<= multiply (commutator b c) a + [] by prove_center +Last chance: 1246129199.8 +Last chance: all is indexed 1246129219.81 +Last chance: failed over 100 goal 1246129219.81 +FAILURE in 0 iterations +% SZS status Timeout for GRP024-5.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + identity is 93 + intersection is 85 + intersection_associative is 79 + intersection_commutative is 81 + intersection_idempotent is 84 + intersection_union_absorbtion is 76 + inverse is 91 + inverse_involution is 87 + inverse_of_identity is 88 + inverse_product_lemma is 86 + left_identity is 92 + left_inverse is 90 + multiply is 95 + multiply_intersection1 is 74 + multiply_intersection2 is 72 + multiply_union1 is 75 + multiply_union2 is 73 + negative_part is 96 + positive_part is 97 + prove_product is 94 + union is 83 + union_associative is 78 + union_commutative is 80 + union_idempotent is 82 + union_intersection_absorbtion is 77 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: inverse identity =>= identity [] by inverse_of_identity + Id : 12, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11 + Id : 14, {_}: + inverse (multiply ?13 ?14) =<= multiply (inverse ?14) (inverse ?13) + [14, 13] by inverse_product_lemma ?13 ?14 + Id : 16, {_}: intersection ?16 ?16 =>= ?16 [16] by intersection_idempotent ?16 + Id : 18, {_}: union ?18 ?18 =>= ?18 [18] by union_idempotent ?18 + Id : 20, {_}: + intersection ?20 ?21 =?= intersection ?21 ?20 + [21, 20] by intersection_commutative ?20 ?21 + Id : 22, {_}: + union ?23 ?24 =?= union ?24 ?23 + [24, 23] by union_commutative ?23 ?24 + Id : 24, {_}: + intersection ?26 (intersection ?27 ?28) + =?= + intersection (intersection ?26 ?27) ?28 + [28, 27, 26] by intersection_associative ?26 ?27 ?28 + Id : 26, {_}: + union ?30 (union ?31 ?32) =?= union (union ?30 ?31) ?32 + [32, 31, 30] by union_associative ?30 ?31 ?32 + Id : 28, {_}: + union (intersection ?34 ?35) ?35 =>= ?35 + [35, 34] by union_intersection_absorbtion ?34 ?35 + Id : 30, {_}: + intersection (union ?37 ?38) ?38 =>= ?38 + [38, 37] by intersection_union_absorbtion ?37 ?38 + Id : 32, {_}: + multiply ?40 (union ?41 ?42) + =<= + union (multiply ?40 ?41) (multiply ?40 ?42) + [42, 41, 40] by multiply_union1 ?40 ?41 ?42 + Id : 34, {_}: + multiply ?44 (intersection ?45 ?46) + =<= + intersection (multiply ?44 ?45) (multiply ?44 ?46) + [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46 + Id : 36, {_}: + multiply (union ?48 ?49) ?50 + =<= + union (multiply ?48 ?50) (multiply ?49 ?50) + [50, 49, 48] by multiply_union2 ?48 ?49 ?50 + Id : 38, {_}: + multiply (intersection ?52 ?53) ?54 + =<= + intersection (multiply ?52 ?54) (multiply ?53 ?54) + [54, 53, 52] by multiply_intersection2 ?52 ?53 ?54 + Id : 40, {_}: + positive_part ?56 =<= union ?56 identity + [56] by positive_part ?56 + Id : 42, {_}: + negative_part ?58 =<= intersection ?58 identity + [58] by negative_part ?58 +Goal + Id : 2, {_}: + multiply (positive_part a) (negative_part a) =>= a + [] by prove_product +Found proof, 2.757502s +% SZS status Unsatisfiable for GRP114-1.p +% SZS output start CNFRefutation for GRP114-1.p +Id : 16, {_}: intersection ?16 ?16 =>= ?16 [16] by intersection_idempotent ?16 +Id : 24, {_}: intersection ?26 (intersection ?27 ?28) =?= intersection (intersection ?26 ?27) ?28 [28, 27, 26] by intersection_associative ?26 ?27 ?28 +Id : 34, {_}: multiply ?44 (intersection ?45 ?46) =<= intersection (multiply ?44 ?45) (multiply ?44 ?46) [46, 45, 44] by multiply_intersection1 ?44 ?45 ?46 +Id : 28, {_}: union (intersection ?34 ?35) ?35 =>= ?35 [35, 34] by union_intersection_absorbtion ?34 ?35 +Id : 26, {_}: union ?30 (union ?31 ?32) =?= union (union ?30 ?31) ?32 [32, 31, 30] by union_associative ?30 ?31 ?32 +Id : 267, {_}: multiply (union ?680 ?681) ?682 =<= union (multiply ?680 ?682) (multiply ?681 ?682) [682, 681, 680] by multiply_union2 ?680 ?681 ?682 +Id : 30, {_}: intersection (union ?37 ?38) ?38 =>= ?38 [38, 37] by intersection_union_absorbtion ?37 ?38 +Id : 230, {_}: multiply ?593 (intersection ?594 ?595) =<= intersection (multiply ?593 ?594) (multiply ?593 ?595) [595, 594, 593] by multiply_intersection1 ?593 ?594 ?595 +Id : 42, {_}: negative_part ?58 =<= intersection ?58 identity [58] by negative_part ?58 +Id : 20, {_}: intersection ?20 ?21 =?= intersection ?21 ?20 [21, 20] by intersection_commutative ?20 ?21 +Id : 303, {_}: multiply (intersection ?770 ?771) ?772 =<= intersection (multiply ?770 ?772) (multiply ?771 ?772) [772, 771, 770] by multiply_intersection2 ?770 ?771 ?772 +Id : 14, {_}: inverse (multiply ?13 ?14) =<= multiply (inverse ?14) (inverse ?13) [14, 13] by inverse_product_lemma ?13 ?14 +Id : 22, {_}: union ?23 ?24 =?= union ?24 ?23 [24, 23] by union_commutative ?23 ?24 +Id : 40, {_}: positive_part ?56 =<= union ?56 identity [56] by positive_part ?56 +Id : 10, {_}: inverse identity =>= identity [] by inverse_of_identity +Id : 32, {_}: multiply ?40 (union ?41 ?42) =<= union (multiply ?40 ?41) (multiply ?40 ?42) [42, 41, 40] by multiply_union1 ?40 ?41 ?42 +Id : 12, {_}: inverse (inverse ?11) =>= ?11 [11] by inverse_involution ?11 +Id : 79, {_}: inverse (multiply ?142 ?143) =<= multiply (inverse ?143) (inverse ?142) [143, 142] by inverse_product_lemma ?142 ?143 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 47, {_}: multiply (multiply ?68 ?69) ?70 =?= multiply ?68 (multiply ?69 ?70) [70, 69, 68] by associativity ?68 ?69 ?70 +Id : 56, {_}: multiply identity ?103 =<= multiply (inverse ?102) (multiply ?102 ?103) [102, 103] by Super 47 with 6 at 1,2 +Id : 8890, {_}: ?10861 =<= multiply (inverse ?10862) (multiply ?10862 ?10861) [10862, 10861] by Demod 56 with 4 at 2 +Id : 81, {_}: inverse (multiply (inverse ?147) ?148) =>= multiply (inverse ?148) ?147 [148, 147] by Super 79 with 12 at 2,3 +Id : 80, {_}: inverse (multiply identity ?145) =<= multiply (inverse ?145) identity [145] by Super 79 with 10 at 2,3 +Id : 450, {_}: inverse ?990 =<= multiply (inverse ?990) identity [990] by Demod 80 with 4 at 1,2 +Id : 452, {_}: inverse (inverse ?993) =<= multiply ?993 identity [993] by Super 450 with 12 at 1,3 +Id : 467, {_}: ?993 =<= multiply ?993 identity [993] by Demod 452 with 12 at 2 +Id : 472, {_}: multiply ?1004 (union ?1005 identity) =?= union (multiply ?1004 ?1005) ?1004 [1005, 1004] by Super 32 with 467 at 2,3 +Id : 3162, {_}: multiply ?4224 (positive_part ?4225) =<= union (multiply ?4224 ?4225) ?4224 [4225, 4224] by Demod 472 with 40 at 2,2 +Id : 3164, {_}: multiply (inverse ?4229) (positive_part ?4229) =>= union identity (inverse ?4229) [4229] by Super 3162 with 6 at 1,3 +Id : 336, {_}: union identity ?835 =>= positive_part ?835 [835] by Super 22 with 40 at 3 +Id : 3201, {_}: multiply (inverse ?4229) (positive_part ?4229) =>= positive_part (inverse ?4229) [4229] by Demod 3164 with 336 at 3 +Id : 3231, {_}: inverse (positive_part (inverse ?4304)) =<= multiply (inverse (positive_part ?4304)) ?4304 [4304] by Super 81 with 3201 at 1,2 +Id : 8905, {_}: ?10899 =<= multiply (inverse (inverse (positive_part ?10899))) (inverse (positive_part (inverse ?10899))) [10899] by Super 8890 with 3231 at 2,3 +Id : 8940, {_}: ?10899 =<= inverse (multiply (positive_part (inverse ?10899)) (inverse (positive_part ?10899))) [10899] by Demod 8905 with 14 at 3 +Id : 83, {_}: inverse (multiply ?153 (inverse ?152)) =>= multiply ?152 (inverse ?153) [152, 153] by Super 79 with 12 at 1,3 +Id : 8941, {_}: ?10899 =<= multiply (positive_part ?10899) (inverse (positive_part (inverse ?10899))) [10899] by Demod 8940 with 83 at 3 +Id : 310, {_}: multiply (intersection (inverse ?798) ?797) ?798 =>= intersection identity (multiply ?797 ?798) [797, 798] by Super 303 with 6 at 1,3 +Id : 355, {_}: intersection identity ?867 =>= negative_part ?867 [867] by Super 20 with 42 at 3 +Id : 15926, {_}: multiply (intersection (inverse ?16735) ?16736) ?16735 =>= negative_part (multiply ?16736 ?16735) [16736, 16735] by Demod 310 with 355 at 3 +Id : 15951, {_}: multiply (negative_part (inverse ?16817)) ?16817 =>= negative_part (multiply identity ?16817) [16817] by Super 15926 with 42 at 1,2 +Id : 15996, {_}: multiply (negative_part (inverse ?16817)) ?16817 =>= negative_part ?16817 [16817] by Demod 15951 with 4 at 1,3 +Id : 237, {_}: multiply (inverse ?620) (intersection ?620 ?621) =>= intersection identity (multiply (inverse ?620) ?621) [621, 620] by Super 230 with 6 at 1,3 +Id : 9389, {_}: multiply (inverse ?620) (intersection ?620 ?621) =>= negative_part (multiply (inverse ?620) ?621) [621, 620] by Demod 237 with 355 at 3 +Id : 387, {_}: intersection (positive_part ?915) ?915 =>= ?915 [915] by Super 30 with 336 at 1,2 +Id : 274, {_}: multiply (union (inverse ?708) ?707) ?708 =>= union identity (multiply ?707 ?708) [707, 708] by Super 267 with 6 at 1,3 +Id : 9866, {_}: multiply (union (inverse ?12356) ?12357) ?12356 =>= positive_part (multiply ?12357 ?12356) [12357, 12356] by Demod 274 with 336 at 3 +Id : 384, {_}: union identity (union ?906 ?907) =>= union (positive_part ?906) ?907 [907, 906] by Super 26 with 336 at 1,3 +Id : 394, {_}: positive_part (union ?906 ?907) =>= union (positive_part ?906) ?907 [907, 906] by Demod 384 with 336 at 2 +Id : 339, {_}: union ?842 (union ?843 identity) =>= positive_part (union ?842 ?843) [843, 842] by Super 26 with 40 at 3 +Id : 350, {_}: union ?842 (positive_part ?843) =<= positive_part (union ?842 ?843) [843, 842] by Demod 339 with 40 at 2,2 +Id : 667, {_}: union ?906 (positive_part ?907) =?= union (positive_part ?906) ?907 [907, 906] by Demod 394 with 350 at 2 +Id : 414, {_}: union (negative_part ?942) ?942 =>= ?942 [942] by Super 28 with 355 at 1,2 +Id : 479, {_}: multiply ?1021 (intersection ?1022 identity) =?= intersection (multiply ?1021 ?1022) ?1021 [1022, 1021] by Super 34 with 467 at 2,3 +Id : 2583, {_}: multiply ?3618 (negative_part ?3619) =<= intersection (multiply ?3618 ?3619) ?3618 [3619, 3618] by Demod 479 with 42 at 2,2 +Id : 2585, {_}: multiply (inverse ?3623) (negative_part ?3623) =>= intersection identity (inverse ?3623) [3623] by Super 2583 with 6 at 1,3 +Id : 2636, {_}: multiply (inverse ?3692) (negative_part ?3692) =>= negative_part (inverse ?3692) [3692] by Demod 2585 with 355 at 3 +Id : 358, {_}: intersection ?874 (intersection ?875 identity) =>= negative_part (intersection ?874 ?875) [875, 874] by Super 24 with 42 at 3 +Id : 603, {_}: intersection ?1157 (negative_part ?1158) =<= negative_part (intersection ?1157 ?1158) [1158, 1157] by Demod 358 with 42 at 2,2 +Id : 613, {_}: intersection ?1189 (negative_part identity) =>= negative_part (negative_part ?1189) [1189] by Super 603 with 42 at 1,3 +Id : 354, {_}: negative_part identity =>= identity [] by Super 16 with 42 at 2 +Id : 624, {_}: intersection ?1189 identity =<= negative_part (negative_part ?1189) [1189] by Demod 613 with 354 at 2,2 +Id : 625, {_}: negative_part ?1189 =<= negative_part (negative_part ?1189) [1189] by Demod 624 with 42 at 2 +Id : 2642, {_}: multiply (inverse (negative_part ?3706)) (negative_part ?3706) =>= negative_part (inverse (negative_part ?3706)) [3706] by Super 2636 with 625 at 2,2 +Id : 2662, {_}: identity =<= negative_part (inverse (negative_part ?3706)) [3706] by Demod 2642 with 6 at 2 +Id : 2732, {_}: union identity (inverse (negative_part ?3792)) =>= inverse (negative_part ?3792) [3792] by Super 414 with 2662 at 1,2 +Id : 2769, {_}: positive_part (inverse (negative_part ?3792)) =>= inverse (negative_part ?3792) [3792] by Demod 2732 with 336 at 2 +Id : 2879, {_}: union (inverse (negative_part ?3906)) (positive_part ?3907) =>= union (inverse (negative_part ?3906)) ?3907 [3907, 3906] by Super 667 with 2769 at 1,3 +Id : 9889, {_}: multiply (union (inverse (negative_part ?12432)) ?12433) (negative_part ?12432) =>= positive_part (multiply (positive_part ?12433) (negative_part ?12432)) [12433, 12432] by Super 9866 with 2879 at 1,2 +Id : 9846, {_}: multiply (union (inverse ?708) ?707) ?708 =>= positive_part (multiply ?707 ?708) [707, 708] by Demod 274 with 336 at 3 +Id : 9923, {_}: positive_part (multiply ?12433 (negative_part ?12432)) =<= positive_part (multiply (positive_part ?12433) (negative_part ?12432)) [12432, 12433] by Demod 9889 with 9846 at 2 +Id : 492, {_}: multiply ?1021 (negative_part ?1022) =<= intersection (multiply ?1021 ?1022) ?1021 [1022, 1021] by Demod 479 with 42 at 2,2 +Id : 9892, {_}: multiply (positive_part (inverse ?12441)) ?12441 =>= positive_part (multiply identity ?12441) [12441] by Super 9866 with 40 at 1,2 +Id : 9926, {_}: multiply (positive_part (inverse ?12441)) ?12441 =>= positive_part ?12441 [12441] by Demod 9892 with 4 at 1,3 +Id : 9949, {_}: multiply (positive_part (inverse ?12495)) (negative_part ?12495) =>= intersection (positive_part ?12495) (positive_part (inverse ?12495)) [12495] by Super 492 with 9926 at 1,3 +Id : 10776, {_}: positive_part (multiply (inverse ?13313) (negative_part ?13313)) =<= positive_part (intersection (positive_part ?13313) (positive_part (inverse ?13313))) [13313] by Super 9923 with 9949 at 1,3 +Id : 2613, {_}: multiply (inverse ?3623) (negative_part ?3623) =>= negative_part (inverse ?3623) [3623] by Demod 2585 with 355 at 3 +Id : 10814, {_}: positive_part (negative_part (inverse ?13313)) =<= positive_part (intersection (positive_part ?13313) (positive_part (inverse ?13313))) [13313] by Demod 10776 with 2613 at 1,2 +Id : 334, {_}: positive_part (intersection ?832 identity) =>= identity [832] by Super 28 with 40 at 2 +Id : 507, {_}: positive_part (negative_part ?832) =>= identity [832] by Demod 334 with 42 at 1,2 +Id : 10815, {_}: identity =<= positive_part (intersection (positive_part ?13313) (positive_part (inverse ?13313))) [13313] by Demod 10814 with 507 at 2 +Id : 51491, {_}: intersection identity (intersection (positive_part ?50477) (positive_part (inverse ?50477))) =>= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Super 387 with 10815 at 1,2 +Id : 51798, {_}: negative_part (intersection (positive_part ?50477) (positive_part (inverse ?50477))) =>= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Demod 51491 with 355 at 2 +Id : 369, {_}: intersection ?874 (negative_part ?875) =<= negative_part (intersection ?874 ?875) [875, 874] by Demod 358 with 42 at 2,2 +Id : 51799, {_}: intersection (positive_part ?50477) (negative_part (positive_part (inverse ?50477))) =>= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Demod 51798 with 369 at 2 +Id : 51800, {_}: intersection (negative_part (positive_part (inverse ?50477))) (positive_part ?50477) =>= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Demod 51799 with 20 at 2 +Id : 411, {_}: intersection identity (intersection ?933 ?934) =>= intersection (negative_part ?933) ?934 [934, 933] by Super 24 with 355 at 1,3 +Id : 421, {_}: negative_part (intersection ?933 ?934) =>= intersection (negative_part ?933) ?934 [934, 933] by Demod 411 with 355 at 2 +Id : 795, {_}: intersection ?1452 (negative_part ?1453) =?= intersection (negative_part ?1452) ?1453 [1453, 1452] by Demod 421 with 369 at 2 +Id : 353, {_}: negative_part (union ?864 identity) =>= identity [864] by Super 30 with 42 at 2 +Id : 371, {_}: negative_part (positive_part ?864) =>= identity [864] by Demod 353 with 40 at 1,2 +Id : 797, {_}: intersection (positive_part ?1457) (negative_part ?1458) =>= intersection identity ?1458 [1458, 1457] by Super 795 with 371 at 1,3 +Id : 834, {_}: intersection (negative_part ?1458) (positive_part ?1457) =>= intersection identity ?1458 [1457, 1458] by Demod 797 with 20 at 2 +Id : 835, {_}: intersection (negative_part ?1458) (positive_part ?1457) =>= negative_part ?1458 [1457, 1458] by Demod 834 with 355 at 3 +Id : 51801, {_}: negative_part (positive_part (inverse ?50477)) =<= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Demod 51800 with 835 at 2 +Id : 51802, {_}: identity =<= intersection (positive_part ?50477) (positive_part (inverse ?50477)) [50477] by Demod 51801 with 371 at 2 +Id : 52174, {_}: multiply (inverse (positive_part ?50853)) identity =<= negative_part (multiply (inverse (positive_part ?50853)) (positive_part (inverse ?50853))) [50853] by Super 9389 with 51802 at 2,2 +Id : 52262, {_}: inverse (positive_part ?50853) =<= negative_part (multiply (inverse (positive_part ?50853)) (positive_part (inverse ?50853))) [50853] by Demod 52174 with 467 at 2 +Id : 65, {_}: ?103 =<= multiply (inverse ?102) (multiply ?102 ?103) [102, 103] by Demod 56 with 4 at 2 +Id : 9954, {_}: multiply (positive_part (inverse ?12505)) ?12505 =>= positive_part ?12505 [12505] by Demod 9892 with 4 at 1,3 +Id : 9956, {_}: multiply (positive_part ?12508) (inverse ?12508) =>= positive_part (inverse ?12508) [12508] by Super 9954 with 12 at 1,1,2 +Id : 10049, {_}: inverse ?12562 =<= multiply (inverse (positive_part ?12562)) (positive_part (inverse ?12562)) [12562] by Super 65 with 9956 at 2,3 +Id : 52263, {_}: inverse (positive_part ?50853) =<= negative_part (inverse ?50853) [50853] by Demod 52262 with 10049 at 1,3 +Id : 52532, {_}: multiply (inverse (positive_part ?16817)) ?16817 =>= negative_part ?16817 [16817] by Demod 15996 with 52263 at 1,2 +Id : 52563, {_}: inverse (positive_part (inverse ?16817)) =>= negative_part ?16817 [16817] by Demod 52532 with 3231 at 2 +Id : 52572, {_}: ?10899 =<= multiply (positive_part ?10899) (negative_part ?10899) [10899] by Demod 8941 with 52563 at 2,3 +Id : 52951, {_}: a === a [] by Demod 2 with 52572 at 2 +Id : 2, {_}: multiply (positive_part a) (negative_part a) =>= a [] by prove_product +% SZS output end CNFRefutation for GRP114-1.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 87 + associativity_of_glb is 84 + associativity_of_lub is 83 + b is 97 + c is 96 + glb_absorbtion is 79 + greatest_lower_bound is 94 + idempotence_of_gld is 81 + idempotence_of_lub is 82 + identity is 92 + inverse is 89 + least_upper_bound is 95 + left_identity is 90 + left_inverse is 88 + lub_absorbtion is 80 + monotony_glb1 is 77 + monotony_glb2 is 75 + monotony_lub1 is 78 + monotony_lub2 is 76 + multiply is 91 + prove_distrun is 93 + symmetry_of_glb is 86 + symmetry_of_lub is 85 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Goal + Id : 2, {_}: + greatest_lower_bound a (least_upper_bound b c) + =<= + least_upper_bound (greatest_lower_bound a b) + (greatest_lower_bound a c) + [] by prove_distrun +Last chance: 1246129493.23 +Last chance: all is indexed 1246129513.23 +Last chance: failed over 100 goal 1246129513.24 +FAILURE in 0 iterations +% SZS status Timeout for GRP164-2.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + associativity_of_glb is 84 + associativity_of_lub is 83 + glb_absorbtion is 79 + greatest_lower_bound is 88 + idempotence_of_gld is 81 + idempotence_of_lub is 82 + identity is 93 + inverse is 91 + lat4_1 is 74 + lat4_2 is 73 + lat4_3 is 72 + lat4_4 is 71 + least_upper_bound is 86 + left_identity is 92 + left_inverse is 90 + lub_absorbtion is 80 + monotony_glb1 is 77 + monotony_glb2 is 75 + monotony_lub1 is 78 + monotony_lub2 is 76 + multiply is 95 + negative_part is 96 + positive_part is 97 + prove_lat4 is 94 + symmetry_of_glb is 87 + symmetry_of_lub is 85 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: + positive_part ?50 =<= least_upper_bound ?50 identity + [50] by lat4_1 ?50 + Id : 36, {_}: + negative_part ?52 =<= greatest_lower_bound ?52 identity + [52] by lat4_2 ?52 + Id : 38, {_}: + least_upper_bound ?54 (greatest_lower_bound ?55 ?56) + =<= + greatest_lower_bound (least_upper_bound ?54 ?55) + (least_upper_bound ?54 ?56) + [56, 55, 54] by lat4_3 ?54 ?55 ?56 + Id : 40, {_}: + greatest_lower_bound ?58 (least_upper_bound ?59 ?60) + =<= + least_upper_bound (greatest_lower_bound ?58 ?59) + (greatest_lower_bound ?58 ?60) + [60, 59, 58] by lat4_4 ?58 ?59 ?60 +Goal + Id : 2, {_}: + a =<= multiply (positive_part a) (negative_part a) + [] by prove_lat4 +Found proof, 4.832821s +% SZS status Unsatisfiable for GRP167-1.p +% SZS output start CNFRefutation for GRP167-1.p +Id : 202, {_}: multiply ?551 (greatest_lower_bound ?552 ?553) =<= greatest_lower_bound (multiply ?551 ?552) (multiply ?551 ?553) [553, 552, 551] by monotony_glb1 ?551 ?552 ?553 +Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 +Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 +Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 +Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 +Id : 171, {_}: multiply ?475 (least_upper_bound ?476 ?477) =<= least_upper_bound (multiply ?475 ?476) (multiply ?475 ?477) [477, 476, 475] by monotony_lub1 ?475 ?476 ?477 +Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 +Id : 32, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Id : 384, {_}: greatest_lower_bound ?977 (least_upper_bound ?978 ?979) =<= least_upper_bound (greatest_lower_bound ?977 ?978) (greatest_lower_bound ?977 ?979) [979, 978, 977] by lat4_4 ?977 ?978 ?979 +Id : 34, {_}: positive_part ?50 =<= least_upper_bound ?50 identity [50] by lat4_1 ?50 +Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 +Id : 236, {_}: multiply (least_upper_bound ?630 ?631) ?632 =<= least_upper_bound (multiply ?630 ?632) (multiply ?631 ?632) [632, 631, 630] by monotony_lub2 ?630 ?631 ?632 +Id : 36, {_}: negative_part ?52 =<= greatest_lower_bound ?52 identity [52] by lat4_2 ?52 +Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 +Id : 269, {_}: multiply (greatest_lower_bound ?712 ?713) ?714 =<= greatest_lower_bound (multiply ?712 ?714) (multiply ?713 ?714) [714, 713, 712] by monotony_glb2 ?712 ?713 ?714 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 45, {_}: multiply (multiply ?70 ?71) ?72 =?= multiply ?70 (multiply ?71 ?72) [72, 71, 70] by associativity ?70 ?71 ?72 +Id : 54, {_}: multiply identity ?105 =<= multiply (inverse ?104) (multiply ?104 ?105) [104, 105] by Super 45 with 6 at 1,2 +Id : 63, {_}: ?105 =<= multiply (inverse ?104) (multiply ?104 ?105) [104, 105] by Demod 54 with 4 at 2 +Id : 275, {_}: multiply (greatest_lower_bound (inverse ?736) ?735) ?736 =>= greatest_lower_bound identity (multiply ?735 ?736) [735, 736] by Super 269 with 6 at 1,3 +Id : 314, {_}: greatest_lower_bound identity ?795 =>= negative_part ?795 [795] by Super 10 with 36 at 3 +Id : 16391, {_}: multiply (greatest_lower_bound (inverse ?19768) ?19769) ?19768 =>= negative_part (multiply ?19769 ?19768) [19769, 19768] by Demod 275 with 314 at 3 +Id : 16415, {_}: multiply (negative_part (inverse ?19845)) ?19845 =>= negative_part (multiply identity ?19845) [19845] by Super 16391 with 36 at 1,2 +Id : 16452, {_}: multiply (negative_part (inverse ?19845)) ?19845 =>= negative_part ?19845 [19845] by Demod 16415 with 4 at 1,3 +Id : 16463, {_}: ?19856 =<= multiply (inverse (negative_part (inverse ?19856))) (negative_part ?19856) [19856] by Super 63 with 16452 at 2,3 +Id : 242, {_}: multiply (least_upper_bound (inverse ?654) ?653) ?654 =>= least_upper_bound identity (multiply ?653 ?654) [653, 654] by Super 236 with 6 at 1,3 +Id : 298, {_}: least_upper_bound identity ?767 =>= positive_part ?767 [767] by Super 12 with 34 at 3 +Id : 14215, {_}: multiply (least_upper_bound (inverse ?17599) ?17600) ?17599 =>= positive_part (multiply ?17600 ?17599) [17600, 17599] by Demod 242 with 298 at 3 +Id : 14238, {_}: multiply (positive_part (inverse ?17673)) ?17673 =>= positive_part (multiply identity ?17673) [17673] by Super 14215 with 34 at 1,2 +Id : 14268, {_}: multiply (positive_part (inverse ?17673)) ?17673 =>= positive_part ?17673 [17673] by Demod 14238 with 4 at 1,3 +Id : 14200, {_}: multiply (least_upper_bound (inverse ?654) ?653) ?654 =>= positive_part (multiply ?653 ?654) [653, 654] by Demod 242 with 298 at 3 +Id : 393, {_}: greatest_lower_bound ?1016 (least_upper_bound ?1017 identity) =<= least_upper_bound (greatest_lower_bound ?1016 ?1017) (negative_part ?1016) [1017, 1016] by Super 384 with 36 at 2,3 +Id : 17844, {_}: greatest_lower_bound ?21384 (positive_part ?21385) =<= least_upper_bound (greatest_lower_bound ?21384 ?21385) (negative_part ?21384) [21385, 21384] by Demod 393 with 34 at 2,2 +Id : 17873, {_}: greatest_lower_bound ?21489 (positive_part ?21490) =<= least_upper_bound (greatest_lower_bound ?21490 ?21489) (negative_part ?21489) [21490, 21489] by Super 17844 with 10 at 1,3 +Id : 16475, {_}: multiply (greatest_lower_bound (negative_part (inverse ?19889)) ?19890) ?19889 =>= greatest_lower_bound (negative_part ?19889) (multiply ?19890 ?19889) [19890, 19889] by Super 32 with 16452 at 1,3 +Id : 480, {_}: greatest_lower_bound identity (greatest_lower_bound ?1137 ?1138) =>= greatest_lower_bound (negative_part ?1137) ?1138 [1138, 1137] by Super 14 with 314 at 1,3 +Id : 492, {_}: negative_part (greatest_lower_bound ?1137 ?1138) =>= greatest_lower_bound (negative_part ?1137) ?1138 [1138, 1137] by Demod 480 with 314 at 2 +Id : 317, {_}: greatest_lower_bound ?802 (greatest_lower_bound ?803 identity) =>= negative_part (greatest_lower_bound ?802 ?803) [803, 802] by Super 14 with 36 at 3 +Id : 326, {_}: greatest_lower_bound ?802 (negative_part ?803) =<= negative_part (greatest_lower_bound ?802 ?803) [803, 802] by Demod 317 with 36 at 2,2 +Id : 770, {_}: greatest_lower_bound ?1137 (negative_part ?1138) =?= greatest_lower_bound (negative_part ?1137) ?1138 [1138, 1137] by Demod 492 with 326 at 2 +Id : 16503, {_}: multiply (greatest_lower_bound (inverse ?19889) (negative_part ?19890)) ?19889 =>= greatest_lower_bound (negative_part ?19889) (multiply ?19890 ?19889) [19890, 19889] by Demod 16475 with 770 at 1,2 +Id : 16376, {_}: multiply (greatest_lower_bound (inverse ?736) ?735) ?736 =>= negative_part (multiply ?735 ?736) [735, 736] by Demod 275 with 314 at 3 +Id : 16504, {_}: negative_part (multiply (negative_part ?19890) ?19889) =<= greatest_lower_bound (negative_part ?19889) (multiply ?19890 ?19889) [19889, 19890] by Demod 16503 with 16376 at 2 +Id : 16505, {_}: negative_part (multiply (negative_part ?19890) ?19889) =<= greatest_lower_bound (multiply ?19890 ?19889) (negative_part ?19889) [19889, 19890] by Demod 16504 with 10 at 3 +Id : 47, {_}: multiply (multiply ?77 (inverse ?78)) ?78 =>= multiply ?77 identity [78, 77] by Super 45 with 6 at 2,3 +Id : 4534, {_}: multiply (multiply ?6403 (inverse ?6404)) ?6404 =>= multiply ?6403 identity [6404, 6403] by Super 45 with 6 at 2,3 +Id : 4537, {_}: multiply identity ?6410 =<= multiply (inverse (inverse ?6410)) identity [6410] by Super 4534 with 6 at 1,2 +Id : 4552, {_}: ?6410 =<= multiply (inverse (inverse ?6410)) identity [6410] by Demod 4537 with 4 at 2 +Id : 46, {_}: multiply (multiply ?74 identity) ?75 =>= multiply ?74 ?75 [75, 74] by Super 45 with 4 at 2,3 +Id : 4557, {_}: multiply ?6432 ?6433 =<= multiply (inverse (inverse ?6432)) ?6433 [6433, 6432] by Super 46 with 4552 at 1,2 +Id : 4577, {_}: ?6410 =<= multiply ?6410 identity [6410] by Demod 4552 with 4557 at 3 +Id : 4578, {_}: multiply (multiply ?77 (inverse ?78)) ?78 =>= ?77 [78, 77] by Demod 47 with 4577 at 3 +Id : 4593, {_}: inverse (inverse ?6519) =<= multiply ?6519 identity [6519] by Super 4577 with 4557 at 3 +Id : 4599, {_}: inverse (inverse ?6519) =>= ?6519 [6519] by Demod 4593 with 4577 at 3 +Id : 4627, {_}: multiply (multiply ?6536 ?6535) (inverse ?6535) =>= ?6536 [6535, 6536] by Super 4578 with 4599 at 2,1,2 +Id : 62773, {_}: inverse ?65768 =<= multiply (inverse (multiply ?65769 ?65768)) ?65769 [65769, 65768] by Super 63 with 4627 at 2,3 +Id : 177, {_}: multiply (inverse ?498) (least_upper_bound ?498 ?499) =>= least_upper_bound identity (multiply (inverse ?498) ?499) [499, 498] by Super 171 with 6 at 1,3 +Id : 4722, {_}: multiply (inverse ?6711) (least_upper_bound ?6711 ?6712) =>= positive_part (multiply (inverse ?6711) ?6712) [6712, 6711] by Demod 177 with 298 at 3 +Id : 4745, {_}: multiply (inverse ?6778) (positive_part ?6778) =?= positive_part (multiply (inverse ?6778) identity) [6778] by Super 4722 with 34 at 2,2 +Id : 4793, {_}: multiply (inverse ?6833) (positive_part ?6833) =>= positive_part (inverse ?6833) [6833] by Demod 4745 with 4577 at 1,3 +Id : 4805, {_}: multiply ?6862 (positive_part (inverse ?6862)) =>= positive_part (inverse (inverse ?6862)) [6862] by Super 4793 with 4599 at 1,2 +Id : 4824, {_}: multiply ?6862 (positive_part (inverse ?6862)) =>= positive_part ?6862 [6862] by Demod 4805 with 4599 at 1,3 +Id : 62790, {_}: inverse (positive_part (inverse ?65816)) =<= multiply (inverse (positive_part ?65816)) ?65816 [65816] by Super 62773 with 4824 at 1,1,3 +Id : 63210, {_}: negative_part (multiply (negative_part (inverse (positive_part ?66345))) ?66345) =>= greatest_lower_bound (inverse (positive_part (inverse ?66345))) (negative_part ?66345) [66345] by Super 16505 with 62790 at 1,3 +Id : 303, {_}: greatest_lower_bound ?780 (positive_part ?780) =>= ?780 [780] by Super 24 with 34 at 2,2 +Id : 535, {_}: greatest_lower_bound (positive_part ?1185) ?1185 =>= ?1185 [1185] by Super 10 with 303 at 3 +Id : 301, {_}: least_upper_bound ?774 (least_upper_bound ?775 identity) =>= positive_part (least_upper_bound ?774 ?775) [775, 774] by Super 16 with 34 at 3 +Id : 566, {_}: least_upper_bound ?1228 (positive_part ?1229) =<= positive_part (least_upper_bound ?1228 ?1229) [1229, 1228] by Demod 301 with 34 at 2,2 +Id : 576, {_}: least_upper_bound ?1260 (positive_part identity) =>= positive_part (positive_part ?1260) [1260] by Super 566 with 34 at 1,3 +Id : 297, {_}: positive_part identity =>= identity [] by Super 18 with 34 at 2 +Id : 590, {_}: least_upper_bound ?1260 identity =<= positive_part (positive_part ?1260) [1260] by Demod 576 with 297 at 2,2 +Id : 591, {_}: positive_part ?1260 =<= positive_part (positive_part ?1260) [1260] by Demod 590 with 34 at 2 +Id : 4802, {_}: multiply (inverse (positive_part ?6856)) (positive_part ?6856) =>= positive_part (inverse (positive_part ?6856)) [6856] by Super 4793 with 591 at 2,2 +Id : 4819, {_}: identity =<= positive_part (inverse (positive_part ?6856)) [6856] by Demod 4802 with 6 at 2 +Id : 4905, {_}: greatest_lower_bound identity (inverse (positive_part ?6968)) =>= inverse (positive_part ?6968) [6968] by Super 535 with 4819 at 1,2 +Id : 4952, {_}: negative_part (inverse (positive_part ?6968)) =>= inverse (positive_part ?6968) [6968] by Demod 4905 with 314 at 2 +Id : 63307, {_}: negative_part (multiply (inverse (positive_part ?66345)) ?66345) =<= greatest_lower_bound (inverse (positive_part (inverse ?66345))) (negative_part ?66345) [66345] by Demod 63210 with 4952 at 1,1,2 +Id : 63308, {_}: negative_part (inverse (positive_part (inverse ?66345))) =<= greatest_lower_bound (inverse (positive_part (inverse ?66345))) (negative_part ?66345) [66345] by Demod 63307 with 62790 at 1,2 +Id : 63309, {_}: inverse (positive_part (inverse ?66345)) =<= greatest_lower_bound (inverse (positive_part (inverse ?66345))) (negative_part ?66345) [66345] by Demod 63308 with 4952 at 2 +Id : 5097, {_}: greatest_lower_bound (inverse (positive_part ?7140)) (negative_part ?7141) =>= greatest_lower_bound (inverse (positive_part ?7140)) ?7141 [7141, 7140] by Super 770 with 4952 at 1,3 +Id : 63310, {_}: inverse (positive_part (inverse ?66345)) =<= greatest_lower_bound (inverse (positive_part (inverse ?66345))) ?66345 [66345] by Demod 63309 with 5097 at 3 +Id : 63817, {_}: greatest_lower_bound ?66966 (positive_part (inverse (positive_part (inverse ?66966)))) =>= least_upper_bound (inverse (positive_part (inverse ?66966))) (negative_part ?66966) [66966] by Super 17873 with 63310 at 1,3 +Id : 64085, {_}: greatest_lower_bound ?66966 identity =<= least_upper_bound (inverse (positive_part (inverse ?66966))) (negative_part ?66966) [66966] by Demod 63817 with 4819 at 2,2 +Id : 64086, {_}: negative_part ?66966 =<= least_upper_bound (inverse (positive_part (inverse ?66966))) (negative_part ?66966) [66966] by Demod 64085 with 36 at 2 +Id : 81154, {_}: multiply (negative_part ?80770) (positive_part (inverse ?80770)) =<= positive_part (multiply (negative_part ?80770) (positive_part (inverse ?80770))) [80770] by Super 14200 with 64086 at 1,2 +Id : 4710, {_}: multiply (inverse ?498) (least_upper_bound ?498 ?499) =>= positive_part (multiply (inverse ?498) ?499) [499, 498] by Demod 177 with 298 at 3 +Id : 444, {_}: least_upper_bound identity (least_upper_bound ?1100 ?1101) =>= least_upper_bound (positive_part ?1100) ?1101 [1101, 1100] by Super 16 with 298 at 1,3 +Id : 455, {_}: positive_part (least_upper_bound ?1100 ?1101) =>= least_upper_bound (positive_part ?1100) ?1101 [1101, 1100] by Demod 444 with 298 at 2 +Id : 310, {_}: least_upper_bound ?774 (positive_part ?775) =<= positive_part (least_upper_bound ?774 ?775) [775, 774] by Demod 301 with 34 at 2,2 +Id : 677, {_}: least_upper_bound ?1100 (positive_part ?1101) =?= least_upper_bound (positive_part ?1100) ?1101 [1101, 1100] by Demod 455 with 310 at 2 +Id : 483, {_}: least_upper_bound identity (negative_part ?1146) =>= identity [1146] by Super 22 with 314 at 2,2 +Id : 491, {_}: positive_part (negative_part ?1146) =>= identity [1146] by Demod 483 with 298 at 2 +Id : 4795, {_}: multiply (inverse (negative_part ?6836)) identity =>= positive_part (inverse (negative_part ?6836)) [6836] by Super 4793 with 491 at 2,2 +Id : 4816, {_}: inverse (negative_part ?6836) =<= positive_part (inverse (negative_part ?6836)) [6836] by Demod 4795 with 4577 at 2 +Id : 4838, {_}: least_upper_bound (inverse (negative_part ?6900)) (positive_part ?6901) =>= least_upper_bound (inverse (negative_part ?6900)) ?6901 [6901, 6900] by Super 677 with 4816 at 1,3 +Id : 6365, {_}: multiply (inverse (inverse (negative_part ?8525))) (least_upper_bound (inverse (negative_part ?8525)) ?8526) =>= positive_part (multiply (inverse (inverse (negative_part ?8525))) (positive_part ?8526)) [8526, 8525] by Super 4710 with 4838 at 2,2 +Id : 6403, {_}: positive_part (multiply (inverse (inverse (negative_part ?8525))) ?8526) =<= positive_part (multiply (inverse (inverse (negative_part ?8525))) (positive_part ?8526)) [8526, 8525] by Demod 6365 with 4710 at 2 +Id : 6404, {_}: positive_part (multiply (negative_part ?8525) ?8526) =<= positive_part (multiply (inverse (inverse (negative_part ?8525))) (positive_part ?8526)) [8526, 8525] by Demod 6403 with 4599 at 1,1,2 +Id : 6405, {_}: positive_part (multiply (negative_part ?8525) ?8526) =<= positive_part (multiply (negative_part ?8525) (positive_part ?8526)) [8526, 8525] by Demod 6404 with 4599 at 1,1,3 +Id : 81274, {_}: multiply (negative_part ?80770) (positive_part (inverse ?80770)) =<= positive_part (multiply (negative_part ?80770) (inverse ?80770)) [80770] by Demod 81154 with 6405 at 3 +Id : 16478, {_}: multiply (negative_part (inverse ?19896)) ?19896 =>= negative_part ?19896 [19896] by Demod 16415 with 4 at 1,3 +Id : 16480, {_}: multiply (negative_part ?19899) (inverse ?19899) =>= negative_part (inverse ?19899) [19899] by Super 16478 with 4599 at 1,1,2 +Id : 81275, {_}: multiply (negative_part ?80770) (positive_part (inverse ?80770)) =>= positive_part (negative_part (inverse ?80770)) [80770] by Demod 81274 with 16480 at 1,3 +Id : 81276, {_}: multiply (negative_part ?80770) (positive_part (inverse ?80770)) =>= identity [80770] by Demod 81275 with 491 at 3 +Id : 81601, {_}: positive_part (inverse ?81005) =<= multiply (inverse (negative_part ?81005)) identity [81005] by Super 63 with 81276 at 2,3 +Id : 81716, {_}: positive_part (inverse ?81005) =>= inverse (negative_part ?81005) [81005] by Demod 81601 with 4577 at 3 +Id : 81904, {_}: multiply (inverse (negative_part ?17673)) ?17673 =>= positive_part ?17673 [17673] by Demod 14268 with 81716 at 1,2 +Id : 208, {_}: multiply (inverse ?574) (greatest_lower_bound ?574 ?575) =>= greatest_lower_bound identity (multiply (inverse ?574) ?575) [575, 574] by Super 202 with 6 at 1,3 +Id : 13518, {_}: multiply (inverse ?16653) (greatest_lower_bound ?16653 ?16654) =>= negative_part (multiply (inverse ?16653) ?16654) [16654, 16653] by Demod 208 with 314 at 3 +Id : 13544, {_}: multiply (inverse ?16729) (negative_part ?16729) =?= negative_part (multiply (inverse ?16729) identity) [16729] by Super 13518 with 36 at 2,2 +Id : 13624, {_}: multiply (inverse ?16816) (negative_part ?16816) =>= negative_part (inverse ?16816) [16816] by Demod 13544 with 4577 at 1,3 +Id : 13651, {_}: multiply ?16885 (negative_part (inverse ?16885)) =>= negative_part (inverse (inverse ?16885)) [16885] by Super 13624 with 4599 at 1,2 +Id : 13713, {_}: multiply ?16885 (negative_part (inverse ?16885)) =>= negative_part ?16885 [16885] by Demod 13651 with 4599 at 1,3 +Id : 62794, {_}: inverse (negative_part (inverse ?65826)) =<= multiply (inverse (negative_part ?65826)) ?65826 [65826] by Super 62773 with 13713 at 1,1,3 +Id : 81928, {_}: inverse (negative_part (inverse ?17673)) =>= positive_part ?17673 [17673] by Demod 81904 with 62794 at 2 +Id : 81935, {_}: ?19856 =<= multiply (positive_part ?19856) (negative_part ?19856) [19856] by Demod 16463 with 81928 at 1,3 +Id : 82404, {_}: a === a [] by Demod 2 with 81935 at 3 +Id : 2, {_}: a =<= multiply (positive_part a) (negative_part a) [] by prove_lat4 +% SZS output end CNFRefutation for GRP167-1.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + associativity_of_glb is 84 + associativity_of_lub is 83 + b is 97 + c is 96 + glb_absorbtion is 79 + greatest_lower_bound is 94 + idempotence_of_gld is 81 + idempotence_of_lub is 82 + identity is 92 + inverse is 90 + least_upper_bound is 86 + left_identity is 91 + left_inverse is 89 + lub_absorbtion is 80 + monotony_glb1 is 77 + monotony_glb2 is 75 + monotony_lub1 is 78 + monotony_lub2 is 76 + multiply is 95 + p09b_1 is 74 + p09b_2 is 73 + p09b_3 is 72 + p09b_4 is 71 + prove_p09b is 93 + symmetry_of_glb is 87 + symmetry_of_lub is 85 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: greatest_lower_bound identity a =>= identity [] by p09b_1 + Id : 36, {_}: greatest_lower_bound identity b =>= identity [] by p09b_2 + Id : 38, {_}: greatest_lower_bound identity c =>= identity [] by p09b_3 + Id : 40, {_}: greatest_lower_bound a b =>= identity [] by p09b_4 +Goal + Id : 2, {_}: + greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c + [] by prove_p09b +Found proof, 198.990674s +% SZS status Unsatisfiable for GRP178-2.p +% SZS output start CNFRefutation for GRP178-2.p +Id : 38, {_}: greatest_lower_bound identity c =>= identity [] by p09b_3 +Id : 30, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 +Id : 32, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 +Id : 34, {_}: greatest_lower_bound identity a =>= identity [] by p09b_1 +Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 +Id : 40, {_}: greatest_lower_bound a b =>= identity [] by p09b_4 +Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 +Id : 171, {_}: multiply ?467 (least_upper_bound ?468 ?469) =<= least_upper_bound (multiply ?467 ?468) (multiply ?467 ?469) [469, 468, 467] by monotony_lub1 ?467 ?468 ?469 +Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 +Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 +Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 +Id : 202, {_}: multiply ?543 (greatest_lower_bound ?544 ?545) =<= greatest_lower_bound (multiply ?543 ?544) (multiply ?543 ?545) [545, 544, 543] by monotony_glb1 ?543 ?544 ?545 +Id : 28, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 45, {_}: multiply (multiply ?62 ?63) ?64 =?= multiply ?62 (multiply ?63 ?64) [64, 63, 62] by associativity ?62 ?63 ?64 +Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 +Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 +Id : 54, {_}: multiply identity ?97 =<= multiply (inverse ?96) (multiply ?96 ?97) [96, 97] by Super 45 with 6 at 1,2 +Id : 63, {_}: ?97 =<= multiply (inverse ?96) (multiply ?96 ?97) [96, 97] by Demod 54 with 4 at 2 +Id : 47, {_}: multiply (multiply ?69 (inverse ?70)) ?70 =>= multiply ?69 identity [70, 69] by Super 45 with 6 at 2,3 +Id : 9265, {_}: multiply (multiply ?8232 (inverse ?8233)) ?8233 =>= multiply ?8232 identity [8233, 8232] by Super 45 with 6 at 2,3 +Id : 9268, {_}: multiply identity ?8239 =<= multiply (inverse (inverse ?8239)) identity [8239] by Super 9265 with 6 at 1,2 +Id : 9283, {_}: ?8239 =<= multiply (inverse (inverse ?8239)) identity [8239] by Demod 9268 with 4 at 2 +Id : 46, {_}: multiply (multiply ?66 identity) ?67 =>= multiply ?66 ?67 [67, 66] by Super 45 with 4 at 2,3 +Id : 9288, {_}: multiply ?8261 ?8262 =<= multiply (inverse (inverse ?8261)) ?8262 [8262, 8261] by Super 46 with 9283 at 1,2 +Id : 9304, {_}: ?8239 =<= multiply ?8239 identity [8239] by Demod 9283 with 9288 at 3 +Id : 9305, {_}: multiply (multiply ?69 (inverse ?70)) ?70 =>= ?69 [70, 69] by Demod 47 with 9304 at 3 +Id : 9320, {_}: inverse (inverse ?8348) =<= multiply ?8348 identity [8348] by Super 9304 with 9288 at 3 +Id : 9326, {_}: inverse (inverse ?8348) =>= ?8348 [8348] by Demod 9320 with 9304 at 3 +Id : 9354, {_}: multiply (multiply ?8365 ?8364) (inverse ?8364) =>= ?8365 [8364, 8365] by Super 9305 with 9326 at 2,1,2 +Id : 9315, {_}: multiply ?8330 (inverse ?8330) =>= identity [8330] by Super 6 with 9288 at 2 +Id : 9365, {_}: multiply ?8382 (greatest_lower_bound ?8383 (inverse ?8382)) =>= greatest_lower_bound (multiply ?8382 ?8383) identity [8383, 8382] by Super 28 with 9315 at 2,3 +Id : 9386, {_}: multiply ?8382 (greatest_lower_bound ?8383 (inverse ?8382)) =>= greatest_lower_bound identity (multiply ?8382 ?8383) [8383, 8382] by Demod 9365 with 10 at 3 +Id : 137579, {_}: multiply (inverse ?85743) (greatest_lower_bound ?85743 ?85744) =>= greatest_lower_bound identity (multiply (inverse ?85743) ?85744) [85744, 85743] by Super 202 with 6 at 1,3 +Id : 4862, {_}: greatest_lower_bound (least_upper_bound ?4719 ?4720) ?4719 =>= ?4719 [4720, 4719] by Super 10 with 24 at 3 +Id : 4863, {_}: greatest_lower_bound (least_upper_bound ?4723 ?4722) ?4722 =>= ?4722 [4722, 4723] by Super 4862 with 12 at 1,2 +Id : 173, {_}: multiply (inverse ?475) (least_upper_bound ?474 ?475) =>= least_upper_bound (multiply (inverse ?475) ?474) identity [474, 475] by Super 171 with 6 at 2,3 +Id : 9616, {_}: multiply (inverse ?8736) (least_upper_bound ?8737 ?8736) =>= least_upper_bound identity (multiply (inverse ?8736) ?8737) [8737, 8736] by Demod 173 with 12 at 3 +Id : 336, {_}: greatest_lower_bound b a =>= identity [] by Demod 40 with 10 at 2 +Id : 337, {_}: least_upper_bound b identity =>= b [] by Super 22 with 336 at 2,2 +Id : 349, {_}: least_upper_bound identity b =>= b [] by Demod 337 with 12 at 2 +Id : 9624, {_}: multiply (inverse b) b =<= least_upper_bound identity (multiply (inverse b) identity) [] by Super 9616 with 349 at 2,2 +Id : 9699, {_}: identity =<= least_upper_bound identity (multiply (inverse b) identity) [] by Demod 9624 with 6 at 2 +Id : 9700, {_}: identity =<= least_upper_bound identity (inverse b) [] by Demod 9699 with 9304 at 2,3 +Id : 9734, {_}: greatest_lower_bound identity (inverse b) =>= inverse b [] by Super 4863 with 9700 at 1,2 +Id : 9886, {_}: greatest_lower_bound ?8962 (inverse b) =<= greatest_lower_bound (greatest_lower_bound ?8962 identity) (inverse b) [8962] by Super 14 with 9734 at 2,2 +Id : 9910, {_}: greatest_lower_bound ?8962 (inverse b) =<= greatest_lower_bound (inverse b) (greatest_lower_bound ?8962 identity) [8962] by Demod 9886 with 10 at 3 +Id : 138060, {_}: multiply (inverse (inverse b)) (greatest_lower_bound ?86438 (inverse b)) =<= greatest_lower_bound identity (multiply (inverse (inverse b)) (greatest_lower_bound ?86438 identity)) [86438] by Super 137579 with 9910 at 2,2 +Id : 139832, {_}: multiply b (greatest_lower_bound ?86438 (inverse b)) =<= greatest_lower_bound identity (multiply (inverse (inverse b)) (greatest_lower_bound ?86438 identity)) [86438] by Demod 138060 with 9326 at 1,2 +Id : 139833, {_}: multiply b (greatest_lower_bound ?86438 (inverse b)) =<= greatest_lower_bound identity (multiply b (greatest_lower_bound ?86438 identity)) [86438] by Demod 139832 with 9326 at 1,2,3 +Id : 190, {_}: multiply (inverse ?475) (least_upper_bound ?474 ?475) =>= least_upper_bound identity (multiply (inverse ?475) ?474) [474, 475] by Demod 173 with 12 at 3 +Id : 299, {_}: greatest_lower_bound ?761 identity =<= greatest_lower_bound (greatest_lower_bound ?761 identity) a [761] by Super 14 with 34 at 2,2 +Id : 308, {_}: greatest_lower_bound ?761 identity =<= greatest_lower_bound a (greatest_lower_bound ?761 identity) [761] by Demod 299 with 10 at 3 +Id : 691, {_}: least_upper_bound a (greatest_lower_bound ?1150 identity) =>= a [1150] by Super 22 with 308 at 2,2 +Id : 693, {_}: least_upper_bound a identity =>= a [] by Super 691 with 20 at 2,2 +Id : 704, {_}: least_upper_bound identity a =>= a [] by Demod 693 with 12 at 2 +Id : 707, {_}: least_upper_bound ?1166 a =<= least_upper_bound (least_upper_bound ?1166 identity) a [1166] by Super 16 with 704 at 2,2 +Id : 1790, {_}: least_upper_bound ?1985 a =<= least_upper_bound a (least_upper_bound ?1985 identity) [1985] by Demod 707 with 12 at 3 +Id : 1791, {_}: least_upper_bound ?1987 a =<= least_upper_bound a (least_upper_bound identity ?1987) [1987] by Super 1790 with 12 at 2,3 +Id : 9745, {_}: least_upper_bound (inverse b) a =>= least_upper_bound a identity [] by Super 1791 with 9700 at 2,3 +Id : 9760, {_}: least_upper_bound a (inverse b) =>= least_upper_bound a identity [] by Demod 9745 with 12 at 2 +Id : 9761, {_}: least_upper_bound a (inverse b) =>= least_upper_bound identity a [] by Demod 9760 with 12 at 3 +Id : 9762, {_}: least_upper_bound a (inverse b) =>= a [] by Demod 9761 with 704 at 3 +Id : 9940, {_}: multiply (inverse (inverse b)) a =<= least_upper_bound identity (multiply (inverse (inverse b)) a) [] by Super 190 with 9762 at 2,2 +Id : 9943, {_}: multiply b a =<= least_upper_bound identity (multiply (inverse (inverse b)) a) [] by Demod 9940 with 9326 at 1,2 +Id : 9944, {_}: multiply b a =<= least_upper_bound identity (multiply b a) [] by Demod 9943 with 9326 at 1,2,3 +Id : 10784, {_}: greatest_lower_bound identity (multiply b a) =>= identity [] by Super 24 with 9944 at 2,2 +Id : 47323, {_}: greatest_lower_bound identity (greatest_lower_bound (multiply b a) ?32510) =>= greatest_lower_bound identity ?32510 [32510] by Super 14 with 10784 at 1,3 +Id : 69234, {_}: greatest_lower_bound identity (multiply b (greatest_lower_bound a ?46169)) =>= greatest_lower_bound identity (multiply b ?46169) [46169] by Super 47323 with 28 at 2,2 +Id : 339, {_}: greatest_lower_bound ?788 identity =<= greatest_lower_bound (greatest_lower_bound ?788 b) a [788] by Super 14 with 336 at 2,2 +Id : 348, {_}: greatest_lower_bound ?788 identity =<= greatest_lower_bound a (greatest_lower_bound ?788 b) [788] by Demod 339 with 10 at 3 +Id : 69253, {_}: greatest_lower_bound identity (multiply b (greatest_lower_bound ?46206 identity)) =<= greatest_lower_bound identity (multiply b (greatest_lower_bound ?46206 b)) [46206] by Super 69234 with 348 at 2,2,2 +Id : 353, {_}: least_upper_bound ?797 b =<= least_upper_bound (least_upper_bound ?797 identity) b [797] by Super 16 with 349 at 2,2 +Id : 607, {_}: least_upper_bound ?1066 b =<= least_upper_bound b (least_upper_bound ?1066 identity) [1066] by Demod 353 with 12 at 3 +Id : 608, {_}: least_upper_bound ?1068 b =<= least_upper_bound b (least_upper_bound identity ?1068) [1068] by Super 607 with 12 at 2,3 +Id : 9739, {_}: least_upper_bound (inverse b) b =>= least_upper_bound b identity [] by Super 608 with 9700 at 2,3 +Id : 9768, {_}: least_upper_bound b (inverse b) =>= least_upper_bound b identity [] by Demod 9739 with 12 at 2 +Id : 9769, {_}: least_upper_bound b (inverse b) =>= least_upper_bound identity b [] by Demod 9768 with 12 at 3 +Id : 9770, {_}: least_upper_bound b (inverse b) =>= b [] by Demod 9769 with 349 at 3 +Id : 9967, {_}: multiply (inverse (inverse b)) b =<= least_upper_bound identity (multiply (inverse (inverse b)) b) [] by Super 190 with 9770 at 2,2 +Id : 10010, {_}: multiply b b =<= least_upper_bound identity (multiply (inverse (inverse b)) b) [] by Demod 9967 with 9326 at 1,2 +Id : 10011, {_}: multiply b b =<= least_upper_bound identity (multiply b b) [] by Demod 10010 with 9326 at 1,2,3 +Id : 10830, {_}: greatest_lower_bound identity (multiply b b) =>= identity [] by Super 24 with 10011 at 2,2 +Id : 11235, {_}: greatest_lower_bound ?9614 identity =<= greatest_lower_bound (greatest_lower_bound ?9614 identity) (multiply b b) [9614] by Super 14 with 10830 at 2,2 +Id : 394, {_}: greatest_lower_bound ?844 identity =<= greatest_lower_bound a (greatest_lower_bound ?844 identity) [844] by Demod 299 with 10 at 3 +Id : 395, {_}: greatest_lower_bound ?846 identity =<= greatest_lower_bound a (greatest_lower_bound identity ?846) [846] by Super 394 with 10 at 2,3 +Id : 721, {_}: greatest_lower_bound a (greatest_lower_bound (greatest_lower_bound identity ?1178) ?1179) =>= greatest_lower_bound (greatest_lower_bound ?1178 identity) ?1179 [1179, 1178] by Super 14 with 395 at 1,3 +Id : 751, {_}: greatest_lower_bound a (greatest_lower_bound identity (greatest_lower_bound ?1178 ?1179)) =>= greatest_lower_bound (greatest_lower_bound ?1178 identity) ?1179 [1179, 1178] by Demod 721 with 14 at 2,2 +Id : 752, {_}: greatest_lower_bound (greatest_lower_bound ?1178 ?1179) identity =?= greatest_lower_bound (greatest_lower_bound ?1178 identity) ?1179 [1179, 1178] by Demod 751 with 395 at 2 +Id : 753, {_}: greatest_lower_bound identity (greatest_lower_bound ?1178 ?1179) =<= greatest_lower_bound (greatest_lower_bound ?1178 identity) ?1179 [1179, 1178] by Demod 752 with 10 at 2 +Id : 47765, {_}: greatest_lower_bound ?32774 identity =<= greatest_lower_bound identity (greatest_lower_bound ?32774 (multiply b b)) [32774] by Demod 11235 with 753 at 3 +Id : 47777, {_}: greatest_lower_bound (multiply b ?32794) identity =<= greatest_lower_bound identity (multiply b (greatest_lower_bound ?32794 b)) [32794] by Super 47765 with 28 at 2,3 +Id : 47888, {_}: greatest_lower_bound identity (multiply b ?32794) =<= greatest_lower_bound identity (multiply b (greatest_lower_bound ?32794 b)) [32794] by Demod 47777 with 10 at 2 +Id : 112860, {_}: greatest_lower_bound identity (multiply b (greatest_lower_bound ?46206 identity)) =>= greatest_lower_bound identity (multiply b ?46206) [46206] by Demod 69253 with 47888 at 3 +Id : 139834, {_}: multiply b (greatest_lower_bound ?86438 (inverse b)) =>= greatest_lower_bound identity (multiply b ?86438) [86438] by Demod 139833 with 112860 at 3 +Id : 758814, {_}: greatest_lower_bound ?433915 (inverse b) =<= multiply (inverse b) (greatest_lower_bound identity (multiply b ?433915)) [433915] by Super 63 with 139834 at 2,3 +Id : 9363, {_}: multiply (greatest_lower_bound ?8377 ?8376) (inverse ?8376) =>= greatest_lower_bound (multiply ?8377 (inverse ?8376)) identity [8376, 8377] by Super 32 with 9315 at 2,3 +Id : 389839, {_}: multiply (greatest_lower_bound ?219201 ?219202) (inverse ?219202) =>= greatest_lower_bound identity (multiply ?219201 (inverse ?219202)) [219202, 219201] by Demod 9363 with 10 at 3 +Id : 389867, {_}: multiply identity (inverse a) =<= greatest_lower_bound identity (multiply b (inverse a)) [] by Super 389839 with 336 at 1,2 +Id : 390920, {_}: inverse a =<= greatest_lower_bound identity (multiply b (inverse a)) [] by Demod 389867 with 4 at 2 +Id : 758889, {_}: greatest_lower_bound (inverse a) (inverse b) =<= multiply (inverse b) (inverse a) [] by Super 758814 with 390920 at 2,3 +Id : 759137, {_}: greatest_lower_bound (inverse b) (inverse a) =<= multiply (inverse b) (inverse a) [] by Demod 758889 with 10 at 2 +Id : 9373, {_}: multiply (least_upper_bound ?8405 ?8404) (inverse ?8404) =>= least_upper_bound (multiply ?8405 (inverse ?8404)) identity [8404, 8405] by Super 30 with 9315 at 2,3 +Id : 379748, {_}: multiply (least_upper_bound ?213200 ?213201) (inverse ?213201) =>= least_upper_bound identity (multiply ?213200 (inverse ?213201)) [213201, 213200] by Demod 9373 with 12 at 3 +Id : 9632, {_}: multiply (inverse a) a =<= least_upper_bound identity (multiply (inverse a) identity) [] by Super 9616 with 704 at 2,2 +Id : 9704, {_}: identity =<= least_upper_bound identity (multiply (inverse a) identity) [] by Demod 9632 with 6 at 2 +Id : 9705, {_}: identity =<= least_upper_bound identity (inverse a) [] by Demod 9704 with 9304 at 2,3 +Id : 9791, {_}: least_upper_bound (inverse a) b =>= least_upper_bound b identity [] by Super 608 with 9705 at 2,3 +Id : 9810, {_}: least_upper_bound b (inverse a) =>= least_upper_bound b identity [] by Demod 9791 with 12 at 2 +Id : 9811, {_}: least_upper_bound b (inverse a) =>= least_upper_bound identity b [] by Demod 9810 with 12 at 3 +Id : 9812, {_}: least_upper_bound b (inverse a) =>= b [] by Demod 9811 with 349 at 3 +Id : 10144, {_}: multiply (inverse (inverse a)) b =<= least_upper_bound identity (multiply (inverse (inverse a)) b) [] by Super 190 with 9812 at 2,2 +Id : 10186, {_}: multiply a b =<= least_upper_bound identity (multiply (inverse (inverse a)) b) [] by Demod 10144 with 9326 at 1,2 +Id : 10187, {_}: multiply a b =<= least_upper_bound identity (multiply a b) [] by Demod 10186 with 9326 at 1,2,3 +Id : 380544, {_}: multiply (multiply a b) (inverse (multiply a b)) =>= least_upper_bound identity (multiply identity (inverse (multiply a b))) [] by Super 379748 with 10187 at 1,2 +Id : 382056, {_}: multiply a (multiply b (inverse (multiply a b))) =>= least_upper_bound identity (multiply identity (inverse (multiply a b))) [] by Demod 380544 with 8 at 2 +Id : 382057, {_}: multiply a (multiply b (inverse (multiply a b))) =>= least_upper_bound identity (inverse (multiply a b)) [] by Demod 382056 with 4 at 2,3 +Id : 10969, {_}: multiply (inverse (multiply a b)) (multiply a b) =>= least_upper_bound identity (multiply (inverse (multiply a b)) identity) [] by Super 190 with 10187 at 2,2 +Id : 10972, {_}: identity =<= least_upper_bound identity (multiply (inverse (multiply a b)) identity) [] by Demod 10969 with 6 at 2 +Id : 10973, {_}: identity =<= least_upper_bound identity (inverse (multiply a b)) [] by Demod 10972 with 9304 at 2,3 +Id : 382058, {_}: multiply a (multiply b (inverse (multiply a b))) =>= identity [] by Demod 382057 with 10973 at 3 +Id : 383433, {_}: multiply b (inverse (multiply a b)) =>= multiply (inverse a) identity [] by Super 63 with 382058 at 2,3 +Id : 383436, {_}: multiply b (inverse (multiply a b)) =>= inverse a [] by Demod 383433 with 9304 at 3 +Id : 383449, {_}: inverse (multiply a b) =<= multiply (inverse b) (inverse a) [] by Super 63 with 383436 at 2,3 +Id : 759138, {_}: greatest_lower_bound (inverse b) (inverse a) =>= inverse (multiply a b) [] by Demod 759137 with 383449 at 3 +Id : 759204, {_}: multiply a (inverse (multiply a b)) =>= greatest_lower_bound identity (multiply a (inverse b)) [] by Super 9386 with 759138 at 2,2 +Id : 368035, {_}: multiply (greatest_lower_bound ?208569 ?208570) (inverse ?208569) =>= greatest_lower_bound identity (multiply ?208570 (inverse ?208569)) [208570, 208569] by Super 32 with 9315 at 1,3 +Id : 368063, {_}: multiply identity (inverse b) =<= greatest_lower_bound identity (multiply a (inverse b)) [] by Super 368035 with 336 at 1,2 +Id : 369182, {_}: inverse b =<= greatest_lower_bound identity (multiply a (inverse b)) [] by Demod 368063 with 4 at 2 +Id : 759234, {_}: multiply a (inverse (multiply a b)) =>= inverse b [] by Demod 759204 with 369182 at 3 +Id : 759348, {_}: inverse (multiply a b) =<= multiply (inverse a) (inverse b) [] by Super 63 with 759234 at 2,3 +Id : 380530, {_}: multiply (multiply b a) (inverse (multiply b a)) =>= least_upper_bound identity (multiply identity (inverse (multiply b a))) [] by Super 379748 with 9944 at 1,2 +Id : 382029, {_}: multiply b (multiply a (inverse (multiply b a))) =>= least_upper_bound identity (multiply identity (inverse (multiply b a))) [] by Demod 380530 with 8 at 2 +Id : 382030, {_}: multiply b (multiply a (inverse (multiply b a))) =>= least_upper_bound identity (inverse (multiply b a)) [] by Demod 382029 with 4 at 2,3 +Id : 10793, {_}: multiply (inverse (multiply b a)) (multiply b a) =>= least_upper_bound identity (multiply (inverse (multiply b a)) identity) [] by Super 190 with 9944 at 2,2 +Id : 10796, {_}: identity =<= least_upper_bound identity (multiply (inverse (multiply b a)) identity) [] by Demod 10793 with 6 at 2 +Id : 10797, {_}: identity =<= least_upper_bound identity (inverse (multiply b a)) [] by Demod 10796 with 9304 at 2,3 +Id : 382031, {_}: multiply b (multiply a (inverse (multiply b a))) =>= identity [] by Demod 382030 with 10797 at 3 +Id : 382929, {_}: multiply a (inverse (multiply b a)) =>= multiply (inverse b) identity [] by Super 63 with 382031 at 2,3 +Id : 382932, {_}: multiply a (inverse (multiply b a)) =>= inverse b [] by Demod 382929 with 9304 at 3 +Id : 382945, {_}: inverse (multiply b a) =<= multiply (inverse a) (inverse b) [] by Super 63 with 382932 at 2,3 +Id : 759368, {_}: inverse (multiply a b) =>= inverse (multiply b a) [] by Demod 759348 with 382945 at 3 +Id : 759573, {_}: inverse (inverse (multiply b a)) =>= multiply a b [] by Super 9326 with 759368 at 1,2 +Id : 759596, {_}: multiply b a =<= multiply a b [] by Demod 759573 with 9326 at 2 +Id : 760017, {_}: multiply (multiply b a) (inverse b) =>= a [] by Super 9354 with 759596 at 1,2 +Id : 760034, {_}: multiply b (multiply a (inverse b)) =>= a [] by Demod 760017 with 8 at 2 +Id : 760418, {_}: multiply a (inverse b) =<= multiply (inverse b) a [] by Super 63 with 760034 at 2,3 +Id : 760473, {_}: multiply (multiply a (inverse b)) ?434336 =>= multiply (inverse b) (multiply a ?434336) [434336] by Super 8 with 760418 at 1,2 +Id : 760489, {_}: multiply a (multiply (inverse b) ?434336) =<= multiply (inverse b) (multiply a ?434336) [434336] by Demod 760473 with 8 at 2 +Id : 763912, {_}: multiply a (greatest_lower_bound b ?436084) =<= greatest_lower_bound (multiply b a) (multiply a ?436084) [436084] by Super 28 with 759596 at 1,3 +Id : 760023, {_}: multiply (multiply b a) ?434182 =>= multiply a (multiply b ?434182) [434182] by Super 8 with 759596 at 1,2 +Id : 760032, {_}: multiply b (multiply a ?434182) =<= multiply a (multiply b ?434182) [434182] by Demod 760023 with 8 at 2 +Id : 763932, {_}: multiply a (greatest_lower_bound b (multiply b ?436118)) =<= greatest_lower_bound (multiply b a) (multiply b (multiply a ?436118)) [436118] by Super 763912 with 760032 at 2,3 +Id : 764080, {_}: multiply a (greatest_lower_bound b (multiply b ?436118)) =>= multiply b (greatest_lower_bound a (multiply a ?436118)) [436118] by Demod 763932 with 28 at 3 +Id : 768933, {_}: multiply a (multiply (inverse b) (greatest_lower_bound b (multiply b ?438632))) =<= multiply (inverse b) (multiply b (greatest_lower_bound a (multiply a ?438632))) [438632] by Super 760489 with 764080 at 2,3 +Id : 208, {_}: multiply (inverse ?566) (greatest_lower_bound ?566 ?567) =>= greatest_lower_bound identity (multiply (inverse ?566) ?567) [567, 566] by Super 202 with 6 at 1,3 +Id : 768988, {_}: multiply a (greatest_lower_bound identity (multiply (inverse b) (multiply b ?438632))) =<= multiply (inverse b) (multiply b (greatest_lower_bound a (multiply a ?438632))) [438632] by Demod 768933 with 208 at 2,2 +Id : 768989, {_}: multiply a (greatest_lower_bound identity ?438632) =<= multiply (inverse b) (multiply b (greatest_lower_bound a (multiply a ?438632))) [438632] by Demod 768988 with 63 at 2,2,2 +Id : 769075, {_}: multiply a (greatest_lower_bound identity ?438774) =>= greatest_lower_bound a (multiply a ?438774) [438774] by Demod 768989 with 63 at 3 +Id : 325, {_}: greatest_lower_bound ?779 identity =<= greatest_lower_bound (greatest_lower_bound ?779 identity) c [779] by Super 14 with 38 at 2,2 +Id : 334, {_}: greatest_lower_bound ?779 identity =<= greatest_lower_bound c (greatest_lower_bound ?779 identity) [779] by Demod 325 with 10 at 3 +Id : 1055, {_}: least_upper_bound c (greatest_lower_bound ?1435 identity) =>= c [1435] by Super 22 with 334 at 2,2 +Id : 1057, {_}: least_upper_bound c identity =>= c [] by Super 1055 with 20 at 2,2 +Id : 1068, {_}: least_upper_bound identity c =>= c [] by Demod 1057 with 12 at 2 +Id : 1072, {_}: least_upper_bound ?1452 c =<= least_upper_bound (least_upper_bound ?1452 identity) c [1452] by Super 16 with 1068 at 2,2 +Id : 2044, {_}: least_upper_bound ?2196 c =<= least_upper_bound c (least_upper_bound ?2196 identity) [2196] by Demod 1072 with 12 at 3 +Id : 2045, {_}: least_upper_bound ?2198 c =<= least_upper_bound c (least_upper_bound identity ?2198) [2198] by Super 2044 with 12 at 2,3 +Id : 9738, {_}: least_upper_bound (inverse b) c =>= least_upper_bound c identity [] by Super 2045 with 9700 at 2,3 +Id : 9771, {_}: least_upper_bound c (inverse b) =>= least_upper_bound c identity [] by Demod 9738 with 12 at 2 +Id : 9772, {_}: least_upper_bound c (inverse b) =>= least_upper_bound identity c [] by Demod 9771 with 12 at 3 +Id : 9773, {_}: least_upper_bound c (inverse b) =>= c [] by Demod 9772 with 1068 at 3 +Id : 10029, {_}: multiply (inverse (inverse b)) c =<= least_upper_bound identity (multiply (inverse (inverse b)) c) [] by Super 190 with 9773 at 2,2 +Id : 10032, {_}: multiply b c =<= least_upper_bound identity (multiply (inverse (inverse b)) c) [] by Demod 10029 with 9326 at 1,2 +Id : 10033, {_}: multiply b c =<= least_upper_bound identity (multiply b c) [] by Demod 10032 with 9326 at 1,2,3 +Id : 10872, {_}: greatest_lower_bound identity (multiply b c) =>= identity [] by Super 24 with 10033 at 2,2 +Id : 47955, {_}: greatest_lower_bound identity (greatest_lower_bound (multiply b c) ?32868) =>= greatest_lower_bound identity ?32868 [32868] by Super 14 with 10872 at 1,3 +Id : 70757, {_}: greatest_lower_bound identity (multiply (greatest_lower_bound b ?47489) c) =>= greatest_lower_bound identity (multiply ?47489 c) [47489] by Super 47955 with 32 at 2,2 +Id : 338, {_}: greatest_lower_bound b (greatest_lower_bound a ?786) =>= greatest_lower_bound identity ?786 [786] by Super 14 with 336 at 1,3 +Id : 70764, {_}: greatest_lower_bound identity (multiply (greatest_lower_bound identity ?47501) c) =<= greatest_lower_bound identity (multiply (greatest_lower_bound a ?47501) c) [47501] by Super 70757 with 338 at 1,2,2 +Id : 9792, {_}: least_upper_bound (inverse a) c =>= least_upper_bound c identity [] by Super 2045 with 9705 at 2,3 +Id : 9807, {_}: least_upper_bound c (inverse a) =>= least_upper_bound c identity [] by Demod 9792 with 12 at 2 +Id : 9808, {_}: least_upper_bound c (inverse a) =>= least_upper_bound identity c [] by Demod 9807 with 12 at 3 +Id : 9809, {_}: least_upper_bound c (inverse a) =>= c [] by Demod 9808 with 1068 at 3 +Id : 10119, {_}: multiply (inverse (inverse a)) c =<= least_upper_bound identity (multiply (inverse (inverse a)) c) [] by Super 190 with 9809 at 2,2 +Id : 10122, {_}: multiply a c =<= least_upper_bound identity (multiply (inverse (inverse a)) c) [] by Demod 10119 with 9326 at 1,2 +Id : 10123, {_}: multiply a c =<= least_upper_bound identity (multiply a c) [] by Demod 10122 with 9326 at 1,2,3 +Id : 10918, {_}: greatest_lower_bound identity (multiply a c) =>= identity [] by Super 24 with 10123 at 2,2 +Id : 48295, {_}: greatest_lower_bound identity (greatest_lower_bound (multiply a c) ?33053) =>= greatest_lower_bound identity ?33053 [33053] by Super 14 with 10918 at 1,3 +Id : 48305, {_}: greatest_lower_bound identity (multiply (greatest_lower_bound a ?33073) c) =>= greatest_lower_bound identity (multiply ?33073 c) [33073] by Super 48295 with 32 at 2,2 +Id : 115728, {_}: greatest_lower_bound identity (multiply (greatest_lower_bound identity ?47501) c) =>= greatest_lower_bound identity (multiply ?47501 c) [47501] by Demod 70764 with 48305 at 3 +Id : 204, {_}: multiply (inverse ?551) (greatest_lower_bound ?550 ?551) =>= greatest_lower_bound (multiply (inverse ?551) ?550) identity [550, 551] by Super 202 with 6 at 2,3 +Id : 142360, {_}: multiply (inverse ?87937) (greatest_lower_bound ?87938 ?87937) =>= greatest_lower_bound identity (multiply (inverse ?87937) ?87938) [87938, 87937] by Demod 204 with 10 at 3 +Id : 142374, {_}: multiply (inverse a) identity =<= greatest_lower_bound identity (multiply (inverse a) b) [] by Super 142360 with 336 at 2,2 +Id : 143139, {_}: inverse a =<= greatest_lower_bound identity (multiply (inverse a) b) [] by Demod 142374 with 9304 at 2 +Id : 144455, {_}: greatest_lower_bound identity (multiply (inverse a) c) =<= greatest_lower_bound identity (multiply (multiply (inverse a) b) c) [] by Super 115728 with 143139 at 1,2,2 +Id : 144470, {_}: greatest_lower_bound identity (multiply (inverse a) c) =<= greatest_lower_bound identity (multiply (inverse a) (multiply b c)) [] by Demod 144455 with 8 at 2,3 +Id : 769471, {_}: multiply a (greatest_lower_bound identity (multiply (inverse a) c)) =<= greatest_lower_bound a (multiply a (multiply (inverse a) (multiply b c))) [] by Super 769075 with 144470 at 2,2 +Id : 768990, {_}: multiply a (greatest_lower_bound identity ?438632) =>= greatest_lower_bound a (multiply a ?438632) [438632] by Demod 768989 with 63 at 3 +Id : 770016, {_}: greatest_lower_bound a (multiply a (multiply (inverse a) c)) =<= greatest_lower_bound a (multiply a (multiply (inverse a) (multiply b c))) [] by Demod 769471 with 768990 at 2 +Id : 9368, {_}: multiply identity ?8392 =<= multiply ?8391 (multiply (inverse ?8391) ?8392) [8391, 8392] by Super 8 with 9315 at 1,2 +Id : 9385, {_}: ?8392 =<= multiply ?8391 (multiply (inverse ?8391) ?8392) [8391, 8392] by Demod 9368 with 4 at 2 +Id : 770017, {_}: greatest_lower_bound a c =<= greatest_lower_bound a (multiply a (multiply (inverse a) (multiply b c))) [] by Demod 770016 with 9385 at 2,2 +Id : 770018, {_}: greatest_lower_bound c a =<= greatest_lower_bound a (multiply a (multiply (inverse a) (multiply b c))) [] by Demod 770017 with 10 at 2 +Id : 770019, {_}: greatest_lower_bound c a =<= greatest_lower_bound a (multiply b c) [] by Demod 770018 with 9385 at 2,3 +Id : 770827, {_}: greatest_lower_bound c a === greatest_lower_bound c a [] by Demod 350 with 770019 at 2 +Id : 350, {_}: greatest_lower_bound a (multiply b c) =>= greatest_lower_bound c a [] by Demod 2 with 10 at 3 +Id : 2, {_}: greatest_lower_bound a (multiply b c) =>= greatest_lower_bound a c [] by prove_p09b +% SZS output end CNFRefutation for GRP178-2.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 90 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + c is 72 + glb_absorbtion is 80 + greatest_lower_bound is 89 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 95 + inverse is 92 + least_upper_bound is 87 + left_identity is 93 + left_inverse is 91 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 94 + p12x_1 is 75 + p12x_2 is 74 + p12x_3 is 73 + p12x_4 is 71 + p12x_5 is 70 + p12x_6 is 69 + p12x_7 is 68 + prove_p12x is 96 + symmetry_of_glb is 88 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: inverse identity =>= identity [] by p12x_1 + Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51 + Id : 38, {_}: + inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) + [54, 53] by p12x_3 ?53 ?54 + Id : 40, {_}: + greatest_lower_bound a c =>= greatest_lower_bound b c + [] by p12x_4 + Id : 42, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_5 + Id : 44, {_}: + inverse (greatest_lower_bound ?58 ?59) + =<= + least_upper_bound (inverse ?58) (inverse ?59) + [59, 58] by p12x_6 ?58 ?59 + Id : 46, {_}: + inverse (least_upper_bound ?61 ?62) + =<= + greatest_lower_bound (inverse ?61) (inverse ?62) + [62, 61] by p12x_7 ?61 ?62 +Goal + Id : 2, {_}: a =>= b [] by prove_p12x +Found proof, 11.815356s +% SZS status Unsatisfiable for GRP181-4.p +% SZS output start CNFRefutation for GRP181-4.p +Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 +Id : 42, {_}: least_upper_bound a c =>= least_upper_bound b c [] by p12x_5 +Id : 177, {_}: multiply ?477 (least_upper_bound ?478 ?479) =<= least_upper_bound (multiply ?477 ?478) (multiply ?477 ?479) [479, 478, 477] by monotony_lub1 ?477 ?478 ?479 +Id : 46, {_}: inverse (least_upper_bound ?61 ?62) =<= greatest_lower_bound (inverse ?61) (inverse ?62) [62, 61] by p12x_7 ?61 ?62 +Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 +Id : 40, {_}: greatest_lower_bound a c =>= greatest_lower_bound b c [] by p12x_4 +Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 +Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 +Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 +Id : 44, {_}: inverse (greatest_lower_bound ?58 ?59) =<= least_upper_bound (inverse ?58) (inverse ?59) [59, 58] by p12x_6 ?58 ?59 +Id : 375, {_}: inverse (greatest_lower_bound ?877 ?878) =<= least_upper_bound (inverse ?877) (inverse ?878) [878, 877] by p12x_6 ?877 ?878 +Id : 398, {_}: inverse (least_upper_bound ?920 ?921) =<= greatest_lower_bound (inverse ?920) (inverse ?921) [921, 920] by p12x_7 ?920 ?921 +Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 +Id : 208, {_}: multiply ?553 (greatest_lower_bound ?554 ?555) =<= greatest_lower_bound (multiply ?553 ?554) (multiply ?553 ?555) [555, 554, 553] by monotony_glb1 ?553 ?554 ?555 +Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 +Id : 38, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p12x_3 ?53 ?54 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 34, {_}: inverse identity =>= identity [] by p12x_1 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 51, {_}: multiply (multiply ?72 ?73) ?74 =?= multiply ?72 (multiply ?73 ?74) [74, 73, 72] by associativity ?72 ?73 ?74 +Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p12x_2 ?51 +Id : 324, {_}: inverse (multiply ?822 ?823) =<= multiply (inverse ?823) (inverse ?822) [823, 822] by p12x_3 ?822 ?823 +Id : 328, {_}: inverse (multiply ?833 (inverse ?832)) =>= multiply ?832 (inverse ?833) [832, 833] by Super 324 with 36 at 1,3 +Id : 53, {_}: multiply (multiply ?79 (inverse ?80)) ?80 =>= multiply ?79 identity [80, 79] by Super 51 with 6 at 2,3 +Id : 325, {_}: inverse (multiply identity ?825) =<= multiply (inverse ?825) identity [825] by Super 324 with 34 at 2,3 +Id : 428, {_}: inverse ?975 =<= multiply (inverse ?975) identity [975] by Demod 325 with 4 at 1,2 +Id : 430, {_}: inverse (inverse ?978) =<= multiply ?978 identity [978] by Super 428 with 36 at 1,3 +Id : 441, {_}: ?978 =<= multiply ?978 identity [978] by Demod 430 with 36 at 2 +Id : 28686, {_}: multiply (multiply ?79 (inverse ?80)) ?80 =>= ?79 [80, 79] by Demod 53 with 441 at 3 +Id : 28700, {_}: inverse ?20638 =<= multiply ?20639 (inverse (multiply ?20638 (inverse (inverse ?20639)))) [20639, 20638] by Super 328 with 28686 at 1,2 +Id : 28729, {_}: inverse ?20638 =<= multiply ?20639 (multiply (inverse ?20639) (inverse ?20638)) [20639, 20638] by Demod 28700 with 328 at 2,3 +Id : 28730, {_}: inverse ?20638 =<= multiply ?20639 (inverse (multiply ?20638 ?20639)) [20639, 20638] by Demod 28729 with 38 at 2,3 +Id : 307, {_}: multiply ?771 (inverse ?771) =>= identity [771] by Super 6 with 36 at 1,2 +Id : 598, {_}: multiply (multiply ?1178 ?1177) (inverse ?1177) =>= multiply ?1178 identity [1177, 1178] by Super 8 with 307 at 2,3 +Id : 42163, {_}: multiply (multiply ?33679 ?33680) (inverse ?33680) =>= ?33679 [33680, 33679] by Demod 598 with 441 at 3 +Id : 210, {_}: multiply (inverse ?561) (greatest_lower_bound ?560 ?561) =>= greatest_lower_bound (multiply (inverse ?561) ?560) identity [560, 561] by Super 208 with 6 at 2,3 +Id : 229, {_}: multiply (inverse ?561) (greatest_lower_bound ?560 ?561) =>= greatest_lower_bound identity (multiply (inverse ?561) ?560) [560, 561] by Demod 210 with 10 at 3 +Id : 401, {_}: inverse (least_upper_bound identity ?928) =>= greatest_lower_bound identity (inverse ?928) [928] by Super 398 with 34 at 1,3 +Id : 534, {_}: inverse (multiply (least_upper_bound identity ?1106) ?1107) =<= multiply (inverse ?1107) (greatest_lower_bound identity (inverse ?1106)) [1107, 1106] by Super 38 with 401 at 2,3 +Id : 34883, {_}: inverse (multiply (least_upper_bound identity ?27004) (inverse ?27004)) =>= greatest_lower_bound identity (multiply (inverse (inverse ?27004)) identity) [27004] by Super 229 with 534 at 2 +Id : 34945, {_}: multiply ?27004 (inverse (least_upper_bound identity ?27004)) =?= greatest_lower_bound identity (multiply (inverse (inverse ?27004)) identity) [27004] by Demod 34883 with 328 at 2 +Id : 34946, {_}: multiply ?27004 (greatest_lower_bound identity (inverse ?27004)) =?= greatest_lower_bound identity (multiply (inverse (inverse ?27004)) identity) [27004] by Demod 34945 with 401 at 2,2 +Id : 34947, {_}: multiply ?27004 (greatest_lower_bound identity (inverse ?27004)) =>= greatest_lower_bound identity (inverse (inverse ?27004)) [27004] by Demod 34946 with 441 at 2,3 +Id : 34948, {_}: multiply ?27004 (greatest_lower_bound identity (inverse ?27004)) =>= greatest_lower_bound identity ?27004 [27004] by Demod 34947 with 36 at 2,3 +Id : 42223, {_}: multiply (greatest_lower_bound identity ?33882) (inverse (greatest_lower_bound identity (inverse ?33882))) =>= ?33882 [33882] by Super 42163 with 34948 at 1,2 +Id : 377, {_}: inverse (greatest_lower_bound ?883 (inverse ?882)) =>= least_upper_bound (inverse ?883) ?882 [882, 883] by Super 375 with 36 at 2,3 +Id : 42257, {_}: multiply (greatest_lower_bound identity ?33882) (least_upper_bound (inverse identity) ?33882) =>= ?33882 [33882] by Demod 42223 with 377 at 2,2 +Id : 118341, {_}: multiply (greatest_lower_bound identity ?85951) (least_upper_bound identity ?85951) =>= ?85951 [85951] by Demod 42257 with 34 at 1,2,2 +Id : 376, {_}: inverse (greatest_lower_bound ?880 identity) =>= least_upper_bound (inverse ?880) identity [880] by Super 375 with 34 at 2,3 +Id : 388, {_}: inverse (greatest_lower_bound ?880 identity) =>= least_upper_bound identity (inverse ?880) [880] by Demod 376 with 12 at 3 +Id : 509, {_}: inverse (greatest_lower_bound ?1077 (greatest_lower_bound ?1076 identity)) =<= least_upper_bound (inverse ?1077) (least_upper_bound identity (inverse ?1076)) [1076, 1077] by Super 44 with 388 at 2,3 +Id : 519, {_}: inverse (greatest_lower_bound ?1077 (greatest_lower_bound ?1076 identity)) =<= least_upper_bound (least_upper_bound identity (inverse ?1076)) (inverse ?1077) [1076, 1077] by Demod 509 with 12 at 3 +Id : 520, {_}: inverse (greatest_lower_bound ?1077 (greatest_lower_bound ?1076 identity)) =<= least_upper_bound identity (least_upper_bound (inverse ?1076) (inverse ?1077)) [1076, 1077] by Demod 519 with 16 at 3 +Id : 521, {_}: inverse (greatest_lower_bound ?1077 (greatest_lower_bound ?1076 identity)) =>= least_upper_bound identity (inverse (greatest_lower_bound ?1076 ?1077)) [1076, 1077] by Demod 520 with 44 at 2,3 +Id : 512, {_}: inverse (greatest_lower_bound ?1083 identity) =>= least_upper_bound identity (inverse ?1083) [1083] by Demod 376 with 12 at 3 +Id : 516, {_}: inverse (greatest_lower_bound ?1090 (greatest_lower_bound ?1091 identity)) =>= least_upper_bound identity (inverse (greatest_lower_bound ?1090 ?1091)) [1091, 1090] by Super 512 with 14 at 1,2 +Id : 2150, {_}: least_upper_bound identity (inverse (greatest_lower_bound ?1077 ?1076)) =?= least_upper_bound identity (inverse (greatest_lower_bound ?1076 ?1077)) [1076, 1077] by Demod 521 with 516 at 2 +Id : 30474, {_}: multiply (inverse ?22001) (greatest_lower_bound ?22001 ?22002) =>= greatest_lower_bound identity (multiply (inverse ?22001) ?22002) [22002, 22001] by Super 208 with 6 at 1,3 +Id : 337, {_}: greatest_lower_bound c a =<= greatest_lower_bound b c [] by Demod 40 with 10 at 2 +Id : 338, {_}: greatest_lower_bound c a =>= greatest_lower_bound c b [] by Demod 337 with 10 at 3 +Id : 30482, {_}: multiply (inverse c) (greatest_lower_bound c b) =>= greatest_lower_bound identity (multiply (inverse c) a) [] by Super 30474 with 338 at 2,2 +Id : 214, {_}: multiply (inverse ?576) (greatest_lower_bound ?576 ?577) =>= greatest_lower_bound identity (multiply (inverse ?576) ?577) [577, 576] by Super 208 with 6 at 1,3 +Id : 30627, {_}: greatest_lower_bound identity (multiply (inverse c) b) =<= greatest_lower_bound identity (multiply (inverse c) a) [] by Demod 30482 with 214 at 2 +Id : 30842, {_}: least_upper_bound identity (inverse (greatest_lower_bound (multiply (inverse c) a) identity)) =>= least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) b))) [] by Super 2150 with 30627 at 1,2,3 +Id : 30855, {_}: least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) a))) =>= least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) b))) [] by Demod 30842 with 2150 at 2 +Id : 378, {_}: inverse (greatest_lower_bound identity ?885) =>= least_upper_bound identity (inverse ?885) [885] by Super 375 with 34 at 1,3 +Id : 30856, {_}: least_upper_bound identity (least_upper_bound identity (inverse (multiply (inverse c) a))) =<= least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) b))) [] by Demod 30855 with 378 at 2,2 +Id : 112, {_}: least_upper_bound ?298 (least_upper_bound ?298 ?299) =>= least_upper_bound ?298 ?299 [299, 298] by Super 16 with 18 at 1,3 +Id : 30857, {_}: least_upper_bound identity (inverse (multiply (inverse c) a)) =<= least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) b))) [] by Demod 30856 with 112 at 2 +Id : 326, {_}: inverse (multiply (inverse ?827) ?828) =>= multiply (inverse ?828) ?827 [828, 827] by Super 324 with 36 at 2,3 +Id : 30858, {_}: least_upper_bound identity (multiply (inverse a) c) =<= least_upper_bound identity (inverse (greatest_lower_bound identity (multiply (inverse c) b))) [] by Demod 30857 with 326 at 2,2 +Id : 30859, {_}: least_upper_bound identity (multiply (inverse a) c) =<= least_upper_bound identity (least_upper_bound identity (inverse (multiply (inverse c) b))) [] by Demod 30858 with 378 at 2,3 +Id : 30860, {_}: least_upper_bound identity (multiply (inverse a) c) =<= least_upper_bound identity (inverse (multiply (inverse c) b)) [] by Demod 30859 with 112 at 3 +Id : 30861, {_}: least_upper_bound identity (multiply (inverse a) c) =>= least_upper_bound identity (multiply (inverse b) c) [] by Demod 30860 with 326 at 2,3 +Id : 118363, {_}: multiply (greatest_lower_bound identity (multiply (inverse a) c)) (least_upper_bound identity (multiply (inverse b) c)) =>= multiply (inverse a) c [] by Super 118341 with 30861 at 2,2 +Id : 399, {_}: inverse (least_upper_bound ?923 identity) =>= greatest_lower_bound (inverse ?923) identity [923] by Super 398 with 34 at 2,3 +Id : 413, {_}: inverse (least_upper_bound ?923 identity) =>= greatest_lower_bound identity (inverse ?923) [923] by Demod 399 with 10 at 3 +Id : 560, {_}: inverse (least_upper_bound ?1130 (least_upper_bound ?1129 identity)) =<= greatest_lower_bound (inverse ?1130) (greatest_lower_bound identity (inverse ?1129)) [1129, 1130] by Super 46 with 413 at 2,3 +Id : 580, {_}: inverse (least_upper_bound ?1130 (least_upper_bound ?1129 identity)) =<= greatest_lower_bound (greatest_lower_bound identity (inverse ?1129)) (inverse ?1130) [1129, 1130] by Demod 560 with 10 at 3 +Id : 581, {_}: inverse (least_upper_bound ?1130 (least_upper_bound ?1129 identity)) =<= greatest_lower_bound identity (greatest_lower_bound (inverse ?1129) (inverse ?1130)) [1129, 1130] by Demod 580 with 14 at 3 +Id : 582, {_}: inverse (least_upper_bound ?1130 (least_upper_bound ?1129 identity)) =>= greatest_lower_bound identity (inverse (least_upper_bound ?1129 ?1130)) [1129, 1130] by Demod 581 with 46 at 2,3 +Id : 569, {_}: inverse (least_upper_bound ?1152 identity) =>= greatest_lower_bound identity (inverse ?1152) [1152] by Demod 399 with 10 at 3 +Id : 573, {_}: inverse (least_upper_bound ?1159 (least_upper_bound ?1160 identity)) =>= greatest_lower_bound identity (inverse (least_upper_bound ?1159 ?1160)) [1160, 1159] by Super 569 with 16 at 1,2 +Id : 2778, {_}: greatest_lower_bound identity (inverse (least_upper_bound ?1130 ?1129)) =?= greatest_lower_bound identity (inverse (least_upper_bound ?1129 ?1130)) [1129, 1130] by Demod 582 with 573 at 2 +Id : 28815, {_}: multiply (inverse ?20915) (least_upper_bound ?20915 ?20916) =>= least_upper_bound identity (multiply (inverse ?20915) ?20916) [20916, 20915] by Super 177 with 6 at 1,3 +Id : 353, {_}: least_upper_bound c a =<= least_upper_bound b c [] by Demod 42 with 12 at 2 +Id : 354, {_}: least_upper_bound c a =>= least_upper_bound c b [] by Demod 353 with 12 at 3 +Id : 28823, {_}: multiply (inverse c) (least_upper_bound c b) =>= least_upper_bound identity (multiply (inverse c) a) [] by Super 28815 with 354 at 2,2 +Id : 183, {_}: multiply (inverse ?500) (least_upper_bound ?500 ?501) =>= least_upper_bound identity (multiply (inverse ?500) ?501) [501, 500] by Super 177 with 6 at 1,3 +Id : 28958, {_}: least_upper_bound identity (multiply (inverse c) b) =<= least_upper_bound identity (multiply (inverse c) a) [] by Demod 28823 with 183 at 2 +Id : 29161, {_}: greatest_lower_bound identity (inverse (least_upper_bound (multiply (inverse c) a) identity)) =>= greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) b))) [] by Super 2778 with 28958 at 1,2,3 +Id : 29185, {_}: greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) a))) =>= greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) b))) [] by Demod 29161 with 2778 at 2 +Id : 29186, {_}: greatest_lower_bound identity (greatest_lower_bound identity (inverse (multiply (inverse c) a))) =<= greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) b))) [] by Demod 29185 with 401 at 2,2 +Id : 124, {_}: greatest_lower_bound ?324 (greatest_lower_bound ?324 ?325) =>= greatest_lower_bound ?324 ?325 [325, 324] by Super 14 with 20 at 1,3 +Id : 29187, {_}: greatest_lower_bound identity (inverse (multiply (inverse c) a)) =<= greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) b))) [] by Demod 29186 with 124 at 2 +Id : 29188, {_}: greatest_lower_bound identity (multiply (inverse a) c) =<= greatest_lower_bound identity (inverse (least_upper_bound identity (multiply (inverse c) b))) [] by Demod 29187 with 326 at 2,2 +Id : 29189, {_}: greatest_lower_bound identity (multiply (inverse a) c) =<= greatest_lower_bound identity (greatest_lower_bound identity (inverse (multiply (inverse c) b))) [] by Demod 29188 with 401 at 2,3 +Id : 29190, {_}: greatest_lower_bound identity (multiply (inverse a) c) =<= greatest_lower_bound identity (inverse (multiply (inverse c) b)) [] by Demod 29189 with 124 at 3 +Id : 29191, {_}: greatest_lower_bound identity (multiply (inverse a) c) =>= greatest_lower_bound identity (multiply (inverse b) c) [] by Demod 29190 with 326 at 2,3 +Id : 118571, {_}: multiply (greatest_lower_bound identity (multiply (inverse b) c)) (least_upper_bound identity (multiply (inverse b) c)) =>= multiply (inverse a) c [] by Demod 118363 with 29191 at 1,2 +Id : 42258, {_}: multiply (greatest_lower_bound identity ?33882) (least_upper_bound identity ?33882) =>= ?33882 [33882] by Demod 42257 with 34 at 1,2,2 +Id : 118572, {_}: multiply (inverse b) c =<= multiply (inverse a) c [] by Demod 118571 with 42258 at 2 +Id : 118655, {_}: inverse (inverse a) =<= multiply c (inverse (multiply (inverse b) c)) [] by Super 28730 with 118572 at 1,2,3 +Id : 118658, {_}: a =<= multiply c (inverse (multiply (inverse b) c)) [] by Demod 118655 with 36 at 2 +Id : 118659, {_}: a =<= inverse (inverse b) [] by Demod 118658 with 28730 at 3 +Id : 118660, {_}: a =>= b [] by Demod 118659 with 36 at 3 +Id : 119303, {_}: b === b [] by Demod 2 with 118660 at 2 +Id : 2, {_}: a =>= b [] by prove_p12x +% SZS output end CNFRefutation for GRP181-4.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + associativity_of_glb is 86 + associativity_of_lub is 85 + glb_absorbtion is 81 + greatest_lower_bound is 94 + idempotence_of_gld is 83 + idempotence_of_lub is 84 + identity is 97 + inverse is 95 + least_upper_bound is 96 + left_identity is 91 + left_inverse is 90 + lub_absorbtion is 82 + monotony_glb1 is 79 + monotony_glb2 is 77 + monotony_lub1 is 80 + monotony_lub2 is 78 + multiply is 92 + p20x_1 is 76 + p20x_3 is 75 + prove_20x is 93 + symmetry_of_glb is 88 + symmetry_of_lub is 87 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: inverse identity =>= identity [] by p20x_1 + Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p20x_1 ?51 + Id : 38, {_}: + inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) + [54, 53] by p20x_3 ?53 ?54 +Goal + Id : 2, {_}: + greatest_lower_bound (least_upper_bound a identity) + (least_upper_bound (inverse a) identity) + =>= + identity + [] by prove_20x +Last chance: 1246130000.01 +Last chance: all is indexed 1246130020.02 +Last chance: failed over 100 goal 1246130020.02 +FAILURE in 0 iterations +% SZS status Timeout for GRP183-4.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + associativity_of_glb is 86 + associativity_of_lub is 85 + glb_absorbtion is 81 + greatest_lower_bound is 95 + idempotence_of_gld is 83 + idempotence_of_lub is 84 + identity is 97 + inverse is 94 + least_upper_bound is 96 + left_identity is 91 + left_inverse is 90 + lub_absorbtion is 82 + monotony_glb1 is 79 + monotony_glb2 is 77 + monotony_lub1 is 80 + monotony_lub2 is 78 + multiply is 93 + prove_p21 is 92 + symmetry_of_glb is 88 + symmetry_of_lub is 87 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Goal + Id : 2, {_}: + multiply (least_upper_bound a identity) + (inverse (greatest_lower_bound a identity)) + =>= + multiply (inverse (greatest_lower_bound a identity)) + (least_upper_bound a identity) + [] by prove_p21 +Found proof, 112.009971s +% SZS status Unsatisfiable for GRP184-1.p +% SZS output start CNFRefutation for GRP184-1.p +Id : 265, {_}: multiply (greatest_lower_bound ?703 ?704) ?705 =<= greatest_lower_bound (multiply ?703 ?705) (multiply ?704 ?705) [705, 704, 703] by monotony_glb2 ?703 ?704 ?705 +Id : 28, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 +Id : 145, {_}: greatest_lower_bound ?406 (least_upper_bound ?406 ?407) =>= ?406 [407, 406] by glb_absorbtion ?406 ?407 +Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 +Id : 127, {_}: least_upper_bound ?353 (greatest_lower_bound ?353 ?354) =>= ?353 [354, 353] by lub_absorbtion ?353 ?354 +Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 +Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 +Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 +Id : 30, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 +Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 +Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 +Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 +Id : 230, {_}: multiply (least_upper_bound ?621 ?622) ?623 =<= least_upper_bound (multiply ?621 ?623) (multiply ?622 ?623) [623, 622, 621] by monotony_lub2 ?621 ?622 ?623 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 38, {_}: multiply (multiply ?61 ?62) ?63 =?= multiply ?61 (multiply ?62 ?63) [63, 62, 61] by associativity ?61 ?62 ?63 +Id : 26, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 +Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 +Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 +Id : 2065, {_}: multiply (multiply ?3204 (inverse ?3205)) ?3205 =>= multiply ?3204 identity [3205, 3204] by Super 38 with 6 at 2,3 +Id : 2068, {_}: multiply identity ?3211 =<= multiply (inverse (inverse ?3211)) identity [3211] by Super 2065 with 6 at 1,2 +Id : 2091, {_}: ?3211 =<= multiply (inverse (inverse ?3211)) identity [3211] by Demod 2068 with 4 at 2 +Id : 2111, {_}: multiply (inverse (inverse ?3262)) (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply (inverse (inverse ?3262)) ?3263) ?3262 [3263, 3262] by Super 26 with 2091 at 2,3 +Id : 39, {_}: multiply (multiply ?65 identity) ?66 =>= multiply ?65 ?66 [66, 65] by Super 38 with 4 at 2,3 +Id : 2108, {_}: multiply ?3253 ?3254 =<= multiply (inverse (inverse ?3253)) ?3254 [3254, 3253] by Super 39 with 2091 at 1,2 +Id : 2129, {_}: ?3211 =<= multiply ?3211 identity [3211] by Demod 2091 with 2108 at 3 +Id : 2149, {_}: inverse (inverse ?3356) =>= multiply ?3356 identity [3356] by Super 2129 with 2108 at 3 +Id : 2156, {_}: inverse (inverse ?3356) =>= ?3356 [3356] by Demod 2149 with 2129 at 3 +Id : 9722, {_}: multiply ?3262 (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply (inverse (inverse ?3262)) ?3263) ?3262 [3263, 3262] by Demod 2111 with 2156 at 1,2 +Id : 9764, {_}: multiply ?11921 (least_upper_bound ?11922 identity) =<= least_upper_bound (multiply ?11921 ?11922) ?11921 [11922, 11921] by Demod 9722 with 2156 at 1,1,3 +Id : 701, {_}: multiply (least_upper_bound ?1544 identity) ?1545 =<= least_upper_bound (multiply ?1544 ?1545) ?1545 [1545, 1544] by Super 230 with 4 at 2,3 +Id : 703, {_}: multiply (least_upper_bound (inverse ?1549) identity) ?1549 =>= least_upper_bound identity ?1549 [1549] by Super 701 with 6 at 1,3 +Id : 729, {_}: multiply (least_upper_bound identity (inverse ?1549)) ?1549 =>= least_upper_bound identity ?1549 [1549] by Demod 703 with 12 at 1,2 +Id : 2193, {_}: multiply (least_upper_bound identity ?3378) (inverse ?3378) =>= least_upper_bound identity (inverse ?3378) [3378] by Super 729 with 2156 at 2,1,2 +Id : 9777, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound (inverse ?11957) identity) =<= least_upper_bound (least_upper_bound identity (inverse ?11957)) (least_upper_bound identity ?11957) [11957] by Super 9764 with 2193 at 1,3 +Id : 9888, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =<= least_upper_bound (least_upper_bound identity (inverse ?11957)) (least_upper_bound identity ?11957) [11957] by Demod 9777 with 12 at 2,2 +Id : 9889, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =<= least_upper_bound identity (least_upper_bound (inverse ?11957) (least_upper_bound identity ?11957)) [11957] by Demod 9888 with 16 at 3 +Id : 523, {_}: least_upper_bound (greatest_lower_bound ?1203 ?1204) ?1203 =>= ?1203 [1204, 1203] by Super 12 with 22 at 3 +Id : 524, {_}: least_upper_bound (greatest_lower_bound ?1207 ?1206) ?1206 =>= ?1206 [1206, 1207] by Super 523 with 10 at 1,2 +Id : 139, {_}: greatest_lower_bound (least_upper_bound ?385 ?386) ?385 =>= ?385 [386, 385] by Super 10 with 24 at 3 +Id : 40, {_}: multiply (multiply ?68 (inverse ?69)) ?69 =>= multiply ?68 identity [69, 68] by Super 38 with 6 at 2,3 +Id : 2130, {_}: multiply (multiply ?68 (inverse ?69)) ?69 =>= ?68 [69, 68] by Demod 40 with 2129 at 3 +Id : 231, {_}: multiply (least_upper_bound ?625 identity) ?626 =<= least_upper_bound (multiply ?625 ?626) ?626 [626, 625] by Super 230 with 4 at 2,3 +Id : 693, {_}: least_upper_bound ?1518 (multiply ?1517 ?1518) =>= multiply (least_upper_bound ?1517 identity) ?1518 [1517, 1518] by Super 12 with 231 at 3 +Id : 235, {_}: multiply (least_upper_bound identity ?641) ?642 =<= least_upper_bound ?642 (multiply ?641 ?642) [642, 641] by Super 230 with 4 at 1,3 +Id : 1616, {_}: multiply (least_upper_bound identity ?1517) ?1518 =?= multiply (least_upper_bound ?1517 identity) ?1518 [1518, 1517] by Demod 693 with 235 at 2 +Id : 1625, {_}: multiply (least_upper_bound (least_upper_bound identity ?2728) ?2730) ?2729 =<= least_upper_bound (multiply (least_upper_bound ?2728 identity) ?2729) (multiply ?2730 ?2729) [2729, 2730, 2728] by Super 30 with 1616 at 1,3 +Id : 1699, {_}: multiply (least_upper_bound identity (least_upper_bound ?2728 ?2730)) ?2729 =<= least_upper_bound (multiply (least_upper_bound ?2728 identity) ?2729) (multiply ?2730 ?2729) [2729, 2730, 2728] by Demod 1625 with 16 at 1,2 +Id : 1700, {_}: multiply (least_upper_bound identity (least_upper_bound ?2728 ?2730)) ?2729 =<= multiply (least_upper_bound (least_upper_bound ?2728 identity) ?2730) ?2729 [2729, 2730, 2728] by Demod 1699 with 30 at 3 +Id : 4487, {_}: multiply (multiply (least_upper_bound identity (least_upper_bound ?5822 ?5823)) (inverse ?5824)) ?5824 =>= least_upper_bound (least_upper_bound ?5822 identity) ?5823 [5824, 5823, 5822] by Super 2130 with 1700 at 1,2 +Id : 4634, {_}: least_upper_bound identity (least_upper_bound ?6053 ?6054) =<= least_upper_bound (least_upper_bound ?6053 identity) ?6054 [6054, 6053] by Demod 4487 with 2130 at 2 +Id : 122, {_}: least_upper_bound (greatest_lower_bound ?335 ?336) ?335 =>= ?335 [336, 335] by Super 12 with 22 at 3 +Id : 4738, {_}: least_upper_bound identity (least_upper_bound (greatest_lower_bound identity ?6182) ?6183) =>= least_upper_bound identity ?6183 [6183, 6182] by Super 4634 with 122 at 1,3 +Id : 4751, {_}: least_upper_bound identity (least_upper_bound ?6221 (greatest_lower_bound identity ?6220)) =>= least_upper_bound identity ?6221 [6220, 6221] by Super 4738 with 12 at 2,2 +Id : 4923, {_}: least_upper_bound identity ?6418 =<= least_upper_bound (least_upper_bound identity ?6418) (greatest_lower_bound identity ?6419) [6419, 6418] by Super 16 with 4751 at 2 +Id : 4974, {_}: least_upper_bound identity ?6418 =<= least_upper_bound (greatest_lower_bound identity ?6419) (least_upper_bound identity ?6418) [6419, 6418] by Demod 4923 with 12 at 3 +Id : 5424, {_}: greatest_lower_bound (least_upper_bound identity ?7110) (greatest_lower_bound identity ?7111) =>= greatest_lower_bound identity ?7111 [7111, 7110] by Super 139 with 4974 at 1,2 +Id : 5471, {_}: greatest_lower_bound (greatest_lower_bound identity ?7111) (least_upper_bound identity ?7110) =>= greatest_lower_bound identity ?7111 [7110, 7111] by Demod 5424 with 10 at 2 +Id : 6383, {_}: greatest_lower_bound identity (greatest_lower_bound ?8259 (least_upper_bound identity ?8260)) =>= greatest_lower_bound identity ?8259 [8260, 8259] by Demod 5471 with 14 at 2 +Id : 605, {_}: greatest_lower_bound (least_upper_bound ?1361 ?1362) ?1361 =>= ?1361 [1362, 1361] by Super 10 with 24 at 3 +Id : 606, {_}: greatest_lower_bound (least_upper_bound ?1365 ?1364) ?1364 =>= ?1364 [1364, 1365] by Super 605 with 12 at 1,2 +Id : 6408, {_}: greatest_lower_bound identity (least_upper_bound identity ?8337) =<= greatest_lower_bound identity (least_upper_bound ?8336 (least_upper_bound identity ?8337)) [8336, 8337] by Super 6383 with 606 at 2,2 +Id : 6477, {_}: identity =<= greatest_lower_bound identity (least_upper_bound ?8336 (least_upper_bound identity ?8337)) [8337, 8336] by Demod 6408 with 24 at 2 +Id : 8574, {_}: least_upper_bound identity (least_upper_bound ?10550 (least_upper_bound identity ?10551)) =>= least_upper_bound ?10550 (least_upper_bound identity ?10551) [10551, 10550] by Super 524 with 6477 at 1,2 +Id : 9890, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound (inverse ?11957) (least_upper_bound identity ?11957) [11957] by Demod 9889 with 8574 at 3 +Id : 382, {_}: least_upper_bound ?896 (least_upper_bound ?896 ?897) =>= least_upper_bound ?896 ?897 [897, 896] by Super 16 with 18 at 1,3 +Id : 383, {_}: least_upper_bound ?899 (least_upper_bound ?900 ?899) =>= least_upper_bound ?899 ?900 [900, 899] by Super 382 with 12 at 2,2 +Id : 9723, {_}: multiply ?3262 (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply ?3262 ?3263) ?3262 [3263, 3262] by Demod 9722 with 2156 at 1,1,3 +Id : 9944, {_}: least_upper_bound ?12111 (multiply ?12111 ?12112) =>= multiply ?12111 (least_upper_bound ?12112 identity) [12112, 12111] by Super 12 with 9723 at 3 +Id : 9957, {_}: least_upper_bound (least_upper_bound identity ?12147) (least_upper_bound identity (inverse ?12147)) =>= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Super 9944 with 2193 at 2,2 +Id : 10090, {_}: least_upper_bound identity (least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147))) =>= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Demod 9957 with 16 at 2 +Id : 10091, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =<= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Demod 10090 with 8574 at 2 +Id : 10092, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =<= multiply (least_upper_bound identity ?12147) (least_upper_bound identity (inverse ?12147)) [12147] by Demod 10091 with 12 at 2,3 +Id : 50296, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =?= least_upper_bound (inverse ?12147) (least_upper_bound identity ?12147) [12147] by Demod 10092 with 9890 at 3 +Id : 50343, {_}: least_upper_bound (least_upper_bound identity (inverse ?46312)) (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312)) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Super 383 with 50296 at 2,2 +Id : 50540, {_}: least_upper_bound identity (least_upper_bound (inverse ?46312) (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312))) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50343 with 16 at 2 +Id : 100, {_}: least_upper_bound ?287 (least_upper_bound ?287 ?288) =>= least_upper_bound ?287 ?288 [288, 287] by Super 16 with 18 at 1,3 +Id : 50541, {_}: least_upper_bound identity (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312)) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50540 with 100 at 2,2 +Id : 50542, {_}: least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312) =<= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50541 with 8574 at 2 +Id : 50543, {_}: least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312) =>= least_upper_bound identity (least_upper_bound (inverse ?46312) ?46312) [46312] by Demod 50542 with 16 at 3 +Id : 51165, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound identity (least_upper_bound (inverse ?11957) ?11957) [11957] by Demod 9890 with 50543 at 3 +Id : 51164, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =?= least_upper_bound identity (least_upper_bound (inverse ?12147) ?12147) [12147] by Demod 50296 with 50543 at 3 +Id : 1772, {_}: multiply (multiply ?2886 (least_upper_bound identity (inverse ?2885))) ?2885 =>= multiply ?2886 (least_upper_bound identity ?2885) [2885, 2886] by Super 8 with 729 at 2,3 +Id : 2194, {_}: multiply (multiply ?3381 ?3380) (inverse ?3380) =>= ?3381 [3380, 3381] by Super 2130 with 2156 at 2,1,2 +Id : 2142, {_}: multiply ?3332 (inverse ?3332) =>= identity [3332] by Super 6 with 2108 at 2 +Id : 2212, {_}: multiply identity ?3416 =<= multiply ?3415 (multiply (inverse ?3415) ?3416) [3415, 3416] by Super 8 with 2142 at 1,2 +Id : 2238, {_}: ?3416 =<= multiply ?3415 (multiply (inverse ?3415) ?3416) [3415, 3416] by Demod 2212 with 4 at 2 +Id : 4219, {_}: multiply ?5438 (inverse (multiply (inverse ?5439) ?5438)) =>= ?5439 [5439, 5438] by Super 2194 with 2238 at 1,2 +Id : 18113, {_}: inverse (multiply (inverse ?20071) (inverse ?20072)) =>= multiply ?20072 ?20071 [20072, 20071] by Super 2238 with 4219 at 2,3 +Id : 18209, {_}: inverse (multiply ?20210 ?20209) =<= multiply (inverse ?20209) (inverse ?20210) [20209, 20210] by Super 2156 with 18113 at 1,2 +Id : 18309, {_}: multiply (inverse (multiply ?20330 ?20331)) ?20330 =>= inverse ?20331 [20331, 20330] by Super 2130 with 18209 at 1,2 +Id : 20618, {_}: multiply (least_upper_bound identity (inverse (multiply ?22269 ?22270))) ?22269 =>= least_upper_bound ?22269 (inverse ?22270) [22270, 22269] by Super 235 with 18309 at 2,3 +Id : 379959, {_}: multiply (least_upper_bound ?332905 (inverse ?332906)) (inverse ?332905) =>= least_upper_bound identity (inverse (multiply ?332905 ?332906)) [332906, 332905] by Super 2194 with 20618 at 1,2 +Id : 243389, {_}: multiply (least_upper_bound identity (multiply ?228491 ?228492)) (inverse ?228492) =>= least_upper_bound (inverse ?228492) ?228491 [228492, 228491] by Super 235 with 2194 at 2,3 +Id : 177106, {_}: multiply (multiply ?175304 (least_upper_bound identity (inverse ?175305))) ?175305 =>= multiply ?175304 (least_upper_bound identity ?175305) [175305, 175304] by Super 8 with 729 at 2,3 +Id : 10132, {_}: multiply (inverse ?12250) (least_upper_bound ?12250 identity) =>= least_upper_bound identity (inverse ?12250) [12250] by Super 9764 with 6 at 1,3 +Id : 10133, {_}: multiply (inverse ?12252) (least_upper_bound identity ?12252) =>= least_upper_bound identity (inverse ?12252) [12252] by Super 10132 with 12 at 2,2 +Id : 10242, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =<= least_upper_bound (least_upper_bound identity ?12325) (least_upper_bound identity (inverse ?12325)) [12325] by Super 235 with 10133 at 2,3 +Id : 10288, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =<= least_upper_bound identity (least_upper_bound ?12325 (least_upper_bound identity (inverse ?12325))) [12325] by Demod 10242 with 16 at 3 +Id : 10289, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (least_upper_bound identity (inverse ?12325)) [12325] by Demod 10288 with 8574 at 3 +Id : 177160, {_}: multiply (least_upper_bound (inverse ?175487) (least_upper_bound identity (inverse (inverse ?175487)))) ?175487 =>= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Super 177106 with 10289 at 1,2 +Id : 236, {_}: multiply (least_upper_bound (inverse ?645) ?644) ?645 =>= least_upper_bound identity (multiply ?644 ?645) [644, 645] by Super 230 with 6 at 1,3 +Id : 177356, {_}: least_upper_bound identity (multiply (least_upper_bound identity (inverse (inverse ?175487))) ?175487) =>= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Demod 177160 with 236 at 2 +Id : 177357, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175487) ?175487) =<= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Demod 177356 with 2156 at 2,1,2,2 +Id : 177519, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175800) ?175800) =>= multiply (least_upper_bound identity ?175800) (least_upper_bound identity ?175800) [175800] by Demod 177357 with 2156 at 2,1,3 +Id : 177520, {_}: least_upper_bound identity (multiply (least_upper_bound ?175802 identity) ?175802) =>= multiply (least_upper_bound identity ?175802) (least_upper_bound identity ?175802) [175802] by Super 177519 with 12 at 1,2,2 +Id : 3515, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?4381) ?4382)) ?4381 =>= least_upper_bound ?4381 (least_upper_bound identity (multiply ?4382 ?4381)) [4382, 4381] by Super 235 with 236 at 2,3 +Id : 1778, {_}: multiply (least_upper_bound (least_upper_bound identity (inverse ?2903)) ?2904) ?2903 =>= least_upper_bound (least_upper_bound identity ?2903) (multiply ?2904 ?2903) [2904, 2903] by Super 30 with 729 at 1,3 +Id : 1803, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound (least_upper_bound identity ?2903) (multiply ?2904 ?2903) [2904, 2903] by Demod 1778 with 16 at 1,2 +Id : 1804, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound (multiply ?2904 ?2903) (least_upper_bound identity ?2903) [2904, 2903] by Demod 1803 with 12 at 3 +Id : 102, {_}: least_upper_bound ?294 ?293 =<= least_upper_bound (least_upper_bound ?294 ?293) ?293 [293, 294] by Super 16 with 18 at 2,2 +Id : 29053, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound ?27543 ?27544) ?27545) =<= least_upper_bound (least_upper_bound ?27543 (least_upper_bound ?27544 identity)) ?27545 [27545, 27544, 27543] by Super 4634 with 16 at 1,3 +Id : 29054, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound ?27547 ?27548) ?27549) =<= least_upper_bound (least_upper_bound ?27547 (least_upper_bound identity ?27548)) ?27549 [27549, 27548, 27547] by Super 29053 with 12 at 2,1,3 +Id : 93172, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =<= least_upper_bound identity (least_upper_bound (least_upper_bound ?78323 ?78324) (least_upper_bound identity ?78324)) [78324, 78323] by Super 102 with 29054 at 3 +Id : 93561, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =<= least_upper_bound (least_upper_bound ?78323 ?78324) (least_upper_bound identity ?78324) [78324, 78323] by Demod 93172 with 8574 at 3 +Id : 4534, {_}: least_upper_bound identity (least_upper_bound ?5822 ?5823) =<= least_upper_bound (least_upper_bound ?5822 identity) ?5823 [5823, 5822] by Demod 4487 with 2130 at 2 +Id : 27996, {_}: least_upper_bound ?26567 (least_upper_bound identity (least_upper_bound ?26568 ?26567)) =>= least_upper_bound ?26567 (least_upper_bound ?26568 identity) [26568, 26567] by Super 383 with 4534 at 2,2 +Id : 28002, {_}: least_upper_bound ?26586 (least_upper_bound identity ?26586) =<= least_upper_bound ?26586 (least_upper_bound (greatest_lower_bound ?26586 ?26585) identity) [26585, 26586] by Super 27996 with 122 at 2,2,2 +Id : 28236, {_}: least_upper_bound ?26586 identity =<= least_upper_bound ?26586 (least_upper_bound (greatest_lower_bound ?26586 ?26585) identity) [26585, 26586] by Demod 28002 with 383 at 2 +Id : 8916, {_}: least_upper_bound identity (least_upper_bound ?11024 (least_upper_bound identity ?11025)) =>= least_upper_bound ?11024 (least_upper_bound identity ?11025) [11025, 11024] by Super 524 with 6477 at 1,2 +Id : 8917, {_}: least_upper_bound identity (least_upper_bound ?11027 (least_upper_bound ?11028 identity)) =>= least_upper_bound ?11027 (least_upper_bound identity ?11028) [11028, 11027] by Super 8916 with 12 at 2,2,2 +Id : 4835, {_}: least_upper_bound identity (least_upper_bound (greatest_lower_bound ?6313 identity) ?6314) =>= least_upper_bound identity ?6314 [6314, 6313] by Super 4634 with 524 at 1,3 +Id : 4847, {_}: least_upper_bound identity (greatest_lower_bound ?6349 identity) =<= least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?6349 identity) ?6348) [6348, 6349] by Super 4835 with 22 at 2,2 +Id : 128, {_}: least_upper_bound ?356 (greatest_lower_bound ?357 ?356) =>= ?356 [357, 356] by Super 127 with 10 at 2,2 +Id : 4903, {_}: identity =<= least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?6349 identity) ?6348) [6348, 6349] by Demod 4847 with 128 at 2 +Id : 5840, {_}: greatest_lower_bound identity (greatest_lower_bound (greatest_lower_bound ?7630 identity) ?7631) =>= greatest_lower_bound (greatest_lower_bound ?7630 identity) ?7631 [7631, 7630] by Super 606 with 4903 at 1,2 +Id : 5845, {_}: greatest_lower_bound identity (greatest_lower_bound identity ?7645) =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound ?7644 identity) identity) ?7645 [7644, 7645] by Super 5840 with 606 at 1,2,2 +Id : 112, {_}: greatest_lower_bound ?313 (greatest_lower_bound ?313 ?314) =>= greatest_lower_bound ?313 ?314 [314, 313] by Super 14 with 20 at 1,3 +Id : 5908, {_}: greatest_lower_bound identity ?7645 =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound ?7644 identity) identity) ?7645 [7644, 7645] by Demod 5845 with 112 at 2 +Id : 5909, {_}: greatest_lower_bound identity ?7645 =<= greatest_lower_bound (greatest_lower_bound identity (least_upper_bound ?7644 identity)) ?7645 [7644, 7645] by Demod 5908 with 10 at 1,3 +Id : 7862, {_}: greatest_lower_bound identity ?10013 =<= greatest_lower_bound identity (greatest_lower_bound (least_upper_bound ?10014 identity) ?10013) [10014, 10013] by Demod 5909 with 14 at 3 +Id : 146, {_}: greatest_lower_bound ?409 (least_upper_bound ?410 ?409) =>= ?409 [410, 409] by Super 145 with 12 at 2,2 +Id : 7879, {_}: greatest_lower_bound identity (least_upper_bound ?10063 (least_upper_bound ?10064 identity)) =>= greatest_lower_bound identity (least_upper_bound ?10064 identity) [10064, 10063] by Super 7862 with 146 at 2,3 +Id : 7984, {_}: greatest_lower_bound identity (least_upper_bound ?10063 (least_upper_bound ?10064 identity)) =>= identity [10064, 10063] by Demod 7879 with 146 at 3 +Id : 8758, {_}: least_upper_bound identity (least_upper_bound ?10813 (least_upper_bound ?10814 identity)) =>= least_upper_bound ?10813 (least_upper_bound ?10814 identity) [10814, 10813] by Super 524 with 7984 at 1,2 +Id : 9284, {_}: least_upper_bound ?11027 (least_upper_bound ?11028 identity) =?= least_upper_bound ?11027 (least_upper_bound identity ?11028) [11028, 11027] by Demod 8917 with 8758 at 2 +Id : 89245, {_}: least_upper_bound ?75550 identity =<= least_upper_bound ?75550 (least_upper_bound identity (greatest_lower_bound ?75550 ?75551)) [75551, 75550] by Demod 28236 with 9284 at 3 +Id : 89255, {_}: least_upper_bound (least_upper_bound ?75580 ?75581) identity =<= least_upper_bound (least_upper_bound ?75580 ?75581) (least_upper_bound identity ?75581) [75581, 75580] by Super 89245 with 606 at 2,2,3 +Id : 89821, {_}: least_upper_bound identity (least_upper_bound ?75580 ?75581) =<= least_upper_bound (least_upper_bound ?75580 ?75581) (least_upper_bound identity ?75581) [75581, 75580] by Demod 89255 with 12 at 2 +Id : 113848, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =?= least_upper_bound identity (least_upper_bound ?78323 ?78324) [78324, 78323] by Demod 93561 with 89821 at 3 +Id : 181989, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound identity (least_upper_bound (multiply ?2904 ?2903) ?2903) [2904, 2903] by Demod 1804 with 113848 at 3 +Id : 181990, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound identity (multiply (least_upper_bound ?2904 identity) ?2903) [2904, 2903] by Demod 181989 with 231 at 2,3 +Id : 230272, {_}: least_upper_bound identity (multiply (least_upper_bound ?4382 identity) ?4381) =?= least_upper_bound ?4381 (least_upper_bound identity (multiply ?4382 ?4381)) [4381, 4382] by Demod 3515 with 181990 at 2 +Id : 230301, {_}: least_upper_bound ?219571 (least_upper_bound identity (multiply ?219571 ?219571)) =>= multiply (least_upper_bound identity ?219571) (least_upper_bound identity ?219571) [219571] by Super 177520 with 230272 at 2 +Id : 232386, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound (least_upper_bound ?221067 identity) (multiply ?221067 ?221067) [221067] by Super 16 with 230301 at 2 +Id : 233006, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound (multiply ?221067 ?221067) (least_upper_bound ?221067 identity) [221067] by Demod 232386 with 12 at 3 +Id : 4614, {_}: greatest_lower_bound ?5993 (least_upper_bound identity (least_upper_bound ?5992 ?5993)) =>= ?5993 [5992, 5993] by Super 146 with 4534 at 2,2 +Id : 27608, {_}: least_upper_bound ?26112 (least_upper_bound identity (least_upper_bound ?26113 ?26112)) =>= least_upper_bound identity (least_upper_bound ?26113 ?26112) [26113, 26112] by Super 524 with 4614 at 1,2 +Id : 4631, {_}: least_upper_bound ?6045 (least_upper_bound identity (least_upper_bound ?6044 ?6045)) =>= least_upper_bound ?6045 (least_upper_bound ?6044 identity) [6044, 6045] by Super 383 with 4534 at 2,2 +Id : 83798, {_}: least_upper_bound ?26112 (least_upper_bound ?26113 identity) =?= least_upper_bound identity (least_upper_bound ?26113 ?26112) [26113, 26112] by Demod 27608 with 4631 at 2 +Id : 233007, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound identity (least_upper_bound ?221067 (multiply ?221067 ?221067)) [221067] by Demod 233006 with 83798 at 3 +Id : 9743, {_}: least_upper_bound ?11859 (multiply ?11859 ?11860) =>= multiply ?11859 (least_upper_bound ?11860 identity) [11860, 11859] by Super 12 with 9723 at 3 +Id : 233595, {_}: multiply (least_upper_bound identity ?221617) (least_upper_bound identity ?221617) =<= least_upper_bound identity (multiply ?221617 (least_upper_bound ?221617 identity)) [221617] by Demod 233007 with 9743 at 2,3 +Id : 233596, {_}: multiply (least_upper_bound identity ?221619) (least_upper_bound identity ?221619) =<= least_upper_bound identity (multiply ?221619 (least_upper_bound identity ?221619)) [221619] by Super 233595 with 12 at 2,2,3 +Id : 243525, {_}: multiply (multiply (least_upper_bound identity ?228868) (least_upper_bound identity ?228868)) (inverse (least_upper_bound identity ?228868)) =>= least_upper_bound (inverse (least_upper_bound identity ?228868)) ?228868 [228868] by Super 243389 with 233596 at 1,2 +Id : 243950, {_}: least_upper_bound identity ?228868 =<= least_upper_bound (inverse (least_upper_bound identity ?228868)) ?228868 [228868] by Demod 243525 with 2194 at 2 +Id : 244049, {_}: least_upper_bound ?229075 (inverse (least_upper_bound identity ?229075)) =>= least_upper_bound identity ?229075 [229075] by Super 12 with 243950 at 3 +Id : 380052, {_}: multiply (least_upper_bound identity ?333235) (inverse ?333235) =<= least_upper_bound identity (inverse (multiply ?333235 (least_upper_bound identity ?333235))) [333235] by Super 379959 with 244049 at 1,2 +Id : 381402, {_}: least_upper_bound identity (inverse ?334503) =<= least_upper_bound identity (inverse (multiply ?334503 (least_upper_bound identity ?334503))) [334503] by Demod 380052 with 2193 at 2 +Id : 177358, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175487) ?175487) =>= multiply (least_upper_bound identity ?175487) (least_upper_bound identity ?175487) [175487] by Demod 177357 with 2156 at 2,1,3 +Id : 177476, {_}: multiply (inverse (multiply (least_upper_bound identity ?175688) ?175688)) (multiply (least_upper_bound identity ?175688) (least_upper_bound identity ?175688)) =>= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Super 10133 with 177358 at 2,2 +Id : 177670, {_}: multiply (multiply (inverse (multiply (least_upper_bound identity ?175688) ?175688)) (least_upper_bound identity ?175688)) (least_upper_bound identity ?175688) =>= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177476 with 8 at 2 +Id : 177671, {_}: multiply (inverse ?175688) (least_upper_bound identity ?175688) =<= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177670 with 18309 at 1,2 +Id : 177672, {_}: least_upper_bound identity (inverse ?175688) =<= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177671 with 10133 at 2 +Id : 381492, {_}: least_upper_bound identity (inverse (inverse (multiply (least_upper_bound identity ?334735) ?334735))) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Super 381402 with 177672 at 2,1,2,3 +Id : 382266, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?334735) ?334735) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Demod 381492 with 2156 at 2,2 +Id : 382267, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Demod 382266 with 177358 at 2 +Id : 18224, {_}: inverse (multiply (inverse ?20261) (inverse ?20262)) =>= multiply ?20262 ?20261 [20262, 20261] by Super 2238 with 4219 at 2,3 +Id : 18226, {_}: inverse (multiply (inverse ?20267) ?20266) =>= multiply (inverse ?20266) ?20267 [20266, 20267] by Super 18224 with 2156 at 2,1,2 +Id : 382268, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (multiply (inverse (least_upper_bound identity (inverse ?334735))) (multiply (least_upper_bound identity ?334735) ?334735)) [334735] by Demod 382267 with 18226 at 2,3 +Id : 382269, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (multiply (multiply (inverse (least_upper_bound identity (inverse ?334735))) (least_upper_bound identity ?334735)) ?334735) [334735] by Demod 382268 with 8 at 2,3 +Id : 18545, {_}: inverse (multiply ?20706 (inverse ?20707)) =>= multiply ?20707 (inverse ?20706) [20707, 20706] by Super 18224 with 2156 at 1,1,2 +Id : 18566, {_}: inverse (least_upper_bound identity (inverse ?20767)) =<= multiply ?20767 (inverse (least_upper_bound identity ?20767)) [20767] by Super 18545 with 2193 at 1,2 +Id : 19741, {_}: multiply (inverse (least_upper_bound identity (inverse ?21554))) (least_upper_bound identity ?21554) =>= ?21554 [21554] by Super 2130 with 18566 at 1,2 +Id : 382270, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =>= least_upper_bound identity (multiply ?334735 ?334735) [334735] by Demod 382269 with 19741 at 1,2,3 +Id : 382385, {_}: multiply (least_upper_bound identity (multiply (inverse ?334827) (inverse ?334827))) ?334827 =>= multiply (least_upper_bound identity (inverse ?334827)) (least_upper_bound identity ?334827) [334827] by Super 1772 with 382270 at 1,2 +Id : 2064, {_}: multiply (least_upper_bound identity (multiply ?3201 (inverse ?3202))) ?3202 =>= least_upper_bound ?3202 (multiply ?3201 identity) [3202, 3201] by Super 235 with 40 at 2,3 +Id : 223367, {_}: multiply (least_upper_bound identity (multiply ?3201 (inverse ?3202))) ?3202 =>= least_upper_bound ?3202 ?3201 [3202, 3201] by Demod 2064 with 2129 at 2,3 +Id : 382807, {_}: least_upper_bound ?334827 (inverse ?334827) =<= multiply (least_upper_bound identity (inverse ?334827)) (least_upper_bound identity ?334827) [334827] by Demod 382385 with 223367 at 2 +Id : 382808, {_}: least_upper_bound ?334827 (inverse ?334827) =<= least_upper_bound ?334827 (least_upper_bound identity (inverse ?334827)) [334827] by Demod 382807 with 10289 at 3 +Id : 383798, {_}: least_upper_bound ?12147 (inverse ?12147) =<= least_upper_bound identity (least_upper_bound (inverse ?12147) ?12147) [12147] by Demod 51164 with 382808 at 2 +Id : 383800, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound ?11957 (inverse ?11957) [11957] by Demod 51165 with 383798 at 3 +Id : 2115, {_}: multiply (inverse (inverse ?3274)) (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply (inverse (inverse ?3274)) ?3275) ?3274 [3275, 3274] by Super 28 with 2091 at 2,3 +Id : 10659, {_}: multiply ?3274 (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply (inverse (inverse ?3274)) ?3275) ?3274 [3275, 3274] by Demod 2115 with 2156 at 1,2 +Id : 10660, {_}: multiply ?3274 (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply ?3274 ?3275) ?3274 [3275, 3274] by Demod 10659 with 2156 at 1,1,3 +Id : 10678, {_}: greatest_lower_bound ?12834 (multiply ?12834 ?12835) =>= multiply ?12834 (greatest_lower_bound ?12835 identity) [12835, 12834] by Super 10 with 10660 at 3 +Id : 18328, {_}: greatest_lower_bound (inverse ?20397) (inverse (multiply ?20396 ?20397)) =>= multiply (inverse ?20397) (greatest_lower_bound (inverse ?20396) identity) [20396, 20397] by Super 10678 with 18209 at 2,2 +Id : 2116, {_}: multiply (inverse (inverse ?3277)) (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply (inverse (inverse ?3277)) ?3278) [3278, 3277] by Super 28 with 2091 at 1,3 +Id : 11396, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply (inverse (inverse ?3277)) ?3278) [3278, 3277] by Demod 2116 with 2156 at 1,2 +Id : 11397, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply ?3277 ?3278) [3278, 3277] by Demod 11396 with 2156 at 1,2,3 +Id : 11398, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =?= multiply ?3277 (greatest_lower_bound ?3278 identity) [3278, 3277] by Demod 11397 with 10678 at 3 +Id : 78468, {_}: greatest_lower_bound (inverse ?65596) (inverse (multiply ?65597 ?65596)) =>= multiply (inverse ?65596) (greatest_lower_bound identity (inverse ?65597)) [65597, 65596] by Demod 18328 with 11398 at 3 +Id : 78507, {_}: greatest_lower_bound (inverse ?65693) (inverse (inverse ?65692)) =<= multiply (inverse ?65693) (greatest_lower_bound identity (inverse (inverse (multiply ?65693 ?65692)))) [65692, 65693] by Super 78468 with 18309 at 1,2,2 +Id : 78731, {_}: greatest_lower_bound (inverse ?65693) ?65692 =<= multiply (inverse ?65693) (greatest_lower_bound identity (inverse (inverse (multiply ?65693 ?65692)))) [65692, 65693] by Demod 78507 with 2156 at 2,2 +Id : 443714, {_}: greatest_lower_bound (inverse ?378148) ?378149 =<= multiply (inverse ?378148) (greatest_lower_bound identity (multiply ?378148 ?378149)) [378149, 378148] by Demod 78731 with 2156 at 2,2,3 +Id : 842, {_}: multiply (greatest_lower_bound ?1730 identity) ?1731 =<= greatest_lower_bound (multiply ?1730 ?1731) ?1731 [1731, 1730] by Super 265 with 4 at 2,3 +Id : 844, {_}: multiply (greatest_lower_bound (inverse ?1735) identity) ?1735 =>= greatest_lower_bound identity ?1735 [1735] by Super 842 with 6 at 1,3 +Id : 874, {_}: multiply (greatest_lower_bound identity (inverse ?1735)) ?1735 =>= greatest_lower_bound identity ?1735 [1735] by Demod 844 with 10 at 1,2 +Id : 2191, {_}: multiply (greatest_lower_bound identity ?3374) (inverse ?3374) =>= greatest_lower_bound identity (inverse ?3374) [3374] by Super 874 with 2156 at 2,1,2 +Id : 9776, {_}: multiply (greatest_lower_bound identity ?11955) (least_upper_bound (inverse ?11955) identity) =<= least_upper_bound (greatest_lower_bound identity (inverse ?11955)) (greatest_lower_bound identity ?11955) [11955] by Super 9764 with 2191 at 1,3 +Id : 47906, {_}: multiply (greatest_lower_bound identity ?45245) (least_upper_bound identity (inverse ?45245)) =<= least_upper_bound (greatest_lower_bound identity (inverse ?45245)) (greatest_lower_bound identity ?45245) [45245] by Demod 9776 with 12 at 2,2 +Id : 47957, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity (inverse (inverse ?45371))) =>= least_upper_bound (greatest_lower_bound identity ?45371) (greatest_lower_bound identity (inverse ?45371)) [45371] by Super 47906 with 2156 at 2,1,3 +Id : 48268, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity ?45371) =<= least_upper_bound (greatest_lower_bound identity ?45371) (greatest_lower_bound identity (inverse ?45371)) [45371] by Demod 47957 with 2156 at 2,2,2 +Id : 9956, {_}: least_upper_bound (greatest_lower_bound identity ?12145) (greatest_lower_bound identity (inverse ?12145)) =>= multiply (greatest_lower_bound identity ?12145) (least_upper_bound (inverse ?12145) identity) [12145] by Super 9944 with 2191 at 2,2 +Id : 10089, {_}: least_upper_bound (greatest_lower_bound identity ?12145) (greatest_lower_bound identity (inverse ?12145)) =>= multiply (greatest_lower_bound identity ?12145) (least_upper_bound identity (inverse ?12145)) [12145] by Demod 9956 with 12 at 2,3 +Id : 105582, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity ?45371) =?= multiply (greatest_lower_bound identity ?45371) (least_upper_bound identity (inverse ?45371)) [45371] by Demod 48268 with 10089 at 3 +Id : 443814, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (multiply (greatest_lower_bound identity ?378412) (least_upper_bound identity (inverse ?378412)))) [378412] by Super 443714 with 105582 at 2,2,3 +Id : 5843, {_}: greatest_lower_bound identity (greatest_lower_bound identity ?7639) =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound identity ?7638) identity) ?7639 [7638, 7639] by Super 5840 with 139 at 1,2,2 +Id : 5900, {_}: greatest_lower_bound identity ?7639 =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound identity ?7638) identity) ?7639 [7638, 7639] by Demod 5843 with 112 at 2 +Id : 5901, {_}: greatest_lower_bound identity ?7639 =<= greatest_lower_bound (greatest_lower_bound identity (least_upper_bound identity ?7638)) ?7639 [7638, 7639] by Demod 5900 with 10 at 1,3 +Id : 7645, {_}: greatest_lower_bound identity ?9767 =<= greatest_lower_bound identity (greatest_lower_bound (least_upper_bound identity ?9768) ?9767) [9768, 9767] by Demod 5901 with 14 at 3 +Id : 270, {_}: multiply (greatest_lower_bound identity ?723) ?724 =<= greatest_lower_bound ?724 (multiply ?723 ?724) [724, 723] by Super 265 with 4 at 1,3 +Id : 7676, {_}: greatest_lower_bound identity (multiply ?9863 (least_upper_bound identity ?9864)) =<= greatest_lower_bound identity (multiply (greatest_lower_bound identity ?9863) (least_upper_bound identity ?9864)) [9864, 9863] by Super 7645 with 270 at 2,3 +Id : 444411, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (multiply ?378412 (least_upper_bound identity (inverse ?378412)))) [378412] by Demod 443814 with 7676 at 2,3 +Id : 2215, {_}: multiply ?3422 (least_upper_bound ?3423 (inverse ?3422)) =>= least_upper_bound (multiply ?3422 ?3423) identity [3423, 3422] by Super 26 with 2142 at 2,3 +Id : 2235, {_}: multiply ?3422 (least_upper_bound ?3423 (inverse ?3422)) =>= least_upper_bound identity (multiply ?3422 ?3423) [3423, 3422] by Demod 2215 with 12 at 3 +Id : 444412, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (least_upper_bound identity (multiply ?378412 identity))) [378412] by Demod 444411 with 2235 at 2,2,3 +Id : 444413, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =>= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) identity [378412] by Demod 444412 with 24 at 2,3 +Id : 444414, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =>= inverse (greatest_lower_bound identity (inverse ?378412)) [378412] by Demod 444413 with 2129 at 3 +Id : 761747, {_}: least_upper_bound (least_upper_bound identity ?693163) (inverse (greatest_lower_bound identity (inverse ?693163))) =>= least_upper_bound identity ?693163 [693163] by Super 128 with 444414 at 2,2 +Id : 762288, {_}: least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) (least_upper_bound identity ?693163) =>= least_upper_bound identity ?693163 [693163] by Demod 761747 with 12 at 2 +Id : 1150, {_}: least_upper_bound (least_upper_bound ?2078 ?2079) ?2078 =>= least_upper_bound ?2078 ?2079 [2079, 2078] by Super 12 with 100 at 3 +Id : 158742, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?149635 ?149636) ?149637) ?149635 =>= least_upper_bound ?149635 (least_upper_bound ?149636 ?149637) [149637, 149636, 149635] by Super 1150 with 16 at 1,2 +Id : 375, {_}: least_upper_bound (least_upper_bound ?872 ?873) ?872 =>= least_upper_bound ?872 ?873 [873, 872] by Super 12 with 100 at 3 +Id : 1142, {_}: least_upper_bound (least_upper_bound ?2051 ?2052) (least_upper_bound ?2051 ?2053) =>= least_upper_bound (least_upper_bound ?2051 ?2052) ?2053 [2053, 2052, 2051] by Super 16 with 375 at 1,3 +Id : 158880, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?150190 ?150191) ?150189) ?150190 =?= least_upper_bound ?150190 (least_upper_bound ?150191 (least_upper_bound ?150190 ?150189)) [150189, 150191, 150190] by Super 158742 with 1142 at 1,2 +Id : 1152, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?2086 ?2084) ?2085) ?2086 =>= least_upper_bound ?2086 (least_upper_bound ?2084 ?2085) [2085, 2084, 2086] by Super 1150 with 16 at 1,2 +Id : 159604, {_}: least_upper_bound ?150190 (least_upper_bound ?150191 ?150189) =<= least_upper_bound ?150190 (least_upper_bound ?150191 (least_upper_bound ?150190 ?150189)) [150189, 150191, 150190] by Demod 158880 with 1152 at 2 +Id : 126, {_}: least_upper_bound ?351 ?349 =<= least_upper_bound (least_upper_bound ?351 ?349) (greatest_lower_bound ?349 ?350) [350, 349, 351] by Super 16 with 22 at 2,2 +Id : 135029, {_}: least_upper_bound ?113864 ?113865 =<= least_upper_bound (greatest_lower_bound ?113865 ?113866) (least_upper_bound ?113864 ?113865) [113866, 113865, 113864] by Demod 126 with 12 at 3 +Id : 135153, {_}: least_upper_bound ?114345 (least_upper_bound ?114346 ?114344) =<= least_upper_bound ?114346 (least_upper_bound ?114345 (least_upper_bound ?114346 ?114344)) [114344, 114346, 114345] by Super 135029 with 139 at 1,3 +Id : 503059, {_}: least_upper_bound ?150190 (least_upper_bound ?150191 ?150189) =?= least_upper_bound ?150191 (least_upper_bound ?150190 ?150189) [150189, 150191, 150190] by Demod 159604 with 135153 at 3 +Id : 762289, {_}: least_upper_bound identity (least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) ?693163) =>= least_upper_bound identity ?693163 [693163] by Demod 762288 with 503059 at 2 +Id : 2280, {_}: multiply (greatest_lower_bound identity ?3504) (inverse ?3504) =>= greatest_lower_bound identity (inverse ?3504) [3504] by Super 874 with 2156 at 2,1,2 +Id : 2286, {_}: multiply (greatest_lower_bound identity ?3514) (inverse (greatest_lower_bound identity ?3514)) =>= greatest_lower_bound identity (inverse (greatest_lower_bound identity ?3514)) [3514] by Super 2280 with 112 at 1,2 +Id : 2335, {_}: identity =<= greatest_lower_bound identity (inverse (greatest_lower_bound identity ?3514)) [3514] by Demod 2286 with 2142 at 2 +Id : 2422, {_}: least_upper_bound identity (inverse (greatest_lower_bound identity ?3608)) =>= inverse (greatest_lower_bound identity ?3608) [3608] by Super 524 with 2335 at 1,2 +Id : 2722, {_}: least_upper_bound identity (least_upper_bound (inverse (greatest_lower_bound identity ?3826)) ?3827) =>= least_upper_bound (inverse (greatest_lower_bound identity ?3826)) ?3827 [3827, 3826] by Super 16 with 2422 at 1,3 +Id : 762290, {_}: least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) ?693163 =>= least_upper_bound identity ?693163 [693163] by Demod 762289 with 2722 at 2 +Id : 18327, {_}: multiply (inverse ?20394) (least_upper_bound (inverse ?20393) identity) =<= least_upper_bound (inverse (multiply ?20393 ?20394)) (inverse ?20394) [20393, 20394] by Super 9723 with 18209 at 1,3 +Id : 2112, {_}: multiply (inverse (inverse ?3265)) (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply (inverse (inverse ?3265)) ?3266) [3266, 3265] by Super 26 with 2091 at 1,3 +Id : 10376, {_}: multiply ?3265 (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply (inverse (inverse ?3265)) ?3266) [3266, 3265] by Demod 2112 with 2156 at 1,2 +Id : 10377, {_}: multiply ?3265 (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply ?3265 ?3266) [3266, 3265] by Demod 10376 with 2156 at 1,2,3 +Id : 10378, {_}: multiply ?3265 (least_upper_bound identity ?3266) =?= multiply ?3265 (least_upper_bound ?3266 identity) [3266, 3265] by Demod 10377 with 9743 at 3 +Id : 18347, {_}: multiply (inverse ?20394) (least_upper_bound identity (inverse ?20393)) =<= least_upper_bound (inverse (multiply ?20393 ?20394)) (inverse ?20394) [20393, 20394] by Demod 18327 with 10378 at 2 +Id : 2048, {_}: multiply (greatest_lower_bound identity (multiply ?3142 (inverse ?3143))) ?3143 =>= greatest_lower_bound ?3143 (multiply ?3142 identity) [3143, 3142] by Super 270 with 40 at 2,3 +Id : 194485, {_}: multiply (greatest_lower_bound identity (multiply ?3142 (inverse ?3143))) ?3143 =>= greatest_lower_bound ?3143 ?3142 [3143, 3142] by Demod 2048 with 2129 at 2,3 +Id : 194529, {_}: multiply (inverse ?186266) (least_upper_bound identity (inverse (greatest_lower_bound identity (multiply ?186265 (inverse ?186266))))) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186265, 186266] by Super 18347 with 194485 at 1,1,3 +Id : 194632, {_}: multiply (inverse ?186266) (inverse (greatest_lower_bound identity (multiply ?186265 (inverse ?186266)))) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186265, 186266] by Demod 194529 with 2422 at 2,2 +Id : 194633, {_}: inverse (multiply (greatest_lower_bound identity (multiply ?186265 (inverse ?186266))) ?186266) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186266, 186265] by Demod 194632 with 18209 at 2 +Id : 195668, {_}: inverse (greatest_lower_bound ?187604 ?187605) =<= least_upper_bound (inverse (greatest_lower_bound ?187604 ?187605)) (inverse ?187604) [187605, 187604] by Demod 194633 with 194485 at 1,2 +Id : 201008, {_}: inverse (greatest_lower_bound (inverse ?193412) ?193413) =<= least_upper_bound (inverse (greatest_lower_bound (inverse ?193412) ?193413)) ?193412 [193413, 193412] by Super 195668 with 2156 at 2,3 +Id : 201035, {_}: inverse (greatest_lower_bound (inverse ?193516) ?193517) =<= least_upper_bound (inverse (greatest_lower_bound ?193517 (inverse ?193516))) ?193516 [193517, 193516] by Super 201008 with 10 at 1,1,3 +Id : 762291, {_}: inverse (greatest_lower_bound (inverse ?693163) identity) =>= least_upper_bound identity ?693163 [693163] by Demod 762290 with 201035 at 2 +Id : 18116, {_}: multiply ?20080 (inverse (multiply (inverse ?20081) ?20080)) =>= ?20081 [20081, 20080] by Super 2194 with 2238 at 1,2 +Id : 20397, {_}: multiply ?22035 (inverse (multiply ?22036 ?22035)) =>= inverse ?22036 [22036, 22035] by Super 18116 with 2156 at 1,1,2,2 +Id : 267, {_}: multiply (greatest_lower_bound ?710 (inverse ?711)) ?711 =>= greatest_lower_bound (multiply ?710 ?711) identity [711, 710] by Super 265 with 6 at 2,3 +Id : 287, {_}: multiply (greatest_lower_bound ?710 (inverse ?711)) ?711 =>= greatest_lower_bound identity (multiply ?710 ?711) [711, 710] by Demod 267 with 10 at 3 +Id : 20404, {_}: multiply ?22056 (inverse (greatest_lower_bound identity (multiply ?22055 ?22056))) =>= inverse (greatest_lower_bound ?22055 (inverse ?22056)) [22055, 22056] by Super 20397 with 287 at 1,2,2 +Id : 271, {_}: multiply (greatest_lower_bound (inverse ?727) ?726) ?727 =>= greatest_lower_bound identity (multiply ?726 ?727) [726, 727] by Super 265 with 6 at 1,3 +Id : 20403, {_}: multiply ?22053 (inverse (greatest_lower_bound identity (multiply ?22052 ?22053))) =>= inverse (greatest_lower_bound (inverse ?22053) ?22052) [22052, 22053] by Super 20397 with 271 at 1,2,2 +Id : 354211, {_}: inverse (greatest_lower_bound (inverse ?22056) ?22055) =?= inverse (greatest_lower_bound ?22055 (inverse ?22056)) [22055, 22056] by Demod 20404 with 20403 at 2 +Id : 763705, {_}: inverse (greatest_lower_bound identity (inverse ?694794)) =>= least_upper_bound identity ?694794 [694794] by Demod 762291 with 354211 at 2 +Id : 763707, {_}: inverse (greatest_lower_bound identity ?694797) =<= least_upper_bound identity (inverse ?694797) [694797] by Super 763705 with 2156 at 2,1,2 +Id : 766509, {_}: multiply (least_upper_bound identity ?11957) (inverse (greatest_lower_bound identity ?11957)) =>= least_upper_bound ?11957 (inverse ?11957) [11957] by Demod 383800 with 763707 at 2,2 +Id : 383797, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (inverse ?12325) [12325] by Demod 10289 with 382808 at 3 +Id : 766508, {_}: multiply (inverse (greatest_lower_bound identity ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (inverse ?12325) [12325] by Demod 383797 with 763707 at 1,2 +Id : 768092, {_}: least_upper_bound a (inverse a) === least_upper_bound a (inverse a) [] by Demod 768091 with 766508 at 3 +Id : 768091, {_}: least_upper_bound a (inverse a) =<= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound identity a) [] by Demod 298 with 766509 at 2 +Id : 298, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound identity a) [] by Demod 297 with 12 at 2,3 +Id : 297, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound a identity) [] by Demod 296 with 10 at 1,1,3 +Id : 296, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by Demod 295 with 10 at 1,2,2 +Id : 295, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by Demod 2 with 12 at 1,2 +Id : 2, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21 +% SZS output end CNFRefutation for GRP184-1.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + associativity_of_glb is 86 + associativity_of_lub is 85 + glb_absorbtion is 81 + greatest_lower_bound is 95 + idempotence_of_gld is 83 + idempotence_of_lub is 84 + identity is 97 + inverse is 94 + least_upper_bound is 96 + left_identity is 91 + left_inverse is 90 + lub_absorbtion is 82 + monotony_glb1 is 79 + monotony_glb2 is 77 + monotony_lub1 is 80 + monotony_lub2 is 78 + multiply is 93 + prove_p21x is 92 + symmetry_of_glb is 88 + symmetry_of_lub is 87 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Goal + Id : 2, {_}: + multiply (least_upper_bound a identity) + (inverse (greatest_lower_bound a identity)) + =>= + multiply (inverse (greatest_lower_bound a identity)) + (least_upper_bound a identity) + [] by prove_p21x +Found proof, 111.081739s +% SZS status Unsatisfiable for GRP184-3.p +% SZS output start CNFRefutation for GRP184-3.p +Id : 265, {_}: multiply (greatest_lower_bound ?703 ?704) ?705 =<= greatest_lower_bound (multiply ?703 ?705) (multiply ?704 ?705) [705, 704, 703] by monotony_glb2 ?703 ?704 ?705 +Id : 28, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 +Id : 145, {_}: greatest_lower_bound ?406 (least_upper_bound ?406 ?407) =>= ?406 [407, 406] by glb_absorbtion ?406 ?407 +Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 +Id : 127, {_}: least_upper_bound ?353 (greatest_lower_bound ?353 ?354) =>= ?353 [354, 353] by lub_absorbtion ?353 ?354 +Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 +Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 +Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 +Id : 30, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 +Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 +Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 +Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 +Id : 230, {_}: multiply (least_upper_bound ?621 ?622) ?623 =<= least_upper_bound (multiply ?621 ?623) (multiply ?622 ?623) [623, 622, 621] by monotony_lub2 ?621 ?622 ?623 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 38, {_}: multiply (multiply ?61 ?62) ?63 =?= multiply ?61 (multiply ?62 ?63) [63, 62, 61] by associativity ?61 ?62 ?63 +Id : 26, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 +Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 +Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 +Id : 2065, {_}: multiply (multiply ?3204 (inverse ?3205)) ?3205 =>= multiply ?3204 identity [3205, 3204] by Super 38 with 6 at 2,3 +Id : 2068, {_}: multiply identity ?3211 =<= multiply (inverse (inverse ?3211)) identity [3211] by Super 2065 with 6 at 1,2 +Id : 2091, {_}: ?3211 =<= multiply (inverse (inverse ?3211)) identity [3211] by Demod 2068 with 4 at 2 +Id : 2111, {_}: multiply (inverse (inverse ?3262)) (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply (inverse (inverse ?3262)) ?3263) ?3262 [3263, 3262] by Super 26 with 2091 at 2,3 +Id : 39, {_}: multiply (multiply ?65 identity) ?66 =>= multiply ?65 ?66 [66, 65] by Super 38 with 4 at 2,3 +Id : 2108, {_}: multiply ?3253 ?3254 =<= multiply (inverse (inverse ?3253)) ?3254 [3254, 3253] by Super 39 with 2091 at 1,2 +Id : 2129, {_}: ?3211 =<= multiply ?3211 identity [3211] by Demod 2091 with 2108 at 3 +Id : 2149, {_}: inverse (inverse ?3356) =>= multiply ?3356 identity [3356] by Super 2129 with 2108 at 3 +Id : 2156, {_}: inverse (inverse ?3356) =>= ?3356 [3356] by Demod 2149 with 2129 at 3 +Id : 9722, {_}: multiply ?3262 (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply (inverse (inverse ?3262)) ?3263) ?3262 [3263, 3262] by Demod 2111 with 2156 at 1,2 +Id : 9764, {_}: multiply ?11921 (least_upper_bound ?11922 identity) =<= least_upper_bound (multiply ?11921 ?11922) ?11921 [11922, 11921] by Demod 9722 with 2156 at 1,1,3 +Id : 701, {_}: multiply (least_upper_bound ?1544 identity) ?1545 =<= least_upper_bound (multiply ?1544 ?1545) ?1545 [1545, 1544] by Super 230 with 4 at 2,3 +Id : 703, {_}: multiply (least_upper_bound (inverse ?1549) identity) ?1549 =>= least_upper_bound identity ?1549 [1549] by Super 701 with 6 at 1,3 +Id : 729, {_}: multiply (least_upper_bound identity (inverse ?1549)) ?1549 =>= least_upper_bound identity ?1549 [1549] by Demod 703 with 12 at 1,2 +Id : 2193, {_}: multiply (least_upper_bound identity ?3378) (inverse ?3378) =>= least_upper_bound identity (inverse ?3378) [3378] by Super 729 with 2156 at 2,1,2 +Id : 9777, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound (inverse ?11957) identity) =<= least_upper_bound (least_upper_bound identity (inverse ?11957)) (least_upper_bound identity ?11957) [11957] by Super 9764 with 2193 at 1,3 +Id : 9888, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =<= least_upper_bound (least_upper_bound identity (inverse ?11957)) (least_upper_bound identity ?11957) [11957] by Demod 9777 with 12 at 2,2 +Id : 9889, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =<= least_upper_bound identity (least_upper_bound (inverse ?11957) (least_upper_bound identity ?11957)) [11957] by Demod 9888 with 16 at 3 +Id : 523, {_}: least_upper_bound (greatest_lower_bound ?1203 ?1204) ?1203 =>= ?1203 [1204, 1203] by Super 12 with 22 at 3 +Id : 524, {_}: least_upper_bound (greatest_lower_bound ?1207 ?1206) ?1206 =>= ?1206 [1206, 1207] by Super 523 with 10 at 1,2 +Id : 139, {_}: greatest_lower_bound (least_upper_bound ?385 ?386) ?385 =>= ?385 [386, 385] by Super 10 with 24 at 3 +Id : 40, {_}: multiply (multiply ?68 (inverse ?69)) ?69 =>= multiply ?68 identity [69, 68] by Super 38 with 6 at 2,3 +Id : 2130, {_}: multiply (multiply ?68 (inverse ?69)) ?69 =>= ?68 [69, 68] by Demod 40 with 2129 at 3 +Id : 231, {_}: multiply (least_upper_bound ?625 identity) ?626 =<= least_upper_bound (multiply ?625 ?626) ?626 [626, 625] by Super 230 with 4 at 2,3 +Id : 693, {_}: least_upper_bound ?1518 (multiply ?1517 ?1518) =>= multiply (least_upper_bound ?1517 identity) ?1518 [1517, 1518] by Super 12 with 231 at 3 +Id : 235, {_}: multiply (least_upper_bound identity ?641) ?642 =<= least_upper_bound ?642 (multiply ?641 ?642) [642, 641] by Super 230 with 4 at 1,3 +Id : 1616, {_}: multiply (least_upper_bound identity ?1517) ?1518 =?= multiply (least_upper_bound ?1517 identity) ?1518 [1518, 1517] by Demod 693 with 235 at 2 +Id : 1625, {_}: multiply (least_upper_bound (least_upper_bound identity ?2728) ?2730) ?2729 =<= least_upper_bound (multiply (least_upper_bound ?2728 identity) ?2729) (multiply ?2730 ?2729) [2729, 2730, 2728] by Super 30 with 1616 at 1,3 +Id : 1699, {_}: multiply (least_upper_bound identity (least_upper_bound ?2728 ?2730)) ?2729 =<= least_upper_bound (multiply (least_upper_bound ?2728 identity) ?2729) (multiply ?2730 ?2729) [2729, 2730, 2728] by Demod 1625 with 16 at 1,2 +Id : 1700, {_}: multiply (least_upper_bound identity (least_upper_bound ?2728 ?2730)) ?2729 =<= multiply (least_upper_bound (least_upper_bound ?2728 identity) ?2730) ?2729 [2729, 2730, 2728] by Demod 1699 with 30 at 3 +Id : 4487, {_}: multiply (multiply (least_upper_bound identity (least_upper_bound ?5822 ?5823)) (inverse ?5824)) ?5824 =>= least_upper_bound (least_upper_bound ?5822 identity) ?5823 [5824, 5823, 5822] by Super 2130 with 1700 at 1,2 +Id : 4634, {_}: least_upper_bound identity (least_upper_bound ?6053 ?6054) =<= least_upper_bound (least_upper_bound ?6053 identity) ?6054 [6054, 6053] by Demod 4487 with 2130 at 2 +Id : 122, {_}: least_upper_bound (greatest_lower_bound ?335 ?336) ?335 =>= ?335 [336, 335] by Super 12 with 22 at 3 +Id : 4738, {_}: least_upper_bound identity (least_upper_bound (greatest_lower_bound identity ?6182) ?6183) =>= least_upper_bound identity ?6183 [6183, 6182] by Super 4634 with 122 at 1,3 +Id : 4751, {_}: least_upper_bound identity (least_upper_bound ?6221 (greatest_lower_bound identity ?6220)) =>= least_upper_bound identity ?6221 [6220, 6221] by Super 4738 with 12 at 2,2 +Id : 4923, {_}: least_upper_bound identity ?6418 =<= least_upper_bound (least_upper_bound identity ?6418) (greatest_lower_bound identity ?6419) [6419, 6418] by Super 16 with 4751 at 2 +Id : 4974, {_}: least_upper_bound identity ?6418 =<= least_upper_bound (greatest_lower_bound identity ?6419) (least_upper_bound identity ?6418) [6419, 6418] by Demod 4923 with 12 at 3 +Id : 5424, {_}: greatest_lower_bound (least_upper_bound identity ?7110) (greatest_lower_bound identity ?7111) =>= greatest_lower_bound identity ?7111 [7111, 7110] by Super 139 with 4974 at 1,2 +Id : 5471, {_}: greatest_lower_bound (greatest_lower_bound identity ?7111) (least_upper_bound identity ?7110) =>= greatest_lower_bound identity ?7111 [7110, 7111] by Demod 5424 with 10 at 2 +Id : 6383, {_}: greatest_lower_bound identity (greatest_lower_bound ?8259 (least_upper_bound identity ?8260)) =>= greatest_lower_bound identity ?8259 [8260, 8259] by Demod 5471 with 14 at 2 +Id : 605, {_}: greatest_lower_bound (least_upper_bound ?1361 ?1362) ?1361 =>= ?1361 [1362, 1361] by Super 10 with 24 at 3 +Id : 606, {_}: greatest_lower_bound (least_upper_bound ?1365 ?1364) ?1364 =>= ?1364 [1364, 1365] by Super 605 with 12 at 1,2 +Id : 6408, {_}: greatest_lower_bound identity (least_upper_bound identity ?8337) =<= greatest_lower_bound identity (least_upper_bound ?8336 (least_upper_bound identity ?8337)) [8336, 8337] by Super 6383 with 606 at 2,2 +Id : 6477, {_}: identity =<= greatest_lower_bound identity (least_upper_bound ?8336 (least_upper_bound identity ?8337)) [8337, 8336] by Demod 6408 with 24 at 2 +Id : 8574, {_}: least_upper_bound identity (least_upper_bound ?10550 (least_upper_bound identity ?10551)) =>= least_upper_bound ?10550 (least_upper_bound identity ?10551) [10551, 10550] by Super 524 with 6477 at 1,2 +Id : 9890, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound (inverse ?11957) (least_upper_bound identity ?11957) [11957] by Demod 9889 with 8574 at 3 +Id : 382, {_}: least_upper_bound ?896 (least_upper_bound ?896 ?897) =>= least_upper_bound ?896 ?897 [897, 896] by Super 16 with 18 at 1,3 +Id : 383, {_}: least_upper_bound ?899 (least_upper_bound ?900 ?899) =>= least_upper_bound ?899 ?900 [900, 899] by Super 382 with 12 at 2,2 +Id : 9723, {_}: multiply ?3262 (least_upper_bound ?3263 identity) =<= least_upper_bound (multiply ?3262 ?3263) ?3262 [3263, 3262] by Demod 9722 with 2156 at 1,1,3 +Id : 9944, {_}: least_upper_bound ?12111 (multiply ?12111 ?12112) =>= multiply ?12111 (least_upper_bound ?12112 identity) [12112, 12111] by Super 12 with 9723 at 3 +Id : 9957, {_}: least_upper_bound (least_upper_bound identity ?12147) (least_upper_bound identity (inverse ?12147)) =>= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Super 9944 with 2193 at 2,2 +Id : 10090, {_}: least_upper_bound identity (least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147))) =>= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Demod 9957 with 16 at 2 +Id : 10091, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =<= multiply (least_upper_bound identity ?12147) (least_upper_bound (inverse ?12147) identity) [12147] by Demod 10090 with 8574 at 2 +Id : 10092, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =<= multiply (least_upper_bound identity ?12147) (least_upper_bound identity (inverse ?12147)) [12147] by Demod 10091 with 12 at 2,3 +Id : 50296, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =?= least_upper_bound (inverse ?12147) (least_upper_bound identity ?12147) [12147] by Demod 10092 with 9890 at 3 +Id : 50343, {_}: least_upper_bound (least_upper_bound identity (inverse ?46312)) (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312)) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Super 383 with 50296 at 2,2 +Id : 50540, {_}: least_upper_bound identity (least_upper_bound (inverse ?46312) (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312))) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50343 with 16 at 2 +Id : 100, {_}: least_upper_bound ?287 (least_upper_bound ?287 ?288) =>= least_upper_bound ?287 ?288 [288, 287] by Super 16 with 18 at 1,3 +Id : 50541, {_}: least_upper_bound identity (least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312)) =>= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50540 with 100 at 2,2 +Id : 50542, {_}: least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312) =<= least_upper_bound (least_upper_bound identity (inverse ?46312)) ?46312 [46312] by Demod 50541 with 8574 at 2 +Id : 50543, {_}: least_upper_bound (inverse ?46312) (least_upper_bound identity ?46312) =>= least_upper_bound identity (least_upper_bound (inverse ?46312) ?46312) [46312] by Demod 50542 with 16 at 3 +Id : 51165, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound identity (least_upper_bound (inverse ?11957) ?11957) [11957] by Demod 9890 with 50543 at 3 +Id : 51164, {_}: least_upper_bound ?12147 (least_upper_bound identity (inverse ?12147)) =?= least_upper_bound identity (least_upper_bound (inverse ?12147) ?12147) [12147] by Demod 50296 with 50543 at 3 +Id : 1772, {_}: multiply (multiply ?2886 (least_upper_bound identity (inverse ?2885))) ?2885 =>= multiply ?2886 (least_upper_bound identity ?2885) [2885, 2886] by Super 8 with 729 at 2,3 +Id : 2194, {_}: multiply (multiply ?3381 ?3380) (inverse ?3380) =>= ?3381 [3380, 3381] by Super 2130 with 2156 at 2,1,2 +Id : 2142, {_}: multiply ?3332 (inverse ?3332) =>= identity [3332] by Super 6 with 2108 at 2 +Id : 2212, {_}: multiply identity ?3416 =<= multiply ?3415 (multiply (inverse ?3415) ?3416) [3415, 3416] by Super 8 with 2142 at 1,2 +Id : 2238, {_}: ?3416 =<= multiply ?3415 (multiply (inverse ?3415) ?3416) [3415, 3416] by Demod 2212 with 4 at 2 +Id : 4219, {_}: multiply ?5438 (inverse (multiply (inverse ?5439) ?5438)) =>= ?5439 [5439, 5438] by Super 2194 with 2238 at 1,2 +Id : 18113, {_}: inverse (multiply (inverse ?20071) (inverse ?20072)) =>= multiply ?20072 ?20071 [20072, 20071] by Super 2238 with 4219 at 2,3 +Id : 18209, {_}: inverse (multiply ?20210 ?20209) =<= multiply (inverse ?20209) (inverse ?20210) [20209, 20210] by Super 2156 with 18113 at 1,2 +Id : 18309, {_}: multiply (inverse (multiply ?20330 ?20331)) ?20330 =>= inverse ?20331 [20331, 20330] by Super 2130 with 18209 at 1,2 +Id : 20618, {_}: multiply (least_upper_bound identity (inverse (multiply ?22269 ?22270))) ?22269 =>= least_upper_bound ?22269 (inverse ?22270) [22270, 22269] by Super 235 with 18309 at 2,3 +Id : 379959, {_}: multiply (least_upper_bound ?332905 (inverse ?332906)) (inverse ?332905) =>= least_upper_bound identity (inverse (multiply ?332905 ?332906)) [332906, 332905] by Super 2194 with 20618 at 1,2 +Id : 243389, {_}: multiply (least_upper_bound identity (multiply ?228491 ?228492)) (inverse ?228492) =>= least_upper_bound (inverse ?228492) ?228491 [228492, 228491] by Super 235 with 2194 at 2,3 +Id : 177106, {_}: multiply (multiply ?175304 (least_upper_bound identity (inverse ?175305))) ?175305 =>= multiply ?175304 (least_upper_bound identity ?175305) [175305, 175304] by Super 8 with 729 at 2,3 +Id : 10132, {_}: multiply (inverse ?12250) (least_upper_bound ?12250 identity) =>= least_upper_bound identity (inverse ?12250) [12250] by Super 9764 with 6 at 1,3 +Id : 10133, {_}: multiply (inverse ?12252) (least_upper_bound identity ?12252) =>= least_upper_bound identity (inverse ?12252) [12252] by Super 10132 with 12 at 2,2 +Id : 10242, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =<= least_upper_bound (least_upper_bound identity ?12325) (least_upper_bound identity (inverse ?12325)) [12325] by Super 235 with 10133 at 2,3 +Id : 10288, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =<= least_upper_bound identity (least_upper_bound ?12325 (least_upper_bound identity (inverse ?12325))) [12325] by Demod 10242 with 16 at 3 +Id : 10289, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (least_upper_bound identity (inverse ?12325)) [12325] by Demod 10288 with 8574 at 3 +Id : 177160, {_}: multiply (least_upper_bound (inverse ?175487) (least_upper_bound identity (inverse (inverse ?175487)))) ?175487 =>= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Super 177106 with 10289 at 1,2 +Id : 236, {_}: multiply (least_upper_bound (inverse ?645) ?644) ?645 =>= least_upper_bound identity (multiply ?644 ?645) [644, 645] by Super 230 with 6 at 1,3 +Id : 177356, {_}: least_upper_bound identity (multiply (least_upper_bound identity (inverse (inverse ?175487))) ?175487) =>= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Demod 177160 with 236 at 2 +Id : 177357, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175487) ?175487) =<= multiply (least_upper_bound identity (inverse (inverse ?175487))) (least_upper_bound identity ?175487) [175487] by Demod 177356 with 2156 at 2,1,2,2 +Id : 177519, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175800) ?175800) =>= multiply (least_upper_bound identity ?175800) (least_upper_bound identity ?175800) [175800] by Demod 177357 with 2156 at 2,1,3 +Id : 177520, {_}: least_upper_bound identity (multiply (least_upper_bound ?175802 identity) ?175802) =>= multiply (least_upper_bound identity ?175802) (least_upper_bound identity ?175802) [175802] by Super 177519 with 12 at 1,2,2 +Id : 3515, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?4381) ?4382)) ?4381 =>= least_upper_bound ?4381 (least_upper_bound identity (multiply ?4382 ?4381)) [4382, 4381] by Super 235 with 236 at 2,3 +Id : 1778, {_}: multiply (least_upper_bound (least_upper_bound identity (inverse ?2903)) ?2904) ?2903 =>= least_upper_bound (least_upper_bound identity ?2903) (multiply ?2904 ?2903) [2904, 2903] by Super 30 with 729 at 1,3 +Id : 1803, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound (least_upper_bound identity ?2903) (multiply ?2904 ?2903) [2904, 2903] by Demod 1778 with 16 at 1,2 +Id : 1804, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound (multiply ?2904 ?2903) (least_upper_bound identity ?2903) [2904, 2903] by Demod 1803 with 12 at 3 +Id : 102, {_}: least_upper_bound ?294 ?293 =<= least_upper_bound (least_upper_bound ?294 ?293) ?293 [293, 294] by Super 16 with 18 at 2,2 +Id : 29053, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound ?27543 ?27544) ?27545) =<= least_upper_bound (least_upper_bound ?27543 (least_upper_bound ?27544 identity)) ?27545 [27545, 27544, 27543] by Super 4634 with 16 at 1,3 +Id : 29054, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound ?27547 ?27548) ?27549) =<= least_upper_bound (least_upper_bound ?27547 (least_upper_bound identity ?27548)) ?27549 [27549, 27548, 27547] by Super 29053 with 12 at 2,1,3 +Id : 93172, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =<= least_upper_bound identity (least_upper_bound (least_upper_bound ?78323 ?78324) (least_upper_bound identity ?78324)) [78324, 78323] by Super 102 with 29054 at 3 +Id : 93561, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =<= least_upper_bound (least_upper_bound ?78323 ?78324) (least_upper_bound identity ?78324) [78324, 78323] by Demod 93172 with 8574 at 3 +Id : 4534, {_}: least_upper_bound identity (least_upper_bound ?5822 ?5823) =<= least_upper_bound (least_upper_bound ?5822 identity) ?5823 [5823, 5822] by Demod 4487 with 2130 at 2 +Id : 27996, {_}: least_upper_bound ?26567 (least_upper_bound identity (least_upper_bound ?26568 ?26567)) =>= least_upper_bound ?26567 (least_upper_bound ?26568 identity) [26568, 26567] by Super 383 with 4534 at 2,2 +Id : 28002, {_}: least_upper_bound ?26586 (least_upper_bound identity ?26586) =<= least_upper_bound ?26586 (least_upper_bound (greatest_lower_bound ?26586 ?26585) identity) [26585, 26586] by Super 27996 with 122 at 2,2,2 +Id : 28236, {_}: least_upper_bound ?26586 identity =<= least_upper_bound ?26586 (least_upper_bound (greatest_lower_bound ?26586 ?26585) identity) [26585, 26586] by Demod 28002 with 383 at 2 +Id : 8916, {_}: least_upper_bound identity (least_upper_bound ?11024 (least_upper_bound identity ?11025)) =>= least_upper_bound ?11024 (least_upper_bound identity ?11025) [11025, 11024] by Super 524 with 6477 at 1,2 +Id : 8917, {_}: least_upper_bound identity (least_upper_bound ?11027 (least_upper_bound ?11028 identity)) =>= least_upper_bound ?11027 (least_upper_bound identity ?11028) [11028, 11027] by Super 8916 with 12 at 2,2,2 +Id : 4835, {_}: least_upper_bound identity (least_upper_bound (greatest_lower_bound ?6313 identity) ?6314) =>= least_upper_bound identity ?6314 [6314, 6313] by Super 4634 with 524 at 1,3 +Id : 4847, {_}: least_upper_bound identity (greatest_lower_bound ?6349 identity) =<= least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?6349 identity) ?6348) [6348, 6349] by Super 4835 with 22 at 2,2 +Id : 128, {_}: least_upper_bound ?356 (greatest_lower_bound ?357 ?356) =>= ?356 [357, 356] by Super 127 with 10 at 2,2 +Id : 4903, {_}: identity =<= least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?6349 identity) ?6348) [6348, 6349] by Demod 4847 with 128 at 2 +Id : 5840, {_}: greatest_lower_bound identity (greatest_lower_bound (greatest_lower_bound ?7630 identity) ?7631) =>= greatest_lower_bound (greatest_lower_bound ?7630 identity) ?7631 [7631, 7630] by Super 606 with 4903 at 1,2 +Id : 5845, {_}: greatest_lower_bound identity (greatest_lower_bound identity ?7645) =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound ?7644 identity) identity) ?7645 [7644, 7645] by Super 5840 with 606 at 1,2,2 +Id : 112, {_}: greatest_lower_bound ?313 (greatest_lower_bound ?313 ?314) =>= greatest_lower_bound ?313 ?314 [314, 313] by Super 14 with 20 at 1,3 +Id : 5908, {_}: greatest_lower_bound identity ?7645 =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound ?7644 identity) identity) ?7645 [7644, 7645] by Demod 5845 with 112 at 2 +Id : 5909, {_}: greatest_lower_bound identity ?7645 =<= greatest_lower_bound (greatest_lower_bound identity (least_upper_bound ?7644 identity)) ?7645 [7644, 7645] by Demod 5908 with 10 at 1,3 +Id : 7862, {_}: greatest_lower_bound identity ?10013 =<= greatest_lower_bound identity (greatest_lower_bound (least_upper_bound ?10014 identity) ?10013) [10014, 10013] by Demod 5909 with 14 at 3 +Id : 146, {_}: greatest_lower_bound ?409 (least_upper_bound ?410 ?409) =>= ?409 [410, 409] by Super 145 with 12 at 2,2 +Id : 7879, {_}: greatest_lower_bound identity (least_upper_bound ?10063 (least_upper_bound ?10064 identity)) =>= greatest_lower_bound identity (least_upper_bound ?10064 identity) [10064, 10063] by Super 7862 with 146 at 2,3 +Id : 7984, {_}: greatest_lower_bound identity (least_upper_bound ?10063 (least_upper_bound ?10064 identity)) =>= identity [10064, 10063] by Demod 7879 with 146 at 3 +Id : 8758, {_}: least_upper_bound identity (least_upper_bound ?10813 (least_upper_bound ?10814 identity)) =>= least_upper_bound ?10813 (least_upper_bound ?10814 identity) [10814, 10813] by Super 524 with 7984 at 1,2 +Id : 9284, {_}: least_upper_bound ?11027 (least_upper_bound ?11028 identity) =?= least_upper_bound ?11027 (least_upper_bound identity ?11028) [11028, 11027] by Demod 8917 with 8758 at 2 +Id : 89245, {_}: least_upper_bound ?75550 identity =<= least_upper_bound ?75550 (least_upper_bound identity (greatest_lower_bound ?75550 ?75551)) [75551, 75550] by Demod 28236 with 9284 at 3 +Id : 89255, {_}: least_upper_bound (least_upper_bound ?75580 ?75581) identity =<= least_upper_bound (least_upper_bound ?75580 ?75581) (least_upper_bound identity ?75581) [75581, 75580] by Super 89245 with 606 at 2,2,3 +Id : 89821, {_}: least_upper_bound identity (least_upper_bound ?75580 ?75581) =<= least_upper_bound (least_upper_bound ?75580 ?75581) (least_upper_bound identity ?75581) [75581, 75580] by Demod 89255 with 12 at 2 +Id : 113848, {_}: least_upper_bound ?78323 (least_upper_bound identity ?78324) =?= least_upper_bound identity (least_upper_bound ?78323 ?78324) [78324, 78323] by Demod 93561 with 89821 at 3 +Id : 181989, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound identity (least_upper_bound (multiply ?2904 ?2903) ?2903) [2904, 2903] by Demod 1804 with 113848 at 3 +Id : 181990, {_}: multiply (least_upper_bound identity (least_upper_bound (inverse ?2903) ?2904)) ?2903 =>= least_upper_bound identity (multiply (least_upper_bound ?2904 identity) ?2903) [2904, 2903] by Demod 181989 with 231 at 2,3 +Id : 230272, {_}: least_upper_bound identity (multiply (least_upper_bound ?4382 identity) ?4381) =?= least_upper_bound ?4381 (least_upper_bound identity (multiply ?4382 ?4381)) [4381, 4382] by Demod 3515 with 181990 at 2 +Id : 230301, {_}: least_upper_bound ?219571 (least_upper_bound identity (multiply ?219571 ?219571)) =>= multiply (least_upper_bound identity ?219571) (least_upper_bound identity ?219571) [219571] by Super 177520 with 230272 at 2 +Id : 232386, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound (least_upper_bound ?221067 identity) (multiply ?221067 ?221067) [221067] by Super 16 with 230301 at 2 +Id : 233006, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound (multiply ?221067 ?221067) (least_upper_bound ?221067 identity) [221067] by Demod 232386 with 12 at 3 +Id : 4614, {_}: greatest_lower_bound ?5993 (least_upper_bound identity (least_upper_bound ?5992 ?5993)) =>= ?5993 [5992, 5993] by Super 146 with 4534 at 2,2 +Id : 27608, {_}: least_upper_bound ?26112 (least_upper_bound identity (least_upper_bound ?26113 ?26112)) =>= least_upper_bound identity (least_upper_bound ?26113 ?26112) [26113, 26112] by Super 524 with 4614 at 1,2 +Id : 4631, {_}: least_upper_bound ?6045 (least_upper_bound identity (least_upper_bound ?6044 ?6045)) =>= least_upper_bound ?6045 (least_upper_bound ?6044 identity) [6044, 6045] by Super 383 with 4534 at 2,2 +Id : 83798, {_}: least_upper_bound ?26112 (least_upper_bound ?26113 identity) =?= least_upper_bound identity (least_upper_bound ?26113 ?26112) [26113, 26112] by Demod 27608 with 4631 at 2 +Id : 233007, {_}: multiply (least_upper_bound identity ?221067) (least_upper_bound identity ?221067) =<= least_upper_bound identity (least_upper_bound ?221067 (multiply ?221067 ?221067)) [221067] by Demod 233006 with 83798 at 3 +Id : 9743, {_}: least_upper_bound ?11859 (multiply ?11859 ?11860) =>= multiply ?11859 (least_upper_bound ?11860 identity) [11860, 11859] by Super 12 with 9723 at 3 +Id : 233595, {_}: multiply (least_upper_bound identity ?221617) (least_upper_bound identity ?221617) =<= least_upper_bound identity (multiply ?221617 (least_upper_bound ?221617 identity)) [221617] by Demod 233007 with 9743 at 2,3 +Id : 233596, {_}: multiply (least_upper_bound identity ?221619) (least_upper_bound identity ?221619) =<= least_upper_bound identity (multiply ?221619 (least_upper_bound identity ?221619)) [221619] by Super 233595 with 12 at 2,2,3 +Id : 243525, {_}: multiply (multiply (least_upper_bound identity ?228868) (least_upper_bound identity ?228868)) (inverse (least_upper_bound identity ?228868)) =>= least_upper_bound (inverse (least_upper_bound identity ?228868)) ?228868 [228868] by Super 243389 with 233596 at 1,2 +Id : 243950, {_}: least_upper_bound identity ?228868 =<= least_upper_bound (inverse (least_upper_bound identity ?228868)) ?228868 [228868] by Demod 243525 with 2194 at 2 +Id : 244049, {_}: least_upper_bound ?229075 (inverse (least_upper_bound identity ?229075)) =>= least_upper_bound identity ?229075 [229075] by Super 12 with 243950 at 3 +Id : 380052, {_}: multiply (least_upper_bound identity ?333235) (inverse ?333235) =<= least_upper_bound identity (inverse (multiply ?333235 (least_upper_bound identity ?333235))) [333235] by Super 379959 with 244049 at 1,2 +Id : 381402, {_}: least_upper_bound identity (inverse ?334503) =<= least_upper_bound identity (inverse (multiply ?334503 (least_upper_bound identity ?334503))) [334503] by Demod 380052 with 2193 at 2 +Id : 177358, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?175487) ?175487) =>= multiply (least_upper_bound identity ?175487) (least_upper_bound identity ?175487) [175487] by Demod 177357 with 2156 at 2,1,3 +Id : 177476, {_}: multiply (inverse (multiply (least_upper_bound identity ?175688) ?175688)) (multiply (least_upper_bound identity ?175688) (least_upper_bound identity ?175688)) =>= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Super 10133 with 177358 at 2,2 +Id : 177670, {_}: multiply (multiply (inverse (multiply (least_upper_bound identity ?175688) ?175688)) (least_upper_bound identity ?175688)) (least_upper_bound identity ?175688) =>= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177476 with 8 at 2 +Id : 177671, {_}: multiply (inverse ?175688) (least_upper_bound identity ?175688) =<= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177670 with 18309 at 1,2 +Id : 177672, {_}: least_upper_bound identity (inverse ?175688) =<= least_upper_bound identity (inverse (multiply (least_upper_bound identity ?175688) ?175688)) [175688] by Demod 177671 with 10133 at 2 +Id : 381492, {_}: least_upper_bound identity (inverse (inverse (multiply (least_upper_bound identity ?334735) ?334735))) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Super 381402 with 177672 at 2,1,2,3 +Id : 382266, {_}: least_upper_bound identity (multiply (least_upper_bound identity ?334735) ?334735) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Demod 381492 with 2156 at 2,2 +Id : 382267, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (inverse (multiply (inverse (multiply (least_upper_bound identity ?334735) ?334735)) (least_upper_bound identity (inverse ?334735)))) [334735] by Demod 382266 with 177358 at 2 +Id : 18224, {_}: inverse (multiply (inverse ?20261) (inverse ?20262)) =>= multiply ?20262 ?20261 [20262, 20261] by Super 2238 with 4219 at 2,3 +Id : 18226, {_}: inverse (multiply (inverse ?20267) ?20266) =>= multiply (inverse ?20266) ?20267 [20266, 20267] by Super 18224 with 2156 at 2,1,2 +Id : 382268, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (multiply (inverse (least_upper_bound identity (inverse ?334735))) (multiply (least_upper_bound identity ?334735) ?334735)) [334735] by Demod 382267 with 18226 at 2,3 +Id : 382269, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =<= least_upper_bound identity (multiply (multiply (inverse (least_upper_bound identity (inverse ?334735))) (least_upper_bound identity ?334735)) ?334735) [334735] by Demod 382268 with 8 at 2,3 +Id : 18545, {_}: inverse (multiply ?20706 (inverse ?20707)) =>= multiply ?20707 (inverse ?20706) [20707, 20706] by Super 18224 with 2156 at 1,1,2 +Id : 18566, {_}: inverse (least_upper_bound identity (inverse ?20767)) =<= multiply ?20767 (inverse (least_upper_bound identity ?20767)) [20767] by Super 18545 with 2193 at 1,2 +Id : 19741, {_}: multiply (inverse (least_upper_bound identity (inverse ?21554))) (least_upper_bound identity ?21554) =>= ?21554 [21554] by Super 2130 with 18566 at 1,2 +Id : 382270, {_}: multiply (least_upper_bound identity ?334735) (least_upper_bound identity ?334735) =>= least_upper_bound identity (multiply ?334735 ?334735) [334735] by Demod 382269 with 19741 at 1,2,3 +Id : 382385, {_}: multiply (least_upper_bound identity (multiply (inverse ?334827) (inverse ?334827))) ?334827 =>= multiply (least_upper_bound identity (inverse ?334827)) (least_upper_bound identity ?334827) [334827] by Super 1772 with 382270 at 1,2 +Id : 2064, {_}: multiply (least_upper_bound identity (multiply ?3201 (inverse ?3202))) ?3202 =>= least_upper_bound ?3202 (multiply ?3201 identity) [3202, 3201] by Super 235 with 40 at 2,3 +Id : 223367, {_}: multiply (least_upper_bound identity (multiply ?3201 (inverse ?3202))) ?3202 =>= least_upper_bound ?3202 ?3201 [3202, 3201] by Demod 2064 with 2129 at 2,3 +Id : 382807, {_}: least_upper_bound ?334827 (inverse ?334827) =<= multiply (least_upper_bound identity (inverse ?334827)) (least_upper_bound identity ?334827) [334827] by Demod 382385 with 223367 at 2 +Id : 382808, {_}: least_upper_bound ?334827 (inverse ?334827) =<= least_upper_bound ?334827 (least_upper_bound identity (inverse ?334827)) [334827] by Demod 382807 with 10289 at 3 +Id : 383798, {_}: least_upper_bound ?12147 (inverse ?12147) =<= least_upper_bound identity (least_upper_bound (inverse ?12147) ?12147) [12147] by Demod 51164 with 382808 at 2 +Id : 383800, {_}: multiply (least_upper_bound identity ?11957) (least_upper_bound identity (inverse ?11957)) =>= least_upper_bound ?11957 (inverse ?11957) [11957] by Demod 51165 with 383798 at 3 +Id : 2115, {_}: multiply (inverse (inverse ?3274)) (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply (inverse (inverse ?3274)) ?3275) ?3274 [3275, 3274] by Super 28 with 2091 at 2,3 +Id : 10659, {_}: multiply ?3274 (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply (inverse (inverse ?3274)) ?3275) ?3274 [3275, 3274] by Demod 2115 with 2156 at 1,2 +Id : 10660, {_}: multiply ?3274 (greatest_lower_bound ?3275 identity) =<= greatest_lower_bound (multiply ?3274 ?3275) ?3274 [3275, 3274] by Demod 10659 with 2156 at 1,1,3 +Id : 10678, {_}: greatest_lower_bound ?12834 (multiply ?12834 ?12835) =>= multiply ?12834 (greatest_lower_bound ?12835 identity) [12835, 12834] by Super 10 with 10660 at 3 +Id : 18328, {_}: greatest_lower_bound (inverse ?20397) (inverse (multiply ?20396 ?20397)) =>= multiply (inverse ?20397) (greatest_lower_bound (inverse ?20396) identity) [20396, 20397] by Super 10678 with 18209 at 2,2 +Id : 2116, {_}: multiply (inverse (inverse ?3277)) (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply (inverse (inverse ?3277)) ?3278) [3278, 3277] by Super 28 with 2091 at 1,3 +Id : 11396, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply (inverse (inverse ?3277)) ?3278) [3278, 3277] by Demod 2116 with 2156 at 1,2 +Id : 11397, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =<= greatest_lower_bound ?3277 (multiply ?3277 ?3278) [3278, 3277] by Demod 11396 with 2156 at 1,2,3 +Id : 11398, {_}: multiply ?3277 (greatest_lower_bound identity ?3278) =?= multiply ?3277 (greatest_lower_bound ?3278 identity) [3278, 3277] by Demod 11397 with 10678 at 3 +Id : 78468, {_}: greatest_lower_bound (inverse ?65596) (inverse (multiply ?65597 ?65596)) =>= multiply (inverse ?65596) (greatest_lower_bound identity (inverse ?65597)) [65597, 65596] by Demod 18328 with 11398 at 3 +Id : 78507, {_}: greatest_lower_bound (inverse ?65693) (inverse (inverse ?65692)) =<= multiply (inverse ?65693) (greatest_lower_bound identity (inverse (inverse (multiply ?65693 ?65692)))) [65692, 65693] by Super 78468 with 18309 at 1,2,2 +Id : 78731, {_}: greatest_lower_bound (inverse ?65693) ?65692 =<= multiply (inverse ?65693) (greatest_lower_bound identity (inverse (inverse (multiply ?65693 ?65692)))) [65692, 65693] by Demod 78507 with 2156 at 2,2 +Id : 443714, {_}: greatest_lower_bound (inverse ?378148) ?378149 =<= multiply (inverse ?378148) (greatest_lower_bound identity (multiply ?378148 ?378149)) [378149, 378148] by Demod 78731 with 2156 at 2,2,3 +Id : 842, {_}: multiply (greatest_lower_bound ?1730 identity) ?1731 =<= greatest_lower_bound (multiply ?1730 ?1731) ?1731 [1731, 1730] by Super 265 with 4 at 2,3 +Id : 844, {_}: multiply (greatest_lower_bound (inverse ?1735) identity) ?1735 =>= greatest_lower_bound identity ?1735 [1735] by Super 842 with 6 at 1,3 +Id : 874, {_}: multiply (greatest_lower_bound identity (inverse ?1735)) ?1735 =>= greatest_lower_bound identity ?1735 [1735] by Demod 844 with 10 at 1,2 +Id : 2191, {_}: multiply (greatest_lower_bound identity ?3374) (inverse ?3374) =>= greatest_lower_bound identity (inverse ?3374) [3374] by Super 874 with 2156 at 2,1,2 +Id : 9776, {_}: multiply (greatest_lower_bound identity ?11955) (least_upper_bound (inverse ?11955) identity) =<= least_upper_bound (greatest_lower_bound identity (inverse ?11955)) (greatest_lower_bound identity ?11955) [11955] by Super 9764 with 2191 at 1,3 +Id : 47906, {_}: multiply (greatest_lower_bound identity ?45245) (least_upper_bound identity (inverse ?45245)) =<= least_upper_bound (greatest_lower_bound identity (inverse ?45245)) (greatest_lower_bound identity ?45245) [45245] by Demod 9776 with 12 at 2,2 +Id : 47957, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity (inverse (inverse ?45371))) =>= least_upper_bound (greatest_lower_bound identity ?45371) (greatest_lower_bound identity (inverse ?45371)) [45371] by Super 47906 with 2156 at 2,1,3 +Id : 48268, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity ?45371) =<= least_upper_bound (greatest_lower_bound identity ?45371) (greatest_lower_bound identity (inverse ?45371)) [45371] by Demod 47957 with 2156 at 2,2,2 +Id : 9956, {_}: least_upper_bound (greatest_lower_bound identity ?12145) (greatest_lower_bound identity (inverse ?12145)) =>= multiply (greatest_lower_bound identity ?12145) (least_upper_bound (inverse ?12145) identity) [12145] by Super 9944 with 2191 at 2,2 +Id : 10089, {_}: least_upper_bound (greatest_lower_bound identity ?12145) (greatest_lower_bound identity (inverse ?12145)) =>= multiply (greatest_lower_bound identity ?12145) (least_upper_bound identity (inverse ?12145)) [12145] by Demod 9956 with 12 at 2,3 +Id : 105582, {_}: multiply (greatest_lower_bound identity (inverse ?45371)) (least_upper_bound identity ?45371) =?= multiply (greatest_lower_bound identity ?45371) (least_upper_bound identity (inverse ?45371)) [45371] by Demod 48268 with 10089 at 3 +Id : 443814, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (multiply (greatest_lower_bound identity ?378412) (least_upper_bound identity (inverse ?378412)))) [378412] by Super 443714 with 105582 at 2,2,3 +Id : 5843, {_}: greatest_lower_bound identity (greatest_lower_bound identity ?7639) =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound identity ?7638) identity) ?7639 [7638, 7639] by Super 5840 with 139 at 1,2,2 +Id : 5900, {_}: greatest_lower_bound identity ?7639 =<= greatest_lower_bound (greatest_lower_bound (least_upper_bound identity ?7638) identity) ?7639 [7638, 7639] by Demod 5843 with 112 at 2 +Id : 5901, {_}: greatest_lower_bound identity ?7639 =<= greatest_lower_bound (greatest_lower_bound identity (least_upper_bound identity ?7638)) ?7639 [7638, 7639] by Demod 5900 with 10 at 1,3 +Id : 7645, {_}: greatest_lower_bound identity ?9767 =<= greatest_lower_bound identity (greatest_lower_bound (least_upper_bound identity ?9768) ?9767) [9768, 9767] by Demod 5901 with 14 at 3 +Id : 270, {_}: multiply (greatest_lower_bound identity ?723) ?724 =<= greatest_lower_bound ?724 (multiply ?723 ?724) [724, 723] by Super 265 with 4 at 1,3 +Id : 7676, {_}: greatest_lower_bound identity (multiply ?9863 (least_upper_bound identity ?9864)) =<= greatest_lower_bound identity (multiply (greatest_lower_bound identity ?9863) (least_upper_bound identity ?9864)) [9864, 9863] by Super 7645 with 270 at 2,3 +Id : 444411, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (multiply ?378412 (least_upper_bound identity (inverse ?378412)))) [378412] by Demod 443814 with 7676 at 2,3 +Id : 2215, {_}: multiply ?3422 (least_upper_bound ?3423 (inverse ?3422)) =>= least_upper_bound (multiply ?3422 ?3423) identity [3423, 3422] by Super 26 with 2142 at 2,3 +Id : 2235, {_}: multiply ?3422 (least_upper_bound ?3423 (inverse ?3422)) =>= least_upper_bound identity (multiply ?3422 ?3423) [3423, 3422] by Demod 2215 with 12 at 3 +Id : 444412, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =<= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) (greatest_lower_bound identity (least_upper_bound identity (multiply ?378412 identity))) [378412] by Demod 444411 with 2235 at 2,2,3 +Id : 444413, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =>= multiply (inverse (greatest_lower_bound identity (inverse ?378412))) identity [378412] by Demod 444412 with 24 at 2,3 +Id : 444414, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?378412))) (least_upper_bound identity ?378412) =>= inverse (greatest_lower_bound identity (inverse ?378412)) [378412] by Demod 444413 with 2129 at 3 +Id : 761747, {_}: least_upper_bound (least_upper_bound identity ?693163) (inverse (greatest_lower_bound identity (inverse ?693163))) =>= least_upper_bound identity ?693163 [693163] by Super 128 with 444414 at 2,2 +Id : 762288, {_}: least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) (least_upper_bound identity ?693163) =>= least_upper_bound identity ?693163 [693163] by Demod 761747 with 12 at 2 +Id : 1150, {_}: least_upper_bound (least_upper_bound ?2078 ?2079) ?2078 =>= least_upper_bound ?2078 ?2079 [2079, 2078] by Super 12 with 100 at 3 +Id : 158742, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?149635 ?149636) ?149637) ?149635 =>= least_upper_bound ?149635 (least_upper_bound ?149636 ?149637) [149637, 149636, 149635] by Super 1150 with 16 at 1,2 +Id : 375, {_}: least_upper_bound (least_upper_bound ?872 ?873) ?872 =>= least_upper_bound ?872 ?873 [873, 872] by Super 12 with 100 at 3 +Id : 1142, {_}: least_upper_bound (least_upper_bound ?2051 ?2052) (least_upper_bound ?2051 ?2053) =>= least_upper_bound (least_upper_bound ?2051 ?2052) ?2053 [2053, 2052, 2051] by Super 16 with 375 at 1,3 +Id : 158880, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?150190 ?150191) ?150189) ?150190 =?= least_upper_bound ?150190 (least_upper_bound ?150191 (least_upper_bound ?150190 ?150189)) [150189, 150191, 150190] by Super 158742 with 1142 at 1,2 +Id : 1152, {_}: least_upper_bound (least_upper_bound (least_upper_bound ?2086 ?2084) ?2085) ?2086 =>= least_upper_bound ?2086 (least_upper_bound ?2084 ?2085) [2085, 2084, 2086] by Super 1150 with 16 at 1,2 +Id : 159604, {_}: least_upper_bound ?150190 (least_upper_bound ?150191 ?150189) =<= least_upper_bound ?150190 (least_upper_bound ?150191 (least_upper_bound ?150190 ?150189)) [150189, 150191, 150190] by Demod 158880 with 1152 at 2 +Id : 126, {_}: least_upper_bound ?351 ?349 =<= least_upper_bound (least_upper_bound ?351 ?349) (greatest_lower_bound ?349 ?350) [350, 349, 351] by Super 16 with 22 at 2,2 +Id : 135029, {_}: least_upper_bound ?113864 ?113865 =<= least_upper_bound (greatest_lower_bound ?113865 ?113866) (least_upper_bound ?113864 ?113865) [113866, 113865, 113864] by Demod 126 with 12 at 3 +Id : 135153, {_}: least_upper_bound ?114345 (least_upper_bound ?114346 ?114344) =<= least_upper_bound ?114346 (least_upper_bound ?114345 (least_upper_bound ?114346 ?114344)) [114344, 114346, 114345] by Super 135029 with 139 at 1,3 +Id : 503059, {_}: least_upper_bound ?150190 (least_upper_bound ?150191 ?150189) =?= least_upper_bound ?150191 (least_upper_bound ?150190 ?150189) [150189, 150191, 150190] by Demod 159604 with 135153 at 3 +Id : 762289, {_}: least_upper_bound identity (least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) ?693163) =>= least_upper_bound identity ?693163 [693163] by Demod 762288 with 503059 at 2 +Id : 2280, {_}: multiply (greatest_lower_bound identity ?3504) (inverse ?3504) =>= greatest_lower_bound identity (inverse ?3504) [3504] by Super 874 with 2156 at 2,1,2 +Id : 2286, {_}: multiply (greatest_lower_bound identity ?3514) (inverse (greatest_lower_bound identity ?3514)) =>= greatest_lower_bound identity (inverse (greatest_lower_bound identity ?3514)) [3514] by Super 2280 with 112 at 1,2 +Id : 2335, {_}: identity =<= greatest_lower_bound identity (inverse (greatest_lower_bound identity ?3514)) [3514] by Demod 2286 with 2142 at 2 +Id : 2422, {_}: least_upper_bound identity (inverse (greatest_lower_bound identity ?3608)) =>= inverse (greatest_lower_bound identity ?3608) [3608] by Super 524 with 2335 at 1,2 +Id : 2722, {_}: least_upper_bound identity (least_upper_bound (inverse (greatest_lower_bound identity ?3826)) ?3827) =>= least_upper_bound (inverse (greatest_lower_bound identity ?3826)) ?3827 [3827, 3826] by Super 16 with 2422 at 1,3 +Id : 762290, {_}: least_upper_bound (inverse (greatest_lower_bound identity (inverse ?693163))) ?693163 =>= least_upper_bound identity ?693163 [693163] by Demod 762289 with 2722 at 2 +Id : 18327, {_}: multiply (inverse ?20394) (least_upper_bound (inverse ?20393) identity) =<= least_upper_bound (inverse (multiply ?20393 ?20394)) (inverse ?20394) [20393, 20394] by Super 9723 with 18209 at 1,3 +Id : 2112, {_}: multiply (inverse (inverse ?3265)) (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply (inverse (inverse ?3265)) ?3266) [3266, 3265] by Super 26 with 2091 at 1,3 +Id : 10376, {_}: multiply ?3265 (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply (inverse (inverse ?3265)) ?3266) [3266, 3265] by Demod 2112 with 2156 at 1,2 +Id : 10377, {_}: multiply ?3265 (least_upper_bound identity ?3266) =<= least_upper_bound ?3265 (multiply ?3265 ?3266) [3266, 3265] by Demod 10376 with 2156 at 1,2,3 +Id : 10378, {_}: multiply ?3265 (least_upper_bound identity ?3266) =?= multiply ?3265 (least_upper_bound ?3266 identity) [3266, 3265] by Demod 10377 with 9743 at 3 +Id : 18347, {_}: multiply (inverse ?20394) (least_upper_bound identity (inverse ?20393)) =<= least_upper_bound (inverse (multiply ?20393 ?20394)) (inverse ?20394) [20393, 20394] by Demod 18327 with 10378 at 2 +Id : 2048, {_}: multiply (greatest_lower_bound identity (multiply ?3142 (inverse ?3143))) ?3143 =>= greatest_lower_bound ?3143 (multiply ?3142 identity) [3143, 3142] by Super 270 with 40 at 2,3 +Id : 194485, {_}: multiply (greatest_lower_bound identity (multiply ?3142 (inverse ?3143))) ?3143 =>= greatest_lower_bound ?3143 ?3142 [3143, 3142] by Demod 2048 with 2129 at 2,3 +Id : 194529, {_}: multiply (inverse ?186266) (least_upper_bound identity (inverse (greatest_lower_bound identity (multiply ?186265 (inverse ?186266))))) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186265, 186266] by Super 18347 with 194485 at 1,1,3 +Id : 194632, {_}: multiply (inverse ?186266) (inverse (greatest_lower_bound identity (multiply ?186265 (inverse ?186266)))) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186265, 186266] by Demod 194529 with 2422 at 2,2 +Id : 194633, {_}: inverse (multiply (greatest_lower_bound identity (multiply ?186265 (inverse ?186266))) ?186266) =>= least_upper_bound (inverse (greatest_lower_bound ?186266 ?186265)) (inverse ?186266) [186266, 186265] by Demod 194632 with 18209 at 2 +Id : 195668, {_}: inverse (greatest_lower_bound ?187604 ?187605) =<= least_upper_bound (inverse (greatest_lower_bound ?187604 ?187605)) (inverse ?187604) [187605, 187604] by Demod 194633 with 194485 at 1,2 +Id : 201008, {_}: inverse (greatest_lower_bound (inverse ?193412) ?193413) =<= least_upper_bound (inverse (greatest_lower_bound (inverse ?193412) ?193413)) ?193412 [193413, 193412] by Super 195668 with 2156 at 2,3 +Id : 201035, {_}: inverse (greatest_lower_bound (inverse ?193516) ?193517) =<= least_upper_bound (inverse (greatest_lower_bound ?193517 (inverse ?193516))) ?193516 [193517, 193516] by Super 201008 with 10 at 1,1,3 +Id : 762291, {_}: inverse (greatest_lower_bound (inverse ?693163) identity) =>= least_upper_bound identity ?693163 [693163] by Demod 762290 with 201035 at 2 +Id : 18116, {_}: multiply ?20080 (inverse (multiply (inverse ?20081) ?20080)) =>= ?20081 [20081, 20080] by Super 2194 with 2238 at 1,2 +Id : 20397, {_}: multiply ?22035 (inverse (multiply ?22036 ?22035)) =>= inverse ?22036 [22036, 22035] by Super 18116 with 2156 at 1,1,2,2 +Id : 267, {_}: multiply (greatest_lower_bound ?710 (inverse ?711)) ?711 =>= greatest_lower_bound (multiply ?710 ?711) identity [711, 710] by Super 265 with 6 at 2,3 +Id : 287, {_}: multiply (greatest_lower_bound ?710 (inverse ?711)) ?711 =>= greatest_lower_bound identity (multiply ?710 ?711) [711, 710] by Demod 267 with 10 at 3 +Id : 20404, {_}: multiply ?22056 (inverse (greatest_lower_bound identity (multiply ?22055 ?22056))) =>= inverse (greatest_lower_bound ?22055 (inverse ?22056)) [22055, 22056] by Super 20397 with 287 at 1,2,2 +Id : 271, {_}: multiply (greatest_lower_bound (inverse ?727) ?726) ?727 =>= greatest_lower_bound identity (multiply ?726 ?727) [726, 727] by Super 265 with 6 at 1,3 +Id : 20403, {_}: multiply ?22053 (inverse (greatest_lower_bound identity (multiply ?22052 ?22053))) =>= inverse (greatest_lower_bound (inverse ?22053) ?22052) [22052, 22053] by Super 20397 with 271 at 1,2,2 +Id : 354211, {_}: inverse (greatest_lower_bound (inverse ?22056) ?22055) =?= inverse (greatest_lower_bound ?22055 (inverse ?22056)) [22055, 22056] by Demod 20404 with 20403 at 2 +Id : 763705, {_}: inverse (greatest_lower_bound identity (inverse ?694794)) =>= least_upper_bound identity ?694794 [694794] by Demod 762291 with 354211 at 2 +Id : 763707, {_}: inverse (greatest_lower_bound identity ?694797) =<= least_upper_bound identity (inverse ?694797) [694797] by Super 763705 with 2156 at 2,1,2 +Id : 766509, {_}: multiply (least_upper_bound identity ?11957) (inverse (greatest_lower_bound identity ?11957)) =>= least_upper_bound ?11957 (inverse ?11957) [11957] by Demod 383800 with 763707 at 2,2 +Id : 383797, {_}: multiply (least_upper_bound identity (inverse ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (inverse ?12325) [12325] by Demod 10289 with 382808 at 3 +Id : 766508, {_}: multiply (inverse (greatest_lower_bound identity ?12325)) (least_upper_bound identity ?12325) =>= least_upper_bound ?12325 (inverse ?12325) [12325] by Demod 383797 with 763707 at 1,2 +Id : 768092, {_}: least_upper_bound a (inverse a) === least_upper_bound a (inverse a) [] by Demod 768091 with 766508 at 3 +Id : 768091, {_}: least_upper_bound a (inverse a) =<= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound identity a) [] by Demod 298 with 766509 at 2 +Id : 298, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound identity a) [] by Demod 297 with 12 at 2,3 +Id : 297, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound identity a)) (least_upper_bound a identity) [] by Demod 296 with 10 at 1,1,3 +Id : 296, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound identity a)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by Demod 295 with 10 at 1,2,2 +Id : 295, {_}: multiply (least_upper_bound identity a) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by Demod 2 with 12 at 1,2 +Id : 2, {_}: multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity)) =>= multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity) [] by prove_p21x +% SZS output end CNFRefutation for GRP184-3.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 89 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + glb_absorbtion is 80 + greatest_lower_bound is 88 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 95 + inverse is 91 + least_upper_bound is 94 + left_identity is 92 + left_inverse is 90 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 96 + p22a_1 is 75 + p22a_2 is 74 + p22a_3 is 73 + prove_p22a is 93 + symmetry_of_glb is 87 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: inverse identity =>= identity [] by p22a_1 + Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p22a_2 ?51 + Id : 38, {_}: + inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) + [54, 53] by p22a_3 ?53 ?54 +Goal + Id : 2, {_}: + least_upper_bound (least_upper_bound (multiply a b) identity) + (multiply (least_upper_bound a identity) + (least_upper_bound b identity)) + =>= + multiply (least_upper_bound a identity) + (least_upper_bound b identity) + [] by prove_p22a +Last chance: 1246130514.18 +Last chance: all is indexed 1246130534.19 +Last chance: failed over 100 goal 1246130534.19 +FAILURE in 0 iterations +% SZS status Timeout for GRP185-2.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + glb_absorbtion is 80 + greatest_lower_bound is 93 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 95 + inverse is 90 + least_upper_bound is 94 + left_identity is 91 + left_inverse is 89 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 96 + prove_p22b is 92 + symmetry_of_glb is 87 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Goal + Id : 2, {_}: + greatest_lower_bound (least_upper_bound (multiply a b) identity) + (multiply (least_upper_bound a identity) + (least_upper_bound b identity)) + =>= + least_upper_bound (multiply a b) identity + [] by prove_p22b +Last chance: 1246130804.3 +Last chance: all is indexed 1246130824.31 +Last chance: failed over 100 goal 1246130824.31 +FAILURE in 0 iterations +% SZS status Timeout for GRP185-3.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + glb_absorbtion is 80 + greatest_lower_bound is 92 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 95 + inverse is 93 + least_upper_bound is 94 + left_identity is 90 + left_inverse is 89 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 96 + prove_p23 is 91 + symmetry_of_glb is 87 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Goal + Id : 2, {_}: + least_upper_bound (multiply a b) identity + =<= + multiply a (inverse (greatest_lower_bound a (inverse b))) + [] by prove_p23 +Found proof, 55.184694s +% SZS status Unsatisfiable for GRP186-1.p +% SZS output start CNFRefutation for GRP186-1.p +Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 +Id : 194, {_}: multiply ?539 (greatest_lower_bound ?540 ?541) =<= greatest_lower_bound (multiply ?539 ?540) (multiply ?539 ?541) [541, 540, 539] by monotony_glb1 ?539 ?540 ?541 +Id : 26, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 +Id : 125, {_}: least_upper_bound ?350 (greatest_lower_bound ?350 ?351) =>= ?350 [351, 350] by lub_absorbtion ?350 ?351 +Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 +Id : 143, {_}: greatest_lower_bound ?403 (least_upper_bound ?403 ?404) =>= ?403 [404, 403] by glb_absorbtion ?403 ?404 +Id : 30, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 +Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 +Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 +Id : 32, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Id : 28, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 +Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 +Id : 228, {_}: multiply (least_upper_bound ?618 ?619) ?620 =<= least_upper_bound (multiply ?618 ?620) (multiply ?619 ?620) [620, 619, 618] by monotony_lub2 ?618 ?619 ?620 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 37, {_}: multiply (multiply ?58 ?59) ?60 =?= multiply ?58 (multiply ?59 ?60) [60, 59, 58] by associativity ?58 ?59 ?60 +Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 +Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 +Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 163, {_}: multiply ?463 (least_upper_bound ?464 ?465) =<= least_upper_bound (multiply ?463 ?464) (multiply ?463 ?465) [465, 464, 463] by monotony_lub1 ?463 ?464 ?465 +Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 +Id : 1397, {_}: multiply (inverse ?2611) (least_upper_bound ?2611 ?2612) =>= least_upper_bound identity (multiply (inverse ?2611) ?2612) [2612, 2611] by Super 163 with 6 at 1,3 +Id : 120, {_}: least_upper_bound (greatest_lower_bound ?332 ?333) ?332 =>= ?332 [333, 332] by Super 12 with 22 at 3 +Id : 1403, {_}: multiply (inverse (greatest_lower_bound ?2630 ?2629)) ?2630 =<= least_upper_bound identity (multiply (inverse (greatest_lower_bound ?2630 ?2629)) ?2630) [2629, 2630] by Super 1397 with 120 at 2,2 +Id : 137, {_}: greatest_lower_bound (least_upper_bound ?382 ?383) ?382 =>= ?382 [383, 382] by Super 10 with 24 at 3 +Id : 39, {_}: multiply (multiply ?65 (inverse ?66)) ?66 =>= multiply ?65 identity [66, 65] by Super 37 with 6 at 2,3 +Id : 1222, {_}: multiply (multiply ?2303 (inverse ?2304)) ?2304 =>= multiply ?2303 identity [2304, 2303] by Super 37 with 6 at 2,3 +Id : 1225, {_}: multiply identity ?2310 =<= multiply (inverse (inverse ?2310)) identity [2310] by Super 1222 with 6 at 1,2 +Id : 1240, {_}: ?2310 =<= multiply (inverse (inverse ?2310)) identity [2310] by Demod 1225 with 4 at 2 +Id : 38, {_}: multiply (multiply ?62 identity) ?63 =>= multiply ?62 ?63 [63, 62] by Super 37 with 4 at 2,3 +Id : 1245, {_}: multiply ?2332 ?2333 =<= multiply (inverse (inverse ?2332)) ?2333 [2333, 2332] by Super 38 with 1240 at 1,2 +Id : 1261, {_}: ?2310 =<= multiply ?2310 identity [2310] by Demod 1240 with 1245 at 3 +Id : 1262, {_}: multiply (multiply ?65 (inverse ?66)) ?66 =>= ?65 [66, 65] by Demod 39 with 1261 at 3 +Id : 234, {_}: multiply (least_upper_bound (inverse ?642) ?641) ?642 =>= least_upper_bound identity (multiply ?641 ?642) [641, 642] by Super 228 with 6 at 1,3 +Id : 1630, {_}: multiply (least_upper_bound identity (multiply ?2984 (inverse ?2985))) ?2985 =>= least_upper_bound (inverse (inverse ?2985)) ?2984 [2985, 2984] by Super 1262 with 234 at 1,2 +Id : 1277, {_}: inverse (inverse ?2419) =<= multiply ?2419 identity [2419] by Super 1261 with 1245 at 3 +Id : 1283, {_}: inverse (inverse ?2419) =>= ?2419 [2419] by Demod 1277 with 1261 at 3 +Id : 59624, {_}: multiply (least_upper_bound identity (multiply ?78799 (inverse ?78800))) ?78800 =>= least_upper_bound ?78800 ?78799 [78800, 78799] by Demod 1630 with 1283 at 1,3 +Id : 59667, {_}: multiply (multiply (inverse (greatest_lower_bound (inverse ?78935) ?78934)) (inverse ?78935)) ?78935 =>= least_upper_bound ?78935 (inverse (greatest_lower_bound (inverse ?78935) ?78934)) [78934, 78935] by Super 59624 with 1403 at 1,2 +Id : 59764, {_}: multiply (inverse (greatest_lower_bound (inverse ?78935) ?78934)) (multiply (inverse ?78935) ?78935) =>= least_upper_bound ?78935 (inverse (greatest_lower_bound (inverse ?78935) ?78934)) [78934, 78935] by Demod 59667 with 8 at 2 +Id : 1311, {_}: multiply (multiply ?2436 ?2435) (inverse ?2435) =>= ?2436 [2435, 2436] by Super 1262 with 1283 at 2,1,2 +Id : 46, {_}: multiply identity ?93 =<= multiply (inverse ?92) (multiply ?92 ?93) [92, 93] by Super 37 with 6 at 1,2 +Id : 55, {_}: ?93 =<= multiply (inverse ?92) (multiply ?92 ?93) [92, 93] by Demod 46 with 4 at 2 +Id : 1907, {_}: inverse ?3391 =<= multiply (inverse (multiply ?3390 ?3391)) ?3390 [3390, 3391] by Super 55 with 1311 at 2,3 +Id : 2602, {_}: multiply (inverse ?4415) (inverse ?4416) =>= inverse (multiply ?4416 ?4415) [4416, 4415] by Super 1311 with 1907 at 1,2 +Id : 2683, {_}: multiply (inverse (multiply ?4589 ?4588)) ?4590 =<= multiply (inverse ?4588) (multiply (inverse ?4589) ?4590) [4590, 4588, 4589] by Super 8 with 2602 at 1,2 +Id : 59765, {_}: multiply (inverse (multiply ?78935 (greatest_lower_bound (inverse ?78935) ?78934))) ?78935 =>= least_upper_bound ?78935 (inverse (greatest_lower_bound (inverse ?78935) ?78934)) [78934, 78935] by Demod 59764 with 2683 at 2 +Id : 59766, {_}: inverse (greatest_lower_bound (inverse ?78935) ?78934) =<= least_upper_bound ?78935 (inverse (greatest_lower_bound (inverse ?78935) ?78934)) [78934, 78935] by Demod 59765 with 1907 at 2 +Id : 75243, {_}: greatest_lower_bound (inverse (greatest_lower_bound (inverse ?90061) ?90062)) ?90061 =>= ?90061 [90062, 90061] by Super 137 with 59766 at 1,2 +Id : 75245, {_}: greatest_lower_bound (inverse (greatest_lower_bound ?90066 ?90067)) (inverse ?90066) =>= inverse ?90066 [90067, 90066] by Super 75243 with 1283 at 1,1,1,2 +Id : 90405, {_}: multiply (inverse (greatest_lower_bound (inverse (greatest_lower_bound ?103908 ?103909)) (inverse ?103908))) (inverse (greatest_lower_bound ?103908 ?103909)) =>= least_upper_bound identity (multiply (inverse (inverse ?103908)) (inverse (greatest_lower_bound ?103908 ?103909))) [103909, 103908] by Super 1403 with 75245 at 1,1,2,3 +Id : 90576, {_}: inverse (multiply (greatest_lower_bound ?103908 ?103909) (greatest_lower_bound (inverse (greatest_lower_bound ?103908 ?103909)) (inverse ?103908))) =>= least_upper_bound identity (multiply (inverse (inverse ?103908)) (inverse (greatest_lower_bound ?103908 ?103909))) [103909, 103908] by Demod 90405 with 2602 at 2 +Id : 1272, {_}: multiply ?2401 (inverse ?2401) =>= identity [2401] by Super 6 with 1245 at 2 +Id : 1323, {_}: multiply ?2456 (greatest_lower_bound (inverse ?2456) ?2457) =>= greatest_lower_bound identity (multiply ?2456 ?2457) [2457, 2456] by Super 28 with 1272 at 1,3 +Id : 90577, {_}: inverse (greatest_lower_bound identity (multiply (greatest_lower_bound ?103908 ?103909) (inverse ?103908))) =<= least_upper_bound identity (multiply (inverse (inverse ?103908)) (inverse (greatest_lower_bound ?103908 ?103909))) [103909, 103908] by Demod 90576 with 1323 at 1,2 +Id : 1321, {_}: multiply (greatest_lower_bound ?2450 ?2451) (inverse ?2450) =>= greatest_lower_bound identity (multiply ?2451 (inverse ?2450)) [2451, 2450] by Super 32 with 1272 at 1,3 +Id : 90578, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity (multiply ?103909 (inverse ?103908)))) =<= least_upper_bound identity (multiply (inverse (inverse ?103908)) (inverse (greatest_lower_bound ?103908 ?103909))) [103908, 103909] by Demod 90577 with 1321 at 2,1,2 +Id : 110, {_}: greatest_lower_bound ?310 (greatest_lower_bound ?310 ?311) =>= greatest_lower_bound ?310 ?311 [311, 310] by Super 14 with 20 at 1,3 +Id : 90579, {_}: inverse (greatest_lower_bound identity (multiply ?103909 (inverse ?103908))) =<= least_upper_bound identity (multiply (inverse (inverse ?103908)) (inverse (greatest_lower_bound ?103908 ?103909))) [103908, 103909] by Demod 90578 with 110 at 1,2 +Id : 90580, {_}: inverse (greatest_lower_bound identity (multiply ?103909 (inverse ?103908))) =<= least_upper_bound identity (inverse (multiply (greatest_lower_bound ?103908 ?103909) (inverse ?103908))) [103908, 103909] by Demod 90579 with 2602 at 2,3 +Id : 2693, {_}: multiply (inverse ?4622) (inverse ?4623) =>= inverse (multiply ?4623 ?4622) [4623, 4622] by Super 1311 with 1907 at 1,2 +Id : 2697, {_}: multiply ?4632 (inverse ?4633) =<= inverse (multiply ?4633 (inverse ?4632)) [4633, 4632] by Super 2693 with 1283 at 1,2 +Id : 90581, {_}: inverse (greatest_lower_bound identity (multiply ?103909 (inverse ?103908))) =<= least_upper_bound identity (multiply ?103908 (inverse (greatest_lower_bound ?103908 ?103909))) [103908, 103909] by Demod 90580 with 2697 at 2,3 +Id : 2159, {_}: multiply (least_upper_bound ?3809 ?3810) (inverse ?3809) =>= least_upper_bound identity (multiply ?3810 (inverse ?3809)) [3810, 3809] by Super 30 with 1272 at 1,3 +Id : 2167, {_}: multiply ?3833 (inverse (greatest_lower_bound ?3833 ?3832)) =<= least_upper_bound identity (multiply ?3833 (inverse (greatest_lower_bound ?3833 ?3832))) [3832, 3833] by Super 2159 with 120 at 1,2 +Id : 241130, {_}: inverse (greatest_lower_bound identity (multiply ?281248 (inverse ?281249))) =?= multiply ?281249 (inverse (greatest_lower_bound ?281249 ?281248)) [281249, 281248] by Demod 90581 with 2167 at 3 +Id : 241323, {_}: inverse (greatest_lower_bound identity (inverse (multiply ?281886 ?281885))) =<= multiply ?281886 (inverse (greatest_lower_bound ?281886 (inverse ?281885))) [281885, 281886] by Super 241130 with 2602 at 2,1,2 +Id : 1908, {_}: multiply (multiply ?3393 ?3394) (inverse ?3394) =>= ?3393 [3394, 3393] by Super 1262 with 1283 at 2,1,2 +Id : 1918, {_}: multiply (least_upper_bound identity (multiply ?3421 ?3422)) (inverse ?3422) =>= least_upper_bound (inverse ?3422) ?3421 [3422, 3421] by Super 1908 with 234 at 1,2 +Id : 169, {_}: multiply (inverse ?486) (least_upper_bound ?486 ?487) =>= least_upper_bound identity (multiply (inverse ?486) ?487) [487, 486] by Super 163 with 6 at 1,3 +Id : 1396, {_}: least_upper_bound ?2608 ?2609 =<= multiply (inverse (inverse ?2608)) (least_upper_bound identity (multiply (inverse ?2608) ?2609)) [2609, 2608] by Super 55 with 169 at 2,3 +Id : 1416, {_}: least_upper_bound ?2608 ?2609 =<= multiply ?2608 (least_upper_bound identity (multiply (inverse ?2608) ?2609)) [2609, 2608] by Demod 1396 with 1283 at 1,3 +Id : 512, {_}: least_upper_bound (greatest_lower_bound ?1197 ?1198) ?1197 =>= ?1197 [1198, 1197] by Super 12 with 22 at 3 +Id : 513, {_}: least_upper_bound (greatest_lower_bound ?1201 ?1200) ?1200 =>= ?1200 [1200, 1201] by Super 512 with 10 at 1,2 +Id : 1407, {_}: multiply (inverse (greatest_lower_bound ?2641 ?2642)) ?2642 =<= least_upper_bound identity (multiply (inverse (greatest_lower_bound ?2641 ?2642)) ?2642) [2642, 2641] by Super 1397 with 513 at 2,2 +Id : 144, {_}: greatest_lower_bound ?406 (least_upper_bound ?407 ?406) =>= ?406 [407, 406] by Super 143 with 12 at 2,2 +Id : 12520, {_}: multiply (inverse (greatest_lower_bound ?25685 ?25686)) ?25685 =<= least_upper_bound identity (multiply (inverse (greatest_lower_bound ?25685 ?25686)) ?25685) [25686, 25685] by Super 1397 with 120 at 2,2 +Id : 12560, {_}: multiply (inverse (greatest_lower_bound identity ?25830)) identity =>= least_upper_bound identity (inverse (greatest_lower_bound identity ?25830)) [25830] by Super 12520 with 1261 at 2,3 +Id : 12795, {_}: inverse (greatest_lower_bound identity ?25965) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?25965)) [25965] by Demod 12560 with 1261 at 2 +Id : 12796, {_}: inverse (greatest_lower_bound identity ?25967) =<= least_upper_bound identity (inverse (greatest_lower_bound ?25967 identity)) [25967] by Super 12795 with 10 at 1,2,3 +Id : 20061, {_}: least_upper_bound identity (least_upper_bound (inverse (greatest_lower_bound ?34946 identity)) ?34947) =>= least_upper_bound (inverse (greatest_lower_bound identity ?34946)) ?34947 [34947, 34946] by Super 16 with 12796 at 1,3 +Id : 20078, {_}: least_upper_bound identity (least_upper_bound ?35005 (inverse (greatest_lower_bound ?35004 identity))) =>= least_upper_bound (inverse (greatest_lower_bound identity ?35004)) ?35005 [35004, 35005] by Super 20061 with 12 at 2,2 +Id : 126, {_}: least_upper_bound ?353 (greatest_lower_bound ?354 ?353) =>= ?353 [354, 353] by Super 125 with 10 at 2,2 +Id : 547, {_}: least_upper_bound ?1258 ?1256 =<= least_upper_bound (least_upper_bound ?1258 ?1256) (greatest_lower_bound ?1257 ?1256) [1257, 1256, 1258] by Super 16 with 126 at 2,2 +Id : 570, {_}: least_upper_bound ?1258 ?1256 =<= least_upper_bound (greatest_lower_bound ?1257 ?1256) (least_upper_bound ?1258 ?1256) [1257, 1256, 1258] by Demod 547 with 12 at 3 +Id : 12745, {_}: inverse (greatest_lower_bound identity ?25830) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?25830)) [25830] by Demod 12560 with 1261 at 2 +Id : 12983, {_}: greatest_lower_bound identity (inverse (greatest_lower_bound identity ?26133)) =>= identity [26133] by Super 24 with 12745 at 2,2 +Id : 12984, {_}: greatest_lower_bound identity (inverse (greatest_lower_bound ?26135 identity)) =>= identity [26135] by Super 12983 with 10 at 1,2,2 +Id : 13334, {_}: least_upper_bound ?26447 (inverse (greatest_lower_bound ?26446 identity)) =<= least_upper_bound identity (least_upper_bound ?26447 (inverse (greatest_lower_bound ?26446 identity))) [26446, 26447] by Super 570 with 12984 at 1,3 +Id : 33938, {_}: least_upper_bound ?35005 (inverse (greatest_lower_bound ?35004 identity)) =?= least_upper_bound (inverse (greatest_lower_bound identity ?35004)) ?35005 [35004, 35005] by Demod 20078 with 13334 at 2 +Id : 59877, {_}: inverse (greatest_lower_bound (inverse ?79280) identity) =<= least_upper_bound (inverse (greatest_lower_bound identity (inverse ?79280))) ?79280 [79280] by Super 33938 with 59766 at 2 +Id : 13166, {_}: inverse (greatest_lower_bound identity ?26300) =<= least_upper_bound identity (inverse (greatest_lower_bound ?26300 identity)) [26300] by Super 12795 with 10 at 1,2,3 +Id : 588, {_}: greatest_lower_bound ?1337 ?1335 =<= greatest_lower_bound (greatest_lower_bound ?1337 (least_upper_bound ?1335 ?1336)) ?1335 [1336, 1335, 1337] by Super 14 with 137 at 2,2 +Id : 13179, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound ?26330 (least_upper_bound identity ?26331))) =>= least_upper_bound identity (inverse (greatest_lower_bound ?26330 identity)) [26331, 26330] by Super 13166 with 588 at 1,2,3 +Id : 13288, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound ?26330 (least_upper_bound identity ?26331))) =>= inverse (greatest_lower_bound identity ?26330) [26331, 26330] by Demod 13179 with 12796 at 3 +Id : 508, {_}: least_upper_bound ?1185 ?1183 =<= least_upper_bound (least_upper_bound ?1185 (greatest_lower_bound ?1183 ?1184)) ?1183 [1184, 1183, 1185] by Super 16 with 120 at 2,2 +Id : 139, {_}: greatest_lower_bound ?388 (greatest_lower_bound (least_upper_bound ?388 ?389) ?390) =>= greatest_lower_bound ?388 ?390 [390, 389, 388] by Super 14 with 24 at 1,3 +Id : 12760, {_}: greatest_lower_bound identity (greatest_lower_bound (inverse (greatest_lower_bound identity ?25876)) ?25877) =>= greatest_lower_bound identity ?25877 [25877, 25876] by Super 139 with 12745 at 1,2,2 +Id : 13743, {_}: least_upper_bound ?26971 identity =<= least_upper_bound (least_upper_bound ?26971 (greatest_lower_bound identity ?26970)) identity [26970, 26971] by Super 508 with 12760 at 2,1,3 +Id : 13824, {_}: least_upper_bound ?26971 identity =<= least_upper_bound identity (least_upper_bound ?26971 (greatest_lower_bound identity ?26970)) [26970, 26971] by Demod 13743 with 12 at 3 +Id : 14000, {_}: greatest_lower_bound ?27303 identity =<= greatest_lower_bound (greatest_lower_bound ?27303 (least_upper_bound ?27301 identity)) identity [27301, 27303] by Super 588 with 13824 at 2,1,3 +Id : 15451, {_}: greatest_lower_bound ?29213 identity =<= greatest_lower_bound identity (greatest_lower_bound ?29213 (least_upper_bound ?29214 identity)) [29214, 29213] by Demod 14000 with 10 at 3 +Id : 15452, {_}: greatest_lower_bound ?29216 identity =<= greatest_lower_bound identity (greatest_lower_bound ?29216 (least_upper_bound identity ?29217)) [29217, 29216] by Super 15451 with 12 at 2,2,3 +Id : 21667, {_}: inverse (greatest_lower_bound ?26330 identity) =?= inverse (greatest_lower_bound identity ?26330) [26330] by Demod 13288 with 15452 at 1,2 +Id : 60032, {_}: inverse (greatest_lower_bound identity (inverse ?79280)) =<= least_upper_bound (inverse (greatest_lower_bound identity (inverse ?79280))) ?79280 [79280] by Demod 59877 with 21667 at 2 +Id : 61973, {_}: greatest_lower_bound ?80555 (inverse (greatest_lower_bound identity (inverse ?80555))) =>= ?80555 [80555] by Super 144 with 60032 at 2,2 +Id : 61975, {_}: greatest_lower_bound (inverse ?80558) (inverse (greatest_lower_bound identity ?80558)) =>= inverse ?80558 [80558] by Super 61973 with 1283 at 2,1,2,2 +Id : 64087, {_}: multiply (inverse (greatest_lower_bound (inverse ?81915) (inverse (greatest_lower_bound identity ?81915)))) (inverse (greatest_lower_bound identity ?81915)) =>= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Super 1407 with 61975 at 1,1,2,3 +Id : 64168, {_}: inverse (multiply (greatest_lower_bound identity ?81915) (greatest_lower_bound (inverse ?81915) (inverse (greatest_lower_bound identity ?81915)))) =>= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64087 with 2602 at 2 +Id : 1322, {_}: multiply ?2453 (greatest_lower_bound ?2454 (inverse ?2453)) =>= greatest_lower_bound (multiply ?2453 ?2454) identity [2454, 2453] by Super 28 with 1272 at 2,3 +Id : 1343, {_}: multiply ?2453 (greatest_lower_bound ?2454 (inverse ?2453)) =>= greatest_lower_bound identity (multiply ?2453 ?2454) [2454, 2453] by Demod 1322 with 10 at 3 +Id : 64169, {_}: inverse (greatest_lower_bound identity (multiply (greatest_lower_bound identity ?81915) (inverse ?81915))) =<= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64168 with 1343 at 1,2 +Id : 1320, {_}: multiply (greatest_lower_bound ?2448 ?2447) (inverse ?2447) =>= greatest_lower_bound (multiply ?2448 (inverse ?2447)) identity [2447, 2448] by Super 32 with 1272 at 2,3 +Id : 1344, {_}: multiply (greatest_lower_bound ?2448 ?2447) (inverse ?2447) =>= greatest_lower_bound identity (multiply ?2448 (inverse ?2447)) [2447, 2448] by Demod 1320 with 10 at 3 +Id : 64170, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity (multiply identity (inverse ?81915)))) =<= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64169 with 1344 at 2,1,2 +Id : 64171, {_}: inverse (greatest_lower_bound identity (multiply identity (inverse ?81915))) =<= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64170 with 110 at 1,2 +Id : 64172, {_}: inverse (greatest_lower_bound identity (inverse ?81915)) =<= least_upper_bound identity (multiply (inverse (inverse ?81915)) (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64171 with 4 at 2,1,2 +Id : 64173, {_}: inverse (greatest_lower_bound identity (inverse ?81915)) =<= least_upper_bound identity (inverse (multiply (greatest_lower_bound identity ?81915) (inverse ?81915))) [81915] by Demod 64172 with 2602 at 2,3 +Id : 64174, {_}: inverse (greatest_lower_bound identity (inverse ?81915)) =<= least_upper_bound identity (multiply ?81915 (inverse (greatest_lower_bound identity ?81915))) [81915] by Demod 64173 with 2697 at 2,3 +Id : 1328, {_}: multiply ?2469 (least_upper_bound ?2470 (inverse ?2469)) =>= least_upper_bound (multiply ?2469 ?2470) identity [2470, 2469] by Super 26 with 1272 at 2,3 +Id : 1339, {_}: multiply ?2469 (least_upper_bound ?2470 (inverse ?2469)) =>= least_upper_bound identity (multiply ?2469 ?2470) [2470, 2469] by Demod 1328 with 12 at 3 +Id : 60418, {_}: multiply ?79661 (inverse (greatest_lower_bound identity (inverse (inverse ?79661)))) =<= least_upper_bound identity (multiply ?79661 (inverse (greatest_lower_bound identity (inverse (inverse ?79661))))) [79661] by Super 1339 with 60032 at 2,2 +Id : 60787, {_}: multiply ?79661 (inverse (greatest_lower_bound identity ?79661)) =<= least_upper_bound identity (multiply ?79661 (inverse (greatest_lower_bound identity (inverse (inverse ?79661))))) [79661] by Demod 60418 with 1283 at 2,1,2,2 +Id : 60788, {_}: multiply ?79661 (inverse (greatest_lower_bound identity ?79661)) =<= least_upper_bound identity (multiply ?79661 (inverse (greatest_lower_bound identity ?79661))) [79661] by Demod 60787 with 1283 at 2,1,2,2,3 +Id : 79553, {_}: inverse (greatest_lower_bound identity (inverse ?81915)) =<= multiply ?81915 (inverse (greatest_lower_bound identity ?81915)) [81915] by Demod 64174 with 60788 at 3 +Id : 79566, {_}: multiply (inverse (greatest_lower_bound identity (inverse ?93969))) (greatest_lower_bound identity ?93969) =>= ?93969 [93969] by Super 1262 with 79553 at 1,2 +Id : 210019, {_}: least_upper_bound (greatest_lower_bound identity (inverse ?259211)) (greatest_lower_bound identity ?259211) =<= multiply (greatest_lower_bound identity (inverse ?259211)) (least_upper_bound identity ?259211) [259211] by Super 1416 with 79566 at 2,2,3 +Id : 210576, {_}: multiply (least_upper_bound identity (least_upper_bound (greatest_lower_bound identity (inverse ?259634)) (greatest_lower_bound identity ?259634))) (inverse (least_upper_bound identity ?259634)) =>= least_upper_bound (inverse (least_upper_bound identity ?259634)) (greatest_lower_bound identity (inverse ?259634)) [259634] by Super 1918 with 210019 at 2,1,2 +Id : 122, {_}: least_upper_bound ?338 (least_upper_bound (greatest_lower_bound ?338 ?339) ?340) =>= least_upper_bound ?338 ?340 [340, 339, 338] by Super 16 with 22 at 1,3 +Id : 210728, {_}: multiply (least_upper_bound identity (greatest_lower_bound identity ?259634)) (inverse (least_upper_bound identity ?259634)) =>= least_upper_bound (inverse (least_upper_bound identity ?259634)) (greatest_lower_bound identity (inverse ?259634)) [259634] by Demod 210576 with 122 at 1,2 +Id : 210729, {_}: multiply identity (inverse (least_upper_bound identity ?259634)) =<= least_upper_bound (inverse (least_upper_bound identity ?259634)) (greatest_lower_bound identity (inverse ?259634)) [259634] by Demod 210728 with 22 at 1,2 +Id : 210730, {_}: inverse (least_upper_bound identity ?259634) =<= least_upper_bound (inverse (least_upper_bound identity ?259634)) (greatest_lower_bound identity (inverse ?259634)) [259634] by Demod 210729 with 4 at 2 +Id : 210731, {_}: inverse (least_upper_bound identity ?259634) =<= least_upper_bound (greatest_lower_bound identity (inverse ?259634)) (inverse (least_upper_bound identity ?259634)) [259634] by Demod 210730 with 12 at 3 +Id : 425033, {_}: greatest_lower_bound (inverse (least_upper_bound identity ?443021)) (greatest_lower_bound identity (inverse ?443021)) =>= greatest_lower_bound identity (inverse ?443021) [443021] by Super 137 with 210731 at 1,2 +Id : 425426, {_}: greatest_lower_bound (greatest_lower_bound identity (inverse ?443021)) (inverse (least_upper_bound identity ?443021)) =>= greatest_lower_bound identity (inverse ?443021) [443021] by Demod 425033 with 10 at 2 +Id : 425427, {_}: greatest_lower_bound identity (greatest_lower_bound (inverse ?443021) (inverse (least_upper_bound identity ?443021))) =>= greatest_lower_bound identity (inverse ?443021) [443021] by Demod 425426 with 14 at 2 +Id : 441, {_}: greatest_lower_bound ?1042 (greatest_lower_bound ?1042 ?1043) =>= greatest_lower_bound ?1042 ?1043 [1043, 1042] by Super 14 with 20 at 1,3 +Id : 997, {_}: greatest_lower_bound ?1977 (greatest_lower_bound ?1978 ?1977) =>= greatest_lower_bound ?1977 ?1978 [1978, 1977] by Super 441 with 10 at 2,2 +Id : 1008, {_}: greatest_lower_bound ?2012 (greatest_lower_bound ?2010 (greatest_lower_bound ?2011 ?2012)) =>= greatest_lower_bound ?2012 (greatest_lower_bound ?2010 ?2011) [2011, 2010, 2012] by Super 997 with 14 at 2,2 +Id : 196, {_}: multiply (inverse ?547) (greatest_lower_bound ?546 ?547) =>= greatest_lower_bound (multiply (inverse ?547) ?546) identity [546, 547] by Super 194 with 6 at 2,3 +Id : 215, {_}: multiply (inverse ?547) (greatest_lower_bound ?546 ?547) =>= greatest_lower_bound identity (multiply (inverse ?547) ?546) [546, 547] by Demod 196 with 10 at 3 +Id : 145, {_}: greatest_lower_bound ?411 (least_upper_bound (least_upper_bound ?411 ?409) ?410) =>= ?411 [410, 409, 411] by Super 143 with 16 at 2,2 +Id : 13972, {_}: greatest_lower_bound identity (least_upper_bound (least_upper_bound ?27209 identity) ?27211) =>= identity [27211, 27209] by Super 145 with 13824 at 1,2,2 +Id : 14608, {_}: multiply (inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966)) identity =<= greatest_lower_bound identity (multiply (inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966)) identity) [27966, 27965] by Super 215 with 13972 at 2,2 +Id : 14746, {_}: inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966) =<= greatest_lower_bound identity (multiply (inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966)) identity) [27966, 27965] by Demod 14608 with 1261 at 2 +Id : 14747, {_}: inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966) =<= greatest_lower_bound identity (inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966)) [27966, 27965] by Demod 14746 with 1261 at 2,3 +Id : 14621, {_}: least_upper_bound identity (least_upper_bound (least_upper_bound ?28005 identity) ?28006) =>= least_upper_bound (least_upper_bound ?28005 identity) ?28006 [28006, 28005] by Super 513 with 13972 at 1,2 +Id : 371, {_}: least_upper_bound ?890 (least_upper_bound ?890 ?891) =>= least_upper_bound ?890 ?891 [891, 890] by Super 16 with 18 at 1,3 +Id : 372, {_}: least_upper_bound ?893 (least_upper_bound ?894 ?893) =>= least_upper_bound ?893 ?894 [894, 893] by Super 371 with 12 at 2,2 +Id : 846, {_}: least_upper_bound ?1742 (least_upper_bound (least_upper_bound ?1743 ?1742) ?1744) =>= least_upper_bound (least_upper_bound ?1742 ?1743) ?1744 [1744, 1743, 1742] by Super 16 with 372 at 1,3 +Id : 14731, {_}: least_upper_bound (least_upper_bound identity ?28005) ?28006 =?= least_upper_bound (least_upper_bound ?28005 identity) ?28006 [28006, 28005] by Demod 14621 with 846 at 2 +Id : 14732, {_}: least_upper_bound identity (least_upper_bound ?28005 ?28006) =<= least_upper_bound (least_upper_bound ?28005 identity) ?28006 [28006, 28005] by Demod 14731 with 16 at 2 +Id : 26166, {_}: inverse (least_upper_bound identity (least_upper_bound ?27965 ?27966)) =<= greatest_lower_bound identity (inverse (least_upper_bound (least_upper_bound ?27965 identity) ?27966)) [27966, 27965] by Demod 14747 with 14732 at 1,2 +Id : 26240, {_}: inverse (least_upper_bound identity (least_upper_bound ?42502 ?42503)) =<= greatest_lower_bound identity (inverse (least_upper_bound identity (least_upper_bound ?42502 ?42503))) [42503, 42502] by Demod 26166 with 14732 at 1,2,3 +Id : 26243, {_}: inverse (least_upper_bound identity (least_upper_bound ?42512 ?42512)) =>= greatest_lower_bound identity (inverse (least_upper_bound identity ?42512)) [42512] by Super 26240 with 18 at 2,1,2,3 +Id : 26484, {_}: inverse (least_upper_bound identity ?42512) =<= greatest_lower_bound identity (inverse (least_upper_bound identity ?42512)) [42512] by Demod 26243 with 18 at 2,1,2 +Id : 26733, {_}: greatest_lower_bound (inverse (least_upper_bound identity ?42901)) (greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901))) =>= greatest_lower_bound (inverse (least_upper_bound identity ?42901)) (greatest_lower_bound ?42902 identity) [42902, 42901] by Super 1008 with 26484 at 2,2,2 +Id : 26831, {_}: greatest_lower_bound (greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901))) (inverse (least_upper_bound identity ?42901)) =>= greatest_lower_bound (inverse (least_upper_bound identity ?42901)) (greatest_lower_bound ?42902 identity) [42901, 42902] by Demod 26733 with 10 at 2 +Id : 112, {_}: greatest_lower_bound ?317 ?316 =<= greatest_lower_bound (greatest_lower_bound ?317 ?316) ?316 [316, 317] by Super 14 with 20 at 2,2 +Id : 26832, {_}: greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901)) =<= greatest_lower_bound (inverse (least_upper_bound identity ?42901)) (greatest_lower_bound ?42902 identity) [42901, 42902] by Demod 26831 with 112 at 2 +Id : 26833, {_}: greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901)) =<= greatest_lower_bound (greatest_lower_bound ?42902 identity) (inverse (least_upper_bound identity ?42901)) [42901, 42902] by Demod 26832 with 10 at 3 +Id : 594, {_}: greatest_lower_bound (least_upper_bound ?1355 ?1356) ?1355 =>= ?1355 [1356, 1355] by Super 10 with 24 at 3 +Id : 595, {_}: greatest_lower_bound (least_upper_bound ?1359 ?1358) ?1358 =>= ?1358 [1358, 1359] by Super 594 with 12 at 1,2 +Id : 14013, {_}: least_upper_bound ?27351 identity =<= least_upper_bound identity (least_upper_bound ?27351 (greatest_lower_bound identity ?27352)) [27352, 27351] by Demod 13743 with 12 at 3 +Id : 15143, {_}: least_upper_bound ?28845 identity =<= least_upper_bound identity (least_upper_bound ?28845 (greatest_lower_bound ?28846 identity)) [28846, 28845] by Super 14013 with 10 at 2,2,3 +Id : 15162, {_}: least_upper_bound (greatest_lower_bound (greatest_lower_bound ?28908 identity) ?28907) identity =>= least_upper_bound identity (greatest_lower_bound ?28908 identity) [28907, 28908] by Super 15143 with 120 at 2,3 +Id : 15331, {_}: least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?28908 identity) ?28907) =>= least_upper_bound identity (greatest_lower_bound ?28908 identity) [28907, 28908] by Demod 15162 with 12 at 2 +Id : 15332, {_}: least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?28908 identity) ?28907) =>= identity [28907, 28908] by Demod 15331 with 126 at 3 +Id : 16566, {_}: greatest_lower_bound identity (greatest_lower_bound (greatest_lower_bound ?30606 identity) ?30607) =>= greatest_lower_bound (greatest_lower_bound ?30606 identity) ?30607 [30607, 30606] by Super 595 with 15332 at 1,2 +Id : 442, {_}: greatest_lower_bound ?1045 (greatest_lower_bound ?1046 ?1045) =>= greatest_lower_bound ?1045 ?1046 [1046, 1045] by Super 441 with 10 at 2,2 +Id : 988, {_}: greatest_lower_bound ?1947 (greatest_lower_bound (greatest_lower_bound ?1948 ?1947) ?1949) =>= greatest_lower_bound (greatest_lower_bound ?1947 ?1948) ?1949 [1949, 1948, 1947] by Super 14 with 442 at 1,3 +Id : 16667, {_}: greatest_lower_bound (greatest_lower_bound identity ?30606) ?30607 =?= greatest_lower_bound (greatest_lower_bound ?30606 identity) ?30607 [30607, 30606] by Demod 16566 with 988 at 2 +Id : 16668, {_}: greatest_lower_bound identity (greatest_lower_bound ?30606 ?30607) =<= greatest_lower_bound (greatest_lower_bound ?30606 identity) ?30607 [30607, 30606] by Demod 16667 with 14 at 2 +Id : 26834, {_}: greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901)) =<= greatest_lower_bound identity (greatest_lower_bound ?42902 (inverse (least_upper_bound identity ?42901))) [42901, 42902] by Demod 26833 with 16668 at 3 +Id : 425428, {_}: greatest_lower_bound (inverse ?443021) (inverse (least_upper_bound identity ?443021)) =>= greatest_lower_bound identity (inverse ?443021) [443021] by Demod 425427 with 26834 at 2 +Id : 100, {_}: least_upper_bound ?291 ?290 =<= least_upper_bound (least_upper_bound ?291 ?290) ?290 [290, 291] by Super 16 with 18 at 2,2 +Id : 1412, {_}: multiply (inverse (least_upper_bound ?2659 ?2660)) (least_upper_bound ?2659 ?2660) =>= least_upper_bound identity (multiply (inverse (least_upper_bound ?2659 ?2660)) ?2660) [2660, 2659] by Super 1397 with 100 at 2,2 +Id : 1437, {_}: identity =<= least_upper_bound identity (multiply (inverse (least_upper_bound ?2659 ?2660)) ?2660) [2660, 2659] by Demod 1412 with 6 at 2 +Id : 59670, {_}: multiply identity ?78944 =<= least_upper_bound ?78944 (inverse (least_upper_bound ?78943 (inverse ?78944))) [78943, 78944] by Super 59624 with 1437 at 1,2 +Id : 59771, {_}: ?78944 =<= least_upper_bound ?78944 (inverse (least_upper_bound ?78943 (inverse ?78944))) [78943, 78944] by Demod 59670 with 4 at 2 +Id : 89100, {_}: greatest_lower_bound ?102689 (inverse (least_upper_bound ?102690 (inverse ?102689))) =>= inverse (least_upper_bound ?102690 (inverse ?102689)) [102690, 102689] by Super 595 with 59771 at 1,2 +Id : 89102, {_}: greatest_lower_bound (inverse ?102694) (inverse (least_upper_bound ?102695 ?102694)) =>= inverse (least_upper_bound ?102695 (inverse (inverse ?102694))) [102695, 102694] by Super 89100 with 1283 at 2,1,2,2 +Id : 89528, {_}: greatest_lower_bound (inverse ?102694) (inverse (least_upper_bound ?102695 ?102694)) =>= inverse (least_upper_bound ?102695 ?102694) [102695, 102694] by Demod 89102 with 1283 at 2,1,3 +Id : 425429, {_}: inverse (least_upper_bound identity ?443021) =>= greatest_lower_bound identity (inverse ?443021) [443021] by Demod 425428 with 89528 at 2 +Id : 426630, {_}: inverse (greatest_lower_bound identity (inverse ?443891)) =>= least_upper_bound identity ?443891 [443891] by Super 1283 with 425429 at 1,2 +Id : 428479, {_}: least_upper_bound identity (multiply a b) === least_upper_bound identity (multiply a b) [] by Demod 243250 with 426630 at 3 +Id : 243250, {_}: least_upper_bound identity (multiply a b) =<= inverse (greatest_lower_bound identity (inverse (multiply a b))) [] by Demod 289 with 241323 at 3 +Id : 289, {_}: least_upper_bound identity (multiply a b) =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by Demod 2 with 12 at 2 +Id : 2, {_}: least_upper_bound (multiply a b) identity =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by prove_p23 +% SZS output end CNFRefutation for GRP186-1.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 88 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + glb_absorbtion is 80 + greatest_lower_bound is 92 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 95 + inverse is 93 + least_upper_bound is 94 + left_identity is 90 + left_inverse is 89 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 96 + p23_1 is 75 + p23_2 is 74 + p23_3 is 73 + prove_p23 is 91 + symmetry_of_glb is 87 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: inverse identity =>= identity [] by p23_1 + Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p23_2 ?51 + Id : 38, {_}: + inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) + [54, 53] by p23_3 ?53 ?54 +Goal + Id : 2, {_}: + least_upper_bound (multiply a b) identity + =<= + multiply a (inverse (greatest_lower_bound a (inverse b))) + [] by prove_p23 +Found proof, 100.862668s +% SZS status Unsatisfiable for GRP186-2.p +% SZS output start CNFRefutation for GRP186-2.p +Id : 131, {_}: least_upper_bound ?356 (greatest_lower_bound ?356 ?357) =>= ?356 [357, 356] by lub_absorbtion ?356 ?357 +Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 +Id : 26, {_}: multiply ?34 (least_upper_bound ?35 ?36) =<= least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 +Id : 16, {_}: least_upper_bound ?20 (least_upper_bound ?21 ?22) =?= least_upper_bound (least_upper_bound ?20 ?21) ?22 [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 +Id : 30, {_}: multiply (least_upper_bound ?42 ?43) ?44 =<= least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 +Id : 20, {_}: greatest_lower_bound ?26 ?26 =>= ?26 [26] by idempotence_of_gld ?26 +Id : 14, {_}: greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) =?= greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 +Id : 32, {_}: multiply (greatest_lower_bound ?46 ?47) ?48 =<= greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 +Id : 28, {_}: multiply ?38 (greatest_lower_bound ?39 ?40) =<= greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 +Id : 38, {_}: inverse (multiply ?53 ?54) =<= multiply (inverse ?54) (inverse ?53) [54, 53] by p23_3 ?53 ?54 +Id : 8, {_}: multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) [8, 7, 6] by associativity ?6 ?7 ?8 +Id : 234, {_}: multiply (least_upper_bound ?624 ?625) ?626 =<= least_upper_bound (multiply ?624 ?626) (multiply ?625 ?626) [626, 625, 624] by monotony_lub2 ?624 ?625 ?626 +Id : 36, {_}: inverse (inverse ?51) =>= ?51 [51] by p23_2 ?51 +Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 +Id : 34, {_}: inverse identity =>= identity [] by p23_1 +Id : 316, {_}: inverse (multiply ?814 ?815) =<= multiply (inverse ?815) (inverse ?814) [815, 814] by p23_3 ?814 ?815 +Id : 43, {_}: multiply (multiply ?64 ?65) ?66 =?= multiply ?64 (multiply ?65 ?66) [66, 65, 64] by associativity ?64 ?65 ?66 +Id : 24, {_}: greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 [32, 31] by glb_absorbtion ?31 ?32 +Id : 10, {_}: greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 [11, 10] by symmetry_of_glb ?10 ?11 +Id : 22, {_}: least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 [29, 28] by lub_absorbtion ?28 ?29 +Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 +Id : 169, {_}: multiply ?469 (least_upper_bound ?470 ?471) =<= least_upper_bound (multiply ?469 ?470) (multiply ?469 ?471) [471, 470, 469] by monotony_lub1 ?469 ?470 ?471 +Id : 12, {_}: least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 [14, 13] by symmetry_of_lub ?13 ?14 +Id : 1363, {_}: multiply (inverse ?2558) (least_upper_bound ?2558 ?2559) =>= least_upper_bound identity (multiply (inverse ?2558) ?2559) [2559, 2558] by Super 169 with 6 at 1,3 +Id : 650, {_}: least_upper_bound (greatest_lower_bound ?1395 ?1396) ?1395 =>= ?1395 [1396, 1395] by Super 12 with 22 at 3 +Id : 651, {_}: least_upper_bound (greatest_lower_bound ?1399 ?1398) ?1398 =>= ?1398 [1398, 1399] by Super 650 with 10 at 1,2 +Id : 1373, {_}: multiply (inverse (greatest_lower_bound ?2588 ?2589)) ?2589 =<= least_upper_bound identity (multiply (inverse (greatest_lower_bound ?2588 ?2589)) ?2589) [2589, 2588] by Super 1363 with 651 at 2,2 +Id : 45, {_}: multiply (multiply ?71 (inverse ?72)) ?72 =>= multiply ?71 identity [72, 71] by Super 43 with 6 at 2,3 +Id : 317, {_}: inverse (multiply identity ?817) =<= multiply (inverse ?817) identity [817] by Super 316 with 34 at 2,3 +Id : 341, {_}: inverse ?863 =<= multiply (inverse ?863) identity [863] by Demod 317 with 4 at 1,2 +Id : 343, {_}: inverse (inverse ?866) =<= multiply ?866 identity [866] by Super 341 with 36 at 1,3 +Id : 354, {_}: ?866 =<= multiply ?866 identity [866] by Demod 343 with 36 at 2 +Id : 1260, {_}: multiply (multiply ?71 (inverse ?72)) ?72 =>= ?71 [72, 71] by Demod 45 with 354 at 3 +Id : 240, {_}: multiply (least_upper_bound (inverse ?648) ?647) ?648 =>= least_upper_bound identity (multiply ?647 ?648) [647, 648] by Super 234 with 6 at 1,3 +Id : 1623, {_}: multiply (least_upper_bound identity (multiply ?2972 (inverse ?2973))) ?2973 =>= least_upper_bound (inverse (inverse ?2973)) ?2972 [2973, 2972] by Super 1260 with 240 at 1,2 +Id : 139882, {_}: multiply (least_upper_bound identity (multiply ?153893 (inverse ?153894))) ?153894 =>= least_upper_bound ?153894 ?153893 [153894, 153893] by Demod 1623 with 36 at 1,3 +Id : 126, {_}: least_upper_bound (greatest_lower_bound ?338 ?339) ?338 =>= ?338 [339, 338] by Super 12 with 22 at 3 +Id : 1369, {_}: multiply (inverse (greatest_lower_bound ?2577 ?2576)) ?2577 =<= least_upper_bound identity (multiply (inverse (greatest_lower_bound ?2577 ?2576)) ?2577) [2576, 2577] by Super 1363 with 126 at 2,2 +Id : 139933, {_}: multiply (multiply (inverse (greatest_lower_bound (inverse ?154061) ?154060)) (inverse ?154061)) ?154061 =>= least_upper_bound ?154061 (inverse (greatest_lower_bound (inverse ?154061) ?154060)) [154060, 154061] by Super 139882 with 1369 at 1,2 +Id : 140037, {_}: multiply (inverse (greatest_lower_bound (inverse ?154061) ?154060)) (multiply (inverse ?154061) ?154061) =>= least_upper_bound ?154061 (inverse (greatest_lower_bound (inverse ?154061) ?154060)) [154060, 154061] by Demod 139933 with 8 at 2 +Id : 311, {_}: multiply (inverse (multiply ?794 ?795)) ?796 =<= multiply (inverse ?795) (multiply (inverse ?794) ?796) [796, 795, 794] by Super 8 with 38 at 1,2 +Id : 140038, {_}: multiply (inverse (multiply ?154061 (greatest_lower_bound (inverse ?154061) ?154060))) ?154061 =>= least_upper_bound ?154061 (inverse (greatest_lower_bound (inverse ?154061) ?154060)) [154060, 154061] by Demod 140037 with 311 at 2 +Id : 1275, {_}: multiply (multiply ?2378 (inverse ?2379)) ?2379 =>= ?2378 [2379, 2378] by Demod 45 with 354 at 3 +Id : 1285, {_}: multiply (inverse (multiply ?2408 ?2407)) ?2408 =>= inverse ?2407 [2407, 2408] by Super 1275 with 38 at 1,2 +Id : 140039, {_}: inverse (greatest_lower_bound (inverse ?154061) ?154060) =<= least_upper_bound ?154061 (inverse (greatest_lower_bound (inverse ?154061) ?154060)) [154060, 154061] by Demod 140038 with 1285 at 2 +Id : 160759, {_}: greatest_lower_bound ?168171 (inverse (greatest_lower_bound (inverse ?168171) ?168172)) =>= ?168171 [168172, 168171] by Super 24 with 140039 at 2,2 +Id : 160761, {_}: greatest_lower_bound (inverse ?168176) (inverse (greatest_lower_bound ?168176 ?168177)) =>= inverse ?168176 [168177, 168176] by Super 160759 with 36 at 1,1,2,2 +Id : 178590, {_}: multiply (inverse (greatest_lower_bound (inverse ?184996) (inverse (greatest_lower_bound ?184996 ?184997)))) (inverse (greatest_lower_bound ?184996 ?184997)) =>= least_upper_bound identity (multiply (inverse (inverse ?184996)) (inverse (greatest_lower_bound ?184996 ?184997))) [184997, 184996] by Super 1373 with 160761 at 1,1,2,3 +Id : 178788, {_}: inverse (multiply (greatest_lower_bound ?184996 ?184997) (greatest_lower_bound (inverse ?184996) (inverse (greatest_lower_bound ?184996 ?184997)))) =>= least_upper_bound identity (multiply (inverse (inverse ?184996)) (inverse (greatest_lower_bound ?184996 ?184997))) [184997, 184996] by Demod 178590 with 38 at 2 +Id : 299, {_}: multiply ?763 (inverse ?763) =>= identity [763] by Super 6 with 36 at 1,2 +Id : 392, {_}: multiply ?921 (greatest_lower_bound ?922 (inverse ?921)) =>= greatest_lower_bound (multiply ?921 ?922) identity [922, 921] by Super 28 with 299 at 2,3 +Id : 417, {_}: multiply ?921 (greatest_lower_bound ?922 (inverse ?921)) =>= greatest_lower_bound identity (multiply ?921 ?922) [922, 921] by Demod 392 with 10 at 3 +Id : 178789, {_}: inverse (greatest_lower_bound identity (multiply (greatest_lower_bound ?184996 ?184997) (inverse ?184996))) =<= least_upper_bound identity (multiply (inverse (inverse ?184996)) (inverse (greatest_lower_bound ?184996 ?184997))) [184997, 184996] by Demod 178788 with 417 at 1,2 +Id : 391, {_}: multiply (greatest_lower_bound ?918 ?919) (inverse ?918) =>= greatest_lower_bound identity (multiply ?919 (inverse ?918)) [919, 918] by Super 32 with 299 at 1,3 +Id : 178790, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity (multiply ?184997 (inverse ?184996)))) =<= least_upper_bound identity (multiply (inverse (inverse ?184996)) (inverse (greatest_lower_bound ?184996 ?184997))) [184996, 184997] by Demod 178789 with 391 at 2,1,2 +Id : 116, {_}: greatest_lower_bound ?316 (greatest_lower_bound ?316 ?317) =>= greatest_lower_bound ?316 ?317 [317, 316] by Super 14 with 20 at 1,3 +Id : 178791, {_}: inverse (greatest_lower_bound identity (multiply ?184997 (inverse ?184996))) =<= least_upper_bound identity (multiply (inverse (inverse ?184996)) (inverse (greatest_lower_bound ?184996 ?184997))) [184996, 184997] by Demod 178790 with 116 at 1,2 +Id : 178792, {_}: inverse (greatest_lower_bound identity (multiply ?184997 (inverse ?184996))) =<= least_upper_bound identity (inverse (multiply (greatest_lower_bound ?184996 ?184997) (inverse ?184996))) [184996, 184997] by Demod 178791 with 38 at 2,3 +Id : 320, {_}: inverse (multiply ?825 (inverse ?824)) =>= multiply ?824 (inverse ?825) [824, 825] by Super 316 with 36 at 1,3 +Id : 178793, {_}: inverse (greatest_lower_bound identity (multiply ?184997 (inverse ?184996))) =<= least_upper_bound identity (multiply ?184996 (inverse (greatest_lower_bound ?184996 ?184997))) [184996, 184997] by Demod 178792 with 320 at 2,3 +Id : 2114, {_}: multiply (least_upper_bound ?3753 ?3754) (inverse ?3753) =>= least_upper_bound identity (multiply ?3754 (inverse ?3753)) [3754, 3753] by Super 30 with 299 at 1,3 +Id : 2124, {_}: multiply ?3785 (inverse (greatest_lower_bound ?3785 ?3784)) =<= least_upper_bound identity (multiply ?3785 (inverse (greatest_lower_bound ?3785 ?3784))) [3784, 3785] by Super 2114 with 126 at 1,2 +Id : 517036, {_}: inverse (greatest_lower_bound identity (multiply ?520378 (inverse ?520379))) =?= multiply ?520379 (inverse (greatest_lower_bound ?520379 ?520378)) [520379, 520378] by Demod 178793 with 2124 at 3 +Id : 517346, {_}: inverse (greatest_lower_bound identity (inverse (multiply ?521360 ?521359))) =<= multiply ?521360 (inverse (greatest_lower_bound ?521360 (inverse ?521359))) [521359, 521360] by Super 517036 with 38 at 2,1,2 +Id : 143, {_}: greatest_lower_bound (least_upper_bound ?388 ?389) ?388 =>= ?388 [389, 388] by Super 10 with 24 at 3 +Id : 394, {_}: multiply (multiply ?928 ?927) (inverse ?927) =>= multiply ?928 identity [927, 928] by Super 8 with 299 at 2,3 +Id : 2350, {_}: multiply (multiply ?4107 ?4108) (inverse ?4108) =>= ?4107 [4108, 4107] by Demod 394 with 354 at 3 +Id : 2362, {_}: multiply (least_upper_bound identity (multiply ?4143 ?4144)) (inverse ?4144) =>= least_upper_bound (inverse ?4144) ?4143 [4144, 4143] by Super 2350 with 240 at 1,2 +Id : 52, {_}: multiply identity ?99 =<= multiply (inverse ?98) (multiply ?98 ?99) [98, 99] by Super 43 with 6 at 1,2 +Id : 61, {_}: ?99 =<= multiply (inverse ?98) (multiply ?98 ?99) [98, 99] by Demod 52 with 4 at 2 +Id : 175, {_}: multiply (inverse ?492) (least_upper_bound ?492 ?493) =>= least_upper_bound identity (multiply (inverse ?492) ?493) [493, 492] by Super 169 with 6 at 1,3 +Id : 1362, {_}: least_upper_bound ?2555 ?2556 =<= multiply (inverse (inverse ?2555)) (least_upper_bound identity (multiply (inverse ?2555) ?2556)) [2556, 2555] by Super 61 with 175 at 2,3 +Id : 1384, {_}: least_upper_bound ?2555 ?2556 =<= multiply ?2555 (least_upper_bound identity (multiply (inverse ?2555) ?2556)) [2556, 2555] by Demod 1362 with 36 at 1,3 +Id : 327, {_}: inverse ?817 =<= multiply (inverse ?817) identity [817] by Demod 317 with 4 at 1,2 +Id : 338, {_}: multiply (inverse ?854) (least_upper_bound identity ?855) =<= least_upper_bound (inverse ?854) (multiply (inverse ?854) ?855) [855, 854] by Super 26 with 327 at 1,3 +Id : 332, {_}: multiply (inverse ?838) (greatest_lower_bound ?839 identity) =<= greatest_lower_bound (multiply (inverse ?838) ?839) (inverse ?838) [839, 838] by Super 28 with 327 at 2,3 +Id : 350, {_}: multiply (inverse ?838) (greatest_lower_bound ?839 identity) =<= greatest_lower_bound (inverse ?838) (multiply (inverse ?838) ?839) [839, 838] by Demod 332 with 10 at 3 +Id : 333, {_}: multiply (inverse ?841) (greatest_lower_bound identity ?842) =<= greatest_lower_bound (inverse ?841) (multiply (inverse ?841) ?842) [842, 841] by Super 28 with 327 at 1,3 +Id : 3646, {_}: multiply (inverse ?838) (greatest_lower_bound ?839 identity) =?= multiply (inverse ?838) (greatest_lower_bound identity ?839) [839, 838] by Demod 350 with 333 at 3 +Id : 3670, {_}: multiply (inverse (greatest_lower_bound ?5927 identity)) (greatest_lower_bound identity ?5927) =>= identity [5927] by Super 6 with 3646 at 2 +Id : 5362, {_}: multiply (inverse (greatest_lower_bound ?8279 identity)) (least_upper_bound identity (greatest_lower_bound identity ?8279)) =>= least_upper_bound (inverse (greatest_lower_bound ?8279 identity)) identity [8279] by Super 338 with 3670 at 2,3 +Id : 5430, {_}: multiply (inverse (greatest_lower_bound ?8279 identity)) identity =>= least_upper_bound (inverse (greatest_lower_bound ?8279 identity)) identity [8279] by Demod 5362 with 22 at 2,2 +Id : 5431, {_}: inverse (greatest_lower_bound ?8279 identity) =<= least_upper_bound (inverse (greatest_lower_bound ?8279 identity)) identity [8279] by Demod 5430 with 354 at 2 +Id : 5432, {_}: inverse (greatest_lower_bound ?8279 identity) =<= least_upper_bound identity (inverse (greatest_lower_bound ?8279 identity)) [8279] by Demod 5431 with 12 at 3 +Id : 5579, {_}: least_upper_bound ?8466 (inverse (greatest_lower_bound ?8465 identity)) =<= least_upper_bound (least_upper_bound ?8466 identity) (inverse (greatest_lower_bound ?8465 identity)) [8465, 8466] by Super 16 with 5432 at 2,2 +Id : 5622, {_}: least_upper_bound ?8466 (inverse (greatest_lower_bound ?8465 identity)) =<= least_upper_bound (inverse (greatest_lower_bound ?8465 identity)) (least_upper_bound ?8466 identity) [8465, 8466] by Demod 5579 with 12 at 3 +Id : 400, {_}: multiply (least_upper_bound ?944 ?943) (inverse ?943) =>= least_upper_bound (multiply ?944 (inverse ?943)) identity [943, 944] by Super 30 with 299 at 2,3 +Id : 412, {_}: multiply (least_upper_bound ?944 ?943) (inverse ?943) =>= least_upper_bound identity (multiply ?944 (inverse ?943)) [943, 944] by Demod 400 with 12 at 3 +Id : 337, {_}: multiply (inverse ?851) (least_upper_bound ?852 identity) =<= least_upper_bound (multiply (inverse ?851) ?852) (inverse ?851) [852, 851] by Super 26 with 327 at 2,3 +Id : 347, {_}: multiply (inverse ?851) (least_upper_bound ?852 identity) =<= least_upper_bound (inverse ?851) (multiply (inverse ?851) ?852) [852, 851] by Demod 337 with 12 at 3 +Id : 3431, {_}: multiply (inverse ?851) (least_upper_bound ?852 identity) =?= multiply (inverse ?851) (least_upper_bound identity ?852) [852, 851] by Demod 347 with 338 at 3 +Id : 3454, {_}: multiply (inverse (least_upper_bound ?5686 identity)) (least_upper_bound identity ?5686) =>= identity [5686] by Super 6 with 3431 at 2 +Id : 4555, {_}: multiply (inverse (least_upper_bound ?7520 identity)) (least_upper_bound identity (least_upper_bound identity ?7520)) =>= least_upper_bound (inverse (least_upper_bound ?7520 identity)) identity [7520] by Super 338 with 3454 at 2,3 +Id : 104, {_}: least_upper_bound ?290 (least_upper_bound ?290 ?291) =>= least_upper_bound ?290 ?291 [291, 290] by Super 16 with 18 at 1,3 +Id : 4621, {_}: multiply (inverse (least_upper_bound ?7520 identity)) (least_upper_bound identity ?7520) =>= least_upper_bound (inverse (least_upper_bound ?7520 identity)) identity [7520] by Demod 4555 with 104 at 2,2 +Id : 4622, {_}: identity =<= least_upper_bound (inverse (least_upper_bound ?7520 identity)) identity [7520] by Demod 4621 with 3454 at 2 +Id : 4773, {_}: identity =<= least_upper_bound identity (inverse (least_upper_bound ?7713 identity)) [7713] by Demod 4622 with 12 at 3 +Id : 4780, {_}: identity =<= least_upper_bound identity (inverse (least_upper_bound ?7726 (least_upper_bound ?7727 identity))) [7727, 7726] by Super 4773 with 16 at 1,2,3 +Id : 6791, {_}: multiply identity (inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity)))) =<= least_upper_bound identity (multiply identity (inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity))))) [9675, 9674] by Super 412 with 4780 at 1,2 +Id : 6824, {_}: inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity))) =<= least_upper_bound identity (multiply identity (inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity))))) [9675, 9674] by Demod 6791 with 4 at 2 +Id : 6825, {_}: least_upper_bound ?9674 (least_upper_bound ?9675 identity) =<= least_upper_bound identity (multiply identity (inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity))))) [9675, 9674] by Demod 6824 with 36 at 2 +Id : 6826, {_}: least_upper_bound ?9674 (least_upper_bound ?9675 identity) =<= least_upper_bound identity (inverse (inverse (least_upper_bound ?9674 (least_upper_bound ?9675 identity)))) [9675, 9674] by Demod 6825 with 4 at 2,3 +Id : 6913, {_}: least_upper_bound ?9827 (least_upper_bound ?9828 identity) =<= least_upper_bound identity (least_upper_bound ?9827 (least_upper_bound ?9828 identity)) [9828, 9827] by Demod 6826 with 36 at 2,3 +Id : 6922, {_}: least_upper_bound ?9854 (least_upper_bound ?9855 identity) =<= least_upper_bound identity (least_upper_bound (least_upper_bound ?9855 identity) ?9854) [9855, 9854] by Super 6913 with 12 at 2,3 +Id : 502, {_}: least_upper_bound (least_upper_bound ?1064 ?1065) ?1064 =>= least_upper_bound ?1064 ?1065 [1065, 1064] by Super 12 with 104 at 3 +Id : 6917, {_}: least_upper_bound ?9839 (least_upper_bound (least_upper_bound identity ?9838) identity) =?= least_upper_bound identity (least_upper_bound ?9839 (least_upper_bound identity ?9838)) [9838, 9839] by Super 6913 with 502 at 2,2,3 +Id : 6992, {_}: least_upper_bound ?9839 (least_upper_bound identity (least_upper_bound identity ?9838)) =?= least_upper_bound identity (least_upper_bound ?9839 (least_upper_bound identity ?9838)) [9838, 9839] by Demod 6917 with 12 at 2,2 +Id : 6993, {_}: least_upper_bound ?9839 (least_upper_bound identity ?9838) =<= least_upper_bound identity (least_upper_bound ?9839 (least_upper_bound identity ?9838)) [9838, 9839] by Demod 6992 with 104 at 2,2 +Id : 6914, {_}: least_upper_bound ?9830 (least_upper_bound ?9831 identity) =<= least_upper_bound identity (least_upper_bound ?9830 (least_upper_bound identity ?9831)) [9831, 9830] by Super 6913 with 12 at 2,2,3 +Id : 7479, {_}: least_upper_bound ?9839 (least_upper_bound identity ?9838) =?= least_upper_bound ?9839 (least_upper_bound ?9838 identity) [9838, 9839] by Demod 6993 with 6914 at 3 +Id : 7163, {_}: least_upper_bound ?10110 (least_upper_bound ?10111 identity) =<= least_upper_bound identity (least_upper_bound ?10110 (least_upper_bound identity ?10111)) [10111, 10110] by Super 6913 with 12 at 2,2,3 +Id : 7180, {_}: least_upper_bound ?10164 (least_upper_bound ?10165 identity) =<= least_upper_bound identity (least_upper_bound (least_upper_bound ?10164 identity) ?10165) [10165, 10164] by Super 7163 with 16 at 2,3 +Id : 8147, {_}: least_upper_bound ?11328 (least_upper_bound ?11329 identity) =?= least_upper_bound ?11329 (least_upper_bound ?11328 identity) [11329, 11328] by Demod 7180 with 6922 at 3 +Id : 8150, {_}: least_upper_bound (greatest_lower_bound identity ?11336) (least_upper_bound ?11337 identity) =>= least_upper_bound ?11337 identity [11337, 11336] by Super 8147 with 126 at 2,3 +Id : 8900, {_}: least_upper_bound (greatest_lower_bound identity ?11839) (least_upper_bound identity ?11840) =>= least_upper_bound ?11840 identity [11840, 11839] by Super 7479 with 8150 at 3 +Id : 10250, {_}: least_upper_bound (greatest_lower_bound identity ?13083) (least_upper_bound (least_upper_bound identity ?13084) ?13085) =>= least_upper_bound (least_upper_bound ?13084 identity) ?13085 [13085, 13084, 13083] by Super 16 with 8900 at 1,3 +Id : 10334, {_}: least_upper_bound (greatest_lower_bound identity ?13083) (least_upper_bound identity (least_upper_bound ?13084 ?13085)) =>= least_upper_bound (least_upper_bound ?13084 identity) ?13085 [13085, 13084, 13083] by Demod 10250 with 16 at 2,2 +Id : 10335, {_}: least_upper_bound (least_upper_bound ?13084 ?13085) identity =?= least_upper_bound (least_upper_bound ?13084 identity) ?13085 [13085, 13084] by Demod 10334 with 8900 at 2 +Id : 10336, {_}: least_upper_bound identity (least_upper_bound ?13084 ?13085) =<= least_upper_bound (least_upper_bound ?13084 identity) ?13085 [13085, 13084] by Demod 10335 with 12 at 2 +Id : 10485, {_}: least_upper_bound ?9854 (least_upper_bound ?9855 identity) =<= least_upper_bound identity (least_upper_bound identity (least_upper_bound ?9855 ?9854)) [9855, 9854] by Demod 6922 with 10336 at 2,3 +Id : 10492, {_}: least_upper_bound ?9854 (least_upper_bound ?9855 identity) =?= least_upper_bound identity (least_upper_bound ?9855 ?9854) [9855, 9854] by Demod 10485 with 104 at 3 +Id : 18158, {_}: least_upper_bound ?21052 (inverse (greatest_lower_bound ?21053 identity)) =<= least_upper_bound identity (least_upper_bound ?21052 (inverse (greatest_lower_bound ?21053 identity))) [21053, 21052] by Demod 5622 with 10492 at 3 +Id : 577, {_}: greatest_lower_bound (greatest_lower_bound ?1234 ?1235) ?1234 =>= greatest_lower_bound ?1234 ?1235 [1235, 1234] by Super 10 with 116 at 3 +Id : 18162, {_}: least_upper_bound ?21064 (inverse (greatest_lower_bound (greatest_lower_bound identity ?21063) identity)) =?= least_upper_bound identity (least_upper_bound ?21064 (inverse (greatest_lower_bound identity ?21063))) [21063, 21064] by Super 18158 with 577 at 1,2,2,3 +Id : 5589, {_}: inverse (greatest_lower_bound ?8486 identity) =<= least_upper_bound identity (inverse (greatest_lower_bound ?8486 identity)) [8486] by Demod 5431 with 12 at 3 +Id : 5593, {_}: inverse (greatest_lower_bound (greatest_lower_bound identity ?8493) identity) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?8493)) [8493] by Super 5589 with 577 at 1,2,3 +Id : 5675, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity ?8493)) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?8493)) [8493] by Demod 5593 with 10 at 1,2 +Id : 5676, {_}: inverse (greatest_lower_bound identity ?8493) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?8493)) [8493] by Demod 5675 with 116 at 1,2 +Id : 5590, {_}: inverse (greatest_lower_bound ?8488 identity) =<= least_upper_bound identity (inverse (greatest_lower_bound identity ?8488)) [8488] by Super 5589 with 10 at 1,2,3 +Id : 5940, {_}: inverse (greatest_lower_bound identity ?8493) =?= inverse (greatest_lower_bound ?8493 identity) [8493] by Demod 5676 with 5590 at 3 +Id : 18288, {_}: least_upper_bound ?21064 (inverse (greatest_lower_bound identity (greatest_lower_bound identity ?21063))) =?= least_upper_bound identity (least_upper_bound ?21064 (inverse (greatest_lower_bound identity ?21063))) [21063, 21064] by Demod 18162 with 5940 at 2,2 +Id : 18289, {_}: least_upper_bound ?21064 (inverse (greatest_lower_bound identity ?21063)) =<= least_upper_bound identity (least_upper_bound ?21064 (inverse (greatest_lower_bound identity ?21063))) [21063, 21064] by Demod 18288 with 116 at 1,2,2 +Id : 5804, {_}: least_upper_bound ?8608 (inverse (greatest_lower_bound ?8607 identity)) =<= least_upper_bound (least_upper_bound ?8608 identity) (inverse (greatest_lower_bound identity ?8607)) [8607, 8608] by Super 16 with 5590 at 2,2 +Id : 5849, {_}: least_upper_bound ?8608 (inverse (greatest_lower_bound ?8607 identity)) =<= least_upper_bound (inverse (greatest_lower_bound identity ?8607)) (least_upper_bound ?8608 identity) [8607, 8608] by Demod 5804 with 12 at 3 +Id : 19653, {_}: least_upper_bound ?8608 (inverse (greatest_lower_bound ?8607 identity)) =<= least_upper_bound identity (least_upper_bound ?8608 (inverse (greatest_lower_bound identity ?8607))) [8607, 8608] by Demod 5849 with 10492 at 3 +Id : 50221, {_}: least_upper_bound ?21064 (inverse (greatest_lower_bound identity ?21063)) =?= least_upper_bound ?21064 (inverse (greatest_lower_bound ?21063 identity)) [21063, 21064] by Demod 18289 with 19653 at 3 +Id : 140157, {_}: least_upper_bound ?154397 (inverse (greatest_lower_bound identity (inverse ?154397))) =>= inverse (greatest_lower_bound (inverse ?154397) identity) [154397] by Super 50221 with 140039 at 3 +Id : 140328, {_}: least_upper_bound ?154397 (inverse (greatest_lower_bound identity (inverse ?154397))) =>= inverse (greatest_lower_bound identity (inverse ?154397)) [154397] by Demod 140157 with 5940 at 3 +Id : 141908, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity (inverse ?155586))) ?155586 =>= ?155586 [155586] by Super 143 with 140328 at 1,2 +Id : 141910, {_}: greatest_lower_bound (inverse (greatest_lower_bound identity ?155589)) (inverse ?155589) =>= inverse ?155589 [155589] by Super 141908 with 36 at 2,1,1,2 +Id : 144996, {_}: multiply (inverse (greatest_lower_bound (inverse (greatest_lower_bound identity ?157076)) (inverse ?157076))) (inverse (greatest_lower_bound identity ?157076)) =>= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Super 1369 with 141910 at 1,1,2,3 +Id : 145323, {_}: inverse (multiply (greatest_lower_bound identity ?157076) (greatest_lower_bound (inverse (greatest_lower_bound identity ?157076)) (inverse ?157076))) =>= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 144996 with 38 at 2 +Id : 393, {_}: multiply ?924 (greatest_lower_bound (inverse ?924) ?925) =>= greatest_lower_bound identity (multiply ?924 ?925) [925, 924] by Super 28 with 299 at 1,3 +Id : 145324, {_}: inverse (greatest_lower_bound identity (multiply (greatest_lower_bound identity ?157076) (inverse ?157076))) =<= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 145323 with 393 at 1,2 +Id : 390, {_}: multiply (greatest_lower_bound ?916 ?915) (inverse ?915) =>= greatest_lower_bound (multiply ?916 (inverse ?915)) identity [915, 916] by Super 32 with 299 at 2,3 +Id : 418, {_}: multiply (greatest_lower_bound ?916 ?915) (inverse ?915) =>= greatest_lower_bound identity (multiply ?916 (inverse ?915)) [915, 916] by Demod 390 with 10 at 3 +Id : 145325, {_}: inverse (greatest_lower_bound identity (greatest_lower_bound identity (multiply identity (inverse ?157076)))) =<= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 145324 with 418 at 2,1,2 +Id : 145326, {_}: inverse (greatest_lower_bound identity (multiply identity (inverse ?157076))) =<= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 145325 with 116 at 1,2 +Id : 145327, {_}: inverse (greatest_lower_bound identity (inverse ?157076)) =<= least_upper_bound identity (multiply (inverse (inverse ?157076)) (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 145326 with 4 at 2,1,2 +Id : 145328, {_}: inverse (greatest_lower_bound identity (inverse ?157076)) =<= least_upper_bound identity (inverse (multiply (greatest_lower_bound identity ?157076) (inverse ?157076))) [157076] by Demod 145327 with 38 at 2,3 +Id : 145329, {_}: inverse (greatest_lower_bound identity (inverse ?157076)) =<= least_upper_bound identity (multiply ?157076 (inverse (greatest_lower_bound identity ?157076))) [157076] by Demod 145328 with 320 at 2,3 +Id : 399, {_}: multiply ?940 (least_upper_bound (inverse ?940) ?941) =>= least_upper_bound identity (multiply ?940 ?941) [941, 940] by Super 26 with 299 at 1,3 +Id : 140842, {_}: multiply ?154994 (inverse (greatest_lower_bound identity (inverse (inverse ?154994)))) =<= least_upper_bound identity (multiply ?154994 (inverse (greatest_lower_bound identity (inverse (inverse ?154994))))) [154994] by Super 399 with 140328 at 2,2 +Id : 141158, {_}: multiply ?154994 (inverse (greatest_lower_bound identity ?154994)) =<= least_upper_bound identity (multiply ?154994 (inverse (greatest_lower_bound identity (inverse (inverse ?154994))))) [154994] by Demod 140842 with 36 at 2,1,2,2 +Id : 141159, {_}: multiply ?154994 (inverse (greatest_lower_bound identity ?154994)) =<= least_upper_bound identity (multiply ?154994 (inverse (greatest_lower_bound identity ?154994))) [154994] by Demod 141158 with 36 at 2,1,2,2,3 +Id : 165997, {_}: inverse (greatest_lower_bound identity (inverse ?157076)) =<= multiply ?157076 (inverse (greatest_lower_bound identity ?157076)) [157076] by Demod 145329 with 141159 at 3 +Id : 166015, {_}: multiply (inverse (greatest_lower_bound identity (inverse ?173131))) (greatest_lower_bound identity ?173131) =>= ?173131 [173131] by Super 1260 with 165997 at 1,2 +Id : 396771, {_}: least_upper_bound (greatest_lower_bound identity (inverse ?441901)) (greatest_lower_bound identity ?441901) =<= multiply (greatest_lower_bound identity (inverse ?441901)) (least_upper_bound identity ?441901) [441901] by Super 1384 with 166015 at 2,2,3 +Id : 397621, {_}: multiply (least_upper_bound identity (least_upper_bound (greatest_lower_bound identity (inverse ?442410)) (greatest_lower_bound identity ?442410))) (inverse (least_upper_bound identity ?442410)) =>= least_upper_bound (inverse (least_upper_bound identity ?442410)) (greatest_lower_bound identity (inverse ?442410)) [442410] by Super 2362 with 396771 at 2,1,2 +Id : 128, {_}: least_upper_bound ?344 (least_upper_bound (greatest_lower_bound ?344 ?345) ?346) =>= least_upper_bound ?344 ?346 [346, 345, 344] by Super 16 with 22 at 1,3 +Id : 397861, {_}: multiply (least_upper_bound identity (greatest_lower_bound identity ?442410)) (inverse (least_upper_bound identity ?442410)) =>= least_upper_bound (inverse (least_upper_bound identity ?442410)) (greatest_lower_bound identity (inverse ?442410)) [442410] by Demod 397621 with 128 at 1,2 +Id : 397862, {_}: multiply identity (inverse (least_upper_bound identity ?442410)) =<= least_upper_bound (inverse (least_upper_bound identity ?442410)) (greatest_lower_bound identity (inverse ?442410)) [442410] by Demod 397861 with 22 at 1,2 +Id : 397863, {_}: inverse (least_upper_bound identity ?442410) =<= least_upper_bound (inverse (least_upper_bound identity ?442410)) (greatest_lower_bound identity (inverse ?442410)) [442410] by Demod 397862 with 4 at 2 +Id : 397864, {_}: inverse (least_upper_bound identity ?442410) =<= least_upper_bound (greatest_lower_bound identity (inverse ?442410)) (inverse (least_upper_bound identity ?442410)) [442410] by Demod 397863 with 12 at 3 +Id : 697689, {_}: greatest_lower_bound (inverse (least_upper_bound identity ?666285)) (greatest_lower_bound identity (inverse ?666285)) =>= greatest_lower_bound identity (inverse ?666285) [666285] by Super 143 with 397864 at 1,2 +Id : 698150, {_}: greatest_lower_bound (greatest_lower_bound identity (inverse ?666285)) (inverse (least_upper_bound identity ?666285)) =>= greatest_lower_bound identity (inverse ?666285) [666285] by Demod 697689 with 10 at 2 +Id : 698151, {_}: greatest_lower_bound identity (greatest_lower_bound (inverse ?666285) (inverse (least_upper_bound identity ?666285))) =>= greatest_lower_bound identity (inverse ?666285) [666285] by Demod 698150 with 14 at 2 +Id : 4574, {_}: multiply (inverse (least_upper_bound ?7568 identity)) (greatest_lower_bound identity (least_upper_bound identity ?7568)) =>= greatest_lower_bound (inverse (least_upper_bound ?7568 identity)) identity [7568] by Super 333 with 3454 at 2,3 +Id : 4596, {_}: multiply (inverse (least_upper_bound ?7568 identity)) identity =>= greatest_lower_bound (inverse (least_upper_bound ?7568 identity)) identity [7568] by Demod 4574 with 24 at 2,2 +Id : 4597, {_}: inverse (least_upper_bound ?7568 identity) =<= greatest_lower_bound (inverse (least_upper_bound ?7568 identity)) identity [7568] by Demod 4596 with 354 at 2 +Id : 4680, {_}: inverse (least_upper_bound ?7650 identity) =<= greatest_lower_bound identity (inverse (least_upper_bound ?7650 identity)) [7650] by Demod 4597 with 10 at 3 +Id : 4681, {_}: inverse (least_upper_bound ?7652 identity) =<= greatest_lower_bound identity (inverse (least_upper_bound identity ?7652)) [7652] by Super 4680 with 12 at 1,2,3 +Id : 4945, {_}: greatest_lower_bound ?7822 (inverse (least_upper_bound ?7821 identity)) =<= greatest_lower_bound (greatest_lower_bound ?7822 identity) (inverse (least_upper_bound identity ?7821)) [7821, 7822] by Super 14 with 4681 at 2,2 +Id : 732, {_}: greatest_lower_bound (least_upper_bound ?1553 ?1554) ?1553 =>= ?1553 [1554, 1553] by Super 10 with 24 at 3 +Id : 733, {_}: greatest_lower_bound (least_upper_bound ?1557 ?1556) ?1556 =>= ?1556 [1556, 1557] by Super 732 with 12 at 1,2 +Id : 8152, {_}: least_upper_bound (greatest_lower_bound ?11342 identity) (least_upper_bound ?11343 identity) =>= least_upper_bound ?11343 identity [11343, 11342] by Super 8147 with 651 at 2,3 +Id : 9033, {_}: least_upper_bound ?11999 identity =<= least_upper_bound (least_upper_bound (greatest_lower_bound ?11998 identity) ?11999) identity [11998, 11999] by Super 16 with 8152 at 2 +Id : 11655, {_}: least_upper_bound ?14440 identity =<= least_upper_bound identity (least_upper_bound (greatest_lower_bound ?14441 identity) ?14440) [14441, 14440] by Demod 9033 with 12 at 3 +Id : 11666, {_}: least_upper_bound (greatest_lower_bound (greatest_lower_bound ?14473 identity) ?14472) identity =>= least_upper_bound identity (greatest_lower_bound ?14473 identity) [14472, 14473] by Super 11655 with 22 at 2,3 +Id : 11846, {_}: least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?14473 identity) ?14472) =>= least_upper_bound identity (greatest_lower_bound ?14473 identity) [14472, 14473] by Demod 11666 with 12 at 2 +Id : 132, {_}: least_upper_bound ?359 (greatest_lower_bound ?360 ?359) =>= ?359 [360, 359] by Super 131 with 10 at 2,2 +Id : 11847, {_}: least_upper_bound identity (greatest_lower_bound (greatest_lower_bound ?14473 identity) ?14472) =>= identity [14472, 14473] by Demod 11846 with 132 at 3 +Id : 13334, {_}: greatest_lower_bound identity (greatest_lower_bound (greatest_lower_bound ?16294 identity) ?16295) =>= greatest_lower_bound (greatest_lower_bound ?16294 identity) ?16295 [16295, 16294] by Super 733 with 11847 at 1,2 +Id : 13335, {_}: greatest_lower_bound identity (greatest_lower_bound (greatest_lower_bound identity ?16297) ?16298) =>= greatest_lower_bound (greatest_lower_bound ?16297 identity) ?16298 [16298, 16297] by Super 13334 with 10 at 1,2,2 +Id : 13417, {_}: greatest_lower_bound identity (greatest_lower_bound identity (greatest_lower_bound ?16297 ?16298)) =>= greatest_lower_bound (greatest_lower_bound ?16297 identity) ?16298 [16298, 16297] by Demod 13335 with 14 at 2,2 +Id : 13418, {_}: greatest_lower_bound identity (greatest_lower_bound ?16297 ?16298) =<= greatest_lower_bound (greatest_lower_bound ?16297 identity) ?16298 [16298, 16297] by Demod 13417 with 116 at 2 +Id : 16433, {_}: greatest_lower_bound ?7822 (inverse (least_upper_bound ?7821 identity)) =<= greatest_lower_bound identity (greatest_lower_bound ?7822 (inverse (least_upper_bound identity ?7821))) [7821, 7822] by Demod 4945 with 13418 at 3 +Id : 698152, {_}: greatest_lower_bound (inverse ?666285) (inverse (least_upper_bound ?666285 identity)) =>= greatest_lower_bound identity (inverse ?666285) [666285] by Demod 698151 with 16433 at 2 +Id : 1371, {_}: multiply (inverse (least_upper_bound ?2583 ?2582)) (least_upper_bound ?2583 ?2582) =>= least_upper_bound identity (multiply (inverse (least_upper_bound ?2583 ?2582)) ?2583) [2582, 2583] by Super 1363 with 502 at 2,2 +Id : 1403, {_}: identity =<= least_upper_bound identity (multiply (inverse (least_upper_bound ?2583 ?2582)) ?2583) [2582, 2583] by Demod 1371 with 6 at 2 +Id : 139935, {_}: multiply identity ?154067 =<= least_upper_bound ?154067 (inverse (least_upper_bound (inverse ?154067) ?154066)) [154066, 154067] by Super 139882 with 1403 at 1,2 +Id : 140043, {_}: ?154067 =<= least_upper_bound ?154067 (inverse (least_upper_bound (inverse ?154067) ?154066)) [154066, 154067] by Demod 139935 with 4 at 2 +Id : 171519, {_}: greatest_lower_bound ?178895 (inverse (least_upper_bound (inverse ?178895) ?178896)) =>= inverse (least_upper_bound (inverse ?178895) ?178896) [178896, 178895] by Super 733 with 140043 at 1,2 +Id : 171521, {_}: greatest_lower_bound (inverse ?178900) (inverse (least_upper_bound ?178900 ?178901)) =>= inverse (least_upper_bound (inverse (inverse ?178900)) ?178901) [178901, 178900] by Super 171519 with 36 at 1,1,2,2 +Id : 172001, {_}: greatest_lower_bound (inverse ?178900) (inverse (least_upper_bound ?178900 ?178901)) =>= inverse (least_upper_bound ?178900 ?178901) [178901, 178900] by Demod 171521 with 36 at 1,1,3 +Id : 698153, {_}: inverse (least_upper_bound ?666285 identity) =>= greatest_lower_bound identity (inverse ?666285) [666285] by Demod 698152 with 172001 at 2 +Id : 699473, {_}: inverse (greatest_lower_bound identity (inverse ?667289)) =>= least_upper_bound ?667289 identity [667289] by Super 36 with 698153 at 1,2 +Id : 702706, {_}: least_upper_bound identity (multiply a b) === least_upper_bound identity (multiply a b) [] by Demod 702705 with 12 at 3 +Id : 702705, {_}: least_upper_bound identity (multiply a b) =<= least_upper_bound (multiply a b) identity [] by Demod 520020 with 699473 at 3 +Id : 520020, {_}: least_upper_bound identity (multiply a b) =<= inverse (greatest_lower_bound identity (inverse (multiply a b))) [] by Demod 329 with 517346 at 3 +Id : 329, {_}: least_upper_bound identity (multiply a b) =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by Demod 2 with 12 at 2 +Id : 2, {_}: least_upper_bound (multiply a b) identity =<= multiply a (inverse (greatest_lower_bound a (inverse b))) [] by prove_p23 +% SZS output end CNFRefutation for GRP186-2.p +Order + == is 100 + _ is 99 + a is 98 + associativity is 90 + associativity_of_glb is 85 + associativity_of_lub is 84 + b is 97 + glb_absorbtion is 80 + greatest_lower_bound is 89 + idempotence_of_gld is 82 + idempotence_of_lub is 83 + identity is 94 + inverse is 92 + least_upper_bound is 87 + left_identity is 93 + left_inverse is 91 + lub_absorbtion is 81 + monotony_glb1 is 78 + monotony_glb2 is 76 + monotony_lub1 is 79 + monotony_lub2 is 77 + multiply is 96 + p33_1 is 75 + prove_p33 is 95 + symmetry_of_glb is 88 + symmetry_of_lub is 86 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply (inverse ?4) ?4 =>= identity [4] by left_inverse ?4 + Id : 8, {_}: + multiply (multiply ?6 ?7) ?8 =?= multiply ?6 (multiply ?7 ?8) + [8, 7, 6] by associativity ?6 ?7 ?8 + Id : 10, {_}: + greatest_lower_bound ?10 ?11 =?= greatest_lower_bound ?11 ?10 + [11, 10] by symmetry_of_glb ?10 ?11 + Id : 12, {_}: + least_upper_bound ?13 ?14 =?= least_upper_bound ?14 ?13 + [14, 13] by symmetry_of_lub ?13 ?14 + Id : 14, {_}: + greatest_lower_bound ?16 (greatest_lower_bound ?17 ?18) + =?= + greatest_lower_bound (greatest_lower_bound ?16 ?17) ?18 + [18, 17, 16] by associativity_of_glb ?16 ?17 ?18 + Id : 16, {_}: + least_upper_bound ?20 (least_upper_bound ?21 ?22) + =?= + least_upper_bound (least_upper_bound ?20 ?21) ?22 + [22, 21, 20] by associativity_of_lub ?20 ?21 ?22 + Id : 18, {_}: least_upper_bound ?24 ?24 =>= ?24 [24] by idempotence_of_lub ?24 + Id : 20, {_}: + greatest_lower_bound ?26 ?26 =>= ?26 + [26] by idempotence_of_gld ?26 + Id : 22, {_}: + least_upper_bound ?28 (greatest_lower_bound ?28 ?29) =>= ?28 + [29, 28] by lub_absorbtion ?28 ?29 + Id : 24, {_}: + greatest_lower_bound ?31 (least_upper_bound ?31 ?32) =>= ?31 + [32, 31] by glb_absorbtion ?31 ?32 + Id : 26, {_}: + multiply ?34 (least_upper_bound ?35 ?36) + =<= + least_upper_bound (multiply ?34 ?35) (multiply ?34 ?36) + [36, 35, 34] by monotony_lub1 ?34 ?35 ?36 + Id : 28, {_}: + multiply ?38 (greatest_lower_bound ?39 ?40) + =<= + greatest_lower_bound (multiply ?38 ?39) (multiply ?38 ?40) + [40, 39, 38] by monotony_glb1 ?38 ?39 ?40 + Id : 30, {_}: + multiply (least_upper_bound ?42 ?43) ?44 + =<= + least_upper_bound (multiply ?42 ?44) (multiply ?43 ?44) + [44, 43, 42] by monotony_lub2 ?42 ?43 ?44 + Id : 32, {_}: + multiply (greatest_lower_bound ?46 ?47) ?48 + =<= + greatest_lower_bound (multiply ?46 ?48) (multiply ?47 ?48) + [48, 47, 46] by monotony_glb2 ?46 ?47 ?48 + Id : 34, {_}: + greatest_lower_bound (least_upper_bound a (inverse a)) + (least_upper_bound b (inverse b)) + =>= + identity + [] by p33_1 +Goal + Id : 2, {_}: multiply a b =>= multiply b a [] by prove_p33 +Last chance: 1246131250.76 +Last chance: all is indexed 1246131270.76 +Last chance: failed over 100 goal 1246131270.76 +FAILURE in 0 iterations +% SZS status Timeout for GRP187-1.p +Order + == is 100 + _ is 99 + a is 98 + b is 97 + c is 95 + identity is 93 + left_division is 90 + left_division_multiply is 88 + left_identity is 92 + left_inverse is 83 + moufang1 is 82 + multiply is 96 + multiply_left_division is 89 + multiply_right_division is 86 + prove_moufang2 is 94 + right_division is 87 + right_division_multiply is 85 + right_identity is 91 + right_inverse is 84 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 + Id : 8, {_}: + multiply ?6 (left_division ?6 ?7) =>= ?7 + [7, 6] by multiply_left_division ?6 ?7 + Id : 10, {_}: + left_division ?9 (multiply ?9 ?10) =>= ?10 + [10, 9] by left_division_multiply ?9 ?10 + Id : 12, {_}: + multiply (right_division ?12 ?13) ?13 =>= ?12 + [13, 12] by multiply_right_division ?12 ?13 + Id : 14, {_}: + right_division (multiply ?15 ?16) ?16 =>= ?15 + [16, 15] by right_division_multiply ?15 ?16 + Id : 16, {_}: + multiply ?18 (right_inverse ?18) =>= identity + [18] by right_inverse ?18 + Id : 18, {_}: + multiply (left_inverse ?20) ?20 =>= identity + [20] by left_inverse ?20 + Id : 20, {_}: + multiply (multiply ?22 (multiply ?23 ?24)) ?22 + =?= + multiply (multiply ?22 ?23) (multiply ?24 ?22) + [24, 23, 22] by moufang1 ?22 ?23 ?24 +Goal + Id : 2, {_}: + multiply (multiply (multiply a b) c) b + =>= + multiply a (multiply b (multiply c b)) + [] by prove_moufang2 +Last chance: 1246131544.05 +Last chance: all is indexed 1246131564.16 +Last chance: failed over 100 goal 1246131564.16 +FAILURE in 0 iterations +% SZS status Timeout for GRP200-1.p +Order + == is 100 + _ is 99 + a is 98 + b is 97 + c is 96 + identity is 93 + left_division is 90 + left_division_multiply is 88 + left_identity is 92 + left_inverse is 83 + moufang3 is 82 + multiply is 95 + multiply_left_division is 89 + multiply_right_division is 86 + prove_moufang1 is 94 + right_division is 87 + right_division_multiply is 85 + right_identity is 91 + right_inverse is 84 +Facts + Id : 4, {_}: multiply identity ?2 =>= ?2 [2] by left_identity ?2 + Id : 6, {_}: multiply ?4 identity =>= ?4 [4] by right_identity ?4 + Id : 8, {_}: + multiply ?6 (left_division ?6 ?7) =>= ?7 + [7, 6] by multiply_left_division ?6 ?7 + Id : 10, {_}: + left_division ?9 (multiply ?9 ?10) =>= ?10 + [10, 9] by left_division_multiply ?9 ?10 + Id : 12, {_}: + multiply (right_division ?12 ?13) ?13 =>= ?12 + [13, 12] by multiply_right_division ?12 ?13 + Id : 14, {_}: + right_division (multiply ?15 ?16) ?16 =>= ?15 + [16, 15] by right_division_multiply ?15 ?16 + Id : 16, {_}: + multiply ?18 (right_inverse ?18) =>= identity + [18] by right_inverse ?18 + Id : 18, {_}: + multiply (left_inverse ?20) ?20 =>= identity + [20] by left_inverse ?20 + Id : 20, {_}: + multiply (multiply (multiply ?22 ?23) ?22) ?24 + =?= + multiply ?22 (multiply ?23 (multiply ?22 ?24)) + [24, 23, 22] by moufang3 ?22 ?23 ?24 +Goal + Id : 2, {_}: + multiply (multiply a (multiply b c)) a + =>= + multiply (multiply a b) (multiply c a) + [] by prove_moufang1 +Last chance: 1246131837.06 +Last chance: all is indexed 1246131857.16 +Last chance: failed over 100 goal 1246131857.2 +FAILURE in 0 iterations +% SZS status Timeout for GRP202-1.p +Order + == is 100 + _ is 99 + a2 is 95 + b2 is 98 + inverse is 97 + multiply is 96 + prove_these_axioms_2 is 94 + single_axiom is 93 +Facts + Id : 4, {_}: + multiply ?2 + (inverse + (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) + (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) + =>= + ?4 + [4, 3, 2] by single_axiom ?2 ?3 ?4 +Goal + Id : 2, {_}: + multiply (multiply (inverse b2) b2) a2 =>= a2 + [] by prove_these_axioms_2 +Last chance: 1246132129.64 +Last chance: all is indexed 1246132149.64 +Last chance: failed over 100 goal 1246132149.65 +FAILURE in 0 iterations +% SZS status Timeout for GRP404-1.p +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + inverse is 93 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 92 +Facts + Id : 4, {_}: + multiply ?2 + (inverse + (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) + (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) + =>= + ?4 + [4, 3, 2] by single_axiom ?2 ?3 ?4 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 218.239700s +% SZS status Unsatisfiable for GRP405-1.p +% SZS output start CNFRefutation for GRP405-1.p +Id : 4, {_}: multiply ?2 (inverse (multiply (inverse (multiply (inverse (multiply ?2 ?3)) ?4)) (inverse (multiply ?3 (multiply (inverse ?3) ?3))))) =>= ?4 [4, 3, 2] by single_axiom ?2 ?3 ?4 +Id : 5, {_}: multiply ?6 (inverse (multiply (inverse (multiply (inverse (multiply ?6 ?7)) ?8)) (inverse (multiply ?7 (multiply (inverse ?7) ?7))))) =>= ?8 [8, 7, 6] by single_axiom ?6 ?7 ?8 +Id : 7, {_}: multiply ?17 (inverse (multiply (inverse ?16) (inverse (multiply ?18 (multiply (inverse ?18) ?18))))) =?= inverse (multiply (inverse (multiply (inverse (multiply (inverse (multiply ?17 ?18)) ?15)) ?16)) (inverse (multiply ?15 (multiply (inverse ?15) ?15)))) [15, 18, 16, 17] by Super 5 with 4 at 1,1,1,2,2 +Id : 40, {_}: multiply (inverse (multiply ?213 ?214)) (multiply ?213 (inverse (multiply (inverse ?215) (inverse (multiply ?214 (multiply (inverse ?214) ?214)))))) =>= ?215 [215, 214, 213] by Super 4 with 7 at 2,2 +Id : 64, {_}: multiply (inverse (multiply ?350 ?351)) (multiply ?350 (multiply ?352 (inverse (multiply (inverse ?353) (inverse (multiply ?354 (multiply (inverse ?354) ?354))))))) =>= multiply (inverse (multiply (inverse (multiply ?352 ?354)) ?351)) ?353 [354, 353, 352, 351, 350] by Super 40 with 7 at 2,2,2 +Id : 124, {_}: multiply (inverse (multiply ?685 ?686)) (multiply ?685 ?687) =?= multiply (inverse (multiply (inverse (multiply ?688 ?689)) ?686)) (multiply (inverse (multiply ?688 ?689)) ?687) [689, 688, 687, 686, 685] by Super 64 with 4 at 2,2,2 +Id : 70, {_}: multiply (inverse (multiply ?400 ?401)) (multiply ?400 ?399) =?= multiply (inverse (multiply (inverse (multiply ?402 ?403)) ?401)) (multiply (inverse (multiply ?402 ?403)) ?399) [403, 402, 399, 401, 400] by Super 64 with 4 at 2,2,2 +Id : 155, {_}: multiply (inverse (multiply ?925 ?926)) (multiply ?925 ?927) =?= multiply (inverse (multiply ?924 ?926)) (multiply ?924 ?927) [924, 927, 926, 925] by Super 124 with 70 at 3 +Id : 113, {_}: multiply ?598 (inverse (multiply (inverse (multiply (inverse (multiply ?598 ?599)) ?597)) (inverse (multiply ?599 (multiply (inverse ?599) ?599))))) =?= inverse (multiply (inverse (multiply (inverse (multiply ?595 ?596)) (multiply ?595 ?597))) (inverse (multiply ?596 (multiply (inverse ?596) ?596)))) [596, 595, 597, 599, 598] by Super 7 with 70 at 1,1,1,3 +Id : 176, {_}: ?597 =<= inverse (multiply (inverse (multiply (inverse (multiply ?595 ?596)) (multiply ?595 ?597))) (inverse (multiply ?596 (multiply (inverse ?596) ?596)))) [596, 595, 597] by Demod 113 with 4 at 2 +Id : 9637, {_}: multiply (inverse (multiply ?67788 (inverse (multiply ?67789 (multiply (inverse ?67789) ?67789))))) (multiply ?67788 ?67790) =?= multiply ?67791 (multiply (inverse (multiply (inverse (multiply ?67792 ?67789)) (multiply ?67792 ?67791))) ?67790) [67792, 67791, 67790, 67789, 67788] by Super 155 with 176 at 1,3 +Id : 10194, {_}: multiply ?72717 (multiply (inverse (multiply (inverse (multiply ?72718 ?72719)) (multiply ?72718 ?72717))) ?72720) =?= multiply ?72721 (multiply (inverse (multiply (inverse (multiply ?72722 ?72719)) (multiply ?72722 ?72721))) ?72720) [72722, 72721, 72720, 72719, 72718, 72717] by Super 9637 with 176 at 1,2 +Id : 10232, {_}: multiply ?73113 (multiply (inverse (multiply (inverse (multiply ?73114 (inverse (multiply (inverse (multiply (inverse (multiply ?73117 ?73111)) ?73112)) (inverse (multiply ?73111 (multiply (inverse ?73111) ?73111))))))) (multiply ?73114 ?73113))) ?73115) =?= multiply ?73116 (multiply (inverse (multiply (inverse ?73112) (multiply ?73117 ?73116))) ?73115) [73116, 73115, 73112, 73111, 73117, 73114, 73113] by Super 10194 with 4 at 1,1,1,1,2,3 +Id : 227, {_}: multiply (inverse (multiply ?1261 ?1262)) (multiply ?1261 ?1263) =?= multiply (inverse (multiply ?1264 ?1262)) (multiply ?1264 ?1263) [1264, 1263, 1262, 1261] by Super 124 with 70 at 3 +Id : 234, {_}: multiply (inverse (multiply ?1309 (inverse (multiply (inverse (multiply (inverse (multiply ?1311 ?1307)) ?1308)) (inverse (multiply ?1307 (multiply (inverse ?1307) ?1307))))))) (multiply ?1309 ?1310) =>= multiply (inverse ?1308) (multiply ?1311 ?1310) [1310, 1308, 1307, 1311, 1309] by Super 227 with 4 at 1,1,3 +Id : 10841, {_}: multiply ?78382 (multiply (inverse (multiply (inverse ?78383) (multiply ?78384 ?78382))) ?78385) =?= multiply ?78386 (multiply (inverse (multiply (inverse ?78383) (multiply ?78384 ?78386))) ?78385) [78386, 78385, 78384, 78383, 78382] by Demod 10232 with 234 at 1,1,2,2 +Id : 10882, {_}: multiply ?78768 (multiply (inverse (multiply (inverse (multiply (inverse (multiply (inverse (multiply ?78766 ?78767)) (multiply ?78766 ?78765))) (inverse (multiply ?78767 (multiply (inverse ?78767) ?78767))))) (multiply ?78769 ?78768))) ?78770) =?= multiply ?78771 (multiply (inverse (multiply ?78765 (multiply ?78769 ?78771))) ?78770) [78771, 78770, 78769, 78765, 78767, 78766, 78768] by Super 10841 with 176 at 1,1,1,2,3 +Id : 11114, {_}: multiply ?78768 (multiply (inverse (multiply ?78765 (multiply ?78769 ?78768))) ?78770) =?= multiply ?78771 (multiply (inverse (multiply ?78765 (multiply ?78769 ?78771))) ?78770) [78771, 78770, 78769, 78765, 78768] by Demod 10882 with 176 at 1,1,1,2,2 +Id : 11923, {_}: multiply ?86959 (inverse (multiply (inverse (multiply ?86960 (multiply (inverse (multiply ?86961 (multiply ?86962 ?86960))) ?86963))) (inverse (multiply ?86964 (multiply (inverse ?86964) ?86964))))) =>= multiply (inverse (multiply ?86961 (multiply ?86962 (inverse (multiply ?86959 ?86964))))) ?86963 [86964, 86963, 86962, 86961, 86960, 86959] by Super 4 with 11114 at 1,1,1,2,2 +Id : 31525, {_}: multiply ?228038 (multiply ?228039 (inverse (multiply (inverse (multiply (inverse (multiply ?228040 (multiply ?228041 (inverse (multiply (inverse (multiply ?228039 ?228042)) ?228043))))) ?228044)) (inverse (multiply ?228042 (multiply (inverse ?228042) ?228042)))))) =>= multiply (inverse (multiply ?228040 (multiply ?228041 (inverse (multiply ?228038 ?228043))))) ?228044 [228044, 228043, 228042, 228041, 228040, 228039, 228038] by Super 11923 with 7 at 2,2 +Id : 31856, {_}: multiply ?231713 (multiply ?231714 (inverse (multiply (inverse (multiply (inverse (multiply ?231714 ?231716)) ?231717)) (inverse (multiply ?231716 (multiply (inverse ?231716) ?231716)))))) =?= multiply (inverse (multiply (inverse (multiply ?231715 ?231712)) (multiply ?231715 (inverse (multiply ?231713 ?231717))))) (inverse (multiply ?231712 (multiply (inverse ?231712) ?231712))) [231712, 231715, 231717, 231716, 231714, 231713] by Super 31525 with 176 at 1,1,2,2,2 +Id : 32694, {_}: multiply ?234105 ?234106 =<= multiply (inverse (multiply (inverse (multiply ?234107 ?234108)) (multiply ?234107 (inverse (multiply ?234105 ?234106))))) (inverse (multiply ?234108 (multiply (inverse ?234108) ?234108))) [234108, 234107, 234106, 234105] by Demod 31856 with 4 at 2,2 +Id : 32770, {_}: multiply ?234751 (inverse (multiply (inverse (multiply (inverse (multiply ?234751 ?234749)) ?234750)) (inverse (multiply ?234749 (multiply (inverse ?234749) ?234749))))) =?= multiply (inverse (multiply (inverse (multiply ?234752 ?234753)) (multiply ?234752 (inverse ?234750)))) (inverse (multiply ?234753 (multiply (inverse ?234753) ?234753))) [234753, 234752, 234750, 234749, 234751] by Super 32694 with 4 at 1,2,2,1,1,3 +Id : 33040, {_}: ?234750 =<= multiply (inverse (multiply (inverse (multiply ?234752 ?234753)) (multiply ?234752 (inverse ?234750)))) (inverse (multiply ?234753 (multiply (inverse ?234753) ?234753))) [234753, 234752, 234750] by Demod 32770 with 4 at 2 +Id : 15, {_}: multiply (inverse (multiply ?60 ?62)) (multiply ?60 (inverse (multiply (inverse ?61) (inverse (multiply ?62 (multiply (inverse ?62) ?62)))))) =>= ?61 [61, 62, 60] by Super 4 with 7 at 2,2 +Id : 11333, {_}: multiply ?82186 (inverse (multiply (inverse (multiply ?82185 (multiply (inverse (multiply ?82182 (multiply ?82183 ?82185))) ?82184))) (inverse (multiply ?82187 (multiply (inverse ?82187) ?82187))))) =>= multiply (inverse (multiply ?82182 (multiply ?82183 (inverse (multiply ?82186 ?82187))))) ?82184 [82187, 82184, 82183, 82182, 82185, 82186] by Super 4 with 11114 at 1,1,1,2,2 +Id : 33373, {_}: multiply ?237625 (inverse (multiply (inverse (multiply (inverse ?237622) ?237622)) (inverse (multiply ?237626 (multiply (inverse ?237626) ?237626))))) =?= multiply (inverse (multiply (inverse (multiply ?237623 ?237624)) (multiply ?237623 (inverse (multiply ?237625 ?237626))))) (inverse (multiply ?237624 (multiply (inverse ?237624) ?237624))) [237624, 237623, 237626, 237622, 237625] by Super 11333 with 33040 at 2,1,1,1,2,2 +Id : 33632, {_}: multiply ?237625 (inverse (multiply (inverse (multiply (inverse ?237622) ?237622)) (inverse (multiply ?237626 (multiply (inverse ?237626) ?237626))))) =>= multiply ?237625 ?237626 [237626, 237622, 237625] by Demod 33373 with 33040 at 3 +Id : 33860, {_}: multiply (inverse (multiply ?240296 ?240298)) (multiply ?240296 ?240298) =?= multiply (inverse ?240297) ?240297 [240297, 240298, 240296] by Super 15 with 33632 at 2,2 +Id : 40668, {_}: ?278603 =<= multiply (inverse (multiply (inverse ?278604) ?278604)) (inverse (multiply (inverse ?278603) (multiply (inverse (inverse ?278603)) (inverse ?278603)))) [278604, 278603] by Super 33040 with 33860 at 1,1,3 +Id : 35324, {_}: multiply (inverse (multiply ?248214 ?248215)) (multiply ?248214 ?248215) =?= multiply (inverse ?248216) ?248216 [248216, 248215, 248214] by Super 15 with 33632 at 2,2 +Id : 35547, {_}: multiply (inverse ?249874) ?249874 =?= multiply (inverse ?249877) ?249877 [249877, 249874] by Super 35324 with 33860 at 2 +Id : 40715, {_}: ?278907 =<= multiply (inverse (multiply (inverse ?278908) ?278908)) (inverse (multiply (inverse ?278907) (multiply (inverse ?278906) ?278906))) [278906, 278908, 278907] by Super 40668 with 35547 at 2,1,2,3 +Id : 300, {_}: ?1622 =<= inverse (multiply (inverse (multiply (inverse (multiply ?1623 ?1624)) (multiply ?1623 ?1622))) (inverse (multiply ?1624 (multiply (inverse ?1624) ?1624)))) [1624, 1623, 1622] by Demod 113 with 4 at 2 +Id : 305, {_}: ?1655 =<= inverse (multiply (inverse (multiply (inverse (multiply ?1656 (multiply ?1652 ?1653))) (multiply ?1656 ?1655))) (inverse (multiply (multiply ?1652 ?1653) (multiply (inverse (multiply ?1654 ?1653)) (multiply ?1654 ?1653))))) [1654, 1653, 1652, 1656, 1655] by Super 300 with 155 at 2,1,2,1,3 +Id : 11337, {_}: multiply (inverse (multiply ?82211 (multiply ?82212 ?82210))) ?82213 =<= inverse (multiply (inverse (multiply (inverse (multiply ?82210 ?82215)) (multiply ?82214 (multiply (inverse (multiply ?82211 (multiply ?82212 ?82214))) ?82213)))) (inverse (multiply ?82215 (multiply (inverse ?82215) ?82215)))) [82214, 82215, 82213, 82210, 82212, 82211] by Super 176 with 11114 at 2,1,1,1,3 +Id : 14547, {_}: multiply ?104639 (multiply (inverse (multiply ?104634 (multiply ?104635 ?104636))) ?104637) =<= multiply (inverse (multiply ?104640 (multiply ?104641 (inverse (multiply ?104639 ?104638))))) (multiply (inverse (multiply ?104634 (multiply ?104635 (inverse (multiply ?104640 (multiply ?104641 (inverse (multiply ?104636 ?104638)))))))) ?104637) [104638, 104641, 104640, 104637, 104636, 104635, 104634, 104639] by Super 11333 with 11337 at 2,2 +Id : 368, {_}: multiply (inverse (multiply ?1959 (multiply ?1960 (inverse (multiply (inverse ?1961) (inverse (multiply ?1962 (multiply (inverse ?1962) ?1962)))))))) (multiply ?1959 ?1963) =>= multiply (inverse ?1961) (multiply (inverse (multiply ?1960 ?1962)) ?1963) [1963, 1962, 1961, 1960, 1959] by Super 124 with 15 at 1,1,3 +Id : 384, {_}: multiply (inverse (multiply ?2092 (multiply ?2093 (inverse (multiply ?2089 (inverse (multiply ?2094 (multiply (inverse ?2094) ?2094)))))))) (multiply ?2092 ?2095) =?= multiply (inverse (multiply (inverse (multiply (inverse (multiply ?2090 ?2091)) (multiply ?2090 ?2089))) (inverse (multiply ?2091 (multiply (inverse ?2091) ?2091))))) (multiply (inverse (multiply ?2093 ?2094)) ?2095) [2091, 2090, 2095, 2094, 2089, 2093, 2092] by Super 368 with 176 at 1,1,2,2,1,1,2 +Id : 409, {_}: multiply (inverse (multiply ?2092 (multiply ?2093 (inverse (multiply ?2089 (inverse (multiply ?2094 (multiply (inverse ?2094) ?2094)))))))) (multiply ?2092 ?2095) =>= multiply ?2089 (multiply (inverse (multiply ?2093 ?2094)) ?2095) [2095, 2094, 2089, 2093, 2092] by Demod 384 with 176 at 1,3 +Id : 11831, {_}: multiply (inverse (multiply ?86031 (multiply ?86037 (inverse (multiply ?86038 (inverse (multiply ?86039 (multiply (inverse ?86039) ?86039)))))))) (multiply (inverse (multiply ?86033 (multiply ?86034 (inverse (multiply ?86031 ?86036))))) ?86035) =?= multiply ?86038 (multiply (inverse (multiply ?86037 ?86039)) (inverse (multiply (inverse (multiply ?86032 (multiply (inverse (multiply ?86033 (multiply ?86034 ?86032))) ?86035))) (inverse (multiply ?86036 (multiply (inverse ?86036) ?86036)))))) [86032, 86035, 86036, 86034, 86033, 86039, 86038, 86037, 86031] by Super 409 with 11333 at 2,2 +Id : 12202, {_}: multiply (inverse (multiply ?86031 (multiply ?86037 (inverse (multiply ?86038 (inverse (multiply ?86039 (multiply (inverse ?86039) ?86039)))))))) (multiply (inverse (multiply ?86033 (multiply ?86034 (inverse (multiply ?86031 ?86036))))) ?86035) =>= multiply ?86038 (multiply (inverse (multiply ?86033 (multiply ?86034 (inverse (multiply (inverse (multiply ?86037 ?86039)) ?86036))))) ?86035) [86035, 86036, 86034, 86033, 86039, 86038, 86037, 86031] by Demod 11831 with 11333 at 2,3 +Id : 18076, {_}: multiply ?132847 (multiply (inverse (multiply ?132848 (multiply ?132849 ?132850))) ?132851) =<= multiply ?132847 (multiply (inverse (multiply ?132848 (multiply ?132849 (inverse (multiply (inverse (multiply ?132853 ?132846)) (multiply ?132853 (inverse (multiply ?132850 (inverse (multiply ?132846 (multiply (inverse ?132846) ?132846))))))))))) ?132851) [132846, 132853, 132851, 132850, 132849, 132848, 132847] by Super 14547 with 12202 at 3 +Id : 21064, {_}: multiply ?157169 (inverse (multiply (inverse (multiply (inverse (multiply ?157169 ?157170)) (multiply (inverse (multiply ?157163 (multiply ?157164 ?157165))) ?157166))) (inverse (multiply ?157170 (multiply (inverse ?157170) ?157170))))) =?= multiply (inverse (multiply ?157163 (multiply ?157164 (inverse (multiply (inverse (multiply ?157167 ?157168)) (multiply ?157167 (inverse (multiply ?157165 (inverse (multiply ?157168 (multiply (inverse ?157168) ?157168))))))))))) ?157166 [157168, 157167, 157166, 157165, 157164, 157163, 157170, 157169] by Super 4 with 18076 at 1,1,1,2,2 +Id : 21742, {_}: multiply (inverse (multiply ?157163 (multiply ?157164 ?157165))) ?157166 =<= multiply (inverse (multiply ?157163 (multiply ?157164 (inverse (multiply (inverse (multiply ?157167 ?157168)) (multiply ?157167 (inverse (multiply ?157165 (inverse (multiply ?157168 (multiply (inverse ?157168) ?157168))))))))))) ?157166 [157168, 157167, 157166, 157165, 157164, 157163] by Demod 21064 with 4 at 2 +Id : 22341, {_}: inverse (multiply (inverse (multiply ?165075 ?165076)) (multiply ?165075 (inverse (multiply ?165074 (inverse (multiply ?165076 (multiply (inverse ?165076) ?165076))))))) =?= inverse (multiply (inverse (multiply (inverse (multiply ?165073 (multiply ?165077 ?165078))) (multiply ?165073 ?165074))) (inverse (multiply (multiply ?165077 ?165078) (multiply (inverse (multiply ?165079 ?165078)) (multiply ?165079 ?165078))))) [165079, 165078, 165077, 165073, 165074, 165076, 165075] by Super 305 with 21742 at 1,3 +Id : 22802, {_}: inverse (multiply (inverse (multiply ?165075 ?165076)) (multiply ?165075 (inverse (multiply ?165074 (inverse (multiply ?165076 (multiply (inverse ?165076) ?165076))))))) =>= ?165074 [165074, 165076, 165075] by Demod 22341 with 305 at 3 +Id : 38026, {_}: inverse (multiply (inverse (multiply ?263789 ?263790)) (multiply ?263789 ?263790)) =?= inverse (multiply (inverse ?263791) ?263791) [263791, 263790, 263789] by Super 22802 with 33632 at 2,1,2 +Id : 38262, {_}: inverse (multiply (inverse ?265529) ?265529) =?= inverse (multiply (inverse ?265532) ?265532) [265532, 265529] by Super 38026 with 35547 at 1,2 +Id : 38507, {_}: multiply (inverse ?265709) ?265709 =?= multiply (inverse (multiply (inverse ?265708) ?265708)) (multiply (inverse ?265707) ?265707) [265707, 265708, 265709] by Super 35547 with 38262 at 1,3 +Id : 40747, {_}: multiply (inverse ?279111) ?279111 =?= multiply (inverse (multiply (inverse ?279112) ?279112)) (inverse (multiply (inverse ?279110) ?279110)) [279110, 279112, 279111] by Super 40668 with 38507 at 1,2,3 +Id : 41831, {_}: multiply (inverse ?285057) (inverse (multiply (inverse (multiply (inverse ?285056) ?285056)) (inverse (multiply ?285057 (multiply (inverse ?285057) ?285057))))) =?= inverse (multiply (inverse ?285058) ?285058) [285058, 285056, 285057] by Super 4 with 40747 at 1,1,1,2,2 +Id : 33864, {_}: multiply ?240317 (inverse (multiply (inverse (multiply (inverse (multiply ?240317 ?240318)) ?240316)) (inverse (multiply ?240318 (multiply (inverse ?240318) ?240318))))) =?= inverse (multiply (inverse (multiply (inverse ?240315) ?240315)) (inverse (multiply ?240316 (multiply (inverse ?240316) ?240316)))) [240315, 240316, 240318, 240317] by Super 4 with 33632 at 1,1,1,2,2 +Id : 36969, {_}: ?257201 =<= inverse (multiply (inverse (multiply (inverse ?257202) ?257202)) (inverse (multiply ?257201 (multiply (inverse ?257201) ?257201)))) [257202, 257201] by Demod 33864 with 4 at 2 +Id : 37018, {_}: ?257524 =<= inverse (multiply (inverse (multiply (inverse ?257525) ?257525)) (inverse (multiply ?257524 (multiply (inverse ?257523) ?257523)))) [257523, 257525, 257524] by Super 36969 with 35547 at 2,1,2,1,3 +Id : 42424, {_}: multiply (inverse ?285057) ?285057 =?= inverse (multiply (inverse ?285058) ?285058) [285058, 285057] by Demod 41831 with 37018 at 2,2 +Id : 59456, {_}: ?377115 =<= multiply (inverse (inverse (multiply (inverse ?377116) ?377116))) (inverse (multiply (inverse ?377115) (multiply (inverse ?377117) ?377117))) [377117, 377116, 377115] by Super 40715 with 42424 at 1,1,3 +Id : 59618, {_}: multiply (inverse ?378144) ?378141 =<= multiply (inverse (inverse (multiply (inverse ?378143) ?378143))) (inverse (multiply (inverse (multiply ?378142 ?378141)) (multiply ?378142 ?378144))) [378142, 378143, 378141, 378144] by Super 59456 with 155 at 1,2,3 +Id : 293, {_}: multiply ?1577 ?1574 =<= inverse (multiply (inverse (multiply (inverse (multiply (inverse (multiply ?1577 ?1576)) ?1578)) (multiply (inverse (multiply ?1575 ?1576)) (multiply ?1575 ?1574)))) (inverse (multiply ?1578 (multiply (inverse ?1578) ?1578)))) [1575, 1578, 1576, 1574, 1577] by Super 7 with 176 at 2,2 +Id : 49313, {_}: ?325983 =<= multiply (multiply (inverse ?325984) ?325984) (inverse (multiply (inverse ?325983) (multiply (inverse ?325985) ?325985))) [325985, 325984, 325983] by Super 40715 with 42424 at 1,3 +Id : 70497, {_}: multiply (inverse ?433725) ?433726 =<= multiply (multiply (inverse ?433727) ?433727) (inverse (multiply (inverse (multiply ?433728 ?433726)) (multiply ?433728 ?433725))) [433728, 433727, 433726, 433725] by Super 49313 with 155 at 1,2,3 +Id : 104522, {_}: multiply (inverse ?611346) ?611347 =<= multiply (multiply (inverse ?611348) ?611348) (inverse (multiply (multiply (inverse ?611349) ?611349) (multiply (inverse ?611347) ?611346))) [611349, 611348, 611347, 611346] by Super 70497 with 42424 at 1,1,2,3 +Id : 104531, {_}: multiply (inverse ?611424) (multiply (inverse ?611422) ?611422) =?= multiply (multiply (inverse ?611425) ?611425) (inverse (multiply (multiply (inverse ?611426) ?611426) (multiply (inverse (multiply (inverse ?611423) ?611423)) ?611424))) [611423, 611426, 611425, 611422, 611424] by Super 104522 with 38262 at 1,2,1,2,3 +Id : 70690, {_}: multiply (inverse ?435205) ?435206 =<= multiply (multiply (inverse ?435207) ?435207) (inverse (multiply (multiply (inverse ?435204) ?435204) (multiply (inverse ?435206) ?435205))) [435204, 435207, 435206, 435205] by Super 70497 with 42424 at 1,1,2,3 +Id : 105085, {_}: multiply (inverse ?611424) (multiply (inverse ?611422) ?611422) =?= multiply (inverse ?611424) (multiply (inverse ?611423) ?611423) [611423, 611422, 611424] by Demod 104531 with 70690 at 3 +Id : 105821, {_}: multiply ?618521 (multiply (inverse ?618519) ?618519) =?= inverse (multiply (inverse (multiply (inverse (multiply (inverse (multiply ?618521 ?618522)) ?618523)) (multiply (inverse (multiply (inverse ?618518) ?618522)) (multiply (inverse ?618518) (multiply (inverse ?618520) ?618520))))) (inverse (multiply ?618523 (multiply (inverse ?618523) ?618523)))) [618520, 618518, 618523, 618522, 618519, 618521] by Super 293 with 105085 at 2,2,1,1,1,3 +Id : 108557, {_}: multiply ?634262 (multiply (inverse ?634263) ?634263) =?= multiply ?634262 (multiply (inverse ?634264) ?634264) [634264, 634263, 634262] by Demod 105821 with 293 at 3 +Id : 108677, {_}: multiply ?635011 (multiply (inverse ?635012) ?635012) =?= multiply ?635011 (inverse (multiply (inverse ?635010) ?635010)) [635010, 635012, 635011] by Super 108557 with 42424 at 2,3 +Id : 41162, {_}: ?281232 =<= multiply (inverse (multiply (inverse ?281233) ?281233)) (inverse (multiply (inverse ?281232) (multiply (inverse ?281234) ?281234))) [281234, 281233, 281232] by Super 40668 with 35547 at 2,1,2,3 +Id : 41252, {_}: multiply (inverse ?281896) ?281893 =<= multiply (inverse (multiply (inverse ?281895) ?281895)) (inverse (multiply (inverse (multiply ?281894 ?281893)) (multiply ?281894 ?281896))) [281894, 281895, 281893, 281896] by Super 41162 with 155 at 1,2,3 +Id : 104693, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?612594 ?612592)) (multiply ?612594 ?612591)))) (multiply (inverse ?612593) ?612593) =?= multiply (multiply (inverse ?612595) ?612595) (inverse (multiply (multiply (inverse ?612596) ?612596) (multiply (inverse ?612591) ?612592))) [612596, 612595, 612593, 612591, 612592, 612594] by Super 104522 with 41252 at 2,1,2,3 +Id : 105218, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?612594 ?612592)) (multiply ?612594 ?612591)))) (multiply (inverse ?612593) ?612593) =>= multiply (inverse ?612592) ?612591 [612593, 612591, 612592, 612594] by Demod 104693 with 70690 at 3 +Id : 118665, {_}: multiply (inverse ?687026) ?687027 =<= multiply (inverse (inverse (multiply (inverse (multiply ?687025 ?687026)) (multiply ?687025 ?687027)))) (inverse (multiply (inverse ?687029) ?687029)) [687029, 687025, 687027, 687026] by Super 108677 with 105218 at 2 +Id : 118666, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?687031 ?687032)) (multiply ?687031 ?687033)))) (multiply (inverse ?687034) ?687034) =>= multiply (inverse ?687032) ?687033 [687034, 687033, 687032, 687031] by Demod 104693 with 70690 at 3 +Id : 202978, {_}: multiply (inverse (inverse (multiply (multiply (inverse ?1106072) ?1106072) (multiply (inverse ?1106073) ?1106074)))) (multiply (inverse ?1106075) ?1106075) =>= multiply (inverse ?1106073) ?1106074 [1106075, 1106074, 1106073, 1106072] by Super 118666 with 42424 at 1,1,1,1,2 +Id : 203337, {_}: multiply (inverse (inverse (multiply (multiply (inverse ?1108543) ?1108543) ?1108542))) (multiply (inverse ?1108545) ?1108545) =?= multiply (inverse ?1108544) (inverse (multiply (inverse (multiply (inverse (multiply (inverse ?1108544) ?1108541)) ?1108542)) (inverse (multiply ?1108541 (multiply (inverse ?1108541) ?1108541))))) [1108541, 1108544, 1108545, 1108542, 1108543] by Super 202978 with 4 at 2,1,1,1,2 +Id : 203960, {_}: multiply (inverse (inverse (multiply (multiply (inverse ?1108543) ?1108543) ?1108542))) (multiply (inverse ?1108545) ?1108545) =>= ?1108542 [1108545, 1108542, 1108543] by Demod 203337 with 4 at 3 +Id : 204499, {_}: ?1113563 =<= multiply (inverse (inverse (multiply (multiply (inverse ?1113562) ?1113562) ?1113563))) (inverse (multiply (inverse ?1113565) ?1113565)) [1113565, 1113562, 1113563] by Super 108677 with 203960 at 2 +Id : 42548, {_}: ?289376 =<= multiply (multiply (inverse ?289374) ?289374) (inverse (multiply (inverse ?289376) (multiply (inverse ?289377) ?289377))) [289377, 289374, 289376] by Super 40715 with 42424 at 1,3 +Id : 204490, {_}: inverse (multiply (multiply (inverse ?1113513) ?1113513) ?1113514) =?= multiply (multiply (inverse ?1113516) ?1113516) (inverse ?1113514) [1113516, 1113514, 1113513] by Super 42548 with 203960 at 1,2,3 +Id : 209225, {_}: ?1138104 =<= multiply (inverse (multiply (multiply (inverse ?1138103) ?1138103) (inverse ?1138104))) (inverse (multiply (inverse ?1138106) ?1138106)) [1138106, 1138103, 1138104] by Super 204499 with 204490 at 1,1,3 +Id : 232, {_}: multiply (inverse (multiply ?1297 ?1298)) (multiply ?1297 (multiply ?1293 ?1295)) =?= multiply (inverse (multiply (inverse (multiply ?1293 ?1294)) ?1298)) (multiply (inverse (multiply ?1296 ?1294)) (multiply ?1296 ?1295)) [1296, 1294, 1295, 1293, 1298, 1297] by Super 227 with 155 at 2,3 +Id : 210415, {_}: multiply (inverse (multiply (multiply (inverse ?1144394) ?1144394) (inverse ?1144395))) (multiply (inverse ?1144396) ?1144396) =>= ?1144395 [1144396, 1144395, 1144394] by Super 203960 with 204490 at 1,1,2 +Id : 210932, {_}: multiply (inverse (multiply (inverse (multiply (inverse ?1147471) ?1147471)) (inverse ?1147473))) (multiply (inverse ?1147474) ?1147474) =>= ?1147473 [1147474, 1147473, 1147471] by Super 210415 with 42424 at 1,1,1,2 +Id : 224465, {_}: multiply (inverse (multiply ?1210775 (inverse ?1210776))) (multiply ?1210775 (multiply (inverse ?1210777) ?1210777)) =>= ?1210776 [1210777, 1210776, 1210775] by Super 232 with 210932 at 3 +Id : 224626, {_}: multiply (inverse (multiply ?1211759 (inverse ?1211760))) (multiply ?1211759 (inverse (multiply (inverse ?1211758) ?1211758))) =>= ?1211760 [1211758, 1211760, 1211759] by Super 224465 with 42424 at 2,2,2 +Id : 227024, {_}: ?1221988 =<= inverse (multiply (inverse ?1221988) (multiply (inverse (inverse ?1221988)) (inverse ?1221988))) [1221988] by Super 15 with 224626 at 2 +Id : 228909, {_}: ?1228455 =<= multiply (multiply (inverse ?1228456) ?1228456) ?1228455 [1228456, 1228455] by Super 42548 with 227024 at 2,3 +Id : 230161, {_}: ?1138104 =<= multiply (inverse (inverse ?1138104)) (inverse (multiply (inverse ?1138106) ?1138106)) [1138106, 1138104] by Demod 209225 with 228909 at 1,1,3 +Id : 230162, {_}: multiply (inverse ?687026) ?687027 =<= multiply (inverse (multiply ?687025 ?687026)) (multiply ?687025 ?687027) [687025, 687027, 687026] by Demod 118665 with 230161 at 3 +Id : 230229, {_}: multiply (inverse ?378144) ?378141 =<= multiply (inverse (inverse (multiply (inverse ?378143) ?378143))) (inverse (multiply (inverse ?378141) ?378144)) [378143, 378141, 378144] by Demod 59618 with 230162 at 1,2,3 +Id : 70571, {_}: multiply (inverse (inverse (multiply (inverse ?434316) ?434316))) ?434317 =?= multiply (multiply (inverse ?434318) ?434318) (inverse (multiply (inverse (multiply (inverse (multiply (inverse ?434315) ?434315)) ?434317)) (multiply (inverse ?434314) ?434314))) [434314, 434315, 434318, 434317, 434316] by Super 70497 with 40747 at 2,1,2,3 +Id : 70940, {_}: multiply (inverse (inverse (multiply (inverse ?434316) ?434316))) ?434317 =?= multiply (inverse (multiply (inverse ?434315) ?434315)) ?434317 [434315, 434317, 434316] by Demod 70571 with 42548 at 3 +Id : 204504, {_}: multiply (inverse (inverse (multiply (multiply (inverse ?1113587) ?1113587) ?1113588))) (multiply (inverse ?1113589) ?1113589) =>= ?1113588 [1113589, 1113588, 1113587] by Demod 203337 with 4 at 3 +Id : 204894, {_}: multiply (inverse (inverse (multiply (inverse (multiply (inverse ?1115926) ?1115926)) ?1115928))) (multiply (inverse ?1115929) ?1115929) =>= ?1115928 [1115929, 1115928, 1115926] by Super 204504 with 42424 at 1,1,1,1,2 +Id : 222906, {_}: multiply (inverse (multiply ?1203249 (inverse ?1203248))) (multiply ?1203249 (multiply (inverse ?1203247) ?1203247)) =>= ?1203248 [1203247, 1203248, 1203249] by Super 232 with 210932 at 3 +Id : 230230, {_}: multiply (inverse (inverse ?1203248)) (multiply (inverse ?1203247) ?1203247) =>= ?1203248 [1203247, 1203248] by Demod 222906 with 230162 at 2 +Id : 230233, {_}: multiply (inverse (multiply (inverse ?1115926) ?1115926)) ?1115928 =>= ?1115928 [1115928, 1115926] by Demod 204894 with 230230 at 2 +Id : 230259, {_}: multiply (inverse (inverse (multiply (inverse ?434316) ?434316))) ?434317 =>= ?434317 [434317, 434316] by Demod 70940 with 230233 at 3 +Id : 230302, {_}: multiply (inverse ?378144) ?378141 =<= inverse (multiply (inverse ?378141) ?378144) [378141, 378144] by Demod 230229 with 230259 at 3 +Id : 230467, {_}: multiply ?17 (multiply (inverse (inverse (multiply ?18 (multiply (inverse ?18) ?18)))) ?16) =?= inverse (multiply (inverse (multiply (inverse (multiply (inverse (multiply ?17 ?18)) ?15)) ?16)) (inverse (multiply ?15 (multiply (inverse ?15) ?15)))) [15, 16, 18, 17] by Demod 7 with 230302 at 2,2 +Id : 230468, {_}: multiply ?17 (multiply (inverse (inverse (multiply ?18 (multiply (inverse ?18) ?18)))) ?16) =?= multiply (inverse (inverse (multiply ?15 (multiply (inverse ?15) ?15)))) (multiply (inverse (multiply (inverse (multiply ?17 ?18)) ?15)) ?16) [15, 16, 18, 17] by Demod 230467 with 230302 at 3 +Id : 230469, {_}: multiply ?17 (multiply (inverse (inverse (multiply ?18 (multiply (inverse ?18) ?18)))) ?16) =?= multiply (inverse (inverse (multiply ?15 (multiply (inverse ?15) ?15)))) (multiply (multiply (inverse ?15) (multiply ?17 ?18)) ?16) [15, 16, 18, 17] by Demod 230468 with 230302 at 1,2,3 +Id : 43162, {_}: ?293590 =<= inverse (multiply (inverse (inverse (multiply (inverse ?293589) ?293589))) (inverse (multiply ?293590 (multiply (inverse ?293591) ?293591)))) [293591, 293589, 293590] by Super 37018 with 42424 at 1,1,1,3 +Id : 230270, {_}: ?293590 =<= inverse (inverse (multiply ?293590 (multiply (inverse ?293591) ?293591))) [293591, 293590] by Demod 43162 with 230259 at 1,3 +Id : 230643, {_}: multiply ?17 (multiply ?18 ?16) =<= multiply (inverse (inverse (multiply ?15 (multiply (inverse ?15) ?15)))) (multiply (multiply (inverse ?15) (multiply ?17 ?18)) ?16) [15, 16, 18, 17] by Demod 230469 with 230270 at 1,2,2 +Id : 230644, {_}: multiply ?17 (multiply ?18 ?16) =<= multiply ?15 (multiply (multiply (inverse ?15) (multiply ?17 ?18)) ?16) [15, 16, 18, 17] by Demod 230643 with 230270 at 1,3 +Id : 298, {_}: multiply (inverse (multiply ?1613 (inverse (multiply ?1612 (multiply (inverse ?1612) ?1612))))) (multiply ?1613 ?1614) =?= multiply ?1610 (multiply (inverse (multiply (inverse (multiply ?1611 ?1612)) (multiply ?1611 ?1610))) ?1614) [1611, 1610, 1614, 1612, 1613] by Super 155 with 176 at 1,3 +Id : 230219, {_}: multiply (inverse (inverse (multiply ?1612 (multiply (inverse ?1612) ?1612)))) ?1614 =?= multiply ?1610 (multiply (inverse (multiply (inverse (multiply ?1611 ?1612)) (multiply ?1611 ?1610))) ?1614) [1611, 1610, 1614, 1612] by Demod 298 with 230162 at 2 +Id : 230220, {_}: multiply (inverse (inverse (multiply ?1612 (multiply (inverse ?1612) ?1612)))) ?1614 =?= multiply ?1610 (multiply (inverse (multiply (inverse ?1612) ?1610)) ?1614) [1610, 1614, 1612] by Demod 230219 with 230162 at 1,1,2,3 +Id : 230678, {_}: multiply ?1612 ?1614 =<= multiply ?1610 (multiply (inverse (multiply (inverse ?1612) ?1610)) ?1614) [1610, 1614, 1612] by Demod 230220 with 230270 at 1,2 +Id : 230679, {_}: multiply ?1612 ?1614 =<= multiply ?1610 (multiply (multiply (inverse ?1610) ?1612) ?1614) [1610, 1614, 1612] by Demod 230678 with 230302 at 1,2,3 +Id : 230680, {_}: multiply ?17 (multiply ?18 ?16) =?= multiply (multiply ?17 ?18) ?16 [16, 18, 17] by Demod 230644 with 230679 at 3 +Id : 231308, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 230680 at 2 +Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 +% SZS output end CNFRefutation for GRP405-1.p +Order + == is 100 + _ is 99 + a2 is 95 + b2 is 98 + inverse is 97 + multiply is 96 + prove_these_axioms_2 is 94 + single_axiom is 93 +Facts + Id : 4, {_}: + inverse + (multiply + (inverse + (multiply ?2 + (inverse + (multiply (inverse ?3) + (multiply (inverse ?4) + (inverse (multiply (inverse ?4) ?4))))))) + (multiply ?2 ?4)) + =>= + ?3 + [4, 3, 2] by single_axiom ?2 ?3 ?4 +Goal + Id : 2, {_}: + multiply (multiply (inverse b2) b2) a2 =>= a2 + [] by prove_these_axioms_2 +Found proof, 13.415244s +% SZS status Unsatisfiable for GRP422-1.p +% SZS output start CNFRefutation for GRP422-1.p +Id : 5, {_}: inverse (multiply (inverse (multiply ?6 (inverse (multiply (inverse ?7) (multiply (inverse ?8) (inverse (multiply (inverse ?8) ?8))))))) (multiply ?6 ?8)) =>= ?7 [8, 7, 6] by single_axiom ?6 ?7 ?8 +Id : 4, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 +Id : 20, {_}: inverse (multiply (inverse (multiply ?72 ?73)) (multiply ?72 ?74)) =?= multiply (inverse ?74) (inverse (multiply (inverse ?73) (multiply (inverse (inverse (multiply (inverse ?74) ?74))) (inverse (multiply (inverse (inverse (multiply (inverse ?74) ?74))) (inverse (multiply (inverse ?74) ?74))))))) [74, 73, 72] by Super 5 with 4 at 2,1,1,1,2 +Id : 9, {_}: inverse (multiply (inverse (multiply ?29 ?28)) (multiply ?29 ?30)) =?= multiply (inverse ?30) (inverse (multiply (inverse ?28) (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse ?30) ?30))))))) [30, 28, 29] by Super 5 with 4 at 2,1,1,1,2 +Id : 35, {_}: inverse (multiply (inverse (multiply ?156 ?157)) (multiply ?156 ?158)) =?= inverse (multiply (inverse (multiply ?155 ?157)) (multiply ?155 ?158)) [155, 158, 157, 156] by Super 20 with 9 at 3 +Id : 59, {_}: inverse (multiply (inverse (multiply ?228 (inverse (multiply (inverse (multiply (inverse (multiply ?227 ?225)) (multiply ?227 ?226))) (multiply (inverse ?229) (inverse (multiply (inverse ?229) ?229))))))) (multiply ?228 ?229)) =?= multiply (inverse (multiply ?224 ?225)) (multiply ?224 ?226) [224, 229, 226, 225, 227, 228] by Super 4 with 35 at 1,1,2,1,1,1,2 +Id : 156, {_}: multiply (inverse (multiply ?725 ?726)) (multiply ?725 ?727) =?= multiply (inverse (multiply ?728 ?726)) (multiply ?728 ?727) [728, 727, 726, 725] by Demod 59 with 4 at 2 +Id : 163, {_}: multiply (inverse (multiply ?773 (multiply ?770 ?772))) (multiply ?773 ?774) =?= multiply ?771 (multiply (inverse (multiply ?770 (inverse (multiply (inverse ?771) (multiply (inverse ?772) (inverse (multiply (inverse ?772) ?772))))))) ?774) [771, 774, 772, 770, 773] by Super 156 with 4 at 1,3 +Id : 55, {_}: inverse (multiply (inverse (multiply ?201 (inverse (multiply (inverse ?202) (multiply (inverse (multiply ?198 ?199)) (inverse (multiply (inverse (multiply ?200 ?199)) (multiply ?200 ?199)))))))) (multiply ?201 (multiply ?198 ?199))) =>= ?202 [200, 199, 198, 202, 201] by Super 4 with 35 at 2,2,1,2,1,1,1,2 +Id : 3142, {_}: inverse (multiply (inverse (multiply ?22079 (inverse (multiply (inverse (multiply ?22076 (multiply ?22077 ?22078))) (multiply ?22076 (inverse (multiply (inverse (multiply ?22081 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))) (multiply ?22081 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))))))))) (multiply ?22079 (multiply ?22077 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078)))))))) =>= ?22080 [22080, 22081, 22078, 22077, 22076, 22079] by Super 55 with 163 at 1,2,1,1,1,2 +Id : 290, {_}: inverse (multiply (inverse (multiply ?1309 (inverse (multiply (inverse (multiply ?1310 ?1311)) (multiply ?1310 (inverse (multiply (inverse ?1312) ?1312))))))) (multiply ?1309 ?1312)) =>= multiply (inverse ?1312) ?1311 [1312, 1311, 1310, 1309] by Super 4 with 35 at 2,1,1,1,2 +Id : 110, {_}: multiply (inverse (multiply ?227 ?225)) (multiply ?227 ?226) =?= multiply (inverse (multiply ?224 ?225)) (multiply ?224 ?226) [224, 226, 225, 227] by Demod 59 with 4 at 2 +Id : 300, {_}: inverse (multiply (inverse (multiply ?1382 (inverse (multiply (inverse (multiply ?1383 ?1384)) (multiply ?1383 (inverse (multiply (inverse (multiply ?1381 ?1380)) (multiply ?1381 ?1380)))))))) (multiply ?1382 (multiply ?1379 ?1380))) =>= multiply (inverse (multiply ?1379 ?1380)) ?1384 [1379, 1380, 1381, 1384, 1383, 1382] by Super 290 with 110 at 1,2,2,1,2,1,1,1,2 +Id : 3323, {_}: multiply (inverse (multiply ?22077 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))) (multiply ?22077 ?22078) =>= ?22080 [22078, 22080, 22077] by Demod 3142 with 300 at 2 +Id : 3887, {_}: multiply (inverse (multiply ?27309 (multiply ?27310 ?27311))) (multiply ?27309 (multiply ?27310 ?27311)) =?= multiply (inverse ?27312) ?27312 [27312, 27311, 27310, 27309] by Super 163 with 3323 at 2,3 +Id : 3460, {_}: multiply (inverse (multiply ?24443 (multiply ?24440 ?24442))) (multiply ?24443 (multiply ?24440 ?24442)) =?= multiply (inverse ?24441) ?24441 [24441, 24442, 24440, 24443] by Super 163 with 3323 at 2,3 +Id : 3992, {_}: multiply (inverse ?28111) ?28111 =?= multiply (inverse ?28115) ?28115 [28115, 28111] by Super 3887 with 3460 at 2 +Id : 157, {_}: multiply (inverse (multiply ?734 ?735)) (multiply ?734 (multiply ?730 ?732)) =?= multiply (inverse (multiply (inverse (multiply ?730 ?731)) ?735)) (multiply (inverse (multiply ?733 ?731)) (multiply ?733 ?732)) [733, 731, 732, 730, 735, 734] by Super 156 with 110 at 2,3 +Id : 160, {_}: multiply (inverse (multiply ?754 (multiply ?750 ?752))) (multiply ?754 ?755) =?= multiply (inverse (multiply (inverse (multiply ?753 ?751)) (multiply ?753 ?752))) (multiply (inverse (multiply ?750 ?751)) ?755) [751, 753, 755, 752, 750, 754] by Super 156 with 110 at 1,1,3 +Id : 587, {_}: multiply (inverse (multiply ?3234 (multiply ?3232 ?3231))) (multiply ?3234 (multiply ?3232 ?3235)) =?= multiply (inverse (multiply ?3229 (multiply ?3230 ?3231))) (multiply ?3229 (multiply ?3230 ?3235)) [3230, 3229, 3235, 3231, 3232, 3234] by Super 157 with 160 at 3 +Id : 61, {_}: inverse (multiply (inverse (multiply ?240 (inverse (multiply (inverse (multiply ?239 ?238)) (multiply ?239 (inverse (multiply (inverse ?241) ?241))))))) (multiply ?240 ?241)) =>= multiply (inverse ?241) ?238 [241, 238, 239, 240] by Super 4 with 35 at 2,1,1,1,2 +Id : 4188, {_}: multiply (inverse (multiply ?29120 ?29121)) (multiply ?29120 ?29118) =?= multiply (inverse (multiply (inverse ?29118) ?29121)) (multiply (inverse ?29119) ?29119) [29119, 29118, 29121, 29120] by Super 110 with 3992 at 2,3 +Id : 10540, {_}: inverse (multiply (inverse (multiply ?66148 (inverse (multiply (inverse (multiply (inverse (multiply ?66144 ?66145)) (multiply ?66144 ?66146))) (multiply (inverse (multiply (inverse ?66146) ?66145)) (inverse (multiply (inverse ?66149) ?66149))))))) (multiply ?66148 ?66149)) =?= multiply (inverse ?66149) (multiply (inverse ?66147) ?66147) [66147, 66149, 66146, 66145, 66144, 66148] by Super 61 with 4188 at 1,1,1,2,1,1,1,2 +Id : 306, {_}: inverse (multiply (inverse (multiply ?1422 (inverse (multiply (inverse (multiply (inverse (multiply ?1421 ?1419)) (multiply ?1421 ?1420))) (multiply (inverse (multiply ?1418 ?1419)) (inverse (multiply (inverse ?1423) ?1423))))))) (multiply ?1422 ?1423)) =>= multiply (inverse ?1423) (multiply ?1418 ?1420) [1423, 1418, 1420, 1419, 1421, 1422] by Super 290 with 110 at 1,1,1,2,1,1,1,2 +Id : 10986, {_}: multiply (inverse ?66149) (multiply (inverse ?66146) ?66146) =?= multiply (inverse ?66149) (multiply (inverse ?66147) ?66147) [66147, 66146, 66149] by Demod 10540 with 306 at 2 +Id : 18, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?64 ?65)) (multiply ?64 ?66)))) (multiply (inverse ?66) (inverse (multiply (inverse ?66) ?66)))) =>= ?65 [66, 65, 64] by Super 4 with 9 at 1,1,1,2 +Id : 20513, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?122739 ?122740)) (multiply ?122739 ?122741)))) (multiply (inverse ?122741) (inverse (multiply (inverse ?122742) ?122742)))) =>= ?122740 [122742, 122741, 122740, 122739] by Super 18 with 3992 at 1,2,2,1,2 +Id : 23232, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?138627 ?138628)) (multiply ?138627 (inverse (multiply (inverse ?138629) ?138629)))))) (multiply (inverse ?138630) ?138630)) =>= ?138628 [138630, 138629, 138628, 138627] by Super 20513 with 3992 at 2,1,2 +Id : 20104, {_}: multiply (inverse (multiply ?120500 (inverse (multiply (inverse (inverse ?120501)) (multiply (inverse ?120502) (inverse (multiply (inverse ?120503) ?120503))))))) (multiply ?120500 ?120502) =>= ?120501 [120503, 120502, 120501, 120500] by Super 3323 with 3992 at 1,2,2,1,2,1,1,2 +Id : 20225, {_}: multiply (inverse (multiply ?121420 (inverse (multiply (inverse (inverse ?121421)) (multiply (inverse ?121419) ?121419))))) (multiply ?121420 (inverse (multiply (inverse ?121422) ?121422))) =>= ?121421 [121422, 121419, 121421, 121420] by Super 20104 with 3992 at 2,1,2,1,1,2 +Id : 23426, {_}: inverse (multiply (inverse (inverse ?140049)) (multiply (inverse ?140053) ?140053)) =?= inverse (multiply (inverse (inverse ?140049)) (multiply (inverse ?140050) ?140050)) [140050, 140053, 140049] by Super 23232 with 20225 at 1,1,1,1,2 +Id : 4770, {_}: inverse (multiply (inverse (multiply ?32594 ?32595)) (multiply ?32594 ?32595)) =?= inverse (multiply (inverse ?32596) ?32596) [32596, 32595, 32594] by Super 35 with 3992 at 1,3 +Id : 4818, {_}: inverse (multiply (inverse (multiply (inverse ?32938) ?32938)) (multiply (inverse ?32937) ?32937)) =?= inverse (multiply (inverse ?32939) ?32939) [32939, 32937, 32938] by Super 4770 with 3992 at 2,1,2 +Id : 21029, {_}: inverse (multiply (inverse (multiply ?125759 (inverse (multiply (inverse ?125760) (multiply (inverse ?125761) (inverse (multiply (inverse ?125762) ?125762))))))) (multiply ?125759 ?125761)) =>= ?125760 [125762, 125761, 125760, 125759] by Super 4 with 3992 at 1,2,2,1,2,1,1,1,2 +Id : 21146, {_}: inverse (multiply (inverse (multiply ?126647 (inverse (multiply (inverse ?126648) (multiply (inverse ?126646) ?126646))))) (multiply ?126647 (inverse (multiply (inverse ?126649) ?126649)))) =>= ?126648 [126649, 126646, 126648, 126647] by Super 21029 with 3992 at 2,1,2,1,1,1,2 +Id : 26499, {_}: multiply (inverse ?155764) ?155764 =?= inverse (multiply (inverse ?155765) ?155765) [155765, 155764] by Super 4818 with 21146 at 2 +Id : 4144, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?28920 ?28921)) (multiply ?28920 ?28918)))) (multiply (inverse ?28918) (inverse (multiply (inverse ?28919) ?28919)))) =>= ?28921 [28919, 28918, 28921, 28920] by Super 18 with 3992 at 1,2,2,1,2 +Id : 27501, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?161353) ?161353))) (multiply (inverse (inverse (multiply (inverse ?161354) (multiply (inverse ?161355) ?161355)))) (inverse (multiply (inverse ?161356) ?161356)))) =>= ?161354 [161356, 161355, 161354, 161353] by Super 21146 with 26499 at 1,1,1,2 +Id : 5969, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?38946) ?38946))) (multiply (inverse ?38947) (inverse (multiply (inverse ?38947) ?38947)))) =>= ?38947 [38947, 38946] by Super 18 with 3992 at 1,1,1,1,2 +Id : 5995, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?39112) ?39112))) (multiply (inverse ?39113) (inverse (multiply (inverse ?39111) ?39111)))) =>= ?39113 [39111, 39113, 39112] by Super 5969 with 3992 at 1,2,2,1,2 +Id : 27636, {_}: inverse (multiply (inverse ?161354) (multiply (inverse ?161355) ?161355)) =>= ?161354 [161355, 161354] by Demod 27501 with 5995 at 2 +Id : 28099, {_}: inverse (multiply (inverse (multiply ?126647 ?126648)) (multiply ?126647 (inverse (multiply (inverse ?126649) ?126649)))) =>= ?126648 [126649, 126648, 126647] by Demod 21146 with 27636 at 2,1,1,1,2 +Id : 28101, {_}: inverse (multiply (inverse (multiply ?240 ?238)) (multiply ?240 ?241)) =>= multiply (inverse ?241) ?238 [241, 238, 240] by Demod 61 with 28099 at 2,1,1,1,2 +Id : 28103, {_}: inverse (multiply (inverse (multiply (inverse ?28918) ?28921)) (multiply (inverse ?28918) (inverse (multiply (inverse ?28919) ?28919)))) =>= ?28921 [28919, 28921, 28918] by Demod 4144 with 28101 at 1,1,1,2 +Id : 28104, {_}: multiply (inverse (inverse (multiply (inverse ?28919) ?28919))) ?28921 =>= ?28921 [28921, 28919] by Demod 28103 with 28101 at 2 +Id : 28383, {_}: a2 === a2 [] by Demod 27989 with 28104 at 2 +Id : 27989, {_}: multiply (inverse (inverse (multiply (inverse ?163408) ?163408))) a2 =>= a2 [163408] by Super 27714 with 26499 at 1,1,2 +Id : 27714, {_}: multiply (inverse (multiply (inverse ?162124) ?162124)) a2 =>= a2 [162124] by Super 24198 with 26499 at 1,2 +Id : 24198, {_}: multiply (multiply (inverse (multiply (inverse (inverse ?143636)) (multiply (inverse ?143638) ?143638))) (multiply (inverse (inverse ?143636)) (multiply (inverse ?143639) ?143639))) a2 =>= a2 [143639, 143638, 143636] by Super 11949 with 23426 at 1,1,2 +Id : 11949, {_}: multiply (multiply (inverse (multiply (inverse ?73741) (multiply (inverse ?73744) ?73744))) (multiply (inverse ?73741) (multiply (inverse ?73743) ?73743))) a2 =>= a2 [73743, 73744, 73741] by Super 5806 with 10986 at 2,1,2 +Id : 5806, {_}: multiply (multiply (inverse (multiply ?38037 (multiply (inverse ?38038) ?38038))) (multiply ?38037 (multiply (inverse ?38036) ?38036))) a2 =>= a2 [38036, 38038, 38037] by Super 4426 with 3992 at 2,2,1,2 +Id : 4426, {_}: multiply (multiply (inverse (multiply ?30432 (multiply ?30433 ?30431))) (multiply ?30432 (multiply ?30433 ?30431))) a2 =>= a2 [30431, 30433, 30432] by Super 4403 with 587 at 1,2 +Id : 4403, {_}: multiply (multiply (inverse ?30303) ?30303) a2 =>= a2 [30303] by Super 2 with 3992 at 1,2 +Id : 2, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 +% SZS output end CNFRefutation for GRP422-1.p +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + inverse is 93 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 92 +Facts + Id : 4, {_}: + inverse + (multiply + (inverse + (multiply ?2 + (inverse + (multiply (inverse ?3) + (multiply (inverse ?4) + (inverse (multiply (inverse ?4) ?4))))))) + (multiply ?2 ?4)) + =>= + ?3 + [4, 3, 2] by single_axiom ?2 ?3 ?4 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 11.150294s +% SZS status Unsatisfiable for GRP423-1.p +% SZS output start CNFRefutation for GRP423-1.p +Id : 5, {_}: inverse (multiply (inverse (multiply ?6 (inverse (multiply (inverse ?7) (multiply (inverse ?8) (inverse (multiply (inverse ?8) ?8))))))) (multiply ?6 ?8)) =>= ?7 [8, 7, 6] by single_axiom ?6 ?7 ?8 +Id : 4, {_}: inverse (multiply (inverse (multiply ?2 (inverse (multiply (inverse ?3) (multiply (inverse ?4) (inverse (multiply (inverse ?4) ?4))))))) (multiply ?2 ?4)) =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 +Id : 20, {_}: inverse (multiply (inverse (multiply ?72 ?73)) (multiply ?72 ?74)) =?= multiply (inverse ?74) (inverse (multiply (inverse ?73) (multiply (inverse (inverse (multiply (inverse ?74) ?74))) (inverse (multiply (inverse (inverse (multiply (inverse ?74) ?74))) (inverse (multiply (inverse ?74) ?74))))))) [74, 73, 72] by Super 5 with 4 at 2,1,1,1,2 +Id : 9, {_}: inverse (multiply (inverse (multiply ?29 ?28)) (multiply ?29 ?30)) =?= multiply (inverse ?30) (inverse (multiply (inverse ?28) (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse (inverse (multiply (inverse ?30) ?30))) (inverse (multiply (inverse ?30) ?30))))))) [30, 28, 29] by Super 5 with 4 at 2,1,1,1,2 +Id : 35, {_}: inverse (multiply (inverse (multiply ?156 ?157)) (multiply ?156 ?158)) =?= inverse (multiply (inverse (multiply ?155 ?157)) (multiply ?155 ?158)) [155, 158, 157, 156] by Super 20 with 9 at 3 +Id : 59, {_}: inverse (multiply (inverse (multiply ?228 (inverse (multiply (inverse (multiply (inverse (multiply ?227 ?225)) (multiply ?227 ?226))) (multiply (inverse ?229) (inverse (multiply (inverse ?229) ?229))))))) (multiply ?228 ?229)) =?= multiply (inverse (multiply ?224 ?225)) (multiply ?224 ?226) [224, 229, 226, 225, 227, 228] by Super 4 with 35 at 1,1,2,1,1,1,2 +Id : 156, {_}: multiply (inverse (multiply ?725 ?726)) (multiply ?725 ?727) =?= multiply (inverse (multiply ?728 ?726)) (multiply ?728 ?727) [728, 727, 726, 725] by Demod 59 with 4 at 2 +Id : 163, {_}: multiply (inverse (multiply ?773 (multiply ?770 ?772))) (multiply ?773 ?774) =?= multiply ?771 (multiply (inverse (multiply ?770 (inverse (multiply (inverse ?771) (multiply (inverse ?772) (inverse (multiply (inverse ?772) ?772))))))) ?774) [771, 774, 772, 770, 773] by Super 156 with 4 at 1,3 +Id : 110, {_}: multiply (inverse (multiply ?227 ?225)) (multiply ?227 ?226) =?= multiply (inverse (multiply ?224 ?225)) (multiply ?224 ?226) [224, 226, 225, 227] by Demod 59 with 4 at 2 +Id : 55, {_}: inverse (multiply (inverse (multiply ?201 (inverse (multiply (inverse ?202) (multiply (inverse (multiply ?198 ?199)) (inverse (multiply (inverse (multiply ?200 ?199)) (multiply ?200 ?199)))))))) (multiply ?201 (multiply ?198 ?199))) =>= ?202 [200, 199, 198, 202, 201] by Super 4 with 35 at 2,2,1,2,1,1,1,2 +Id : 3142, {_}: inverse (multiply (inverse (multiply ?22079 (inverse (multiply (inverse (multiply ?22076 (multiply ?22077 ?22078))) (multiply ?22076 (inverse (multiply (inverse (multiply ?22081 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))) (multiply ?22081 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))))))))) (multiply ?22079 (multiply ?22077 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078)))))))) =>= ?22080 [22080, 22081, 22078, 22077, 22076, 22079] by Super 55 with 163 at 1,2,1,1,1,2 +Id : 290, {_}: inverse (multiply (inverse (multiply ?1309 (inverse (multiply (inverse (multiply ?1310 ?1311)) (multiply ?1310 (inverse (multiply (inverse ?1312) ?1312))))))) (multiply ?1309 ?1312)) =>= multiply (inverse ?1312) ?1311 [1312, 1311, 1310, 1309] by Super 4 with 35 at 2,1,1,1,2 +Id : 300, {_}: inverse (multiply (inverse (multiply ?1382 (inverse (multiply (inverse (multiply ?1383 ?1384)) (multiply ?1383 (inverse (multiply (inverse (multiply ?1381 ?1380)) (multiply ?1381 ?1380)))))))) (multiply ?1382 (multiply ?1379 ?1380))) =>= multiply (inverse (multiply ?1379 ?1380)) ?1384 [1379, 1380, 1381, 1384, 1383, 1382] by Super 290 with 110 at 1,2,2,1,2,1,1,1,2 +Id : 3323, {_}: multiply (inverse (multiply ?22077 (inverse (multiply (inverse (inverse ?22080)) (multiply (inverse ?22078) (inverse (multiply (inverse ?22078) ?22078))))))) (multiply ?22077 ?22078) =>= ?22080 [22078, 22080, 22077] by Demod 3142 with 300 at 2 +Id : 3887, {_}: multiply (inverse (multiply ?27309 (multiply ?27310 ?27311))) (multiply ?27309 (multiply ?27310 ?27311)) =?= multiply (inverse ?27312) ?27312 [27312, 27311, 27310, 27309] by Super 163 with 3323 at 2,3 +Id : 3460, {_}: multiply (inverse (multiply ?24443 (multiply ?24440 ?24442))) (multiply ?24443 (multiply ?24440 ?24442)) =?= multiply (inverse ?24441) ?24441 [24441, 24442, 24440, 24443] by Super 163 with 3323 at 2,3 +Id : 3992, {_}: multiply (inverse ?28111) ?28111 =?= multiply (inverse ?28115) ?28115 [28115, 28111] by Super 3887 with 3460 at 2 +Id : 4190, {_}: multiply (inverse (multiply ?29130 ?29128)) (multiply ?29130 ?29131) =?= multiply (inverse (multiply (inverse ?29129) ?29129)) (multiply (inverse ?29128) ?29131) [29129, 29131, 29128, 29130] by Super 110 with 3992 at 1,1,3 +Id : 18, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?64 ?65)) (multiply ?64 ?66)))) (multiply (inverse ?66) (inverse (multiply (inverse ?66) ?66)))) =>= ?65 [66, 65, 64] by Super 4 with 9 at 1,1,1,2 +Id : 4144, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?28920 ?28921)) (multiply ?28920 ?28918)))) (multiply (inverse ?28918) (inverse (multiply (inverse ?28919) ?28919)))) =>= ?28921 [28919, 28918, 28921, 28920] by Super 18 with 3992 at 1,2,2,1,2 +Id : 61, {_}: inverse (multiply (inverse (multiply ?240 (inverse (multiply (inverse (multiply ?239 ?238)) (multiply ?239 (inverse (multiply (inverse ?241) ?241))))))) (multiply ?240 ?241)) =>= multiply (inverse ?241) ?238 [241, 238, 239, 240] by Super 4 with 35 at 2,1,1,1,2 +Id : 14797, {_}: inverse (multiply (inverse (multiply ?88631 (inverse (multiply (inverse ?88632) (multiply (inverse ?88633) (inverse (multiply (inverse ?88634) ?88634))))))) (multiply ?88631 ?88633)) =>= ?88632 [88634, 88633, 88632, 88631] by Super 4 with 3992 at 1,2,2,1,2,1,1,1,2 +Id : 14914, {_}: inverse (multiply (inverse (multiply ?89519 (inverse (multiply (inverse ?89520) (multiply (inverse ?89518) ?89518))))) (multiply ?89519 (inverse (multiply (inverse ?89521) ?89521)))) =>= ?89520 [89521, 89518, 89520, 89519] by Super 14797 with 3992 at 2,1,2,1,1,1,2 +Id : 4605, {_}: inverse (multiply (inverse (multiply ?31655 ?31656)) (multiply ?31655 ?31656)) =?= inverse (multiply (inverse ?31657) ?31657) [31657, 31656, 31655] by Super 35 with 3992 at 1,3 +Id : 4653, {_}: inverse (multiply (inverse (multiply (inverse ?31999) ?31999)) (multiply (inverse ?31998) ?31998)) =?= inverse (multiply (inverse ?32000) ?32000) [32000, 31998, 31999] by Super 4605 with 3992 at 2,1,2 +Id : 18958, {_}: multiply (inverse ?111309) ?111309 =?= inverse (multiply (inverse ?111310) ?111310) [111310, 111309] by Super 4653 with 14914 at 2 +Id : 19832, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?116164) ?116164))) (multiply (inverse (inverse (multiply (inverse ?116165) (multiply (inverse ?116166) ?116166)))) (inverse (multiply (inverse ?116167) ?116167)))) =>= ?116165 [116167, 116166, 116165, 116164] by Super 14914 with 18958 at 1,1,1,2 +Id : 5672, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?37316) ?37316))) (multiply (inverse ?37317) (inverse (multiply (inverse ?37317) ?37317)))) =>= ?37317 [37317, 37316] by Super 18 with 3992 at 1,1,1,1,2 +Id : 5698, {_}: inverse (multiply (inverse (inverse (multiply (inverse ?37482) ?37482))) (multiply (inverse ?37483) (inverse (multiply (inverse ?37481) ?37481)))) =>= ?37483 [37481, 37483, 37482] by Super 5672 with 3992 at 1,2,2,1,2 +Id : 19967, {_}: inverse (multiply (inverse ?116165) (multiply (inverse ?116166) ?116166)) =>= ?116165 [116166, 116165] by Demod 19832 with 5698 at 2 +Id : 20043, {_}: inverse (multiply (inverse (multiply ?89519 ?89520)) (multiply ?89519 (inverse (multiply (inverse ?89521) ?89521)))) =>= ?89520 [89521, 89520, 89519] by Demod 14914 with 19967 at 2,1,1,1,2 +Id : 20045, {_}: inverse (multiply (inverse (multiply ?240 ?238)) (multiply ?240 ?241)) =>= multiply (inverse ?241) ?238 [241, 238, 240] by Demod 61 with 20043 at 2,1,1,1,2 +Id : 20047, {_}: inverse (multiply (inverse (multiply (inverse ?28918) ?28921)) (multiply (inverse ?28918) (inverse (multiply (inverse ?28919) ?28919)))) =>= ?28921 [28919, 28921, 28918] by Demod 4144 with 20045 at 1,1,1,2 +Id : 20048, {_}: multiply (inverse (inverse (multiply (inverse ?28919) ?28919))) ?28921 =>= ?28921 [28921, 28919] by Demod 20047 with 20045 at 2 +Id : 20166, {_}: multiply (inverse (multiply (inverse ?117322) ?117322)) ?117323 =>= ?117323 [117323, 117322] by Super 20048 with 19967 at 1,1,2 +Id : 20329, {_}: multiply (inverse (multiply ?29130 ?29128)) (multiply ?29130 ?29131) =>= multiply (inverse ?29128) ?29131 [29131, 29128, 29130] by Demod 4190 with 20166 at 3 +Id : 20341, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (inverse (multiply (inverse ?771) (multiply (inverse ?772) (inverse (multiply (inverse ?772) ?772))))))) ?774) [771, 774, 772, 770] by Demod 163 with 20329 at 2 +Id : 20330, {_}: inverse (multiply (inverse ?238) ?241) =>= multiply (inverse ?241) ?238 [241, 238] by Demod 20045 with 20329 at 1,2 +Id : 20355, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (multiply (inverse (multiply (inverse ?772) (inverse (multiply (inverse ?772) ?772)))) ?771))) ?774) [771, 774, 772, 770] by Demod 20341 with 20330 at 2,1,1,2,3 +Id : 20356, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (multiply (multiply (inverse (inverse (multiply (inverse ?772) ?772))) ?772) ?771))) ?774) [771, 774, 772, 770] by Demod 20355 with 20330 at 1,2,1,1,2,3 +Id : 20357, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (multiply (multiply (inverse (multiply (inverse ?772) ?772)) ?772) ?771))) ?774) [771, 774, 772, 770] by Demod 20356 with 20330 at 1,1,1,2,1,1,2,3 +Id : 20358, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (multiply (multiply (multiply (inverse ?772) ?772) ?772) ?771))) ?774) [771, 774, 772, 770] by Demod 20357 with 20330 at 1,1,2,1,1,2,3 +Id : 20377, {_}: multiply (multiply (inverse ?117322) ?117322) ?117323 =>= ?117323 [117323, 117322] by Demod 20166 with 20330 at 1,2 +Id : 20385, {_}: multiply (inverse (multiply ?770 ?772)) ?774 =<= multiply ?771 (multiply (inverse (multiply ?770 (multiply ?772 ?771))) ?774) [771, 774, 772, 770] by Demod 20358 with 20377 at 1,2,1,1,2,3 +Id : 20405, {_}: multiply (inverse (multiply (multiply (inverse ?117787) ?117787) ?117788)) ?117789 =?= multiply ?117790 (multiply (inverse (multiply ?117788 ?117790)) ?117789) [117790, 117789, 117788, 117787] by Super 20385 with 20377 at 1,1,2,3 +Id : 20523, {_}: multiply (inverse ?118011) ?118012 =<= multiply ?118013 (multiply (inverse (multiply ?118011 ?118013)) ?118012) [118013, 118012, 118011] by Demod 20405 with 20377 at 1,1,2 +Id : 20527, {_}: multiply (inverse (inverse (multiply ?118030 ?118031))) ?118033 =<= multiply (multiply ?118030 ?118032) (multiply (inverse (multiply (inverse ?118031) ?118032)) ?118033) [118032, 118033, 118031, 118030] by Super 20523 with 20329 at 1,1,2,3 +Id : 20587, {_}: multiply (inverse (inverse (multiply ?118030 ?118031))) ?118033 =<= multiply (multiply ?118030 ?118032) (multiply (multiply (inverse ?118032) ?118031) ?118033) [118032, 118033, 118031, 118030] by Demod 20527 with 20330 at 1,2,3 +Id : 3464, {_}: multiply (inverse (multiply ?24465 (inverse (multiply (inverse (inverse ?24466)) (multiply (inverse ?24467) (inverse (multiply (inverse ?24467) ?24467))))))) (multiply ?24465 ?24467) =>= ?24466 [24467, 24466, 24465] by Demod 3142 with 300 at 2 +Id : 12890, {_}: multiply (inverse (inverse (multiply (inverse (multiply ?78617 (inverse ?78618))) (multiply ?78617 ?78619)))) (multiply (inverse ?78619) (inverse (multiply (inverse ?78619) ?78619))) =>= ?78618 [78619, 78618, 78617] by Super 3464 with 9 at 1,1,2 +Id : 13250, {_}: multiply (inverse (inverse (multiply (inverse ?80376) ?80376))) (multiply (inverse (inverse ?80377)) (inverse (multiply (inverse (inverse ?80377)) (inverse ?80377)))) =>= ?80377 [80377, 80376] by Super 12890 with 3992 at 1,1,1,2 +Id : 13299, {_}: multiply (inverse (inverse (multiply (inverse ?80682) ?80682))) (multiply (inverse (inverse ?80683)) (inverse (multiply (inverse ?80681) ?80681))) =>= ?80683 [80681, 80683, 80682] by Super 13250 with 3992 at 1,2,2,2 +Id : 209, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply ?973 ?974)) (multiply ?973 ?975)))) (multiply (inverse ?975) (inverse (multiply (inverse ?975) ?975)))) =>= ?974 [975, 974, 973] by Super 4 with 9 at 1,1,1,2 +Id : 228, {_}: inverse (multiply (inverse (inverse (multiply (inverse (multiply (inverse (multiply ?1090 ?1088)) (multiply ?1090 ?1089))) (multiply (inverse (multiply ?1087 ?1088)) ?1091)))) (multiply (inverse ?1091) (inverse (multiply (inverse ?1091) ?1091)))) =>= multiply ?1087 ?1089 [1091, 1087, 1089, 1088, 1090] by Super 209 with 110 at 1,1,1,1,1,1,2 +Id : 20052, {_}: inverse (multiply (inverse (inverse (multiply (multiply (inverse ?1089) ?1088) (multiply (inverse (multiply ?1087 ?1088)) ?1091)))) (multiply (inverse ?1091) (inverse (multiply (inverse ?1091) ?1091)))) =>= multiply ?1087 ?1089 [1091, 1087, 1088, 1089] by Demod 228 with 20045 at 1,1,1,1,1,2 +Id : 87, {_}: inverse (multiply (inverse (multiply ?396 ?397)) (multiply ?396 ?398)) =?= inverse (multiply (inverse (multiply ?399 ?397)) (multiply ?399 ?398)) [399, 398, 397, 396] by Super 20 with 9 at 3 +Id : 92, {_}: inverse (multiply (inverse (multiply ?429 (multiply ?425 ?427))) (multiply ?429 ?430)) =?= inverse (multiply (inverse (multiply (inverse (multiply ?428 ?426)) (multiply ?428 ?427))) (multiply (inverse (multiply ?425 ?426)) ?430)) [426, 428, 430, 427, 425, 429] by Super 87 with 35 at 1,1,3 +Id : 20057, {_}: multiply (inverse ?430) (multiply ?425 ?427) =<= inverse (multiply (inverse (multiply (inverse (multiply ?428 ?426)) (multiply ?428 ?427))) (multiply (inverse (multiply ?425 ?426)) ?430)) [426, 428, 427, 425, 430] by Demod 92 with 20045 at 2 +Id : 20058, {_}: multiply (inverse ?430) (multiply ?425 ?427) =<= inverse (multiply (multiply (inverse ?427) ?426) (multiply (inverse (multiply ?425 ?426)) ?430)) [426, 427, 425, 430] by Demod 20057 with 20045 at 1,1,3 +Id : 20064, {_}: inverse (multiply (inverse (multiply (inverse ?1091) (multiply ?1087 ?1089))) (multiply (inverse ?1091) (inverse (multiply (inverse ?1091) ?1091)))) =>= multiply ?1087 ?1089 [1089, 1087, 1091] by Demod 20052 with 20058 at 1,1,1,2 +Id : 20065, {_}: multiply (inverse (inverse (multiply (inverse ?1091) ?1091))) (multiply ?1087 ?1089) =>= multiply ?1087 ?1089 [1089, 1087, 1091] by Demod 20064 with 20045 at 2 +Id : 20068, {_}: multiply (inverse (inverse ?80683)) (inverse (multiply (inverse ?80681) ?80681)) =>= ?80683 [80681, 80683] by Demod 13299 with 20065 at 2 +Id : 20372, {_}: multiply (inverse (inverse ?80683)) (multiply (inverse ?80681) ?80681) =>= ?80683 [80681, 80683] by Demod 20068 with 20330 at 2,2 +Id : 20427, {_}: multiply (inverse ?117788) ?117789 =<= multiply ?117790 (multiply (inverse (multiply ?117788 ?117790)) ?117789) [117790, 117789, 117788] by Demod 20405 with 20377 at 1,1,2 +Id : 20499, {_}: multiply (inverse ?117898) (multiply ?117898 (inverse (inverse ?117899))) =>= ?117899 [117899, 117898] by Super 20372 with 20427 at 2 +Id : 4166, {_}: inverse (multiply (inverse (multiply ?29022 (inverse (multiply (inverse ?29023) (multiply (inverse ?29020) (inverse (multiply (inverse ?29021) ?29021))))))) (multiply ?29022 ?29020)) =>= ?29023 [29021, 29020, 29023, 29022] by Super 4 with 3992 at 1,2,2,1,2,1,1,1,2 +Id : 20061, {_}: multiply (inverse ?29020) (inverse (multiply (inverse ?29023) (multiply (inverse ?29020) (inverse (multiply (inverse ?29021) ?29021))))) =>= ?29023 [29021, 29023, 29020] by Demod 4166 with 20045 at 2 +Id : 20368, {_}: multiply (inverse ?29020) (multiply (inverse (multiply (inverse ?29020) (inverse (multiply (inverse ?29021) ?29021)))) ?29023) =>= ?29023 [29023, 29021, 29020] by Demod 20061 with 20330 at 2,2 +Id : 20369, {_}: multiply (inverse ?29020) (multiply (multiply (inverse (inverse (multiply (inverse ?29021) ?29021))) ?29020) ?29023) =>= ?29023 [29023, 29021, 29020] by Demod 20368 with 20330 at 1,2,2 +Id : 20370, {_}: multiply (inverse ?29020) (multiply (multiply (inverse (multiply (inverse ?29021) ?29021)) ?29020) ?29023) =>= ?29023 [29023, 29021, 29020] by Demod 20369 with 20330 at 1,1,1,2,2 +Id : 20371, {_}: multiply (inverse ?29020) (multiply (multiply (multiply (inverse ?29021) ?29021) ?29020) ?29023) =>= ?29023 [29023, 29021, 29020] by Demod 20370 with 20330 at 1,1,2,2 +Id : 20379, {_}: multiply (inverse ?29020) (multiply ?29020 ?29023) =>= ?29023 [29023, 29020] by Demod 20371 with 20377 at 1,2,2 +Id : 20582, {_}: inverse (inverse ?117899) =>= ?117899 [117899] by Demod 20499 with 20379 at 2 +Id : 32543, {_}: multiply (multiply ?118030 ?118031) ?118033 =<= multiply (multiply ?118030 ?118032) (multiply (multiply (inverse ?118032) ?118031) ?118033) [118032, 118033, 118031, 118030] by Demod 20587 with 20582 at 1,2 +Id : 20530, {_}: multiply (inverse (multiply (inverse ?118044) ?118044)) ?118045 =?= multiply ?118046 (multiply (inverse ?118046) ?118045) [118046, 118045, 118044] by Super 20523 with 20377 at 1,1,2,3 +Id : 20593, {_}: multiply (multiply (inverse ?118044) ?118044) ?118045 =?= multiply ?118046 (multiply (inverse ?118046) ?118045) [118046, 118045, 118044] by Demod 20530 with 20330 at 1,2 +Id : 20594, {_}: ?118045 =<= multiply ?118046 (multiply (inverse ?118046) ?118045) [118046, 118045] by Demod 20593 with 20377 at 2 +Id : 20765, {_}: multiply (inverse ?118471) (multiply ?118472 ?118473) =<= multiply (inverse (multiply (inverse ?118472) ?118471)) ?118473 [118473, 118472, 118471] by Super 20329 with 20594 at 1,1,2 +Id : 20804, {_}: multiply (inverse ?118471) (multiply ?118472 ?118473) =<= multiply (multiply (inverse ?118471) ?118472) ?118473 [118473, 118472, 118471] by Demod 20765 with 20330 at 1,3 +Id : 32544, {_}: multiply (multiply ?118030 ?118031) ?118033 =<= multiply (multiply ?118030 ?118032) (multiply (inverse ?118032) (multiply ?118031 ?118033)) [118032, 118033, 118031, 118030] by Demod 32543 with 20804 at 2,3 +Id : 20531, {_}: multiply (inverse (inverse ?118048)) ?118050 =<= multiply (multiply ?118048 ?118049) (multiply (inverse ?118049) ?118050) [118049, 118050, 118048] by Super 20523 with 20379 at 1,1,2,3 +Id : 22088, {_}: multiply ?118048 ?118050 =<= multiply (multiply ?118048 ?118049) (multiply (inverse ?118049) ?118050) [118049, 118050, 118048] by Demod 20531 with 20582 at 1,2 +Id : 32545, {_}: multiply (multiply ?118030 ?118031) ?118033 =?= multiply ?118030 (multiply ?118031 ?118033) [118033, 118031, 118030] by Demod 32544 with 22088 at 3 +Id : 33073, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 32545 at 2 +Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 +% SZS output end CNFRefutation for GRP423-1.p +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + inverse is 93 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 92 +Facts + Id : 4, {_}: + inverse + (multiply ?2 + (multiply ?3 + (multiply (multiply ?4 (inverse ?4)) + (inverse (multiply ?5 (multiply ?2 ?3)))))) + =>= + ?5 + [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 19.948413s +% SZS status Unsatisfiable for GRP444-1.p +% SZS output start CNFRefutation for GRP444-1.p +Id : 5, {_}: inverse (multiply ?7 (multiply ?8 (multiply (multiply ?9 (inverse ?9)) (inverse (multiply ?10 (multiply ?7 ?8)))))) =>= ?10 [10, 9, 8, 7] by single_axiom ?7 ?8 ?9 ?10 +Id : 4, {_}: inverse (multiply ?2 (multiply ?3 (multiply (multiply ?4 (inverse ?4)) (inverse (multiply ?5 (multiply ?2 ?3)))))) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 +Id : 6, {_}: inverse (multiply ?14 (multiply (multiply (multiply ?12 (inverse ?12)) (inverse (multiply ?13 (multiply ?16 ?14)))) (multiply (multiply ?15 (inverse ?15)) ?13))) =>= ?16 [15, 16, 13, 12, 14] by Super 5 with 4 at 2,2,2,1,2 +Id : 9, {_}: inverse (multiply (multiply (multiply ?32 (inverse ?32)) (inverse (multiply ?33 (multiply ?34 ?31)))) (multiply (multiply (multiply ?35 (inverse ?35)) ?33) (multiply (multiply ?36 (inverse ?36)) ?34))) =>= ?31 [36, 35, 31, 34, 33, 32] by Super 4 with 6 at 2,2,2,1,2 +Id : 11, {_}: inverse (multiply ?47 (multiply (multiply (multiply ?48 (inverse ?48)) (inverse (multiply ?49 (multiply ?50 ?47)))) (multiply (multiply ?51 (inverse ?51)) ?49))) =>= ?50 [51, 50, 49, 48, 47] by Super 5 with 4 at 2,2,2,1,2 +Id : 15, {_}: inverse (multiply (multiply (multiply ?82 (inverse ?82)) ?80) (multiply (multiply (multiply ?83 (inverse ?83)) ?81) (multiply (multiply ?85 (inverse ?85)) ?84))) =?= multiply (multiply ?79 (inverse ?79)) (inverse (multiply ?80 (multiply ?81 ?84))) [79, 84, 85, 81, 83, 80, 82] by Super 11 with 6 at 2,1,2,1,2 +Id : 70, {_}: multiply (multiply ?656 (inverse ?656)) (inverse (multiply (inverse (multiply ?653 (multiply ?655 ?657))) (multiply ?653 ?655))) =>= ?657 [657, 655, 653, 656] by Super 9 with 15 at 2 +Id : 7, {_}: inverse (multiply ?22 (multiply ?23 (multiply (multiply (multiply ?18 (multiply ?19 (multiply (multiply ?20 (inverse ?20)) (inverse (multiply ?21 (multiply ?18 ?19)))))) ?21) (inverse (multiply ?24 (multiply ?22 ?23)))))) =>= ?24 [24, 21, 20, 19, 18, 23, 22] by Super 5 with 4 at 2,1,2,2,1,2 +Id : 141, {_}: multiply (multiply ?1411 (inverse ?1411)) (inverse (multiply (inverse (multiply ?1412 (multiply ?1413 ?1414))) (multiply ?1412 ?1413))) =>= ?1414 [1414, 1413, 1412, 1411] by Super 9 with 15 at 2 +Id : 147, {_}: multiply (multiply ?1460 (inverse ?1460)) (inverse (multiply ?1458 (multiply ?1461 (multiply (multiply ?1456 (inverse ?1456)) (inverse (multiply ?1457 (multiply ?1458 ?1461))))))) =?= multiply (multiply ?1459 (inverse ?1459)) ?1457 [1459, 1457, 1456, 1461, 1458, 1460] by Super 141 with 6 at 1,1,2,2 +Id : 163, {_}: multiply (multiply ?1460 (inverse ?1460)) ?1457 =?= multiply (multiply ?1459 (inverse ?1459)) ?1457 [1459, 1457, 1460] by Demod 147 with 4 at 2,2 +Id : 237, {_}: inverse (multiply ?2095 (multiply ?2096 (multiply (multiply (multiply ?2097 (multiply ?2098 (multiply (multiply ?2099 (inverse ?2099)) (inverse (multiply ?2100 (multiply ?2097 ?2098)))))) ?2100) (inverse (multiply (multiply ?2094 (inverse ?2094)) (multiply ?2095 ?2096)))))) =?= multiply ?2093 (inverse ?2093) [2093, 2094, 2100, 2099, 2098, 2097, 2096, 2095] by Super 7 with 163 at 1,2,2,2,1,2 +Id : 290, {_}: multiply ?2094 (inverse ?2094) =?= multiply ?2093 (inverse ?2093) [2093, 2094] by Demod 237 with 7 at 2 +Id : 326, {_}: multiply (multiply ?2479 (inverse ?2479)) (inverse (multiply (inverse (multiply ?2477 (multiply (inverse ?2477) ?2480))) (multiply ?2478 (inverse ?2478)))) =>= ?2480 [2478, 2480, 2477, 2479] by Super 70 with 290 at 2,1,2,2 +Id : 328, {_}: multiply (multiply ?2489 (inverse ?2489)) (inverse (multiply (inverse (multiply ?2490 (multiply ?2488 (inverse ?2488)))) (multiply ?2490 ?2487))) =>= inverse ?2487 [2487, 2488, 2490, 2489] by Super 70 with 290 at 2,1,1,1,2,2 +Id : 604, {_}: inverse (multiply ?3845 (multiply ?3847 (inverse ?3847))) =?= inverse (multiply ?3845 (multiply ?3846 (inverse ?3846))) [3846, 3847, 3845] by Super 4 with 328 at 2,2,1,2 +Id : 792, {_}: inverse (multiply ?4988 (multiply (inverse ?4988) ?4987)) =?= inverse (multiply ?4986 (multiply (inverse ?4986) ?4987)) [4986, 4987, 4988] by Super 4 with 326 at 2,2,1,2 +Id : 870, {_}: inverse (multiply ?5461 (multiply ?5463 (inverse ?5463))) =?= inverse (multiply ?5462 (multiply (inverse ?5462) (inverse (inverse ?5461)))) [5462, 5463, 5461] by Super 604 with 792 at 3 +Id : 2786, {_}: inverse (multiply (inverse ?15453) (multiply ?15454 (multiply (multiply ?15455 (inverse ?15455)) (inverse (multiply ?15456 (multiply (inverse ?15456) ?15454)))))) =>= ?15453 [15456, 15455, 15454, 15453] by Super 6 with 326 at 1,2,1,2 +Id : 2859, {_}: inverse (multiply (inverse ?15956) (multiply (inverse (inverse (inverse (multiply ?15954 (multiply (inverse ?15954) ?15955))))) ?15955)) =>= ?15956 [15955, 15954, 15956] by Super 2786 with 326 at 2,2,1,2 +Id : 3662, {_}: inverse (multiply (inverse (inverse (inverse (multiply ?19641 (multiply (inverse ?19641) ?19642))))) (multiply ?19642 (multiply (multiply ?19643 (inverse ?19643)) ?19640))) =>= inverse ?19640 [19640, 19643, 19642, 19641] by Super 4 with 2859 at 2,2,2,1,2 +Id : 13794, {_}: inverse (inverse (multiply ?72764 (multiply (inverse (inverse (inverse (multiply ?72761 (multiply (inverse ?72761) ?72762))))) ?72762))) =>= ?72764 [72762, 72761, 72764] by Super 4 with 3662 at 2 +Id : 3676, {_}: multiply (multiply ?19736 (inverse ?19736)) (multiply (inverse (inverse (inverse (multiply ?19734 (multiply (inverse ?19734) ?19735))))) (multiply ?19737 (inverse ?19737))) =>= inverse ?19735 [19737, 19735, 19734, 19736] by Super 328 with 2859 at 2,2 +Id : 16741, {_}: inverse (inverse (inverse (multiply ?88187 (inverse ?88187)))) =?= multiply ?88186 (inverse ?88186) [88186, 88187] by Super 13794 with 3676 at 1,1,2 +Id : 17199, {_}: inverse (multiply ?90662 (multiply ?90661 (inverse ?90661))) =?= inverse (multiply ?90662 (inverse (inverse (inverse (multiply ?90660 (inverse ?90660)))))) [90660, 90661, 90662] by Super 870 with 16741 at 2,1,3 +Id : 3671, {_}: multiply (multiply ?19707 (inverse ?19707)) (multiply (inverse (inverse (inverse (multiply ?19705 (multiply (inverse ?19705) ?19706))))) (multiply ?19706 ?19708)) =>= ?19708 [19708, 19706, 19705, 19707] by Super 70 with 2859 at 2,2 +Id : 2874, {_}: inverse (multiply (inverse (multiply ?16071 (multiply (inverse ?16071) (inverse (inverse ?16069))))) (multiply ?16072 (multiply (multiply ?16073 (inverse ?16073)) (inverse (multiply ?16074 (multiply (inverse ?16074) ?16072)))))) =?= multiply ?16069 (multiply ?16070 (inverse ?16070)) [16070, 16074, 16073, 16072, 16069, 16071] by Super 2786 with 870 at 1,1,2 +Id : 790, {_}: inverse (multiply (inverse ?4975) (multiply ?4974 (multiply (multiply ?4976 (inverse ?4976)) (inverse (multiply ?4973 (multiply (inverse ?4973) ?4974)))))) =>= ?4975 [4973, 4976, 4974, 4975] by Super 6 with 326 at 1,2,1,2 +Id : 2903, {_}: multiply ?16071 (multiply (inverse ?16071) (inverse (inverse ?16069))) =?= multiply ?16069 (multiply ?16070 (inverse ?16070)) [16070, 16069, 16071] by Demod 2874 with 790 at 2 +Id : 17213, {_}: multiply ?90740 (inverse ?90740) =?= multiply (inverse (inverse (multiply ?90738 (inverse ?90738)))) (multiply ?90739 (inverse ?90739)) [90739, 90738, 90740] by Super 290 with 16741 at 2,3 +Id : 20625, {_}: multiply ?106744 (multiply (inverse ?106744) (inverse (inverse (inverse (inverse (multiply ?106742 (inverse ?106742))))))) =?= multiply ?106741 (inverse ?106741) [106741, 106742, 106744] by Super 2903 with 17213 at 3 +Id : 31961, {_}: multiply (multiply ?163343 (inverse ?163343)) (multiply (inverse (inverse (inverse (multiply ?163344 (multiply (inverse ?163344) ?163340))))) (multiply ?163342 (inverse ?163342))) =?= multiply (inverse ?163340) (inverse (inverse (inverse (inverse (multiply ?163341 (inverse ?163341)))))) [163341, 163342, 163340, 163344, 163343] by Super 3671 with 20625 at 2,2,2 +Id : 32420, {_}: inverse ?163340 =<= multiply (inverse ?163340) (inverse (inverse (inverse (inverse (multiply ?163341 (inverse ?163341)))))) [163341, 163340] by Demod 31961 with 3676 at 2 +Id : 32623, {_}: inverse (multiply (inverse ?166463) (multiply (inverse (inverse (inverse (multiply ?166461 (inverse ?166461))))) (inverse (inverse (inverse (inverse (multiply ?166462 (inverse ?166462)))))))) =>= ?166463 [166462, 166461, 166463] by Super 2859 with 32420 at 2,1,1,1,1,2,1,2 +Id : 32947, {_}: inverse (multiply (inverse ?166463) (inverse (inverse (inverse (multiply ?166461 (inverse ?166461)))))) =>= ?166463 [166461, 166463] by Demod 32623 with 32420 at 2,1,2 +Id : 34867, {_}: inverse (multiply (inverse ?172645) (multiply ?172647 (inverse ?172647))) =>= ?172645 [172647, 172645] by Super 17199 with 32947 at 3 +Id : 35297, {_}: multiply (multiply ?2479 (inverse ?2479)) (multiply ?2477 (multiply (inverse ?2477) ?2480)) =>= ?2480 [2480, 2477, 2479] by Demod 326 with 34867 at 2,2 +Id : 35489, {_}: inverse (multiply (inverse ?174505) (multiply ?174506 (inverse ?174506))) =>= ?174505 [174506, 174505] by Super 17199 with 32947 at 3 +Id : 616, {_}: multiply (multiply ?3943 (inverse ?3943)) (inverse (multiply (inverse (multiply ?3944 (multiply ?3945 (inverse ?3945)))) (multiply ?3944 ?3946))) =>= inverse ?3946 [3946, 3945, 3944, 3943] by Super 70 with 290 at 2,1,1,1,2,2 +Id : 619, {_}: multiply (multiply ?3962 (inverse ?3962)) (inverse (multiply (inverse (multiply ?3963 (multiply ?3964 (inverse ?3964)))) (multiply ?3961 (inverse ?3961)))) =>= inverse (inverse ?3963) [3961, 3964, 3963, 3962] by Super 616 with 290 at 2,1,2,2 +Id : 35296, {_}: multiply (multiply ?3962 (inverse ?3962)) (multiply ?3963 (multiply ?3964 (inverse ?3964))) =>= inverse (inverse ?3963) [3964, 3963, 3962] by Demod 619 with 34867 at 2,2 +Id : 35298, {_}: inverse (inverse (inverse (inverse (inverse (multiply ?19734 (multiply (inverse ?19734) ?19735)))))) =>= inverse ?19735 [19735, 19734] by Demod 3676 with 35296 at 2 +Id : 35615, {_}: inverse (multiply (inverse ?175100) (multiply ?175101 (inverse ?175101))) =?= inverse (inverse (inverse (inverse (multiply ?175099 (multiply (inverse ?175099) ?175100))))) [175099, 175101, 175100] by Super 35489 with 35298 at 1,1,2 +Id : 35759, {_}: ?175100 =<= inverse (inverse (inverse (inverse (multiply ?175099 (multiply (inverse ?175099) ?175100))))) [175099, 175100] by Demod 35615 with 34867 at 2 +Id : 14284, {_}: inverse (inverse (multiply ?75692 (multiply (inverse (inverse (inverse (multiply ?75693 (multiply (inverse ?75693) ?75694))))) ?75694))) =>= ?75692 [75694, 75693, 75692] by Super 4 with 3662 at 2 +Id : 14330, {_}: inverse (inverse (multiply ?75974 (multiply (inverse (inverse (inverse (multiply ?75975 (multiply ?75973 (inverse ?75973)))))) (inverse (inverse ?75975))))) =>= ?75974 [75973, 75975, 75974] by Super 14284 with 290 at 2,1,1,1,1,2,1,1,2 +Id : 36610, {_}: inverse (inverse (multiply ?177975 (multiply (inverse (inverse (inverse (multiply (inverse (inverse (inverse (multiply ?177974 (multiply (inverse ?177974) ?177973))))) (multiply ?177976 (inverse ?177976)))))) (inverse ?177973)))) =>= ?177975 [177976, 177973, 177974, 177975] by Super 14330 with 35759 at 1,2,2,1,1,2 +Id : 36795, {_}: inverse (inverse (multiply ?177975 (multiply (inverse (inverse (inverse (inverse (multiply ?177974 (multiply (inverse ?177974) ?177973)))))) (inverse ?177973)))) =>= ?177975 [177973, 177974, 177975] by Demod 36610 with 34867 at 1,1,1,2,1,1,2 +Id : 37525, {_}: inverse (inverse (multiply ?181200 (multiply ?181201 (inverse ?181201)))) =>= ?181200 [181201, 181200] by Demod 36795 with 35759 at 1,2,1,1,2 +Id : 37547, {_}: inverse (inverse (multiply ?181321 (multiply (inverse (inverse (multiply ?181319 (inverse ?181319)))) (multiply ?181320 (inverse ?181320))))) =>= ?181321 [181320, 181319, 181321] by Super 37525 with 16741 at 2,2,1,1,2 +Id : 36638, {_}: ?178102 =<= inverse (inverse (inverse (inverse (multiply ?178103 (multiply (inverse ?178103) ?178102))))) [178103, 178102] by Demod 35615 with 34867 at 2 +Id : 36754, {_}: multiply (inverse (inverse (multiply ?178614 (inverse ?178614)))) ?178615 =>= inverse (inverse (inverse (inverse ?178615))) [178615, 178614] by Super 36638 with 35297 at 1,1,1,1,3 +Id : 37663, {_}: inverse (inverse (multiply ?181321 (inverse (inverse (inverse (inverse (multiply ?181320 (inverse ?181320)))))))) =>= ?181321 [181320, 181321] by Demod 37547 with 36754 at 2,1,1,2 +Id : 32690, {_}: inverse ?166743 =<= multiply (inverse ?166743) (inverse (inverse (inverse (inverse (multiply ?166744 (inverse ?166744)))))) [166744, 166743] by Demod 31961 with 3676 at 2 +Id : 32829, {_}: inverse (multiply ?167379 (multiply ?167380 (multiply (multiply ?167381 (inverse ?167381)) (inverse (multiply ?167382 (multiply ?167379 ?167380)))))) =?= multiply ?167382 (inverse (inverse (inverse (inverse (multiply ?167383 (inverse ?167383)))))) [167383, 167382, 167381, 167380, 167379] by Super 32690 with 4 at 1,3 +Id : 33031, {_}: ?167382 =<= multiply ?167382 (inverse (inverse (inverse (inverse (multiply ?167383 (inverse ?167383)))))) [167383, 167382] by Demod 32829 with 4 at 2 +Id : 37664, {_}: inverse (inverse ?181321) =>= ?181321 [181321] by Demod 37663 with 33031 at 1,1,2 +Id : 37819, {_}: ?175100 =<= inverse (inverse (multiply ?175099 (multiply (inverse ?175099) ?175100))) [175099, 175100] by Demod 35759 with 37664 at 3 +Id : 37820, {_}: ?175100 =<= multiply ?175099 (multiply (inverse ?175099) ?175100) [175099, 175100] by Demod 37819 with 37664 at 3 +Id : 37837, {_}: multiply (multiply ?2479 (inverse ?2479)) ?2480 =>= ?2480 [2480, 2479] by Demod 35297 with 37820 at 2,2 +Id : 37843, {_}: inverse (multiply ?2 (multiply ?3 (inverse (multiply ?5 (multiply ?2 ?3))))) =>= ?5 [5, 3, 2] by Demod 4 with 37837 at 2,2,1,2 +Id : 37841, {_}: inverse (multiply ?14 (multiply (inverse (multiply ?13 (multiply ?16 ?14))) (multiply (multiply ?15 (inverse ?15)) ?13))) =>= ?16 [15, 16, 13, 14] by Demod 6 with 37837 at 1,2,1,2 +Id : 37842, {_}: inverse (multiply ?14 (multiply (inverse (multiply ?13 (multiply ?16 ?14))) ?13)) =>= ?16 [16, 13, 14] by Demod 37841 with 37837 at 2,2,1,2 +Id : 13762, {_}: inverse (multiply (inverse ?72514) (multiply ?72515 (multiply (multiply ?72516 (inverse ?72516)) (inverse (multiply ?72517 (multiply (inverse ?72517) ?72515)))))) =?= multiply (inverse (inverse (inverse (multiply ?72511 (multiply (inverse ?72511) ?72512))))) (multiply ?72512 (multiply (multiply ?72513 (inverse ?72513)) ?72514)) [72513, 72512, 72511, 72517, 72516, 72515, 72514] by Super 790 with 3662 at 1,1,2 +Id : 14092, {_}: ?72514 =<= multiply (inverse (inverse (inverse (multiply ?72511 (multiply (inverse ?72511) ?72512))))) (multiply ?72512 (multiply (multiply ?72513 (inverse ?72513)) ?72514)) [72513, 72512, 72511, 72514] by Demod 13762 with 790 at 2 +Id : 37791, {_}: ?72514 =<= multiply (inverse (multiply ?72511 (multiply (inverse ?72511) ?72512))) (multiply ?72512 (multiply (multiply ?72513 (inverse ?72513)) ?72514)) [72513, 72512, 72511, 72514] by Demod 14092 with 37664 at 1,3 +Id : 37888, {_}: ?72514 =<= multiply (inverse ?72512) (multiply ?72512 (multiply (multiply ?72513 (inverse ?72513)) ?72514)) [72513, 72512, 72514] by Demod 37791 with 37820 at 1,1,3 +Id : 37889, {_}: ?72514 =<= multiply (inverse ?72512) (multiply ?72512 ?72514) [72512, 72514] by Demod 37888 with 37837 at 2,2,3 +Id : 37945, {_}: multiply (multiply (inverse ?181731) ?181731) ?181732 =>= ?181732 [181732, 181731] by Super 37837 with 37664 at 2,1,2 +Id : 37993, {_}: inverse (multiply (multiply (inverse ?181852) ?181852) (multiply ?181853 (inverse (multiply ?181854 ?181853)))) =>= ?181854 [181854, 181853, 181852] by Super 37843 with 37945 at 2,1,2,2,1,2 +Id : 38039, {_}: inverse (multiply ?181853 (inverse (multiply ?181854 ?181853))) =>= ?181854 [181854, 181853] by Demod 37993 with 37945 at 1,2 +Id : 38275, {_}: inverse ?182456 =<= multiply ?182455 (inverse (multiply ?182456 ?182455)) [182455, 182456] by Super 37664 with 38039 at 1,2 +Id : 38457, {_}: inverse (multiply ?182870 ?182871) =<= multiply (inverse ?182871) (inverse ?182870) [182871, 182870] by Super 37889 with 38275 at 2,3 +Id : 38459, {_}: inverse (multiply (inverse ?182877) ?182878) =>= multiply (inverse ?182878) ?182877 [182878, 182877] by Super 38457 with 37664 at 2,3 +Id : 38608, {_}: multiply (inverse (multiply (inverse (multiply ?183123 (multiply ?183124 (inverse ?183122)))) ?183123)) ?183122 =>= ?183124 [183122, 183124, 183123] by Super 37842 with 38459 at 2 +Id : 38646, {_}: multiply (multiply (inverse ?183123) (multiply ?183123 (multiply ?183124 (inverse ?183122)))) ?183122 =>= ?183124 [183122, 183124, 183123] by Demod 38608 with 38459 at 1,2 +Id : 38647, {_}: multiply (multiply ?183124 (inverse ?183122)) ?183122 =>= ?183124 [183122, 183124] by Demod 38646 with 37889 at 1,2 +Id : 39562, {_}: inverse (multiply ?184856 (multiply ?184857 (inverse ?184858))) =>= multiply ?184858 (inverse (multiply ?184856 ?184857)) [184858, 184857, 184856] by Super 37843 with 38647 at 1,2,2,1,2 +Id : 39573, {_}: inverse (multiply ?184910 (inverse ?184909)) =<= multiply (multiply ?184909 ?184911) (inverse (multiply ?184910 ?184911)) [184911, 184909, 184910] by Super 39562 with 38275 at 2,1,2 +Id : 38360, {_}: inverse (multiply ?182630 (inverse ?182631)) =>= multiply ?182631 (inverse ?182630) [182631, 182630] by Super 37820 with 38275 at 2,3 +Id : 40719, {_}: multiply ?186598 (inverse ?186599) =<= multiply (multiply ?186598 ?186600) (inverse (multiply ?186599 ?186600)) [186600, 186599, 186598] by Demod 39573 with 38360 at 2 +Id : 37844, {_}: inverse (multiply (inverse (multiply ?33 (multiply ?34 ?31))) (multiply (multiply (multiply ?35 (inverse ?35)) ?33) (multiply (multiply ?36 (inverse ?36)) ?34))) =>= ?31 [36, 35, 31, 34, 33] by Demod 9 with 37837 at 1,1,2 +Id : 37845, {_}: inverse (multiply (inverse (multiply ?33 (multiply ?34 ?31))) (multiply ?33 (multiply (multiply ?36 (inverse ?36)) ?34))) =>= ?31 [36, 31, 34, 33] by Demod 37844 with 37837 at 1,2,1,2 +Id : 37846, {_}: inverse (multiply (inverse (multiply ?33 (multiply ?34 ?31))) (multiply ?33 ?34)) =>= ?31 [31, 34, 33] by Demod 37845 with 37837 at 2,2,1,2 +Id : 38597, {_}: multiply (inverse (multiply ?33 ?34)) (multiply ?33 (multiply ?34 ?31)) =>= ?31 [31, 34, 33] by Demod 37846 with 38459 at 2 +Id : 40727, {_}: multiply ?186633 (inverse (inverse (multiply ?186630 ?186631))) =<= multiply (multiply ?186633 (multiply ?186630 (multiply ?186631 ?186632))) (inverse ?186632) [186632, 186631, 186630, 186633] by Super 40719 with 38597 at 1,2,3 +Id : 40827, {_}: multiply ?186633 (multiply ?186630 ?186631) =<= multiply (multiply ?186633 (multiply ?186630 (multiply ?186631 ?186632))) (inverse ?186632) [186632, 186631, 186630, 186633] by Demod 40727 with 37664 at 2,2 +Id : 38369, {_}: inverse ?182667 =<= multiply ?182668 (inverse (multiply ?182667 ?182668)) [182668, 182667] by Super 37664 with 38039 at 1,2 +Id : 38383, {_}: inverse ?182710 =<= multiply (inverse (multiply ?182709 ?182710)) (inverse (inverse ?182709)) [182709, 182710] by Super 38369 with 38275 at 1,2,3 +Id : 38416, {_}: inverse ?182710 =<= multiply (inverse (multiply ?182709 ?182710)) ?182709 [182709, 182710] by Demod 38383 with 37664 at 2,3 +Id : 38850, {_}: inverse (multiply ?183591 (multiply ?183592 (inverse ?183590))) =>= multiply ?183590 (inverse (multiply ?183591 ?183592)) [183590, 183592, 183591] by Super 37843 with 38647 at 1,2,2,1,2 +Id : 39557, {_}: inverse (multiply ?184829 (inverse ?184830)) =<= multiply (multiply ?184830 (inverse (multiply ?184828 ?184829))) ?184828 [184828, 184830, 184829] by Super 38416 with 38850 at 1,3 +Id : 40495, {_}: multiply ?186270 (inverse ?186271) =<= multiply (multiply ?186270 (inverse (multiply ?186272 ?186271))) ?186272 [186272, 186271, 186270] by Demod 39557 with 38360 at 2 +Id : 38758, {_}: inverse ?183471 =<= multiply (inverse (multiply ?183472 ?183471)) ?183472 [183472, 183471] by Demod 38383 with 37664 at 2,3 +Id : 38773, {_}: inverse (multiply ?183521 (inverse (multiply ?183522 (multiply ?183523 ?183521)))) =>= multiply ?183522 ?183523 [183523, 183522, 183521] by Super 38758 with 37843 at 1,3 +Id : 38833, {_}: multiply (multiply ?183522 (multiply ?183523 ?183521)) (inverse ?183521) =>= multiply ?183522 ?183523 [183521, 183523, 183522] by Demod 38773 with 38360 at 2 +Id : 40530, {_}: multiply (multiply ?186419 (multiply ?186420 (multiply ?186422 ?186421))) (inverse ?186421) =>= multiply (multiply ?186419 ?186420) ?186422 [186421, 186422, 186420, 186419] by Super 40495 with 38833 at 1,3 +Id : 56629, {_}: multiply ?186633 (multiply ?186630 ?186631) =?= multiply (multiply ?186633 ?186630) ?186631 [186631, 186630, 186633] by Demod 40827 with 40530 at 3 +Id : 57301, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 56629 at 2 +Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 +% SZS output end CNFRefutation for GRP444-1.p +Order + == is 100 + _ is 99 + a2 is 95 + b2 is 98 + divide is 93 + inverse is 97 + multiply is 96 + prove_these_axioms_2 is 94 + single_axiom is 92 +Facts + Id : 4, {_}: + divide + (divide (divide ?2 ?2) + (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) + ?4 + =>= + ?3 + [4, 3, 2] by single_axiom ?2 ?3 ?4 + Id : 6, {_}: + multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) + [8, 7, 6] by multiply ?6 ?7 ?8 + Id : 8, {_}: + inverse ?10 =<= divide (divide ?11 ?11) ?10 + [11, 10] by inverse ?10 ?11 +Goal + Id : 2, {_}: + multiply (multiply (inverse b2) b2) a2 =>= a2 + [] by prove_these_axioms_2 +Found proof, 0.102216s +% SZS status Unsatisfiable for GRP452-1.p +% SZS output start CNFRefutation for GRP452-1.p +Id : 39, {_}: inverse ?93 =<= divide (divide ?94 ?94) ?93 [94, 93] by inverse ?93 ?94 +Id : 4, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 +Id : 8, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 +Id : 6, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 +Id : 33, {_}: multiply ?6 ?7 =<= divide ?6 (inverse ?7) [7, 6] by Demod 6 with 8 at 2,3 +Id : 45, {_}: multiply (divide ?108 ?108) ?109 =>= inverse (inverse ?109) [109, 108] by Super 33 with 8 at 3 +Id : 47, {_}: multiply (multiply (inverse ?114) ?114) ?115 =>= inverse (inverse ?115) [115, 114] by Super 45 with 33 at 1,2 +Id : 34, {_}: divide (inverse (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 4 with 8 at 1,2 +Id : 35, {_}: divide (inverse (divide ?2 (divide ?3 (divide (inverse ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 34 with 8 at 1,2,2,1,1,2 +Id : 40, {_}: inverse ?97 =<= divide (inverse (divide ?96 ?96)) ?97 [96, 97] by Super 39 with 8 at 1,3 +Id : 52, {_}: divide (inverse (divide (divide ?127 ?127) (divide ?128 (inverse ?126)))) ?126 =>= ?128 [126, 128, 127] by Super 35 with 40 at 2,2,1,1,2 +Id : 62, {_}: divide (inverse (inverse (divide ?128 (inverse ?126)))) ?126 =>= ?128 [126, 128] by Demod 52 with 8 at 1,1,2 +Id : 63, {_}: divide (inverse (inverse (multiply ?128 ?126))) ?126 =>= ?128 [126, 128] by Demod 62 with 33 at 1,1,1,2 +Id : 265, {_}: divide (inverse (divide ?664 ?665)) ?666 =<= inverse (inverse (multiply ?665 (divide (inverse ?664) ?666))) [666, 665, 664] by Super 35 with 63 at 2,1,1,2 +Id : 269, {_}: divide (inverse (divide ?684 ?685)) (inverse ?683) =<= inverse (inverse (multiply ?685 (multiply (inverse ?684) ?683))) [683, 685, 684] by Super 265 with 33 at 2,1,1,3 +Id : 285, {_}: multiply (inverse (divide ?684 ?685)) ?683 =<= inverse (inverse (multiply ?685 (multiply (inverse ?684) ?683))) [683, 685, 684] by Demod 269 with 33 at 2 +Id : 36, {_}: multiply (divide ?82 ?82) ?83 =>= inverse (inverse ?83) [83, 82] by Super 33 with 8 at 3 +Id : 270, {_}: divide (inverse (divide (divide ?687 ?687) ?688)) ?689 =>= inverse (inverse (multiply ?688 (inverse ?689))) [689, 688, 687] by Super 265 with 40 at 2,1,1,3 +Id : 286, {_}: divide (inverse (inverse ?688)) ?689 =<= inverse (inverse (multiply ?688 (inverse ?689))) [689, 688] by Demod 270 with 8 at 1,1,2 +Id : 306, {_}: divide (divide (inverse (inverse ?778)) ?779) (inverse ?779) =>= ?778 [779, 778] by Super 63 with 286 at 1,2 +Id : 319, {_}: multiply (divide (inverse (inverse ?778)) ?779) ?779 =>= ?778 [779, 778] by Demod 306 with 33 at 2 +Id : 743, {_}: ?1513 =<= inverse (inverse (inverse (inverse ?1513))) [1513] by Super 36 with 319 at 2 +Id : 138, {_}: divide (inverse (divide ?349 ?348)) ?350 =<= inverse (inverse (multiply ?348 (divide (inverse ?349) ?350))) [350, 348, 349] by Super 35 with 63 at 2,1,1,2 +Id : 1751, {_}: multiply ?3407 (divide (inverse ?3408) ?3409) =<= inverse (inverse (divide (inverse (divide ?3408 ?3407)) ?3409)) [3409, 3408, 3407] by Super 743 with 138 at 1,1,3 +Id : 1830, {_}: multiply ?3532 (divide (inverse ?3532) ?3533) =>= inverse (inverse (inverse ?3533)) [3533, 3532] by Super 1751 with 40 at 1,1,3 +Id : 682, {_}: ?1380 =<= inverse (inverse (inverse (inverse ?1380))) [1380] by Super 36 with 319 at 2 +Id : 735, {_}: multiply ?1490 (inverse (inverse (inverse ?1489))) =>= divide ?1490 ?1489 [1489, 1490] by Super 33 with 682 at 2,3 +Id : 742, {_}: multiply (divide ?1510 ?1511) ?1511 =>= inverse (inverse ?1510) [1511, 1510] by Super 319 with 682 at 1,1,2 +Id : 868, {_}: inverse (inverse ?1672) =<= divide (divide ?1672 (inverse (inverse (inverse ?1673)))) ?1673 [1673, 1672] by Super 735 with 742 at 2 +Id : 1203, {_}: inverse (inverse ?2233) =<= divide (multiply ?2233 (inverse (inverse ?2234))) ?2234 [2234, 2233] by Demod 868 with 33 at 1,3 +Id : 55, {_}: multiply (inverse (inverse (divide ?138 ?138))) ?139 =>= inverse (inverse ?139) [139, 138] by Super 36 with 40 at 1,2 +Id : 1217, {_}: inverse (inverse (inverse (inverse (divide ?2285 ?2285)))) =?= divide (inverse (inverse (inverse (inverse ?2286)))) ?2286 [2286, 2285] by Super 1203 with 55 at 1,3 +Id : 1250, {_}: divide ?2285 ?2285 =?= divide (inverse (inverse (inverse (inverse ?2286)))) ?2286 [2286, 2285] by Demod 1217 with 682 at 2 +Id : 1251, {_}: divide ?2285 ?2285 =?= divide ?2286 ?2286 [2286, 2285] by Demod 1250 with 682 at 1,3 +Id : 1840, {_}: multiply ?3573 (divide ?3572 ?3572) =?= inverse (inverse (inverse (inverse ?3573))) [3572, 3573] by Super 1830 with 1251 at 2,2 +Id : 1879, {_}: multiply ?3573 (divide ?3572 ?3572) =>= ?3573 [3572, 3573] by Demod 1840 with 682 at 3 +Id : 1919, {_}: multiply (inverse (divide ?3678 ?3679)) (divide ?3677 ?3677) =>= inverse (inverse (multiply ?3679 (inverse ?3678))) [3677, 3679, 3678] by Super 285 with 1879 at 2,1,1,3 +Id : 1946, {_}: inverse (divide ?3678 ?3679) =<= inverse (inverse (multiply ?3679 (inverse ?3678))) [3679, 3678] by Demod 1919 with 1879 at 2 +Id : 1947, {_}: inverse (divide ?3678 ?3679) =<= divide (inverse (inverse ?3679)) ?3678 [3679, 3678] by Demod 1946 with 286 at 3 +Id : 1966, {_}: inverse (divide ?126 (multiply ?128 ?126)) =>= ?128 [128, 126] by Demod 63 with 1947 at 2 +Id : 748, {_}: multiply ?1528 (inverse ?1529) =<= inverse (inverse (divide (inverse (inverse ?1528)) ?1529)) [1529, 1528] by Super 743 with 286 at 1,1,3 +Id : 1970, {_}: multiply ?1528 (inverse ?1529) =<= inverse (inverse (inverse (divide ?1529 ?1528))) [1529, 1528] by Demod 748 with 1947 at 1,1,3 +Id : 50, {_}: inverse ?121 =<= divide (inverse (inverse (divide ?120 ?120))) ?121 [120, 121] by Super 8 with 40 at 1,3 +Id : 1967, {_}: inverse ?121 =<= inverse (divide ?121 (divide ?120 ?120)) [120, 121] by Demod 50 with 1947 at 3 +Id : 1903, {_}: divide ?3630 (divide ?3629 ?3629) =>= inverse (inverse ?3630) [3629, 3630] by Super 742 with 1879 at 2 +Id : 2257, {_}: inverse ?121 =<= inverse (inverse (inverse ?121)) [121] by Demod 1967 with 1903 at 1,3 +Id : 2261, {_}: multiply ?1528 (inverse ?1529) =<= inverse (divide ?1529 ?1528) [1529, 1528] by Demod 1970 with 2257 at 3 +Id : 2271, {_}: multiply (multiply ?128 ?126) (inverse ?126) =>= ?128 [126, 128] by Demod 1966 with 2261 at 2 +Id : 869, {_}: multiply (divide ?1675 ?1676) ?1676 =>= inverse (inverse ?1675) [1676, 1675] by Super 319 with 682 at 1,1,2 +Id : 873, {_}: multiply (multiply ?1689 ?1688) (inverse ?1688) =>= inverse (inverse ?1689) [1688, 1689] by Super 869 with 33 at 1,2 +Id : 2276, {_}: inverse (inverse ?128) =>= ?128 [128] by Demod 2271 with 873 at 2 +Id : 2434, {_}: a2 === a2 [] by Demod 85 with 2276 at 2 +Id : 85, {_}: inverse (inverse a2) =>= a2 [] by Demod 2 with 47 at 2 +Id : 2, {_}: multiply (multiply (inverse b2) b2) a2 =>= a2 [] by prove_these_axioms_2 +% SZS output end CNFRefutation for GRP452-1.p +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + divide is 93 + inverse is 91 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 92 +Facts + Id : 4, {_}: + divide + (divide (divide ?2 ?2) + (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) + ?4 + =>= + ?3 + [4, 3, 2] by single_axiom ?2 ?3 ?4 + Id : 6, {_}: + multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) + [8, 7, 6] by multiply ?6 ?7 ?8 + Id : 8, {_}: + inverse ?10 =<= divide (divide ?11 ?11) ?10 + [11, 10] by inverse ?10 ?11 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 0.110270s +% SZS status Unsatisfiable for GRP453-1.p +% SZS output start CNFRefutation for GRP453-1.p +Id : 6, {_}: multiply ?6 ?7 =<= divide ?6 (divide (divide ?8 ?8) ?7) [8, 7, 6] by multiply ?6 ?7 ?8 +Id : 39, {_}: inverse ?93 =<= divide (divide ?94 ?94) ?93 [94, 93] by inverse ?93 ?94 +Id : 8, {_}: inverse ?10 =<= divide (divide ?11 ?11) ?10 [11, 10] by inverse ?10 ?11 +Id : 4, {_}: divide (divide (divide ?2 ?2) (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by single_axiom ?2 ?3 ?4 +Id : 34, {_}: divide (inverse (divide ?2 (divide ?3 (divide (divide (divide ?2 ?2) ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 4 with 8 at 1,2 +Id : 35, {_}: divide (inverse (divide ?2 (divide ?3 (divide (inverse ?2) ?4)))) ?4 =>= ?3 [4, 3, 2] by Demod 34 with 8 at 1,2,2,1,1,2 +Id : 40, {_}: inverse ?97 =<= divide (inverse (divide ?96 ?96)) ?97 [96, 97] by Super 39 with 8 at 1,3 +Id : 52, {_}: divide (inverse (divide (divide ?127 ?127) (divide ?128 (inverse ?126)))) ?126 =>= ?128 [126, 128, 127] by Super 35 with 40 at 2,2,1,1,2 +Id : 62, {_}: divide (inverse (inverse (divide ?128 (inverse ?126)))) ?126 =>= ?128 [126, 128] by Demod 52 with 8 at 1,1,2 +Id : 33, {_}: multiply ?6 ?7 =<= divide ?6 (inverse ?7) [7, 6] by Demod 6 with 8 at 2,3 +Id : 63, {_}: divide (inverse (inverse (multiply ?128 ?126))) ?126 =>= ?128 [126, 128] by Demod 62 with 33 at 1,1,1,2 +Id : 264, {_}: divide (inverse (divide ?664 ?665)) ?666 =<= inverse (inverse (multiply ?665 (divide (inverse ?664) ?666))) [666, 665, 664] by Super 35 with 63 at 2,1,1,2 +Id : 268, {_}: divide (inverse (divide ?684 ?685)) (inverse ?683) =<= inverse (inverse (multiply ?685 (multiply (inverse ?684) ?683))) [683, 685, 684] by Super 264 with 33 at 2,1,1,3 +Id : 284, {_}: multiply (inverse (divide ?684 ?685)) ?683 =<= inverse (inverse (multiply ?685 (multiply (inverse ?684) ?683))) [683, 685, 684] by Demod 268 with 33 at 2 +Id : 269, {_}: divide (inverse (divide (divide ?687 ?687) ?688)) ?689 =>= inverse (inverse (multiply ?688 (inverse ?689))) [689, 688, 687] by Super 264 with 40 at 2,1,1,3 +Id : 285, {_}: divide (inverse (inverse ?688)) ?689 =<= inverse (inverse (multiply ?688 (inverse ?689))) [689, 688] by Demod 269 with 8 at 1,1,2 +Id : 307, {_}: divide (inverse (inverse ?786)) ?787 =<= inverse (inverse (multiply ?786 (inverse ?787))) [787, 786] by Demod 269 with 8 at 1,1,2 +Id : 36, {_}: multiply (divide ?82 ?82) ?83 =>= inverse (inverse ?83) [83, 82] by Super 33 with 8 at 3 +Id : 310, {_}: divide (inverse (inverse (divide ?798 ?798))) ?799 =>= inverse (inverse (inverse (inverse (inverse ?799)))) [799, 798] by Super 307 with 36 at 1,1,3 +Id : 50, {_}: inverse ?121 =<= divide (inverse (inverse (divide ?120 ?120))) ?121 [120, 121] by Super 8 with 40 at 1,3 +Id : 325, {_}: inverse ?799 =<= inverse (inverse (inverse (inverse (inverse ?799)))) [799] by Demod 310 with 50 at 2 +Id : 332, {_}: multiply ?837 (inverse (inverse (inverse (inverse ?836)))) =>= divide ?837 (inverse ?836) [836, 837] by Super 33 with 325 at 2,3 +Id : 354, {_}: multiply ?837 (inverse (inverse (inverse (inverse ?836)))) =>= multiply ?837 ?836 [836, 837] by Demod 332 with 33 at 3 +Id : 364, {_}: divide (inverse (inverse ?880)) (inverse (inverse (inverse ?881))) =>= inverse (inverse (multiply ?880 ?881)) [881, 880] by Super 285 with 354 at 1,1,3 +Id : 423, {_}: multiply (inverse (inverse ?880)) (inverse (inverse ?881)) =>= inverse (inverse (multiply ?880 ?881)) [881, 880] by Demod 364 with 33 at 2 +Id : 448, {_}: divide (inverse (inverse (inverse (inverse ?1012)))) (inverse ?1013) =>= inverse (inverse (inverse (inverse (multiply ?1012 ?1013)))) [1013, 1012] by Super 285 with 423 at 1,1,3 +Id : 470, {_}: multiply (inverse (inverse (inverse (inverse ?1012)))) ?1013 =>= inverse (inverse (inverse (inverse (multiply ?1012 ?1013)))) [1013, 1012] by Demod 448 with 33 at 2 +Id : 499, {_}: divide (inverse (inverse (inverse (inverse (inverse (inverse (multiply ?1108 ?1109))))))) ?1109 =>= inverse (inverse (inverse (inverse ?1108))) [1109, 1108] by Super 63 with 470 at 1,1,1,2 +Id : 519, {_}: divide (inverse (inverse (multiply ?1108 ?1109))) ?1109 =>= inverse (inverse (inverse (inverse ?1108))) [1109, 1108] by Demod 499 with 325 at 1,2 +Id : 571, {_}: ?1204 =<= inverse (inverse (inverse (inverse ?1204))) [1204] by Demod 519 with 63 at 2 +Id : 137, {_}: divide (inverse (divide ?349 ?348)) ?350 =<= inverse (inverse (multiply ?348 (divide (inverse ?349) ?350))) [350, 348, 349] by Super 35 with 63 at 2,1,1,2 +Id : 1535, {_}: multiply ?2972 (divide (inverse ?2973) ?2974) =<= inverse (inverse (divide (inverse (divide ?2973 ?2972)) ?2974)) [2974, 2973, 2972] by Super 571 with 137 at 1,1,3 +Id : 1610, {_}: multiply ?3089 (divide (inverse ?3089) ?3090) =>= inverse (inverse (inverse ?3090)) [3090, 3089] by Super 1535 with 40 at 1,1,3 +Id : 520, {_}: ?1108 =<= inverse (inverse (inverse (inverse ?1108))) [1108] by Demod 519 with 63 at 2 +Id : 565, {_}: multiply ?1187 (inverse (inverse (inverse ?1186))) =>= divide ?1187 ?1186 [1186, 1187] by Super 33 with 520 at 2,3 +Id : 590, {_}: divide (inverse (inverse ?1228)) (inverse (inverse ?1229)) =>= inverse (inverse (divide ?1228 ?1229)) [1229, 1228] by Super 285 with 565 at 1,1,3 +Id : 652, {_}: multiply (inverse (inverse ?1228)) (inverse ?1229) =>= inverse (inverse (divide ?1228 ?1229)) [1229, 1228] by Demod 590 with 33 at 2 +Id : 676, {_}: divide (inverse (inverse (inverse (inverse (divide ?1336 ?1337))))) (inverse ?1337) =>= inverse (inverse ?1336) [1337, 1336] by Super 63 with 652 at 1,1,1,2 +Id : 716, {_}: multiply (inverse (inverse (inverse (inverse (divide ?1336 ?1337))))) ?1337 =>= inverse (inverse ?1336) [1337, 1336] by Demod 676 with 33 at 2 +Id : 717, {_}: multiply (divide ?1336 ?1337) ?1337 =>= inverse (inverse ?1336) [1337, 1336] by Demod 716 with 520 at 1,2 +Id : 729, {_}: inverse (inverse ?1423) =<= divide (divide ?1423 (inverse (inverse (inverse ?1424)))) ?1424 [1424, 1423] by Super 565 with 717 at 2 +Id : 1120, {_}: inverse (inverse ?2062) =<= divide (multiply ?2062 (inverse (inverse ?2063))) ?2063 [2063, 2062] by Demod 729 with 33 at 1,3 +Id : 55, {_}: multiply (inverse (inverse (divide ?138 ?138))) ?139 =>= inverse (inverse ?139) [139, 138] by Super 36 with 40 at 1,2 +Id : 1134, {_}: inverse (inverse (inverse (inverse (divide ?2114 ?2114)))) =?= divide (inverse (inverse (inverse (inverse ?2115)))) ?2115 [2115, 2114] by Super 1120 with 55 at 1,3 +Id : 1167, {_}: divide ?2114 ?2114 =?= divide (inverse (inverse (inverse (inverse ?2115)))) ?2115 [2115, 2114] by Demod 1134 with 520 at 2 +Id : 1168, {_}: divide ?2114 ?2114 =?= divide ?2115 ?2115 [2115, 2114] by Demod 1167 with 520 at 1,3 +Id : 1620, {_}: multiply ?3130 (divide ?3129 ?3129) =>= inverse (inverse (inverse (inverse ?3130))) [3129, 3130] by Super 1610 with 1168 at 2,2 +Id : 1658, {_}: multiply ?3130 (divide ?3129 ?3129) =>= ?3130 [3129, 3130] by Demod 1620 with 520 at 3 +Id : 1679, {_}: multiply (inverse (divide ?3178 ?3179)) (divide ?3177 ?3177) =>= inverse (inverse (multiply ?3179 (inverse ?3178))) [3177, 3179, 3178] by Super 284 with 1658 at 2,1,1,3 +Id : 1729, {_}: inverse (divide ?3178 ?3179) =<= inverse (inverse (multiply ?3179 (inverse ?3178))) [3179, 3178] by Demod 1679 with 1658 at 2 +Id : 1730, {_}: inverse (divide ?3178 ?3179) =<= divide (inverse (inverse ?3179)) ?3178 [3179, 3178] by Demod 1729 with 285 at 3 +Id : 1760, {_}: multiply (inverse (inverse ?3336)) ?3337 =>= inverse (divide (inverse ?3337) ?3336) [3337, 3336] by Super 33 with 1730 at 3 +Id : 1861, {_}: multiply (inverse (divide (inverse ?3480) ?3482)) ?3481 =<= inverse (inverse (multiply ?3482 (inverse (divide (inverse ?3481) ?3480)))) [3481, 3482, 3480] by Super 284 with 1760 at 2,1,1,3 +Id : 1743, {_}: inverse (divide ?689 ?688) =<= inverse (inverse (multiply ?688 (inverse ?689))) [688, 689] by Demod 285 with 1730 at 2 +Id : 1928, {_}: multiply (inverse (divide (inverse ?3480) ?3482)) ?3481 =>= inverse (divide (divide (inverse ?3481) ?3480) ?3482) [3481, 3482, 3480] by Demod 1861 with 1743 at 3 +Id : 1740, {_}: inverse (divide ?126 (multiply ?128 ?126)) =>= ?128 [128, 126] by Demod 63 with 1730 at 2 +Id : 1855, {_}: inverse (divide ?3461 (inverse (divide (inverse ?3461) ?3460))) =>= inverse (inverse ?3460) [3460, 3461] by Super 1740 with 1760 at 2,1,2 +Id : 1942, {_}: inverse (multiply ?3461 (divide (inverse ?3461) ?3460)) =>= inverse (inverse ?3460) [3460, 3461] by Demod 1855 with 33 at 1,2 +Id : 1552, {_}: multiply ?3041 (divide (inverse ?3041) ?3042) =>= inverse (inverse (inverse ?3042)) [3042, 3041] by Super 1535 with 40 at 1,1,3 +Id : 1943, {_}: inverse (inverse (inverse (inverse ?3460))) =>= inverse (inverse ?3460) [3460] by Demod 1942 with 1552 at 1,2 +Id : 1944, {_}: ?3460 =<= inverse (inverse ?3460) [3460] by Demod 1943 with 520 at 2 +Id : 1988, {_}: multiply ?1187 (inverse ?1186) =>= divide ?1187 ?1186 [1186, 1187] by Demod 565 with 1944 at 2,2 +Id : 1992, {_}: inverse (divide ?689 ?688) =<= multiply ?688 (inverse ?689) [688, 689] by Demod 1743 with 1944 at 3 +Id : 1998, {_}: inverse (divide ?1186 ?1187) =>= divide ?1187 ?1186 [1187, 1186] by Demod 1988 with 1992 at 2 +Id : 2689, {_}: multiply (divide ?3482 (inverse ?3480)) ?3481 =<= inverse (divide (divide (inverse ?3481) ?3480) ?3482) [3481, 3480, 3482] by Demod 1928 with 1998 at 1,2 +Id : 2690, {_}: multiply (multiply ?3482 ?3480) ?3481 =<= inverse (divide (divide (inverse ?3481) ?3480) ?3482) [3481, 3480, 3482] by Demod 2689 with 33 at 1,2 +Id : 2691, {_}: multiply (multiply ?3482 ?3480) ?3481 =<= divide ?3482 (divide (inverse ?3481) ?3480) [3481, 3480, 3482] by Demod 2690 with 1998 at 3 +Id : 2002, {_}: divide (multiply ?128 ?126) ?126 =>= ?128 [126, 128] by Demod 1740 with 1998 at 2 +Id : 1619, {_}: multiply (inverse (multiply ?3126 ?3127)) ?3126 =>= inverse (inverse (inverse ?3127)) [3127, 3126] by Super 1610 with 63 at 2,2 +Id : 2085, {_}: multiply (inverse (multiply ?3126 ?3127)) ?3126 =>= inverse ?3127 [3127, 3126] by Demod 1619 with 1944 at 3 +Id : 2092, {_}: divide (inverse ?3663) ?3662 =>= inverse (multiply ?3662 ?3663) [3662, 3663] by Super 2002 with 2085 at 1,2 +Id : 2692, {_}: multiply (multiply ?3482 ?3480) ?3481 =<= divide ?3482 (inverse (multiply ?3480 ?3481)) [3481, 3480, 3482] by Demod 2691 with 2092 at 2,3 +Id : 2693, {_}: multiply (multiply ?3482 ?3480) ?3481 =?= multiply ?3482 (multiply ?3480 ?3481) [3481, 3480, 3482] by Demod 2692 with 33 at 3 +Id : 2797, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 2693 at 2 +Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 +% SZS output end CNFRefutation for GRP453-1.p +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + divide is 93 + inverse is 92 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 91 +Facts + Id : 4, {_}: + divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) + (divide (divide ?5 ?4) ?2) + =>= + ?3 + [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 + Id : 6, {_}: + multiply ?7 ?8 =<= divide ?7 (inverse ?8) + [8, 7] by multiply ?7 ?8 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 128.157849s +% SZS status Unsatisfiable for GRP471-1.p +% SZS output start CNFRefutation for GRP471-1.p +Id : 7, {_}: divide (inverse (divide ?10 (divide ?11 (divide ?12 ?13)))) (divide (divide ?13 ?12) ?10) =>= ?11 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 +Id : 6, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 +Id : 4, {_}: divide (inverse (divide ?2 (divide ?3 (divide ?4 ?5)))) (divide (divide ?5 ?4) ?2) =>= ?3 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 +Id : 466, {_}: divide (inverse (divide (inverse ?2074) (divide ?2075 (divide ?2076 ?2077)))) (multiply (divide ?2077 ?2076) ?2074) =>= ?2075 [2077, 2076, 2075, 2074] by Super 4 with 6 at 2,2 +Id : 2222, {_}: divide (inverse ?10322) (multiply (divide ?10323 ?10324) (divide (divide ?10324 ?10323) (divide ?10322 (divide ?10325 ?10326)))) =>= divide ?10326 ?10325 [10326, 10325, 10324, 10323, 10322] by Super 466 with 4 at 1,1,2 +Id : 498, {_}: divide (inverse ?2307) (multiply (divide ?2311 ?2310) (divide (divide ?2310 ?2311) (divide ?2307 (divide ?2308 ?2309)))) =>= divide ?2309 ?2308 [2309, 2308, 2310, 2311, 2307] by Super 466 with 4 at 1,1,2 +Id : 2240, {_}: divide (inverse ?10483) (multiply (divide ?10484 ?10485) (divide (divide ?10485 ?10484) (divide ?10483 (divide ?10482 ?10481)))) =?= divide (multiply (divide ?10479 ?10480) (divide (divide ?10480 ?10479) (divide ?10478 (divide ?10481 ?10482)))) (inverse ?10478) [10478, 10480, 10479, 10481, 10482, 10485, 10484, 10483] by Super 2222 with 498 at 2,2,2,2,2 +Id : 2367, {_}: divide ?10481 ?10482 =<= divide (multiply (divide ?10479 ?10480) (divide (divide ?10480 ?10479) (divide ?10478 (divide ?10481 ?10482)))) (inverse ?10478) [10478, 10480, 10479, 10482, 10481] by Demod 2240 with 498 at 2 +Id : 2430, {_}: divide ?11142 ?11143 =<= multiply (multiply (divide ?11144 ?11145) (divide (divide ?11145 ?11144) (divide ?11146 (divide ?11142 ?11143)))) ?11146 [11146, 11145, 11144, 11143, 11142] by Demod 2367 with 6 at 3 +Id : 2431, {_}: divide (inverse (divide ?11148 (divide ?11149 (divide ?11150 ?11151)))) (divide (divide ?11151 ?11150) ?11148) =?= multiply (multiply (divide ?11152 ?11153) (divide (divide ?11153 ?11152) (divide ?11154 ?11149))) ?11154 [11154, 11153, 11152, 11151, 11150, 11149, 11148] by Super 2430 with 4 at 2,2,2,1,3 +Id : 2616, {_}: ?11858 =<= multiply (multiply (divide ?11859 ?11860) (divide (divide ?11860 ?11859) (divide ?11861 ?11858))) ?11861 [11861, 11860, 11859, 11858] by Demod 2431 with 4 at 2 +Id : 2673, {_}: ?12297 =<= multiply (multiply (multiply ?12298 ?12296) (divide (divide (inverse ?12296) ?12298) (divide ?12299 ?12297))) ?12299 [12299, 12296, 12298, 12297] by Super 2616 with 6 at 1,1,3 +Id : 398, {_}: divide (inverse (divide ?1784 (divide ?1785 (divide (inverse ?1786) ?1787)))) (divide (multiply ?1787 ?1786) ?1784) =>= ?1785 [1787, 1786, 1785, 1784] by Super 4 with 6 at 1,2,2 +Id : 1221, {_}: divide (inverse (divide ?5281 (divide ?5282 (multiply (inverse ?5283) ?5284)))) (divide (multiply (inverse ?5284) ?5283) ?5281) =>= ?5282 [5284, 5283, 5282, 5281] by Super 398 with 6 at 2,2,1,1,2 +Id : 15, {_}: divide (inverse (divide ?58 (divide ?59 (multiply ?56 ?57)))) (divide (divide (inverse ?57) ?56) ?58) =>= ?59 [57, 56, 59, 58] by Super 4 with 6 at 2,2,1,1,2 +Id : 1238, {_}: divide (inverse ?5406) (divide (multiply (inverse ?5410) ?5409) (inverse (divide (multiply (inverse ?5409) ?5410) (divide ?5406 (multiply ?5407 ?5408))))) =>= divide (inverse ?5408) ?5407 [5408, 5407, 5409, 5410, 5406] by Super 1221 with 15 at 1,1,2 +Id : 1282, {_}: divide (inverse ?5406) (multiply (multiply (inverse ?5410) ?5409) (divide (multiply (inverse ?5409) ?5410) (divide ?5406 (multiply ?5407 ?5408)))) =>= divide (inverse ?5408) ?5407 [5408, 5407, 5409, 5410, 5406] by Demod 1238 with 6 at 2,2 +Id : 2872, {_}: ?12927 =<= multiply (multiply (divide (inverse ?12928) ?12929) (divide (multiply ?12929 ?12928) (divide ?12930 ?12927))) ?12930 [12930, 12929, 12928, 12927] by Super 2616 with 6 at 1,2,1,3 +Id : 3248, {_}: ?15081 =<= multiply (multiply (multiply (inverse ?15082) ?15083) (divide (multiply (inverse ?15083) ?15082) (divide ?15084 ?15081))) ?15084 [15084, 15083, 15082, 15081] by Super 2872 with 6 at 1,1,3 +Id : 10, {_}: divide (inverse (divide ?32 ?29)) (divide (divide ?33 (divide ?31 ?30)) ?32) =>= inverse (divide ?33 (divide ?29 (divide ?30 ?31))) [30, 31, 33, 29, 32] by Super 7 with 4 at 2,1,1,2 +Id : 22, {_}: inverse (divide ?98 (divide (divide ?101 (divide (divide ?99 ?100) ?98)) (divide ?100 ?99))) =>= ?101 [100, 99, 101, 98] by Super 4 with 10 at 2 +Id : 313, {_}: multiply ?1410 (divide ?1406 (divide (divide ?1407 (divide (divide ?1408 ?1409) ?1406)) (divide ?1409 ?1408))) =>= divide ?1410 ?1407 [1409, 1408, 1407, 1406, 1410] by Super 6 with 22 at 2,3 +Id : 13731, {_}: divide ?59402 ?59403 =<= multiply (divide (multiply (inverse ?59404) ?59405) ?59406) (divide ?59406 (divide (divide ?59403 ?59402) (multiply (inverse ?59405) ?59404))) [59406, 59405, 59404, 59403, 59402] by Super 3248 with 313 at 1,3 +Id : 13819, {_}: divide ?60191 ?60192 =<= multiply (multiply (multiply (inverse ?60193) ?60194) ?60190) (divide (inverse ?60190) (divide (divide ?60192 ?60191) (multiply (inverse ?60194) ?60193))) [60190, 60194, 60193, 60192, 60191] by Super 13731 with 6 at 1,3 +Id : 318, {_}: inverse (divide ?1446 (divide (divide ?1447 (divide (divide ?1448 ?1449) ?1446)) (divide ?1449 ?1448))) =>= ?1447 [1449, 1448, 1447, 1446] by Super 4 with 10 at 2 +Id : 1006, {_}: inverse (inverse (divide ?4256 (divide ?4257 (divide (inverse (divide (divide ?4258 ?4259) ?4257)) (divide ?4259 ?4258))))) =>= ?4256 [4259, 4258, 4257, 4256] by Super 318 with 10 at 1,2 +Id : 10788, {_}: inverse (inverse (inverse (divide ?46213 (divide ?46214 (divide ?46215 ?46216))))) =<= inverse (divide (divide (inverse (divide (divide ?46217 ?46218) (divide ?46213 (divide ?46216 ?46215)))) (divide ?46218 ?46217)) ?46214) [46218, 46217, 46216, 46215, 46214, 46213] by Super 1006 with 10 at 1,1,2 +Id : 31179, {_}: inverse (inverse (inverse (divide (divide ?147814 (divide (divide ?147815 ?147816) (divide ?147817 ?147818))) (divide ?147819 (divide ?147815 ?147816))))) =>= inverse (divide (divide ?147814 (divide ?147818 ?147817)) ?147819) [147819, 147818, 147817, 147816, 147815, 147814] by Super 10788 with 22 at 1,1,1,3 +Id : 23, {_}: divide (inverse (divide ?103 ?104)) (divide (divide ?105 (divide ?106 ?107)) ?103) =>= inverse (divide ?105 (divide ?104 (divide ?107 ?106))) [107, 106, 105, 104, 103] by Super 7 with 4 at 2,1,1,2 +Id : 32, {_}: divide (inverse (multiply ?171 ?170)) (divide (divide ?172 (divide ?173 ?174)) ?171) =>= inverse (divide ?172 (divide (inverse ?170) (divide ?174 ?173))) [174, 173, 172, 170, 171] by Super 23 with 6 at 1,1,2 +Id : 346, {_}: inverse (inverse (divide ?1643 (divide (inverse ?1642) (divide (inverse (multiply (divide ?1645 ?1644) ?1642)) (divide ?1644 ?1645))))) =>= ?1643 [1644, 1645, 1642, 1643] by Super 318 with 32 at 1,2 +Id : 31311, {_}: inverse (divide ?149137 (divide (divide (inverse (multiply (divide ?149135 ?149136) ?149134)) (divide ?149136 ?149135)) (divide ?149138 ?149139))) =>= inverse (divide (divide ?149137 (divide ?149139 ?149138)) (inverse ?149134)) [149139, 149138, 149134, 149136, 149135, 149137] by Super 31179 with 346 at 1,2 +Id : 57522, {_}: inverse (divide ?312686 (divide (divide (inverse (multiply (divide ?312687 ?312688) ?312689)) (divide ?312688 ?312687)) (divide ?312690 ?312691))) =>= inverse (multiply (divide ?312686 (divide ?312691 ?312690)) ?312689) [312691, 312690, 312689, 312688, 312687, 312686] by Demod 31311 with 6 at 1,3 +Id : 3434, {_}: divide ?16101 ?16102 =<= multiply (divide (divide ?16103 ?16104) ?16105) (divide ?16105 (divide (divide ?16102 ?16101) (divide ?16104 ?16103))) [16105, 16104, 16103, 16102, 16101] by Super 2430 with 313 at 1,3 +Id : 3646, {_}: divide (inverse ?16919) ?16920 =<= multiply (divide (divide ?16921 ?16922) ?16923) (divide ?16923 (divide (multiply ?16920 ?16919) (divide ?16922 ?16921))) [16923, 16922, 16921, 16920, 16919] by Super 3434 with 6 at 1,2,2,3 +Id : 3697, {_}: divide (inverse ?17353) ?17354 =<= multiply (divide (multiply ?17355 ?17352) ?17356) (divide ?17356 (divide (multiply ?17354 ?17353) (divide (inverse ?17352) ?17355))) [17356, 17352, 17355, 17354, 17353] by Super 3646 with 6 at 1,1,3 +Id : 154000, {_}: inverse (divide ?867821 (divide (divide (inverse (divide (inverse ?867822) ?867823)) (divide ?867824 (multiply ?867825 ?867826))) (divide ?867827 ?867828))) =>= inverse (multiply (divide ?867821 (divide ?867828 ?867827)) (divide ?867824 (divide (multiply ?867823 ?867822) (divide (inverse ?867826) ?867825)))) [867828, 867827, 867826, 867825, 867824, 867823, 867822, 867821] by Super 57522 with 3697 at 1,1,1,2,1,2 +Id : 412, {_}: divide (inverse ?1885) (divide (multiply ?1889 ?1888) (inverse (divide (divide (inverse ?1888) ?1889) (divide ?1885 (divide ?1886 ?1887))))) =>= divide ?1887 ?1886 [1887, 1886, 1888, 1889, 1885] by Super 398 with 4 at 1,1,2 +Id : 440, {_}: divide (inverse ?1885) (multiply (multiply ?1889 ?1888) (divide (divide (inverse ?1888) ?1889) (divide ?1885 (divide ?1886 ?1887)))) =>= divide ?1887 ?1886 [1887, 1886, 1888, 1889, 1885] by Demod 412 with 6 at 2,2 +Id : 154130, {_}: inverse (divide ?869515 (divide (divide (inverse (divide (inverse ?869516) ?869517)) (divide ?869514 ?869513)) (divide ?869518 ?869519))) =<= inverse (multiply (divide ?869515 (divide ?869519 ?869518)) (divide (inverse ?869510) (divide (multiply ?869517 ?869516) (divide (inverse (divide (divide (inverse ?869512) ?869511) (divide ?869510 (divide ?869513 ?869514)))) (multiply ?869511 ?869512))))) [869511, 869512, 869510, 869519, 869518, 869513, 869514, 869517, 869516, 869515] by Super 154000 with 440 at 2,1,2,1,2 +Id : 31180, {_}: inverse (inverse (inverse (divide (divide ?147825 (divide (divide (inverse (divide ?147821 (divide ?147822 (divide ?147823 ?147824)))) (divide (divide ?147824 ?147823) ?147821)) (divide ?147826 ?147827))) (divide ?147828 ?147822)))) =>= inverse (divide (divide ?147825 (divide ?147827 ?147826)) ?147828) [147828, 147827, 147826, 147824, 147823, 147822, 147821, 147825] by Super 31179 with 4 at 2,2,1,1,1,2 +Id : 31662, {_}: inverse (inverse (inverse (divide (divide ?150376 (divide ?150377 (divide ?150378 ?150379))) (divide ?150380 ?150377)))) =>= inverse (divide (divide ?150376 (divide ?150379 ?150378)) ?150380) [150380, 150379, 150378, 150377, 150376] by Demod 31180 with 4 at 1,2,1,1,1,1,2 +Id : 399, {_}: divide (inverse (divide (inverse ?1789) (divide ?1790 (divide (inverse ?1791) ?1792)))) (multiply (multiply ?1792 ?1791) ?1789) =>= ?1790 [1792, 1791, 1790, 1789] by Super 398 with 6 at 2,2 +Id : 31677, {_}: inverse (inverse (inverse (divide (divide ?150512 (divide (multiply (multiply ?150511 ?150510) ?150508) (divide ?150513 ?150514))) ?150509))) =<= inverse (divide (divide ?150512 (divide ?150514 ?150513)) (inverse (divide (inverse ?150508) (divide ?150509 (divide (inverse ?150510) ?150511))))) [150509, 150514, 150513, 150508, 150510, 150511, 150512] by Super 31662 with 399 at 2,1,1,1,2 +Id : 31809, {_}: inverse (inverse (inverse (divide (divide ?150512 (divide (multiply (multiply ?150511 ?150510) ?150508) (divide ?150513 ?150514))) ?150509))) =<= inverse (multiply (divide ?150512 (divide ?150514 ?150513)) (divide (inverse ?150508) (divide ?150509 (divide (inverse ?150510) ?150511)))) [150509, 150514, 150513, 150508, 150510, 150511, 150512] by Demod 31677 with 6 at 1,3 +Id : 154818, {_}: inverse (divide ?869515 (divide (divide (inverse (divide (inverse ?869516) ?869517)) (divide ?869514 ?869513)) (divide ?869518 ?869519))) =<= inverse (inverse (inverse (divide (divide ?869515 (divide (multiply (multiply (multiply ?869511 ?869512) (divide (divide (inverse ?869512) ?869511) (divide ?869510 (divide ?869513 ?869514)))) ?869510) (divide ?869518 ?869519))) (multiply ?869517 ?869516)))) [869510, 869512, 869511, 869519, 869518, 869513, 869514, 869517, 869516, 869515] by Demod 154130 with 31809 at 3 +Id : 155388, {_}: inverse (divide ?877204 (divide (divide (inverse (divide (inverse ?877205) ?877206)) (divide ?877207 ?877208)) (divide ?877209 ?877210))) =>= inverse (inverse (inverse (divide (divide ?877204 (divide (divide ?877208 ?877207) (divide ?877209 ?877210))) (multiply ?877206 ?877205)))) [877210, 877209, 877208, 877207, 877206, 877205, 877204] by Demod 154818 with 2673 at 1,2,1,1,1,1,3 +Id : 155389, {_}: inverse (divide ?877216 (divide (divide (inverse (divide (inverse ?877217) ?877218)) (divide ?877219 ?877220)) ?877213)) =<= inverse (inverse (inverse (divide (divide ?877216 (divide (divide ?877220 ?877219) (divide (inverse (divide ?877212 (divide ?877213 (divide ?877214 ?877215)))) (divide (divide ?877215 ?877214) ?877212)))) (multiply ?877218 ?877217)))) [877215, 877214, 877212, 877213, 877220, 877219, 877218, 877217, 877216] by Super 155388 with 4 at 2,2,1,2 +Id : 156615, {_}: inverse (divide ?885441 (divide (divide (inverse (divide (inverse ?885442) ?885443)) (divide ?885444 ?885445)) ?885446)) =>= inverse (inverse (inverse (divide (divide ?885441 (divide (divide ?885445 ?885444) ?885446)) (multiply ?885443 ?885442)))) [885446, 885445, 885444, 885443, 885442, 885441] by Demod 155389 with 4 at 2,2,1,1,1,1,3 +Id : 156655, {_}: inverse (divide ?885869 (divide (divide (inverse (divide ?885866 ?885870)) (divide ?885871 ?885872)) ?885873)) =<= inverse (inverse (inverse (divide (divide ?885869 (divide (divide ?885872 ?885871) ?885873)) (multiply ?885870 (divide ?885865 (divide (divide ?885866 (divide (divide ?885867 ?885868) ?885865)) (divide ?885868 ?885867))))))) [885868, 885867, 885865, 885873, 885872, 885871, 885870, 885866, 885869] by Super 156615 with 22 at 1,1,1,1,2,1,2 +Id : 157579, {_}: inverse (divide ?891923 (divide (divide (inverse (divide ?891924 ?891925)) (divide ?891926 ?891927)) ?891928)) =<= inverse (inverse (inverse (divide (divide ?891923 (divide (divide ?891927 ?891926) ?891928)) (divide ?891925 ?891924)))) [891928, 891927, 891926, 891925, 891924, 891923] by Demod 156655 with 313 at 2,1,1,1,3 +Id : 157660, {_}: inverse (divide (inverse (divide ?892784 ?892778)) (divide (divide (inverse (divide ?892781 ?892782)) (divide (divide ?892779 ?892780) ?892783)) ?892784)) =>= inverse (inverse (inverse (divide (inverse (divide ?892783 (divide ?892778 (divide ?892780 ?892779)))) (divide ?892782 ?892781)))) [892783, 892780, 892779, 892782, 892781, 892778, 892784] by Super 157579 with 10 at 1,1,1,1,3 +Id : 164761, {_}: inverse (inverse (divide (inverse (divide ?938345 ?938346)) (divide ?938347 (divide ?938348 (divide ?938349 ?938350))))) =<= inverse (inverse (inverse (divide (inverse (divide ?938348 (divide ?938347 (divide ?938350 ?938349)))) (divide ?938346 ?938345)))) [938350, 938349, 938348, 938347, 938346, 938345] by Demod 157660 with 10 at 1,2 +Id : 345, {_}: inverse (inverse (divide ?1638 (divide ?1637 (divide (inverse (divide (divide ?1640 ?1639) ?1637)) (divide ?1639 ?1640))))) =>= ?1638 [1639, 1640, 1637, 1638] by Super 318 with 10 at 1,2 +Id : 31310, {_}: inverse (divide ?149129 (divide (divide (inverse (divide (divide ?149127 ?149128) ?149132)) (divide ?149128 ?149127)) (divide ?149130 ?149131))) =>= inverse (divide (divide ?149129 (divide ?149131 ?149130)) ?149132) [149131, 149130, 149132, 149128, 149127, 149129] by Super 31179 with 345 at 1,2 +Id : 164877, {_}: inverse (inverse (divide (inverse (divide ?939554 ?939555)) (divide (divide (inverse (divide (divide ?939551 ?939552) ?939553)) (divide ?939552 ?939551)) (divide ?939556 (divide ?939557 ?939558))))) =>= inverse (inverse (inverse (divide (inverse (divide (divide ?939556 (divide ?939557 ?939558)) ?939553)) (divide ?939555 ?939554)))) [939558, 939557, 939556, 939553, 939552, 939551, 939555, 939554] by Super 164761 with 31310 at 1,1,1,1,3 +Id : 177719, {_}: inverse (inverse (divide (divide (inverse (divide ?1018267 ?1018268)) (divide (divide ?1018269 ?1018270) ?1018271)) ?1018272)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1018271 (divide ?1018269 ?1018270)) ?1018272)) (divide ?1018268 ?1018267)))) [1018272, 1018271, 1018270, 1018269, 1018268, 1018267] by Demod 164877 with 31310 at 1,2 +Id : 177759, {_}: inverse (inverse (divide (divide (inverse (divide ?1018695 ?1018696)) (divide (divide (inverse (divide ?1018691 (divide ?1018692 (divide ?1018693 ?1018694)))) (divide (divide ?1018694 ?1018693) ?1018691)) ?1018697)) ?1018698)) =>= inverse (inverse (inverse (divide (inverse (divide (divide ?1018697 ?1018692) ?1018698)) (divide ?1018696 ?1018695)))) [1018698, 1018697, 1018694, 1018693, 1018692, 1018691, 1018696, 1018695] by Super 177719 with 4 at 2,1,1,1,1,1,1,3 +Id : 178625, {_}: inverse (inverse (divide (divide (inverse (divide ?1023630 ?1023631)) (divide ?1023632 ?1023633)) ?1023634)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1023633 ?1023632) ?1023634)) (divide ?1023631 ?1023630)))) [1023634, 1023633, 1023632, 1023631, 1023630] by Demod 177759 with 4 at 1,2,1,1,1,2 +Id : 180647, {_}: inverse (inverse (divide (divide (inverse (divide ?1035759 ?1035760)) (divide (inverse ?1035761) ?1035762)) ?1035763)) =>= inverse (inverse (inverse (divide (inverse (divide (multiply ?1035762 ?1035761) ?1035763)) (divide ?1035760 ?1035759)))) [1035763, 1035762, 1035761, 1035760, 1035759] by Super 178625 with 6 at 1,1,1,1,1,1,3 +Id : 180814, {_}: inverse (inverse (divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592)) =<= inverse (inverse (inverse (divide (inverse (divide (multiply (inverse ?1037588) ?1037591) ?1037592)) (divide ?1037590 ?1037589)))) [1037592, 1037588, 1037591, 1037590, 1037589] by Super 180647 with 6 at 2,1,1,1,2 +Id : 187329, {_}: multiply ?1072739 (inverse (inverse (divide (inverse (divide (multiply (inverse ?1072737) ?1072736) ?1072738)) (divide ?1072735 ?1072734)))) =>= divide ?1072739 (inverse (inverse (divide (divide (inverse (divide ?1072734 ?1072735)) (multiply (inverse ?1072736) ?1072737)) ?1072738))) [1072734, 1072735, 1072738, 1072736, 1072737, 1072739] by Super 6 with 180814 at 2,3 +Id : 187880, {_}: multiply ?1072739 (inverse (inverse (divide (inverse (divide (multiply (inverse ?1072737) ?1072736) ?1072738)) (divide ?1072735 ?1072734)))) =>= multiply ?1072739 (inverse (divide (divide (inverse (divide ?1072734 ?1072735)) (multiply (inverse ?1072736) ?1072737)) ?1072738)) [1072734, 1072735, 1072738, 1072736, 1072737, 1072739] by Demod 187329 with 6 at 3 +Id : 276296, {_}: inverse (inverse (divide (inverse (divide ?1501612 (divide ?1501613 ?1501614))) (divide ?1501615 (divide ?1501612 (divide ?1501613 ?1501614))))) =>= inverse (inverse (inverse ?1501615)) [1501615, 1501614, 1501613, 1501612] by Super 164761 with 4 at 1,1,1,3 +Id : 276336, {_}: inverse (inverse (divide (inverse (divide (inverse (divide ?1501959 (divide ?1501956 (divide ?1501957 ?1501958)))) (divide (divide ?1501958 ?1501957) ?1501959))) (divide ?1501960 ?1501956))) =>= inverse (inverse (inverse ?1501960)) [1501960, 1501958, 1501957, 1501956, 1501959] by Super 276296 with 4 at 2,2,1,1,2 +Id : 277437, {_}: inverse (inverse (divide (inverse ?1506460) (divide ?1506461 ?1506460))) =>= inverse (inverse (inverse ?1506461)) [1506461, 1506460] by Demod 276336 with 4 at 1,1,1,1,2 +Id : 411, {_}: divide (inverse (divide ?1881 (divide ?1882 (multiply (inverse ?1883) ?1880)))) (divide (multiply (inverse ?1880) ?1883) ?1881) =>= ?1882 [1880, 1883, 1882, 1881] by Super 398 with 6 at 2,2,1,1,2 +Id : 277453, {_}: inverse (inverse (divide (inverse (divide (multiply (inverse ?1506555) ?1506554) ?1506552)) ?1506553)) =<= inverse (inverse (inverse (inverse (divide ?1506552 (divide ?1506553 (multiply (inverse ?1506554) ?1506555)))))) [1506553, 1506552, 1506554, 1506555] by Super 277437 with 411 at 2,1,1,2 +Id : 339, {_}: inverse (divide (inverse ?1603) (divide (divide ?1604 (multiply (divide ?1605 ?1606) ?1603)) (divide ?1606 ?1605))) =>= ?1604 [1606, 1605, 1604, 1603] by Super 318 with 6 at 2,1,2,1,2 +Id : 298734, {_}: inverse ?1602430 =<= inverse (inverse (inverse (divide ?1602430 (multiply (divide ?1602431 ?1602432) (divide ?1602432 ?1602431))))) [1602432, 1602431, 1602430] by Super 277437 with 339 at 1,2 +Id : 277476, {_}: inverse (inverse (divide (inverse (inverse ?1506721)) (multiply ?1506722 ?1506721))) =>= inverse (inverse (inverse ?1506722)) [1506722, 1506721] by Super 277437 with 6 at 2,1,1,2 +Id : 298855, {_}: inverse (inverse (inverse (divide ?1603311 ?1603310))) =<= inverse (inverse (inverse (inverse (divide ?1603310 ?1603311)))) [1603310, 1603311] by Super 298734 with 277476 at 1,3 +Id : 299275, {_}: inverse (inverse (divide (inverse (divide (multiply (inverse ?1506555) ?1506554) ?1506552)) ?1506553)) =>= inverse (inverse (inverse (divide (divide ?1506553 (multiply (inverse ?1506554) ?1506555)) ?1506552))) [1506553, 1506552, 1506554, 1506555] by Demod 277453 with 298855 at 3 +Id : 299281, {_}: multiply ?1072739 (inverse (inverse (inverse (divide (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737)) ?1072738)))) =>= multiply ?1072739 (inverse (divide (divide (inverse (divide ?1072734 ?1072735)) (multiply (inverse ?1072736) ?1072737)) ?1072738)) [1072738, 1072737, 1072736, 1072734, 1072735, 1072739] by Demod 187880 with 299275 at 2,2 +Id : 299680, {_}: inverse (inverse (inverse (divide ?1606480 ?1606481))) =<= inverse (inverse (inverse (inverse (divide ?1606481 ?1606480)))) [1606481, 1606480] by Super 298734 with 277476 at 1,3 +Id : 299719, {_}: inverse (inverse (inverse (divide (inverse ?1606741) ?1606742))) =>= inverse (inverse (inverse (inverse (multiply ?1606742 ?1606741)))) [1606742, 1606741] by Super 299680 with 6 at 1,1,1,1,3 +Id : 300712, {_}: inverse (inverse (inverse (divide ?1610501 (inverse ?1610500)))) =<= inverse (inverse (inverse (inverse (inverse (multiply ?1610501 ?1610500))))) [1610500, 1610501] by Super 298855 with 299719 at 1,3 +Id : 303239, {_}: inverse (inverse (inverse (multiply ?1620581 ?1620582))) =<= inverse (inverse (inverse (inverse (inverse (multiply ?1620581 ?1620582))))) [1620582, 1620581] by Demod 300712 with 6 at 1,1,1,2 +Id : 2523, {_}: ?11149 =<= multiply (multiply (divide ?11152 ?11153) (divide (divide ?11153 ?11152) (divide ?11154 ?11149))) ?11154 [11154, 11153, 11152, 11149] by Demod 2431 with 4 at 2 +Id : 303314, {_}: inverse (inverse (inverse (multiply (multiply (divide ?1621150 ?1621151) (divide (divide ?1621151 ?1621150) (divide ?1621152 ?1621149))) ?1621152))) =>= inverse (inverse (inverse (inverse (inverse ?1621149)))) [1621149, 1621152, 1621151, 1621150] by Super 303239 with 2523 at 1,1,1,1,1,3 +Id : 304462, {_}: inverse (inverse (inverse ?1624383)) =<= inverse (inverse (inverse (inverse (inverse ?1624383)))) [1624383] by Demod 303314 with 2523 at 1,1,1,2 +Id : 304463, {_}: inverse (inverse (inverse (divide ?1624385 (divide (divide ?1624386 (divide (divide ?1624387 ?1624388) ?1624385)) (divide ?1624388 ?1624387))))) =>= inverse (inverse (inverse (inverse ?1624386))) [1624388, 1624387, 1624386, 1624385] by Super 304462 with 22 at 1,1,1,1,3 +Id : 305044, {_}: inverse (inverse ?1624386) =<= inverse (inverse (inverse (inverse ?1624386))) [1624386] by Demod 304463 with 22 at 1,1,2 +Id : 309508, {_}: inverse (inverse (inverse (divide ?1603311 ?1603310))) =>= inverse (inverse (divide ?1603310 ?1603311)) [1603310, 1603311] by Demod 298855 with 305044 at 3 +Id : 309601, {_}: multiply ?1072739 (inverse (inverse (divide ?1072738 (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737))))) =<= multiply ?1072739 (inverse (divide (divide (inverse (divide ?1072734 ?1072735)) (multiply (inverse ?1072736) ?1072737)) ?1072738)) [1072737, 1072736, 1072734, 1072735, 1072738, 1072739] by Demod 299281 with 309508 at 2,2 +Id : 310013, {_}: inverse (inverse ?1628964) =<= inverse (inverse (inverse (inverse ?1628964))) [1628964] by Demod 304463 with 22 at 1,1,2 +Id : 310154, {_}: inverse (inverse (divide ?1629909 (divide ?1629910 (divide (inverse (divide (divide ?1629911 ?1629912) ?1629910)) (divide ?1629912 ?1629911))))) =>= inverse (inverse ?1629909) [1629912, 1629911, 1629910, 1629909] by Super 310013 with 345 at 1,1,3 +Id : 310837, {_}: ?1629909 =<= inverse (inverse ?1629909) [1629909] by Demod 310154 with 345 at 2 +Id : 311136, {_}: multiply ?1072739 (divide ?1072738 (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737))) =<= multiply ?1072739 (inverse (divide (divide (inverse (divide ?1072734 ?1072735)) (multiply (inverse ?1072736) ?1072737)) ?1072738)) [1072737, 1072736, 1072734, 1072735, 1072738, 1072739] by Demod 309601 with 310837 at 2,2 +Id : 299278, {_}: inverse (inverse (divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592)) =<= inverse (inverse (inverse (inverse (divide (divide (divide ?1037590 ?1037589) (multiply (inverse ?1037591) ?1037588)) ?1037592)))) [1037592, 1037588, 1037591, 1037590, 1037589] by Demod 180814 with 299275 at 1,3 +Id : 299285, {_}: inverse (inverse (divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592)) =>= inverse (inverse (inverse (divide ?1037592 (divide (divide ?1037590 ?1037589) (multiply (inverse ?1037591) ?1037588))))) [1037592, 1037588, 1037591, 1037590, 1037589] by Demod 299278 with 298855 at 3 +Id : 309533, {_}: inverse (inverse (divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592)) =>= inverse (inverse (divide (divide (divide ?1037590 ?1037589) (multiply (inverse ?1037591) ?1037588)) ?1037592)) [1037592, 1037588, 1037591, 1037590, 1037589] by Demod 299285 with 309508 at 3 +Id : 311173, {_}: divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592 =<= inverse (inverse (divide (divide (divide ?1037590 ?1037589) (multiply (inverse ?1037591) ?1037588)) ?1037592)) [1037592, 1037588, 1037591, 1037590, 1037589] by Demod 309533 with 310837 at 2 +Id : 311174, {_}: divide (divide (inverse (divide ?1037589 ?1037590)) (multiply (inverse ?1037591) ?1037588)) ?1037592 =>= divide (divide (divide ?1037590 ?1037589) (multiply (inverse ?1037591) ?1037588)) ?1037592 [1037592, 1037588, 1037591, 1037590, 1037589] by Demod 311173 with 310837 at 3 +Id : 311184, {_}: multiply ?1072739 (divide ?1072738 (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737))) =<= multiply ?1072739 (inverse (divide (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737)) ?1072738)) [1072737, 1072736, 1072734, 1072735, 1072738, 1072739] by Demod 311136 with 311174 at 1,2,3 +Id : 328, {_}: inverse (divide ?1523 (divide (divide ?1524 (divide (divide (inverse ?1522) ?1525) ?1523)) (multiply ?1525 ?1522))) =>= ?1524 [1525, 1522, 1524, 1523] by Super 318 with 6 at 2,2,1,2 +Id : 5095, {_}: multiply ?23662 (divide ?23663 (divide (divide ?23664 (divide (divide (inverse ?23665) ?23666) ?23663)) (multiply ?23666 ?23665))) =>= divide ?23662 ?23664 [23666, 23665, 23664, 23663, 23662] by Super 6 with 328 at 2,3 +Id : 5148, {_}: multiply ?24110 (inverse (divide ?24111 (divide ?24109 (divide (inverse (divide (multiply ?24113 ?24112) ?24109)) (divide (inverse ?24112) ?24113))))) =>= divide ?24110 ?24111 [24112, 24113, 24109, 24111, 24110] by Super 5095 with 10 at 2,2 +Id : 722, {_}: inverse (divide ?3136 (divide (divide ?3137 (divide (divide (inverse ?3138) ?3139) ?3136)) (multiply ?3139 ?3138))) =>= ?3137 [3139, 3138, 3137, 3136] by Super 318 with 6 at 2,2,1,2 +Id : 746, {_}: inverse (inverse (divide ?3302 (divide ?3301 (divide (inverse (divide (multiply ?3304 ?3303) ?3301)) (divide (inverse ?3303) ?3304))))) =>= ?3302 [3303, 3304, 3301, 3302] by Super 722 with 10 at 1,2 +Id : 311071, {_}: divide ?3302 (divide ?3301 (divide (inverse (divide (multiply ?3304 ?3303) ?3301)) (divide (inverse ?3303) ?3304))) =>= ?3302 [3303, 3304, 3301, 3302] by Demod 746 with 310837 at 2 +Id : 311292, {_}: multiply ?24110 (inverse ?24111) =>= divide ?24110 ?24111 [24111, 24110] by Demod 5148 with 311071 at 1,2,2 +Id : 311301, {_}: multiply ?1072739 (divide ?1072738 (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737))) =>= divide ?1072739 (divide (divide (divide ?1072735 ?1072734) (multiply (inverse ?1072736) ?1072737)) ?1072738) [1072737, 1072736, 1072734, 1072735, 1072738, 1072739] by Demod 311184 with 311292 at 3 +Id : 311313, {_}: divide ?60191 ?60192 =<= divide (multiply (multiply (inverse ?60193) ?60194) ?60190) (divide (divide (divide ?60192 ?60191) (multiply (inverse ?60194) ?60193)) (inverse ?60190)) [60190, 60194, 60193, 60192, 60191] by Demod 13819 with 311301 at 3 +Id : 311314, {_}: divide ?60191 ?60192 =<= divide (multiply (multiply (inverse ?60193) ?60194) ?60190) (multiply (divide (divide ?60192 ?60191) (multiply (inverse ?60194) ?60193)) ?60190) [60190, 60194, 60193, 60192, 60191] by Demod 311313 with 6 at 2,3 +Id : 54, {_}: divide (inverse (divide ?250 ?251)) (divide (divide ?252 (multiply ?253 ?254)) ?250) =>= inverse (divide ?252 (divide ?251 (divide (inverse ?254) ?253))) [254, 253, 252, 251, 250] by Super 23 with 6 at 2,1,2,2 +Id : 55, {_}: divide (inverse (divide (inverse ?256) ?257)) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= inverse (divide ?258 (divide ?257 (divide (inverse ?260) ?259))) [260, 259, 258, 257, 256] by Super 54 with 6 at 2,2 +Id : 311016, {_}: inverse (divide ?1603311 ?1603310) =<= inverse (inverse (divide ?1603310 ?1603311)) [1603310, 1603311] by Demod 309508 with 310837 at 2 +Id : 311017, {_}: inverse (divide ?1603311 ?1603310) =>= divide ?1603310 ?1603311 [1603310, 1603311] by Demod 311016 with 310837 at 3 +Id : 311424, {_}: divide (divide ?257 (inverse ?256)) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= inverse (divide ?258 (divide ?257 (divide (inverse ?260) ?259))) [260, 259, 258, 256, 257] by Demod 55 with 311017 at 1,2 +Id : 311425, {_}: divide (divide ?257 (inverse ?256)) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= divide (divide ?257 (divide (inverse ?260) ?259)) ?258 [260, 259, 258, 256, 257] by Demod 311424 with 311017 at 3 +Id : 311594, {_}: divide (multiply ?257 ?256) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= divide (divide ?257 (divide (inverse ?260) ?259)) ?258 [260, 259, 258, 256, 257] by Demod 311425 with 6 at 1,2 +Id : 311596, {_}: divide ?60191 ?60192 =<= divide (divide (multiply (inverse ?60193) ?60194) (divide (inverse ?60193) (inverse ?60194))) (divide ?60192 ?60191) [60194, 60193, 60192, 60191] by Demod 311314 with 311594 at 3 +Id : 179540, {_}: inverse (inverse (divide (divide (inverse (divide (inverse ?1029056) ?1029057)) (divide ?1029058 ?1029059)) ?1029060)) =>= inverse (inverse (inverse (divide (inverse (divide (divide ?1029059 ?1029058) ?1029060)) (multiply ?1029057 ?1029056)))) [1029060, 1029059, 1029058, 1029057, 1029056] by Super 178625 with 6 at 2,1,1,1,3 +Id : 186333, {_}: inverse (inverse (divide (divide (inverse (multiply (inverse ?1068110) ?1068111)) (divide ?1068112 ?1068113)) ?1068114)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1068113 ?1068112) ?1068114)) (multiply (inverse ?1068111) ?1068110)))) [1068114, 1068113, 1068112, 1068111, 1068110] by Super 179540 with 6 at 1,1,1,1,1,2 +Id : 186556, {_}: inverse (inverse (divide (divide (inverse (multiply (inverse ?1070554) ?1070555)) (divide (inverse ?1070553) ?1070556)) ?1070557)) =>= inverse (inverse (inverse (divide (inverse (divide (multiply ?1070556 ?1070553) ?1070557)) (multiply (inverse ?1070555) ?1070554)))) [1070557, 1070556, 1070553, 1070555, 1070554] by Super 186333 with 6 at 1,1,1,1,1,1,3 +Id : 179745, {_}: inverse (inverse (divide (divide (inverse (multiply (inverse ?1031254) ?1031253)) (divide ?1031255 ?1031256)) ?1031257)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1031256 ?1031255) ?1031257)) (multiply (inverse ?1031253) ?1031254)))) [1031257, 1031256, 1031255, 1031253, 1031254] by Super 179540 with 6 at 1,1,1,1,1,2 +Id : 277438, {_}: inverse (inverse (divide (inverse (divide (divide ?1506466 ?1506465) ?1506463)) ?1506464)) =<= inverse (inverse (inverse (inverse (divide ?1506463 (divide ?1506464 (divide ?1506465 ?1506466)))))) [1506464, 1506463, 1506465, 1506466] by Super 277437 with 4 at 2,1,1,2 +Id : 299272, {_}: inverse (inverse (divide (inverse (divide (divide ?1506466 ?1506465) ?1506463)) ?1506464)) =>= inverse (inverse (inverse (divide (divide ?1506464 (divide ?1506465 ?1506466)) ?1506463))) [1506464, 1506463, 1506465, 1506466] by Demod 277438 with 298855 at 3 +Id : 299290, {_}: inverse (inverse (divide (divide (inverse (multiply (inverse ?1031254) ?1031253)) (divide ?1031255 ?1031256)) ?1031257)) =<= inverse (inverse (inverse (inverse (divide (divide (multiply (inverse ?1031253) ?1031254) (divide ?1031255 ?1031256)) ?1031257)))) [1031257, 1031256, 1031255, 1031253, 1031254] by Demod 179745 with 299272 at 1,3 +Id : 299299, {_}: inverse (inverse (divide (divide (inverse (multiply (inverse ?1031254) ?1031253)) (divide ?1031255 ?1031256)) ?1031257)) =>= inverse (inverse (inverse (divide ?1031257 (divide (multiply (inverse ?1031253) ?1031254) (divide ?1031255 ?1031256))))) [1031257, 1031256, 1031255, 1031253, 1031254] by Demod 299290 with 298855 at 3 +Id : 299300, {_}: inverse (inverse (inverse (divide ?1070557 (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556))))) =?= inverse (inverse (inverse (divide (inverse (divide (multiply ?1070556 ?1070553) ?1070557)) (multiply (inverse ?1070555) ?1070554)))) [1070556, 1070553, 1070554, 1070555, 1070557] by Demod 186556 with 299299 at 2 +Id : 300336, {_}: inverse (inverse (inverse (divide ?1070557 (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556))))) =>= inverse (inverse (inverse (inverse (multiply (multiply (inverse ?1070555) ?1070554) (divide (multiply ?1070556 ?1070553) ?1070557))))) [1070556, 1070553, 1070554, 1070555, 1070557] by Demod 299300 with 299719 at 3 +Id : 309498, {_}: inverse (inverse (inverse (divide ?1070557 (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556))))) =>= inverse (inverse (multiply (multiply (inverse ?1070555) ?1070554) (divide (multiply ?1070556 ?1070553) ?1070557))) [1070556, 1070553, 1070554, 1070555, 1070557] by Demod 300336 with 305044 at 3 +Id : 309684, {_}: inverse (inverse (divide (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556)) ?1070557)) =>= inverse (inverse (multiply (multiply (inverse ?1070555) ?1070554) (divide (multiply ?1070556 ?1070553) ?1070557))) [1070557, 1070556, 1070553, 1070554, 1070555] by Demod 309498 with 309508 at 2 +Id : 311181, {_}: divide (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556)) ?1070557 =<= inverse (inverse (multiply (multiply (inverse ?1070555) ?1070554) (divide (multiply ?1070556 ?1070553) ?1070557))) [1070557, 1070556, 1070553, 1070554, 1070555] by Demod 309684 with 310837 at 2 +Id : 311182, {_}: divide (divide (multiply (inverse ?1070555) ?1070554) (divide (inverse ?1070553) ?1070556)) ?1070557 =>= multiply (multiply (inverse ?1070555) ?1070554) (divide (multiply ?1070556 ?1070553) ?1070557) [1070557, 1070556, 1070553, 1070554, 1070555] by Demod 311181 with 310837 at 3 +Id : 311600, {_}: divide ?60191 ?60192 =<= multiply (multiply (inverse ?60193) ?60194) (divide (multiply (inverse ?60194) ?60193) (divide ?60192 ?60191)) [60194, 60193, 60192, 60191] by Demod 311596 with 311182 at 3 +Id : 311603, {_}: divide (inverse ?5406) (divide (multiply ?5407 ?5408) ?5406) =>= divide (inverse ?5408) ?5407 [5408, 5407, 5406] by Demod 1282 with 311600 at 2,2 +Id : 276834, {_}: inverse (inverse (divide (inverse ?1501956) (divide ?1501960 ?1501956))) =>= inverse (inverse (inverse ?1501960)) [1501960, 1501956] by Demod 276336 with 4 at 1,1,1,1,2 +Id : 311035, {_}: divide (inverse ?1501956) (divide ?1501960 ?1501956) =>= inverse (inverse (inverse ?1501960)) [1501960, 1501956] by Demod 276834 with 310837 at 2 +Id : 311036, {_}: divide (inverse ?1501956) (divide ?1501960 ?1501956) =>= inverse ?1501960 [1501960, 1501956] by Demod 311035 with 310837 at 3 +Id : 311604, {_}: inverse (multiply ?5407 ?5408) =<= divide (inverse ?5408) ?5407 [5408, 5407] by Demod 311603 with 311036 at 2 +Id : 311708, {_}: ?12297 =<= multiply (multiply (multiply ?12298 ?12296) (divide (inverse (multiply ?12298 ?12296)) (divide ?12299 ?12297))) ?12299 [12299, 12296, 12298, 12297] by Demod 2673 with 311604 at 1,2,1,3 +Id : 311709, {_}: ?12297 =<= multiply (multiply (multiply ?12298 ?12296) (inverse (multiply (divide ?12299 ?12297) (multiply ?12298 ?12296)))) ?12299 [12299, 12296, 12298, 12297] by Demod 311708 with 311604 at 2,1,3 +Id : 311866, {_}: ?12297 =<= multiply (divide (multiply ?12298 ?12296) (multiply (divide ?12299 ?12297) (multiply ?12298 ?12296))) ?12299 [12299, 12296, 12298, 12297] by Demod 311709 with 311292 at 1,3 +Id : 311110, {_}: divide (inverse (inverse ?1506721)) (multiply ?1506722 ?1506721) =>= inverse (inverse (inverse ?1506722)) [1506722, 1506721] by Demod 277476 with 310837 at 2 +Id : 311111, {_}: divide ?1506721 (multiply ?1506722 ?1506721) =>= inverse (inverse (inverse ?1506722)) [1506722, 1506721] by Demod 311110 with 310837 at 1,2 +Id : 311112, {_}: divide ?1506721 (multiply ?1506722 ?1506721) =>= inverse ?1506722 [1506722, 1506721] by Demod 311111 with 310837 at 3 +Id : 311867, {_}: ?12297 =<= multiply (inverse (divide ?12299 ?12297)) ?12299 [12299, 12297] by Demod 311866 with 311112 at 1,3 +Id : 311868, {_}: ?12297 =<= multiply (divide ?12297 ?12299) ?12299 [12299, 12297] by Demod 311867 with 311017 at 1,3 +Id : 31329, {_}: inverse (inverse (inverse (divide (divide ?147825 (divide ?147822 (divide ?147826 ?147827))) (divide ?147828 ?147822)))) =>= inverse (divide (divide ?147825 (divide ?147827 ?147826)) ?147828) [147828, 147827, 147826, 147822, 147825] by Demod 31180 with 4 at 1,2,1,1,1,1,2 +Id : 31603, {_}: multiply ?149797 (inverse (inverse (divide (divide ?149792 (divide ?149793 (divide ?149794 ?149795))) (divide ?149796 ?149793)))) =>= divide ?149797 (inverse (divide (divide ?149792 (divide ?149795 ?149794)) ?149796)) [149796, 149795, 149794, 149793, 149792, 149797] by Super 6 with 31329 at 2,3 +Id : 33302, {_}: multiply ?159935 (inverse (inverse (divide (divide ?159936 (divide ?159937 (divide ?159938 ?159939))) (divide ?159940 ?159937)))) =>= multiply ?159935 (divide (divide ?159936 (divide ?159939 ?159938)) ?159940) [159940, 159939, 159938, 159937, 159936, 159935] by Demod 31603 with 6 at 3 +Id : 33303, {_}: multiply ?159946 (inverse (inverse (divide (divide ?159947 (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949))) ?159943))) =>= multiply ?159946 (divide (divide ?159947 (divide ?159949 ?159948)) (inverse (divide ?159942 (divide ?159943 (divide ?159944 ?159945))))) [159943, 159949, 159948, 159942, 159944, 159945, 159947, 159946] by Super 33302 with 4 at 2,1,1,2,2 +Id : 33719, {_}: multiply ?159946 (inverse (inverse (divide (divide ?159947 (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949))) ?159943))) =>= multiply ?159946 (multiply (divide ?159947 (divide ?159949 ?159948)) (divide ?159942 (divide ?159943 (divide ?159944 ?159945)))) [159943, 159949, 159948, 159942, 159944, 159945, 159947, 159946] by Demod 33303 with 6 at 2,3 +Id : 311080, {_}: multiply ?159946 (divide (divide ?159947 (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949))) ?159943) =<= multiply ?159946 (multiply (divide ?159947 (divide ?159949 ?159948)) (divide ?159942 (divide ?159943 (divide ?159944 ?159945)))) [159943, 159949, 159948, 159942, 159944, 159945, 159947, 159946] by Demod 33719 with 310837 at 2,2 +Id : 158025, {_}: inverse (inverse (divide (inverse (divide ?892781 ?892782)) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))))) =<= inverse (inverse (inverse (divide (inverse (divide ?892783 (divide ?892778 (divide ?892780 ?892779)))) (divide ?892782 ?892781)))) [892780, 892779, 892783, 892778, 892782, 892781] by Demod 157660 with 10 at 1,2 +Id : 300347, {_}: inverse (inverse (divide (inverse (divide ?892781 ?892782)) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))))) =<= inverse (inverse (inverse (inverse (multiply (divide ?892782 ?892781) (divide ?892783 (divide ?892778 (divide ?892780 ?892779))))))) [892780, 892779, 892783, 892778, 892782, 892781] by Demod 158025 with 299719 at 3 +Id : 309517, {_}: inverse (inverse (divide (inverse (divide ?892781 ?892782)) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))))) =>= inverse (inverse (multiply (divide ?892782 ?892781) (divide ?892783 (divide ?892778 (divide ?892780 ?892779))))) [892780, 892779, 892783, 892778, 892782, 892781] by Demod 300347 with 305044 at 3 +Id : 311023, {_}: divide (inverse (divide ?892781 ?892782)) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))) =<= inverse (inverse (multiply (divide ?892782 ?892781) (divide ?892783 (divide ?892778 (divide ?892780 ?892779))))) [892780, 892779, 892783, 892778, 892782, 892781] by Demod 309517 with 310837 at 2 +Id : 311024, {_}: divide (inverse (divide ?892781 ?892782)) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))) =>= multiply (divide ?892782 ?892781) (divide ?892783 (divide ?892778 (divide ?892780 ?892779))) [892780, 892779, 892783, 892778, 892782, 892781] by Demod 311023 with 310837 at 3 +Id : 311478, {_}: divide (divide ?892782 ?892781) (divide ?892778 (divide ?892783 (divide ?892779 ?892780))) =<= multiply (divide ?892782 ?892781) (divide ?892783 (divide ?892778 (divide ?892780 ?892779))) [892780, 892779, 892783, 892778, 892781, 892782] by Demod 311024 with 311017 at 1,2 +Id : 311484, {_}: multiply ?159946 (divide (divide ?159947 (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949))) ?159943) =?= multiply ?159946 (divide (divide ?159947 (divide ?159949 ?159948)) (divide ?159943 (divide ?159942 (divide ?159945 ?159944)))) [159943, 159949, 159948, 159942, 159944, 159945, 159947, 159946] by Demod 311080 with 311478 at 2,3 +Id : 31729, {_}: inverse (inverse (inverse (divide (divide ?150997 ?150994) (divide ?150999 (inverse (divide ?150998 (divide ?150994 (divide ?150995 ?150996)))))))) =>= inverse (divide (divide ?150997 (divide ?150998 (divide ?150996 ?150995))) ?150999) [150996, 150995, 150998, 150999, 150994, 150997] by Super 31662 with 4 at 2,1,1,1,1,2 +Id : 36383, {_}: inverse (inverse (inverse (divide (divide ?176720 ?176721) (multiply ?176722 (divide ?176723 (divide ?176721 (divide ?176724 ?176725))))))) =>= inverse (divide (divide ?176720 (divide ?176723 (divide ?176725 ?176724))) ?176722) [176725, 176724, 176723, 176722, 176721, 176720] by Demod 31729 with 6 at 2,1,1,1,2 +Id : 36463, {_}: inverse (inverse (inverse (divide ?177473 (multiply ?177476 (divide ?177477 (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479))))))) =>= inverse (divide (divide (inverse (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) (divide ?177477 (divide ?177479 ?177478))) ?177476) [177479, 177478, 177472, 177474, 177475, 177477, 177476, 177473] by Super 36383 with 4 at 1,1,1,1,2 +Id : 309587, {_}: inverse (inverse (divide (multiply ?177476 (divide ?177477 (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)))) ?177473)) =<= inverse (divide (divide (inverse (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) (divide ?177477 (divide ?177479 ?177478))) ?177476) [177473, 177479, 177478, 177472, 177474, 177475, 177477, 177476] by Demod 36463 with 309508 at 2 +Id : 311007, {_}: divide (multiply ?177476 (divide ?177477 (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)))) ?177473 =<= inverse (divide (divide (inverse (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) (divide ?177477 (divide ?177479 ?177478))) ?177476) [177473, 177479, 177478, 177472, 177474, 177475, 177477, 177476] by Demod 309587 with 310837 at 2 +Id : 178159, {_}: inverse (inverse (divide (divide (inverse (divide ?1018695 ?1018696)) (divide ?1018692 ?1018697)) ?1018698)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1018697 ?1018692) ?1018698)) (divide ?1018696 ?1018695)))) [1018698, 1018697, 1018692, 1018696, 1018695] by Demod 177759 with 4 at 1,2,1,1,1,2 +Id : 178479, {_}: multiply ?1021991 (inverse (inverse (divide (inverse (divide (divide ?1021989 ?1021988) ?1021990)) (divide ?1021987 ?1021986)))) =>= divide ?1021991 (inverse (inverse (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990))) [1021986, 1021987, 1021990, 1021988, 1021989, 1021991] by Super 6 with 178159 at 2,3 +Id : 178887, {_}: multiply ?1021991 (inverse (inverse (divide (inverse (divide (divide ?1021989 ?1021988) ?1021990)) (divide ?1021987 ?1021986)))) =>= multiply ?1021991 (inverse (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990)) [1021986, 1021987, 1021990, 1021988, 1021989, 1021991] by Demod 178479 with 6 at 3 +Id : 299293, {_}: multiply ?1021991 (inverse (inverse (inverse (divide (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989)) ?1021990)))) =>= multiply ?1021991 (inverse (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990)) [1021990, 1021989, 1021988, 1021986, 1021987, 1021991] by Demod 178887 with 299272 at 2,2 +Id : 309531, {_}: multiply ?1021991 (inverse (inverse (divide ?1021990 (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989))))) =<= multiply ?1021991 (inverse (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990)) [1021989, 1021988, 1021986, 1021987, 1021990, 1021991] by Demod 299293 with 309508 at 2,2 +Id : 311175, {_}: multiply ?1021991 (divide ?1021990 (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989))) =<= multiply ?1021991 (inverse (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990)) [1021989, 1021988, 1021986, 1021987, 1021990, 1021991] by Demod 309531 with 310837 at 2,2 +Id : 311300, {_}: multiply ?1021991 (divide ?1021990 (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989))) =<= divide ?1021991 (divide (divide (inverse (divide ?1021986 ?1021987)) (divide ?1021988 ?1021989)) ?1021990) [1021989, 1021988, 1021986, 1021987, 1021990, 1021991] by Demod 311175 with 311292 at 3 +Id : 311471, {_}: multiply ?1021991 (divide ?1021990 (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989))) =>= divide ?1021991 (divide (divide (divide ?1021987 ?1021986) (divide ?1021988 ?1021989)) ?1021990) [1021989, 1021988, 1021986, 1021987, 1021990, 1021991] by Demod 311300 with 311017 at 1,1,2,3 +Id : 312117, {_}: divide (divide ?177476 (divide (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)) ?177477)) ?177473 =<= inverse (divide (divide (inverse (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) (divide ?177477 (divide ?177479 ?177478))) ?177476) [177473, 177477, 177479, 177478, 177472, 177474, 177475, 177476] by Demod 311007 with 311471 at 1,2 +Id : 312118, {_}: divide (divide ?177476 (divide (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)) ?177477)) ?177473 =<= divide ?177476 (divide (inverse (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) (divide ?177477 (divide ?177479 ?177478))) [177473, 177477, 177479, 177478, 177472, 177474, 177475, 177476] by Demod 312117 with 311017 at 3 +Id : 312119, {_}: divide (divide ?177476 (divide (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)) ?177477)) ?177473 =<= divide ?177476 (inverse (multiply (divide ?177477 (divide ?177479 ?177478)) (divide ?177472 (divide ?177473 (divide ?177474 ?177475))))) [177473, 177477, 177479, 177478, 177472, 177474, 177475, 177476] by Demod 312118 with 311604 at 2,3 +Id : 312120, {_}: divide (divide ?177476 (divide (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)) ?177477)) ?177473 =<= multiply ?177476 (multiply (divide ?177477 (divide ?177479 ?177478)) (divide ?177472 (divide ?177473 (divide ?177474 ?177475)))) [177473, 177477, 177479, 177478, 177472, 177474, 177475, 177476] by Demod 312119 with 6 at 3 +Id : 312121, {_}: divide (divide ?177476 (divide (divide (divide (divide ?177475 ?177474) ?177472) (divide ?177478 ?177479)) ?177477)) ?177473 =<= multiply ?177476 (divide (divide ?177477 (divide ?177479 ?177478)) (divide ?177473 (divide ?177472 (divide ?177475 ?177474)))) [177473, 177477, 177479, 177478, 177472, 177474, 177475, 177476] by Demod 312120 with 311478 at 2,3 +Id : 312122, {_}: multiply ?159946 (divide (divide ?159947 (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949))) ?159943) =>= divide (divide ?159946 (divide (divide (divide (divide ?159945 ?159944) ?159942) (divide ?159948 ?159949)) ?159947)) ?159943 [159943, 159949, 159948, 159942, 159944, 159945, 159947, 159946] by Demod 311484 with 312121 at 3 +Id : 26, {_}: divide (inverse (divide ?127 ?128)) (divide (divide ?129 (multiply ?130 ?126)) ?127) =>= inverse (divide ?129 (divide ?128 (divide (inverse ?126) ?130))) [126, 130, 129, 128, 127] by Super 23 with 6 at 2,1,2,2 +Id : 673, {_}: inverse (divide ?2882 (divide (divide ?2883 (divide (multiply ?2884 ?2885) ?2882)) (divide (inverse ?2885) ?2884))) =>= ?2883 [2885, 2884, 2883, 2882] by Super 4 with 26 at 2 +Id : 1528, {_}: inverse (divide ?6677 (divide (divide ?6678 (divide (multiply (inverse ?6679) ?6680) ?6677)) (multiply (inverse ?6680) ?6679))) =>= ?6678 [6680, 6679, 6678, 6677] by Super 673 with 6 at 2,2,1,2 +Id : 1549, {_}: inverse (inverse (divide ?6831 (divide (inverse ?6830) (divide (inverse (multiply (multiply (inverse ?6833) ?6832) ?6830)) (multiply (inverse ?6832) ?6833))))) =>= ?6831 [6832, 6833, 6830, 6831] by Super 1528 with 32 at 1,2 +Id : 311073, {_}: divide ?6831 (divide (inverse ?6830) (divide (inverse (multiply (multiply (inverse ?6833) ?6832) ?6830)) (multiply (inverse ?6832) ?6833))) =>= ?6831 [6832, 6833, 6830, 6831] by Demod 1549 with 310837 at 2 +Id : 311743, {_}: divide ?6831 (inverse (multiply (divide (inverse (multiply (multiply (inverse ?6833) ?6832) ?6830)) (multiply (inverse ?6832) ?6833)) ?6830)) =>= ?6831 [6830, 6832, 6833, 6831] by Demod 311073 with 311604 at 2,2 +Id : 311744, {_}: divide ?6831 (inverse (multiply (inverse (multiply (multiply (inverse ?6832) ?6833) (multiply (multiply (inverse ?6833) ?6832) ?6830))) ?6830)) =>= ?6831 [6830, 6833, 6832, 6831] by Demod 311743 with 311604 at 1,1,2,2 +Id : 311850, {_}: multiply ?6831 (multiply (inverse (multiply (multiply (inverse ?6832) ?6833) (multiply (multiply (inverse ?6833) ?6832) ?6830))) ?6830) =>= ?6831 [6830, 6833, 6832, 6831] by Demod 311744 with 6 at 2 +Id : 179801, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1031802) ?1031803)) (divide ?1031804 ?1031805)) ?1031801)) =<= inverse (inverse (inverse (divide (inverse (divide (divide ?1031805 ?1031804) (inverse ?1031801))) (multiply ?1031803 ?1031802)))) [1031801, 1031805, 1031804, 1031803, 1031802] by Super 179540 with 6 at 1,1,2 +Id : 182767, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1047817) ?1047818)) (divide ?1047819 ?1047820)) ?1047821)) =>= inverse (inverse (inverse (divide (inverse (multiply (divide ?1047820 ?1047819) ?1047821)) (multiply ?1047818 ?1047817)))) [1047821, 1047820, 1047819, 1047818, 1047817] by Demod 179801 with 6 at 1,1,1,1,1,3 +Id : 190010, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1087858) ?1087859)) (multiply ?1087860 ?1087861)) ?1087862)) =<= inverse (inverse (inverse (divide (inverse (multiply (divide (inverse ?1087861) ?1087860) ?1087862)) (multiply ?1087859 ?1087858)))) [1087862, 1087861, 1087860, 1087859, 1087858] by Super 182767 with 6 at 2,1,1,1,2 +Id : 190267, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1090617) ?1090618)) (multiply (inverse ?1090616) ?1090619)) ?1090620)) =>= inverse (inverse (inverse (divide (inverse (multiply (multiply (inverse ?1090619) ?1090616) ?1090620)) (multiply ?1090618 ?1090617)))) [1090620, 1090619, 1090616, 1090618, 1090617] by Super 190010 with 6 at 1,1,1,1,1,1,3 +Id : 182806, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1048196) ?1048197)) (multiply ?1048198 ?1048195)) ?1048199)) =<= inverse (inverse (inverse (divide (inverse (multiply (divide (inverse ?1048195) ?1048198) ?1048199)) (multiply ?1048197 ?1048196)))) [1048199, 1048195, 1048198, 1048197, 1048196] by Super 182767 with 6 at 2,1,1,1,2 +Id : 490, {_}: divide (inverse (divide (inverse ?2255) (divide ?2256 (multiply ?2257 ?2254)))) (multiply (divide (inverse ?2254) ?2257) ?2255) =>= ?2256 [2254, 2257, 2256, 2255] by Super 466 with 6 at 2,2,1,1,2 +Id : 277455, {_}: inverse (inverse (divide (inverse (multiply (divide (inverse ?1506566) ?1506565) ?1506563)) ?1506564)) =<= inverse (inverse (inverse (inverse (divide (inverse ?1506563) (divide ?1506564 (multiply ?1506565 ?1506566)))))) [1506564, 1506563, 1506565, 1506566] by Super 277437 with 490 at 2,1,1,2 +Id : 299269, {_}: inverse (inverse (divide (inverse (multiply (divide (inverse ?1506566) ?1506565) ?1506563)) ?1506564)) =>= inverse (inverse (inverse (divide (divide ?1506564 (multiply ?1506565 ?1506566)) (inverse ?1506563)))) [1506564, 1506563, 1506565, 1506566] by Demod 277455 with 298855 at 3 +Id : 299304, {_}: inverse (inverse (divide (inverse (multiply (divide (inverse ?1506566) ?1506565) ?1506563)) ?1506564)) =>= inverse (inverse (inverse (multiply (divide ?1506564 (multiply ?1506565 ?1506566)) ?1506563))) [1506564, 1506563, 1506565, 1506566] by Demod 299269 with 6 at 1,1,1,3 +Id : 299306, {_}: inverse (inverse (multiply (divide (inverse (divide (inverse ?1048196) ?1048197)) (multiply ?1048198 ?1048195)) ?1048199)) =>= inverse (inverse (inverse (inverse (multiply (divide (multiply ?1048197 ?1048196) (multiply ?1048198 ?1048195)) ?1048199)))) [1048199, 1048195, 1048198, 1048197, 1048196] by Demod 182806 with 299304 at 1,3 +Id : 299307, {_}: inverse (inverse (inverse (inverse (multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620)))) =<= inverse (inverse (inverse (divide (inverse (multiply (multiply (inverse ?1090619) ?1090616) ?1090620)) (multiply ?1090618 ?1090617)))) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 190267 with 299306 at 2 +Id : 300335, {_}: inverse (inverse (inverse (inverse (multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620)))) =<= inverse (inverse (inverse (inverse (multiply (multiply ?1090618 ?1090617) (multiply (multiply (inverse ?1090619) ?1090616) ?1090620))))) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 299307 with 299719 at 3 +Id : 309523, {_}: inverse (inverse (multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620)) =<= inverse (inverse (inverse (inverse (multiply (multiply ?1090618 ?1090617) (multiply (multiply (inverse ?1090619) ?1090616) ?1090620))))) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 300335 with 305044 at 2 +Id : 309524, {_}: inverse (inverse (multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620)) =<= inverse (inverse (multiply (multiply ?1090618 ?1090617) (multiply (multiply (inverse ?1090619) ?1090616) ?1090620))) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 309523 with 305044 at 3 +Id : 311029, {_}: multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620 =<= inverse (inverse (multiply (multiply ?1090618 ?1090617) (multiply (multiply (inverse ?1090619) ?1090616) ?1090620))) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 309524 with 310837 at 2 +Id : 311030, {_}: multiply (divide (multiply ?1090618 ?1090617) (multiply (inverse ?1090616) ?1090619)) ?1090620 =<= multiply (multiply ?1090618 ?1090617) (multiply (multiply (inverse ?1090619) ?1090616) ?1090620) [1090620, 1090619, 1090616, 1090617, 1090618] by Demod 311029 with 310837 at 3 +Id : 311851, {_}: multiply ?6831 (multiply (inverse (multiply (divide (multiply (inverse ?6832) ?6833) (multiply (inverse ?6832) ?6833)) ?6830)) ?6830) =>= ?6831 [6830, 6833, 6832, 6831] by Demod 311850 with 311030 at 1,1,2,2 +Id : 692, {_}: inverse (inverse (divide ?3016 (divide (inverse ?3015) (divide (inverse (multiply (divide (inverse ?3018) ?3017) ?3015)) (multiply ?3017 ?3018))))) =>= ?3016 [3017, 3018, 3015, 3016] by Super 673 with 32 at 1,2 +Id : 277278, {_}: inverse (inverse (inverse (inverse ?1505137))) =<= inverse (divide (inverse (multiply (divide (inverse ?1505138) ?1505139) ?1505137)) (multiply ?1505139 ?1505138)) [1505139, 1505138, 1505137] by Super 692 with 276834 at 2 +Id : 309511, {_}: inverse (inverse ?1505137) =<= inverse (divide (inverse (multiply (divide (inverse ?1505138) ?1505139) ?1505137)) (multiply ?1505139 ?1505138)) [1505139, 1505138, 1505137] by Demod 277278 with 305044 at 2 +Id : 311129, {_}: ?1505137 =<= inverse (divide (inverse (multiply (divide (inverse ?1505138) ?1505139) ?1505137)) (multiply ?1505139 ?1505138)) [1505139, 1505138, 1505137] by Demod 309511 with 310837 at 2 +Id : 311117, {_}: divide (inverse (multiply (divide (inverse ?1506566) ?1506565) ?1506563)) ?1506564 =<= inverse (inverse (inverse (multiply (divide ?1506564 (multiply ?1506565 ?1506566)) ?1506563))) [1506564, 1506563, 1506565, 1506566] by Demod 299304 with 310837 at 2 +Id : 311118, {_}: divide (inverse (multiply (divide (inverse ?1506566) ?1506565) ?1506563)) ?1506564 =>= inverse (multiply (divide ?1506564 (multiply ?1506565 ?1506566)) ?1506563) [1506564, 1506563, 1506565, 1506566] by Demod 311117 with 310837 at 3 +Id : 311205, {_}: ?1505137 =<= inverse (inverse (multiply (divide (multiply ?1505139 ?1505138) (multiply ?1505139 ?1505138)) ?1505137)) [1505138, 1505139, 1505137] by Demod 311129 with 311118 at 1,3 +Id : 311206, {_}: ?1505137 =<= multiply (divide (multiply ?1505139 ?1505138) (multiply ?1505139 ?1505138)) ?1505137 [1505138, 1505139, 1505137] by Demod 311205 with 310837 at 3 +Id : 311852, {_}: multiply ?6831 (multiply (inverse ?6830) ?6830) =>= ?6831 [6830, 6831] by Demod 311851 with 311206 at 1,1,2,2 +Id : 312318, {_}: multiply ?1630838 (multiply ?1630837 (inverse ?1630837)) =>= ?1630838 [1630837, 1630838] by Super 311852 with 310837 at 1,2,2 +Id : 312456, {_}: multiply ?1630838 (divide ?1630837 ?1630837) =>= ?1630838 [1630837, 1630838] by Demod 312318 with 311292 at 2,2 +Id : 312737, {_}: divide (divide ?1631485 (divide (divide (divide (divide ?1631486 ?1631487) ?1631488) (divide (divide ?1631486 ?1631487) ?1631488)) ?1631489)) ?1631489 =>= ?1631485 [1631489, 1631488, 1631487, 1631486, 1631485] by Super 312121 with 312456 at 3 +Id : 164905, {_}: inverse (inverse (divide (inverse (divide ?939850 (divide ?939851 ?939852))) (divide ?939849 (divide ?939850 (divide ?939851 ?939852))))) =>= inverse (inverse (inverse ?939849)) [939849, 939852, 939851, 939850] by Super 164761 with 4 at 1,1,1,3 +Id : 276099, {_}: inverse (inverse (inverse ?1499672)) =<= inverse (divide (inverse (divide (divide ?1499671 ?1499670) ?1499672)) (divide ?1499670 ?1499671)) [1499670, 1499671, 1499672] by Super 345 with 164905 at 2 +Id : 311033, {_}: inverse ?1499672 =<= inverse (divide (inverse (divide (divide ?1499671 ?1499670) ?1499672)) (divide ?1499670 ?1499671)) [1499670, 1499671, 1499672] by Demod 276099 with 310837 at 2 +Id : 309603, {_}: inverse (inverse (divide (inverse (divide (divide ?1506466 ?1506465) ?1506463)) ?1506464)) =>= inverse (inverse (divide ?1506463 (divide ?1506464 (divide ?1506465 ?1506466)))) [1506464, 1506463, 1506465, 1506466] by Demod 299272 with 309508 at 3 +Id : 311134, {_}: divide (inverse (divide (divide ?1506466 ?1506465) ?1506463)) ?1506464 =<= inverse (inverse (divide ?1506463 (divide ?1506464 (divide ?1506465 ?1506466)))) [1506464, 1506463, 1506465, 1506466] by Demod 309603 with 310837 at 2 +Id : 311135, {_}: divide (inverse (divide (divide ?1506466 ?1506465) ?1506463)) ?1506464 =>= divide ?1506463 (divide ?1506464 (divide ?1506465 ?1506466)) [1506464, 1506463, 1506465, 1506466] by Demod 311134 with 310837 at 3 +Id : 311365, {_}: inverse ?1499672 =<= inverse (divide ?1499672 (divide (divide ?1499670 ?1499671) (divide ?1499670 ?1499671))) [1499671, 1499670, 1499672] by Demod 311033 with 311135 at 1,3 +Id : 311372, {_}: inverse ?1499672 =<= divide (divide (divide ?1499670 ?1499671) (divide ?1499670 ?1499671)) ?1499672 [1499671, 1499670, 1499672] by Demod 311365 with 311017 at 3 +Id : 313817, {_}: divide (divide ?1631485 (inverse ?1631489)) ?1631489 =>= ?1631485 [1631489, 1631485] by Demod 312737 with 311372 at 2,1,2 +Id : 313818, {_}: divide (multiply ?1631485 ?1631489) ?1631489 =>= ?1631485 [1631489, 1631485] by Demod 313817 with 6 at 1,2 +Id : 317392, {_}: multiply ?1642981 (divide ?1642980 ?1642987) =<= divide (divide ?1642981 (divide (divide (divide (divide ?1642982 ?1642983) ?1642984) (divide ?1642985 ?1642986)) (multiply ?1642980 (divide (divide (divide ?1642982 ?1642983) ?1642984) (divide ?1642985 ?1642986))))) ?1642987 [1642986, 1642985, 1642984, 1642983, 1642982, 1642987, 1642980, 1642981] by Super 312122 with 313818 at 1,2,2 +Id : 318522, {_}: multiply ?1642981 (divide ?1642980 ?1642987) =<= divide (divide ?1642981 (inverse ?1642980)) ?1642987 [1642987, 1642980, 1642981] by Demod 317392 with 311112 at 2,1,3 +Id : 318523, {_}: multiply ?1642981 (divide ?1642980 ?1642987) =>= divide (multiply ?1642981 ?1642980) ?1642987 [1642987, 1642980, 1642981] by Demod 318522 with 6 at 1,3 +Id : 311394, {_}: divide (divide ?1506463 (divide ?1506466 ?1506465)) ?1506464 =?= divide ?1506463 (divide ?1506464 (divide ?1506465 ?1506466)) [1506464, 1506465, 1506466, 1506463] by Demod 311135 with 311017 at 1,2 +Id : 277640, {_}: inverse ?1508034 =<= inverse (inverse (inverse (divide ?1508034 (multiply (divide ?1508035 ?1508036) (divide ?1508036 ?1508035))))) [1508036, 1508035, 1508034] by Super 277437 with 339 at 1,2 +Id : 309536, {_}: inverse ?1508034 =<= inverse (inverse (divide (multiply (divide ?1508035 ?1508036) (divide ?1508036 ?1508035)) ?1508034)) [1508036, 1508035, 1508034] by Demod 277640 with 309508 at 3 +Id : 310975, {_}: inverse ?1508034 =<= divide (multiply (divide ?1508035 ?1508036) (divide ?1508036 ?1508035)) ?1508034 [1508036, 1508035, 1508034] by Demod 309536 with 310837 at 3 +Id : 312719, {_}: inverse ?1631352 =<= divide (divide ?1631351 ?1631351) ?1631352 [1631351, 1631352] by Super 310975 with 312456 at 1,3 +Id : 314397, {_}: divide (divide ?1637990 (divide ?1637991 ?1637992)) (divide ?1637989 ?1637989) =>= divide ?1637990 (inverse (divide ?1637992 ?1637991)) [1637989, 1637992, 1637991, 1637990] by Super 311394 with 312719 at 2,3 +Id : 311378, {_}: divide ?3302 (divide ?3301 (divide (divide ?3301 (multiply ?3304 ?3303)) (divide (inverse ?3303) ?3304))) =>= ?3302 [3303, 3304, 3301, 3302] by Demod 311071 with 311017 at 1,2,2,2 +Id : 312063, {_}: divide ?3302 (divide ?3301 (divide (divide ?3301 (multiply ?3304 ?3303)) (inverse (multiply ?3304 ?3303)))) =>= ?3302 [3303, 3304, 3301, 3302] by Demod 311378 with 311604 at 2,2,2,2 +Id : 312064, {_}: divide ?3302 (divide ?3301 (multiply (divide ?3301 (multiply ?3304 ?3303)) (multiply ?3304 ?3303))) =>= ?3302 [3303, 3304, 3301, 3302] by Demod 312063 with 6 at 2,2,2 +Id : 312065, {_}: divide ?3302 (divide ?3301 ?3301) =>= ?3302 [3301, 3302] by Demod 312064 with 311868 at 2,2,2 +Id : 314879, {_}: divide ?1637990 (divide ?1637991 ?1637992) =<= divide ?1637990 (inverse (divide ?1637992 ?1637991)) [1637992, 1637991, 1637990] by Demod 314397 with 312065 at 2 +Id : 314880, {_}: divide ?1637990 (divide ?1637991 ?1637992) =<= multiply ?1637990 (divide ?1637992 ?1637991) [1637992, 1637991, 1637990] by Demod 314879 with 6 at 3 +Id : 320415, {_}: divide ?1642981 (divide ?1642987 ?1642980) =?= divide (multiply ?1642981 ?1642980) ?1642987 [1642980, 1642987, 1642981] by Demod 318523 with 314880 at 2 +Id : 343753, {_}: multiply ?1701701 ?1701702 =<= multiply (divide ?1701701 (divide ?1701703 ?1701702)) ?1701703 [1701703, 1701702, 1701701] by Super 311868 with 320415 at 1,3 +Id : 311818, {_}: divide (multiply ?257 ?256) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= divide (divide ?257 (inverse (multiply ?259 ?260))) ?258 [260, 259, 258, 256, 257] by Demod 311594 with 311604 at 2,1,3 +Id : 311820, {_}: divide (multiply ?257 ?256) (multiply (divide ?258 (multiply ?259 ?260)) ?256) =>= divide (multiply ?257 (multiply ?259 ?260)) ?258 [260, 259, 258, 256, 257] by Demod 311818 with 6 at 1,3 +Id : 317517, {_}: divide (multiply ?1643886 ?1643887) (multiply ?1643885 ?1643887) =?= divide (multiply ?1643886 (multiply ?1643888 ?1643889)) (multiply ?1643885 (multiply ?1643888 ?1643889)) [1643889, 1643888, 1643885, 1643887, 1643886] by Super 311820 with 313818 at 1,2,2 +Id : 32072, {_}: inverse (inverse (inverse (divide (divide ?152561 (divide ?152562 (multiply ?152563 ?152564))) (divide ?152565 ?152562)))) =>= inverse (divide (divide ?152561 (divide (inverse ?152564) ?152563)) ?152565) [152565, 152564, 152563, 152562, 152561] by Super 31662 with 6 at 2,2,1,1,1,1,2 +Id : 691, {_}: inverse (inverse (divide ?3011 (divide ?3010 (divide (inverse (divide (divide (inverse ?3013) ?3012) ?3010)) (multiply ?3012 ?3013))))) =>= ?3011 [3012, 3013, 3010, 3011] by Super 673 with 10 at 1,2 +Id : 32186, {_}: inverse (divide ?153559 (divide (divide (inverse (divide (divide (inverse ?153557) ?153558) ?153562)) (multiply ?153558 ?153557)) (multiply ?153560 ?153561))) =>= inverse (divide (divide ?153559 (divide (inverse ?153561) ?153560)) ?153562) [153561, 153560, 153562, 153558, 153557, 153559] by Super 32072 with 691 at 1,2 +Id : 311187, {_}: inverse (divide ?153559 (divide (divide ?153562 (divide (multiply ?153558 ?153557) (divide ?153558 (inverse ?153557)))) (multiply ?153560 ?153561))) =>= inverse (divide (divide ?153559 (divide (inverse ?153561) ?153560)) ?153562) [153561, 153560, 153557, 153558, 153562, 153559] by Demod 32186 with 311135 at 1,2,1,2 +Id : 311196, {_}: inverse (divide ?153559 (divide (divide ?153562 (divide (multiply ?153558 ?153557) (multiply ?153558 ?153557))) (multiply ?153560 ?153561))) =>= inverse (divide (divide ?153559 (divide (inverse ?153561) ?153560)) ?153562) [153561, 153560, 153557, 153558, 153562, 153559] by Demod 311187 with 6 at 2,2,1,2,1,2 +Id : 311391, {_}: divide (divide (divide ?153562 (divide (multiply ?153558 ?153557) (multiply ?153558 ?153557))) (multiply ?153560 ?153561)) ?153559 =>= inverse (divide (divide ?153559 (divide (inverse ?153561) ?153560)) ?153562) [153559, 153561, 153560, 153557, 153558, 153562] by Demod 311196 with 311017 at 2 +Id : 311392, {_}: divide (divide (divide ?153562 (divide (multiply ?153558 ?153557) (multiply ?153558 ?153557))) (multiply ?153560 ?153561)) ?153559 =>= divide ?153562 (divide ?153559 (divide (inverse ?153561) ?153560)) [153559, 153561, 153560, 153557, 153558, 153562] by Demod 311391 with 311017 at 3 +Id : 312039, {_}: divide (divide (divide ?153562 (divide (multiply ?153558 ?153557) (multiply ?153558 ?153557))) (multiply ?153560 ?153561)) ?153559 =>= divide ?153562 (divide ?153559 (inverse (multiply ?153560 ?153561))) [153559, 153561, 153560, 153557, 153558, 153562] by Demod 311392 with 311604 at 2,2,3 +Id : 312040, {_}: divide (divide (divide ?153562 (divide (multiply ?153558 ?153557) (multiply ?153558 ?153557))) (multiply ?153560 ?153561)) ?153559 =>= divide ?153562 (multiply ?153559 (multiply ?153560 ?153561)) [153559, 153561, 153560, 153557, 153558, 153562] by Demod 312039 with 6 at 2,3 +Id : 312075, {_}: divide (divide ?153562 (multiply ?153560 ?153561)) ?153559 =?= divide ?153562 (multiply ?153559 (multiply ?153560 ?153561)) [153559, 153561, 153560, 153562] by Demod 312040 with 312065 at 1,1,2 +Id : 318365, {_}: divide (multiply ?1643886 ?1643887) (multiply ?1643885 ?1643887) =?= divide (divide (multiply ?1643886 (multiply ?1643888 ?1643889)) (multiply ?1643888 ?1643889)) ?1643885 [1643889, 1643888, 1643885, 1643887, 1643886] by Demod 317517 with 312075 at 3 +Id : 318366, {_}: divide (multiply ?1643886 ?1643887) (multiply ?1643885 ?1643887) =>= divide ?1643886 ?1643885 [1643885, 1643887, 1643886] by Demod 318365 with 313818 at 1,3 +Id : 343774, {_}: multiply ?1701846 (multiply ?1701845 ?1701844) =<= multiply (divide ?1701846 (divide ?1701843 ?1701845)) (multiply ?1701843 ?1701844) [1701843, 1701844, 1701845, 1701846] by Super 343753 with 318366 at 2,1,3 +Id : 178704, {_}: inverse (inverse (divide (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) (inverse ?1024392))) =>= inverse (inverse (inverse (divide (inverse (multiply (divide ?1024396 ?1024395) ?1024392)) (divide ?1024394 ?1024393)))) [1024392, 1024396, 1024395, 1024394, 1024393] by Super 178625 with 6 at 1,1,1,1,1,3 +Id : 179107, {_}: inverse (inverse (multiply (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) ?1024392)) =<= inverse (inverse (inverse (divide (inverse (multiply (divide ?1024396 ?1024395) ?1024392)) (divide ?1024394 ?1024393)))) [1024392, 1024396, 1024395, 1024394, 1024393] by Demod 178704 with 6 at 1,1,2 +Id : 300345, {_}: inverse (inverse (multiply (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) ?1024392)) =<= inverse (inverse (inverse (inverse (multiply (divide ?1024394 ?1024393) (multiply (divide ?1024396 ?1024395) ?1024392))))) [1024392, 1024396, 1024395, 1024394, 1024393] by Demod 179107 with 299719 at 3 +Id : 309518, {_}: inverse (inverse (multiply (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) ?1024392)) =>= inverse (inverse (multiply (divide ?1024394 ?1024393) (multiply (divide ?1024396 ?1024395) ?1024392))) [1024392, 1024396, 1024395, 1024394, 1024393] by Demod 300345 with 305044 at 3 +Id : 311123, {_}: multiply (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) ?1024392 =<= inverse (inverse (multiply (divide ?1024394 ?1024393) (multiply (divide ?1024396 ?1024395) ?1024392))) [1024392, 1024396, 1024395, 1024394, 1024393] by Demod 309518 with 310837 at 2 +Id : 311124, {_}: multiply (divide (inverse (divide ?1024393 ?1024394)) (divide ?1024395 ?1024396)) ?1024392 =>= multiply (divide ?1024394 ?1024393) (multiply (divide ?1024396 ?1024395) ?1024392) [1024392, 1024396, 1024395, 1024394, 1024393] by Demod 311123 with 310837 at 3 +Id : 311459, {_}: multiply (divide (divide ?1024394 ?1024393) (divide ?1024395 ?1024396)) ?1024392 =?= multiply (divide ?1024394 ?1024393) (multiply (divide ?1024396 ?1024395) ?1024392) [1024392, 1024396, 1024395, 1024393, 1024394] by Demod 311124 with 311017 at 1,1,2 +Id : 314145, {_}: multiply (divide (divide ?1636195 ?1636196) (inverse ?1636193)) ?1636197 =<= multiply (divide ?1636195 ?1636196) (multiply (divide ?1636193 (divide ?1636194 ?1636194)) ?1636197) [1636194, 1636197, 1636193, 1636196, 1636195] by Super 311459 with 312719 at 2,1,2 +Id : 315602, {_}: multiply (multiply (divide ?1636195 ?1636196) ?1636193) ?1636197 =<= multiply (divide ?1636195 ?1636196) (multiply (divide ?1636193 (divide ?1636194 ?1636194)) ?1636197) [1636194, 1636197, 1636193, 1636196, 1636195] by Demod 314145 with 6 at 1,2 +Id : 315603, {_}: multiply (multiply (divide ?1636195 ?1636196) ?1636193) ?1636197 =>= multiply (divide ?1636195 ?1636196) (multiply ?1636193 ?1636197) [1636197, 1636193, 1636196, 1636195] by Demod 315602 with 312065 at 1,2,3 +Id : 320945, {_}: multiply ?1653480 ?1653482 =<= multiply (divide ?1653480 (divide ?1653481 ?1653482)) ?1653481 [1653481, 1653482, 1653480] by Super 311868 with 320415 at 1,3 +Id : 343542, {_}: multiply (multiply ?1699948 ?1699949) ?1699951 =<= multiply (divide ?1699948 (divide ?1699950 ?1699949)) (multiply ?1699950 ?1699951) [1699950, 1699951, 1699949, 1699948] by Super 315603 with 320945 at 1,2 +Id : 394401, {_}: multiply ?1701846 (multiply ?1701845 ?1701844) =?= multiply (multiply ?1701846 ?1701845) ?1701844 [1701844, 1701845, 1701846] by Demod 343774 with 343542 at 3 +Id : 395259, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 394401 at 2 +Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 +% SZS output end CNFRefutation for GRP471-1.p +Order + == is 100 + _ is 99 + a3 is 98 + b3 is 97 + c3 is 95 + divide is 93 + inverse is 92 + multiply is 96 + prove_these_axioms_3 is 94 + single_axiom is 91 +Facts + Id : 4, {_}: + divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) + (divide ?3 ?2) + =>= + ?5 + [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 + Id : 6, {_}: + multiply ?7 ?8 =<= divide ?7 (inverse ?8) + [8, 7] by multiply ?7 ?8 +Goal + Id : 2, {_}: + multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) + [] by prove_these_axioms_3 +Found proof, 10.893625s +% SZS status Unsatisfiable for GRP477-1.p +% SZS output start CNFRefutation for GRP477-1.p +Id : 6, {_}: multiply ?7 ?8 =<= divide ?7 (inverse ?8) [8, 7] by multiply ?7 ?8 +Id : 7, {_}: divide (inverse (divide (divide (divide ?10 ?11) ?12) (divide ?13 ?12))) (divide ?11 ?10) =>= ?13 [13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 +Id : 4, {_}: divide (inverse (divide (divide (divide ?2 ?3) ?4) (divide ?5 ?4))) (divide ?3 ?2) =>= ?5 [5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 +Id : 9, {_}: divide (inverse (divide (divide (divide ?26 ?27) (divide ?23 ?22)) ?25)) (divide ?27 ?26) =?= inverse (divide (divide (divide ?22 ?23) ?24) (divide ?25 ?24)) [24, 25, 22, 23, 27, 26] by Super 7 with 4 at 2,1,1,2 +Id : 8947, {_}: inverse (divide (divide (divide ?66899 ?66900) ?66901) (divide (divide ?66902 (divide ?66900 ?66899)) ?66901)) =>= ?66902 [66902, 66901, 66900, 66899] by Super 4 with 9 at 2 +Id : 9487, {_}: inverse (divide (divide (divide (inverse ?70062) ?70063) ?70064) (divide (divide ?70065 (multiply ?70063 ?70062)) ?70064)) =>= ?70065 [70065, 70064, 70063, 70062] by Super 8947 with 6 at 2,1,2,1,2 +Id : 13, {_}: divide (inverse (divide (divide (divide ?48 ?49) (inverse ?47)) (multiply ?46 ?47))) (divide ?49 ?48) =>= ?46 [46, 47, 49, 48] by Super 4 with 6 at 2,1,1,2 +Id : 23, {_}: divide (inverse (divide (multiply (divide ?88 ?89) ?90) (multiply ?91 ?90))) (divide ?89 ?88) =>= ?91 [91, 90, 89, 88] by Demod 13 with 6 at 1,1,1,2 +Id : 27, {_}: divide (inverse (divide (multiply ?115 ?116) (multiply ?117 ?116))) (divide (divide ?113 ?112) (inverse (divide (divide (divide ?112 ?113) ?114) (divide ?115 ?114)))) =>= ?117 [114, 112, 113, 117, 116, 115] by Super 23 with 4 at 1,1,1,1,2 +Id : 35, {_}: divide (inverse (divide (multiply ?115 ?116) (multiply ?117 ?116))) (multiply (divide ?113 ?112) (divide (divide (divide ?112 ?113) ?114) (divide ?115 ?114))) =>= ?117 [114, 112, 113, 117, 116, 115] by Demod 27 with 6 at 2,2 +Id : 9506, {_}: inverse (divide (divide (divide (inverse (divide (divide (divide ?70226 ?70225) ?70227) (divide ?70222 ?70227))) (divide ?70225 ?70226)) ?70228) (divide ?70224 ?70228)) =?= inverse (divide (multiply ?70222 ?70223) (multiply ?70224 ?70223)) [70223, 70224, 70228, 70222, 70227, 70225, 70226] by Super 9487 with 35 at 1,2,1,2 +Id : 9604, {_}: inverse (divide (divide ?70222 ?70228) (divide ?70224 ?70228)) =?= inverse (divide (multiply ?70222 ?70223) (multiply ?70224 ?70223)) [70223, 70224, 70228, 70222] by Demod 9506 with 4 at 1,1,1,2 +Id : 27713, {_}: divide (divide (inverse (divide (divide (divide ?169617 ?169618) (divide ?169619 ?169620)) ?169621)) (divide ?169618 ?169617)) (divide ?169619 ?169620) =>= ?169621 [169621, 169620, 169619, 169618, 169617] by Super 4 with 9 at 1,2 +Id : 27714, {_}: divide (divide (inverse (divide (divide (divide ?169627 ?169628) (divide (inverse (divide (divide (divide ?169623 ?169624) ?169625) (divide ?169626 ?169625))) (divide ?169624 ?169623))) ?169629)) (divide ?169628 ?169627)) ?169626 =>= ?169629 [169629, 169626, 169625, 169624, 169623, 169628, 169627] by Super 27713 with 4 at 2,2 +Id : 28344, {_}: divide (divide (inverse (divide (divide (divide ?173215 ?173216) ?173217) ?173218)) (divide ?173216 ?173215)) ?173217 =>= ?173218 [173218, 173217, 173216, 173215] by Demod 27714 with 4 at 2,1,1,1,1,2 +Id : 28449, {_}: divide (divide (inverse (multiply (divide (divide ?174106 ?174107) ?174108) ?174105)) (divide ?174107 ?174106)) ?174108 =>= inverse ?174105 [174105, 174108, 174107, 174106] by Super 28344 with 6 at 1,1,1,2 +Id : 28805, {_}: multiply (divide (inverse (multiply (divide (divide ?175142 ?175143) (inverse ?175145)) ?175144)) (divide ?175143 ?175142)) ?175145 =>= inverse ?175144 [175144, 175145, 175143, 175142] by Super 6 with 28449 at 3 +Id : 29852, {_}: multiply (divide (inverse (multiply (multiply (divide ?180549 ?180550) ?180551) ?180552)) (divide ?180550 ?180549)) ?180551 =>= inverse ?180552 [180552, 180551, 180550, 180549] by Demod 28805 with 6 at 1,1,1,1,2 +Id : 33202, {_}: multiply (divide (inverse (multiply (multiply (divide (inverse ?199058) ?199059) ?199060) ?199061)) (multiply ?199059 ?199058)) ?199060 =>= inverse ?199061 [199061, 199060, 199059, 199058] by Super 29852 with 6 at 2,1,2 +Id : 33304, {_}: multiply (divide (inverse (multiply (multiply (multiply (inverse ?199942) ?199941) ?199943) ?199944)) (multiply (inverse ?199941) ?199942)) ?199943 =>= inverse ?199944 [199944, 199943, 199941, 199942] by Super 33202 with 6 at 1,1,1,1,1,2 +Id : 43, {_}: divide (inverse (divide (divide (divide (inverse ?171) ?172) ?173) (divide ?174 ?173))) (multiply ?172 ?171) =>= ?174 [174, 173, 172, 171] by Super 4 with 6 at 2,2 +Id : 48, {_}: divide (inverse (divide (divide ?205 ?206) (divide ?207 ?206))) (multiply (divide ?203 ?202) (divide (divide (divide ?202 ?203) ?204) (divide ?205 ?204))) =>= ?207 [204, 202, 203, 207, 206, 205] by Super 43 with 4 at 1,1,1,1,2 +Id : 8271, {_}: inverse (divide (divide (divide ?62998 ?62997) ?62999) (divide (divide ?63000 (divide ?62997 ?62998)) ?62999)) =>= ?63000 [63000, 62999, 62997, 62998] by Super 4 with 9 at 2 +Id : 8914, {_}: divide ?66588 (multiply (divide ?66589 ?66590) (divide (divide (divide ?66590 ?66589) ?66591) (divide (divide ?66585 ?66586) ?66591))) =>= divide ?66588 (divide ?66586 ?66585) [66586, 66585, 66591, 66590, 66589, 66588] by Super 48 with 8271 at 1,2 +Id : 27904, {_}: divide (divide (inverse (divide (divide (divide ?171441 ?171442) (divide ?171443 ?171444)) (divide ?171440 ?171439))) (divide ?171442 ?171441)) (divide ?171443 ?171444) =?= multiply (divide ?171436 ?171437) (divide (divide (divide ?171437 ?171436) ?171438) (divide (divide ?171439 ?171440) ?171438)) [171438, 171437, 171436, 171439, 171440, 171444, 171443, 171442, 171441] by Super 27713 with 8914 at 1,1,1,2 +Id : 8270, {_}: divide (divide (inverse (divide (divide (divide ?62988 ?62989) (divide ?62990 ?62991)) ?62992)) (divide ?62989 ?62988)) (divide ?62990 ?62991) =>= ?62992 [62992, 62991, 62990, 62989, 62988] by Super 4 with 9 at 1,2 +Id : 28135, {_}: divide ?171440 ?171439 =<= multiply (divide ?171436 ?171437) (divide (divide (divide ?171437 ?171436) ?171438) (divide (divide ?171439 ?171440) ?171438)) [171438, 171437, 171436, 171439, 171440] by Demod 27904 with 8270 at 2 +Id : 18, {_}: divide (inverse (divide (multiply (divide ?48 ?49) ?47) (multiply ?46 ?47))) (divide ?49 ?48) =>= ?46 [46, 47, 49, 48] by Demod 13 with 6 at 1,1,1,2 +Id : 22, {_}: divide (inverse (divide (divide ?84 ?85) (divide ?86 ?85))) (divide (divide ?82 ?81) (inverse (divide (multiply (divide ?81 ?82) ?83) (multiply ?84 ?83)))) =>= ?86 [83, 81, 82, 86, 85, 84] by Super 4 with 18 at 1,1,1,1,2 +Id : 32, {_}: divide (inverse (divide (divide ?84 ?85) (divide ?86 ?85))) (multiply (divide ?82 ?81) (divide (multiply (divide ?81 ?82) ?83) (multiply ?84 ?83))) =>= ?86 [83, 81, 82, 86, 85, 84] by Demod 22 with 6 at 2,2 +Id : 8902, {_}: divide ?66500 (multiply (divide ?66501 ?66502) (divide (multiply (divide ?66502 ?66501) ?66503) (multiply (divide ?66497 ?66498) ?66503))) =>= divide ?66500 (divide ?66498 ?66497) [66498, 66497, 66503, 66502, 66501, 66500] by Super 32 with 8271 at 1,2 +Id : 27903, {_}: divide (divide (inverse (divide (divide (divide ?171431 ?171432) (divide ?171433 ?171434)) (divide ?171430 ?171429))) (divide ?171432 ?171431)) (divide ?171433 ?171434) =?= multiply (divide ?171426 ?171427) (divide (multiply (divide ?171427 ?171426) ?171428) (multiply (divide ?171429 ?171430) ?171428)) [171428, 171427, 171426, 171429, 171430, 171434, 171433, 171432, 171431] by Super 27713 with 8902 at 1,1,1,2 +Id : 28134, {_}: divide ?171430 ?171429 =<= multiply (divide ?171426 ?171427) (divide (multiply (divide ?171427 ?171426) ?171428) (multiply (divide ?171429 ?171430) ?171428)) [171428, 171427, 171426, 171429, 171430] by Demod 27903 with 8270 at 2 +Id : 34242, {_}: divide (divide (inverse (divide ?204167 ?204168)) (divide ?204171 ?204170)) ?204172 =<= inverse (divide (multiply (divide ?204172 (divide ?204170 ?204171)) ?204169) (multiply (divide ?204168 ?204167) ?204169)) [204169, 204172, 204170, 204171, 204168, 204167] by Super 28449 with 28134 at 1,1,1,2 +Id : 34778, {_}: divide (divide (divide (inverse (divide ?206532 ?206533)) (divide ?206534 ?206535)) ?206536) (divide (divide ?206535 ?206534) ?206536) =>= divide ?206533 ?206532 [206536, 206535, 206534, 206533, 206532] by Super 18 with 34242 at 1,2 +Id : 54527, {_}: divide ?300655 ?300656 =<= multiply (divide (divide ?300655 ?300656) (inverse (divide ?300653 ?300654))) (divide ?300654 ?300653) [300654, 300653, 300656, 300655] by Super 28135 with 34778 at 2,3 +Id : 55213, {_}: divide ?304381 ?304382 =<= multiply (multiply (divide ?304381 ?304382) (divide ?304383 ?304384)) (divide ?304384 ?304383) [304384, 304383, 304382, 304381] by Demod 54527 with 6 at 1,3 +Id : 55316, {_}: divide (inverse (divide (divide (divide ?305230 ?305231) ?305232) (divide ?305233 ?305232))) (divide ?305231 ?305230) =?= multiply (multiply ?305233 (divide ?305234 ?305235)) (divide ?305235 ?305234) [305235, 305234, 305233, 305232, 305231, 305230] by Super 55213 with 4 at 1,1,3 +Id : 55555, {_}: ?305233 =<= multiply (multiply ?305233 (divide ?305234 ?305235)) (divide ?305235 ?305234) [305235, 305234, 305233] by Demod 55316 with 4 at 2 +Id : 27948, {_}: divide (divide (inverse (divide (divide (divide ?169627 ?169628) ?169626) ?169629)) (divide ?169628 ?169627)) ?169626 =>= ?169629 [169629, 169626, 169628, 169627] by Demod 27714 with 4 at 2,1,1,1,1,2 +Id : 28234, {_}: multiply (divide (inverse (divide (divide (divide ?172298 ?172299) (inverse ?172301)) ?172300)) (divide ?172299 ?172298)) ?172301 =>= ?172300 [172300, 172301, 172299, 172298] by Super 6 with 27948 at 3 +Id : 28487, {_}: multiply (divide (inverse (divide (multiply (divide ?172298 ?172299) ?172301) ?172300)) (divide ?172299 ?172298)) ?172301 =>= ?172300 [172300, 172301, 172299, 172298] by Demod 28234 with 6 at 1,1,1,1,2 +Id : 9011, {_}: inverse (divide (divide (divide ?67439 ?67440) (inverse ?67438)) (multiply (divide ?67441 (divide ?67440 ?67439)) ?67438)) =>= ?67441 [67441, 67438, 67440, 67439] by Super 8947 with 6 at 2,1,2 +Id : 9220, {_}: inverse (divide (multiply (divide ?68482 ?68483) ?68484) (multiply (divide ?68485 (divide ?68483 ?68482)) ?68484)) =>= ?68485 [68485, 68484, 68483, 68482] by Demod 9011 with 6 at 1,1,2 +Id : 9262, {_}: inverse (divide (multiply (divide (inverse ?68840) ?68841) ?68842) (multiply (divide ?68843 (multiply ?68841 ?68840)) ?68842)) =>= ?68843 [68843, 68842, 68841, 68840] by Super 9220 with 6 at 2,1,2,1,2 +Id : 34818, {_}: inverse (divide (divide (divide ?206982 (divide ?206981 ?206980)) ?206984) (divide (divide ?206979 ?206978) ?206984)) =>= divide (divide (inverse (divide ?206978 ?206979)) (divide ?206980 ?206981)) ?206982 [206978, 206979, 206984, 206980, 206981, 206982] by Super 9604 with 34242 at 3 +Id : 54516, {_}: inverse (divide ?300558 ?300557) =<= divide (divide (inverse (divide ?300559 ?300560)) (divide ?300560 ?300559)) (inverse (divide ?300557 ?300558)) [300560, 300559, 300557, 300558] by Super 34818 with 34778 at 1,2 +Id : 54778, {_}: inverse (divide ?300558 ?300557) =<= multiply (divide (inverse (divide ?300559 ?300560)) (divide ?300560 ?300559)) (divide ?300557 ?300558) [300560, 300559, 300557, 300558] by Demod 54516 with 6 at 3 +Id : 58787, {_}: inverse (divide (inverse (divide ?321392 ?321393)) (multiply (divide ?321396 (multiply (divide ?321395 ?321394) (divide ?321394 ?321395))) (divide ?321393 ?321392))) =>= ?321396 [321394, 321395, 321396, 321393, 321392] by Super 9262 with 54778 at 1,1,2 +Id : 12, {_}: divide (inverse (divide (divide (divide (inverse ?42) ?41) ?43) (divide ?44 ?43))) (multiply ?41 ?42) =>= ?44 [44, 43, 41, 42] by Super 4 with 6 at 2,2 +Id : 54402, {_}: divide (inverse (divide ?299508 ?299507)) (multiply (divide ?299509 ?299510) (divide ?299507 ?299508)) =>= divide ?299510 ?299509 [299510, 299509, 299507, 299508] by Super 12 with 34778 at 1,1,2 +Id : 59136, {_}: inverse (divide (multiply (divide ?321395 ?321394) (divide ?321394 ?321395)) ?321396) =>= ?321396 [321396, 321394, 321395] by Demod 58787 with 54402 at 1,2 +Id : 59503, {_}: multiply (divide ?323772 (divide ?323771 ?323770)) (divide ?323771 ?323770) =>= ?323772 [323770, 323771, 323772] by Super 28487 with 59136 at 1,1,2 +Id : 60069, {_}: divide ?327147 (divide ?327148 ?327149) =<= multiply ?327147 (divide ?327149 ?327148) [327149, 327148, 327147] by Super 55555 with 59503 at 1,3 +Id : 60669, {_}: multiply (divide (inverse (divide (multiply (multiply (inverse ?329868) ?329869) ?329870) (divide ?329866 ?329867))) (multiply (inverse ?329869) ?329868)) ?329870 =>= inverse (divide ?329867 ?329866) [329867, 329866, 329870, 329869, 329868] by Super 33304 with 60069 at 1,1,1,2 +Id : 29399, {_}: multiply (divide (inverse (divide (multiply (divide ?178179 ?178180) ?178181) ?178182)) (divide ?178180 ?178179)) ?178181 =>= ?178182 [178182, 178181, 178180, 178179] by Demod 28234 with 6 at 1,1,1,1,2 +Id : 32341, {_}: multiply (divide (inverse (divide (multiply (divide (inverse ?194066) ?194067) ?194068) ?194069)) (multiply ?194067 ?194066)) ?194068 =>= ?194069 [194069, 194068, 194067, 194066] by Super 29399 with 6 at 2,1,2 +Id : 32441, {_}: multiply (divide (inverse (divide (multiply (multiply (inverse ?194936) ?194935) ?194937) ?194938)) (multiply (inverse ?194935) ?194936)) ?194937 =>= ?194938 [194938, 194937, 194935, 194936] by Super 32341 with 6 at 1,1,1,1,1,2 +Id : 61017, {_}: divide ?329866 ?329867 =<= inverse (divide ?329867 ?329866) [329867, 329866] by Demod 60669 with 32441 at 2 +Id : 61512, {_}: divide (divide ?70224 ?70228) (divide ?70222 ?70228) =?= inverse (divide (multiply ?70222 ?70223) (multiply ?70224 ?70223)) [70223, 70222, 70228, 70224] by Demod 9604 with 61017 at 2 +Id : 61513, {_}: divide (divide ?70224 ?70228) (divide ?70222 ?70228) =?= divide (multiply ?70224 ?70223) (multiply ?70222 ?70223) [70223, 70222, 70228, 70224] by Demod 61512 with 61017 at 3 +Id : 60072, {_}: multiply (divide ?327160 (divide ?327161 ?327162)) (divide ?327161 ?327162) =>= ?327160 [327162, 327161, 327160] by Super 28487 with 59136 at 1,1,2 +Id : 60073, {_}: multiply (divide ?327168 (divide (inverse (divide (divide (divide ?327164 ?327165) ?327166) (divide ?327167 ?327166))) (divide ?327165 ?327164))) ?327167 =>= ?327168 [327167, 327166, 327165, 327164, 327168] by Super 60072 with 4 at 2,2 +Id : 64649, {_}: multiply (divide ?338211 ?338212) ?338212 =>= ?338211 [338212, 338211] by Demod 60073 with 4 at 2,1,2 +Id : 61711, {_}: divide ?332019 ?332020 =<= inverse (divide ?332020 ?332019) [332020, 332019] by Demod 60669 with 32441 at 2 +Id : 61786, {_}: divide (inverse ?332481) ?332482 =>= inverse (multiply ?332482 ?332481) [332482, 332481] by Super 61711 with 6 at 1,3 +Id : 64688, {_}: multiply (inverse (multiply ?338450 ?338449)) ?338450 =>= inverse ?338449 [338449, 338450] by Super 64649 with 61786 at 1,2 +Id : 70472, {_}: divide (divide ?351323 ?351324) (divide (inverse (multiply ?351321 ?351322)) ?351324) =>= divide (multiply ?351323 ?351321) (inverse ?351322) [351322, 351321, 351324, 351323] by Super 61513 with 64688 at 2,3 +Id : 70841, {_}: divide (divide ?351323 ?351324) (inverse (multiply ?351324 (multiply ?351321 ?351322))) =>= divide (multiply ?351323 ?351321) (inverse ?351322) [351322, 351321, 351324, 351323] by Demod 70472 with 61786 at 2,2 +Id : 70842, {_}: multiply (divide ?351323 ?351324) (multiply ?351324 (multiply ?351321 ?351322)) =>= divide (multiply ?351323 ?351321) (inverse ?351322) [351322, 351321, 351324, 351323] by Demod 70841 with 6 at 2 +Id : 70843, {_}: multiply (divide ?351323 ?351324) (multiply ?351324 (multiply ?351321 ?351322)) =>= multiply (multiply ?351323 ?351321) ?351322 [351322, 351321, 351324, 351323] by Demod 70842 with 6 at 3 +Id : 67, {_}: divide (inverse (divide (divide (multiply ?287 ?288) ?289) (divide ?290 ?289))) (divide (inverse ?288) ?287) =>= ?290 [290, 289, 288, 287] by Super 4 with 6 at 1,1,1,1,2 +Id : 14, {_}: divide (inverse (divide (divide (multiply ?51 ?52) ?53) (divide ?54 ?53))) (divide (inverse ?52) ?51) =>= ?54 [54, 53, 52, 51] by Super 4 with 6 at 1,1,1,1,2 +Id : 70, {_}: divide (inverse (divide (divide (multiply (divide (inverse ?307) ?306) (divide (divide (multiply ?306 ?307) ?308) (divide ?309 ?308))) ?310) (divide ?311 ?310))) ?309 =>= ?311 [311, 310, 309, 308, 306, 307] by Super 67 with 14 at 2,2 +Id : 60413, {_}: divide (inverse (divide (divide (divide (divide (inverse ?307) ?306) (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308))) ?310) (divide ?311 ?310))) ?309 =>= ?311 [311, 310, 308, 309, 306, 307] by Demod 70 with 60069 at 1,1,1,1,2 +Id : 61462, {_}: divide (divide (divide ?311 ?310) (divide (divide (divide (inverse ?307) ?306) (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308))) ?310)) ?309 =>= ?311 [308, 309, 306, 307, 310, 311] by Demod 60413 with 61017 at 1,2 +Id : 62183, {_}: divide (divide (divide ?311 ?310) (divide (divide (inverse (multiply ?306 ?307)) (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308))) ?310)) ?309 =>= ?311 [308, 309, 307, 306, 310, 311] by Demod 61462 with 61786 at 1,1,2,1,2 +Id : 62184, {_}: divide (divide (divide ?311 ?310) (divide (inverse (multiply (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308)) (multiply ?306 ?307))) ?310)) ?309 =>= ?311 [307, 306, 308, 309, 310, 311] by Demod 62183 with 61786 at 1,2,1,2 +Id : 62185, {_}: divide (divide (divide ?311 ?310) (inverse (multiply ?310 (multiply (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308)) (multiply ?306 ?307))))) ?309 =>= ?311 [307, 306, 308, 309, 310, 311] by Demod 62184 with 61786 at 2,1,2 +Id : 62194, {_}: divide (multiply (divide ?311 ?310) (multiply ?310 (multiply (divide (divide ?309 ?308) (divide (multiply ?306 ?307) ?308)) (multiply ?306 ?307)))) ?309 =>= ?311 [307, 306, 308, 309, 310, 311] by Demod 62185 with 6 at 1,2 +Id : 61520, {_}: divide (divide (divide ?54 ?53) (divide (multiply ?51 ?52) ?53)) (divide (inverse ?52) ?51) =>= ?54 [52, 51, 53, 54] by Demod 14 with 61017 at 1,2 +Id : 62166, {_}: divide (divide (divide ?54 ?53) (divide (multiply ?51 ?52) ?53)) (inverse (multiply ?51 ?52)) =>= ?54 [52, 51, 53, 54] by Demod 61520 with 61786 at 2,2 +Id : 62205, {_}: multiply (divide (divide ?54 ?53) (divide (multiply ?51 ?52) ?53)) (multiply ?51 ?52) =>= ?54 [52, 51, 53, 54] by Demod 62166 with 6 at 2 +Id : 62206, {_}: divide (multiply (divide ?311 ?310) (multiply ?310 ?309)) ?309 =>= ?311 [309, 310, 311] by Demod 62194 with 62205 at 2,2,1,2 +Id : 64698, {_}: multiply ?338511 ?338513 =<= multiply (divide ?338511 ?338512) (multiply ?338512 ?338513) [338512, 338513, 338511] by Super 64649 with 62206 at 1,2 +Id : 88169, {_}: multiply ?351323 (multiply ?351321 ?351322) =?= multiply (multiply ?351323 ?351321) ?351322 [351322, 351321, 351323] by Demod 70843 with 64698 at 2 +Id : 88454, {_}: multiply a3 (multiply b3 c3) === multiply a3 (multiply b3 c3) [] by Demod 2 with 88169 at 2 +Id : 2, {_}: multiply (multiply a3 b3) c3 =>= multiply a3 (multiply b3 c3) [] by prove_these_axioms_3 +% SZS output end CNFRefutation for GRP477-1.p +Order + == is 100 + _ is 99 + a2 is 95 + b2 is 98 + inverse is 97 + multiply is 96 + prove_these_axioms_2 is 94 + single_axiom is 93 +Facts + Id : 4, {_}: + multiply + (inverse + (multiply + (inverse + (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) + (multiply (inverse (multiply ?4 ?5)) + (multiply ?4 + (inverse + (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) + ?7 + =>= + ?6 + [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 +Goal + Id : 2, {_}: + multiply (multiply (inverse b2) b2) a2 =>= a2 + [] by prove_these_axioms_2 +Last chance: 1246132826.23 +Last chance: all is indexed 1246132846.24 +Last chance: failed over 100 goal 1246132846.24 +FAILURE in 0 iterations +% SZS status Timeout for GRP506-1.p +Order + == is 100 + _ is 99 + a is 98 + b is 97 + inverse is 94 + multiply is 96 + prove_these_axioms_4 is 95 + single_axiom is 93 +Facts + Id : 4, {_}: + multiply + (inverse + (multiply + (inverse + (multiply (inverse (multiply ?2 ?3)) (multiply ?3 ?2))) + (multiply (inverse (multiply ?4 ?5)) + (multiply ?4 + (inverse + (multiply (multiply ?6 (inverse ?7)) (inverse ?5))))))) + ?7 + =>= + ?6 + [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 +Goal + Id : 2, {_}: multiply a b =>= multiply b a [] by prove_these_axioms_4 +Last chance: 1246133118.1 +Last chance: all is indexed 1246133138.1 +Last chance: failed over 100 goal 1246133138.1 +FAILURE in 0 iterations +% SZS status Timeout for GRP508-1.p +Order + == is 100 + _ is 99 + a is 98 + join is 95 + meet is 97 + prove_normal_axioms_1 is 96 + single_axiom is 94 +Facts + Id : 4, {_}: + join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) + (meet + (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) + (meet + (join + (meet ?3 + (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) + (meet ?8 + (join ?3 + (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) + (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) + (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) + =>= + ?3 + [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 +Goal + Id : 2, {_}: meet a a =>= a [] by prove_normal_axioms_1 +Found proof, 13.508368s +% SZS status Unsatisfiable for LAT080-1.p +% SZS output start CNFRefutation for LAT080-1.p +Id : 4, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 +Id : 5, {_}: join (meet (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12) (meet (join (meet ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)) (meet (join (meet ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)) (meet ?16 (join ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)))) (join ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)))) (join (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12)) =>= ?11 [16, 15, 14, 13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 ?14 ?15 ?16 +Id : 39, {_}: join (meet (join (meet ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) (join ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))))) ?290) (meet (join (meet ?287 (join (join (meet ?291 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) ?292)) (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))))) (meet ?289 (join ?287 (join (join (meet ?291 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) ?292)) (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))))))) (join (join (meet ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) (join ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))))) ?290)) =>= join (meet ?288 ?289) (meet ?289 (join ?288 ?289)) [292, 291, 290, 289, 288, 287] by Super 5 with 4 at 1,2,1,2,2 +Id : 42, {_}: join (meet (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 318, 317, 323] by Super 39 with 4 at 2,2,2,1,2,2,2 +Id : 126, {_}: join (meet (join (meet ?323 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 317, 318, 323] by Demod 42 with 4 at 2,1,1,1,2 +Id : 127, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 317, 318, 323] by Demod 126 with 4 at 1,2,1,1,2 +Id : 128, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 322, 321, 320, 319, 317, 325, 324, 318, 323] by Demod 127 with 4 at 2,2,2,1,1,2 +Id : 129, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 322, 321, 320, 319, 317, 325, 324, 318, 323] by Demod 128 with 4 at 2,1,1,2,1,1,2,2 +Id : 130, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 129 with 4 at 1,2,1,2,1,1,2,2 +Id : 131, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 130 with 4 at 2,2,1,1,2,2 +Id : 132, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 131 with 4 at 2,1,1,2,2,2,1,2,2 +Id : 133, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 132 with 4 at 1,2,1,2,2,2,1,2,2 +Id : 134, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 133 with 4 at 2,2,2,2,1,2,2 +Id : 135, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 134 with 4 at 2,1,1,2,2,2 +Id : 136, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324)) =?= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 135 with 4 at 1,2,1,2,2,2 +Id : 714, {_}: join (meet (join (meet ?1381 ?1382) (meet ?1382 (join ?1381 ?1382))) ?1383) (meet (join (meet ?1381 (join (join (meet ?1384 ?1382) (meet ?1382 ?1385)) ?1382)) (meet (join (meet ?1386 (join (join (meet ?1387 ?1382) (meet ?1382 ?1388)) ?1382)) (meet (join (meet ?1382 (meet (meet (join ?1387 (join ?1382 ?1388)) (join ?1389 ?1382)) ?1382)) (meet ?1390 (join ?1382 (meet (meet (join ?1387 (join ?1382 ?1388)) (join ?1389 ?1382)) ?1382)))) (join ?1386 (join (join (meet ?1387 ?1382) (meet ?1382 ?1388)) ?1382)))) (join ?1381 (join (join (meet ?1384 ?1382) (meet ?1382 ?1385)) ?1382)))) (join (join (meet ?1381 ?1382) (meet ?1382 (join ?1381 ?1382))) ?1383)) =>= ?1382 [1390, 1389, 1388, 1387, 1386, 1385, 1384, 1383, 1382, 1381] by Demod 136 with 4 at 3 +Id : 1147, {_}: join (meet (join (meet (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511) (meet ?2511 (join (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511))) ?2512) (meet ?2511 (join (join (meet (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511) (meet ?2511 (join (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511))) ?2512)) =>= ?2511 [2512, 2511, 2510] by Super 714 with 4 at 1,2,2 +Id : 748, {_}: join (meet (join (meet (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912) (meet ?1912 (join (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912))) ?1913) (meet ?1912 (join (join (meet (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912) (meet ?1912 (join (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912))) ?1913)) =>= ?1912 [1913, 1912, 1916] by Super 714 with 4 at 1,2,2 +Id : 1164, {_}: join (meet (join (meet (join (meet (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643) (meet ?2643 (join (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643))) ?2643) (meet ?2643 (join (join (meet (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643) (meet ?2643 (join (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643))) ?2643))) ?2644) (meet ?2643 (join ?2643 ?2644)) =>= ?2643 [2644, 2643, 2642] by Super 1147 with 748 at 1,2,2,2 +Id : 1544, {_}: join (meet ?2643 ?2644) (meet ?2643 (join ?2643 ?2644)) =>= ?2643 [2644, 2643] by Demod 1164 with 748 at 1,1,2 +Id : 13, {_}: join (meet (join (meet ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) (join ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))))) ?113) (meet (join (meet ?112 (join (join (meet ?114 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) ?115)) (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))))) (meet ?107 (join ?112 (join (join (meet ?114 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) ?115)) (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))))))) (join (join (meet ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) (join ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))))) ?113)) =>= join (meet ?106 ?107) (meet ?107 (join ?106 ?107)) [115, 114, 113, 107, 106, 112] by Super 5 with 4 at 1,2,1,2,2 +Id : 1092, {_}: join (meet (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2039, 2038, 2040] by Super 13 with 748 at 2,2,2,1,2,2,2 +Id : 1218, {_}: join (meet (join (meet ?2040 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2038, 2039, 2040] by Demod 1092 with 748 at 2,1,1,1,2 +Id : 1219, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2038, 2039, 2040] by Demod 1218 with 748 at 1,2,1,1,2 +Id : 1220, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2038, 2042, 2041, 2039, 2040] by Demod 1219 with 748 at 2,2,2,1,1,2 +Id : 1221, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2038, 2042, 2041, 2039, 2040] by Demod 1220 with 748 at 2,1,1,2,1,1,2,2 +Id : 1222, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1221 with 748 at 1,2,1,2,1,1,2,2 +Id : 1223, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1222 with 748 at 2,2,1,1,2,2 +Id : 1224, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1223 with 748 at 2,1,1,2,2,2,1,2,2 +Id : 1225, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1224 with 748 at 1,2,1,2,2,2,1,2,2 +Id : 1226, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1225 with 748 at 2,2,2,2,1,2,2 +Id : 1227, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1226 with 748 at 2,1,1,2,2,2 +Id : 1228, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =?= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1227 with 748 at 1,2,1,2,2,2 +Id : 2531, {_}: join (meet (join (meet ?4434 ?4435) (meet ?4435 (join ?4434 ?4435))) ?4436) (meet (join (meet ?4434 (join (join (meet ?4437 ?4435) (meet ?4435 ?4438)) ?4435)) (meet ?4435 (join ?4434 (join (join (meet ?4437 ?4435) (meet ?4435 ?4438)) ?4435)))) (join (join (meet ?4434 ?4435) (meet ?4435 (join ?4434 ?4435))) ?4436)) =>= ?4435 [4438, 4437, 4436, 4435, 4434] by Demod 1228 with 748 at 3 +Id : 2540, {_}: join (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))))) ?4515) (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))))) (join ?4510 ?4515)) =>= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4517, 4516, 4515, 4514, 4513, 4512, 4511, 4510, 4509] by Super 2531 with 4 at 1,2,2,2 +Id : 2926, {_}: join (meet ?4510 ?4515) (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))))) (join ?4510 ?4515)) =>= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4517, 4514, 4513, 4512, 4511, 4516, 4509, 4515, 4510] by Demod 2540 with 4 at 1,1,2 +Id : 2927, {_}: join (meet ?4510 ?4515) (meet ?4510 (join ?4510 ?4515)) =?= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4514, 4513, 4512, 4511, 4509, 4515, 4510] by Demod 2926 with 4 at 1,2,2 +Id : 2928, {_}: ?4510 =<= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4514, 4513, 4512, 4511, 4509, 4510] by Demod 2927 with 1544 at 2 +Id : 4152, {_}: ?6409 =<= join (meet ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409)) (meet ?6413 (join ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409))) [6413, 6412, 6411, 6410, 6409] by Super 1544 with 2928 at 2 +Id : 1229, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =>= ?2039 [2043, 2042, 2041, 2039, 2040] by Demod 1228 with 748 at 3 +Id : 2544, {_}: join (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))))) ?4551) (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))))) (join ?4548 ?4551)) =>= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4553, 4552, 4551, 4550, 4549, 4548, 4547] by Super 2531 with 1229 at 1,2,2,2 +Id : 2938, {_}: join (meet ?4548 ?4551) (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))))) (join ?4548 ?4551)) =>= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4553, 4550, 4549, 4552, 4547, 4551, 4548] by Demod 2544 with 1229 at 1,1,2 +Id : 2939, {_}: join (meet ?4548 ?4551) (meet ?4548 (join ?4548 ?4551)) =?= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4550, 4549, 4547, 4551, 4548] by Demod 2938 with 1229 at 1,2,2 +Id : 2940, {_}: ?4548 =<= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4550, 4549, 4547, 4548] by Demod 2939 with 1544 at 2 +Id : 2998, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet ?2039 (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =>= ?2039 [2041, 2039, 2040] by Demod 1229 with 2940 at 1,2,2 +Id : 4435, {_}: join (meet ?7069 ?7068) (meet ?7068 (join ?7069 ?7068)) =>= ?7068 [7068, 7069] by Super 2998 with 4152 at 2 +Id : 4973, {_}: ?7997 =<= meet (meet (join ?7998 (join ?7997 ?7999)) (join ?8000 ?7997)) ?7997 [8000, 7999, 7998, 7997] by Super 4152 with 4435 at 3 +Id : 7418, {_}: meet ?10627 ?10628 =<= meet (meet (join ?10629 ?10627) (join ?10630 (meet ?10627 ?10628))) (meet ?10627 ?10628) [10630, 10629, 10628, 10627] by Super 4973 with 1544 at 2,1,1,3 +Id : 3035, {_}: ?5143 =<= join (meet ?5144 (join (join (meet ?5145 ?5143) (meet ?5143 ?5146)) ?5143)) (meet ?5143 (join ?5144 (join (join (meet ?5145 ?5143) (meet ?5143 ?5146)) ?5143))) [5146, 5145, 5144, 5143] by Demod 2939 with 1544 at 2 +Id : 3039, {_}: ?5175 =<= join (meet ?5174 (join (join (meet ?5175 ?5175) (meet ?5175 (join ?5175 ?5175))) ?5175)) (meet ?5175 (join ?5174 (join ?5175 ?5175))) [5174, 5175] by Super 3035 with 1544 at 1,2,2,2,3 +Id : 3217, {_}: ?5175 =<= join (meet ?5174 (join ?5175 ?5175)) (meet ?5175 (join ?5174 (join ?5175 ?5175))) [5174, 5175] by Demod 3039 with 1544 at 1,2,1,3 +Id : 4899, {_}: ?7757 =<= meet (meet (join ?7758 (join ?7757 ?7759)) (join ?7760 ?7757)) ?7757 [7760, 7759, 7758, 7757] by Super 4152 with 4435 at 3 +Id : 4939, {_}: ?6409 =<= join (meet ?6409 ?6409) (meet ?6413 (join ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409))) [6412, 6411, 6410, 6413, 6409] by Demod 4152 with 4899 at 2,1,3 +Id : 4940, {_}: ?6409 =<= join (meet ?6409 ?6409) (meet ?6413 (join ?6409 ?6409)) [6413, 6409] by Demod 4939 with 4899 at 2,2,2,3 +Id : 4941, {_}: ?7815 =<= join (meet ?7815 ?7815) (join ?7815 ?7815) [7815] by Super 4940 with 4899 at 2,3 +Id : 5068, {_}: ?8129 =<= join (meet (meet ?8129 ?8129) (join ?8129 ?8129)) (meet ?8129 ?8129) [8129] by Super 3217 with 4941 at 2,2,3 +Id : 5072, {_}: ?8141 =<= meet (meet ?8141 (join ?8142 ?8141)) ?8141 [8142, 8141] by Super 4899 with 4941 at 1,1,3 +Id : 5084, {_}: join ?8151 (meet ?8151 (join (meet ?8151 (join ?8152 ?8151)) ?8151)) =>= ?8151 [8152, 8151] by Super 4435 with 5072 at 1,2 +Id : 5705, {_}: ?8954 =<= meet (meet (join ?8955 ?8954) (join ?8956 ?8954)) ?8954 [8956, 8955, 8954] by Super 4899 with 5084 at 2,1,1,3 +Id : 5955, {_}: join ?9293 ?9293 =<= meet (meet (join ?9294 (join ?9293 ?9293)) ?9293) (join ?9293 ?9293) [9294, 9293] by Super 5705 with 4941 at 2,1,3 +Id : 5957, {_}: join ?9299 ?9299 =<= meet (meet ?9299 ?9299) (join ?9299 ?9299) [9299] by Super 5955 with 4941 at 1,1,3 +Id : 6022, {_}: ?8129 =<= join (join ?8129 ?8129) (meet ?8129 ?8129) [8129] by Demod 5068 with 5957 at 1,3 +Id : 7628, {_}: meet ?11050 ?11050 =<= meet (meet (join ?11051 ?11050) ?11050) (meet ?11050 ?11050) [11051, 11050] by Super 7418 with 6022 at 2,1,3 +Id : 6024, {_}: join (join ?9306 ?9306) (meet (join ?9306 ?9306) (join (meet ?9306 ?9306) (join ?9306 ?9306))) =>= join ?9306 ?9306 [9306] by Super 4435 with 5957 at 1,2 +Id : 6144, {_}: join (join ?9306 ?9306) (meet (join ?9306 ?9306) ?9306) =>= join ?9306 ?9306 [9306] by Demod 6024 with 4941 at 2,2,2 +Id : 6187, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join (meet (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444)) (meet (join ?9444 ?9444) ?9444))) =>= meet (join ?9444 ?9444) ?9444 [9444] by Super 5084 with 6144 at 2,1,2,2,2 +Id : 5117, {_}: ?8275 =<= meet (meet ?8275 (join ?8276 ?8275)) ?8275 [8276, 8275] by Super 4899 with 4941 at 1,1,3 +Id : 5128, {_}: join ?8312 ?8312 =<= meet (meet (join ?8312 ?8312) ?8312) (join ?8312 ?8312) [8312] by Super 5117 with 4941 at 2,1,3 +Id : 6199, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join (join ?9444 ?9444) (meet (join ?9444 ?9444) ?9444))) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6187 with 5128 at 1,2,2,2 +Id : 6200, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444)) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6199 with 6144 at 2,2,2 +Id : 6201, {_}: join (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6200 with 5128 at 2,2 +Id : 6718, {_}: ?10018 =<= meet (meet (meet (join ?10018 ?10018) ?10018) (join ?10019 ?10018)) ?10018 [10019, 10018] by Super 4899 with 6201 at 1,1,3 +Id : 6736, {_}: ?10071 =<= meet (join ?10071 ?10071) ?10071 [10071] by Super 6718 with 5128 at 1,3 +Id : 7650, {_}: meet ?11113 ?11113 =<= meet ?11113 (meet ?11113 ?11113) [11113] by Super 7628 with 6736 at 1,3 +Id : 7731, {_}: join (meet ?11160 ?11160) (meet ?11160 (join ?11160 (meet ?11160 ?11160))) =>= ?11160 [11160] by Super 1544 with 7650 at 1,2 +Id : 6841, {_}: join ?10124 (meet (join ?10124 ?10124) (join (join ?10124 ?10124) ?10124)) =>= join ?10124 ?10124 [10124] by Super 1544 with 6736 at 1,2 +Id : 6817, {_}: join (join ?9306 ?9306) ?9306 =>= join ?9306 ?9306 [9306] by Demod 6144 with 6736 at 2,2 +Id : 6906, {_}: join ?10124 (meet (join ?10124 ?10124) (join ?10124 ?10124)) =>= join ?10124 ?10124 [10124] by Demod 6841 with 6817 at 2,2,2 +Id : 1656, {_}: join (meet ?3234 ?3235) (meet ?3234 (join ?3234 ?3235)) =>= ?3234 [3235, 3234] by Demod 1164 with 748 at 1,1,2 +Id : 1661, {_}: join (meet (meet ?3267 ?3268) (meet ?3267 (join ?3267 ?3268))) (meet (meet ?3267 ?3268) ?3267) =>= meet ?3267 ?3268 [3268, 3267] by Super 1656 with 1544 at 2,2,2 +Id : 8992, {_}: meet ?12671 (join ?12672 ?12672) =<= meet (meet (join ?12673 ?12671) ?12672) (meet ?12671 (join ?12672 ?12672)) [12673, 12672, 12671] by Super 7418 with 4940 at 2,1,3 +Id : 6822, {_}: join ?9444 (join ?9444 ?9444) =<= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6201 with 6736 at 1,2 +Id : 6823, {_}: join ?9444 (join ?9444 ?9444) =>= ?9444 [9444] by Demod 6822 with 6736 at 3 +Id : 9646, {_}: meet (join ?13551 ?13551) (join ?13552 ?13552) =<= meet (meet ?13551 ?13552) (meet (join ?13551 ?13551) (join ?13552 ?13552)) [13552, 13551] by Super 8992 with 6823 at 1,1,3 +Id : 9670, {_}: meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624)) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624))) [13624] by Super 9646 with 7650 at 1,3 +Id : 6333, {_}: meet ?9575 ?9575 =<= meet (meet (join ?9576 (meet ?9575 ?9575)) ?9575) (meet ?9575 ?9575) [9576, 9575] by Super 5705 with 5068 at 2,1,3 +Id : 6336, {_}: meet ?9583 ?9583 =<= meet (meet ?9583 ?9583) (meet ?9583 ?9583) [9583] by Super 6333 with 6022 at 1,1,3 +Id : 6405, {_}: meet ?9659 ?9659 =<= join (join (meet ?9659 ?9659) (meet ?9659 ?9659)) (meet ?9659 ?9659) [9659] by Super 6022 with 6336 at 2,3 +Id : 7013, {_}: meet ?9659 ?9659 =<= join (meet ?9659 ?9659) (meet ?9659 ?9659) [9659] by Demod 6405 with 6817 at 3 +Id : 9768, {_}: meet (join ?13624 ?13624) (meet ?13624 ?13624) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624))) [13624] by Demod 9670 with 7013 at 2,2 +Id : 9769, {_}: meet (join ?13624 ?13624) (meet ?13624 ?13624) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (meet ?13624 ?13624)) [13624] by Demod 9768 with 7013 at 2,2,3 +Id : 10286, {_}: join (meet (meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))) (meet (meet ?14243 ?14243) (join (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Super 1661 with 9769 at 1,2,2 +Id : 10416, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet (meet ?14243 ?14243) (join (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10286 with 9769 at 1,1,2 +Id : 7044, {_}: meet ?10282 ?10282 =<= join (meet (meet ?10282 ?10282) (meet ?10282 ?10282)) (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Super 4940 with 7013 at 2,2,3 +Id : 7086, {_}: meet ?10282 ?10282 =<= join (meet ?10282 ?10282) (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Demod 7044 with 6336 at 1,3 +Id : 10417, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet (meet ?14243 ?14243) (meet ?14243 ?14243))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10416 with 7086 at 2,2,1,2 +Id : 10418, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10417 with 6336 at 2,1,2 +Id : 7467, {_}: meet ?10854 ?10854 =<= meet (meet (join ?10855 ?10854) (meet ?10854 ?10854)) (meet ?10854 ?10854) [10855, 10854] by Super 7418 with 7013 at 2,1,3 +Id : 10419, {_}: join (meet ?14243 ?14243) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10418 with 7467 at 1,2 +Id : 10420, {_}: meet ?14243 ?14243 =<= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10419 with 7086 at 2 +Id : 10421, {_}: meet ?14243 ?14243 =<= meet (join ?14243 ?14243) (meet ?14243 ?14243) [14243] by Demod 10420 with 9769 at 3 +Id : 10483, {_}: join (meet (meet (join ?14359 ?14359) (meet ?14359 ?14359)) (meet (join ?14359 ?14359) (join (join ?14359 ?14359) (meet ?14359 ?14359)))) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Super 1661 with 10421 at 1,2,2 +Id : 10517, {_}: join (meet (meet ?14359 ?14359) (meet (join ?14359 ?14359) (join (join ?14359 ?14359) (meet ?14359 ?14359)))) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10483 with 10421 at 1,1,2 +Id : 10518, {_}: join (meet (meet ?14359 ?14359) (meet (join ?14359 ?14359) ?14359)) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10517 with 6022 at 2,2,1,2 +Id : 10519, {_}: join (meet (meet ?14359 ?14359) ?14359) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10518 with 6736 at 2,1,2 +Id : 10520, {_}: join (meet (meet ?14359 ?14359) ?14359) (join ?14359 ?14359) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10519 with 5957 at 2,2 +Id : 10521, {_}: join (meet (meet ?14359 ?14359) ?14359) (join ?14359 ?14359) =>= meet ?14359 ?14359 [14359] by Demod 10520 with 10421 at 3 +Id : 10992, {_}: join (meet (meet (meet ?14539 ?14539) ?14539) (join ?14539 ?14539)) (meet (join ?14539 ?14539) (meet ?14539 ?14539)) =>= join ?14539 ?14539 [14539] by Super 4435 with 10521 at 2,2,2 +Id : 8999, {_}: meet (meet ?12702 ?12702) (join ?12702 ?12702) =<= meet (meet (join ?12703 (meet ?12702 ?12702)) ?12702) (join ?12702 ?12702) [12703, 12702] by Super 8992 with 5957 at 2,3 +Id : 10037, {_}: join ?14089 ?14089 =<= meet (meet (join ?14090 (meet ?14089 ?14089)) ?14089) (join ?14089 ?14089) [14090, 14089] by Demod 8999 with 5957 at 2 +Id : 10046, {_}: join ?14111 ?14111 =<= meet (meet (meet ?14111 ?14111) ?14111) (join ?14111 ?14111) [14111] by Super 10037 with 7013 at 1,1,3 +Id : 11120, {_}: join (join ?14539 ?14539) (meet (join ?14539 ?14539) (meet ?14539 ?14539)) =>= join ?14539 ?14539 [14539] by Demod 10992 with 10046 at 1,2 +Id : 11121, {_}: join (join ?14539 ?14539) (meet ?14539 ?14539) =>= join ?14539 ?14539 [14539] by Demod 11120 with 10421 at 2,2 +Id : 11122, {_}: ?14539 =<= join ?14539 ?14539 [14539] by Demod 11121 with 6022 at 2 +Id : 11192, {_}: join ?10124 (meet ?10124 (join ?10124 ?10124)) =>= join ?10124 ?10124 [10124] by Demod 6906 with 11122 at 1,2,2 +Id : 11193, {_}: join ?10124 (meet ?10124 ?10124) =>= join ?10124 ?10124 [10124] by Demod 11192 with 11122 at 2,2,2 +Id : 11194, {_}: join ?10124 (meet ?10124 ?10124) =>= ?10124 [10124] by Demod 11193 with 11122 at 3 +Id : 11206, {_}: join (meet ?11160 ?11160) (meet ?11160 ?11160) =>= ?11160 [11160] by Demod 7731 with 11194 at 2,2,2 +Id : 11207, {_}: meet ?11160 ?11160 =>= ?11160 [11160] by Demod 11206 with 11122 at 2 +Id : 11456, {_}: a === a [] by Demod 2 with 11207 at 2 +Id : 2, {_}: meet a a =>= a [] by prove_normal_axioms_1 +% SZS output end CNFRefutation for LAT080-1.p +Order + == is 100 + _ is 99 + a is 98 + b is 97 + join is 95 + meet is 96 + prove_normal_axioms_8 is 94 + single_axiom is 93 +Facts + Id : 4, {_}: + join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) + (meet + (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) + (meet + (join + (meet ?3 + (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) + (meet ?8 + (join ?3 + (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) + (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) + (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) + =>= + ?3 + [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 +Goal + Id : 2, {_}: join a (meet a b) =>= a [] by prove_normal_axioms_8 +Found proof, 13.702259s +% SZS status Unsatisfiable for LAT087-1.p +% SZS output start CNFRefutation for LAT087-1.p +Id : 4, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)) (meet (join (meet ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)) (meet ?8 (join ?3 (meet (meet (join ?5 (join ?3 ?6)) (join ?7 ?3)) ?3)))) (join ?2 (join (join (meet ?5 ?3) (meet ?3 ?6)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [8, 7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 ?8 +Id : 5, {_}: join (meet (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12) (meet (join (meet ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)) (meet (join (meet ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)) (meet ?16 (join ?11 (meet (meet (join ?13 (join ?11 ?14)) (join ?15 ?11)) ?11)))) (join ?10 (join (join (meet ?13 ?11) (meet ?11 ?14)) ?11)))) (join (join (meet ?10 ?11) (meet ?11 (join ?10 ?11))) ?12)) =>= ?11 [16, 15, 14, 13, 12, 11, 10] by single_axiom ?10 ?11 ?12 ?13 ?14 ?15 ?16 +Id : 39, {_}: join (meet (join (meet ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) (join ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))))) ?290) (meet (join (meet ?287 (join (join (meet ?291 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) ?292)) (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))))) (meet ?289 (join ?287 (join (join (meet ?291 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) ?292)) (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))))))) (join (join (meet ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))) (meet (join (meet ?288 ?289) (meet ?289 (join ?288 ?289))) (join ?287 (join (meet ?288 ?289) (meet ?289 (join ?288 ?289)))))) ?290)) =>= join (meet ?288 ?289) (meet ?289 (join ?288 ?289)) [292, 291, 290, 289, 288, 287] by Super 5 with 4 at 1,2,1,2,2 +Id : 42, {_}: join (meet (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 318, 317, 323] by Super 39 with 4 at 2,2,2,1,2,2,2 +Id : 126, {_}: join (meet (join (meet ?323 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 317, 318, 323] by Demod 42 with 4 at 2,1,1,1,2 +Id : 127, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 325, 324, 322, 321, 320, 319, 317, 318, 323] by Demod 126 with 4 at 1,2,1,1,2 +Id : 128, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 322, 321, 320, 319, 317, 325, 324, 318, 323] by Demod 127 with 4 at 2,2,2,1,1,2 +Id : 129, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [326, 322, 321, 320, 319, 317, 325, 324, 318, 323] by Demod 128 with 4 at 2,1,1,2,1,1,2,2 +Id : 130, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 129 with 4 at 1,2,1,2,1,1,2,2 +Id : 131, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 130 with 4 at 2,2,1,1,2,2 +Id : 132, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 131 with 4 at 2,1,1,2,2,2,1,2,2 +Id : 133, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))))))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 132 with 4 at 1,2,1,2,2,2,1,2,2 +Id : 134, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))))) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 133 with 4 at 2,2,2,2,1,2,2 +Id : 135, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 ?318) (meet (join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))))) (join ?323 ?318))) ?324)) =>= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 134 with 4 at 2,1,1,2,2,2 +Id : 136, {_}: join (meet (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324) (meet (join (meet ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join ?323 (join (join (meet ?325 ?318) (meet ?318 ?326)) ?318)))) (join (join (meet ?323 ?318) (meet ?318 (join ?323 ?318))) ?324)) =?= join (meet (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318))))) (meet (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))) (join (join (meet ?317 ?318) (meet ?318 (join ?317 ?318))) (join (meet ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)) (meet (join (meet ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)) (meet ?322 (join ?318 (meet (meet (join ?319 (join ?318 ?320)) (join ?321 ?318)) ?318)))) (join ?317 (join (join (meet ?319 ?318) (meet ?318 ?320)) ?318)))))) [322, 321, 320, 319, 317, 326, 325, 324, 318, 323] by Demod 135 with 4 at 1,2,1,2,2,2 +Id : 714, {_}: join (meet (join (meet ?1381 ?1382) (meet ?1382 (join ?1381 ?1382))) ?1383) (meet (join (meet ?1381 (join (join (meet ?1384 ?1382) (meet ?1382 ?1385)) ?1382)) (meet (join (meet ?1386 (join (join (meet ?1387 ?1382) (meet ?1382 ?1388)) ?1382)) (meet (join (meet ?1382 (meet (meet (join ?1387 (join ?1382 ?1388)) (join ?1389 ?1382)) ?1382)) (meet ?1390 (join ?1382 (meet (meet (join ?1387 (join ?1382 ?1388)) (join ?1389 ?1382)) ?1382)))) (join ?1386 (join (join (meet ?1387 ?1382) (meet ?1382 ?1388)) ?1382)))) (join ?1381 (join (join (meet ?1384 ?1382) (meet ?1382 ?1385)) ?1382)))) (join (join (meet ?1381 ?1382) (meet ?1382 (join ?1381 ?1382))) ?1383)) =>= ?1382 [1390, 1389, 1388, 1387, 1386, 1385, 1384, 1383, 1382, 1381] by Demod 136 with 4 at 3 +Id : 1147, {_}: join (meet (join (meet (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511) (meet ?2511 (join (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511))) ?2512) (meet ?2511 (join (join (meet (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511) (meet ?2511 (join (join (meet ?2510 ?2511) (meet ?2511 (join ?2510 ?2511))) ?2511))) ?2512)) =>= ?2511 [2512, 2511, 2510] by Super 714 with 4 at 1,2,2 +Id : 748, {_}: join (meet (join (meet (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912) (meet ?1912 (join (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912))) ?1913) (meet ?1912 (join (join (meet (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912) (meet ?1912 (join (join (meet ?1916 ?1912) (meet ?1912 (join ?1916 ?1912))) ?1912))) ?1913)) =>= ?1912 [1913, 1912, 1916] by Super 714 with 4 at 1,2,2 +Id : 1164, {_}: join (meet (join (meet (join (meet (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643) (meet ?2643 (join (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643))) ?2643) (meet ?2643 (join (join (meet (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643) (meet ?2643 (join (join (meet ?2642 ?2643) (meet ?2643 (join ?2642 ?2643))) ?2643))) ?2643))) ?2644) (meet ?2643 (join ?2643 ?2644)) =>= ?2643 [2644, 2643, 2642] by Super 1147 with 748 at 1,2,2,2 +Id : 1544, {_}: join (meet ?2643 ?2644) (meet ?2643 (join ?2643 ?2644)) =>= ?2643 [2644, 2643] by Demod 1164 with 748 at 1,1,2 +Id : 13, {_}: join (meet (join (meet ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) (join ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))))) ?113) (meet (join (meet ?112 (join (join (meet ?114 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) ?115)) (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))))) (meet ?107 (join ?112 (join (join (meet ?114 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) ?115)) (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))))))) (join (join (meet ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))) (meet (join (meet ?106 ?107) (meet ?107 (join ?106 ?107))) (join ?112 (join (meet ?106 ?107) (meet ?107 (join ?106 ?107)))))) ?113)) =>= join (meet ?106 ?107) (meet ?107 (join ?106 ?107)) [115, 114, 113, 107, 106, 112] by Super 5 with 4 at 1,2,1,2,2 +Id : 1092, {_}: join (meet (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2039, 2038, 2040] by Super 13 with 748 at 2,2,2,1,2,2,2 +Id : 1218, {_}: join (meet (join (meet ?2040 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2038, 2039, 2040] by Demod 1092 with 748 at 2,1,1,1,2 +Id : 1219, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2042, 2041, 2038, 2039, 2040] by Demod 1218 with 748 at 1,2,1,1,2 +Id : 1220, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2038, 2042, 2041, 2039, 2040] by Demod 1219 with 748 at 2,2,2,1,1,2 +Id : 1221, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2043, 2038, 2042, 2041, 2039, 2040] by Demod 1220 with 748 at 2,1,1,2,1,1,2,2 +Id : 1222, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1221 with 748 at 1,2,1,2,1,1,2,2 +Id : 1223, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1222 with 748 at 2,2,1,1,2,2 +Id : 1224, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1223 with 748 at 2,1,1,2,2,2,1,2,2 +Id : 1225, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))))))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1224 with 748 at 1,2,1,2,2,2,1,2,2 +Id : 1226, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)))) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1225 with 748 at 2,2,2,2,1,2,2 +Id : 1227, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet (join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039))) (join ?2040 ?2039))) ?2041)) =>= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1226 with 748 at 2,1,1,2,2,2 +Id : 1228, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =?= join (meet (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039) (meet ?2039 (join (join (meet (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039) (meet ?2039 (join (join (meet ?2038 ?2039) (meet ?2039 (join ?2038 ?2039))) ?2039))) ?2039)) [2038, 2043, 2042, 2041, 2039, 2040] by Demod 1227 with 748 at 1,2,1,2,2,2 +Id : 2531, {_}: join (meet (join (meet ?4434 ?4435) (meet ?4435 (join ?4434 ?4435))) ?4436) (meet (join (meet ?4434 (join (join (meet ?4437 ?4435) (meet ?4435 ?4438)) ?4435)) (meet ?4435 (join ?4434 (join (join (meet ?4437 ?4435) (meet ?4435 ?4438)) ?4435)))) (join (join (meet ?4434 ?4435) (meet ?4435 (join ?4434 ?4435))) ?4436)) =>= ?4435 [4438, 4437, 4436, 4435, 4434] by Demod 1228 with 748 at 3 +Id : 1229, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet (join (meet ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)) (meet ?2039 (join ?2040 (join (join (meet ?2042 ?2039) (meet ?2039 ?2043)) ?2039)))) (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =>= ?2039 [2043, 2042, 2041, 2039, 2040] by Demod 1228 with 748 at 3 +Id : 2544, {_}: join (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))))) ?4551) (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))))) (join ?4548 ?4551)) =>= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4553, 4552, 4551, 4550, 4549, 4548, 4547] by Super 2531 with 1229 at 1,2,2,2 +Id : 2938, {_}: join (meet ?4548 ?4551) (meet (join (meet (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) (join (join (meet ?4547 ?4548) (meet ?4548 (join ?4547 ?4548))) (join (join (meet ?4552 (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))))) (meet (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))) ?4553)) (join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)))))))) (join ?4548 ?4551)) =>= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4553, 4550, 4549, 4552, 4547, 4551, 4548] by Demod 2544 with 1229 at 1,1,2 +Id : 2939, {_}: join (meet ?4548 ?4551) (meet ?4548 (join ?4548 ?4551)) =?= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4550, 4549, 4547, 4551, 4548] by Demod 2938 with 1229 at 1,2,2 +Id : 2940, {_}: ?4548 =<= join (meet ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548)) (meet ?4548 (join ?4547 (join (join (meet ?4549 ?4548) (meet ?4548 ?4550)) ?4548))) [4550, 4549, 4547, 4548] by Demod 2939 with 1544 at 2 +Id : 2998, {_}: join (meet (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041) (meet ?2039 (join (join (meet ?2040 ?2039) (meet ?2039 (join ?2040 ?2039))) ?2041)) =>= ?2039 [2041, 2039, 2040] by Demod 1229 with 2940 at 1,2,2 +Id : 2540, {_}: join (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))))) ?4515) (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))))) (join ?4510 ?4515)) =>= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4517, 4516, 4515, 4514, 4513, 4512, 4511, 4510, 4509] by Super 2531 with 4 at 1,2,2,2 +Id : 2926, {_}: join (meet ?4510 ?4515) (meet (join (meet (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) (join (join (meet ?4509 ?4510) (meet ?4510 (join ?4509 ?4510))) (join (join (meet ?4516 (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))))) (meet (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))) ?4517)) (join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)))))))) (join ?4510 ?4515)) =>= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4517, 4514, 4513, 4512, 4511, 4516, 4509, 4515, 4510] by Demod 2540 with 4 at 1,1,2 +Id : 2927, {_}: join (meet ?4510 ?4515) (meet ?4510 (join ?4510 ?4515)) =?= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4514, 4513, 4512, 4511, 4509, 4515, 4510] by Demod 2926 with 4 at 1,2,2 +Id : 2928, {_}: ?4510 =<= join (meet ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510)) (meet (join (meet ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)) (meet ?4514 (join ?4510 (meet (meet (join ?4511 (join ?4510 ?4512)) (join ?4513 ?4510)) ?4510)))) (join ?4509 (join (join (meet ?4511 ?4510) (meet ?4510 ?4512)) ?4510))) [4514, 4513, 4512, 4511, 4509, 4510] by Demod 2927 with 1544 at 2 +Id : 4152, {_}: ?6409 =<= join (meet ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409)) (meet ?6413 (join ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409))) [6413, 6412, 6411, 6410, 6409] by Super 1544 with 2928 at 2 +Id : 4435, {_}: join (meet ?7069 ?7068) (meet ?7068 (join ?7069 ?7068)) =>= ?7068 [7068, 7069] by Super 2998 with 4152 at 2 +Id : 1656, {_}: join (meet ?3234 ?3235) (meet ?3234 (join ?3234 ?3235)) =>= ?3234 [3235, 3234] by Demod 1164 with 748 at 1,1,2 +Id : 1661, {_}: join (meet (meet ?3267 ?3268) (meet ?3267 (join ?3267 ?3268))) (meet (meet ?3267 ?3268) ?3267) =>= meet ?3267 ?3268 [3268, 3267] by Super 1656 with 1544 at 2,2,2 +Id : 4973, {_}: ?7997 =<= meet (meet (join ?7998 (join ?7997 ?7999)) (join ?8000 ?7997)) ?7997 [8000, 7999, 7998, 7997] by Super 4152 with 4435 at 3 +Id : 7418, {_}: meet ?10627 ?10628 =<= meet (meet (join ?10629 ?10627) (join ?10630 (meet ?10627 ?10628))) (meet ?10627 ?10628) [10630, 10629, 10628, 10627] by Super 4973 with 1544 at 2,1,1,3 +Id : 4899, {_}: ?7757 =<= meet (meet (join ?7758 (join ?7757 ?7759)) (join ?7760 ?7757)) ?7757 [7760, 7759, 7758, 7757] by Super 4152 with 4435 at 3 +Id : 4939, {_}: ?6409 =<= join (meet ?6409 ?6409) (meet ?6413 (join ?6409 (meet (meet (join ?6410 (join ?6409 ?6411)) (join ?6412 ?6409)) ?6409))) [6412, 6411, 6410, 6413, 6409] by Demod 4152 with 4899 at 2,1,3 +Id : 4940, {_}: ?6409 =<= join (meet ?6409 ?6409) (meet ?6413 (join ?6409 ?6409)) [6413, 6409] by Demod 4939 with 4899 at 2,2,2,3 +Id : 8992, {_}: meet ?12671 (join ?12672 ?12672) =<= meet (meet (join ?12673 ?12671) ?12672) (meet ?12671 (join ?12672 ?12672)) [12673, 12672, 12671] by Super 7418 with 4940 at 2,1,3 +Id : 4941, {_}: ?7815 =<= join (meet ?7815 ?7815) (join ?7815 ?7815) [7815] by Super 4940 with 4899 at 2,3 +Id : 5072, {_}: ?8141 =<= meet (meet ?8141 (join ?8142 ?8141)) ?8141 [8142, 8141] by Super 4899 with 4941 at 1,1,3 +Id : 5084, {_}: join ?8151 (meet ?8151 (join (meet ?8151 (join ?8152 ?8151)) ?8151)) =>= ?8151 [8152, 8151] by Super 4435 with 5072 at 1,2 +Id : 5705, {_}: ?8954 =<= meet (meet (join ?8955 ?8954) (join ?8956 ?8954)) ?8954 [8956, 8955, 8954] by Super 4899 with 5084 at 2,1,1,3 +Id : 5955, {_}: join ?9293 ?9293 =<= meet (meet (join ?9294 (join ?9293 ?9293)) ?9293) (join ?9293 ?9293) [9294, 9293] by Super 5705 with 4941 at 2,1,3 +Id : 5957, {_}: join ?9299 ?9299 =<= meet (meet ?9299 ?9299) (join ?9299 ?9299) [9299] by Super 5955 with 4941 at 1,1,3 +Id : 6024, {_}: join (join ?9306 ?9306) (meet (join ?9306 ?9306) (join (meet ?9306 ?9306) (join ?9306 ?9306))) =>= join ?9306 ?9306 [9306] by Super 4435 with 5957 at 1,2 +Id : 6144, {_}: join (join ?9306 ?9306) (meet (join ?9306 ?9306) ?9306) =>= join ?9306 ?9306 [9306] by Demod 6024 with 4941 at 2,2,2 +Id : 6187, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join (meet (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444)) (meet (join ?9444 ?9444) ?9444))) =>= meet (join ?9444 ?9444) ?9444 [9444] by Super 5084 with 6144 at 2,1,2,2,2 +Id : 5117, {_}: ?8275 =<= meet (meet ?8275 (join ?8276 ?8275)) ?8275 [8276, 8275] by Super 4899 with 4941 at 1,1,3 +Id : 5128, {_}: join ?8312 ?8312 =<= meet (meet (join ?8312 ?8312) ?8312) (join ?8312 ?8312) [8312] by Super 5117 with 4941 at 2,1,3 +Id : 6199, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join (join ?9444 ?9444) (meet (join ?9444 ?9444) ?9444))) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6187 with 5128 at 1,2,2,2 +Id : 6200, {_}: join (meet (join ?9444 ?9444) ?9444) (meet (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444)) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6199 with 6144 at 2,2,2 +Id : 6201, {_}: join (meet (join ?9444 ?9444) ?9444) (join ?9444 ?9444) =>= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6200 with 5128 at 2,2 +Id : 6718, {_}: ?10018 =<= meet (meet (meet (join ?10018 ?10018) ?10018) (join ?10019 ?10018)) ?10018 [10019, 10018] by Super 4899 with 6201 at 1,1,3 +Id : 6736, {_}: ?10071 =<= meet (join ?10071 ?10071) ?10071 [10071] by Super 6718 with 5128 at 1,3 +Id : 6822, {_}: join ?9444 (join ?9444 ?9444) =<= meet (join ?9444 ?9444) ?9444 [9444] by Demod 6201 with 6736 at 1,2 +Id : 6823, {_}: join ?9444 (join ?9444 ?9444) =>= ?9444 [9444] by Demod 6822 with 6736 at 3 +Id : 9646, {_}: meet (join ?13551 ?13551) (join ?13552 ?13552) =<= meet (meet ?13551 ?13552) (meet (join ?13551 ?13551) (join ?13552 ?13552)) [13552, 13551] by Super 8992 with 6823 at 1,1,3 +Id : 3035, {_}: ?5143 =<= join (meet ?5144 (join (join (meet ?5145 ?5143) (meet ?5143 ?5146)) ?5143)) (meet ?5143 (join ?5144 (join (join (meet ?5145 ?5143) (meet ?5143 ?5146)) ?5143))) [5146, 5145, 5144, 5143] by Demod 2939 with 1544 at 2 +Id : 3039, {_}: ?5175 =<= join (meet ?5174 (join (join (meet ?5175 ?5175) (meet ?5175 (join ?5175 ?5175))) ?5175)) (meet ?5175 (join ?5174 (join ?5175 ?5175))) [5174, 5175] by Super 3035 with 1544 at 1,2,2,2,3 +Id : 3217, {_}: ?5175 =<= join (meet ?5174 (join ?5175 ?5175)) (meet ?5175 (join ?5174 (join ?5175 ?5175))) [5174, 5175] by Demod 3039 with 1544 at 1,2,1,3 +Id : 5068, {_}: ?8129 =<= join (meet (meet ?8129 ?8129) (join ?8129 ?8129)) (meet ?8129 ?8129) [8129] by Super 3217 with 4941 at 2,2,3 +Id : 6022, {_}: ?8129 =<= join (join ?8129 ?8129) (meet ?8129 ?8129) [8129] by Demod 5068 with 5957 at 1,3 +Id : 7628, {_}: meet ?11050 ?11050 =<= meet (meet (join ?11051 ?11050) ?11050) (meet ?11050 ?11050) [11051, 11050] by Super 7418 with 6022 at 2,1,3 +Id : 7650, {_}: meet ?11113 ?11113 =<= meet ?11113 (meet ?11113 ?11113) [11113] by Super 7628 with 6736 at 1,3 +Id : 9670, {_}: meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624)) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624))) [13624] by Super 9646 with 7650 at 1,3 +Id : 6333, {_}: meet ?9575 ?9575 =<= meet (meet (join ?9576 (meet ?9575 ?9575)) ?9575) (meet ?9575 ?9575) [9576, 9575] by Super 5705 with 5068 at 2,1,3 +Id : 6336, {_}: meet ?9583 ?9583 =<= meet (meet ?9583 ?9583) (meet ?9583 ?9583) [9583] by Super 6333 with 6022 at 1,1,3 +Id : 6405, {_}: meet ?9659 ?9659 =<= join (join (meet ?9659 ?9659) (meet ?9659 ?9659)) (meet ?9659 ?9659) [9659] by Super 6022 with 6336 at 2,3 +Id : 6817, {_}: join (join ?9306 ?9306) ?9306 =>= join ?9306 ?9306 [9306] by Demod 6144 with 6736 at 2,2 +Id : 7013, {_}: meet ?9659 ?9659 =<= join (meet ?9659 ?9659) (meet ?9659 ?9659) [9659] by Demod 6405 with 6817 at 3 +Id : 9768, {_}: meet (join ?13624 ?13624) (meet ?13624 ?13624) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (join (meet ?13624 ?13624) (meet ?13624 ?13624))) [13624] by Demod 9670 with 7013 at 2,2 +Id : 9769, {_}: meet (join ?13624 ?13624) (meet ?13624 ?13624) =<= meet (meet ?13624 ?13624) (meet (join ?13624 ?13624) (meet ?13624 ?13624)) [13624] by Demod 9768 with 7013 at 2,2,3 +Id : 10286, {_}: join (meet (meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))) (meet (meet ?14243 ?14243) (join (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Super 1661 with 9769 at 1,2,2 +Id : 10416, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet (meet ?14243 ?14243) (join (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243))))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10286 with 9769 at 1,1,2 +Id : 7044, {_}: meet ?10282 ?10282 =<= join (meet (meet ?10282 ?10282) (meet ?10282 ?10282)) (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Super 4940 with 7013 at 2,2,3 +Id : 7086, {_}: meet ?10282 ?10282 =<= join (meet ?10282 ?10282) (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Demod 7044 with 6336 at 1,3 +Id : 10417, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet (meet ?14243 ?14243) (meet ?14243 ?14243))) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10416 with 7086 at 2,2,1,2 +Id : 10418, {_}: join (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10417 with 6336 at 2,1,2 +Id : 7467, {_}: meet ?10854 ?10854 =<= meet (meet (join ?10855 ?10854) (meet ?10854 ?10854)) (meet ?10854 ?10854) [10855, 10854] by Super 7418 with 7013 at 2,1,3 +Id : 10419, {_}: join (meet ?14243 ?14243) (meet (meet (join ?14243 ?14243) (meet ?14243 ?14243)) (meet ?14243 ?14243)) =>= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10418 with 7467 at 1,2 +Id : 10420, {_}: meet ?14243 ?14243 =<= meet (meet ?14243 ?14243) (meet (join ?14243 ?14243) (meet ?14243 ?14243)) [14243] by Demod 10419 with 7086 at 2 +Id : 10421, {_}: meet ?14243 ?14243 =<= meet (join ?14243 ?14243) (meet ?14243 ?14243) [14243] by Demod 10420 with 9769 at 3 +Id : 10483, {_}: join (meet (meet (join ?14359 ?14359) (meet ?14359 ?14359)) (meet (join ?14359 ?14359) (join (join ?14359 ?14359) (meet ?14359 ?14359)))) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Super 1661 with 10421 at 1,2,2 +Id : 10517, {_}: join (meet (meet ?14359 ?14359) (meet (join ?14359 ?14359) (join (join ?14359 ?14359) (meet ?14359 ?14359)))) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10483 with 10421 at 1,1,2 +Id : 10518, {_}: join (meet (meet ?14359 ?14359) (meet (join ?14359 ?14359) ?14359)) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10517 with 6022 at 2,2,1,2 +Id : 10519, {_}: join (meet (meet ?14359 ?14359) ?14359) (meet (meet ?14359 ?14359) (join ?14359 ?14359)) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10518 with 6736 at 2,1,2 +Id : 10520, {_}: join (meet (meet ?14359 ?14359) ?14359) (join ?14359 ?14359) =>= meet (join ?14359 ?14359) (meet ?14359 ?14359) [14359] by Demod 10519 with 5957 at 2,2 +Id : 10521, {_}: join (meet (meet ?14359 ?14359) ?14359) (join ?14359 ?14359) =>= meet ?14359 ?14359 [14359] by Demod 10520 with 10421 at 3 +Id : 10992, {_}: join (meet (meet (meet ?14539 ?14539) ?14539) (join ?14539 ?14539)) (meet (join ?14539 ?14539) (meet ?14539 ?14539)) =>= join ?14539 ?14539 [14539] by Super 4435 with 10521 at 2,2,2 +Id : 8999, {_}: meet (meet ?12702 ?12702) (join ?12702 ?12702) =<= meet (meet (join ?12703 (meet ?12702 ?12702)) ?12702) (join ?12702 ?12702) [12703, 12702] by Super 8992 with 5957 at 2,3 +Id : 10037, {_}: join ?14089 ?14089 =<= meet (meet (join ?14090 (meet ?14089 ?14089)) ?14089) (join ?14089 ?14089) [14090, 14089] by Demod 8999 with 5957 at 2 +Id : 10046, {_}: join ?14111 ?14111 =<= meet (meet (meet ?14111 ?14111) ?14111) (join ?14111 ?14111) [14111] by Super 10037 with 7013 at 1,1,3 +Id : 11120, {_}: join (join ?14539 ?14539) (meet (join ?14539 ?14539) (meet ?14539 ?14539)) =>= join ?14539 ?14539 [14539] by Demod 10992 with 10046 at 1,2 +Id : 11121, {_}: join (join ?14539 ?14539) (meet ?14539 ?14539) =>= join ?14539 ?14539 [14539] by Demod 11120 with 10421 at 2,2 +Id : 11122, {_}: ?14539 =<= join ?14539 ?14539 [14539] by Demod 11121 with 6022 at 2 +Id : 11280, {_}: ?14616 =<= join (meet (join (join (meet ?14617 ?14616) (meet ?14616 ?14618)) ?14616) (join (join (meet ?14617 ?14616) (meet ?14616 ?14618)) ?14616)) (meet ?14616 (join (join (meet ?14617 ?14616) (meet ?14616 ?14618)) ?14616)) [14618, 14617, 14616] by Super 2940 with 11122 at 2,2,3 +Id : 7731, {_}: join (meet ?11160 ?11160) (meet ?11160 (join ?11160 (meet ?11160 ?11160))) =>= ?11160 [11160] by Super 1544 with 7650 at 1,2 +Id : 6841, {_}: join ?10124 (meet (join ?10124 ?10124) (join (join ?10124 ?10124) ?10124)) =>= join ?10124 ?10124 [10124] by Super 1544 with 6736 at 1,2 +Id : 6906, {_}: join ?10124 (meet (join ?10124 ?10124) (join ?10124 ?10124)) =>= join ?10124 ?10124 [10124] by Demod 6841 with 6817 at 2,2,2 +Id : 11192, {_}: join ?10124 (meet ?10124 (join ?10124 ?10124)) =>= join ?10124 ?10124 [10124] by Demod 6906 with 11122 at 1,2,2 +Id : 11193, {_}: join ?10124 (meet ?10124 ?10124) =>= join ?10124 ?10124 [10124] by Demod 11192 with 11122 at 2,2,2 +Id : 11194, {_}: join ?10124 (meet ?10124 ?10124) =>= ?10124 [10124] by Demod 11193 with 11122 at 3 +Id : 11206, {_}: join (meet ?11160 ?11160) (meet ?11160 ?11160) =>= ?11160 [11160] by Demod 7731 with 11194 at 2,2,2 +Id : 11207, {_}: meet ?11160 ?11160 =>= ?11160 [11160] by Demod 11206 with 11122 at 2 +Id : 11417, {_}: ?14616 =<= join (join (join (meet ?14617 ?14616) (meet ?14616 ?14618)) ?14616) (meet ?14616 (join (join (meet ?14617 ?14616) (meet ?14616 ?14618)) ?14616)) [14618, 14617, 14616] by Demod 11280 with 11207 at 1,3 +Id : 11210, {_}: ?10282 =<= join (meet ?10282 ?10282) (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Demod 7086 with 11207 at 2 +Id : 11211, {_}: ?10282 =<= join ?10282 (meet ?10283 (meet ?10282 ?10282)) [10283, 10282] by Demod 11210 with 11207 at 1,3 +Id : 11212, {_}: ?10282 =<= join ?10282 (meet ?10283 ?10282) [10283, 10282] by Demod 11211 with 11207 at 2,2,3 +Id : 12052, {_}: ?15606 =<= join (join (meet ?15607 ?15606) (meet ?15606 ?15608)) ?15606 [15608, 15607, 15606] by Demod 11417 with 11212 at 3 +Id : 12070, {_}: ?15688 =<= join (join ?15688 (meet ?15688 ?15689)) ?15688 [15689, 15688] by Super 12052 with 11207 at 1,1,3 +Id : 12545, {_}: join (meet (join ?16137 (meet ?16137 ?16138)) ?16137) (meet (join ?16137 (meet ?16137 ?16138)) ?16137) =>= join ?16137 (meet ?16137 ?16138) [16138, 16137] by Super 1544 with 12070 at 2,2,2 +Id : 12628, {_}: meet (join ?16137 (meet ?16137 ?16138)) ?16137 =>= join ?16137 (meet ?16137 ?16138) [16138, 16137] by Demod 12545 with 11122 at 2 +Id : 11515, {_}: ?14875 =<= meet (meet (join ?14876 (join ?14875 ?14877)) ?14875) ?14875 [14877, 14876, 14875] by Super 4899 with 11122 at 2,1,3 +Id : 11529, {_}: ?14934 =<= meet (meet (join ?14934 ?14935) ?14934) ?14934 [14935, 14934] by Super 11515 with 11122 at 1,1,3 +Id : 12090, {_}: ?15773 =<= join (meet ?15774 ?15773) ?15773 [15774, 15773] by Super 12052 with 11212 at 1,3 +Id : 12194, {_}: join (meet (meet ?15862 ?15861) ?15861) (meet (meet ?15862 ?15861) ?15861) =>= meet ?15862 ?15861 [15861, 15862] by Super 1544 with 12090 at 2,2,2 +Id : 12248, {_}: meet (meet ?15862 ?15861) ?15861 =>= meet ?15862 ?15861 [15861, 15862] by Demod 12194 with 11122 at 2 +Id : 12318, {_}: ?14934 =<= meet (join ?14934 ?14935) ?14934 [14935, 14934] by Demod 11529 with 12248 at 3 +Id : 12629, {_}: ?16137 =<= join ?16137 (meet ?16137 ?16138) [16138, 16137] by Demod 12628 with 12318 at 2 +Id : 12769, {_}: a === a [] by Demod 2 with 12629 at 2 +Id : 2, {_}: join a (meet a b) =>= a [] by prove_normal_axioms_8 +% SZS output end CNFRefutation for LAT087-1.p +Order + == is 100 + _ is 99 + a is 97 + b is 98 + join is 94 + meet is 96 + prove_wal_axioms_2 is 95 + single_axiom is 93 +Facts + Id : 4, {_}: + join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) + (meet + (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) + (meet + (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) + (meet ?7 + (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) + (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) + (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) + =>= + ?3 + [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 +Goal + Id : 2, {_}: meet b a =>= meet a b [] by prove_wal_axioms_2 +Found proof, 13.254951s +% SZS status Unsatisfiable for LAT093-1.p +% SZS output start CNFRefutation for LAT093-1.p +Id : 4, {_}: join (meet (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4) (meet (join (meet ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)) (meet (join (meet ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)) (meet ?7 (join ?3 (meet (meet (join ?3 ?5) (join ?6 ?3)) ?3)))) (join ?2 (join (join (meet ?3 ?5) (meet ?6 ?3)) ?3)))) (join (join (meet ?2 ?3) (meet ?3 (join ?2 ?3))) ?4)) =>= ?3 [7, 6, 5, 4, 3, 2] by single_axiom ?2 ?3 ?4 ?5 ?6 ?7 +Id : 5, {_}: join (meet (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11) (meet (join (meet ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)) (meet (join (meet ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)) (meet ?14 (join ?10 (meet (meet (join ?10 ?12) (join ?13 ?10)) ?10)))) (join ?9 (join (join (meet ?10 ?12) (meet ?13 ?10)) ?10)))) (join (join (meet ?9 ?10) (meet ?10 (join ?9 ?10))) ?11)) =>= ?10 [14, 13, 12, 11, 10, 9] by single_axiom ?9 ?10 ?11 ?12 ?13 ?14 +Id : 33, {_}: join (meet (join (meet ?215 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217)))) (meet (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))) (join ?215 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217)))))) ?218) (meet (join (meet ?215 (join (join (meet (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))) ?219) (meet ?220 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))))) (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))))) (meet ?217 (join ?215 (join (join (meet (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))) ?219) (meet ?220 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))))) (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))))))) (join (join (meet ?215 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217)))) (meet (join (meet ?216 ?217) (meet ?217 (join ?216 ?217))) (join ?215 (join (meet ?216 ?217) (meet ?217 (join ?216 ?217)))))) ?218)) =>= join (meet ?216 ?217) (meet ?217 (join ?216 ?217)) [220, 219, 218, 217, 216, 215] by Super 5 with 4 at 1,2,1,2,2 +Id : 36, {_}: join (meet (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))))) ?250) (meet (join (meet ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [252, 251, 250, 248, 247, 246, 245, 244, 249] by Super 33 with 4 at 2,2,2,1,2,2,2 +Id : 118, {_}: join (meet (join (meet ?249 ?245) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))))) ?250) (meet (join (meet ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [252, 251, 250, 248, 247, 246, 244, 245, 249] by Demod 36 with 4 at 2,1,1,1,2 +Id : 119, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))))) ?250) (meet (join (meet ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [252, 251, 250, 248, 247, 246, 244, 245, 249] by Demod 118 with 4 at 1,2,1,1,2 +Id : 120, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [252, 251, 248, 247, 246, 244, 250, 245, 249] by Demod 119 with 4 at 2,2,2,1,1,2 +Id : 121, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 120 with 4 at 1,1,1,2,1,1,2,2 +Id : 122, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 121 with 4 at 2,2,1,2,1,1,2,2 +Id : 123, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 122 with 4 at 2,2,1,1,2,2 +Id : 124, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet ?245 ?251) (meet ?252 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 123 with 4 at 1,1,1,2,2,2,1,2,2 +Id : 125, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))))))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 124 with 4 at 2,2,1,2,2,2,1,2,2 +Id : 126, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)))) (join (join (meet ?249 (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))))) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 125 with 4 at 2,2,2,2,1,2,2 +Id : 127, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)))) (join (join (meet ?249 ?245) (meet (join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))))) (join ?249 ?245))) ?250)) =>= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 126 with 4 at 2,1,1,2,2,2 +Id : 128, {_}: join (meet (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250) (meet (join (meet ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join ?249 (join (join (meet ?245 ?251) (meet ?252 ?245)) ?245)))) (join (join (meet ?249 ?245) (meet ?245 (join ?249 ?245))) ?250)) =?= join (meet (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245))))) (meet (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))) (join (join (meet ?244 ?245) (meet ?245 (join ?244 ?245))) (join (meet ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)) (meet (join (meet ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)) (meet ?248 (join ?245 (meet (meet (join ?245 ?246) (join ?247 ?245)) ?245)))) (join ?244 (join (join (meet ?245 ?246) (meet ?247 ?245)) ?245)))))) [248, 247, 246, 244, 252, 251, 250, 245, 249] by Demod 127 with 4 at 1,2,1,2,2,2 +Id : 704, {_}: join (meet (join (meet ?1213 ?1214) (meet ?1214 (join ?1213 ?1214))) ?1215) (meet (join (meet ?1213 (join (join (meet ?1214 ?1216) (meet ?1217 ?1214)) ?1214)) (meet (join (meet ?1218 (join (join (meet ?1214 ?1219) (meet ?1220 ?1214)) ?1214)) (meet (join (meet ?1214 (meet (meet (join ?1214 ?1219) (join ?1220 ?1214)) ?1214)) (meet ?1221 (join ?1214 (meet (meet (join ?1214 ?1219) (join ?1220 ?1214)) ?1214)))) (join ?1218 (join (join (meet ?1214 ?1219) (meet ?1220 ?1214)) ?1214)))) (join ?1213 (join (join (meet ?1214 ?1216) (meet ?1217 ?1214)) ?1214)))) (join (join (meet ?1213 ?1214) (meet ?1214 (join ?1213 ?1214))) ?1215)) =>= ?1214 [1221, 1220, 1219, 1218, 1217, 1216, 1215, 1214, 1213] by Demod 128 with 4 at 3 +Id : 1103, {_}: join (meet (join (meet (join (meet ?2031 ?2032) (meet ?2032 (join ?2031 ?2032))) ?2032) (meet ?2032 (join (join (meet ?2031 ?2032) (meet ?2032 (join ?2031 ?2032))) ?2032))) ?2033) (meet ?2032 (join (join (meet (join (meet ?2031 ?2032) (meet ?2032 (join ?2031 ?2032))) ?2032) (meet ?2032 (join (join (meet ?2031 ?2032) (meet ?2032 (join ?2031 ?2032))) ?2032))) ?2033)) =>= ?2032 [2033, 2032, 2031] by Super 704 with 4 at 1,2,2 +Id : 726, {_}: join (meet (join (meet (join (meet ?1536 ?1532) (meet ?1532 (join ?1536 ?1532))) ?1532) (meet ?1532 (join (join (meet ?1536 ?1532) (meet ?1532 (join ?1536 ?1532))) ?1532))) ?1533) (meet ?1532 (join (join (meet (join (meet ?1536 ?1532) (meet ?1532 (join ?1536 ?1532))) ?1532) (meet ?1532 (join (join (meet ?1536 ?1532) (meet ?1532 (join ?1536 ?1532))) ?1532))) ?1533)) =>= ?1532 [1533, 1532, 1536] by Super 704 with 4 at 1,2,2 +Id : 1120, {_}: join (meet (join (meet (join (meet (join (meet ?2155 ?2156) (meet ?2156 (join ?2155 ?2156))) ?2156) (meet ?2156 (join (join (meet ?2155 ?2156) (meet ?2156 (join ?2155 ?2156))) ?2156))) ?2156) (meet ?2156 (join (join (meet (join (meet ?2155 ?2156) (meet ?2156 (join ?2155 ?2156))) ?2156) (meet ?2156 (join (join (meet ?2155 ?2156) (meet ?2156 (join ?2155 ?2156))) ?2156))) ?2156))) ?2157) (meet ?2156 (join ?2156 ?2157)) =>= ?2156 [2157, 2156, 2155] by Super 1103 with 726 at 1,2,2,2 +Id : 1492, {_}: join (meet ?2156 ?2157) (meet ?2156 (join ?2156 ?2157)) =>= ?2156 [2157, 2156] by Demod 1120 with 726 at 1,1,2 +Id : 12, {_}: join (meet (join (meet ?86 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82)))) (meet (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))) (join ?86 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82)))))) ?87) (meet (join (meet ?86 (join (join (meet (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))) ?88) (meet ?89 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))))) (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))))) (meet ?82 (join ?86 (join (join (meet (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))) ?88) (meet ?89 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))))) (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))))))) (join (join (meet ?86 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82)))) (meet (join (meet ?81 ?82) (meet ?82 (join ?81 ?82))) (join ?86 (join (meet ?81 ?82) (meet ?82 (join ?81 ?82)))))) ?87)) =>= join (meet ?81 ?82) (meet ?82 (join ?81 ?82)) [89, 88, 87, 82, 81, 86] by Super 5 with 4 at 1,2,1,2,2 +Id : 1056, {_}: join (meet (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))))) ?1649) (meet (join (meet ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1651, 1650, 1649, 1647, 1646, 1648] by Super 12 with 726 at 2,2,2,1,2,2,2 +Id : 1168, {_}: join (meet (join (meet ?1648 ?1647) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))))) ?1649) (meet (join (meet ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1651, 1650, 1649, 1646, 1647, 1648] by Demod 1056 with 726 at 2,1,1,1,2 +Id : 1169, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))))) ?1649) (meet (join (meet ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1651, 1650, 1649, 1646, 1647, 1648] by Demod 1168 with 726 at 1,2,1,1,2 +Id : 1170, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1651, 1650, 1646, 1649, 1647, 1648] by Demod 1169 with 726 at 2,2,2,1,1,2 +Id : 1171, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1170 with 726 at 1,1,1,2,1,1,2,2 +Id : 1172, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1171 with 726 at 2,2,1,2,1,1,2,2 +Id : 1173, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1172 with 726 at 2,2,1,1,2,2 +Id : 1174, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1173 with 726 at 1,1,1,2,2,2,1,2,2 +Id : 1175, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))))))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1174 with 726 at 2,2,1,2,2,2,1,2,2 +Id : 1176, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)))) (join (join (meet ?1648 (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)))) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1175 with 726 at 2,2,2,2,1,2,2 +Id : 1177, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)))) (join (join (meet ?1648 ?1647) (meet (join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647))) (join ?1648 ?1647))) ?1649)) =>= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1176 with 726 at 2,1,1,2,2,2 +Id : 1178, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)))) (join (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649)) =?= join (meet (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647) (meet ?1647 (join (join (meet (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647) (meet ?1647 (join (join (meet ?1646 ?1647) (meet ?1647 (join ?1646 ?1647))) ?1647))) ?1647)) [1646, 1651, 1650, 1649, 1647, 1648] by Demod 1177 with 726 at 1,2,1,2,2,2 +Id : 1179, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet (join (meet ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)) (meet ?1647 (join ?1648 (join (join (meet ?1647 ?1650) (meet ?1651 ?1647)) ?1647)))) (join (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649)) =>= ?1647 [1651, 1650, 1649, 1647, 1648] by Demod 1178 with 726 at 3 +Id : 2457, {_}: join (meet (join (meet ?3744 ?3745) (meet ?3745 (join ?3744 ?3745))) ?3746) (meet (join (meet ?3744 (join (join (meet ?3745 ?3747) (meet ?3748 ?3745)) ?3745)) (meet ?3745 (join ?3744 (join (join (meet ?3745 ?3747) (meet ?3748 ?3745)) ?3745)))) (join (join (meet ?3744 ?3745) (meet ?3745 (join ?3744 ?3745))) ?3746)) =>= ?3745 [3748, 3747, 3746, 3745, 3744] by Demod 1178 with 726 at 3 +Id : 2470, {_}: join (meet (join (meet (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))))) (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) (join (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))))))) ?3857) (meet (join (meet (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (join (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) ?3858) (meet ?3859 (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) (join (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (join (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) ?3858) (meet ?3859 (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))))) (join ?3854 ?3857)) =>= join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))) [3859, 3858, 3857, 3856, 3855, 3854, 3853] by Super 2457 with 1179 at 1,2,2,2 +Id : 2846, {_}: join (meet ?3854 ?3857) (meet (join (meet (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (join (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) ?3858) (meet ?3859 (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) (join (join (meet ?3853 ?3854) (meet ?3854 (join ?3853 ?3854))) (join (join (meet (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))) ?3858) (meet ?3859 (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))) (join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)))))))) (join ?3854 ?3857)) =>= join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))) [3859, 3858, 3856, 3855, 3853, 3857, 3854] by Demod 2470 with 1179 at 1,1,2 +Id : 2847, {_}: join (meet ?3854 ?3857) (meet ?3854 (join ?3854 ?3857)) =?= join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))) [3856, 3855, 3853, 3857, 3854] by Demod 2846 with 1179 at 1,2,2 +Id : 2848, {_}: ?3854 =<= join (meet ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854)) (meet ?3854 (join ?3853 (join (join (meet ?3854 ?3855) (meet ?3856 ?3854)) ?3854))) [3856, 3855, 3853, 3854] by Demod 2847 with 1492 at 2 +Id : 2894, {_}: join (meet (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649) (meet ?1647 (join (join (meet ?1648 ?1647) (meet ?1647 (join ?1648 ?1647))) ?1649)) =>= ?1647 [1649, 1647, 1648] by Demod 1179 with 2848 at 1,2,2 +Id : 2466, {_}: join (meet (join (meet (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))))) (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) (join (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))))))) ?3822) (meet (join (meet (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (join (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) ?3823) (meet ?3824 (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) (join (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (join (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) ?3823) (meet ?3824 (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))))) (join ?3818 ?3822)) =>= join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))) [3824, 3823, 3822, 3821, 3820, 3819, 3818, 3817] by Super 2457 with 4 at 1,2,2,2 +Id : 2834, {_}: join (meet ?3818 ?3822) (meet (join (meet (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (join (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) ?3823) (meet ?3824 (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) (join (join (meet ?3817 ?3818) (meet ?3818 (join ?3817 ?3818))) (join (join (meet (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))) ?3823) (meet ?3824 (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))) (join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)))))))) (join ?3818 ?3822)) =>= join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))) [3824, 3823, 3821, 3820, 3819, 3817, 3822, 3818] by Demod 2466 with 4 at 1,1,2 +Id : 2835, {_}: join (meet ?3818 ?3822) (meet ?3818 (join ?3818 ?3822)) =?= join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))) [3821, 3820, 3819, 3817, 3822, 3818] by Demod 2834 with 4 at 1,2,2 +Id : 2836, {_}: ?3818 =<= join (meet ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818)) (meet (join (meet ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)) (meet ?3821 (join ?3818 (meet (meet (join ?3818 ?3819) (join ?3820 ?3818)) ?3818)))) (join ?3817 (join (join (meet ?3818 ?3819) (meet ?3820 ?3818)) ?3818))) [3821, 3820, 3819, 3817, 3818] by Demod 2835 with 1492 at 2 +Id : 3353, {_}: ?4683 =<= join (meet ?4683 (meet (meet (join ?4683 ?4684) (join ?4685 ?4683)) ?4683)) (meet ?4686 (join ?4683 (meet (meet (join ?4683 ?4684) (join ?4685 ?4683)) ?4683))) [4686, 4685, 4684, 4683] by Super 2894 with 2836 at 2 +Id : 3629, {_}: join (meet ?5382 ?5381) (meet ?5381 (join ?5382 ?5381)) =>= ?5381 [5381, 5382] by Super 2894 with 3353 at 2 +Id : 4066, {_}: ?5811 =<= meet (meet (join ?5811 ?5812) (join ?5813 ?5811)) ?5811 [5813, 5812, 5811] by Super 3353 with 3629 at 3 +Id : 4517, {_}: meet ?6536 ?6537 =<= meet (meet ?6537 (join ?6538 (meet ?6536 ?6537))) (meet ?6536 ?6537) [6538, 6537, 6536] by Super 4066 with 3629 at 1,1,3 +Id : 4020, {_}: ?5649 =<= meet (meet (join ?5649 ?5650) (join ?5651 ?5649)) ?5649 [5651, 5650, 5649] by Super 3353 with 3629 at 3 +Id : 4518, {_}: meet (meet (join ?6542 ?6540) (join ?6541 ?6542)) ?6542 =<= meet (meet ?6542 (join ?6543 (meet (meet (join ?6542 ?6540) (join ?6541 ?6542)) ?6542))) ?6542 [6543, 6541, 6540, 6542] by Super 4517 with 4020 at 2,3 +Id : 4585, {_}: ?6542 =<= meet (meet ?6542 (join ?6543 (meet (meet (join ?6542 ?6540) (join ?6541 ?6542)) ?6542))) ?6542 [6541, 6540, 6543, 6542] by Demod 4518 with 4020 at 2 +Id : 4586, {_}: ?6542 =<= meet (meet ?6542 (join ?6543 ?6542)) ?6542 [6543, 6542] by Demod 4585 with 4020 at 2,2,1,3 +Id : 1596, {_}: join (meet ?2660 ?2661) (meet ?2660 (join ?2660 ?2661)) =>= ?2660 [2661, 2660] by Demod 1120 with 726 at 1,1,2 +Id : 1601, {_}: join (meet (meet ?2691 ?2692) (meet ?2691 (join ?2691 ?2692))) (meet (meet ?2691 ?2692) ?2691) =>= meet ?2691 ?2692 [2692, 2691] by Super 1596 with 1492 at 2,2,2 +Id : 4161, {_}: meet ?6000 ?6001 =<= meet (meet ?6000 (join ?6002 (meet ?6000 ?6001))) (meet ?6000 ?6001) [6002, 6001, 6000] by Super 4066 with 1492 at 1,1,3 +Id : 4166, {_}: meet ?6025 (join ?6025 ?6024) =<= meet (meet ?6025 ?6025) (meet ?6025 (join ?6025 ?6024)) [6024, 6025] by Super 4161 with 1492 at 2,1,3 +Id : 4239, {_}: join (meet ?6108 (join ?6108 ?6108)) (meet (meet ?6108 ?6108) ?6108) =>= meet ?6108 ?6108 [6108] by Super 1601 with 4166 at 1,2 +Id : 1974, {_}: join (meet (meet (meet ?2899 ?2900) (meet ?2899 (join ?2899 ?2900))) (meet (meet ?2899 ?2900) ?2899)) (meet (meet (meet ?2899 ?2900) (meet ?2899 (join ?2899 ?2900))) (meet ?2899 ?2900)) =>= meet (meet ?2899 ?2900) (meet ?2899 (join ?2899 ?2900)) [2900, 2899] by Super 1492 with 1601 at 2,2,2 +Id : 4530, {_}: meet ?6595 (join ?6595 ?6594) =<= meet (meet (join ?6595 ?6594) ?6595) (meet ?6595 (join ?6595 ?6594)) [6594, 6595] by Super 4517 with 1492 at 2,1,3 +Id : 4634, {_}: join ?6728 (meet ?6728 (join (meet ?6728 (join ?6729 ?6728)) ?6728)) =>= ?6728 [6729, 6728] by Super 3629 with 4586 at 1,2 +Id : 5854, {_}: meet ?8039 (join ?8039 (meet ?8039 (join (meet ?8039 (join ?8040 ?8039)) ?8039))) =<= meet (meet (join ?8039 (meet ?8039 (join (meet ?8039 (join ?8040 ?8039)) ?8039))) ?8039) (meet ?8039 ?8039) [8040, 8039] by Super 4530 with 4634 at 2,2,3 +Id : 5885, {_}: meet ?8039 ?8039 =<= meet (meet (join ?8039 (meet ?8039 (join (meet ?8039 (join ?8040 ?8039)) ?8039))) ?8039) (meet ?8039 ?8039) [8040, 8039] by Demod 5854 with 4634 at 2,2 +Id : 5886, {_}: meet ?8039 ?8039 =<= meet (meet ?8039 ?8039) (meet ?8039 ?8039) [8039] by Demod 5885 with 4634 at 1,1,3 +Id : 5940, {_}: join (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet ?8123 ?8123))) (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet ?8123 ?8123)) =>= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Super 1974 with 5886 at 2,2,2 +Id : 6002, {_}: join (meet (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet ?8123 ?8123))) (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet ?8123 ?8123)) =>= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 5940 with 4166 at 1,1,2 +Id : 6003, {_}: join (meet (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) (meet (meet ?8123 ?8123) (meet ?8123 ?8123))) (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet ?8123 ?8123)) =>= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 6002 with 5886 at 1,2,1,2 +Id : 6004, {_}: join (meet (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) (meet ?8123 ?8123)) (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet ?8123 ?8123)) =>= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 6003 with 5886 at 2,1,2 +Id : 6005, {_}: join (meet ?8123 ?8123) (meet (meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)))) (meet ?8123 ?8123)) =>= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 6004 with 4586 at 1,2 +Id : 6006, {_}: join (meet ?8123 ?8123) (meet (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) (meet ?8123 ?8123)) =<= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 6005 with 4166 at 1,2,2 +Id : 6007, {_}: join (meet ?8123 ?8123) (meet ?8123 ?8123) =<= meet (meet (meet ?8123 ?8123) (meet ?8123 ?8123)) (meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123))) [8123] by Demod 6006 with 4586 at 2,2 +Id : 6008, {_}: join (meet ?8123 ?8123) (meet ?8123 ?8123) =<= meet (meet ?8123 ?8123) (join (meet ?8123 ?8123) (meet ?8123 ?8123)) [8123] by Demod 6007 with 4166 at 3 +Id : 7068, {_}: join (join (meet ?9355 ?9355) (meet ?9355 ?9355)) (meet (meet (meet ?9355 ?9355) (meet ?9355 ?9355)) (meet ?9355 ?9355)) =>= meet (meet ?9355 ?9355) (meet ?9355 ?9355) [9355] by Super 4239 with 6008 at 1,2 +Id : 7098, {_}: join (join (meet ?9355 ?9355) (meet ?9355 ?9355)) (meet (meet ?9355 ?9355) (meet ?9355 ?9355)) =>= meet (meet ?9355 ?9355) (meet ?9355 ?9355) [9355] by Demod 7068 with 5886 at 1,2,2 +Id : 7099, {_}: join (join (meet ?9355 ?9355) (meet ?9355 ?9355)) (meet ?9355 ?9355) =>= meet (meet ?9355 ?9355) (meet ?9355 ?9355) [9355] by Demod 7098 with 5886 at 2,2 +Id : 7100, {_}: join (join (meet ?9355 ?9355) (meet ?9355 ?9355)) (meet ?9355 ?9355) =>= meet ?9355 ?9355 [9355] by Demod 7099 with 5886 at 3 +Id : 7401, {_}: meet ?9521 ?9521 =<= meet (meet (join (meet ?9521 ?9521) ?9522) (meet ?9521 ?9521)) (meet ?9521 ?9521) [9522, 9521] by Super 4020 with 7100 at 2,1,3 +Id : 13724, {_}: join (meet ?15407 ?15407) (meet (meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407)) (join (meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407)) (meet ?15407 ?15407))) =>= meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407) [15408, 15407] by Super 1492 with 7401 at 1,2 +Id : 4041, {_}: ?4683 =<= join (meet ?4683 ?4683) (meet ?4686 (join ?4683 (meet (meet (join ?4683 ?4684) (join ?4685 ?4683)) ?4683))) [4685, 4684, 4686, 4683] by Demod 3353 with 4020 at 2,1,3 +Id : 4042, {_}: ?4683 =<= join (meet ?4683 ?4683) (meet ?4686 (join ?4683 ?4683)) [4686, 4683] by Demod 4041 with 4020 at 2,2,2,3 +Id : 4536, {_}: meet ?6617 (join ?6616 ?6616) =<= meet (meet (join ?6616 ?6616) ?6616) (meet ?6617 (join ?6616 ?6616)) [6616, 6617] by Super 4517 with 4042 at 2,1,3 +Id : 7400, {_}: join (meet (join (meet ?9519 ?9519) (meet ?9519 ?9519)) (meet ?9519 ?9519)) (meet (meet ?9519 ?9519) (meet ?9519 ?9519)) =>= meet ?9519 ?9519 [9519] by Super 3629 with 7100 at 2,2,2 +Id : 7034, {_}: meet ?9263 ?9263 =<= meet (join (meet ?9263 ?9263) (meet ?9263 ?9263)) (meet ?9263 ?9263) [9263] by Super 4586 with 6008 at 1,3 +Id : 7430, {_}: join (meet ?9519 ?9519) (meet (meet ?9519 ?9519) (meet ?9519 ?9519)) =>= meet ?9519 ?9519 [9519] by Demod 7400 with 7034 at 1,2 +Id : 7431, {_}: join (meet ?9519 ?9519) (meet ?9519 ?9519) =>= meet ?9519 ?9519 [9519] by Demod 7430 with 5886 at 2,2 +Id : 7539, {_}: meet ?9566 (join (meet ?9565 ?9565) (meet ?9565 ?9565)) =<= meet (meet (join (meet ?9565 ?9565) (meet ?9565 ?9565)) (meet ?9565 ?9565)) (meet ?9566 (meet ?9565 ?9565)) [9565, 9566] by Super 4536 with 7431 at 2,2,3 +Id : 7732, {_}: meet ?9566 (meet ?9565 ?9565) =<= meet (meet (join (meet ?9565 ?9565) (meet ?9565 ?9565)) (meet ?9565 ?9565)) (meet ?9566 (meet ?9565 ?9565)) [9565, 9566] by Demod 7539 with 7431 at 2,2 +Id : 7733, {_}: meet ?9566 (meet ?9565 ?9565) =<= meet (meet (meet ?9565 ?9565) (meet ?9565 ?9565)) (meet ?9566 (meet ?9565 ?9565)) [9565, 9566] by Demod 7732 with 7431 at 1,1,3 +Id : 7734, {_}: meet ?9566 (meet ?9565 ?9565) =<= meet (meet ?9565 ?9565) (meet ?9566 (meet ?9565 ?9565)) [9565, 9566] by Demod 7733 with 5886 at 1,3 +Id : 7988, {_}: join (meet ?9921 (meet ?9922 ?9922)) (meet (meet ?9922 ?9922) (join (meet ?9922 ?9922) (meet ?9921 (meet ?9922 ?9922)))) =>= meet ?9922 ?9922 [9922, 9921] by Super 1492 with 7734 at 1,2 +Id : 7550, {_}: meet ?9591 ?9591 =<= join (meet (meet ?9591 ?9591) (meet ?9591 ?9591)) (meet ?9592 (meet ?9591 ?9591)) [9592, 9591] by Super 4042 with 7431 at 2,2,3 +Id : 7707, {_}: meet ?9591 ?9591 =<= join (meet ?9591 ?9591) (meet ?9592 (meet ?9591 ?9591)) [9592, 9591] by Demod 7550 with 5886 at 1,3 +Id : 8067, {_}: join (meet ?9921 (meet ?9922 ?9922)) (meet (meet ?9922 ?9922) (meet ?9922 ?9922)) =>= meet ?9922 ?9922 [9922, 9921] by Demod 7988 with 7707 at 2,2,2 +Id : 8068, {_}: join (meet ?9921 (meet ?9922 ?9922)) (meet ?9922 ?9922) =>= meet ?9922 ?9922 [9922, 9921] by Demod 8067 with 5886 at 2,2 +Id : 13909, {_}: join (meet ?15407 ?15407) (meet (meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407)) (meet ?15407 ?15407)) =>= meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407) [15408, 15407] by Demod 13724 with 8068 at 2,2,2 +Id : 13910, {_}: meet ?15407 ?15407 =<= meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407) [15408, 15407] by Demod 13909 with 7707 at 2 +Id : 5848, {_}: join (meet ?8021 (meet ?8021 (join (meet ?8021 (join ?8022 ?8021)) ?8021))) (meet ?8021 ?8021) =>= ?8021 [8022, 8021] by Super 1492 with 4634 at 2,2,2 +Id : 4640, {_}: ?6750 =<= meet (meet ?6750 (join ?6751 ?6750)) ?6750 [6751, 6750] by Demod 4585 with 4020 at 2,2,1,3 +Id : 4645, {_}: meet ?6768 (join ?6767 ?6768) =<= meet (meet (meet ?6768 (join ?6767 ?6768)) ?6768) (meet ?6768 (join ?6767 ?6768)) [6767, 6768] by Super 4640 with 3629 at 2,1,3 +Id : 4708, {_}: meet ?6768 (join ?6767 ?6768) =<= meet ?6768 (meet ?6768 (join ?6767 ?6768)) [6767, 6768] by Demod 4645 with 4586 at 1,3 +Id : 5910, {_}: join (meet ?8021 (join (meet ?8021 (join ?8022 ?8021)) ?8021)) (meet ?8021 ?8021) =>= ?8021 [8022, 8021] by Demod 5848 with 4708 at 1,2 +Id : 9401, {_}: meet (meet ?11248 ?11249) ?11248 =<= meet (meet (meet ?11248 ?11249) (meet ?11248 ?11249)) (meet (meet ?11248 ?11249) ?11248) [11249, 11248] by Super 4161 with 1601 at 2,1,3 +Id : 9402, {_}: meet (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253) (meet (join ?11253 ?11251) (join ?11252 ?11253)) =<= meet (meet (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253) (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253)) (meet ?11253 (meet (join ?11253 ?11251) (join ?11252 ?11253))) [11252, 11251, 11253] by Super 9401 with 4020 at 1,2,3 +Id : 9552, {_}: meet ?11253 (meet (join ?11253 ?11251) (join ?11252 ?11253)) =<= meet (meet (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253) (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253)) (meet ?11253 (meet (join ?11253 ?11251) (join ?11252 ?11253))) [11252, 11251, 11253] by Demod 9402 with 4020 at 1,2 +Id : 9553, {_}: meet ?11253 (meet (join ?11253 ?11251) (join ?11252 ?11253)) =<= meet (meet ?11253 (meet (meet (join ?11253 ?11251) (join ?11252 ?11253)) ?11253)) (meet ?11253 (meet (join ?11253 ?11251) (join ?11252 ?11253))) [11252, 11251, 11253] by Demod 9552 with 4020 at 1,1,3 +Id : 18238, {_}: meet ?19914 (meet (join ?19914 ?19915) (join ?19916 ?19914)) =<= meet (meet ?19914 ?19914) (meet ?19914 (meet (join ?19914 ?19915) (join ?19916 ?19914))) [19916, 19915, 19914] by Demod 9553 with 4020 at 2,1,3 +Id : 11581, {_}: meet ?13378 (join ?13379 ?13379) =<= meet (meet (meet ?13378 (join ?13379 ?13379)) ?13379) (meet ?13378 (join ?13379 ?13379)) [13379, 13378] by Super 4640 with 4042 at 2,1,3 +Id : 11600, {_}: meet (join ?13442 ?13441) (join ?13442 ?13442) =<= meet ?13442 (meet (join ?13442 ?13441) (join ?13442 ?13442)) [13441, 13442] by Super 11581 with 4020 at 1,3 +Id : 18285, {_}: meet ?20107 (meet (join ?20107 ?20106) (join ?20107 ?20107)) =<= meet (meet ?20107 ?20107) (meet (join ?20107 ?20106) (join ?20107 ?20107)) [20106, 20107] by Super 18238 with 11600 at 2,3 +Id : 18491, {_}: meet (join ?20107 ?20106) (join ?20107 ?20107) =<= meet (meet ?20107 ?20107) (meet (join ?20107 ?20106) (join ?20107 ?20107)) [20106, 20107] by Demod 18285 with 11600 at 2 +Id : 18514, {_}: join (meet (join ?20180 ?20181) (join ?20180 ?20180)) (meet (meet (join ?20180 ?20181) (join ?20180 ?20180)) (join (meet ?20180 ?20180) (meet (join ?20180 ?20181) (join ?20180 ?20180)))) =>= meet (join ?20180 ?20181) (join ?20180 ?20180) [20181, 20180] by Super 3629 with 18491 at 1,2 +Id : 18667, {_}: join (meet (join ?20180 ?20181) (join ?20180 ?20180)) (meet (meet (join ?20180 ?20181) (join ?20180 ?20180)) ?20180) =>= meet (join ?20180 ?20181) (join ?20180 ?20180) [20181, 20180] by Demod 18514 with 4042 at 2,2,2 +Id : 18856, {_}: join (meet (join ?20559 ?20560) (join ?20559 ?20559)) ?20559 =>= meet (join ?20559 ?20560) (join ?20559 ?20559) [20560, 20559] by Demod 18667 with 4020 at 2,2 +Id : 4044, {_}: join ?5696 (meet ?5696 (join (meet (join ?5696 ?5697) (join ?5698 ?5696)) ?5696)) =>= ?5696 [5698, 5697, 5696] by Super 3629 with 4020 at 1,2 +Id : 18864, {_}: join (meet ?20588 (join ?20588 ?20588)) ?20588 =<= meet (join ?20588 (meet ?20588 (join (meet (join ?20588 ?20586) (join ?20587 ?20588)) ?20588))) (join ?20588 ?20588) [20587, 20586, 20588] by Super 18856 with 4044 at 1,1,2 +Id : 19017, {_}: join (meet ?20588 (join ?20588 ?20588)) ?20588 =>= meet ?20588 (join ?20588 ?20588) [20588] by Demod 18864 with 4044 at 1,3 +Id : 19112, {_}: join (meet ?20758 (meet ?20758 (join ?20758 ?20758))) (meet ?20758 ?20758) =>= ?20758 [20758] by Super 5910 with 19017 at 2,1,2 +Id : 19134, {_}: join (meet ?20758 (join ?20758 ?20758)) (meet ?20758 ?20758) =>= ?20758 [20758] by Demod 19112 with 4708 at 1,2 +Id : 12695, {_}: ?14373 =<= join (meet ?14375 (join (join (meet ?14373 (join (meet ?14373 (join ?14374 ?14373)) ?14373)) (meet ?14373 ?14373)) ?14373)) (meet ?14373 (join ?14375 (join ?14373 ?14373))) [14374, 14375, 14373] by Super 2848 with 5910 at 1,2,2,2,3 +Id : 12774, {_}: ?14373 =<= join (meet ?14375 (join ?14373 ?14373)) (meet ?14373 (join ?14375 (join ?14373 ?14373))) [14375, 14373] by Demod 12695 with 5910 at 1,2,1,3 +Id : 23235, {_}: join ?23859 ?23859 =>= ?23859 [23859] by Super 4042 with 12774 at 3 +Id : 23429, {_}: join (meet ?20758 ?20758) (meet ?20758 ?20758) =>= ?20758 [20758] by Demod 19134 with 23235 at 2,1,2 +Id : 23430, {_}: meet ?20758 ?20758 =>= ?20758 [20758] by Demod 23429 with 23235 at 2 +Id : 23444, {_}: ?15407 =<= meet (join (meet ?15407 ?15407) ?15408) (meet ?15407 ?15407) [15408, 15407] by Demod 13910 with 23430 at 2 +Id : 23445, {_}: ?15407 =<= meet (join ?15407 ?15408) (meet ?15407 ?15407) [15408, 15407] by Demod 23444 with 23430 at 1,1,3 +Id : 23446, {_}: ?15407 =<= meet (join ?15407 ?15408) ?15407 [15408, 15407] by Demod 23445 with 23430 at 2,3 +Id : 23618, {_}: ?24079 =<= join (meet (join (join (meet ?24079 ?24080) (meet ?24081 ?24079)) ?24079) (join (join (meet ?24079 ?24080) (meet ?24081 ?24079)) ?24079)) (meet ?24079 (join (join (meet ?24079 ?24080) (meet ?24081 ?24079)) ?24079)) [24081, 24080, 24079] by Super 2848 with 23235 at 2,2,3 +Id : 23720, {_}: ?24079 =<= join (join (join (meet ?24079 ?24080) (meet ?24081 ?24079)) ?24079) (meet ?24079 (join (join (meet ?24079 ?24080) (meet ?24081 ?24079)) ?24079)) [24081, 24080, 24079] by Demod 23618 with 23430 at 1,3 +Id : 23476, {_}: ?9591 =<= join (meet ?9591 ?9591) (meet ?9592 (meet ?9591 ?9591)) [9592, 9591] by Demod 7707 with 23430 at 2 +Id : 23477, {_}: ?9591 =<= join ?9591 (meet ?9592 (meet ?9591 ?9591)) [9592, 9591] by Demod 23476 with 23430 at 1,3 +Id : 23478, {_}: ?9591 =<= join ?9591 (meet ?9592 ?9591) [9592, 9591] by Demod 23477 with 23430 at 2,2,3 +Id : 23792, {_}: ?24251 =<= join (join (meet ?24251 ?24252) (meet ?24253 ?24251)) ?24251 [24253, 24252, 24251] by Demod 23720 with 23478 at 3 +Id : 23793, {_}: ?24256 =<= join (join (meet ?24256 ?24255) ?24256) ?24256 [24255, 24256] by Super 23792 with 23430 at 2,1,3 +Id : 23892, {_}: join (meet ?24386 ?24387) ?24386 =<= meet ?24386 (join (meet ?24386 ?24387) ?24386) [24387, 24386] by Super 23446 with 23793 at 1,3 +Id : 24037, {_}: ?24612 =<= meet (join (meet ?24612 ?24613) ?24612) ?24612 [24613, 24612] by Super 4586 with 23892 at 1,3 +Id : 23902, {_}: join (meet (join (meet ?24420 ?24421) ?24420) ?24420) (meet (join (meet ?24420 ?24421) ?24420) ?24420) =>= join (meet ?24420 ?24421) ?24420 [24421, 24420] by Super 1492 with 23793 at 2,2,2 +Id : 23961, {_}: meet (join (meet ?24420 ?24421) ?24420) ?24420 =>= join (meet ?24420 ?24421) ?24420 [24421, 24420] by Demod 23902 with 23235 at 2 +Id : 24344, {_}: ?24612 =<= join (meet ?24612 ?24613) ?24612 [24613, 24612] by Demod 24037 with 23961 at 3 +Id : 24361, {_}: join (meet (meet ?24861 ?24862) ?24861) (meet (meet ?24861 ?24862) ?24861) =>= meet ?24861 ?24862 [24862, 24861] by Super 1492 with 24344 at 2,2,2 +Id : 24421, {_}: meet (meet ?24861 ?24862) ?24861 =>= meet ?24861 ?24862 [24862, 24861] by Demod 24361 with 23235 at 2 +Id : 4078, {_}: meet ?5865 ?5866 =<= meet (meet ?5866 (join ?5867 (meet ?5865 ?5866))) (meet ?5865 ?5866) [5867, 5866, 5865] by Super 4066 with 3629 at 1,1,3 +Id : 24583, {_}: ?25104 =<= join ?25104 (meet ?25104 ?25105) [25105, 25104] by Super 23478 with 24421 at 2,3 +Id : 24726, {_}: meet ?25313 ?25314 =<= meet (meet ?25314 ?25313) (meet ?25313 ?25314) [25314, 25313] by Super 4078 with 24583 at 2,1,3 +Id : 24889, {_}: meet (meet ?25590 ?25591) (meet ?25591 ?25590) =?= meet (meet ?25591 ?25590) (meet ?25590 ?25591) [25591, 25590] by Super 24421 with 24726 at 1,2 +Id : 24922, {_}: meet ?25591 ?25590 =<= meet (meet ?25591 ?25590) (meet ?25590 ?25591) [25590, 25591] by Demod 24889 with 24726 at 2 +Id : 24923, {_}: meet ?25591 ?25590 =?= meet ?25590 ?25591 [25590, 25591] by Demod 24922 with 24726 at 3 +Id : 25184, {_}: meet a b === meet a b [] by Demod 2 with 24923 at 2 +Id : 2, {_}: meet b a =>= meet a b [] by prove_wal_axioms_2 +% SZS output end CNFRefutation for LAT093-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H7 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H6 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?26 ?28)) + =<= + meet ?26 + (join ?27 + (meet ?26 (join (meet ?26 ?27) (meet ?28 (join ?26 ?27))))) + [28, 27, 26] by equation_H7 ?26 ?27 ?28 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join (meet a (join b (meet a c))) (meet c (join a b))) + [] by prove_H6 +Last chance: 1246133454.3 +Last chance: all is indexed 1246133474.31 +Last chance: failed over 100 goal 1246133474.31 +FAILURE in 0 iterations +% SZS status Timeout for LAT138-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H21 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H2 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + join (meet ?26 ?27) (meet ?26 ?28) + =<= + meet ?26 + (join (meet ?27 (join ?26 (meet ?27 ?28))) + (meet ?28 (join ?26 ?27))) + [28, 27, 26] by equation_H21 ?26 ?27 ?28 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join b (meet c (join (meet a (join b c)) (meet b c)))) + [] by prove_H2 +Last chance: 1246133746.97 +Last chance: all is indexed 1246133766.97 +Last chance: failed over 100 goal 1246133766.98 +FAILURE in 0 iterations +% SZS status Timeout for LAT140-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 89 + absorption2 is 88 + associativity_of_join is 84 + associativity_of_meet is 85 + b is 97 + c is 96 + commutativity_of_join is 86 + commutativity_of_meet is 87 + d is 95 + equation_H34 is 83 + idempotence_of_join is 90 + idempotence_of_meet is 91 + join is 93 + meet is 94 + prove_H28 is 92 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 ?29)) + =<= + meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) + [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a (meet c d))) + =<= + meet a (join b (meet c (meet d (join a (meet b d))))) + [] by prove_H28 +Last chance: 1246134039.87 +Last chance: all is indexed 1246134059.87 +Last chance: failed over 100 goal 1246134059.88 +FAILURE in 0 iterations +% SZS status Timeout for LAT146-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H34 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H7 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 ?29)) + =<= + meet ?26 (join ?27 (meet ?28 (join ?27 (meet ?29 (join ?27 ?28))))) + [29, 28, 27, 26] by equation_H34 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join b (meet a (join (meet a b) (meet c (join a b))))) + [] by prove_H7 +Last chance: 1246134333.91 +Last chance: all is indexed 1246134353.91 +Last chance: failed over 100 goal 1246134353.91 +FAILURE in 0 iterations +% SZS status Timeout for LAT148-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H40 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H6 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) + =<= + meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?28 (join ?26 ?27))))) + [29, 28, 27, 26] by equation_H40 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join (meet a (join b (meet a c))) (meet c (join a b))) + [] by prove_H6 +Last chance: 1246134627.27 +Last chance: all is indexed 1246134647.28 +Last chance: failed over 100 goal 1246134647.28 +FAILURE in 0 iterations +% SZS status Timeout for LAT152-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H49 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H6 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) + =<= + meet ?26 (join ?27 (join (meet ?26 ?28) (meet ?28 (join ?27 ?29)))) + [29, 28, 27, 26] by equation_H49 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join (meet a (join b (meet a c))) (meet c (join a b))) + [] by prove_H6 +Last chance: 1246134920.07 +Last chance: all is indexed 1246134940.08 +Last chance: failed over 100 goal 1246134940.08 +FAILURE in 0 iterations +% SZS status Timeout for LAT156-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H50 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H7 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?26 ?29))) + =<= + meet ?26 (join ?27 (meet ?28 (join ?26 (meet ?28 (join ?27 ?29))))) + [29, 28, 27, 26] by equation_H50 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join b (meet a (join (meet a b) (meet c (join a b))))) + [] by prove_H7 +Last chance: 1246135214.14 +Last chance: all is indexed 1246135234.14 +Last chance: failed over 100 goal 1246135234.14 +FAILURE in 0 iterations +% SZS status Timeout for LAT159-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H76 is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 94 + meet is 95 + prove_H6 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) + =<= + meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) + [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a c)) + =<= + meet a (join (meet a (join b (meet a c))) (meet c (join a b))) + [] by prove_H6 +Last chance: 1246135504.86 +Last chance: all is indexed 1246135524.86 +Last chance: failed over 100 goal 1246135524.86 +FAILURE in 0 iterations +% SZS status Timeout for LAT164-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 89 + absorption2 is 88 + associativity_of_join is 84 + associativity_of_meet is 85 + b is 97 + c is 96 + commutativity_of_join is 86 + commutativity_of_meet is 87 + d is 95 + equation_H76 is 83 + idempotence_of_join is 90 + idempotence_of_meet is 91 + join is 94 + meet is 93 + prove_H77 is 92 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) + =<= + meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 ?27)))) + [29, 28, 27, 26] by equation_H76 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet c (join b d))) + =<= + meet a (join b (meet c (join d (meet a (meet b c))))) + [] by prove_H77 +Last chance: 1246135795.06 +Last chance: all is indexed 1246135815.06 +Last chance: failed over 100 goal 1246135815.06 +FAILURE in 0 iterations +% SZS status Timeout for LAT165-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 89 + absorption2 is 88 + associativity_of_join is 84 + associativity_of_meet is 85 + b is 97 + c is 96 + commutativity_of_join is 86 + commutativity_of_meet is 87 + d is 95 + equation_H77 is 83 + idempotence_of_join is 90 + idempotence_of_meet is 91 + join is 94 + meet is 93 + prove_H78 is 92 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet ?26 (join ?27 (meet ?28 (join ?27 ?29))) + =<= + meet ?26 (join ?27 (meet ?28 (join ?29 (meet ?26 (meet ?27 ?28))))) + [29, 28, 27, 26] by equation_H77 ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet c (join b d))) + =<= + meet a (join b (meet c (join d (meet b (join a d))))) + [] by prove_H78 +Last chance: 1246136085.64 +Last chance: all is indexed 1246136105.64 +Last chance: failed over 100 goal 1246136105.64 +FAILURE in 0 iterations +% SZS status Timeout for LAT166-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H21_dual is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 95 + meet is 94 + prove_H58 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + meet (join ?26 ?27) (join ?26 ?28) + =<= + join ?26 + (meet (join ?27 (meet ?26 (join ?27 ?28))) + (join ?28 (meet ?26 ?27))) + [28, 27, 26] by equation_H21_dual ?26 ?27 ?28 +Goal + Id : 2, {_}: + meet a (join b c) + =<= + meet a (join b (meet (join a b) (join c (meet a b)))) + [] by prove_H58 +Last chance: 1246136377.63 +Last chance: all is indexed 1246136397.63 +Last chance: failed over 100 goal 1246136397.63 +FAILURE in 0 iterations +% SZS status Timeout for LAT169-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 90 + absorption2 is 89 + associativity_of_join is 85 + associativity_of_meet is 86 + b is 97 + c is 96 + commutativity_of_join is 87 + commutativity_of_meet is 88 + equation_H49_dual is 84 + idempotence_of_join is 91 + idempotence_of_meet is 92 + join is 95 + meet is 94 + prove_H58 is 93 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) + =<= + join ?26 (meet ?27 (meet (join ?26 ?28) (join ?28 (meet ?27 ?29)))) + [29, 28, 27, 26] by equation_H49_dual ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b c) + =<= + meet a (join b (meet (join a b) (join c (meet a b)))) + [] by prove_H58 +Last chance: 1246136669.04 +Last chance: all is indexed 1246136689.04 +Last chance: failed over 100 goal 1246136689.04 +FAILURE in 0 iterations +% SZS status Timeout for LAT170-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 89 + absorption2 is 88 + associativity_of_join is 84 + associativity_of_meet is 85 + b is 97 + c is 96 + commutativity_of_join is 86 + commutativity_of_meet is 87 + d is 95 + equation_H76_dual is 83 + idempotence_of_join is 90 + idempotence_of_meet is 91 + join is 94 + meet is 93 + prove_H40 is 92 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + join ?26 (meet ?27 (join ?28 (meet ?27 ?29))) + =<= + join ?26 (meet ?27 (join ?28 (meet ?29 (join ?26 ?27)))) + [29, 28, 27, 26] by equation_H76_dual ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet c (join a d))) + =<= + meet a (join b (meet c (join d (meet c (join a b))))) + [] by prove_H40 +Last chance: 1246136959.2 +Last chance: all is indexed 1246136979.21 +Last chance: failed over 100 goal 1246136979.26 +FAILURE in 0 iterations +% SZS status Timeout for LAT173-1.p +Order + == is 100 + _ is 99 + a is 98 + absorption1 is 89 + absorption2 is 88 + associativity_of_join is 84 + associativity_of_meet is 85 + b is 97 + c is 96 + commutativity_of_join is 86 + commutativity_of_meet is 87 + d is 95 + equation_H79_dual is 83 + idempotence_of_join is 90 + idempotence_of_meet is 91 + join is 93 + meet is 94 + prove_H32 is 92 +Facts + Id : 4, {_}: meet ?2 ?2 =>= ?2 [2] by idempotence_of_meet ?2 + Id : 6, {_}: join ?4 ?4 =>= ?4 [4] by idempotence_of_join ?4 + Id : 8, {_}: meet ?6 (join ?6 ?7) =>= ?6 [7, 6] by absorption1 ?6 ?7 + Id : 10, {_}: join ?9 (meet ?9 ?10) =>= ?9 [10, 9] by absorption2 ?9 ?10 + Id : 12, {_}: + meet ?12 ?13 =?= meet ?13 ?12 + [13, 12] by commutativity_of_meet ?12 ?13 + Id : 14, {_}: + join ?15 ?16 =?= join ?16 ?15 + [16, 15] by commutativity_of_join ?15 ?16 + Id : 16, {_}: + meet (meet ?18 ?19) ?20 =?= meet ?18 (meet ?19 ?20) + [20, 19, 18] by associativity_of_meet ?18 ?19 ?20 + Id : 18, {_}: + join (join ?22 ?23) ?24 =?= join ?22 (join ?23 ?24) + [24, 23, 22] by associativity_of_join ?22 ?23 ?24 + Id : 20, {_}: + join ?26 (meet ?27 (join ?28 (meet ?26 ?29))) + =<= + join ?26 (meet (join ?26 (meet ?27 (join ?26 ?28))) (join ?28 ?29)) + [29, 28, 27, 26] by equation_H79_dual ?26 ?27 ?28 ?29 +Goal + Id : 2, {_}: + meet a (join b (meet a (meet c d))) + =<= + meet a (join b (meet c (join (meet a d) (meet b d)))) + [] by prove_H32 +Last chance: 1246137255.78 +Last chance: all is indexed 1246137275.78 +Last chance: failed over 100 goal 1246137275.78 +FAILURE in 0 iterations +% SZS status Timeout for LAT175-1.p +Order + == is 100 + _ is 99 + a is 97 + a_times_b_is_c is 80 + add is 92 + additive_identity is 93 + additive_inverse is 89 + associativity_for_addition is 86 + associativity_for_multiplication is 84 + b is 98 + c is 95 + commutativity_for_addition is 85 + distribute1 is 83 + distribute2 is 82 + left_additive_identity is 91 + left_additive_inverse is 88 + multiply is 96 + prove_commutativity is 94 + right_additive_identity is 90 + right_additive_inverse is 87 + x_cubed_is_x is 81 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + add (additive_inverse ?6) ?6 =>= additive_identity + [6] by left_additive_inverse ?6 + Id : 10, {_}: + add ?8 (additive_inverse ?8) =>= additive_identity + [8] by right_additive_inverse ?8 + Id : 12, {_}: + add ?10 (add ?11 ?12) =?= add (add ?10 ?11) ?12 + [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 + Id : 14, {_}: + add ?14 ?15 =?= add ?15 ?14 + [15, 14] by commutativity_for_addition ?14 ?15 + Id : 16, {_}: + multiply ?17 (multiply ?18 ?19) =?= multiply (multiply ?17 ?18) ?19 + [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 + Id : 18, {_}: + multiply ?21 (add ?22 ?23) + =<= + add (multiply ?21 ?22) (multiply ?21 ?23) + [23, 22, 21] by distribute1 ?21 ?22 ?23 + Id : 20, {_}: + multiply (add ?25 ?26) ?27 + =<= + add (multiply ?25 ?27) (multiply ?26 ?27) + [27, 26, 25] by distribute2 ?25 ?26 ?27 + Id : 22, {_}: multiply ?29 (multiply ?29 ?29) =>= ?29 [29] by x_cubed_is_x ?29 + Id : 24, {_}: multiply a b =>= c [] by a_times_b_is_c +Goal + Id : 2, {_}: multiply b a =>= c [] by prove_commutativity +Last chance: 1246137545.94 +Last chance: all is indexed 1246137565.94 +Last chance: failed over 100 goal 1246137565.94 +FAILURE in 0 iterations +% SZS status Timeout for RNG009-7.p +Order + == is 100 + _ is 99 + add is 94 + additive_identity is 91 + additive_inverse is 85 + additive_inverse_additive_inverse is 82 + associativity_for_addition is 78 + associator is 93 + commutativity_for_addition is 79 + commutator is 75 + distribute1 is 81 + distribute2 is 80 + left_additive_identity is 90 + left_additive_inverse is 84 + left_alternative is 76 + left_multiplicative_zero is 87 + multiply is 88 + prove_linearised_form1 is 92 + right_additive_identity is 89 + right_additive_inverse is 83 + right_alternative is 77 + right_multiplicative_zero is 86 + u is 96 + v is 95 + x is 98 + y is 97 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 +Goal + Id : 2, {_}: + associator x y (add u v) + =<= + add (associator x y u) (associator x y v) + [] by prove_linearised_form1 +Last chance: 1246137836.07 +Last chance: all is indexed 1246137856.07 +Last chance: failed over 100 goal 1246137856.07 +FAILURE in 0 iterations +% SZS status Timeout for RNG019-6.p +Order + == is 100 + _ is 99 + add is 94 + additive_identity is 91 + additive_inverse is 85 + additive_inverse_additive_inverse is 82 + associativity_for_addition is 78 + associator is 93 + commutativity_for_addition is 79 + commutator is 75 + distribute1 is 81 + distribute2 is 80 + distributivity_of_difference1 is 71 + distributivity_of_difference2 is 70 + distributivity_of_difference3 is 69 + distributivity_of_difference4 is 68 + inverse_product1 is 73 + inverse_product2 is 72 + left_additive_identity is 90 + left_additive_inverse is 84 + left_alternative is 76 + left_multiplicative_zero is 87 + multiply is 88 + product_of_inverses is 74 + prove_linearised_form1 is 92 + right_additive_identity is 89 + right_additive_inverse is 83 + right_alternative is 77 + right_multiplicative_zero is 86 + u is 96 + v is 95 + x is 98 + y is 97 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 + Id : 34, {_}: + multiply (additive_inverse ?44) (additive_inverse ?45) + =>= + multiply ?44 ?45 + [45, 44] by product_of_inverses ?44 ?45 + Id : 36, {_}: + multiply (additive_inverse ?47) ?48 + =>= + additive_inverse (multiply ?47 ?48) + [48, 47] by inverse_product1 ?47 ?48 + Id : 38, {_}: + multiply ?50 (additive_inverse ?51) + =>= + additive_inverse (multiply ?50 ?51) + [51, 50] by inverse_product2 ?50 ?51 + Id : 40, {_}: + multiply ?53 (add ?54 (additive_inverse ?55)) + =<= + add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) + [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 + Id : 42, {_}: + multiply (add ?57 (additive_inverse ?58)) ?59 + =<= + add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) + [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 + Id : 44, {_}: + multiply (additive_inverse ?61) (add ?62 ?63) + =<= + add (additive_inverse (multiply ?61 ?62)) + (additive_inverse (multiply ?61 ?63)) + [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 + Id : 46, {_}: + multiply (add ?65 ?66) (additive_inverse ?67) + =<= + add (additive_inverse (multiply ?65 ?67)) + (additive_inverse (multiply ?66 ?67)) + [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 +Goal + Id : 2, {_}: + associator x y (add u v) + =<= + add (associator x y u) (associator x y v) + [] by prove_linearised_form1 +Last chance: 1246138127.54 +Last chance: all is indexed 1246138147.55 +Last chance: failed over 100 goal 1246138147.55 +FAILURE in 0 iterations +% SZS status Timeout for RNG019-7.p +Order + == is 100 + _ is 99 + add is 95 + additive_identity is 91 + additive_inverse is 85 + additive_inverse_additive_inverse is 82 + associativity_for_addition is 78 + associator is 93 + commutativity_for_addition is 79 + commutator is 75 + distribute1 is 81 + distribute2 is 80 + left_additive_identity is 90 + left_additive_inverse is 84 + left_alternative is 76 + left_multiplicative_zero is 87 + multiply is 88 + prove_linearised_form2 is 92 + right_additive_identity is 89 + right_additive_inverse is 83 + right_alternative is 77 + right_multiplicative_zero is 86 + u is 97 + v is 96 + x is 98 + y is 94 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 +Goal + Id : 2, {_}: + associator x (add u v) y + =<= + add (associator x u y) (associator x v y) + [] by prove_linearised_form2 +Last chance: 1246138417.94 +Last chance: all is indexed 1246138437.94 +Last chance: failed over 100 goal 1246138437.94 +FAILURE in 0 iterations +% SZS status Timeout for RNG020-6.p +Order + == is 100 + _ is 99 + a is 98 + add is 92 + additive_identity is 90 + additive_inverse is 91 + additive_inverse_additive_inverse is 82 + associativity_for_addition is 78 + associator is 93 + b is 97 + c is 95 + commutativity_for_addition is 79 + commutator is 75 + d is 94 + distribute1 is 81 + distribute2 is 80 + left_additive_identity is 88 + left_additive_inverse is 84 + left_alternative is 76 + left_multiplicative_zero is 86 + multiply is 96 + prove_teichmuller_identity is 89 + right_additive_identity is 87 + right_additive_inverse is 83 + right_alternative is 77 + right_multiplicative_zero is 85 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 +Goal + Id : 2, {_}: + add + (add (associator (multiply a b) c d) + (associator a b (multiply c d))) + (additive_inverse + (add + (add (associator a (multiply b c) d) + (multiply a (associator b c d))) + (multiply (associator a b c) d))) + =>= + additive_identity + [] by prove_teichmuller_identity +Last chance: 1246138709.57 +Last chance: all is indexed 1246138729.58 +Last chance: failed over 100 goal 1246138729.58 +FAILURE in 0 iterations +% SZS status Timeout for RNG026-6.p +Order + == is 100 + _ is 99 + add is 92 + additive_identity is 93 + additive_inverse is 87 + additive_inverse_additive_inverse is 84 + associativity_for_addition is 80 + associator is 77 + commutativity_for_addition is 81 + commutator is 76 + cx is 97 + cy is 96 + cz is 98 + distribute1 is 83 + distribute2 is 82 + distributivity_of_difference1 is 72 + distributivity_of_difference2 is 71 + distributivity_of_difference3 is 70 + distributivity_of_difference4 is 69 + inverse_product1 is 74 + inverse_product2 is 73 + left_additive_identity is 91 + left_additive_inverse is 86 + left_alternative is 78 + left_multiplicative_zero is 89 + multiply is 95 + product_of_inverses is 75 + prove_right_moufang is 94 + right_additive_identity is 90 + right_additive_inverse is 85 + right_alternative is 79 + right_multiplicative_zero is 88 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 + Id : 34, {_}: + multiply (additive_inverse ?44) (additive_inverse ?45) + =>= + multiply ?44 ?45 + [45, 44] by product_of_inverses ?44 ?45 + Id : 36, {_}: + multiply (additive_inverse ?47) ?48 + =>= + additive_inverse (multiply ?47 ?48) + [48, 47] by inverse_product1 ?47 ?48 + Id : 38, {_}: + multiply ?50 (additive_inverse ?51) + =>= + additive_inverse (multiply ?50 ?51) + [51, 50] by inverse_product2 ?50 ?51 + Id : 40, {_}: + multiply ?53 (add ?54 (additive_inverse ?55)) + =<= + add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) + [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 + Id : 42, {_}: + multiply (add ?57 (additive_inverse ?58)) ?59 + =<= + add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) + [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 + Id : 44, {_}: + multiply (additive_inverse ?61) (add ?62 ?63) + =<= + add (additive_inverse (multiply ?61 ?62)) + (additive_inverse (multiply ?61 ?63)) + [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 + Id : 46, {_}: + multiply (add ?65 ?66) (additive_inverse ?67) + =<= + add (additive_inverse (multiply ?65 ?67)) + (additive_inverse (multiply ?66 ?67)) + [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 +Goal + Id : 2, {_}: + multiply cz (multiply cx (multiply cy cx)) + =<= + multiply (multiply (multiply cz cx) cy) cx + [] by prove_right_moufang +Last chance: 1246139002.01 +Last chance: all is indexed 1246139022.02 +Last chance: failed over 100 goal 1246139022.02 +FAILURE in 0 iterations +% SZS status Timeout for RNG027-7.p +Order + == is 100 + _ is 99 + add is 91 + additive_identity is 92 + additive_inverse is 86 + additive_inverse_additive_inverse is 83 + associativity_for_addition is 79 + associator is 94 + commutativity_for_addition is 80 + commutator is 76 + distribute1 is 82 + distribute2 is 81 + distributivity_of_difference1 is 72 + distributivity_of_difference2 is 71 + distributivity_of_difference3 is 70 + distributivity_of_difference4 is 69 + inverse_product1 is 74 + inverse_product2 is 73 + left_additive_identity is 90 + left_additive_inverse is 85 + left_alternative is 77 + left_multiplicative_zero is 88 + multiply is 96 + product_of_inverses is 75 + prove_left_moufang is 93 + right_additive_identity is 89 + right_additive_inverse is 84 + right_alternative is 78 + right_multiplicative_zero is 87 + x is 98 + y is 97 + z is 95 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 + Id : 34, {_}: + multiply (additive_inverse ?44) (additive_inverse ?45) + =>= + multiply ?44 ?45 + [45, 44] by product_of_inverses ?44 ?45 + Id : 36, {_}: + multiply (additive_inverse ?47) ?48 + =>= + additive_inverse (multiply ?47 ?48) + [48, 47] by inverse_product1 ?47 ?48 + Id : 38, {_}: + multiply ?50 (additive_inverse ?51) + =>= + additive_inverse (multiply ?50 ?51) + [51, 50] by inverse_product2 ?50 ?51 + Id : 40, {_}: + multiply ?53 (add ?54 (additive_inverse ?55)) + =<= + add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) + [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 + Id : 42, {_}: + multiply (add ?57 (additive_inverse ?58)) ?59 + =<= + add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) + [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 + Id : 44, {_}: + multiply (additive_inverse ?61) (add ?62 ?63) + =<= + add (additive_inverse (multiply ?61 ?62)) + (additive_inverse (multiply ?61 ?63)) + [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 + Id : 46, {_}: + multiply (add ?65 ?66) (additive_inverse ?67) + =<= + add (additive_inverse (multiply ?65 ?67)) + (additive_inverse (multiply ?66 ?67)) + [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 +Goal + Id : 2, {_}: + associator x (multiply y x) z =<= multiply x (associator x y z) + [] by prove_left_moufang +Last chance: 1246139292.16 +Last chance: all is indexed 1246139312.16 +Last chance: failed over 100 goal 1246139312.16 +FAILURE in 0 iterations +% SZS status Timeout for RNG028-9.p +Order + == is 100 + _ is 99 + add is 92 + additive_identity is 93 + additive_inverse is 87 + additive_inverse_additive_inverse is 84 + associativity_for_addition is 80 + associator is 77 + commutativity_for_addition is 81 + commutator is 76 + distribute1 is 83 + distribute2 is 82 + distributivity_of_difference1 is 72 + distributivity_of_difference2 is 71 + distributivity_of_difference3 is 70 + distributivity_of_difference4 is 69 + inverse_product1 is 74 + inverse_product2 is 73 + left_additive_identity is 91 + left_additive_inverse is 86 + left_alternative is 78 + left_multiplicative_zero is 89 + multiply is 96 + product_of_inverses is 75 + prove_middle_moufang is 94 + right_additive_identity is 90 + right_additive_inverse is 85 + right_alternative is 79 + right_multiplicative_zero is 88 + x is 98 + y is 97 + z is 95 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + multiply additive_identity ?6 =>= additive_identity + [6] by left_multiplicative_zero ?6 + Id : 10, {_}: + multiply ?8 additive_identity =>= additive_identity + [8] by right_multiplicative_zero ?8 + Id : 12, {_}: + add (additive_inverse ?10) ?10 =>= additive_identity + [10] by left_additive_inverse ?10 + Id : 14, {_}: + add ?12 (additive_inverse ?12) =>= additive_identity + [12] by right_additive_inverse ?12 + Id : 16, {_}: + additive_inverse (additive_inverse ?14) =>= ?14 + [14] by additive_inverse_additive_inverse ?14 + Id : 18, {_}: + multiply ?16 (add ?17 ?18) + =<= + add (multiply ?16 ?17) (multiply ?16 ?18) + [18, 17, 16] by distribute1 ?16 ?17 ?18 + Id : 20, {_}: + multiply (add ?20 ?21) ?22 + =<= + add (multiply ?20 ?22) (multiply ?21 ?22) + [22, 21, 20] by distribute2 ?20 ?21 ?22 + Id : 22, {_}: + add ?24 ?25 =?= add ?25 ?24 + [25, 24] by commutativity_for_addition ?24 ?25 + Id : 24, {_}: + add ?27 (add ?28 ?29) =?= add (add ?27 ?28) ?29 + [29, 28, 27] by associativity_for_addition ?27 ?28 ?29 + Id : 26, {_}: + multiply (multiply ?31 ?32) ?32 =?= multiply ?31 (multiply ?32 ?32) + [32, 31] by right_alternative ?31 ?32 + Id : 28, {_}: + multiply (multiply ?34 ?34) ?35 =?= multiply ?34 (multiply ?34 ?35) + [35, 34] by left_alternative ?34 ?35 + Id : 30, {_}: + associator ?37 ?38 ?39 + =<= + add (multiply (multiply ?37 ?38) ?39) + (additive_inverse (multiply ?37 (multiply ?38 ?39))) + [39, 38, 37] by associator ?37 ?38 ?39 + Id : 32, {_}: + commutator ?41 ?42 + =<= + add (multiply ?42 ?41) (additive_inverse (multiply ?41 ?42)) + [42, 41] by commutator ?41 ?42 + Id : 34, {_}: + multiply (additive_inverse ?44) (additive_inverse ?45) + =>= + multiply ?44 ?45 + [45, 44] by product_of_inverses ?44 ?45 + Id : 36, {_}: + multiply (additive_inverse ?47) ?48 + =>= + additive_inverse (multiply ?47 ?48) + [48, 47] by inverse_product1 ?47 ?48 + Id : 38, {_}: + multiply ?50 (additive_inverse ?51) + =>= + additive_inverse (multiply ?50 ?51) + [51, 50] by inverse_product2 ?50 ?51 + Id : 40, {_}: + multiply ?53 (add ?54 (additive_inverse ?55)) + =<= + add (multiply ?53 ?54) (additive_inverse (multiply ?53 ?55)) + [55, 54, 53] by distributivity_of_difference1 ?53 ?54 ?55 + Id : 42, {_}: + multiply (add ?57 (additive_inverse ?58)) ?59 + =<= + add (multiply ?57 ?59) (additive_inverse (multiply ?58 ?59)) + [59, 58, 57] by distributivity_of_difference2 ?57 ?58 ?59 + Id : 44, {_}: + multiply (additive_inverse ?61) (add ?62 ?63) + =<= + add (additive_inverse (multiply ?61 ?62)) + (additive_inverse (multiply ?61 ?63)) + [63, 62, 61] by distributivity_of_difference3 ?61 ?62 ?63 + Id : 46, {_}: + multiply (add ?65 ?66) (additive_inverse ?67) + =<= + add (additive_inverse (multiply ?65 ?67)) + (additive_inverse (multiply ?66 ?67)) + [67, 66, 65] by distributivity_of_difference4 ?65 ?66 ?67 +Goal + Id : 2, {_}: + multiply (multiply x y) (multiply z x) + =<= + multiply (multiply x (multiply y z)) x + [] by prove_middle_moufang +Last chance: 1246139582.69 +Last chance: all is indexed 1246139602.7 +Last chance: failed over 100 goal 1246139602.7 +FAILURE in 0 iterations +% SZS status Timeout for RNG029-7.p +Order + == is 100 + _ is 99 + a is 97 + a_times_b_is_c is 80 + add is 92 + additive_identity is 93 + additive_inverse is 89 + associativity_for_addition is 86 + associativity_for_multiplication is 84 + b is 98 + c is 95 + commutativity_for_addition is 85 + distribute1 is 83 + distribute2 is 82 + left_additive_identity is 91 + left_additive_inverse is 88 + multiply is 96 + prove_commutativity is 94 + right_additive_identity is 90 + right_additive_inverse is 87 + x_fourthed_is_x is 81 +Facts + Id : 4, {_}: add additive_identity ?2 =>= ?2 [2] by left_additive_identity ?2 + Id : 6, {_}: + add ?4 additive_identity =>= ?4 + [4] by right_additive_identity ?4 + Id : 8, {_}: + add (additive_inverse ?6) ?6 =>= additive_identity + [6] by left_additive_inverse ?6 + Id : 10, {_}: + add ?8 (additive_inverse ?8) =>= additive_identity + [8] by right_additive_inverse ?8 + Id : 12, {_}: + add ?10 (add ?11 ?12) =?= add (add ?10 ?11) ?12 + [12, 11, 10] by associativity_for_addition ?10 ?11 ?12 + Id : 14, {_}: + add ?14 ?15 =?= add ?15 ?14 + [15, 14] by commutativity_for_addition ?14 ?15 + Id : 16, {_}: + multiply ?17 (multiply ?18 ?19) =?= multiply (multiply ?17 ?18) ?19 + [19, 18, 17] by associativity_for_multiplication ?17 ?18 ?19 + Id : 18, {_}: + multiply ?21 (add ?22 ?23) + =<= + add (multiply ?21 ?22) (multiply ?21 ?23) + [23, 22, 21] by distribute1 ?21 ?22 ?23 + Id : 20, {_}: + multiply (add ?25 ?26) ?27 + =<= + add (multiply ?25 ?27) (multiply ?26 ?27) + [27, 26, 25] by distribute2 ?25 ?26 ?27 + Id : 22, {_}: + multiply ?29 (multiply ?29 (multiply ?29 ?29)) =>= ?29 + [29] by x_fourthed_is_x ?29 + Id : 24, {_}: multiply a b =>= c [] by a_times_b_is_c +Goal + Id : 2, {_}: multiply b a =>= c [] by prove_commutativity +Last chance: 1246139872.91 +Last chance: all is indexed 1246139892.92 +Last chance: failed over 100 goal 1246139892.92 +FAILURE in 0 iterations +% SZS status Timeout for RNG035-7.p +Order + == is 100 + _ is 99 + a is 98 + absorbtion is 88 + add is 95 + associativity_of_add is 92 + b is 97 + c is 90 + commutativity_of_add is 93 + d is 89 + negate is 96 + prove_huntingtons_axiom is 94 + robbins_axiom is 91 +Facts + Id : 4, {_}: add ?2 ?3 =?= add ?3 ?2 [3, 2] by commutativity_of_add ?2 ?3 + Id : 6, {_}: + add (add ?5 ?6) ?7 =?= add ?5 (add ?6 ?7) + [7, 6, 5] by associativity_of_add ?5 ?6 ?7 + Id : 8, {_}: + negate (add (negate (add ?9 ?10)) (negate (add ?9 (negate ?10)))) + =>= + ?9 + [10, 9] by robbins_axiom ?9 ?10 + Id : 10, {_}: add c d =>= d [] by absorbtion +Goal + Id : 2, {_}: + add (negate (add a (negate b))) (negate (add (negate a) (negate b))) + =>= + b + [] by prove_huntingtons_axiom +Last chance: 1246140169.53 +Last chance: all is indexed 1246140189.53 +Last chance: failed over 100 goal 1246140189.53 +FAILURE in 0 iterations +% SZS status Timeout for ROB006-1.p +Order + == is 100 + _ is 99 + absorbtion is 90 + add is 98 + associativity_of_add is 95 + c is 92 + commutativity_of_add is 96 + d is 91 + negate is 94 + prove_idempotence is 97 + robbins_axiom is 93 +Facts + Id : 4, {_}: add ?3 ?4 =?= add ?4 ?3 [4, 3] by commutativity_of_add ?3 ?4 + Id : 6, {_}: + add (add ?6 ?7) ?8 =?= add ?6 (add ?7 ?8) + [8, 7, 6] by associativity_of_add ?6 ?7 ?8 + Id : 8, {_}: + negate (add (negate (add ?10 ?11)) (negate (add ?10 (negate ?11)))) + =>= + ?10 + [11, 10] by robbins_axiom ?10 ?11 + Id : 10, {_}: add c d =>= d [] by absorbtion +Goal + Id : 2, {_}: add ?1 ?1 =>= ?1 [1] by prove_idempotence ?1 +Last chance: 1246140468.26 +Last chance: all is indexed 1246140488.26 +Last chance: failed over 100 goal 1246140489.49 +FAILURE in 0 iterations +% SZS status Timeout for ROB006-2.p