From: Enrico Tassi Date: Fri, 18 Jun 2010 11:11:43 +0000 (+0000) Subject: .... X-Git-Tag: make_still_working~2894 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=c2123cdb49560cc6ef2a86b71ab21b432581c076;p=helm.git .... --- diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs.ma b/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs.ma index 58c4f9c58..3cbb70058 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs.ma @@ -87,7 +87,7 @@ definition Oid_relation_pair: ∀o:Obasic_pair. Orelation_pair o o. | lapply (id_neutral_right2 ? (Oconcr o) ? (⊩)) as H; lapply (id_neutral_left2 ?? (Oform o) (⊩)) as H1; apply (.= H); - apply (H1 \sup -1);] + apply (H1^-1);] qed. lemma Orelation_pair_composition: @@ -121,11 +121,11 @@ intros; apply rule (.= ASSOC); apply (.= #‡e1); apply (.= #‡(Ocommute ?? b')); - apply rule (.= ASSOC \sup -1); + apply rule (.= ASSOC^-1); apply (.= e‡#); apply rule (.= ASSOC); - apply (.= #‡(Ocommute ?? b')\sup -1); - apply rule (ASSOC \sup -1); + apply (.= #‡(Ocommute ?? b')^-1); + apply rule (ASSOC^-1); qed. definition Orelation_pair_composition_morphism: diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma b/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma index f2ce654ba..245fc4fdb 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma @@ -106,13 +106,13 @@ definition Ocontinuous_relation_comp: | intros; apply sym1; change in match ((s ∘ r) U) with (s (r U)); - apply (.= (Oreduced : ?)\sup -1); + apply (.= (Oreduced : ?)^-1); [ apply (.= (Oreduced :?)); [ assumption | apply refl1 ] | apply refl1] | intros; apply sym1; change in match ((s ∘ r)⎻* U) with (s⎻* (r⎻* U)); - apply (.= (Osaturated : ?)\sup -1); + apply (.= (Osaturated : ?)^-1); [ apply (.= (Osaturated : ?)); [ assumption | apply refl1 ] | apply refl1]] qed.