From: Claudio Sacerdoti Coen Date: Sat, 3 Jan 2009 17:48:52 +0000 (+0000) Subject: Some more re-organization. X-Git-Tag: make_still_working~4306 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=c5bbe2a9b9b914f538ae03526c34f2dea5364b1d;p=helm.git Some more re-organization. --- diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma b/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma index 64c867e22..20923337e 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma @@ -47,19 +47,17 @@ definition continuous_relation_setoid: basic_topology → basic_topology → set | simplify; intros; apply trans2; [2: apply e |3: apply e1; |1: skip]]] qed. -(* -definition cont_rel': ∀S,T: basic_topology. continuous_relation_setoid S T → arrows1 ? S T ≝ cont_rel. +definition cont_rel': ∀S,T: basic_topology. continuous_relation_setoid S T → arrows2 ? S T ≝ cont_rel. coercion cont_rel'. definition cont_rel'': ∀S,T: basic_topology. - continuous_relation_setoid S T → unary_morphism (oa_P (carrbt S)) (oa_P (carrbt T)). + carr2 (continuous_relation_setoid S T) → ORelation_setoid (carrbt S) (carrbt T). intros; apply rule cont_rel; apply c; qed. coercion cont_rel''. -*) (* theorem continuous_relation_eq': @@ -109,66 +107,78 @@ theorem continuous_relation_eq_inv': split; apply Hcut; [2: assumption | intro; apply sym1; apply H] qed. *) + +axiom daemon: False. definition continuous_relation_comp: ∀o1,o2,o3. continuous_relation_setoid o1 o2 → continuous_relation_setoid o2 o3 → continuous_relation_setoid o1 o3. intros (o1 o2 o3 r s); constructor 1; - [ apply (s ∘ r) + [ apply (s ∘ r); | intros; apply sym1; change in match ((s ∘ r) U) with (s (r U)); - (*BAD*) unfold FunClass_1_OF_carr1; - apply (.= ((reduced : ?)\sup -1)); + (**) unfold FunClass_1_OF_Type_OF_setoid2; + unfold objs2_OF_basic_topology1; unfold hint; + letin reduced := reduced; clearbody reduced; + unfold uncurry_arrows in reduced ⊢ %; (**) + apply (.= (reduced : ?)\sup -1); [ (*BAD*) change with (eq1 ? (r U) (J ? (r U))); (* BAD U *) apply (.= (reduced ??? U ?)); [ assumption | apply refl1 ] | apply refl1] | intros; - apply sym; + apply sym1; change in match ((s ∘ r)⎻* U) with (s⎻* (r⎻* U)); apply (.= (saturated : ?)\sup -1); - [ apply (.= (saturated : ?)); [ assumption | apply refl ] - | apply refl]] + [ apply (.= (saturated : ?)); [ assumption | apply refl1 ] + | apply refl1]] +qed. + +lemma hintx: ∀S,T. (S ⇒ T) → unary_morphism1 S T. + intros; apply t; qed. +coercion hintx. -definition BTop: category1. +definition BTop: category2. constructor 1; [ apply basic_topology | apply continuous_relation_setoid | intro; constructor 1; - [ apply id1 - | intros; apply H; - | intros; apply H;] + [ apply id2 + | intros; apply e; + | intros; apply e;] | intros; constructor 1; [ apply continuous_relation_comp; - | intros; simplify; (*intro x; simplify;*) + | intros; simplify; + change with ((b⎻* ∘ a⎻* ) ∘ A o1 = ((b'⎻* ∘ a'⎻* ) ∘ A o1)); change with (b⎻* ∘ (a⎻* ∘ A o1) = b'⎻* ∘ (a'⎻* ∘ A o1)); - change in H with (a⎻* ∘ A o1 = a'⎻* ∘ A o1); - change in H1 with (b⎻* ∘ A o2 = b'⎻* ∘ A o2); - apply (.= H‡#); + change in e with (a⎻* ∘ A o1 = a'⎻* ∘ A o1); + change in e1 with (b⎻* ∘ A o2 = b'⎻* ∘ A o2); + apply (.= e‡#); intro x; - - change with (eq1 (oa_P (carrbt o3)) (b⎻* (a'⎻* (A o1 x))) (b'⎻*(a'⎻* (A o1 x)))); + change with (eq1 o3 (b⎻* (a'⎻* (A o1 x))) (b'⎻*(a'⎻* (A o1 x)))); lapply (saturated o1 o2 a' (A o1 x):?) as X; [ apply ((saturation_idempotent ?? (A_is_saturation o1) x)^-1) ] - change in X with (eq1 (oa_P (carrbt o2)) (a'⎻* (A o1 x)) (A o2 (a'⎻* (A o1 x)))); - unfold uncurry_arrows; - apply (.= †X); whd in H1; - lapply (H1 (a'⎻* (A o1 x))) as X1; + change in X with (eq1 ? (a'⎻* (A o1 x)) (A o2 (a'⎻* (A o1 x)))); + alias symbol "trans" = "trans1". + alias symbol "prop1" = "prop11". + apply (.= †X); + whd in e1; + lapply (e1 (a'⎻* (A o1 x))) as X1; change in X1 with (eq1 (oa_P (carrbt o3)) (b⎻* (A o2 (a'⎻* (A o1 x)))) (b'⎻* (A o2 (a' \sup ⎻* (A o1 x))))); apply (.= X1); - unfold uncurry_arrows; + alias symbol "invert" = "setoid1 symmetry". apply (†(X\sup -1));] | intros; simplify; change with (((a34⎻* ∘ a23⎻* ) ∘ a12⎻* ) ∘ A o1 = ((a34⎻* ∘ (a23⎻* ∘ a12⎻* )) ∘ A o1)); apply rule (#‡ASSOC1\sup -1); | intros; simplify; - change with ((a⎻* ∘ (id1 ? o1)⎻* ) ∘ A o1 = a⎻* ∘ A o1); - apply (#‡(id_neutral_right1 : ?)); + change with ((a⎻* ∘ (id2 ? o1)⎻* ) ∘ A o1 = a⎻* ∘ A o1); + apply (#‡(id_neutral_right2 : ?)); | intros; simplify; - change with (((id1 ? o2)⎻* ∘ a⎻* ) ∘ A o1 = a⎻* ∘ A o1); - apply (#‡(id_neutral_left1 : ?));] + change with (((id2 ? o2)⎻* ∘ a⎻* ) ∘ A o1 = a⎻* ∘ A o1); + apply (#‡(id_neutral_left2 : ?));] qed. (*