From: Ferruccio Guidi Date: Tue, 27 Jun 2006 09:40:34 +0000 (+0000) Subject: file names patched X-Git-Tag: make_still_working~7146 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=cadde4128694655a6df2e01b6c6a6e6913ee6096;p=helm.git file names patched --- diff --git a/helm/software/matita/contribs/RELATIONAL-ARITHMETICS/add_fwd.ma b/helm/software/matita/contribs/RELATIONAL-ARITHMETICS/add_fwd.ma new file mode 100644 index 000000000..8037f8ba7 --- /dev/null +++ b/helm/software/matita/contribs/RELATIONAL-ARITHMETICS/add_fwd.ma @@ -0,0 +1,128 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/RELATIONAL-ARITHMETICS/add_gen". + +include "nat_gen.ma". +include "add_defs.ma". + +(* primitive generation lemmas proved by elimination and inversion *) + +theorem add_gen_O_1: \forall q,r. add O q r \to q = r. + intros. elim H; clear H; clear q; clear r; intros; + [ reflexivity + | clear H1. auto + ]. +qed. + +theorem add_gen_S_1: \forall p,q,r. add (S p) q r \to + \exists s. r = (S s) \land add p q s. + intros. elim H; clear H; clear q; clear r; intros; + [ + | clear H1. + decompose H2. + rewrite > H1. clear H1. clear n2 + ]; apply ex_intro; [| auto || auto ]. (**) +qed. + +theorem add_gen_O_2: \forall p,r. add p O r \to p = r. + intros. inversion H; clear H; intros; + [ auto + | clear H. clear H1. + lapply eq_gen_O_S to H2 as H0. apply H0 + ]. +qed. + +theorem add_gen_S_2: \forall p,q,r. add p (S q) r \to + \exists s. r = (S s) \land add p q s. + intros. inversion H; clear H; intros; + [ lapply eq_gen_S_O to H as H0. apply H0 + | clear H1. clear H3. clear r. + lapply eq_gen_S_S to H2 as H0. clear H2. + rewrite > H0. clear H0. clear q. + apply ex_intro; [| auto ] (**) + ]. +qed. + +theorem add_gen_O_3: \forall p,q. add p q O \to p = O \land q = O. + intros. inversion H; clear H; intros; + [ rewrite < H1. clear H1. clear p. + auto + | clear H. clear H1. + lapply eq_gen_O_S to H3 as H0. apply H0 + ]. +qed. + +theorem add_gen_S_3: \forall p,q,r. add p q (S r) \to + \exists s. p = S s \land add s q r \lor + q = S s \land add p s r. + intros. inversion H; clear H; intros; + [ rewrite < H1. clear H1. clear p + | clear H1. + lapply eq_gen_S_S to H3 as H0. clear H3. + rewrite > H0. clear H0. clear r. + ]; apply ex_intro; [| auto || auto ] (**) +qed. +(* +(* alternative proofs invoking add_gen_2 *) + +variant add_gen_O_3_alt: \forall p,q. add p q O \to p = O \land q = O. + intros 2. elim q; clear q; intros; + [ lapply add_gen_O_2 to H as H0. clear H. + rewrite > H0. clear H0. clear p. + auto + | clear H. + lapply add_gen_S_2 to H1 as H0. clear H1. + decompose H0. + lapply eq_gen_O_S to H1 as H0. apply H0 + ]. +qed. + +variant add_gen_S_3_alt: \forall p,q,r. add p q (S r) \to + \exists s. p = S s \land add s q r \lor + q = S s \land add p s r. + intros 2. elim q; clear q; intros; + [ lapply add_gen_O_2 to H as H0. clear H. + rewrite > H0. clear H0. clear p + | clear H. + lapply add_gen_S_2 to H1 as H0. clear H1. + decompose H0. + lapply eq_gen_S_S to H1 as H0. clear H1. + rewrite > H0. clear H0. clear r. + ]; apply ex_intro; [| auto || auto ]. (**) +qed. +*) +(* other simplification lemmas *) + +theorem add_gen_eq_2_3: \forall p,q. add p q q \to p = O. + intros 2. elim q; clear q; intros; + [ lapply add_gen_O_2 to H as H0. clear H. + rewrite > H0. clear H0. clear p + | lapply add_gen_S_2 to H1 as H0. clear H1. + decompose H0. + lapply eq_gen_S_S to H2 as H0. clear H2. + rewrite < H0 in H3. clear H0. clear a + ]; auto. +qed. + +theorem add_gen_eq_1_3: \forall p,q. add p q p \to q = O. + intros 1. elim p; clear p; intros; + [ lapply add_gen_O_1 to H as H0. clear H. + rewrite > H0. clear H0. clear q + | lapply add_gen_S_1 to H1 as H0. clear H1. + decompose H0. + lapply eq_gen_S_S to H2 as H0. clear H2. + rewrite < H0 in H3. clear H0. clear a + ]; auto. +qed. diff --git a/helm/software/matita/contribs/RELATIONAL-ARITHMETICS/add_gen.ma b/helm/software/matita/contribs/RELATIONAL-ARITHMETICS/add_gen.ma deleted file mode 100644 index 8037f8ba7..000000000 --- a/helm/software/matita/contribs/RELATIONAL-ARITHMETICS/add_gen.ma +++ /dev/null @@ -1,128 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -set "baseuri" "cic:/matita/RELATIONAL-ARITHMETICS/add_gen". - -include "nat_gen.ma". -include "add_defs.ma". - -(* primitive generation lemmas proved by elimination and inversion *) - -theorem add_gen_O_1: \forall q,r. add O q r \to q = r. - intros. elim H; clear H; clear q; clear r; intros; - [ reflexivity - | clear H1. auto - ]. -qed. - -theorem add_gen_S_1: \forall p,q,r. add (S p) q r \to - \exists s. r = (S s) \land add p q s. - intros. elim H; clear H; clear q; clear r; intros; - [ - | clear H1. - decompose H2. - rewrite > H1. clear H1. clear n2 - ]; apply ex_intro; [| auto || auto ]. (**) -qed. - -theorem add_gen_O_2: \forall p,r. add p O r \to p = r. - intros. inversion H; clear H; intros; - [ auto - | clear H. clear H1. - lapply eq_gen_O_S to H2 as H0. apply H0 - ]. -qed. - -theorem add_gen_S_2: \forall p,q,r. add p (S q) r \to - \exists s. r = (S s) \land add p q s. - intros. inversion H; clear H; intros; - [ lapply eq_gen_S_O to H as H0. apply H0 - | clear H1. clear H3. clear r. - lapply eq_gen_S_S to H2 as H0. clear H2. - rewrite > H0. clear H0. clear q. - apply ex_intro; [| auto ] (**) - ]. -qed. - -theorem add_gen_O_3: \forall p,q. add p q O \to p = O \land q = O. - intros. inversion H; clear H; intros; - [ rewrite < H1. clear H1. clear p. - auto - | clear H. clear H1. - lapply eq_gen_O_S to H3 as H0. apply H0 - ]. -qed. - -theorem add_gen_S_3: \forall p,q,r. add p q (S r) \to - \exists s. p = S s \land add s q r \lor - q = S s \land add p s r. - intros. inversion H; clear H; intros; - [ rewrite < H1. clear H1. clear p - | clear H1. - lapply eq_gen_S_S to H3 as H0. clear H3. - rewrite > H0. clear H0. clear r. - ]; apply ex_intro; [| auto || auto ] (**) -qed. -(* -(* alternative proofs invoking add_gen_2 *) - -variant add_gen_O_3_alt: \forall p,q. add p q O \to p = O \land q = O. - intros 2. elim q; clear q; intros; - [ lapply add_gen_O_2 to H as H0. clear H. - rewrite > H0. clear H0. clear p. - auto - | clear H. - lapply add_gen_S_2 to H1 as H0. clear H1. - decompose H0. - lapply eq_gen_O_S to H1 as H0. apply H0 - ]. -qed. - -variant add_gen_S_3_alt: \forall p,q,r. add p q (S r) \to - \exists s. p = S s \land add s q r \lor - q = S s \land add p s r. - intros 2. elim q; clear q; intros; - [ lapply add_gen_O_2 to H as H0. clear H. - rewrite > H0. clear H0. clear p - | clear H. - lapply add_gen_S_2 to H1 as H0. clear H1. - decompose H0. - lapply eq_gen_S_S to H1 as H0. clear H1. - rewrite > H0. clear H0. clear r. - ]; apply ex_intro; [| auto || auto ]. (**) -qed. -*) -(* other simplification lemmas *) - -theorem add_gen_eq_2_3: \forall p,q. add p q q \to p = O. - intros 2. elim q; clear q; intros; - [ lapply add_gen_O_2 to H as H0. clear H. - rewrite > H0. clear H0. clear p - | lapply add_gen_S_2 to H1 as H0. clear H1. - decompose H0. - lapply eq_gen_S_S to H2 as H0. clear H2. - rewrite < H0 in H3. clear H0. clear a - ]; auto. -qed. - -theorem add_gen_eq_1_3: \forall p,q. add p q p \to q = O. - intros 1. elim p; clear p; intros; - [ lapply add_gen_O_1 to H as H0. clear H. - rewrite > H0. clear H0. clear q - | lapply add_gen_S_1 to H1 as H0. clear H1. - decompose H0. - lapply eq_gen_S_S to H2 as H0. clear H2. - rewrite < H0 in H3. clear H0. clear a - ]; auto. -qed.