From: Enrico Tassi Date: Thu, 30 Aug 2007 13:09:08 +0000 (+0000) Subject: more stuff to reach an intensional definition of finite sets X-Git-Tag: 0.4.95@7852~248 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=cf8f2254c5da759546914d5f31cb8f1212ea3cd7;p=helm.git more stuff to reach an intensional definition of finite sets --- diff --git a/matita/library/decidable_kit/fgraph.ma b/matita/library/decidable_kit/fgraph.ma new file mode 100644 index 000000000..cceaa386a --- /dev/null +++ b/matita/library/decidable_kit/fgraph.ma @@ -0,0 +1,264 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/decidable_kit/fgraph/". + +include "decidable_kit/fintype.ma". + +definition setA : ∀T:eqType.T → bool := λT,x.true. + +inductive fgraphType (d1 : finType) (d2 : eqType) : Type := + | Fgraph : ∀val:list d2. (length ? val) = (count ? (setA d1) (enum d1)) -> fgraphType d1 d2. + +definition fval : ∀d1: finType. ∀d2 : eqType. fgraphType d1 d2 → list d2 := + λd1,d2,x. match x with [ (Fgraph val _) ⇒ val]. + +definition fproof : ∀d1:finType.∀d2:eqType.∀u. length ? (fval d1 d2 u) = (count ? (setA d1) ?) := + λd1:finType.λd2,u. match u return (λx. length ? (fval d1 d2 x) = (count ? (setA d1) (enum d1))) with [ + (Fgraph _ proof) ⇒ proof]. + +lemma fgraph_eqP : ∀d1:finType.∀d2:eqType.∀f1,f2:fgraphType d1 d2. + eq_compatible ? f1 f2 (cmp (list_eqType d2) (fval d1 d2 f1) (fval d1 d2 f2)). +intros (d1 d2 f1 f2); cases f1; cases f2; simplify; clear f1 f2; +apply prove_reflect; intros; + [1: generalize in match H; rewrite > (b2pT ? ? (eqP (list_eqType d2) ? ?) H2); + intros; clear H H2; rewrite < (pirrel ? ? ? H1 H3 (eqType_decidable nat_eqType)); + reflexivity + |2: unfold Not; intros (H3); destruct H3; rewrite > Hcut in H2; + rewrite > (cmp_refl (list_eqType d2)) in H2; destruct H2;] +qed. + +definition fgraph_eqType : finType → eqType → eqType ≝ + λd1,d2. mk_eqType ? ? (fgraph_eqP d1 d2). + +lemma fval_eqE : + ∀d1:finType.∀d2:eqType.∀u,v:fgraph_eqType d1 d2. cmp (list_eqType d2) (fval ? ? u) (fval ? ? v) = cmp ? u v. +intros; reflexivity; qed. + +(* +lemma fval_inj : injective fval. +Proof. by move => u v; move/eqP; move/fgraph_eqP. Qed. +*) + + (* if the domain is not empty the default is the first elem of the graph *) +lemma fgraph_default : ∀d1:finType.∀d2:eqType. d1 -> fgraph_eqType d1 d2 -> d2. +intros 4 (d1 d2 x f); cases f; fold unfold sort (sort d2); +generalize in match H; clear H; cases val; clear val; + [2: intros; assumption + |1: simplify; generalize in match (enum_uniq d1); cases (enum d1); + unfold setA; simplify; intros (H H1); [1: destruct (H x) | destruct H1]] +qed. + +definition infgraph : ∀d1,d2:finType.∀s : list_eqType d2. option (fgraph_eqType d1 d2) := + λd1,d2:finType.λs:list d2. + match eqbP (length ? s) (count ? (setA d1) (enum d1)) + with + [ (reflect_true p) ⇒ Some ? (Fgraph ? ? ? p) + | (reflect_false p) ⇒ None ?]. + +inductive infgraph_spec (d1, d2 : finType) (s : list_eqType d2) : option (fgraph_eqType d1 d2) -> Type := + | Some_tup : ∀u : fgraphType d1 d2. length ? s = (count ? (setA d1) (enum d1)) -> fval ? ? u = s -> infgraph_spec ? ? s (Some ? u) + | None_tup: notb (eqb (length ? s) (count ? (setA d1) (enum d1))) = true -> infgraph_spec ? ? s (None ?). + +lemma infgraphP : ∀d1,d2:finType.∀s:list_eqType d2. infgraph_spec d1 d2 s (infgraph ? ? s). +unfold infgraph; intros; cases (eqbP (length d2 s) (count d1 (setA d1) (enum d1))); +simplify; + [1: apply (Some_tup d1 d2 s ? H); reflexivity; + |2: apply None_tup; rewrite > (p2bF ? ? (eqbP ? ?) H). reflexivity] +qed. + +definition infgraphseq : + ∀d1,d2:finType.list_eqType (list_eqType d2) -> list_eqType (fgraph_eqType d1 d2) := + λd1,d2:finType. + (foldr ? ? + (λs: list d2.λts:list (fgraphType d1 d2). + match infgraph d1 d2 s with + [ None ⇒ ts + | (Some u) ⇒ u::ts]) (nil ?)). + +lemma count_setA : ∀d:eqType.∀l. count ? (setA d) l = length ? l. +intros; elim l; [reflexivity] simplify; rewrite > H; clear H; reflexivity; qed. + +lemma mem_infgraphseq : + ∀d1,d2:finType.∀a:list_eqType (list_eqType d2).∀x:fgraph_eqType d1 d2. + mem ? x (infgraphseq d1 d2 a) = mem (list_eqType d2) (fval d1 d2 x) a. +intros 3 (d1 d2 l); elim l (x hd tl IH x); [1: reflexivity] +simplify; cases (infgraphP d1 d2 hd); simplify; +rewrite > IH; clear IH; [1: rewrite < H1; reflexivity;] +lapply (b2pT ? ? (negbP ?) H) as H1; clear H; +lapply (b2pF ? ? (eqbP ? ?) H1) as H2; clear H1; +cases (mem (list_eqType d2) (fval d1 d2 x) tl); rewrite > orbC; simplify; [reflexivity] +symmetry; apply (p2bF ? ? (eqP ? ? ?)); unfold Not; intros (Exhd); +apply H2; rewrite < Exhd; clear Exhd H2 tl hd l; +generalize in match x; clear x; cases d1 0; simplify; intros; cases s; +simplify; clear s; rewrite > H1; simplify; reflexivity; +qed. + +lemma uniq_infgraphseq : ∀d1,d2,s. uniq ? s = true -> uniq ? (infgraphseq d1 d2 s) = true. +intros 3 (d1 d2 l); elim l (H hd tl IH H); [reflexivity] simplify; +rewrite > (uniq_tail) in H; lapply (b2pT ? ? (andbP ? ?) H); clear H; decompose; +cases (infgraphP d1 d2 hd); simplify; + [1: rewrite > IH; [2:assumption] rewrite > andbC; simplify; + rewrite < H3 in H; rewrite > mem_infgraphseq; assumption + |2: apply IH; assumption] +qed. + +definition multes : + ∀d:finType.∀e:d.list_eqType (list_eqType d) -> list_eqType (list_eqType d) + := + λd:finType.λe:d.λl:list (list d). map ? ? (λl. e :: l) l. + +definition multss : + ∀d:finType.∀e:list_eqType d.list_eqType (list_eqType d) -> list_eqType (list_eqType d) +:= + λd:finType.λe:list d.λl:list (list d). + foldr ? ? (λx,acc. (multes ? x l) @ acc) [] e. + +(* +Eval compute in multss (Seq x1 x2) (Seq (Seq x3 x4) (Seq x5 x6)). +-> Seq (Seq x1 x3 x4) (Seq x1 x5 x6) (Seq x2 x3 x4) (Seq x2 x5 x6) +*) + +definition iter := + λB:eqType.λn:nat.λf:nat→B→B.λacc:B.foldr ? B f acc (iota O n). + +(* the sequence of all the strings of length m on the d alphabet *) +definition mkpermr := + λd:finType.λm:nat. iter ? m (λx,acc.multss d (enum d) acc) [[]]. + +lemma mem_multes : + ∀d:finType.∀e:d.∀l:list_eqType (list_eqType d).∀s:list_eqType d. + mem ? s (multes ? e l) = + match s in list with [ Nil ⇒ false | (Cons e1 tl) ⇒ andb (cmp ? e e1) (mem ? tl l)]. +intros (d e l s); elim l (hd tl IH); [cases s;simplify;[2: rewrite > andbC] reflexivity] +simplify; rewrite > IH; cases s; simplify; [reflexivity] +unfold list_eqType; simplify; +generalize in match (refl_eq ? (cmp d e s1)); generalize in match (cmp d e s1) in ⊢ (? ? ? % → %); +intros 1 (b); cases b; clear b; intros (E); cases (lcmp d l1 hd); +[1,2: rewrite > (b2pT ? ? (eqP ? ? ?) E); simplify; rewrite > cmp_refl; reflexivity +|3,4: rewrite > andbC; simplify; [2: reflexivity] rewrite > orbC; + simplify; apply (p2bF ? ? (eqP ? ? ?)); unfold Not; intros (H); rewrite > H in E; + rewrite > cmp_refl in E; destruct E;] +qed. + +lemma mem_concat: + ∀d:eqType. ∀x.∀l1,l2:list d. + mem d x (l1 @ l2) = orb (mem d x l1) (mem d x l2). +intros; elim l1; [reflexivity] simplify; cases (cmp d x t); simplify; [reflexivity|assumption] +qed. + +lemma orb_refl : ∀x.orb x x = x. intros (x); cases x; reflexivity; qed. + +lemma mem_multss : + ∀d:finType.∀s:list_eqType d.∀l:list_eqType (list_eqType d).∀x:list_eqType d. + mem ? x (multss ? s l) = + match x in list with [ Nil ⇒ false | (Cons he tl) ⇒ andb (mem ? he s) (mem ? tl l)]. +intros (d s l x); elim s; [cases x] simplify; try reflexivity; rewrite > mem_concat; +rewrite > H; clear H; rewrite > mem_multes; cases x; simplify; [reflexivity] +unfold list_eqType; simplify; +generalize in match (refl_eq ? (cmp d t s1)); generalize in match (cmp d t s1) in ⊢ (? ? ? % → %); +intros 1 (b); cases b; clear b; intros (E); cases (mem d s1 l1); +[1,2: rewrite > (b2pT ? ? (eqP ? ? ?) E); rewrite > cmp_refl; simplify; + [rewrite > orb_refl | rewrite > orbC ] reflexivity +|3,4: simplify; rewrite > orbC; simplify; [reflexivity] symmetry; + apply (p2bF ? ? (andbP ? ?)); unfold Not; intros (H); decompose; + rewrite > (b2pT ? ? (eqP ? ? ?) H1) in E; rewrite > cmp_refl in E; + destruct E] +qed. + +lemma mem_mkpermr_size : + ∀d:finType.∀m,x. mem (list_eqType d) x (mkpermr d m) = (eqb (length ? x) m). +intros 2 (d m); elim m 0; simplify; [intros (x); cases x; reflexivity] +intros (n IH x); elim x; rewrite > mem_multss; simplify; [reflexivity] +rewrite > mem_finType; simplify; rewrite > IH; reflexivity; +qed. + +axiom uniq_concat : ∀d:eqType.∀l1,l2. uniq d (l1@l1) = (andb (uniq ? l1) (andb (uniq ? l2) ())). + +lemma uniq_mkpermr : ∀d:finType.∀m. uniq ? (mkpermr d m) = true. +intros; elim m; [reflexivity] simplify; fold simplify (mkpermr d n); +generalize in match (enum_uniq d); elim (enum d); [reflexivity]; +simplify; rewrite + +unfold multss; +lapply (b2pT ? ? (uniqP (list_eqType d) (mkpermr d n)) H) as H1; clear H; + +Proof. +elim=> //= i IHi; elim: enum (uniq_enum d) => //= x e IHe. +move/andP=> [Hx He]; rewrite uniq_cat {}IHe {He}// andbT. +rewrite {1}/multes uniq_maps ?{}IHi; last move=> _ _ [] //. +apply/hasP; case=> s Hs. +by move/mapsP => [s' _ Ds]; rewrite mem_multss -Ds (negbET Hx) in Hs. +Qed. + + +definition finfgraph_enum := + λd1,d2:finType.infgraphseq (mkpermr d2 (count ? (setA d1) (enum d1))). + +Lemma maps_tval_fintuple_enum: + maps (@fval d1 d2) finfgraph_enum = mkpermr d2 (card (setA d1)). +Proof. +rewrite /finfgraph_enum. +have: all (fun s => size s == (card (setA d1))) (mkpermr d2 (card (setA d1))). + by apply/allP => s; rewrite mem_mkpermr_size. +elim: (mkpermr d2 (card (setA d1))) => //= s s2 IHs; move/andP => [Hs Hs2]. +by case: infgraphP => [_ _ /= ->|]; [rewrite (IHs Hs2)|rewrite Hs]. +Qed. + + (* good enumeration *) +Lemma finfgraph_enumP : forall u, count (set1 u) finfgraph_enum = 1. +Proof. +move => [s ps]. +rewrite /finfgraph_enum count_set1_uniq; last exact (uniq_infgraphseq (uniq_mkpermr d2 (card (setA d1)))). +by rewrite mem_infgraphseq /= mem_mkpermr_size ps set11. +Qed. + +Canonical Structure fgraph_finType := FinType finfgraph_enumP. + +End FinGraph. + +Definition fgraph_of_fun := + locked (fun (d1 :finType) (d2 :eqType) (f : d1 -> d2) => Fgraph (size_maps f _)). + +Definition fun_of_fgraph := + locked + (fun d1 (d2:eqType) g x => + sub (@fgraph_default d1 d2 x g) (fval g) (index x (enum d1))). + +Coercion fun_of_fgraph : fgraphType >-> Funclass. +Lemma fgraphP : forall (d1 : finType) (d2 :eqType) (f g : fgraphType d1 d2), f =1 g <-> f = g. +Proof. +move=> d1 d2 f g; split; last by move=>->. +move=> Efg; rewrite -(can_fun_of_fgraph f) -(can_fun_of_fgraph g). +by apply: fval_inj; unlock fgraph_of_fun => /=; apply: eq_maps. +Qed. + +CoInductive setType : Type := Sett : fgraphType G bool_finType -> setType. + +Definition sval (s : setType) := match s with Sett g => g end. + +Lemma can_sval : cancel sval Sett. +Proof. by rewrite /cancel; case => /=. Qed. + +Lemma sval_inj : injective sval. +Proof. exact: can_inj can_sval. Qed. + +Canonical Structure set_eqType := EqType (can_eq can_sval). + +Canonical Structure set_finType := FinType (can_uniq can_sval). + +Definition iset_of_fun (f : G -> bool_finType) : setType := + locked Sett (fgraph_of_fun f). + +