From: Enrico Tassi Date: Tue, 28 Sep 2010 23:09:45 +0000 (+0000) Subject: hints polished and fixed to allow recursive inference of ext_carr X-Git-Tag: make_still_working~2820 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=d1c9cdb2de96aa2dda6a7b25a4c4959b82b08f6c;p=helm.git hints polished and fixed to allow recursive inference of ext_carr --- diff --git a/helm/software/matita/nlibrary/datatypes/list-setoids.ma b/helm/software/matita/nlibrary/datatypes/list-setoids.ma index c836f4bf3..6a1532562 100644 --- a/helm/software/matita/nlibrary/datatypes/list-setoids.ma +++ b/helm/software/matita/nlibrary/datatypes/list-setoids.ma @@ -36,13 +36,13 @@ unification hint 0 ≔ S : setoid; P1 ≟ refl ? (eq0 (LIST S)), P2 ≟ sym ? (eq0 (LIST S)), P3 ≟ trans ? (eq0 (LIST S)), - X ≟ mk_setoid (list S) (mk_equivalence_relation ? (eq_list T) P1 P2 P3) + X ≟ mk_setoid (list (carr S)) (mk_equivalence_relation ? (eq_list S) P1 P2 P3) (*-----------------------------------------------------------------------*) ⊢ carr X ≡ list T. -unification hint 0 ≔ S:setoid,a,b:list S; +unification hint 0 ≔ S:setoid, a,b:list (carr S); R ≟ eq0 (LIST S), - L ≟ (list S) + L ≟ (list (carr S)) (* -------------------------------------------- *) ⊢ eq_list S a b ≡ eq_rel L R a b. @@ -53,13 +53,15 @@ nlemma append_is_morph : ∀A:setoid.(list A) ⇒_0 (list A) ⇒_0 (list A). nqed. alias symbol "hint_decl" (instance 1) = "hint_decl_Type0". -unification hint 0 ≔ S:setoid, A,B:list S; - MM ≟ mk_unary_morphism ?? - (λA:list S.mk_unary_morphism ?? (λB:list S.A @ B) (prop1 ?? (append_is_morph S A))) +unification hint 0 ≔ S:setoid, A,B:list (carr S); + SS ≟ carr S, + MM ≟ mk_unary_morphism ?? (λA:list (carr S). + mk_unary_morphism ?? + (λB:list (carr S).A @ B) (prop1 ?? (fun1 ??(append_is_morph S) A))) (prop1 ?? (append_is_morph S)), T ≟ LIST S (*--------------------------------------------------------------------------*) ⊢ - fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ A @ B. + fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ append SS A B. (* XXX to understand if are always needed or only if the coercion is active *) diff --git a/helm/software/matita/nlibrary/datatypes/pairs-setoids.ma b/helm/software/matita/nlibrary/datatypes/pairs-setoids.ma index 43c12f768..f68305720 100644 --- a/helm/software/matita/nlibrary/datatypes/pairs-setoids.ma +++ b/helm/software/matita/nlibrary/datatypes/pairs-setoids.ma @@ -42,7 +42,7 @@ unification hint 0 ≔ AA, BB; unification hint 0 ≔ S1,S2,a,b; R ≟ PAIR S1 S2, - L ≟ (pair S1 S2) + L ≟ pair (carr S1) (carr S2) (* -------------------------------------------- *) ⊢ eq_pair S1 S2 a b ≡ eq_rel L (eq0 R) a b. diff --git a/helm/software/matita/nlibrary/logic/cprop.ma b/helm/software/matita/nlibrary/logic/cprop.ma index 9b352d4a4..e7ecf01ad 100644 --- a/helm/software/matita/nlibrary/logic/cprop.ma +++ b/helm/software/matita/nlibrary/logic/cprop.ma @@ -50,9 +50,9 @@ nqed. unification hint 0 ≔ A,B:CProp[0]; T ≟ CPROP, - MM ≟ mk_unary_morphism1 … - (λX.mk_unary_morphism1 … (And X) (prop11 … (and_morphism X))) - (prop11 … and_morphism) + MM ≟ mk_unary_morphism1 ?? + (λX.mk_unary_morphism1 ?? (And X) (prop11 ?? (fun11 ?? and_morphism X))) + (prop11 ?? and_morphism) (*-------------------------------------------------------------*) ⊢ fun11 T T (fun11 T (unary_morphism1_setoid1 T T) MM A) B ≡ And A B. @@ -76,7 +76,7 @@ nqed. unification hint 0 ≔ A,B:CProp[0]; T ≟ CPROP, MM ≟ mk_unary_morphism1 … - (λX.mk_unary_morphism1 … (Or X) (prop11 … (or_morphism X))) + (λX.mk_unary_morphism1 … (Or X) (prop11 … (fun11 ?? or_morphism X))) (prop11 … or_morphism) (*-------------------------------------------------------------*) ⊢ fun11 T T (fun11 T (unary_morphism1_setoid1 T T) MM A) B ≡ Or A B. @@ -121,33 +121,35 @@ nlemma Ex_morphism : ∀S:setoid.((setoid1_of_setoid S) ⇒_1 CProp[0]) ⇒_1 CP #S; @(λP: (setoid1_of_setoid S) ⇒_1 CProp[0].Ex S P); #P Q E; @; *; #x Px; @x; ncases (E x x #); /2/; nqed. -unification hint 0 ≔ S : setoid, P : (setoid1_of_setoid S) ⇒_1 CProp[0]; +unification hint 0 ≔ S : setoid, P : (setoid1_of_setoid S) ⇒_1 CPROP; A ≟ unary_morphism1_setoid1 (setoid1_of_setoid S) CPROP, B ≟ CPROP, - M ≟ mk_unary_morphism1 ?? (λP: (setoid1_of_setoid S) ⇒_1 CProp[0].Ex S P) - (prop11 ?? (Ex_morphism S)) + M ≟ mk_unary_morphism1 ?? + (λP: (setoid1_of_setoid S) ⇒_1 CPROP.Ex (carr S) (fun11 ?? P)) + (prop11 ?? (Ex_morphism S)) (*------------------------*)⊢ - fun11 A B M P ≡ Ex S (fun11 (setoid1_of_setoid S) CPROP P). + fun11 A B M P ≡ Ex (carr S) (fun11 (setoid1_of_setoid S) CPROP P). nlemma Ex_morphism_eta : ∀S:setoid.((setoid1_of_setoid S) ⇒_1 CProp[0]) ⇒_1 CProp[0]. #S; @(λP: (setoid1_of_setoid S) ⇒_1 CProp[0].Ex S (λx.P x)); #P Q E; @; *; #x Px; @x; ncases (E x x #); /2/; nqed. -unification hint 0 ≔ S : setoid, P : (setoid1_of_setoid S) ⇒_1 CProp[0]; +unification hint 0 ≔ S : setoid, P : (setoid1_of_setoid S) ⇒_1 CPROP; A ≟ unary_morphism1_setoid1 (setoid1_of_setoid S) CPROP, B ≟ CPROP, - M ≟ mk_unary_morphism1 ?? (λP: (setoid1_of_setoid S) ⇒_1 CProp[0].Ex S (λx.P x)) - (prop11 ?? (Ex_morphism_eta S)) + M ≟ mk_unary_morphism1 ?? + (λP: (setoid1_of_setoid S) ⇒_1 CPROP.Ex (carr S) (λx.fun11 ?? P x)) + (prop11 ?? (Ex_morphism_eta S)) (*------------------------*)⊢ - fun11 A B M P ≡ Ex S (λx.fun11 (setoid1_of_setoid S) CPROP P x). + fun11 A B M P ≡ Ex (carr S) (λx.fun11 (setoid1_of_setoid S) CPROP P x). nlemma Ex_setoid : ∀S:setoid.((setoid1_of_setoid S) ⇒_1 CPROP) → setoid. #T P; @ (Ex T (λx:T.P x)); @; ##[ #H1 H2; napply True |##*: //; ##] nqed. -unification hint 0 ≔ T,P ; +unification hint 0 ≔ T : setoid,P ; S ≟ (Ex_setoid T P) (*---------------------------*) ⊢ - Ex T (λx:T.P x) ≡ carr S. + Ex (carr T) (λx:carr T.fun11 ?? P x) ≡ carr S. (* couts how many Ex we are traversing *) ninductive counter : Type[0] ≝ diff --git a/helm/software/matita/nlibrary/re/re-setoids.ma b/helm/software/matita/nlibrary/re/re-setoids.ma index cfbd7cb31..47295f3fd 100644 --- a/helm/software/matita/nlibrary/re/re-setoids.ma +++ b/helm/software/matita/nlibrary/re/re-setoids.ma @@ -114,7 +114,7 @@ notation "0" non associative with precedence 90 for @{ 'empty_r }. interpretation "empty" 'empty_r = (z ?). notation > "'lang' S" non associative with precedence 90 for @{ Ω^(list $S) }. -notation > "'Elang' S" non associative with precedence 90 for @{ 𝛀^(list $S) }. +notation > "'Elang' S" non associative with precedence 90 for @{ 𝛀^(LIST $S) }. (* setoid support for re *) @@ -156,9 +156,9 @@ unification hint 0 ≔ A : Alpha; (*-----------------------------------------------------------------------*) ⊢ carr X ≡ re T. -unification hint 0 ≔ A:Alpha,a,b:re A; +unification hint 0 ≔ A:Alpha, a,b:re (carr (acarr A)); R ≟ eq0 (RE A), - L ≟ re A + L ≟ re (carr (acarr A)) (* -------------------------------------------- *) ⊢ eq_re A a b ≡ eq_rel L R a b. @@ -173,13 +173,15 @@ nqed. (* XXX This is the good format for hints about morphisms, fix the others *) alias symbol "hint_decl" (instance 1) = "hint_decl_Type0". -unification hint 0 ≔ S:Alpha, A,B:re S; - MM ≟ mk_unary_morphism ?? - (λA:re S.mk_unary_morphism ?? (λB.A · B) (prop1 ?? (c_is_morph S A))) - (prop1 ?? (c_is_morph S)), +unification hint 0 ≔ S:Alpha, A,B:re (carr (acarr S)); + SS ≟ carr (acarr S), + MM ≟ mk_unary_morphism ?? (λA. + mk_unary_morphism ?? + (λB.A · B) (prop1 ?? (fun1 ?? (c_is_morph S) A))) + (prop1 ?? (c_is_morph S)), T ≟ RE S (*--------------------------------------------------------------------------*) ⊢ - fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ A · B. + fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ c SS A B. nlemma o_is_morph : ∀A:Alpha.(re A) ⇒_0 (re A) ⇒_0 (re A). #A; napply (mk_binary_morphism … (λs1,s2:re A. s1 + s2)); @@ -190,13 +192,15 @@ nlemma o_is_morph : ∀A:Alpha.(re A) ⇒_0 (re A) ⇒_0 (re A). ##|#r IH a'; ncases a'; nnormalize; /2/ by conj; ##] nqed. -unification hint 0 ≔ S:Alpha, A,B:re S; - MM ≟ mk_unary_morphism ?? - (λA:re S.mk_unary_morphism ?? (λB.A + B) (prop1 ?? (o_is_morph S A))) - (prop1 ?? (o_is_morph S)), +unification hint 0 ≔ S:Alpha, A,B:re (carr (acarr S)); + SS ≟ carr (acarr S), + MM ≟ mk_unary_morphism ?? (λA. + mk_unary_morphism ?? + (λB.A + B) (prop1 ?? (fun1 ?? (o_is_morph S) A))) + (prop1 ?? (o_is_morph S)), T ≟ RE S (*--------------------------------------------------------------------------*) ⊢ - fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ A + B. + fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ o SS A B. (* end setoids support for re *) @@ -233,19 +237,23 @@ ncut (∀w1,w2.(x == w1@w2) = (y == w1@w2)); ##[ nqed. alias symbol "hint_decl" = "hint_decl_Type1". -unification hint 0 ≔ A : setoid, B,C : Elang A; +unification hint 0 ≔ A : setoid, B,C : Elang A; AA ≟ LIST A, - R ≟ mk_ext_powerclass ? - (ext_carr ? B · ext_carr ? C) (ext_prop ? (cat_is_ext ? B C)) -(*--------------------------------------------------------------------*) ⊢ - ext_carr AA R ≡ cat A (ext_carr AA B) (ext_carr AA C). + BB ≟ ext_carr AA B, + CC ≟ ext_carr AA C, + R ≟ mk_ext_powerclass AA + (cat A (ext_carr AA B) (ext_carr AA C)) + (ext_prop AA (cat_is_ext A B C)) +(*----------------------------------------------------------*) ⊢ + ext_carr AA R ≡ cat A BB CC. -unification hint 0 ≔ S:setoid, A,B:lang S; - T ≟ powerclass_setoid (list S), +unification hint 0 ≔ S:setoid, A,B:lang (carr S); + T ≟ powerclass_setoid (list (carr S)), MM ≟ mk_unary_morphism1 T (unary_morphism1_setoid1 T T) - (λA:lang S. + (λA:lang (carr S). mk_unary_morphism1 T T - (λB:lang S.cat S A B) (prop11 T T (cat_is_morph S A))) + (λB:lang (carr S).cat S A B) + (prop11 T T (fun11 ?? (cat_is_morph S) A))) (prop11 T (unary_morphism1_setoid1 T T) (cat_is_morph S)) (*--------------------------------------------------------------------------*) ⊢ fun11 T T (fun11 T (unary_morphism1_setoid1 T T) MM A) B ≡ cat S A B. @@ -257,15 +265,14 @@ nqed. unification hint 1 ≔ AA : setoid, B,C : Elang AA; AAS ≟ LIST AA, - T ≟ ext_powerclass_setoid (list AA), - R ≟ mk_unary_morphism1 T (unary_morphism1_setoid1 T T) - (λS:Elang AA. - mk_unary_morphism1 T T - (λS':Elang AA. - mk_ext_powerclass (list AA) (cat AA (ext_carr ? S) (ext_carr ? S')) - (ext_prop (list AA) (cat_is_ext AA S S'))) - (prop11 T T (cat_is_ext_morph AA S))) - (prop11 T (unary_morphism1_setoid1 T T) (cat_is_ext_morph AA)), + T ≟ ext_powerclass_setoid AAS, + R ≟ mk_unary_morphism1 T (unary_morphism1_setoid1 T T) (λX:Elang AA. + mk_unary_morphism1 T T (λY:Elang AA. + mk_ext_powerclass AAS + (cat AA (ext_carr ? X) (ext_carr ? Y)) + (ext_prop AAS (cat_is_ext AA X Y))) + (prop11 T T (fun11 ?? (cat_is_ext_morph AA) X))) + (prop11 T (unary_morphism1_setoid1 T T) (cat_is_ext_morph AA)), BB ≟ ext_carr ? B, CC ≟ ext_carr ? C (*------------------------------------------------------*) ⊢ @@ -277,6 +284,50 @@ ndefinition star : ∀A:setoid.∀l:lang A.lang A ≝ λS.λl.{ w ∈ list S | ∃lw.flatten ? lw = w ∧ conjunct ? lw l}. interpretation "star lang" 'pk l = (star ? l). +(* hints for star *) +nlemma star_is_morph : ∀A:setoid. (lang A) ⇒_1 (lang A). +#X; @(λA:lang X.A^* ); #a1 a2 E; @; #x; *; #wl; *; #defx Px; @wl; @; //; +nelim wl in Px; //; #s tl IH; *; #a1s a1tl; /4/; nqed. + +nlemma star_is_ext: ∀A:setoid. (Elang A) → (Elang A). + #S A; @ ((ext_carr … A) ^* ); #w1 w2 E; @; *; #wl; *; #defw1 Pwl; + @wl; @; //; napply (.=_0 defw1); /2/; nqed. + +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ A : setoid, B : Elang A; + AA ≟ LIST A, + BB ≟ ext_carr AA B, + R ≟ mk_ext_powerclass ? + ((ext_carr ? B)^* ) (ext_prop ? (star_is_ext ? B)) +(*--------------------------------------------------------------------*) ⊢ + ext_carr AA R ≡ star A BB. + +unification hint 0 ≔ S:setoid, A:lang (carr S); + T ≟ powerclass_setoid (list (carr S)), + MM ≟ mk_unary_morphism1 T T + (λB:lang (carr S).star S B) (prop11 T T (star_is_morph S)) +(*--------------------------------------------------------------------------*) ⊢ + fun11 T T MM A ≡ star S A. + +nlemma star_is_ext_morph:∀A:setoid.(Elang A) ⇒_1 (Elang A). +#A; @(star_is_ext …); +#x1 x2 Ex; napply (prop11 … (star_is_morph A)); nassumption. +nqed. + +unification hint 1 ≔ AA : setoid, B : Elang AA; + AAS ≟ LIST AA, + T ≟ ext_powerclass_setoid AAS, + R ≟ mk_unary_morphism1 T T + (λS:Elang AA. + mk_ext_powerclass AAS (star AA (ext_carr ? S)) + (ext_prop AAS (star_is_ext AA S))) + (prop11 T T (star_is_ext_morph AA)), + BB ≟ ext_carr ? B +(*------------------------------------------------------*) ⊢ + ext_carr AAS (fun11 T T R B) ≡ star AA BB. + +(* end hints for star *) + notation > "𝐋 term 70 E" non associative with precedence 75 for @{L_re ? $E}. nlet rec L_re (S : Alpha) (r : re S) on r : lang S ≝ match r with @@ -302,8 +353,8 @@ ndefinition L_re_is_ext : ∀S:Alpha.∀r:re S.Elang S. ##| #e H; @; *; #l; *; #defw1 Pl; @l; @; //; napply (.=_1 defw1); /2/; ##] nqed. -unification hint 0 ≔ S : Alpha,e : re S; - SS ≟ LIST S, +unification hint 0 ≔ S : Alpha,e : re (carr (acarr S)); + SS ≟ LIST (acarr S), X ≟ mk_ext_powerclass SS (𝐋 e) (ext_prop SS (L_re_is_ext S e)) (*-----------------------------------------------------------------*)⊢ ext_carr SS X ≡ L_re S e. @@ -328,14 +379,13 @@ nlemma L_re_is_morph:∀A:Alpha.(setoid1_of_setoid (re A)) ⇒_1 Ω^(list A). @; ##[##1,3: nassumption] /2/; ##] nqed. -unification hint 0 ≔ A:Alpha, a:re A; +unification hint 0 ≔ A:Alpha, a:re (carr (acarr A)); T ≟ setoid1_of_setoid (RE A), - T1 ≟ LIST A, - T2 ≟ powerclass_setoid T1, + T2 ≟ powerclass_setoid (list (carr (acarr A))), MM ≟ mk_unary_morphism1 ?? - (λa:setoid1_of_setoid (RE A).𝐋 a) (prop11 ?? (L_re_is_morph A)) + (λa:carr1 (setoid1_of_setoid (RE A)).𝐋 a) (prop11 ?? (L_re_is_morph A)) (*--------------------------------------------------------------------------*) ⊢ - fun11 T T2 MM a ≡ 𝐋 a. + fun11 T T2 MM a ≡ L_re A a. nlemma L_re_is_ext_morph:∀A:Alpha.(setoid1_of_setoid (re A)) ⇒_1 𝛀^(list A). #A; @; ##[ #a; napply (L_re_is_ext ? a); ##] #a b E; @@ -345,12 +395,13 @@ ncut (𝐋 b = 𝐋 a); ##[ napply (.=_1 (┼_1 E^-1)); // ] #EL; ##| napply (. (# ╪_1 ?)); ##[##3: napply H |##2: ##skip ] napply (EL^-1)] nqed. -unification hint 1 ≔ AA : Alpha, a: re AA; - T ≟ RE AA, T1 ≟ LIST AA, TT ≟ ext_powerclass_setoid T1, - R ≟ mk_unary_morphism1 ?? - (λa:setoid1_of_setoid T. - mk_ext_powerclass ? (𝐋 a) (ext_prop ? (L_re_is_ext AA a))) - (prop11 ?? (L_re_is_ext_morph AA)) +unification hint 1 ≔ AA : Alpha, a: re (carr (acarr AA)); + T ≟ RE AA, T1 ≟ LIST (acarr AA), T2 ≟ setoid1_of_setoid T, + TT ≟ ext_powerclass_setoid T1, + R ≟ mk_unary_morphism1 T2 TT + (λa:carr1 (setoid1_of_setoid T). + mk_ext_powerclass T1 (𝐋 a) (ext_prop T1 (L_re_is_ext AA a))) + (prop11 T2 TT (L_re_is_ext_morph AA)) (*------------------------------------------------------*) ⊢ ext_carr T1 (fun11 (setoid1_of_setoid T) TT R a) ≡ L_re AA a. @@ -413,13 +464,13 @@ unification hint 0 ≔ SS:Alpha; P1 ≟ refl ? (eq0 (PITEM SS)), P2 ≟ sym ? (eq0 (PITEM SS)), P3 ≟ trans ? (eq0 (PITEM SS)), - R ≟ mk_setoid (pitem S) + R ≟ mk_setoid (pitem (carr S)) (mk_equivalence_relation (pitem A) (eq_pitem SS) P1 P2 P3) (*-----------------------------------------------------------------*)⊢ carr R ≡ pitem A. -unification hint 0 ≔ S:Alpha,a,b:pitem S; - R ≟ PITEM S, L ≟ (pitem S) +unification hint 0 ≔ S:Alpha,a,b:pitem (carr (acarr S)); + R ≟ PITEM S, L ≟ pitem (carr (acarr S)) (* -------------------------------------------- *) ⊢ eq_pitem S a b ≡ eq_rel L (eq0 R) a b. @@ -480,9 +531,9 @@ ndefinition L_pi_ext : ∀S:Alpha.∀r:pitem S.Elang S. ##] nqed. -unification hint 0 ≔ S : Alpha,e : pitem S; - SS ≟ (list S), - X ≟ (mk_ext_powerclass SS (𝐋\p e) (ext_prop SS (L_pi_ext S e))) +unification hint 0 ≔ S : Alpha,e : pitem (carr (acarr S)); + SS ≟ LIST (acarr S), + X ≟ mk_ext_powerclass SS (𝐋\p e) (ext_prop SS (L_pi_ext S e)) (*-----------------------------------------------------------------*)⊢ ext_carr SS X ≡ 𝐋\p e. @@ -645,7 +696,7 @@ nlemma subW : ∀S.∀a,b:Ω^S.∀w.w ∈ (a - b) → w ∈ a. nlemma erase_bull : ∀S:Alpha.∀a:pitem S. |\fst (•a)| = |a|. #S a; nelim a; // by {}; ##[ #e1 e2 IH1 IH2; - napply (?^-1); + napply (?^-1); napply (.=_0 (IH1^-1)╪_0 (IH2^-1)); nchange in match (•(e1 · ?)) with (?⊙?); ncases (•e1); #e3 b; ncases b; ##[ nnormalize; ncases (•e2); /3/ by refl, conj] @@ -672,7 +723,7 @@ nqed. (* XXX This seems to be a pattern for equations *) alias symbol "hint_decl" (instance 1) = "hint_decl_CProp2". -unification hint 0 ≔ S : Alpha, x,y: re S; +unification hint 0 ≔ S : Alpha, x,y: re (carr (acarr S)); SS ≟ RE S, TT ≟ setoid1_of_setoid SS, T ≟ carr1 TT @@ -714,16 +765,26 @@ nlemma odot_dot_aux : ∀S:Alpha.∀e1,e2: pre S. //] nqed. -STOP + nlemma sub_dot_star : - ∀S.∀X:word S → Prop.∀b. (X - ϵ b) · X^* ∪ {[]} = X^*. -#S X b; napply extP; #w; @; -##[ *; ##[##2: nnormalize; #defw; nrewrite < defw; @[]; @; //] + ∀S:Alpha.∀X:Elang S.∀b. (X - ϵ b) · (ext_carr … X)^* ∪ {[]} = (ext_carr … X)^*. +#S X b; napply ext_set; #w; @; +##[ *; ##[##2: #defw; @[]; @; //] *; #w1; *; #w2; *; *; #defw sube; *; #lw; *; #flx cj; - @ (w1 :: lw); nrewrite < defw; nrewrite < flx; @; //; + @ (w1 :: lw); @; ##[ napply (.=_0 # ╪_0 flx); napply (?^-1); //] @; //; napply (subW … sube); -##| *; #wl; *; #defw Pwl; nrewrite < defw; nelim wl in Pwl; ##[ #_; @2; //] +##| *; #wl; *; #defw Pwl; (* STOP manca ext_carr vs epsilon. *) +ncases b; ##[ nchange in match (ϵtrue) with {[]}. +napply (. (defw^-1 ╪_1 #)); nelim wl in Pwl; /2/; +#s tl IH; *; #Xs Ptl; ncases s in Xs; ##[ #; napply IH; //] #x xs Xxxs; +@; @(x :: xs); @(flatten ? tl); @; ##[ @; ##[ napply #] @; //; nassumption; ##] +nelim tl in Ptl; ##[ #; @[]; /2/] #w ws IH; *; #Xw Pws; @(w :: ws); @; ##[ napply #] +@; //; + + + + nrewrite < defw; nelim wl in Pwl; ##[ #_; @2; //] #w' wl' IH; *; #Pw' IHp; nlapply (IH IHp); *; ##[ *; #w1; *; #w2; *; *; #defwl' H1 H2; @; ncases b in H1; #H1; diff --git a/helm/software/matita/nlibrary/sets/setoids.ma b/helm/software/matita/nlibrary/sets/setoids.ma index a7a5e74b0..e40dad6f6 100644 --- a/helm/software/matita/nlibrary/sets/setoids.ma +++ b/helm/software/matita/nlibrary/sets/setoids.ma @@ -103,10 +103,11 @@ ndefinition comp_unary_morphisms: nqed. unification hint 0 ≔ o1,o2,o3:setoid,f:o2 ⇒_0 o3,g:o1 ⇒_0 o2; - R ≟ mk_unary_morphism ?? (composition ??? f g) - (prop1 ?? (comp_unary_morphisms o1 o2 o3 f g)) + R ≟ mk_unary_morphism o1 o3 + (composition ??? (fun1 o2 o3 f) (fun1 o1 o2 g)) + (prop1 o1 o3 (comp_unary_morphisms o1 o2 o3 f g)) (* -------------------------------------------------------------------- *) ⊢ - fun1 o1 o3 R ≡ (composition o1 o2 o3 f g). + fun1 o1 o3 R ≡ composition ??? (fun1 o2 o3 f) (fun1 o1 o2 g). ndefinition comp_binary_morphisms: ∀o1,o2,o3.(o2 ⇒_0 o3) ⇒_0 ((o1 ⇒_0 o2) ⇒_0 (o1 ⇒_0 o3)). diff --git a/helm/software/matita/nlibrary/sets/setoids1.ma b/helm/software/matita/nlibrary/sets/setoids1.ma index 889fb0545..90be6bc94 100644 --- a/helm/software/matita/nlibrary/sets/setoids1.ma +++ b/helm/software/matita/nlibrary/sets/setoids1.ma @@ -120,10 +120,10 @@ ndefinition comp1_unary_morphisms: nqed. unification hint 0 ≔ o1,o2,o3:setoid1,f:o2 ⇒_1 o3,g:o1 ⇒_1 o2; - R ≟ (mk_unary_morphism1 ?? (composition1 ??? f g) + R ≟ (mk_unary_morphism1 ?? (composition1 ??? (fun11 ?? f) (fun11 ?? g)) (prop11 ?? (comp1_unary_morphisms o1 o2 o3 f g))) (* -------------------------------------------------------------------- *) ⊢ - fun11 o1 o3 R ≡ (composition1 o1 o2 o3 f g). + fun11 o1 o3 R ≡ composition1 ??? (fun11 ?? f) (fun11 ?? g). ndefinition comp1_binary_morphisms: ∀o1,o2,o3. (o2 ⇒_1 o3) ⇒_1 ((o1 ⇒_1 o2) ⇒_1 (o1 ⇒_1 o3)). diff --git a/helm/software/matita/nlibrary/sets/sets.ma b/helm/software/matita/nlibrary/sets/sets.ma index 0038ad4f6..c8f303a6b 100644 --- a/helm/software/matita/nlibrary/sets/sets.ma +++ b/helm/software/matita/nlibrary/sets/sets.ma @@ -119,20 +119,18 @@ nlemma mem_ext_powerclass_setoid_is_morph: [ napply (. (ext_prop … Ha^-1)) | napply (. (ext_prop … Ha)) ] /2/. nqed. -unification hint 0 ≔ AA, x, S; +unification hint 0 ≔ AA : setoid, S : 𝛀^AA, x : carr AA; A ≟ carr AA, SS ≟ (ext_carr ? S), TT ≟ (mk_unary_morphism1 ?? - (λx:setoid1_of_setoid ?. + (λx:carr1 (setoid1_of_setoid ?). mk_unary_morphism1 ?? - (λS:ext_powerclass_setoid ?. x ∈ S) - (prop11 ?? (mem_ext_powerclass_setoid_is_morph AA x))) + (λS:carr1 (ext_powerclass_setoid ?). x ∈ (ext_carr ? S)) + (prop11 ?? (fun11 ?? (mem_ext_powerclass_setoid_is_morph AA) x))) (prop11 ?? (mem_ext_powerclass_setoid_is_morph AA))), - XX ≟ (ext_powerclass_setoid AA) - (*-------------------------------------*) ⊢ - fun11 (setoid1_of_setoid AA) - (unary_morphism1_setoid1 XX CPROP) TT x S - ≡ mem A SS x. + T2 ≟ (ext_powerclass_setoid AA) +(*---------------------------------------------------------------------------*) ⊢ + fun11 T2 CPROP (fun11 (setoid1_of_setoid AA) (unary_morphism1_setoid1 T2 CPROP) TT x) S ≡ mem A SS x. nlemma set_ext : ∀S.∀A,B:Ω^S.A =_1 B → ∀x:S.(x ∈ A) =_1 (x ∈ B). #S A B; *; #H1 H2 x; @; ##[ napply H1 | napply H2] nqed. @@ -153,11 +151,15 @@ nlemma intersect_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. nqed. alias symbol "hint_decl" = "hint_decl_Type1". -unification hint 0 ≔ - A : setoid, B,C : ext_powerclass A; - R ≟ (mk_ext_powerclass ? (B ∩ C) (ext_prop ? (intersect_is_ext ? B C))) +unification hint 0 ≔ A : setoid, B,C : 𝛀^A; + AA ≟ carr A, + BB ≟ ext_carr ? B, + CC ≟ ext_carr ? C, + R ≟ (mk_ext_powerclass ? + (ext_carr ? B ∩ ext_carr ? C) + (ext_prop ? (intersect_is_ext ? B C))) (* ------------------------------------------*) ⊢ - ext_carr A R ≡ intersect ? (ext_carr ? B) (ext_carr ? C). + ext_carr A R ≡ intersect AA BB CC. nlemma intersect_is_morph: ∀A. Ω^A ⇒_1 Ω^A ⇒_1 Ω^A. #A; napply (mk_binary_morphism1 … (λS,S'. S ∩ S')); @@ -168,7 +170,8 @@ alias symbol "hint_decl" = "hint_decl_Type1". unification hint 0 ≔ A : Type[0], B,C : Ω^A; T ≟ powerclass_setoid A, R ≟ mk_unary_morphism1 ?? - (λS. mk_unary_morphism1 ?? (λS'.S ∩ S') (prop11 ?? (intersect_is_morph A S))) + (λX. mk_unary_morphism1 ?? + (λY.X ∩ Y) (prop11 ?? (fun11 ?? (intersect_is_morph A) X))) (prop11 ?? (intersect_is_morph A)) (*------------------------------------------------------------------------*) ⊢ fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C ≡ intersect A B C. @@ -186,12 +189,12 @@ unification hint 1 ≔ AA : setoid, B,C : 𝛀^AA; A ≟ carr AA, T ≟ ext_powerclass_setoid AA, - R ≟ (mk_unary_morphism1 ?? - (λS:𝛀^AA. - mk_unary_morphism1 ?? - (λS':𝛀^AA. - mk_ext_powerclass AA (S∩S') (ext_prop AA (intersect_is_ext ? S S'))) - (prop11 ?? (intersect_is_ext_morph AA S))) + R ≟ (mk_unary_morphism1 ?? (λX:𝛀^AA. + mk_unary_morphism1 ?? (λY:𝛀^AA. + mk_ext_powerclass AA + (ext_carr ? X ∩ ext_carr ? Y) + (ext_prop AA (intersect_is_ext ? X Y))) + (prop11 ?? (fun11 ?? (intersect_is_ext_morph AA) X))) (prop11 ?? (intersect_is_ext_morph AA))) , BB ≟ (ext_carr ? B), CC ≟ (ext_carr ? C) @@ -217,16 +220,20 @@ nassumption; nqed. alias symbol "hint_decl" = "hint_decl_Type1". -unification hint 0 ≔ - A : setoid, B,C : 𝛀^A; - R ≟ (mk_ext_powerclass ? (B ∪ C) (ext_prop ? (union_is_ext ? B C))) +unification hint 0 ≔ A : setoid, B,C : 𝛀^A; + AA ≟ carr A, + BB ≟ ext_carr ? B, + CC ≟ ext_carr ? C, + R ≟ mk_ext_powerclass ? + (ext_carr ? B ∪ ext_carr ? C) (ext_prop ? (union_is_ext ? B C)) (*-------------------------------------------------------------------------*) ⊢ - ext_carr A R ≡ union ? (ext_carr ? B) (ext_carr ? C). + ext_carr A R ≡ union AA BB CC. unification hint 0 ≔ S:Type[0], A,B:Ω^S; T ≟ powerclass_setoid S, MM ≟ mk_unary_morphism1 ?? - (λA.mk_unary_morphism1 ?? (λB.A ∪ B) (prop11 ?? (union_is_morph S A))) + (λA.mk_unary_morphism1 ?? + (λB.A ∪ B) (prop11 ?? (fun11 ?? (union_is_morph S) A))) (prop11 ?? (union_is_morph S)) (*--------------------------------------------------------------------------*) ⊢ fun11 T T (fun11 T (unary_morphism1_setoid1 T T) MM A) B ≡ A ∪ B. @@ -240,13 +247,12 @@ unification hint 1 ≔ AA : setoid, B,C : 𝛀^AA; A ≟ carr AA, T ≟ ext_powerclass_setoid AA, - R ≟ (mk_unary_morphism1 ?? - (λS:𝛀^AA. - mk_unary_morphism1 ?? - (λS':𝛀^AA. - mk_ext_powerclass AA (S ∪ S') (ext_prop AA (union_is_ext ? S S'))) - (prop11 ?? (union_is_ext_morph AA S))) - (prop11 ?? (union_is_ext_morph AA))) , + R ≟ mk_unary_morphism1 ?? (λX:𝛀^AA. + mk_unary_morphism1 ?? (λY:𝛀^AA. + mk_ext_powerclass AA + (ext_carr ? X ∪ ext_carr ? Y) (ext_prop AA (union_is_ext ? X Y))) + (prop11 ?? (fun11 ?? (union_is_ext_morph AA) X))) + (prop11 ?? (union_is_ext_morph AA)), BB ≟ (ext_carr ? B), CC ≟ (ext_carr ? C) (*------------------------------------------------------*) ⊢ @@ -268,16 +274,21 @@ nlemma substract_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. nqed. alias symbol "hint_decl" = "hint_decl_Type1". -unification hint 0 ≔ - A : setoid, B,C : 𝛀^A; - R ≟ (mk_ext_powerclass ? (B - C) (ext_prop ? (substract_is_ext ? B C))) -(*-------------------------------------------------------------------------*) ⊢ - ext_carr A R ≡ substract ? (ext_carr ? B) (ext_carr ? C). +unification hint 0 ≔ A : setoid, B,C : 𝛀^A; + AA ≟ carr A, + BB ≟ ext_carr ? B, + CC ≟ ext_carr ? C, + R ≟ mk_ext_powerclass ? + (ext_carr ? B - ext_carr ? C) + (ext_prop ? (substract_is_ext ? B C)) +(*---------------------------------------------------*) ⊢ + ext_carr A R ≡ substract AA BB CC. unification hint 0 ≔ S:Type[0], A,B:Ω^S; T ≟ powerclass_setoid S, MM ≟ mk_unary_morphism1 ?? - (λA.mk_unary_morphism1 ?? (λB.A - B) (prop11 ?? (substract_is_morph S A))) + (λA.mk_unary_morphism1 ?? + (λB.A - B) (prop11 ?? (fun11 ?? (substract_is_morph S) A))) (prop11 ?? (substract_is_morph S)) (*--------------------------------------------------------------------------*) ⊢ fun11 T T (fun11 T (unary_morphism1_setoid1 T T) MM A) B ≡ A - B. @@ -291,13 +302,13 @@ unification hint 1 ≔ AA : setoid, B,C : 𝛀^AA; A ≟ carr AA, T ≟ ext_powerclass_setoid AA, - R ≟ (mk_unary_morphism1 ?? - (λS:𝛀^AA. - mk_unary_morphism1 ?? - (λS':𝛀^AA. - mk_ext_powerclass AA (S - S') (ext_prop AA (substract_is_ext ? S S'))) - (prop11 ?? (substract_is_ext_morph AA S))) - (prop11 ?? (substract_is_ext_morph AA))) , + R ≟ mk_unary_morphism1 ?? (λX:𝛀^AA. + mk_unary_morphism1 ?? (λY:𝛀^AA. + mk_ext_powerclass AA + (ext_carr ? X - ext_carr ? Y) + (ext_prop AA (substract_is_ext ? X Y))) + (prop11 ?? (fun11 ?? (substract_is_ext_morph AA) X))) + (prop11 ?? (substract_is_ext_morph AA)), BB ≟ (ext_carr ? B), CC ≟ (ext_carr ? C) (*------------------------------------------------------*) ⊢ @@ -312,37 +323,32 @@ nlemma single_is_ext: ∀A:setoid. A → 𝛀^A. #X a; @; ##[ napply ({(a)}); ##] #x y E; @; #H; /3/; nqed. alias symbol "hint_decl" = "hint_decl_Type1". -unification hint 0 ≔ A : setoid, a:A; +unification hint 0 ≔ A : setoid, a : carr A; R ≟ (mk_ext_powerclass ? {(a)} (ext_prop ? (single_is_ext ? a))) (*-------------------------------------------------------------------------*) ⊢ ext_carr A R ≡ singleton A a. -unification hint 0 ≔ A:setoid, a:A; +unification hint 0 ≔ A:setoid, a : carr A; T ≟ setoid1_of_setoid A, AA ≟ carr A, MM ≟ mk_unary_morphism1 ?? - (λa:setoid1_of_setoid A.{(a)}) (prop11 ?? (single_is_morph A)) + (λa:carr1 (setoid1_of_setoid A).{(a)}) (prop11 ?? (single_is_morph A)) (*--------------------------------------------------------------------------*) ⊢ fun11 T (powerclass_setoid AA) MM a ≡ {(a)}. nlemma single_is_ext_morph:∀A:setoid.(setoid1_of_setoid A) ⇒_1 𝛀^A. #A; @; ##[ #a; napply (single_is_ext ? a); ##] #a b E; @; #x; /3/; nqed. -unification hint 1 ≔ - AA : setoid, a: AA; +unification hint 1 ≔ AA : setoid, a: carr AA; T ≟ ext_powerclass_setoid AA, R ≟ mk_unary_morphism1 ?? - (λa:setoid1_of_setoid AA. + (λa:carr1 (setoid1_of_setoid AA). mk_ext_powerclass AA {(a)} (ext_prop ? (single_is_ext AA a))) (prop11 ?? (single_is_ext_morph AA)) (*------------------------------------------------------*) ⊢ ext_carr AA (fun11 (setoid1_of_setoid AA) T R a) ≡ singleton AA a. - - - - (* alias symbol "hint_decl" = "hint_decl_Type2". unification hint 0 ≔