From: Enrico Tassi Date: Sat, 22 Mar 2008 11:17:17 +0000 (+0000) Subject: moved dama/ and dama_didactic/ in contribs/dama/ X-Git-Tag: make_still_working~5507 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=d4302f43737034a69bd475e5f46e8d126229375e;p=helm.git moved dama/ and dama_didactic/ in contribs/dama/ the tests output should not change and history is preserved --- diff --git a/helm/software/matita/Makefile b/helm/software/matita/Makefile index a872f3194..eae880741 100644 --- a/helm/software/matita/Makefile +++ b/helm/software/matita/Makefile @@ -183,7 +183,8 @@ TEST_DIRS = \ legacy \ library \ tests \ - dama \ + contribs/dama/dama \ + contribs/assembly \ contribs/CoRN \ contribs/RELATIONAL \ contribs/LOGIC \ diff --git a/helm/software/matita/contribs/dama/Makefile b/helm/software/matita/contribs/dama/Makefile new file mode 100644 index 000000000..c2cc976d4 --- /dev/null +++ b/helm/software/matita/contribs/dama/Makefile @@ -0,0 +1,10 @@ +GOALS = all opt clean clean.opt + +DEVELS = dama dama_didactic + +$(GOALS): + @$(foreach DEVEL, $(DEVELS), $(MAKE) -C $(DEVEL) $@;) + +.PHONY: (GOALS) + +.SUFFIXES: diff --git a/helm/software/matita/contribs/dama/dama/Makefile b/helm/software/matita/contribs/dama/dama/Makefile new file mode 100644 index 000000000..d40c9e674 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/Makefile @@ -0,0 +1,16 @@ +include ../../Makefile.defs + +DIR=$(shell basename $$PWD) + +$(DIR) all: + $(BIN)../matitac +$(DIR).opt opt all.opt: + $(BIN)../matitac.opt +clean: + $(BIN)../matitaclean +clean.opt: + $(BIN)../matitaclean.opt +depend: + $(BIN)../matitadep +depend.opt: + $(BIN)../matitadep.opt diff --git a/helm/software/matita/contribs/dama/dama/Q_is_orded_divisble_group.ma b/helm/software/matita/contribs/dama/dama/Q_is_orded_divisble_group.ma new file mode 100644 index 000000000..762554dd0 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/Q_is_orded_divisble_group.ma @@ -0,0 +1,272 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "Q/q.ma". +include "ordered_divisible_group.ma". + +definition strong_decidable ≝ + λA:Prop.A ∨ ¬ A. + +theorem strong_decidable_to_Not_Not_eq: + ∀T:Type.∀eq: T → T → Prop.∀x,y:T. + strong_decidable (x=y) → ¬x≠y → x=y. + intros; + cases s; + [ assumption + | elim (H H1) + ] +qed. + +definition apartness_of_strong_decidable: + ∀T:Type.(∀x,y:T.strong_decidable (x=y)) → apartness. + intros; + constructor 1; + [ apply T + | apply (λx,y:T.x ≠ y); + | simplify; + intros 2; + apply (H (refl_eq ??)); + | simplify; + intros 4; + apply H; + symmetry; + assumption + | simplify; + intros; + elim (f x z); + [ elim (f z y); + [ elim H; + transitivity z; + assumption + | right; + assumption + ] + | left; + assumption + ] + ] +qed. + +theorem strong_decidable_to_strong_ext: + ∀T:Type.∀sd:∀x,y:T.strong_decidable (x=y). + ∀op:T→T. strong_ext (apartness_of_strong_decidable ? sd) op. + intros 6; + intro; + apply a; + apply eq_f; + assumption; +qed. + +theorem strong_decidable_to_transitive_to_cotransitive: + ∀T:Type.∀le:T→T→Prop.(∀x,y:T.strong_decidable (le x y)) → + transitive ? le → cotransitive ? (λx,y.¬ (le x y)). + intros; + whd; + simplify; + intros; + elim (f x z); + [ elim (f z y); + [ elim H; + apply (t ? z); + assumption + | right; + assumption + ] + | left; + assumption + ] +qed. + +theorem reflexive_to_coreflexive: + ∀T:Type.∀le:T→T→Prop.reflexive ? le → coreflexive ? (λx,y.¬(le x y)). + intros; + unfold; + simplify; + intros 2; + apply H1; + apply H; +qed. + +definition ordered_set_of_strong_decidable: + ∀T:Type.∀le:T→T→Prop.(∀x,y:T.strong_decidable (le x y)) → + transitive ? le → reflexive ? le → excess. + intros; + constructor 1; + [ apply T + | apply (λx,y.¬(le x y)); + | apply reflexive_to_coreflexive; + assumption + | apply strong_decidable_to_transitive_to_cotransitive; + assumption + ] +qed. + +definition abelian_group_of_strong_decidable: + ∀T:Type.∀plus:T→T→T.∀zero:T.∀opp:T→T. + (∀x,y:T.strong_decidable (x=y)) → + associative ? plus (eq T) → + commutative ? plus (eq T) → + (∀x:T. plus zero x = x) → + (∀x:T. plus (opp x) x = zero) → + abelian_group. + intros; + constructor 1; + [apply (apartness_of_strong_decidable ? f);] + try assumption; + [ change with (associative ? plus (λx,y:T.¬x≠y)); + simplify; + intros; + intro; + apply H2; + apply a; + | intros 2; + intro; + apply a1; + apply c; + | intro; + intro; + apply a1; + apply H + | intro; + intro; + apply a1; + apply H1 + | intros; + apply strong_decidable_to_strong_ext; + assumption + ] +qed. + +definition left_neutral ≝ λC:Type.λop.λe:C. ∀x:C. op e x = x. +definition left_inverse ≝ λC:Type.λop.λe:C.λinv:C→C. ∀x:C. op (inv x) x = e. + +record nabelian_group : Type ≝ + { ncarr:> Type; + nplus: ncarr → ncarr → ncarr; + nzero: ncarr; + nopp: ncarr → ncarr; + nplus_assoc: associative ? nplus (eq ncarr); + nplus_comm: commutative ? nplus (eq ncarr); + nzero_neutral: left_neutral ? nplus nzero; + nopp_inverse: left_inverse ? nplus nzero nopp + }. + +definition abelian_group_of_nabelian_group: + ∀G:nabelian_group.(∀x,y:G.strong_decidable (x=y)) → abelian_group. + intros; + apply abelian_group_of_strong_decidable; + [2: apply (nplus G) + | skip + | apply (nzero G) + | apply (nopp G) + | assumption + | apply nplus_assoc; + | apply nplus_comm; + | apply nzero_neutral; + | apply nopp_inverse + ] +qed. + +definition Z_abelian_group: abelian_group. + apply abelian_group_of_nabelian_group; + [ constructor 1; + [ apply Z + | apply Zplus + | apply OZ + | apply Zopp + | whd; + intros; + symmetry; + apply associative_Zplus + | apply sym_Zplus + | intro; + reflexivity + | intro; + rewrite > sym_Zplus; + apply Zplus_Zopp; + ] + | simplify; + intros; + unfold; + generalize in match (eqZb_to_Prop x y); + elim (eqZb x y); + simplify in H; + [ left ; assumption + | right; assumption + ] + ] +qed. + +record nordered_set: Type ≝ + { nos_carr:> Type; + nos_le: nos_carr → nos_carr → Prop; + nos_reflexive: reflexive ? nos_le; + nos_transitive: transitive ? nos_le + }. + +definition excess_of_nordered_group: + ∀O:nordered_set.(∀x,y:O. strong_decidable (nos_le ? x y)) → excess. + intros; + constructor 1; + [ apply (nos_carr O) + | apply (λx,y.¬(nos_le ? x y)) + | apply reflexive_to_coreflexive; + apply nos_reflexive + | apply strong_decidable_to_transitive_to_cotransitive; + [ assumption + | apply nos_transitive + ] + ] +qed. + +lemma non_deve_stare_qui: reflexive ? Zle. + intro; + elim x; + [ exact I + |2,3: simplify; + apply le_n; + ] +qed. + +axiom non_deve_stare_qui3: ∀x,y:Z. x < y → x ≤ y. + +axiom non_deve_stare_qui4: ∀x,y:Z. x < y → y ≰ x. + +definition Z_excess: excess. + apply excess_of_nordered_group; + [ constructor 1; + [ apply Z + | apply Zle + | apply non_deve_stare_qui + | apply transitive_Zle + ] + | simplify; + intros; + unfold; + generalize in match (Z_compare_to_Prop x y); + cases (Z_compare x y); simplify; intro; + [ left; + apply non_deve_stare_qui3; + assumption + | left; + rewrite > H; + apply non_deve_stare_qui + | right; + apply non_deve_stare_qui4; + assumption + ] + ] +qed. \ No newline at end of file diff --git a/helm/software/matita/contribs/dama/dama/TODO b/helm/software/matita/contribs/dama/dama/TODO new file mode 100644 index 000000000..353329bea --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/TODO @@ -0,0 +1,4 @@ +changing file resets the display-notation ref, but not the GUI tick +mettere una maction in tutti i body (ma forse non basta) +la visualizzazione dellea notazione se viene disttivata e poi se ne definisce una... la rende causa +il fatto che disabilitarla significa rimuovere quelle definite fino ad ora, non disabilitarla in senso proprio. diff --git a/helm/software/matita/contribs/dama/dama/attic/fields.ma b/helm/software/matita/contribs/dama/dama/attic/fields.ma new file mode 100644 index 000000000..824fdfa9e --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/attic/fields.ma @@ -0,0 +1,60 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "attic/rings.ma". + +record is_field (R:ring) (inv:∀x:R.x ≠ 0 → R) : Prop +≝ + { (* multiplicative abelian properties *) + mult_comm_: symmetric ? (mult R); + (* multiplicative group properties *) + inv_inverse_: ∀x.∀p: x ≠ 0. inv x p * x = 1 + }. + +lemma opp_opp: ∀R:ring. ∀x:R. --x=x. +intros; +apply (cancellationlaw ? (-x) ? ?); +rewrite > (opp_inverse R x); +rewrite > plus_comm; +rewrite > opp_inverse; +reflexivity. +qed. + +let rec sum (C:Type) (plus:C→C→C) (zero,one:C) (n:nat) on n ≝ + match n with + [ O ⇒ zero + | (S m) ⇒ plus one (sum C plus zero one m) + ]. + +record field : Type \def + { f_ring:> ring; + inv: ∀x:f_ring. x ≠ 0 → f_ring; + field_properties: is_field f_ring inv + }. + +theorem mult_comm: ∀F:field.symmetric ? (mult F). + intro; + apply (mult_comm_ ? ? (field_properties F)). +qed. + +theorem inv_inverse: ∀F:field.∀x:F.∀p: x ≠ 0. (inv ? x p)*x = 1. + intro; + apply (inv_inverse_ ? ? (field_properties F)). +qed. + +(*CSC: qua funzionava anche mettendo ? al posto della prima F*) +definition sum_field ≝ + λF:field. sum F (plus F) 0 1. diff --git a/helm/software/matita/contribs/dama/dama/attic/integration_algebras.ma b/helm/software/matita/contribs/dama/dama/attic/integration_algebras.ma new file mode 100644 index 000000000..1b775fa78 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/attic/integration_algebras.ma @@ -0,0 +1,368 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "attic/vector_spaces.ma". +include "lattice.ma". + +(**************** Riesz Spaces ********************) + +record pre_riesz_space (K:ordered_field_ch0) : Type \def + { rs_vector_space:> vector_space K; + rs_lattice_: lattice; + rs_ordered_abelian_group_: ordered_abelian_group; + rs_with1: + og_abelian_group rs_ordered_abelian_group_ = vs_abelian_group ? rs_vector_space; + rs_with2: + og_ordered_set rs_ordered_abelian_group_ = ordered_set_of_lattice rs_lattice_ + }. + +lemma rs_lattice: ∀K.pre_riesz_space K → lattice. + intros (K V); + cut (os_carrier (rs_lattice_ ? V) = V); + [ apply mk_lattice; + [ apply (carrier V) + | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? Hcut); + apply l_join + | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? Hcut); + apply l_meet + | apply + (eq_rect' ? ? + (λa:Type.λH:os_carrier (rs_lattice_ ? V)=a. + is_lattice a + (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) + (l_join (rs_lattice_ K V)) a H) + (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) + (l_meet (rs_lattice_ K V)) a H)) + ? ? Hcut); + simplify; + apply l_lattice_properties + ] + | transitivity (os_carrier (rs_ordered_abelian_group_ ? V)); + [ apply (eq_f ? ? os_carrier); + symmetry; + apply rs_with2 + | apply (eq_f ? ? carrier); + apply rs_with1 + ] + ]. +qed. + +coercion cic:/matita/attic/integration_algebras/rs_lattice.con. + +lemma rs_ordered_abelian_group: ∀K.pre_riesz_space K → ordered_abelian_group. + intros (K V); + apply mk_ordered_abelian_group; + [ apply mk_pre_ordered_abelian_group; + [ apply (vs_abelian_group ? (rs_vector_space ? V)) + | apply (ordered_set_of_lattice (rs_lattice ? V)) + | reflexivity + ] + | simplify; + generalize in match + (og_ordered_abelian_group_properties (rs_ordered_abelian_group_ ? V)); + intro P; + unfold in P; + elim daemon(* + apply + (eq_rect ? ? + (λO:ordered_set. + ∀f,g,h. + os_le O f g → + os_le O + (plus (abelian_group_OF_pre_riesz_space K V) f h) + (plus (abelian_group_OF_pre_riesz_space K V) g h)) + ? ? (rs_with2 ? V)); + apply + (eq_rect ? ? + (λG:abelian_group. + ∀f,g,h. + os_le (ordered_set_OF_pre_riesz_space K V) f g → + os_le (ordered_set_OF_pre_riesz_space K V) + (plus (abelian_group_OF_pre_riesz_space K V) f h) + (plus (abelian_group_OF_pre_riesz_space K V) g h)) + ? ? (rs_with1 ? V)); + simplify; + apply og_ordered_abelian_group_properties*) + ] +qed. + +coercion cic:/matita/attic/integration_algebras/rs_ordered_abelian_group.con. + +record is_riesz_space (K:ordered_field_ch0) (V:pre_riesz_space K) : Prop ≝ + { rs_compat_le_times: ∀a:K.∀f:V. 0≤a → 0≤f → 0≤a*f + }. + +record riesz_space (K:ordered_field_ch0) : Type \def + { rs_pre_riesz_space:> pre_riesz_space K; + rs_riesz_space_properties: is_riesz_space ? rs_pre_riesz_space + }. + +record is_positive_linear (K) (V:riesz_space K) (T:V→K) : Prop ≝ + { positive: ∀u:V. 0≤u → 0≤T u; + linear1: ∀u,v:V. T (u+v) = T u + T v; + linear2: ∀u:V.∀k:K. T (k*u) = k*(T u) + }. + +record sequentially_order_continuous (K) (V:riesz_space K) (T:V→K) : Prop ≝ + { soc_incr: + ∀a:nat→V.∀l:V.is_increasing ? a → is_sup V a l → + is_increasing K (λn.T (a n)) ∧ tends_to ? (λn.T (a n)) (T l) + }. + +definition absolute_value ≝ λK.λS:riesz_space K.λf:S.f ∨ -f. + +(**************** Normed Riesz spaces ****************************) + +definition is_riesz_norm ≝ + λR:real.λV:riesz_space R.λnorm:norm R V. + ∀f,g:V. absolute_value ? V f ≤ absolute_value ? V g → + n_function R V norm f ≤ n_function R V norm g. + +record riesz_norm (R:real) (V:riesz_space R) : Type ≝ + { rn_norm:> norm R V; + rn_riesz_norm_property: is_riesz_norm ? ? rn_norm + }. + +(*CSC: non fa la chiusura delle coercion verso funclass *) +definition rn_function ≝ + λR:real.λV:riesz_space R.λnorm:riesz_norm ? V. + n_function R V (rn_norm ? ? norm). + +coercion cic:/matita/attic/integration_algebras/rn_function.con 1. + +(************************** L-SPACES *************************************) +(* +record is_l_space (R:real) (V:riesz_space R) (norm:riesz_norm ? V) : Prop ≝ + { ls_banach: is_complete ? V (induced_distance ? ? norm); + ls_linear: ∀f,g:V. le ? V 0 f → le ? V 0 g → norm (f+g) = norm f + norm g + }. +*) +(******************** ARCHIMEDEAN RIESZ SPACES ***************************) + +record is_archimedean_riesz_space (K) (S:riesz_space K) : Prop +\def + { ars_archimedean: ∃u:S.∀n.∀a.∀p:n > O. + absolute_value ? S a ≤ + (inv K (sum_field K n) (not_eq_sum_field_zero K n p))* u → + a = 0 + }. + +record archimedean_riesz_space (K:ordered_field_ch0) : Type \def + { ars_riesz_space:> riesz_space K; + ars_archimedean_property: is_archimedean_riesz_space ? ars_riesz_space + }. + +definition is_weak_unit ≝ +(* This definition is by Spitters. He cites Fremlin 353P, but: + 1. that theorem holds only in f-algebras (as in Spitters, but we are + defining it on Riesz spaces) + 2. Fremlin proves |x|/\u=0 \to u=0. How do we remove the absolute value? + λR:real.λV:archimedean_riesz_space R.λunit: V. + ∀x:V. meet x unit = 0 → u = 0. + 3. Fremlin proves u > 0 implies x /\ u > 0 > 0 for Archimedean spaces + only. We pick this definition for now. +*) λR:real.λV:archimedean_riesz_space R.λe:V. + ∀v:V. 0 archimedean_riesz_space R; + irs_unit: irs_archimedean_riesz_space; + irs_weak_unit: is_weak_unit ? ? irs_unit; + integral: irs_archimedean_riesz_space → R; + irs_positive_linear: is_positive_linear ? ? integral; + irs_limit1: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn.integral (f ∧ ((sum_field R n)*irs_unit))) + (integral f); + irs_limit2: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn. + integral (f ∧ + ((inv ? (sum_field R (S n)) + (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n))) + ) * irs_unit))) 0; + irs_quotient_space1: + ∀f,g:irs_archimedean_riesz_space. + integral (absolute_value ? irs_archimedean_riesz_space (f - g)) = 0 → f=g + }. + +definition induced_norm_fun ≝ + λR:real.λV:integration_riesz_space R.λf:V. + integral ? V (absolute_value ? ? f). + +lemma induced_norm_is_norm: + ∀R:real.∀V:integration_riesz_space R.is_norm R V (induced_norm_fun ? V). + elim daemon.(* + intros; + apply mk_is_norm; + [ apply mk_is_semi_norm; + [ unfold induced_norm_fun; + intros; + apply positive; + [ apply (irs_positive_linear ? V) + | (* difficile *) + elim daemon + ] + | intros; + unfold induced_norm_fun; + (* facile *) + elim daemon + | intros; + unfold induced_norm_fun; + (* difficile *) + elim daemon + ] + | intros; + unfold induced_norm_fun in H; + apply irs_quotient_space1; + unfold minus; + rewrite < plus_comm; + rewrite < eq_zero_opp_zero; + rewrite > zero_neutral; + assumption + ].*) +qed. + +definition induced_norm ≝ + λR:real.λV:integration_riesz_space R. + mk_norm ? ? (induced_norm_fun ? V) (induced_norm_is_norm ? V). + +lemma is_riesz_norm_induced_norm: + ∀R:real.∀V:integration_riesz_space R. + is_riesz_norm ? ? (induced_norm ? V). + intros; + unfold is_riesz_norm; + intros; + unfold induced_norm; + simplify; + unfold induced_norm_fun; + (* difficile *) + elim daemon. +qed. + +definition induced_riesz_norm ≝ + λR:real.λV:integration_riesz_space R. + mk_riesz_norm ? ? (induced_norm ? V) (is_riesz_norm_induced_norm ? V). + +definition distance_induced_by_integral ≝ + λR:real.λV:integration_riesz_space R. + induced_distance ? ? (induced_norm R V). + +definition is_complete_integration_riesz_space ≝ + λR:real.λV:integration_riesz_space R. + is_complete ? ? (distance_induced_by_integral ? V). + +record complete_integration_riesz_space (R:real) : Type ≝ + { cirz_integration_riesz_space:> integration_riesz_space R; + cirz_complete_integration_riesz_space_property: + is_complete_integration_riesz_space ? cirz_integration_riesz_space + }. + +(* now we prove that any complete integration riesz space is an L-space *) + +(*theorem is_l_space_l_space_induced_by_integral: + ∀R:real.∀V:complete_integration_riesz_space R. + is_l_space ? ? (induced_riesz_norm ? V). + intros; + constructor 1; + [ apply cirz_complete_integration_riesz_space_property + | intros; + unfold induced_riesz_norm; + simplify; + unfold induced_norm; + simplify; + unfold induced_norm_fun; + (* difficile *) + elim daemon + ]. +qed.*) + +(**************************** f-ALGEBRAS ********************************) + +record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop +≝ + { (* ring properties *) + a_ring: is_ring V mult one; + (* algebra properties *) + a_associative_left: ∀a,f,g. a * (mult f g) = mult (a * f) g; + a_associative_right: ∀a,f,g. a * (mult f g) = mult f (a * g) + }. + +record algebra (K: field) : Type \def + { a_vector_space:> vector_space K; + a_one: a_vector_space; + a_mult: a_vector_space → a_vector_space → a_vector_space; + a_algebra_properties: is_algebra ? ? a_mult a_one + }. + +interpretation "Algebra product" 'times a b = + (cic:/matita/attic/integration_algebras/a_mult.con _ a b). + +definition ring_of_algebra ≝ + λK.λA:algebra K. + mk_ring A (a_mult ? A) (a_one ? A) + (a_ring ? ? ? ? (a_algebra_properties ? A)). + +coercion cic:/matita/attic/integration_algebras/ring_of_algebra.con. + +record pre_f_algebra (K:ordered_field_ch0) : Type ≝ + { fa_archimedean_riesz_space:> archimedean_riesz_space K; + fa_algebra_: algebra K; + fa_with: a_vector_space ? fa_algebra_ = rs_vector_space ? fa_archimedean_riesz_space + }. + +lemma fa_algebra: ∀K:ordered_field_ch0.pre_f_algebra K → algebra K. + intros (K A); + apply mk_algebra; + [ apply (rs_vector_space ? A) + | elim daemon + | elim daemon + | elim daemon + ] + qed. + +coercion cic:/matita/attic/integration_algebras/fa_algebra.con. + +record is_f_algebra (K) (A:pre_f_algebra K) : Prop ≝ +{ compat_mult_le: ∀f,g:A.0 ≤ f → 0 ≤ g → 0 ≤ f*g; + compat_mult_meet: + ∀f,g,h:A.(f ∧ g) = 0 → ((h*f) ∧ g) = 0 +}. + +record f_algebra (K:ordered_field_ch0) : Type ≝ +{ fa_pre_f_algebra:> pre_f_algebra K; + fa_f_algebra_properties: is_f_algebra ? fa_pre_f_algebra +}. + +(* to be proved; see footnote 2 in the paper by Spitters *) +axiom symmetric_a_mult: + ∀K.∀A:f_algebra K. symmetric ? (a_mult ? A). + +record integration_f_algebra (R:real) : Type \def + { ifa_integration_riesz_space:> integration_riesz_space R; + ifa_f_algebra_: f_algebra R; + ifa_with: + fa_archimedean_riesz_space ? ifa_f_algebra_ = + irs_archimedean_riesz_space ? ifa_integration_riesz_space + }. + +axiom ifa_f_algebra: ∀R:real.integration_f_algebra R → f_algebra R. + +coercion cic:/matita/attic/integration_algebras/ifa_f_algebra.con. diff --git a/helm/software/matita/contribs/dama/dama/attic/ordered_fields_ch0.ma b/helm/software/matita/contribs/dama/dama/attic/ordered_fields_ch0.ma new file mode 100644 index 000000000..898148d6c --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/attic/ordered_fields_ch0.ma @@ -0,0 +1,151 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "attic/fields.ma". +include "ordered_group.ma". + +(*CSC: non capisco questi alias! Una volta non servivano*) +alias id "plus" = "cic:/matita/group/plus.con". +alias symbol "plus" = "Abelian group plus". + +record pre_ordered_field_ch0: Type ≝ + { of_field:> field; + of_ordered_abelian_group_: ordered_abelian_group; + of_cotransitively_ordered_set_: cotransitively_ordered_set; + of_with1_: + cos_ordered_set of_cotransitively_ordered_set_ = + og_ordered_set of_ordered_abelian_group_; + of_with2: + og_abelian_group of_ordered_abelian_group_ = r_abelian_group of_field + }. + +lemma of_ordered_abelian_group: pre_ordered_field_ch0 → ordered_abelian_group. + intro F; + apply mk_ordered_abelian_group; + [ apply mk_pre_ordered_abelian_group; + [ apply (r_abelian_group F) + | apply (og_ordered_set (of_ordered_abelian_group_ F)) + | apply (eq_f ? ? carrier); + apply (of_with2 F) + ] + | + apply + (eq_rect' ? ? + (λG:abelian_group.λH:og_abelian_group (of_ordered_abelian_group_ F)=G. + is_ordered_abelian_group + (mk_pre_ordered_abelian_group G (of_ordered_abelian_group_ F) + (eq_f abelian_group Type carrier (of_ordered_abelian_group_ F) G + H))) + ? ? (of_with2 F)); + simplify; + apply (og_ordered_abelian_group_properties (of_ordered_abelian_group_ F)) + ] +qed. + +coercion cic:/matita/attic/ordered_fields_ch0/of_ordered_abelian_group.con. + +(*CSC: I am not able to prove this since unfold is undone by coercion composition*) +axiom of_with1: + ∀G:pre_ordered_field_ch0. + cos_ordered_set (of_cotransitively_ordered_set_ G) = + og_ordered_set (of_ordered_abelian_group G). + +lemma of_cotransitively_ordered_set : pre_ordered_field_ch0 → cotransitively_ordered_set. + intro F; + apply mk_cotransitively_ordered_set; + [ apply (og_ordered_set F) + | apply + (eq_rect ? ? (λa:ordered_set.cotransitive (os_carrier a) (os_le a)) + ? ? (of_with1 F)); + apply cos_cotransitive + ] +qed. + +coercion cic:/matita/attic/ordered_fields_ch0/of_cotransitively_ordered_set.con. + +record is_ordered_field_ch0 (F:pre_ordered_field_ch0) : Type \def + { of_mult_compat: ∀a,b:F. 0≤a → 0≤b → 0≤a*b; + of_weak_tricotomy : ∀a,b:F. a≠b → a≤b ∨ b≤a; + (* 0 characteristics *) + of_char0: ∀n. n > O → sum ? (plus F) 0 1 n ≠ 0 + }. + +record ordered_field_ch0 : Type \def + { of_pre_ordered_field_ch0:> pre_ordered_field_ch0; + of_ordered_field_properties:> is_ordered_field_ch0 of_pre_ordered_field_ch0 + }. + +(* +lemma eq_opp_x_times_opp_one_x: ∀F:ordered_field_ch0.∀x:F.-x = -1*x. + intros; + +lemma not_eq_x_zero_to_lt_zero_mult_x_x: + ∀F:ordered_field_ch0.∀x:F. x ≠ 0 → 0 < x * x. + intros; + elim (of_weak_tricotomy ? ? ? ? ? ? ? ? F ? ? H); + [ generalize in match (le_x_zero_to_le_zero_opp_x F ? H1); intro; + generalize in match (of_mult_compat ? ? ? ? ? ? ? ? F ? ? H2 H2); intro; +*) + +axiom lt_zero_to_lt_inv_zero: + ∀F:ordered_field_ch0.∀x:F.∀p:x≠0. lt F 0 x → lt F 0 (inv ? x p). + +alias symbol "lt" = "natural 'less than'". + +(* The ordering is not necessary. *) +axiom not_eq_sum_field_zero: ∀F:ordered_field_ch0.∀n. O ordered_field_ch0; + r_real_properties: is_real r_ordered_field_ch0 + }. + +definition lim: ∀R:real.∀f:nat→R.is_cauchy_seq ? f → R. + intros; + elim (r_complete ? (r_real_properties R) ? H); + exact a. +qed. + +definition max_seq: ∀R:real.∀x,y:R. nat → R. + intros (R x y); + elim (cos_cotransitive R 0 (inv ? (sum_field ? (S n)) ?) (x-y)); + [ apply x + | apply not_eq_sum_field_zero ; + unfold; + autobatch + | apply y + | apply lt_zero_to_le_inv_zero + ]. +qed. + +axiom daemon: False. + +theorem cauchy_max_seq: ∀R:real.∀x,y:R. is_cauchy_seq ? (max_seq ? x y). +elim daemon. +(* + intros; + unfold; + intros; + exists; [ exact m | ]; (* apply (ex_intro ? ? m); *) + intros; + unfold max_seq; + elim (of_cotransitive R 0 +(inv R (sum_field R (S N)) + (not_eq_sum_field_zero R (S N) (le_S_S O N (le_O_n N)))) (x-y) +(lt_zero_to_le_inv_zero R (S N) + (not_eq_sum_field_zero R (S N) (le_S_S O N (le_O_n N))))); + [ simplify; + elim (of_cotransitive R 0 +(inv R (1+sum R (plus R) 0 1 m) + (not_eq_sum_field_zero R (S m) (le_S_S O m (le_O_n m)))) (x-y) +(lt_zero_to_le_inv_zero R (S m) + (not_eq_sum_field_zero R (S m) (le_S_S O m (le_O_n m))))); + [ simplify; + rewrite > (plus_comm ? x (-x)); + rewrite > opp_inverse; + split; + [ apply (le_zero_x_to_le_opp_x_zero R ?); + apply lt_zero_to_le_inv_zero + | apply lt_zero_to_le_inv_zero + ] + | simplify; + split; + [ apply (or_transitive ? ? R ? 0); + [ apply (le_zero_x_to_le_opp_x_zero R ?) + | assumption + ] + | assumption + ] + ] + | simplify; + elim (of_cotransitive R 0 +(inv R (1+sum R (plus R) 0 1 m) + (not_eq_sum_field_zero R (S m) (le_S_S O m (le_O_n m)))) (x-y) +(lt_zero_to_le_inv_zero R (S m) + (not_eq_sum_field_zero R (S m) (le_S_S O m (le_O_n m))))); + [ simplify; + split; + [ elim daemon + | generalize in match (le_zero_x_to_le_opp_x_zero R ? t1); + intro; + unfold minus in H1; + rewrite > eq_opp_plus_plus_opp_opp in H1; + rewrite > eq_opp_opp_x_x in H1; + rewrite > plus_comm in H1; + apply (or_transitive ? ? R ? 0); + [ assumption + | apply lt_zero_to_le_inv_zero + ] + ] + | simplify; + rewrite > (plus_comm ? y (-y)); + rewrite > opp_inverse; + split; + [ elim daemon + | apply lt_zero_to_le_inv_zero + ] + ] + ]. + elim daemon.*) +qed. + +definition max: ∀R:real.R → R → R. + intros (R x y); + apply (lim R (max_seq R x y)); + apply cauchy_max_seq. +qed. + +definition abs \def λR:real.λx:R. max R x (-x). + +lemma comparison: + ∀R:real.∀f,g:nat→R. is_cauchy_seq ? f → is_cauchy_seq ? g → + (∀n:nat.f n ≤ g n) → lim ? f ? ≤ lim ? g ?. + [ assumption + | assumption + | intros; + elim daemon + ]. +qed. + +definition to_zero ≝ + λR:real.λn. + -(inv R (sum_field R (S n)) + (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n)))). + +axiom is_cauchy_seq_to_zero: ∀R:real. is_cauchy_seq ? (to_zero R). + +lemma technical1: ∀R:real.lim R (to_zero R) (is_cauchy_seq_to_zero R) = 0. + intros; + unfold lim; + elim daemon. +qed. + +lemma abs_x_ge_O: ∀R:real.∀x:R. 0 ≤ abs ? x. + intros; + unfold abs; + unfold max; + rewrite < technical1; + apply comparison; + intros; + unfold to_zero; + unfold max_seq; + elim + (cos_cotransitive R 0 +(inv R (sum_field R (S n)) + (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n)))) (x--x) +(lt_zero_to_le_inv_zero R (S n) + (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n))))); + [ simplify; + (* facile *) + elim daemon + | simplify; + (* facile *) + elim daemon + ]. +qed. diff --git a/helm/software/matita/contribs/dama/dama/attic/rings.ma b/helm/software/matita/contribs/dama/dama/attic/rings.ma new file mode 100644 index 000000000..d4db003dc --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/attic/rings.ma @@ -0,0 +1,103 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "group.ma". + +record is_ring (G:abelian_group) (mult:G→G→G) (one:G) : Prop +≝ + { (* multiplicative monoid properties *) + mult_assoc_: associative ? mult; + one_neutral_left_: left_neutral ? mult one; + one_neutral_right_: right_neutral ? mult one; + (* ring properties *) + mult_plus_distr_left_: distributive_left ? mult (plus G); + mult_plus_distr_right_: distributive_right ? mult (plus G); + not_eq_zero_one_: (0 ≠ one) + }. + +record ring : Type \def + { r_abelian_group:> abelian_group; + mult: r_abelian_group → r_abelian_group → r_abelian_group; + one: r_abelian_group; + r_ring_properties: is_ring r_abelian_group mult one + }. + +theorem mult_assoc: ∀R:ring.associative ? (mult R). + intros; + apply (mult_assoc_ ? ? ? (r_ring_properties R)). +qed. + +theorem one_neutral_left: ∀R:ring.left_neutral ? (mult R) (one R). + intros; + apply (one_neutral_left_ ? ? ? (r_ring_properties R)). +qed. + +theorem one_neutral_right: ∀R:ring.right_neutral ? (mult R) (one R). + intros; + apply (one_neutral_right_ ? ? ? (r_ring_properties R)). +qed. + +theorem mult_plus_distr_left: ∀R:ring.distributive_left ? (mult R) (plus R). + intros; + apply (mult_plus_distr_left_ ? ? ? (r_ring_properties R)). +qed. + +theorem mult_plus_distr_right: ∀R:ring.distributive_right ? (mult R) (plus R). + intros; + apply (mult_plus_distr_right_ ? ? ? (r_ring_properties R)). +qed. + +theorem not_eq_zero_one: ∀R:ring.0 ≠ one R. + intros; + apply (not_eq_zero_one_ ? ? ? (r_ring_properties R)). +qed. + +interpretation "Ring mult" 'times a b = + (cic:/matita/attic/rings/mult.con _ a b). + +notation "1" with precedence 89 +for @{ 'one }. + +interpretation "Ring one" 'one = + (cic:/matita/attic/rings/one.con _). + +lemma eq_mult_zero_x_zero: ∀R:ring.∀x:R.0*x=0. + intros; + generalize in match (zero_neutral R 0); intro; + generalize in match (eq_f ? ? (λy.y*x) ? ? H); intro; clear H; + rewrite > mult_plus_distr_right in H1; + generalize in match (eq_f ? ? (λy.-(0*x)+y) ? ? H1); intro; clear H1; + rewrite < plus_assoc in H; + rewrite > opp_inverse in H; + rewrite > zero_neutral in H; + assumption. +qed. + +lemma eq_mult_x_zero_zero: ∀R:ring.∀x:R.x*0=0. +intros; +generalize in match (zero_neutral R 0); +intro; +generalize in match (eq_f ? ? (λy.x*y) ? ? H); intro; clear H; +(*CSC: qua funzionava prima della patch all'unificazione!*) +rewrite > (mult_plus_distr_left R) in H1; +generalize in match (eq_f ? ? (λy. (-(x*0)) +y) ? ? H1);intro; +clear H1; +rewrite < plus_assoc in H; +rewrite > opp_inverse in H; +rewrite > zero_neutral in H; +assumption. +qed. + diff --git a/helm/software/matita/contribs/dama/dama/attic/vector_spaces.ma b/helm/software/matita/contribs/dama/dama/attic/vector_spaces.ma new file mode 100644 index 000000000..5002b022c --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/attic/vector_spaces.ma @@ -0,0 +1,151 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "attic/reals.ma". + +record is_vector_space (K: field) (G:abelian_group) (emult:K→G→G) : Prop +≝ + { vs_nilpotent: ∀v. emult 0 v = 0; + vs_neutral: ∀v. emult 1 v = v; + vs_distributive: ∀a,b,v. emult (a + b) v = (emult a v) + (emult b v); + vs_associative: ∀a,b,v. emult (a * b) v = emult a (emult b v) + }. + +record vector_space (K:field): Type \def +{ vs_abelian_group :> abelian_group; + emult: K → vs_abelian_group → vs_abelian_group; + vs_vector_space_properties :> is_vector_space ? vs_abelian_group emult +}. + +interpretation "Vector space external product" 'times a b = + (cic:/matita/attic/vector_spaces/emult.con _ _ a b). + +record is_semi_norm (R:real) (V: vector_space R) (semi_norm:V→R) : Prop \def + { sn_positive: ∀x:V. zero R ≤ semi_norm x; + sn_omogeneous: ∀a:R.∀x:V. semi_norm (a*x) = (abs ? a) * semi_norm x; + sn_triangle_inequality: ∀x,y:V. semi_norm (x + y) ≤ semi_norm x + semi_norm y + }. + +theorem eq_semi_norm_zero_zero: + ∀R:real.∀V:vector_space R.∀semi_norm:V→R. + is_semi_norm ? ? semi_norm → + semi_norm 0 = 0. + intros; + (* facile *) + elim daemon. +qed. + +record is_norm (R:real) (V:vector_space R) (norm:V → R) : Prop ≝ + { n_semi_norm:> is_semi_norm ? ? norm; + n_properness: ∀x:V. norm x = 0 → x = 0 + }. + +record norm (R:real) (V:vector_space R) : Type ≝ + { n_function:1> V→R; + n_norm_properties: is_norm ? ? n_function + }. + +record is_semi_distance (R:real) (C:Type) (semi_d: C→C→R) : Prop ≝ + { sd_positive: ∀x,y:C. zero R ≤ semi_d x y; + sd_properness: ∀x:C. semi_d x x = 0; + sd_triangle_inequality: ∀x,y,z:C. semi_d x z ≤ semi_d x y + semi_d z y + }. + +record is_distance (R:real) (C:Type) (d:C→C→R) : Prop ≝ + { d_semi_distance:> is_semi_distance ? ? d; + d_properness: ∀x,y:C. d x y = 0 → x=y + }. + +record distance (R:real) (V:vector_space R) : Type ≝ + { d_function:2> V→V→R; + d_distance_properties: is_distance ? ? d_function + }. + +definition induced_distance_fun ≝ + λR:real.λV:vector_space R.λnorm:norm ? V. + λf,g:V.norm (f - g). + +theorem induced_distance_is_distance: + ∀R:real.∀V:vector_space R.∀norm:norm ? V. + is_distance ? ? (induced_distance_fun ? ? norm). +elim daemon.(* + intros; + apply mk_is_distance; + [ apply mk_is_semi_distance; + [ unfold induced_distance_fun; + intros; + apply sn_positive; + apply n_semi_norm; + apply (n_norm_properties ? ? norm) + | unfold induced_distance_fun; + intros; + unfold minus; + rewrite < plus_comm; + rewrite > opp_inverse; + apply eq_semi_norm_zero_zero; + apply n_semi_norm; + apply (n_norm_properties ? ? norm) + | unfold induced_distance_fun; + intros; + (* ??? *) + elim daemon + ] + | unfold induced_distance_fun; + intros; + generalize in match (n_properness ? ? norm ? ? H); + [ intro; + (* facile *) + elim daemon + | apply (n_norm_properties ? ? norm) + ] + ].*) +qed. + +definition induced_distance ≝ + λR:real.λV:vector_space R.λnorm:norm ? V. + mk_distance ? ? (induced_distance_fun ? ? norm) + (induced_distance_is_distance ? ? norm). + +definition tends_to : + ∀R:real.∀V:vector_space R.∀d:distance ? V.∀f:nat→V.∀l:V.Prop. +apply + (λR:real.λV:vector_space R.λd:distance ? V.λf:nat→V.λl:V. + ∀n:nat.∃m:nat.∀j:nat. m ≤ j → + d (f j) l ≤ inv R (sum_field ? (S n)) ?); + apply not_eq_sum_field_zero; + unfold; + autobatch. +qed. + +definition is_cauchy_seq : ∀R:real.\forall V:vector_space R. +\forall d:distance ? V.∀f:nat→V.Prop. + apply + (λR:real.λV: vector_space R. \lambda d:distance ? V. + \lambda f:nat→V. + ∀m:nat. + ∃n:nat.∀N. n ≤ N → + -(inv R (sum_field ? (S m)) ?) ≤ d (f N) (f n) ∧ + d (f N) (f n)≤ inv R (sum_field R (S m)) ?); + apply not_eq_sum_field_zero; + unfold; + autobatch. +qed. + +definition is_complete ≝ + λR:real.λV:vector_space R. + λd:distance ? V. + ∀f:nat→V. is_cauchy_seq ? ? d f→ + ex V (λl:V. tends_to ? ? d f l). diff --git a/helm/software/matita/contribs/dama/dama/classical_pointfree/ordered_sets.ma b/helm/software/matita/contribs/dama/dama/classical_pointfree/ordered_sets.ma new file mode 100644 index 000000000..2630da77c --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/classical_pointfree/ordered_sets.ma @@ -0,0 +1,424 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "excess.ma". + +record is_dedekind_sigma_complete (O:excess) : Type ≝ + { dsc_inf: ∀a:nat→O.∀m:O. is_lower_bound ? a m → ex ? (λs:O.is_inf O a s); + dsc_inf_proof_irrelevant: + ∀a:nat→O.∀m,m':O.∀p:is_lower_bound ? a m.∀p':is_lower_bound ? a m'. + (match dsc_inf a m p with [ ex_intro s _ ⇒ s ]) = + (match dsc_inf a m' p' with [ ex_intro s' _ ⇒ s' ]); + dsc_sup: ∀a:nat→O.∀m:O. is_upper_bound ? a m → ex ? (λs:O.is_sup O a s); + dsc_sup_proof_irrelevant: + ∀a:nat→O.∀m,m':O.∀p:is_upper_bound ? a m.∀p':is_upper_bound ? a m'. + (match dsc_sup a m p with [ ex_intro s _ ⇒ s ]) = + (match dsc_sup a m' p' with [ ex_intro s' _ ⇒ s' ]) + }. + +record dedekind_sigma_complete_ordered_set : Type ≝ + { dscos_ordered_set:> excess; + dscos_dedekind_sigma_complete_properties:> + is_dedekind_sigma_complete dscos_ordered_set + }. + +definition inf: + ∀O:dedekind_sigma_complete_ordered_set. + bounded_below_sequence O → O. + intros; + elim + (dsc_inf O (dscos_dedekind_sigma_complete_properties O) b); + [ apply a + | apply (lower_bound ? b) + | apply lower_bound_is_lower_bound + ] +qed. + +lemma inf_is_inf: + ∀O:dedekind_sigma_complete_ordered_set. + ∀a:bounded_below_sequence O. + is_inf ? a (inf ? a). + intros; + unfold inf; + simplify; + elim (dsc_inf O (dscos_dedekind_sigma_complete_properties O) a +(lower_bound O a) (lower_bound_is_lower_bound O a)); + simplify; + assumption. +qed. + +lemma inf_proof_irrelevant: + ∀O:dedekind_sigma_complete_ordered_set. + ∀a,a':bounded_below_sequence O. + bbs_seq ? a = bbs_seq ? a' → + inf ? a = inf ? a'. + intros 3; + elim a 0; + elim a'; + simplify in H; + generalize in match i1; + clear i1; + rewrite > H; + intro; + simplify; + rewrite < (dsc_inf_proof_irrelevant O O f (ib_lower_bound ? f i) + (ib_lower_bound ? f i2) (ib_lower_bound_is_lower_bound ? f i) + (ib_lower_bound_is_lower_bound ? f i2)); + reflexivity. +qed. + +definition sup: + ∀O:dedekind_sigma_complete_ordered_set. + bounded_above_sequence O → O. + intros; + elim + (dsc_sup O (dscos_dedekind_sigma_complete_properties O) b); + [ apply a + | apply (upper_bound ? b) + | apply upper_bound_is_upper_bound + ]. +qed. + +lemma sup_is_sup: + ∀O:dedekind_sigma_complete_ordered_set. + ∀a:bounded_above_sequence O. + is_sup ? a (sup ? a). + intros; + unfold sup; + simplify; + elim (dsc_sup O (dscos_dedekind_sigma_complete_properties O) a +(upper_bound O a) (upper_bound_is_upper_bound O a)); + simplify; + assumption. +qed. + +lemma sup_proof_irrelevant: + ∀O:dedekind_sigma_complete_ordered_set. + ∀a,a':bounded_above_sequence O. + bas_seq ? a = bas_seq ? a' → + sup ? a = sup ? a'. + intros 3; + elim a 0; + elim a'; + simplify in H; + generalize in match i1; + clear i1; + rewrite > H; + intro; + simplify; + rewrite < (dsc_sup_proof_irrelevant O O f (ib_upper_bound ? f i2) + (ib_upper_bound ? f i) (ib_upper_bound_is_upper_bound ? f i2) + (ib_upper_bound_is_upper_bound ? f i)); + reflexivity. +qed. + +axiom daemon: False. + +theorem inf_le_sup: + ∀O:dedekind_sigma_complete_ordered_set. + ∀a:bounded_sequence O. inf ? a ≤ sup ? a. + intros (O'); + apply (or_transitive ? ? O' ? (a O)); + [ elim daemon (*apply (inf_lower_bound ? ? ? ? (inf_is_inf ? ? a))*) + | elim daemon (*apply (sup_upper_bound ? ? ? ? (sup_is_sup ? ? a))*) + ]. +qed. + +lemma inf_respects_le: + ∀O:dedekind_sigma_complete_ordered_set. + ∀a:bounded_below_sequence O.∀m:O. + is_upper_bound ? a m → inf ? a ≤ m. + intros (O'); + apply (or_transitive ? ? O' ? (sup ? (mk_bounded_sequence ? a ? ?))); + [ apply (bbs_is_bounded_below ? a) + | apply (mk_is_bounded_above ? ? m H) + | apply inf_le_sup + | apply + (sup_least_upper_bound ? ? ? + (sup_is_sup ? (mk_bounded_sequence O' a a + (mk_is_bounded_above O' a m H)))); + assumption + ]. +qed. + +definition is_sequentially_monotone ≝ + λO:excess.λf:O→O. + ∀a:nat→O.∀p:is_increasing ? a. + is_increasing ? (λi.f (a i)). + +record is_order_continuous + (O:dedekind_sigma_complete_ordered_set) (f:O→O) : Prop +≝ + { ioc_is_sequentially_monotone: is_sequentially_monotone ? f; + ioc_is_upper_bound_f_sup: + ∀a:bounded_above_sequence O. + is_upper_bound ? (λi.f (a i)) (f (sup ? a)); + ioc_respects_sup: + ∀a:bounded_above_sequence O. + is_increasing ? a → + f (sup ? a) = + sup ? (mk_bounded_above_sequence ? (λi.f (a i)) + (mk_is_bounded_above ? ? (f (sup ? a)) + (ioc_is_upper_bound_f_sup a))); + ioc_is_lower_bound_f_inf: + ∀a:bounded_below_sequence O. + is_lower_bound ? (λi.f (a i)) (f (inf ? a)); + ioc_respects_inf: + ∀a:bounded_below_sequence O. + is_decreasing ? a → + f (inf ? a) = + inf ? (mk_bounded_below_sequence ? (λi.f (a i)) + (mk_is_bounded_below ? ? (f (inf ? a)) + (ioc_is_lower_bound_f_inf a))) + }. + +theorem tail_inf_increasing: + ∀O:dedekind_sigma_complete_ordered_set. + ∀a:bounded_below_sequence O. + let y ≝ λi.mk_bounded_below_sequence ? (λj.a (i+j)) ? in + let x ≝ λi.inf ? (y i) in + is_increasing ? x. + [ apply (mk_is_bounded_below ? ? (ib_lower_bound ? a a)); + simplify; + intro; + apply (ib_lower_bound_is_lower_bound ? a a) + | intros; + unfold is_increasing; + intro; + unfold x in ⊢ (? ? ? %); + apply (inf_greatest_lower_bound ? ? ? (inf_is_inf ? (y (S n)))); + change with (is_lower_bound ? (y (S n)) (inf ? (y n))); + unfold is_lower_bound; + intro; + generalize in match (inf_lower_bound ? ? ? (inf_is_inf ? (y n)) (S n1)); + (*CSC: coercion per FunClass inserita a mano*) + suppose (inf ? (y n) ≤ bbs_seq ? (y n) (S n1)) (H); + cut (bbs_seq ? (y n) (S n1) = bbs_seq ? (y (S n)) n1); + [ rewrite < Hcut; + assumption + | unfold y; + simplify; + autobatch paramodulation library + ] + ]. +qed. + +definition is_liminf: + ∀O:dedekind_sigma_complete_ordered_set. + bounded_below_sequence O → O → Prop. + intros; + apply + (is_sup ? (λi.inf ? (mk_bounded_below_sequence ? (λj.b (i+j)) ?)) t); + apply (mk_is_bounded_below ? ? (ib_lower_bound ? b b)); + simplify; + intros; + apply (ib_lower_bound_is_lower_bound ? b b). +qed. + +definition liminf: + ∀O:dedekind_sigma_complete_ordered_set. + bounded_sequence O → O. + intros; + apply + (sup ? + (mk_bounded_above_sequence ? + (λi.inf ? + (mk_bounded_below_sequence ? + (λj.b (i+j)) ?)) ?)); + [ apply (mk_is_bounded_below ? ? (ib_lower_bound ? b b)); + simplify; + intros; + apply (ib_lower_bound_is_lower_bound ? b b) + | apply (mk_is_bounded_above ? ? (ib_upper_bound ? b b)); + unfold is_upper_bound; + intro; + change with + (inf O + (mk_bounded_below_sequence O (\lambda j:nat.b (n+j)) + (mk_is_bounded_below O (\lambda j:nat.b (n+j)) (ib_lower_bound O b b) + (\lambda j:nat.ib_lower_bound_is_lower_bound O b b (n+j)))) +\leq ib_upper_bound O b b); + apply (inf_respects_le O); + simplify; + intro; + apply (ib_upper_bound_is_upper_bound ? b b) + ]. +qed. + + +definition reverse_dedekind_sigma_complete_ordered_set: + dedekind_sigma_complete_ordered_set → dedekind_sigma_complete_ordered_set. + intros; + apply mk_dedekind_sigma_complete_ordered_set; + [ apply (reverse_ordered_set d) + | elim daemon + (*apply mk_is_dedekind_sigma_complete; + [ intros; + elim (dsc_sup ? ? d a m) 0; + [ generalize in match H; clear H; + generalize in match m; clear m; + elim d; + simplify in a1; + simplify; + change in a1 with (Type_OF_ordered_set ? (reverse_ordered_set ? o)); + apply (ex_intro ? ? a1); + simplify in H1; + change in m with (Type_OF_ordered_set ? o); + apply (is_sup_to_reverse_is_inf ? ? ? ? H1) + | generalize in match H; clear H; + generalize in match m; clear m; + elim d; + simplify; + change in t with (Type_OF_ordered_set ? o); + simplify in t; + apply reverse_is_lower_bound_is_upper_bound; + assumption + ] + | apply is_sup_reverse_is_inf; + | apply m + | + ]*) + ]. +qed. + +definition reverse_bounded_sequence: + ∀O:dedekind_sigma_complete_ordered_set. + bounded_sequence O → + bounded_sequence (reverse_dedekind_sigma_complete_ordered_set O). + intros; + apply mk_bounded_sequence; + [ apply bs_seq; + unfold reverse_dedekind_sigma_complete_ordered_set; + simplify; + elim daemon + | elim daemon + | elim daemon + ]. +qed. + +definition limsup ≝ + λO:dedekind_sigma_complete_ordered_set. + λa:bounded_sequence O. + liminf (reverse_dedekind_sigma_complete_ordered_set O) + (reverse_bounded_sequence O a). + +notation "hvbox(〈a〉)" + non associative with precedence 45 +for @{ 'hide_everything_but $a }. + +interpretation "mk_bounded_above_sequence" 'hide_everything_but a += (cic:/matita/classical_pointfree/ordered_sets/bounded_above_sequence.ind#xpointer(1/1/1) _ _ a _). + +interpretation "mk_bounded_below_sequence" 'hide_everything_but a += (cic:/matita/classical_pointfree/ordered_sets/bounded_below_sequence.ind#xpointer(1/1/1) _ _ a _). + +theorem eq_f_sup_sup_f: + ∀O':dedekind_sigma_complete_ordered_set. + ∀f:O'→O'. ∀H:is_order_continuous ? f. + ∀a:bounded_above_sequence O'. + ∀p:is_increasing ? a. + f (sup ? a) = sup ? (mk_bounded_above_sequence ? (λi.f (a i)) ?). + [ apply (mk_is_bounded_above ? ? (f (sup ? a))); + apply ioc_is_upper_bound_f_sup; + assumption + | intros; + apply ioc_respects_sup; + assumption + ]. +qed. + +theorem eq_f_sup_sup_f': + ∀O':dedekind_sigma_complete_ordered_set. + ∀f:O'→O'. ∀H:is_order_continuous ? f. + ∀a:bounded_above_sequence O'. + ∀p:is_increasing ? a. + ∀p':is_bounded_above ? (λi.f (a i)). + f (sup ? a) = sup ? (mk_bounded_above_sequence ? (λi.f (a i)) p'). + intros; + rewrite > (eq_f_sup_sup_f ? f H a H1); + apply sup_proof_irrelevant; + reflexivity. +qed. + +theorem eq_f_liminf_sup_f_inf: + ∀O':dedekind_sigma_complete_ordered_set. + ∀f:O'→O'. ∀H:is_order_continuous ? f. + ∀a:bounded_sequence O'. + let p1 := ? in + f (liminf ? a) = + sup ? + (mk_bounded_above_sequence ? + (λi.f (inf ? + (mk_bounded_below_sequence ? + (λj.a (i+j)) + ?))) + p1). + [ apply (mk_is_bounded_below ? ? (ib_lower_bound ? a a)); + simplify; + intro; + apply (ib_lower_bound_is_lower_bound ? a a) + | apply (mk_is_bounded_above ? ? (f (sup ? a))); + unfold is_upper_bound; + intro; + apply (or_transitive ? ? O' ? (f (a n))); + [ generalize in match (ioc_is_lower_bound_f_inf ? ? H); + intro H1; + simplify in H1; + rewrite > (plus_n_O n) in ⊢ (? ? ? (? (? ? ? %))); + apply (H1 (mk_bounded_below_sequence O' (\lambda j:nat.a (n+j)) +(mk_is_bounded_below O' (\lambda j:nat.a (n+j)) (ib_lower_bound O' a a) + (\lambda j:nat.ib_lower_bound_is_lower_bound O' a a (n+j)))) O); + | elim daemon (*apply (ioc_is_upper_bound_f_sup ? ? ? H)*) + ] + | intros; + unfold liminf; + clearbody p1; + generalize in match (\lambda n:nat +.inf_respects_le O' + (mk_bounded_below_sequence O' (\lambda j:nat.a (plus n j)) + (mk_is_bounded_below O' (\lambda j:nat.a (plus n j)) + (ib_lower_bound O' a a) + (\lambda j:nat.ib_lower_bound_is_lower_bound O' a a (plus n j)))) + (ib_upper_bound O' a a) + (\lambda n1:nat.ib_upper_bound_is_upper_bound O' a a (plus n n1))); + intro p2; + apply (eq_f_sup_sup_f' ? f H (mk_bounded_above_sequence O' +(\lambda i:nat + .inf O' + (mk_bounded_below_sequence O' (\lambda j:nat.a (plus i j)) + (mk_is_bounded_below O' (\lambda j:nat.a (plus i j)) + (ib_lower_bound O' a a) + (\lambda n:nat.ib_lower_bound_is_lower_bound O' a a (plus i n))))) +(mk_is_bounded_above O' + (\lambda i:nat + .inf O' + (mk_bounded_below_sequence O' (\lambda j:nat.a (plus i j)) + (mk_is_bounded_below O' (\lambda j:nat.a (plus i j)) + (ib_lower_bound O' a a) + (\lambda n:nat.ib_lower_bound_is_lower_bound O' a a (plus i n))))) + (ib_upper_bound O' a a) p2))); + unfold bas_seq; + change with + (is_increasing ? (\lambda i:nat +.inf O' + (mk_bounded_below_sequence O' (\lambda j:nat.a (plus i j)) + (mk_is_bounded_below O' (\lambda j:nat.a (plus i j)) + (ib_lower_bound O' a a) + (\lambda n:nat.ib_lower_bound_is_lower_bound O' a a (plus i n)))))); + apply tail_inf_increasing + ]. +qed. + diff --git a/helm/software/matita/contribs/dama/dama/classical_pointfree/ordered_sets2.ma b/helm/software/matita/contribs/dama/dama/classical_pointfree/ordered_sets2.ma new file mode 100644 index 000000000..7e74cbba2 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/classical_pointfree/ordered_sets2.ma @@ -0,0 +1,127 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "classical_pointfree/ordered_sets.ma". + +theorem le_f_inf_inf_f: + ∀O':dedekind_sigma_complete_ordered_set. + ∀f:O'→O'. ∀H:is_order_continuous ? f. + ∀a:bounded_below_sequence O'. + let p := ? in + f (inf ? a) ≤ inf ? (mk_bounded_below_sequence ? (λi. f (a i)) p). + [ apply mk_is_bounded_below; + [2: apply ioc_is_lower_bound_f_inf; + assumption + | skip + ] + | intros; + clearbody p; + apply (inf_greatest_lower_bound ? ? ? (inf_is_inf ? ?)); + simplify; + intro; + letin b := (λi.match i with [ O ⇒ inf ? a | S _ ⇒ a n]); + change with (f (b O) ≤ f (b (S O))); + apply (ioc_is_sequentially_monotone ? ? H); + simplify; + clear b; + intro; + elim n1; simplify; + [ apply (inf_lower_bound ? ? ? (inf_is_inf ? ?)); + | apply (or_reflexive O' ? (dscos_ordered_set O')) + ] + ]. +qed. + +theorem le_to_le_sup_sup: + ∀O':dedekind_sigma_complete_ordered_set. + ∀a,b:bounded_above_sequence O'. + (∀i.a i ≤ b i) → sup ? a ≤ sup ? b. + intros; + apply (sup_least_upper_bound ? ? ? (sup_is_sup ? a)); + unfold; + intro; + apply (or_transitive ? ? O'); + [2: apply H + | skip + | apply (sup_upper_bound ? ? ? (sup_is_sup ? b)) + ]. +qed. + +interpretation "mk_bounded_sequence" 'hide_everything_but a += (cic:/matita/classical_pointfree/ordered_sets/bounded_sequence.ind#xpointer(1/1/1) _ _ a _ _). + +lemma reduce_bas_seq: + ∀O:ordered_set.∀a:nat→O.∀p.∀i. + bas_seq ? (mk_bounded_above_sequence ? a p) i = a i. + intros; + reflexivity. +qed. + +(*lemma reduce_bbs_seq: + ∀C.∀O:ordered_set C.∀a:nat→O.∀p.∀i. + bbs_seq ? ? (mk_bounded_below_sequence ? ? a p) i = a i. + intros; + reflexivity. +qed.*) + +axiom inf_extensional: + ∀O:dedekind_sigma_complete_ordered_set. + ∀a,b:bounded_below_sequence O. + (∀i.a i = b i) → inf ? a = inf O b. + +lemma eq_to_le: ∀O:ordered_set.∀x,y:O.x=y → x ≤ y. + intros; + rewrite > H; + apply (or_reflexive ? ? O). +qed. + +theorem fatou: + ∀O':dedekind_sigma_complete_ordered_set. + ∀f:O'→O'. ∀H:is_order_continuous ? f. + ∀a:bounded_sequence O'. + let pb := ? in + let pa := ? in + f (liminf ? a) ≤ liminf ? (mk_bounded_sequence ? (λi. f (a i)) pb pa). + [ letin bas ≝ (bounded_above_sequence_of_bounded_sequence ? a); + apply mk_is_bounded_above; + [2: apply (ioc_is_upper_bound_f_sup ? ? H bas) + | skip + ] + | letin bbs ≝ (bounded_below_sequence_of_bounded_sequence ? a); + apply mk_is_bounded_below; + [2: apply (ioc_is_lower_bound_f_inf ? ? H bbs) + | skip + ] + | intros; + rewrite > eq_f_liminf_sup_f_inf in ⊢ (? ? % ?); + [ unfold liminf; + apply le_to_le_sup_sup; + intro; + rewrite > reduce_bas_seq; + rewrite > reduce_bas_seq; + apply (or_transitive ? ? O'); + [2: apply le_f_inf_inf_f; + assumption + | skip + | apply eq_to_le; + apply inf_extensional; + intro; + reflexivity + ] + | assumption + ] + ]. +qed. diff --git a/helm/software/matita/contribs/dama/dama/classical_pointwise/sets.ma b/helm/software/matita/contribs/dama/dama/classical_pointwise/sets.ma new file mode 100644 index 000000000..f03c3e7f2 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/classical_pointwise/sets.ma @@ -0,0 +1,104 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "nat/nat.ma". +include "logic/connectives.ma". + + +definition set ≝ λX:Type.X → Prop. + +definition member_of : ∀X.set X → X → Prop≝ λX.λA:set X.λx.A x. + +notation "hvbox(x break ∈ A)" with precedence 60 +for @{ 'member_of $x $A }. + +interpretation "Member of" 'member_of x A = + (cic:/matita/classical_pointwise/sets/member_of.con _ A x). + +notation "hvbox(x break ∉ A)" with precedence 60 +for @{ 'not_member_of $x $A }. + +interpretation "Not member of" 'not_member_of x A = + (cic:/matita/logic/connectives/Not.con + (cic:/matita/classical_pointwise/sets/member_of.con _ A x)). + +definition emptyset : ∀X.set X ≝ λX:Type.λx:X.False. + +notation "∅︀" with precedence 100 for @{ 'emptyset }. + +interpretation "Emptyset" 'emptyset = + (cic:/matita/classical_pointwise/sets/emptyset.con _). + +definition subset: ∀X. set X → set X → Prop≝ λX.λA,B:set X.∀x. x ∈ A → x ∈ B. + +notation "hvbox(A break ⊆ B)" with precedence 60 +for @{ 'subset $A $B }. + +interpretation "Subset" 'subset A B = + (cic:/matita/classical_pointwise/sets/subset.con _ A B). + +definition intersection: ∀X. set X → set X → set X ≝ + λX.λA,B:set X.λx. x ∈ A ∧ x ∈ B. + +notation "hvbox(A break ∩ B)" with precedence 70 +for @{ 'intersection $A $B }. + +interpretation "Intersection" 'intersection A B = + (cic:/matita/classical_pointwise/sets/intersection.con _ A B). + +definition union: ∀X. set X → set X → set X ≝ λX.λA,B:set X.λx. x ∈ A ∨ x ∈ B. + +notation "hvbox(A break ∪ B)" with precedence 65 +for @{ 'union $A $B }. + +interpretation "Union" 'union A B = + (cic:/matita/classical_pointwise/sets/union.con _ A B). + +definition seq ≝ λX:Type.nat → X. + +definition nth ≝ λX.λA:seq X.λi.A i. + +notation "hvbox(A \sub i)" with precedence 100 +for @{ 'nth $A $i }. + +interpretation "nth" 'nth A i = + (cic:/matita/classical_pointwise/sets/nth.con _ A i). + +definition countable_union: ∀X. seq (set X) → set X ≝ + λX.λA:seq (set X).λx.∃j.x ∈ A \sub j. + +notation "∪ \sub (ident i opt (: ty)) B" with precedence 65 +for @{ 'big_union ${default @{(λ${ident i}:$ty.$B)} @{(λ${ident i}.$B)}}}. + +interpretation "countable_union" 'big_union η.t = + (cic:/matita/classical_pointwise/sets/countable_union.con _ t). + +definition complement: ∀X. set X \to set X ≝ λX.λA:set X.λx. x ∉ A. + +notation "A \sup 'c'" with precedence 100 +for @{ 'complement $A }. + +interpretation "Complement" 'complement A = + (cic:/matita/classical_pointwise/sets/complement.con _ A). + +definition inverse_image: ∀X,Y.∀f: X → Y.set Y → set X ≝ + λX,Y,f,B,x. f x ∈ B. + +notation "hvbox(f \sup (-1))" with precedence 100 +for @{ 'finverse $f }. + +interpretation "Inverse image" 'finverse f = + (cic:/matita/classical_pointwise/sets/inverse_image.con _ _ f). diff --git a/helm/software/matita/contribs/dama/dama/classical_pointwise/sigma_algebra.ma b/helm/software/matita/contribs/dama/dama/classical_pointwise/sigma_algebra.ma new file mode 100644 index 000000000..580fe9645 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/classical_pointwise/sigma_algebra.ma @@ -0,0 +1,40 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "classical_pointwise/topology.ma". + +record is_sigma_algebra (X:Type) (A: set X) (M: set (set X)) : Prop ≝ + { siga_subset: ∀B.B ∈ M → B ⊆ A; + siga_full: A ∈ M; + siga_compl: ∀B.B ∈ M → B \sup c ∈ M; + siga_enumerable_union: + ∀B:seq (set X).(∀i.(B \sub i) ∈ M) → (∪ \sub i B \sub i) ∈ M + }. + +record sigma_algebra : Type ≝ + { siga_carrier:> Type; + siga_domain:> set siga_carrier; + M: set (set siga_carrier); + siga_is_sigma_algebra:> is_sigma_algebra ? siga_domain M + }. + +(*definition is_measurable_map ≝ + λX:sigma_algebra.λY:topological_space.λf:X → Y. + ∀V. V ∈ O Y → f \sup -1 V ∈ M X.*) +definition is_measurable_map ≝ + λX:sigma_algebra.λY:topological_space.λf:X → Y. + ∀V. V ∈ O Y → inverse_image ? ? f V ∈ M X. + diff --git a/helm/software/matita/contribs/dama/dama/classical_pointwise/topology.ma b/helm/software/matita/contribs/dama/dama/classical_pointwise/topology.ma new file mode 100644 index 000000000..72c9dbb4d --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/classical_pointwise/topology.ma @@ -0,0 +1,45 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "classical_pointwise/sets.ma". + +record is_topology (X) (A: set X) (O: set (set X)) : Prop ≝ + { top_subset: ∀B. B ∈ O → B ⊆ A; + top_empty: ∅︀ ∈ O; + top_full: A ∈ O; + top_intersection: ∀B,C. B ∈ O → C ∈ O → B ∩ C ∈ O; + top_countable_union: + ∀B.(∀i.(B \sub i) ∈ O) → (∪ \sub i (B \sub i)) ∈ O + }. + +record topological_space : Type ≝ + { top_carrier:> Type; + top_domain:> set top_carrier; + O: set (set top_carrier); + top_is_topological_space:> is_topology ? top_domain O + }. + +(*definition is_continuous_map ≝ + λX,Y: topological_space.λf: X → Y. + ∀V. V ∈ O Y → (f \sup -1) V ∈ O X.*) +definition is_continuous_map ≝ + λX,Y: topological_space.λf: X → Y. + ∀V. V ∈ O Y → inverse_image ? ? f V ∈ O X. + +record continuous_map (X,Y: topological_space) : Type ≝ + { cm_f:> X → Y; + cm_is_continuous_map: is_continuous_map ? ? cm_f + }. diff --git a/helm/software/matita/contribs/dama/dama/constructive_connectives.ma b/helm/software/matita/contribs/dama/dama/constructive_connectives.ma new file mode 100644 index 000000000..78e2ec571 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/constructive_connectives.ma @@ -0,0 +1,53 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "logic/connectives.ma". + +inductive Or (A,B:Type) : Type ≝ + Left : A → Or A B + | Right : B → Or A B. + +interpretation "constructive or" 'or x y = + (cic:/matita/constructive_connectives/Or.ind#xpointer(1/1) x y). + +inductive And (A,B:Type) : Type ≝ + | Conj : A → B → And A B. + +interpretation "constructive and" 'and x y = + (cic:/matita/constructive_connectives/And.ind#xpointer(1/1) x y). + +inductive exT (A:Type) (P:A→Type) : Type ≝ + ex_introT: ∀w:A. P w → exT A P. + +inductive ex (A:Type) (P:A→Prop) : Type ≝ + ex_intro: ∀w:A. P w → ex A P. + +(* +notation < "hvbox(Σ ident i opt (: ty) break . p)" + right associative with precedence 20 +for @{ 'sigma ${default + @{\lambda ${ident i} : $ty. $p)} + @{\lambda ${ident i} . $p}}}. +*) + +interpretation "constructive exists" 'exists \eta.x = + (cic:/matita/constructive_connectives/ex.ind#xpointer(1/1) _ x). +interpretation "constructive exists (Type)" 'exists \eta.x = + (cic:/matita/constructive_connectives/exT.ind#xpointer(1/1) _ x). + +alias id "False" = "cic:/matita/logic/connectives/False.ind#xpointer(1/1)". +definition Not ≝ λx:Type.x → False. + +interpretation "constructive not" 'not x = + (cic:/matita/constructive_connectives/Not.con x). diff --git a/helm/software/matita/contribs/dama/dama/constructive_higher_order_relations.ma b/helm/software/matita/contribs/dama/dama/constructive_higher_order_relations.ma new file mode 100644 index 000000000..8d195396c --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/constructive_higher_order_relations.ma @@ -0,0 +1,51 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "constructive_connectives.ma". +include "higher_order_defs/relations.ma". + +definition cotransitive ≝ + λC:Type.λlt:C→C→Type.∀x,y,z:C. lt x y → lt x z ∨ lt z y. + +definition coreflexive ≝ λC:Type.λlt:C→C→Type. ∀x:C. ¬ (lt x x). + +definition antisymmetric ≝ + λC:Type.λle:C→C→Type.λeq:C→C→Type.∀x,y:C.le x y → le y x → eq x y. + +definition symmetric ≝ + λC:Type.λle:C→C→Type.∀x,y:C.le x y → le y x. + +definition transitive ≝ + λC:Type.λle:C→C→Type.∀x,y,z:C.le x y → le y z → le x z. + +definition associative ≝ + λC:Type.λop:C→C→C.λeq:C→C→Type.∀x,y,z. eq (op x (op y z)) (op (op x y) z). + +definition commutative ≝ + λC:Type.λop:C→C→C.λeq:C→C→Type.∀x,y. eq (op x y) (op y x). + +alias id "antisymmetric" = "cic:/matita/higher_order_defs/relations/antisymmetric.con". +theorem antisimmetric_to_cotransitive_to_transitive: + ∀C:Type.∀le:C→C→Prop. antisymmetric ? le → cotransitive ? le → transitive ? le. +intros (T f Af cT); unfold transitive; intros (x y z fxy fyz); +lapply (cT ??z fxy) as H; cases H; [assumption] cases (Af ? ? fyz H1); +qed. + +lemma Or_symmetric: symmetric ? Or. +unfold; intros (x y H); cases H; [right|left] assumption; +qed. + + diff --git a/helm/software/matita/contribs/dama/dama/constructive_pointfree/lebesgue.ma b/helm/software/matita/contribs/dama/dama/constructive_pointfree/lebesgue.ma new file mode 100644 index 000000000..c7e5d7c5d --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/constructive_pointfree/lebesgue.ma @@ -0,0 +1,31 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "metric_lattice.ma". +include "sequence.ma". +include "constructive_connectives.ma". + +(* Section 3.2 *) + +(* 3.21 *) + + +(* 3.17 *) + + +(* 3.20 *) +lemma uniq_sup: ∀O:ogroup.∀s:sequence O.∀x,y:O. is_sup ? s x → is_sup ? s y → x ≈ y. +intros; \ No newline at end of file diff --git a/helm/software/matita/contribs/dama/dama/depends b/helm/software/matita/contribs/dama/dama/depends new file mode 100644 index 000000000..dcbfcc6f0 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/depends @@ -0,0 +1,38 @@ +metric_lattice.ma excess.ma lattice.ma metric_space.ma +metric_space.ma ordered_divisible_group.ma +sandwich.ma metric_lattice.ma nat/orders.ma nat/plus.ma tend.ma +premetric_lattice.ma lattice.ma metric_space.ma +ordered_group.ma group.ma +divisible_group.ma group.ma nat/orders.ma +ordered_divisible_group.ma divisible_group.ma nat/orders.ma nat/times.ma ordered_group.ma +sequence.ma excess.ma +constructive_connectives.ma logic/connectives.ma +group.ma excess.ma +prevalued_lattice.ma ordered_group.ma +excess.ma constructive_connectives.ma constructive_higher_order_relations.ma higher_order_defs/relations.ma nat/plus.ma +sandwich_corollary.ma sandwich.ma +Q_is_orded_divisble_group.ma Q/q.ma ordered_divisible_group.ma +limit.ma excess.ma infsup.ma metric_lattice.ma tend.ma +lattice.ma excess.ma +tend.ma metric_space.ma nat/orders.ma sequence.ma +constructive_higher_order_relations.ma constructive_connectives.ma higher_order_defs/relations.ma +infsup.ma excess.ma sequence.ma +constructive_pointfree/lebesgue.ma constructive_connectives.ma metric_lattice.ma sequence.ma +classical_pointwise/topology.ma classical_pointwise/sets.ma +classical_pointwise/sigma_algebra.ma classical_pointwise/topology.ma +classical_pointwise/sets.ma logic/connectives.ma nat/nat.ma +classical_pointfree/ordered_sets.ma excess.ma +classical_pointfree/ordered_sets2.ma classical_pointfree/ordered_sets.ma +attic/fields.ma attic/rings.ma +attic/reals.ma attic/ordered_fields_ch0.ma +attic/integration_algebras.ma attic/vector_spaces.ma lattice.ma +attic/vector_spaces.ma attic/reals.ma +attic/rings.ma group.ma +attic/ordered_fields_ch0.ma group.ma attic/fields.ma ordered_group.ma +Q/q.ma +higher_order_defs/relations.ma +logic/connectives.ma +nat/nat.ma +nat/orders.ma +nat/plus.ma +nat/times.ma diff --git a/helm/software/matita/contribs/dama/dama/divisible_group.ma b/helm/software/matita/contribs/dama/dama/divisible_group.ma new file mode 100644 index 000000000..3a79b11bb --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/divisible_group.ma @@ -0,0 +1,99 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "nat/orders.ma". +include "group.ma". + +let rec gpow (G : abelian_group) (x : G) (n : nat) on n : G ≝ + match n with [ O ⇒ 0 | S m ⇒ x + gpow ? x m]. + +interpretation "additive abelian group pow" 'times n x = + (cic:/matita/divisible_group/gpow.con _ x n). + +record dgroup : Type ≝ { + dg_carr:> abelian_group; + dg_prop: ∀x:dg_carr.∀n:nat.∃y.S n * y ≈ x +}. + +lemma divide: ∀G:dgroup.G → nat → G. +intros (G x n); cases (dg_prop G x n); apply w; +qed. + +interpretation "divisible group divide" 'divide x n = + (cic:/matita/divisible_group/divide.con _ x n). + +lemma divide_divides: + ∀G:dgroup.∀x:G.∀n. S n * (x / n) ≈ x. +intro G; cases G; unfold divide; intros (x n); simplify; +cases (f x n); simplify; exact H; +qed. + +lemma feq_mul: ∀G:dgroup.∀x,y:G.∀n.x≈y → n * x ≈ n * y. +intros (G x y n H); elim n; [apply eq_reflexive] +simplify; apply (Eq≈ (x + (n1 * y)) H1); +apply (Eq≈ (y+n1*y) H (eq_reflexive ??)); +qed. + +lemma div1: ∀G:dgroup.∀x:G.x/O ≈ x. +intro G; cases G; unfold divide; intros; simplify; +cases (f x O); simplify; simplify in H; intro; apply H; +apply (Ap≪ ? (plus_comm ???)); +apply (Ap≪ w (zero_neutral ??)); assumption; +qed. + +lemma apmul_ap: ∀G:dgroup.∀x,y:G.∀n.S n * x # S n * y → x # y. +intros 4 (G x y n); elim n; [2: + simplify in a; + cases (applus ????? a); [assumption] + apply f; assumption;] +apply (plus_cancr_ap ??? 0); assumption; +qed. + +lemma plusmul: ∀G:dgroup.∀x,y:G.∀n.n * (x+y) ≈ n * x + n * y. +intros (G x y n); elim n; [ + simplify; apply (Eq≈ 0 ? (zero_neutral ? 0)); apply eq_reflexive] +simplify; apply eq_sym; apply (Eq≈ (x+y+(n1*x+n1*y))); [ + apply (Eq≈ (x+(n1*x+(y+(n1*y))))); [ + apply eq_sym; apply plus_assoc;] + apply (Eq≈ (x+((n1*x+y+(n1*y))))); [ + apply feq_plusl; apply plus_assoc;] + apply (Eq≈ (x+(y+n1*x+n1*y))); [ + apply feq_plusl; apply feq_plusr; apply plus_comm;] + apply (Eq≈ (x+(y+(n1*x+n1*y)))); [ + apply feq_plusl; apply eq_sym; apply plus_assoc;] + apply plus_assoc;] +apply feq_plusl; apply eq_sym; assumption; +qed. + +lemma mulzero: ∀G:dgroup.∀n.n*0 ≈ 0. [2: apply dg_carr; apply G] +intros; elim n; [simplify; apply eq_reflexive] +simplify; apply (Eq≈ ? (zero_neutral ??)); assumption; +qed. + +let rec gpowS (G : abelian_group) (x : G) (n : nat) on n : G ≝ + match n with [ O ⇒ x | S m ⇒ gpowS ? x m + x]. + +lemma gpowS_gpow: ∀G:dgroup.∀e:G.∀n. S n * e ≈ gpowS ? e n. +intros (G e n); elim n; simplify; [ + apply (Eq≈ ? (plus_comm ???));apply zero_neutral] +apply (Eq≈ ?? (plus_comm ???)); +apply (Eq≈ (e+S n1*e) ? H); clear H; simplify; apply eq_reflexive; +qed. + +lemma divpow: ∀G:dgroup.∀e:G.∀n. e ≈ gpowS ? (e/n) n. +intros (G e n); apply (Eq≈ ?? (gpowS_gpow ?(e/n) n)); +apply eq_sym; apply divide_divides; +qed. diff --git a/helm/software/matita/contribs/dama/dama/doc/DIMOSTRAZIONE b/helm/software/matita/contribs/dama/dama/doc/DIMOSTRAZIONE new file mode 100644 index 000000000..197c3ff97 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/doc/DIMOSTRAZIONE @@ -0,0 +1,126 @@ +############### Costruttivizzazione di Fremlin ###################### + +Prerequisiti: + 1. definizione di exceeds + 2. definizione di <= in termini di < (sui reali) + 2. definizione di sup forte (sui reali) + +======================================== + +Lemma: liminf f a_n <= limsup f a_n +Per definizione di <= dobbiamo dimostrare: + ~(limsup f a_n < liminf f a_n) +Supponiamo limsup f a_n < liminf f a_n. +Ovvero inf_n sup_{k>n} f a_k < sup_m inf_{h>m} f a_h +? Quindi esiste un l tale che + inf_n sup_{k>n} f a_k + l/2 = sup_m inf_{h>m} f a_h - l/2 +? Per definizione di inf forte abbiamo + esiste un n' tale che + sup_{k>n'} f a_k < inf_n sup_{k>n} + l + = sup_m inf_{h>m} f a_h - l/2 +? Per definizione di sup forte abbiamo + esiste un n'' tale che + sup_{k>n'} f a_k < sup_m inf_{h>m} f a_h - l/2 < inf_{h>n''} f a_k + Sia N il max tra n' e n''. Allora: + sup_{k>N} f a_k < sup_{k>n'} f a_k < inf_{h>n''} f a_k < inf_{h>N} f a_k + Assurdo per lemma precedente. +Qed. + +======================================= + +Lebesgue costruttivo: + a_n bounded da b ovvero \forall n, a_n < b + f strongly monotone ovvero f x < f y => y -<= x + liminf f a_n # limsup f a_n => liminf a_n < (o #) limsup a_n +Dimostrazione: + per ipotesi + liminf f a_n # limsup f a_n + quindi + liminf f a_n > limsup f a_n \/ liminf f a_n < limsup f a_n. + per casi: + Caso 1: + Usiamo il lemma liminf f a_n <= limsup f a_n => assurdo + Caso 2: + Usiamo Fatou e Fatou rovesciato: + f (liminf a_n) <= liminf (f a_n) (per fatou) + < limsup (f a_n) (per ipotesi) + <= f (limsup a_n) (per fatou rovesciato) + Per monotonia forte della f otteniamo: + limsup a_n -<= liminf a_n + (Da cui: + liminf a_n # limsup a_n) +Qed. + +############### Costruttivizzazione di Weber-Zoli ###################### + +Prerequisiti: + 1. does_not_approach_zero x_n = + \exists delta. \exists sottosuccessione j. + \forall n. x_(j n) > delta + 2. does_not_have_sup = ??? (vedi prerequisito ????? sotto da soddisfare) + 3. sigma_and_esaustiva su [a,b] x_n = + d(a_n,x) does_not_approach_zero => a_n does_not_have_sup x + ????? inf x_i does_not_have_sup x => liminf x_i # x + +======================================= + +Sviluppi futuri: + Spezzare sigma_and_esaustiva in sigma + esaustiva o qualcosa del + genere. Probabilmente sigma diventa + d(a,a_1) ~<= \bigsum_{i=n}^\infty d(a_n,a_{n+1}) => + a_n does_not_have_sup a + La prova del lemma 5 in versione positiva e' ancora da fare. + L'esaustivita' deve essere rimpiazzata da un concetto tipo located. + +======================================= + +Due carabinieri: + a_n <= x_n <= b_n + d(x_n,x) does_not_approach_zero => + d(a_n,x) does_not_approach_zero \/ + d(b_n,x) does_not_approach_zero +Dimostrazione: + Per ipotesi esiste un \delta e una sottosuccessione y tale che + \delta < d(y_n,x) + <= d(y_n,a_n) + d(a_n,x) + <= d(b_n,a_n) + d(a_n,x) + <= d(b_n,x) + 2d(a_n,x) + We conclude (?????? costruttivamente vero per > 0 e vero classicamente) + d(b_n,x) > \delta/4 \/ d(a_n,x) > \delta/4 + and thus + d(a_n,x) does_not_approach_zero \/ + d(b_n,x) does_not_approach_zero +Qed. + +======================================= + +Lebsegue costruttivo: + x_n in [a,b], a_n <= x_n <= b_n per ogni n + d sigma_and_esaustiva su [a,b]; + d(x_n,liminf x_n) does_not_approach_zero \/ + d(x_n,limsup x_n) does_not_approach_zero => + liminf x_n # limsup x_n (possiamo concludere che eccede? forse no) +Dimostrazione: + Fissiamo un x tale che d(x_n,x) does_not_approach_zero. + Per ipotesi d(x_n,x) does_not_approach_zero + Siano a_n := inf_{i>=n} x_i e b_n := sup_{i>=n} x_i. + Per i due carabinieri: + d(a_n,x) does_not_approach_zero \/ d(b_n,x) does_not_approach_zero + Per definizione di sigma_and_esaustiva su [a,b] + a_n does_not_have_sup x \/ b_n does_not_have_inf x + Quindi, per definizione di liminf e limsup e per ????????? + liminf x_n # x \/ limsup x_n # x + Facendo discharging di x concludiamo + \forall x t.c. d(x_n,x) does_not_approach zero, + liminf x_n # x \/ limsup x_n # x + Per ipotesi possiamo istanziare x con liminf x_n oppure con + limsup x_n. + Nel primo caso otteniamo + liminf x_n # liminf x_n \/ limsup x_n # liminf x_n + Poiche' la prima ipotesi e' falsa concludiamo + limsup x_n # liminf x_n + Nel secondo caso otteniamo + liminf x_n # limsup x_n \/ limsup x_n # limsup x_n \/ + Poiche' la seconda ipotesi e' falsa concludiamo anche in questo caso + limsup x_n # liminf x_n +Qed. diff --git a/helm/software/matita/contribs/dama/dama/doc/NotaReticoli.pdf b/helm/software/matita/contribs/dama/dama/doc/NotaReticoli.pdf new file mode 100644 index 000000000..76a6842e9 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/doc/NotaReticoli.pdf @@ -0,0 +1,3078 @@ +%PDF-1.2 +7 0 obj +<< +/Type/Encoding +/Differences[33/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi +173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis +255/dieresis] +>> +endobj +10 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F1 +/FontDescriptor 9 0 R +/BaseFont/NGVWLS+CMBX12 +/FirstChar 33 +/LastChar 196 +/Widths[342.6 581 937.5 562.5 937.5 875 312.5 437.5 437.5 562.5 875 312.5 375 312.5 +562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 312.5 312.5 342.6 +875 531.3 531.3 875 849.5 799.8 812.5 862.3 738.4 707.2 884.3 879.6 419 581 880.8 +675.9 1067.1 879.6 844.9 768.5 844.9 839.1 625 782.4 864.6 849.5 1162 849.5 849.5 +687.5 312.5 581 312.5 562.5 312.5 312.5 546.9 625 500 625 513.3 343.8 562.5 625 312.5 +343.8 593.8 312.5 937.5 625 562.5 625 593.8 459.5 443.8 437.5 625 593.8 812.5 593.8 +593.8 500 562.5 1125 562.5 562.5 562.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 675.9 937.5 875 787 750 879.6 812.5 875 812.5 875 0 0 812.5 +656.3 625 625 937.5 937.5 312.5 343.8 562.5 562.5 562.5 562.5 562.5 849.5 500 574.1 +812.5 875 562.5 1018.5 1143.5 875 312.5 562.5] +>> +endobj +13 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F2 +/FontDescriptor 12 0 R +/BaseFont/ABTSXQ+CMR17 +/FirstChar 33 +/LastChar 196 +/Widths[249.6 458.6 772.1 458.6 772.1 719.8 249.6 354.1 354.1 458.6 719.8 249.6 301.9 +249.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 249.6 249.6 +249.6 719.8 432.5 432.5 719.8 693.3 654.3 667.6 706.6 628.2 602.1 726.3 693.3 327.6 +471.5 719.4 576 850 693.3 719.8 628.2 719.8 680.5 510.9 667.6 693.3 693.3 954.5 693.3 +693.3 563.1 249.6 458.6 249.6 458.6 249.6 249.6 458.6 510.9 406.4 510.9 406.4 275.8 +458.6 510.9 249.6 275.8 484.7 249.6 772.1 510.9 458.6 510.9 484.7 354.1 359.4 354.1 +510.9 484.7 667.6 484.7 484.7 406.4 458.6 917.2 458.6 458.6 458.6 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 576 772.1 719.8 641.1 615.3 693.3 +667.6 719.8 667.6 719.8 0 0 667.6 525.4 499.3 499.3 748.9 748.9 249.6 275.8 458.6 +458.6 458.6 458.6 458.6 693.3 406.4 458.6 667.6 719.8 458.6 837.2 941.7 719.8 249.6 +458.6] +>> +endobj +16 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F3 +/FontDescriptor 15 0 R +/BaseFont/WIVPZW+CMR12 +/FirstChar 33 +/LastChar 196 +/Widths[272 489.6 816 489.6 816 761.6 272 380.8 380.8 489.6 761.6 272 326.4 272 489.6 +489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4 +462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2 +734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 +272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 +544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8 435.2 489.6 979.2 489.6 489.6 +489.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 611.8 816 +761.6 679.6 652.8 734 707.2 761.6 707.2 761.6 0 0 707.2 571.2 544 544 816 816 272 +299.2 489.6 489.6 489.6 489.6 489.6 734 435.2 489.6 707.2 761.6 489.6 883.8 992.6 +761.6 272 489.6] +>> +endobj +19 0 obj +<< +/Type/Font +/Subtype/Type1 +/Name/F4 +/FontDescriptor 18 0 R +/BaseFont/XWWIDL+CMSY10 +/FirstChar 33 +/LastChar 196 +/Widths[1000 500 500 1000 1000 1000 777.8 1000 1000 611.1 611.1 1000 1000 1000 777.8 +275 1000 666.7 666.7 888.9 888.9 0 0 555.6 555.6 666.7 500 722.2 722.2 777.8 777.8 +611.1 798.5 656.8 526.5 771.4 527.8 718.7 594.9 844.5 544.5 677.8 762 689.7 1200.9 +820.5 796.1 695.6 816.7 847.5 605.6 544.6 625.8 612.8 987.8 713.3 668.3 724.7 666.7 +666.7 666.7 666.7 666.7 611.1 611.1 444.4 444.4 444.4 444.4 500 500 388.9 388.9 277.8 +500 500 611.1 500 277.8 833.3 750 833.3 416.7 666.7 666.7 777.8 777.8 444.4 444.4 +444.4 611.1 777.8 777.8 777.8 777.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 777.8 277.8 777.8 500 777.8 500 777.8 777.8 777.8 777.8 0 0 777.8 +777.8 777.8 1000 500 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 +777.8 777.8 1000 1000 777.8 777.8 1000 777.8] +>> +endobj +22 0 obj +<< +/Type/Font +/Subtype/Type1 +/Name/F5 +/FontDescriptor 21 0 R +/BaseFont/MVQYVL+CMMI12 +/FirstChar 33 +/LastChar 196 +/Widths[609.7 458.2 577.1 808.9 505 354.2 641.4 979.2 979.2 979.2 979.2 272 272 489.6 +489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 761.6 489.6 +761.6 489.6 516.9 734 743.9 700.5 813 724.8 633.9 772.4 811.3 431.9 541.2 833 666.2 +947.3 784.1 748.3 631.1 775.5 745.3 602.2 573.9 665 570.8 924.4 812.6 568.1 670.2 +380.8 380.8 380.8 979.2 979.2 410.9 514 416.3 421.4 508.8 453.8 482.6 468.9 563.7 +334 405.1 509.3 291.7 856.5 584.5 470.7 491.4 434.1 441.3 461.2 353.6 557.3 473.4 +699.9 556.4 477.4 454.9 312.5 377.9 623.4 489.6 272 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 606.7 816 748.3 679.6 728.7 811.3 765.8 571.2 +652.8 598 0 0 757.6 622.8 552.8 507.9 433.7 395.4 427.7 483.1 456.3 346.1 563.7 571.2 +589.1 483.8 427.7 555.4 505 556.5 425.2 527.8 579.5 613.4 636.6 272] +>> +endobj +25 0 obj +<< +/Type/Font +/Subtype/Type1 +/Name/F6 +/FontDescriptor 24 0 R +/BaseFont/NFGEEG+MSBM10 +/FirstChar 0 +/LastChar 127 +/Widths[777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 +777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 +777.8 777.8 777.8 888.9 888.9 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 +777.8 777.8 777.8 500 277.8 222.2 388.9 611.1 722.2 611.1 722.2 777.8 777.8 777.8 +777.8 1000 1000 1000 1000 1000 1000 777.8 777.8 555.6 722.2 666.7 722.2 722.2 666.7 +611.1 777.8 777.8 388.9 500 777.8 666.7 944.4 722.2 777.8 611.1 777.8 722.2 555.6 +666.7 722.2 722.2 1000 722.2 722.2 666.7 1888.9 2333.3 1888.9 2333.3 0 555.6 638.9 +0 0 0 0 722.2 555.6 777.8 666.7 444.4 666.7 777.8 777.8 777.8 777.8 222.2 388.9 777.8 +777.8 777.8 777.8 777.8 777.8 1000 1000 777.8 666.7 555.6 540.3 540.3 429.2] +>> +endobj +28 0 obj +<< +/Type/Font +/Subtype/Type1 +/Name/F7 +/FontDescriptor 27 0 R +/BaseFont/UQCFNZ+CMSY7 +/FirstChar 33 +/LastChar 196 +/Widths[1138.9 585.3 585.3 1138.9 1138.9 1138.9 892.9 1138.9 1138.9 708.3 708.3 1138.9 +1138.9 1138.9 892.9 329.4 1138.9 769.8 769.8 1015.9 1015.9 0 0 646.8 646.8 769.8 +585.3 831.4 831.4 892.9 892.9 708.3 917.6 753.4 620.2 889.5 616.1 818.4 688.5 978.6 +646.5 782.1 871.7 791.7 1342.7 935.6 905.8 809.2 935.9 981 702.2 647.8 717.8 719.9 +1135.1 818.9 764.4 823.1 769.8 769.8 769.8 769.8 769.8 708.3 708.3 523.8 523.8 523.8 +523.8 585.3 585.3 462.3 462.3 339.3 585.3 585.3 708.3 585.3 339.3 938.5 859.1 954.4 +493.6 769.8 769.8 892.9 892.9 523.8 523.8 523.8 708.3 892.9 892.9 892.9 892.9 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 892.9 339.3 892.9 585.3 +892.9 585.3 892.9 892.9 892.9 892.9 0 0 892.9 892.9 892.9 1138.9 585.3 585.3 892.9 +892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 1138.9 1138.9 892.9 +892.9 1138.9 892.9] +>> +endobj +31 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F8 +/FontDescriptor 30 0 R +/BaseFont/PKAFIM+CMR10 +/FirstChar 33 +/LastChar 196 +/Widths[277.8 500 833.3 500 833.3 777.8 277.8 388.9 388.9 500 777.8 277.8 333.3 277.8 +500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 277.8 777.8 472.2 472.2 777.8 +750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8 +680.6 777.8 736.1 555.6 722.2 750 750 1027.8 750 750 611.1 277.8 500 277.8 500 277.8 +277.8 500 555.6 444.4 555.6 444.4 305.6 500 555.6 277.8 305.6 527.8 277.8 833.3 555.6 +500 555.6 527.8 391.7 394.4 388.9 555.6 527.8 722.2 527.8 527.8 444.4 500 1000 500 +500 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 625 833.3 +777.8 694.4 666.7 750 722.2 777.8 722.2 777.8 0 0 722.2 583.3 555.6 555.6 833.3 833.3 +277.8 305.6 500 500 500 500 500 750 444.4 500 722.2 777.8 500 902.8 1013.9 777.8 +277.8 500] +>> +endobj +33 0 obj +<< +/Filter[/FlateDecode] +/Length 2056 +>> +stream +xÚåXK“ܶ¾çW°t§âùøˆ/–,)唒JI¤QRX»A‰CŽùX'ëüøô‹ÎrìÒ%§\†x6_wݘ RQÜôùcðòæÛ7qD*˂›» MT™û8ÎU”7¯>…?tÃØOãèüã£}ô]ëvû47aínÜìÊ4t]ïŽ4Î4v÷ùæOA© +ì­J‘ÕîÒ8|À×ß»öQv¼êŽ¾µ£ɞ¿oÝ-4`ép?9”÷í›ä¬jC«XIgO§Ý>É®;ØÅ¡ow‰ G×·ïOƒX«Tãþ½I•ÑÁ>5J¬^c§ÚãVòÞV®¯»Ñs÷Nòе,GÃÕJVCe£’˜d­7G¥™Ê8p^ôºí}%ç|ìÿTfV¨(?Ëü7ÏÇX‡@÷4.U +†ÊÊØNñ¬–èðG€8 +Ǟë‰-†Æx}CÖ½bUÒ+R"X–*â£>àuS×ÈÌNg€ý7h‹$lɦû4KÃƍ€¨§^Žvۏ¾¢¾+03`ƒ'­ëm묚Z^ÆêÓª"ÌA•34ìízÏ>;j¥5éÇ®µOŠ"<ú4HŠ2tüYfK²|bîûÙgqëyÁ‰¾|Qgá4¯ájè?$Pÿ4dk»þh›£“xÛàöke ){?y¤ >nT]?ÈXíÓp': +FmUÙÚ}åÕn¯£"ü«'”.Õqxê]å»èð&¦XîÝÖÞå ©µÜT÷[LhÉ.ÞcTFA +“‡Ãƒo«®(}Æ ,«-ßTæÎA,sëØñ˜«eKÓ8nÝM-Úåúž+f?$&oýHÜ…ÄßX˜bðè_E ¦² AÇKtHWáö¬ ÉÄB71Ûä·Þ0o¶Í½»ÅXݏørÓÝc«£mmãGŽëTÏÖÅæp个eèwã„œ2ö~6$-Haû8αxèÊm¤ÏwÃ5þ ì6k7 +6¢°÷Ï;uæƒ@J§xZ¤˜ށ%@‡ -û®­/³¤C^P¤=7dÝ;gѶi¡ õ<2Rz±Z_º“`ÊãoÝ5Ûѳ%ÚÇá›l´c7qŒS™M8a 8”0hè@^]Wc¿ò£í[™: j”`›jjÉ]qٓœÆ0kǃȀÏí'n)®Q….¶.‹:érÆ̀ÓRzÇ]¢:üvÄÕÐ:|(>ã.X‘9'¬˜Ã€L”…qþéNtY +“ÃUD“c-ì„î²Õò0K›<|;ýËñý¦þþ—X»å™OÅgnœÀQ‘Éu‡/ê%ØüðËË©ÿDðO‹çþ,ûbÙçðS°ùÀÀ·º|Ê>ó)ÿŒ +çLϗ¬—ê öV3á冎¬¦ñâ5¤ 2—.˜ôP҃·<"äc‡CKù °þh–ç!Ý\€¬+(MÁ·¶×Œ+A†Gé™%°«SÎ×æœhËL•DP|íöEøݜò—% <1²ä¹*s™Ün…Baþ÷¥ö¸²“€*$\@Q†¨HÏ´<^KA’­´‹eË žR`“{b;â‚ªFùS@…”•¢ÜU¤_AO#°ôz†`¥¨—Dzæ÷[øUü[àÍ¡vK6{S•&_ƒüôWÃ2¨õe£dc9<Û£(IC?Ilu‡)ÉÙwñqÇʋç[ˆpæÞKWí%b¿–ïáPuÇP9§«}FLÖ~ŒùväZ*Lìi„ô‡Ž çᷛ++‡Ð$§ìhÀœÆÜÖ­óRåùà*«Ð¸Hó ηs}6ô‡­€7Í»¯¸ƒÄ±íýVñĨ²¼ ÈÕI˜Á”ÎÖ`n/_bjýŠÀü˒‚«@ËùA‡ÍóÅ5úÑ.Õ&Nõ®Y^bÐe{áúš¹çè[ÞYFK©ÁµCÇMJå]_ûv{LÄú"_$Y¾El2› ¸^ÕÇ4n֔¡6fÓB%¿Î/¨À<[s‰R»9·‹MŸª_À{©üp*¸™NÎn†wBèñ+5$@_œ¡G]z¦¼"Vi±u6”q£\IÊL.ê𨂔G4‰I·Ž[¦g·CV¢4J¬””×X ¬7/¿j•g¿påtbImMNŒªóGª};—°ÂRíÁsÊ+DðE8gï–M±Œo¤Ó©ñÕÈð:“‘–ÕçrÞS0L"£¶›+&<¦“TÌ|²‹ÙBMbÄòLË µ›D[¾…š QŠò«÷kãf˜À)‹u®¬:(ûÆÉô°õw𺔦oø{YH*¤^ç–Ä,ï*£áï—Çð]ðóüŸ)À/‚c&Pé7Á{ú!GVÏ)wCYƒ}”1Ôå?$Åò‡dx™ªŒŸ ¯üÉö£Ÿ³eE#Y-ßWŠR_Æìõc{‡¡@”HiՄk½Ðß ÎDðrMž¿/1ÌZ uu–éðƒ—é?S%„G½ôÛ-ϒó'[ýˆï"¼• N%8<Þ ó¸§£8ɹy>Pƒ+¼Þ­o°ÕÀÈòÓ÷Õ  ½eP~d¬Îˆb@æÁžžm«‡Ö`ƆÀLþoÁtêžÀß_Áq×è“%<}—?cqõßý¡P‹˜ +endstream +endobj +35 0 obj +<< +/F1 10 0 R +/F2 13 0 R +/F3 16 0 R +/F4 19 0 R +/F5 22 0 R +/F6 25 0 R +/F7 28 0 R +/F8 31 0 R +>> +endobj +6 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 35 0 R +>> +endobj +38 0 obj +<< +/Type/Encoding +/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/sterling/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi +173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis +255/dieresis] +>> +endobj +41 0 obj +<< +/Encoding 38 0 R +/Type/Font +/Subtype/Type1 +/Name/F9 +/FontDescriptor 40 0 R +/BaseFont/PFLRKF+CMTI12 +/FirstChar 33 +/LastChar 196 +/Widths[300 500 800 755.2 800 750 300 400 400 500 750 300 350 300 500 500 500 500 +500 500 500 500 500 500 500 300 300 300 750 500 500 750 726.9 688.4 700 738.4 663.4 +638.4 756.7 726.9 376.9 513.4 751.9 613.4 876.9 726.9 750 663.4 750 713.4 550 700 +726.9 726.9 976.9 726.9 726.9 600 300 500 300 500 300 300 500 450 450 500 450 300 +450 500 300 300 450 250 800 550 500 500 450 412.5 400 325 525 450 650 450 475 400 +500 1000 500 500 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 613.4 800 750 676.9 650 726.9 700 750 700 750 0 0 700 600 550 575 862.5 875 +300 325 500 500 500 500 500 814.8 450 525 700 700 500 863.4 963.4 750 250 500] +>> +endobj +42 0 obj +<< +/Filter[/FlateDecode] +/Length 2664 +>> +stream +xÚ}YKã¸¾çWsihk%QÏìi;››Em$‡vØÇC@½zÌ¡}êEÙ²Ü9"‹ïbÕWË»(Œ¢ÝiGŸ_wŸž~úªvqVÙîéÛ.-ÃTíyÉîéËsðEÝÖso±ž ülõHÇ$Ïöi†ûŽ“žS›~ŸäŒÀBhIª wØë*YLó4iìöÃj¥UPcõ»tž{ÍKŸõ¼<ýcwˆ‹0Ëà“†iJ[m`;i’“n –pQ7XÍe=NƒÆU¨Ö˜¶}°²³Ó ß¬ë ?f¬mßȍn[3À>çAª?p´™&\£åME¼ŸŒ÷k€Ò< Æ3®€]~úš]´çØ7¢ÞÿáÖ«»¨Â4‘Æp(³$ø{ÓÁYÚi°<ód†Îö”–E ÐR˜ÛÛ9<õ`¤Y7Ü`Fӝ­#iؖg}ڗp…n€»e YX+ օʂώnóǞÖ;™þM¾8؏ž¤Fw¢òà7óÊ[O3*6*WVƒ]yïní«mE6šÓlÃsÌ= õù< y•A]³R½Þy—g4˜çÏâ,˜÷{4™†Ê@}íð"±Œ›ÄïŸ3ß–Gwö͵KUYòq²Ólú†:FÁ2€¯˜Ê½:tÛûVEFñ»~ö«³Ô fÃá–u |uöpÜw ¢Fit³pœ§è,¼ð?ñڃŸ÷‡.½Ùì"Qa’J×ã,/«R¶ R,{j­ìešëFËëÚNÌï÷/=lÏm Z@qܲ‹jí¹ƒ!D%§ jÜꏣªàoºQÿ%}¥Û5õUàŸÜè +‡H€6h—ÐVËâ?g¾~¡£¨'á2hÐ µÞ:òwì12à¦"0ƒóÌhæ¸é9Ž^Ÿãø%Dl¨ÈSU”¯³ë5Ñr4¸ î;Ž€ŸÆH |/d'NðŽÙMt\iÁE¬´f MºuÑ^D +†4îcØ8M§`((lR¤}ÜT™‹ª û$8@Ú|oœEx©TèýÈÆ4ó0Hs«ýêµ€å‚dwՕsä*¬”MNۊÍHãÕñØä÷`Éòwykö™ +Ër±ú[C³PygÄ#&°94p A–ƹ®AËbžIZ‚äìÁŠâ\²ŠV¥ ›±*“Õmb×Övˆ.rʼ +ã•c aâúl7ºËòËAù&@/`£€Ý+‚Õƒö ÖÆö†QtIæ¹Ìöï;ai04v•¿Ï쎰·ðØ ˜ÒÉ~y¢áÉE’@ä.i‚Ï®CEä +|Ëöµ=³æò4p¯B«¥K,¡Ó·¾¯;þ»ža…ˆ48ÆqyÐþ¢/jdŽoÑ8÷ÜBxÜŠÌkŸ‡ø0Šõ,8kÇT¶—¥^˜Í€5¡Ø,NtY8»u"é‰ EªRÂÒX;ÙÿÖ½ „1Žêáä:!Y"¢¨U7€ ·•— +¡ÑÒGá«ÃØ·7&BxxͱΎµtn®»³)Ošþ0žSAE=2·ê}{îÁ[lYq ÐR¦ˆ!ƒ:‚Zˆ¾“‹R9]N\a^ÂyX>Úþ„à¿ED=Žút ˜Ìh…ß\5n݊ÈHa°ã܂¯Z´z f!\ÆaZìT1a&Óg{ +£Ë7üòÈóàæþ„–Kv]x­`ãñ±æž(t˜®ÁÛÑÙªÂk‹ %§z\Y(:СvÝyžè\a ³¨"¨Mc°aº…n/TýÿEtwШeŒBÚ!¥Š‡ƒ¬ŠED@¤;œúÕ±› KØáq¿ +•”a.@1˜†}=¨Ÿ'fˆ9ò8æð¼/G‘‡älhЙiú Œ’`9¡$^W¤> +mžõ=¬2؅« oíçô……—,Ü c|Ò[ý`Dôk±¹i-ƒÛTÞ_·—Cï|Ì#Ñ AòR#&+ZahœÈ`­^Þ«n6ŸËú¤GîôÇÙâMŒ,~®^ „ÿc»§¸Ðø]³6р†ýjýv›+&G+½ª€Õ%ÙÇâ÷T¼y +àp±1©Q²:Ü°9KÂâ#q`ìcs‡÷‘Õdñՙ“,á&¿ä"z‡Á—3µÔjdz…m؟º+£Ý0:î⯤>%Ã=6o“m´…“ö<”¤†ç}x,Î;:¢º¬™pd_«@†‡jœw¡ I–à +ý›H$q”p0íü2û„eÎ KòvÓ02Ø TÜñþ¬,‘Aà$Ñnä€ S,(ΑÒó*V„>sB%7/ž„7Ð:ÝJQ^×KvD>àbÑMï!Às†>¦de p–ÏV£Î4Ø'Çݔ˜~¾Xîò«eK&­·.äwæÇó¹µùþÄøàÚdx=ÇsåKÏIcÎÖ{‚‘·Å P{é£.ï;®²»µ¶¹Ä_nh¼’Ë%ÏS‡¦6IüaÑ'þ¸ÆïvãKNʍ|ç;€€(þµ¼³V7ËÙ¡››ÅØâ³aù: ©wó:diž ó̽ÁìÇ}ü eIó,iS”"€Ž–­7¦Yà,žÊ%bÔù¨ì8ñ +endstream +endobj +43 0 obj +<< +/F3 16 0 R +/F5 22 0 R +/F9 41 0 R +/F6 25 0 R +>> +endobj +37 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 43 0 R +>> +endobj +46 0 obj +<< +/Filter[/FlateDecode] +/Length 2571 +>> +stream +xÚÍÛnÛ8ö}¿Â;/#cjŽHŠ¤˜¢-:³˜E±´ö¡iŠ¥¤Âڒ+ÉÙ¢_¿ç”D‡’ã&i¦‰$^ÏýêELâxq½0,^ÿú;]PE]œ_-xLÒt±’)Qlqþú}Ė+JY½Üíšz¹â4Z¯K|Q"jŠ®\כ¬)–Îÿ¹øíܜÆ”-¼ÓðŽzW\ï‹*‡Í K£/S—Ë“QÑà˜ŽÞÓøó÷”~xß"‰Ö¥‡-LÁÅûy)šb[ۙ²²§}Þm—Ù±¶øZÖUa'òbcG»¢†mnI^ˆãŊ&$I xoz`Z–É4ºª›í†ö›¬Ã ¥Œªb³ù93£—e?—lðd©Ì5ef·çEi¡J²\¥"þUWvA[fXRV]± +jŠ¶ÍºèÁu Xöo™¹«4Úfm[n͇Š®‹ªh²MÙ]0)–IšFfb€7´{÷âagv¶\ .£u]­‹ +'ºÆRڃÊr²šrXPÕmg¤ÞÛnŸ—ýû¾Ä`Yݖy^t]i'zBد›¥à€É¾Ë켈.¢ºßXÝ^c`¼X’QÖIJ€ F”²2†´gšÃI¸î×ßÅ(Œ)Ãìçv:§)G°Óÿ 6+¢•› · +Â7ùÑNòɝK ܾ²OGo–×Åe=MiØpc¥„ie¹]Úðy¤©>£¼âpJP£„ı[Ê#'U+%ˆô%«-¶;äã"zÏQãh*Xjô‘( Èà3/.˜PUéô +‡Üc㞻¦Ü¯5|½ê(³—€Î™y;—>ò\È#‡WI, +}˜`kB„pô}»\© öÀv&ŽqVã¬8äìÜÎCpÁ €2´/)J@f_@ö]·oÌ'p03…‰5²þ*eB'řrJ¸1Oïƒù#É´@ԑݒÉH™e3`ÔÖ]W{¼Ԍ$ÀÔRà‰(ÿ‹•ô9jŽB+g4‡«˜åKáÕ¾BU@^ÝABYÒ¤4Ä#×΂íoêY ÏïÏþ»•Þ, xk¯-%*à2¬b–UªFuÛØâ Dp)$¡³wõŽ6E‹ã6X¤Ð2k 7ŽŠIèe´µÑA¾7ˆÁÃ<À5ÖUÝÁߙå#ìCàù±Ý} Ï©¯«2´.‚¤½ß,“ô)´¥OƒÀ2$zÁIÌF×hBñ¢Õ0ñ›õÄWÙº4ñ¥F_®/7L6^º<ü0¿ÆÄu3„z:Pt¤ç›©°Cô鳈n^(V <)DÆÏÉî +yªe9œŽRÍÇpùYx.Xé 6ãã7Ú ¢SÈ$|öRÓðª#·ò£—²Ç±ŽóU!Î@M©­r”í~cĂjÂ‹/|,ŽòŸë&/û¯]Ö|-m²Dõ”`²˜Êöf*¢ÍOäŽ;W™ä.ȪQ#h:uƒ¦c¨?›|–k½Ûïlv]7CUeÅ!¡QyyiR{:T´0í*Z˜Ð¯Ñð~*&H¯‘žG4q•"Ÿz4FíIق/²Pv˜Ò…q]cqÏlÕþ½œð^Ô Rup<£ ˜ gL qJD`|âÂMìõCépEgÌIjmÌëÃúWIÄ%¾üú1il—’p+À¯‘ JÌ3=uÐ>šñê“èÁÆfÛ:ô¸tô/ù„‰ÓÓ\Ó!*¾”È1µí£é³Su8!~üÈí–çg£cOèŸô÷ÇéãÃqғ—’ShŒ/@cæßAˆ!C ®xTn·E^šr9ªVôªº]›0z£Ú6 +Ï#Hg@QE÷¤“ Ìõà¡£ØÂvˆ’þô»é + #{ÂØ10ôi©à<¡Ô¼—P*z]ZâìLíΊ 2Ú?sŽŒ+LÑ=G6Ô2°ðb#J©¢\ýõ>»Þ”YõՌaŸ>®kW¿¡ +H ø\ÁNáÁ™-"o*±¼Ü5î6p*õ¦Ã¥T¢@ϝb~3Q€’Ò,ðÒÛrµ-uæò"ÍÈmïÖqÇDm>Œ8 ýlôÜØùRƒ»6—ubl։aAœX’˜ònÿÓÂLáßd1LÔÄØ<hÍm»èPòùVÏF½ºÃÍd~ˉ~<]\O)AÂ'¼|òÛ}-£wTÝ@¦Ëy2AŽ!æbl/`Êe|oKS[pm/n+ñæ¹)L/Á~ Œë4zU6ÿýTCÔ#íð{þÁNô½b·Õ-ÏË-6-ûħL9_Ηi<êd¨ ?Î×)DÄ«_`÷´*m#U­ê¬ 6À†–l2ÆîØ1ï—Øä»iÇxóâb]Û^+µüdÇsgwmcÏpìgasì¦lº}¶k3¦§Z殛‹VÉôTÝ‚q 3¼ç®aëSSêÈÕìN웜7Åv46|ÖØĉ‰˜»‚öÚ* Q9õ궁ùfëà Ž‡ÎéIfö®žH!=gs¿2Do¾LìÖê‹z2°Ãn)€ÿrɒ˂:ÚÔ "4Q]A>êwl;Õ q ƒøa²ªÎф ÁH½˜ûiL¤šCz¾by쌳õq¡hlÿQYO½3Œn@µ—"Ž0‚ÂgÜø釘mŠ#ˆºê½ +›š£¸=€D_æ#ÎCN9ÑO•7†Þèi`\žÄ©dòŒk+ԓš ¤ÔOéúï¨Q%P¦R?šð?ÌÔæß՜—–Ê¡EÜöòòr²Ê°f +íWpó];gSƒ»êò‰zŠ÷¦Œ¸?eԏPJù2Aš±'öíÖ»øË«L‡R#žÊg_ÎûìC| ÁÄN‡üD‡t´É!È#m‰¿‚QŌ·¼h!Po².³x–ç%¤åÁÏèìB/ho;[E±?ºÜ˜=™uEU ¶<þ·H¨m +Z¶ã7ÇbúfñÎ[Çܸ2ëR¬{¹ï‰upóיodxÊ¿×}÷¾:_Ÿ ÅA T¬ƒáü¿ýb”›3 +endstream +endobj +47 0 obj +<< +/F1 10 0 R +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F6 25 0 R +/F9 41 0 R +>> +endobj +45 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 47 0 R +>> +endobj +52 0 obj +<< +/Type/Font +/Subtype/Type1 +/Name/F10 +/FontDescriptor 51 0 R +/BaseFont/FIVCRW+CMMI8 +/FirstChar 33 +/LastChar 196 +/Widths[660.7 490.6 632.1 882.1 544.1 388.9 692.4 1062.5 1062.5 1062.5 1062.5 295.1 +295.1 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 295.1 +295.1 826.4 531.3 826.4 531.3 559.7 795.8 801.4 757.3 871.7 778.7 672.4 827.9 872.8 +460.7 580.4 896 722.6 1020.4 843.3 806.2 673.6 835.7 800.2 646.2 618.6 718.8 618.8 +1002.4 873.9 615.8 720 413.2 413.2 413.2 1062.5 1062.5 434 564.4 454.5 460.2 546.7 +492.9 510.4 505.6 612.3 361.7 429.7 553.2 317.1 939.8 644.7 513.5 534.8 474.4 479.5 +491.3 383.7 615.2 517.4 762.5 598.1 525.2 494.2 349.5 400.2 673.4 531.3 295.1 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 642.9 885.4 806.2 736.8 +783.4 872.8 823.4 619.8 708.3 654.8 0 0 816.7 682.4 596.2 547.3 470.1 429.5 467 533.2 +495.7 376.2 612.3 619.8 639.2 522.3 467 610.1 544.1 607.2 471.5 576.4 631.6 659.7 +694.5 295.1] +>> +endobj +53 0 obj +<< +/Filter[/FlateDecode] +/Length 3078 +>> +stream +xÚÝ[K“㶾çW(›ƒ©ÊŠ&^°.b¯JʕJٓS”‡ÂβŠ"ǔ´‰÷קIP5šÇÚ[>ìÂ‹@?¿îÆ®²4ËVw+ûøëꛛ/¿'+BR-V7ïV,K•Zmr•Jººyûïä³ßë #,¡)w/Ûdg*÷º;|áÉ·EWÜVMeºj»N×ÿ¹ùûê»»ºW§T§Œ‡ËÿTM‹£¿üž» )U«ÌŽØ&®[ŒÝ<Â÷®“d+™j‰yJà $U¶¿™­-Ҝ¯úîíúÒâ_E&S~Õ¾ngûâ©Vì‹=°¯üùûú_„^¹xô¾žª”ô‹NåZd‰ýc‡ªmPJ²,©šÙž$Msêçý8[täN9…}ñ”s;èXÔ¸Z®’ò½™‘àq%|œ R)Ç3Ò\ÎÖ',Íèãhøäõ¯”€\”yê{KÿΫ]sÜ#f)'þ‹óʲßu½yÐKÒ\ûÞÌwÃp7®×¸]ôÌÓQæ ’Ê^¶w3ÌÓìEmX°_­7$Ï{î²ÉiUÚ^x¨ƒ­úã|.|¢ïÍb|£ù@©óÝéTªçSåJi o©"ãTù4DÙ0ES¡œî‹3‰a>5ð„ß?ŸŠ:&MR¥œMUu¢Šƒ s-$)ՋF©ïI×ßÿ˚ò¤†wÔm‡jVÌùGx> — ŽÔ—%Û÷?U´eªä%.R¹ÈE‘*1Ð ÑÀ†’?¶¡àÜ[ÿÙ!_[ûçÝ3„T’© pV¢S•{Ì@óä}ñ_dRÜß×UY4»ÖuTµ{Þ¬ˆMÛ‹`¨CÝ ³›Ž¬=ʁ®ûΔfgš54Íëea¾m(C¤ô;àlÜîùW?;;ŸŒ˜vÏô|!¶D( HIþ>êçËÊe?ò¸ó=‘•ìœ•t•òS‰ß‡V¾+<Ÿg“}̽-å©z ³,X +è£ë¡h0â |È f +™cS8¯Ržª×îíh ‚±ÞƹšÊ5·GsèÖÞ •mSÖ' ¡Ìà3Àÿ…H‡¤™¾·„FÌ^¯~ +FRß¡ÝH….»oˆŒ„5ùd¤kGº’“¯û†ñëñ”Q¥;È)P¥À#‹¥dÉ(FáÄ5vZf#M\A¤i\Gi˜9¸žæhæ"ÊøµÁòµvà’Ó9ÇEr@ͦ?ʽÝrWµÝÞîØ6×Õ¾:G{^   ÏÆnVÁTdùhKĚKîb °¥ƒëB*¡’o‹Sùþ¸R8€Ûµhw…ÝŠ©@ ^¸—(#˜ÉÎØöÎu,³ƒ*(ÿ%Íփú=É^¨0TTÍ»€Ž^™Æ=ô¹ƒI„;BŽ âÇX„Lz1¨[‡MG&y¼,‰ÅOƒËDêš7EÀ§²çÏ,`’©$ƒ¨H2£¢ãù—Á@—]»Vž9±LâìÛ¦=¶‡ñeÕ#t×dúcö–Öqpž½vä%Ì;`êϧªAEàD&ýy¿†UY+ŠÑŸÌdòö‹¢>v-ŽR ÄöK-¨g:0÷ØÛÆÒ/”nï]Ø<C%Òg1ÃÐMò0K7¢ð'‘-Œœ‹d€hJF"³ˆJy?`û··U±o#¡ÄÇJN Ñoþ‰ÃÓ _²¨‡Öa†x/“¯çäÎÆä§R³G%q'À“Ž€“XbD‹_eïQòª`ï pˆæaÆ>h 8qrh’­ãb#5&ªÂ‘¶a‡‚¯÷ Ã׿¹Yq›’ËçÌ·uÖ¸,¬’‰s¬’:[±a9ŸXlÛ°óvÂi&³¤3>¹Êg†1§‰Ÿ8,øUì7ÞJäL {s´„ 7Å¿o“*5)ì‘â’‡cg@m³¸ÊY\ƒìÙðL%?VeÛí¬ÖÛaΈúÕÀ_Úç¾8ødÀ߀—[Xùtt{ËÂà±ú°°oØ¢¬œP:i]KÓ⒌Lµ0¤óSo«Ú·mmڇ‚¯w͝ivƵ7I_À‘ÜïÃñgé|ï00:ËAöàs»=¶Ç¢6á!& Á|üX¼Ú®ß «~çZŸ¹¼փRVµÿ½ÝîÌöÙTy傄QD*5ôü‰òI2jôߞ‡#2‰í“«~…óÒd²J ¸vYuÙ֖T6ÂéókV–|ŒSYñ@“å@Þ¾Ë.på&€;½6 c‚|@9ÌFM¸ò‡µwgš¾£1¸œ4Í¡u¯;S×_ ö(hs ¾±Tˆ]³¾¿ÚÛô#žŽÛZ—]¾n:ÛL\`ÇT°EÔ¯† ¹gÓ²(i6÷´+êÚ¾‚æ™}µ}íPf;W)¹\‡ÙlÂ1WJ’ª¬íôÑVLM¸…»êµÞ£ ;©vÏí¶i-ëJàtݾêM G'úz,"ƒMLºêpªA:íOh%ô•¾±òV­CÅlZÜ5e–ñØ{0w§Ñîá¼û®½ï*sô–BYÛí»jÆlªr¸LþÎê";üÕ6Ǫ9UÇ_ft„àe¨\ Jåb€ïJ„6¬öPüÝ©ñtÅ_{GªÝÉ*ÍÜïB /9^’ ï\£ÞµÍ®èQ°ExœûÆ{á‹jQ¸7Þz{ÓïâˆÈÃu*R jÉ!ÞgîÄo«ÒyƲháƒ6;Ý´@–ëh{N„aÐh˼LôºvDÙQÉ©=æñŸJu\ÆíÔÇãîÇP?µ¿bá®Ó` !5Ùýpè+C¨ß,¡GÁŠfR)/ůcdá4dwÈXÄ86Þ|&’[‹¾ + àÿµÑå¤Úê9ôÓXB5ÓWeCål(ʆ ©˜sm*dCêT‡&ò ù<±P©dłñ«ÒÄBœ]t`“²±¤©ªy7— +°­ì‘D˜§õe©¸ª üڙD:yx+r̲^šÄcôâÀ‡ÀŒ8á¡âZ¤ÓçEžù³ ÑC)8É/܁ù‹ÄsY³ÉÃ( £"—£N¾ _Lk㍸v¦^ÇR‰>/°.“Êå |nwÆÀSÝß׋©´ä½8Åýø +”ƺhžOðºgÛ³;™ÓI•L32TiàT=DïrŠ•ÆOçq/ :ø<²|ÛzÏo°é‰I’â‚]phÄ.ó´ït±øÂ-:Ìf§yz k 1½í6ÒáUD¥‡Œæüœùx›!¾Î¯»f#RÂ>Ÿºo«‹²Ë·¥ÈÅÛRäº{6#ÁƲ f|DR”ÏM·ïC:lû`Ã=–‡¨";WÛÉó%°;Å,|‹¢Ÿ f±Pk7½(fjƒÅœ¹ƒ³6€ÐÛ@Î/#!qòw¹^º¸*^ Êü)¢l’™Ÿ0ð€Ã-ØΓïh FûøÛjÉ¼"ˆtmÒçǪ°™/Þ§ª±¾^îã×9¹ä遀Âç(C]®ˆ,ƒŸVóۅ۵Ca1z»–]º\KõbQGÖӇóŸü{?·‹"•½oõÀeµ+}âr‰ÄÆñ,ó}¢"I~%fþÌJ O‰æŸqSSD=țËW\„Ê°†#ÿ¶ëÓÌ%Ö@yžtÅèún²­bHº1˜!ä\&eqhݛ­³ÂÓ:|™”=pÎΜU5°1B`°ôxËþÿýbòßBìg|ÕsÍù/äªóáÎÀÜn)=Ioc~_?æ22‹BޅŠ˜Ðö~ÕX*Ç Ý¼Î%”ÄdñXçò ‘‘°&(r0Ò5Ì+bÁ×}Ãøõ1‡Ÿë9¬£Y÷6UwCJ³>“ß—84M¶ÛΠÐÕEW½rM;›Ü‡—ãp××%zíósëÌõáîäW5góúÛ¿Á¬ïñêp±T%;¶'ÑXÁj°xÅÑ*6eÛÙwi‘¶UÍ]gvUPã±?©öÏí¶l÷÷µqÅ!׶›{vœÓE™€ +5B»ÊϧÂ}½õ’Ì&7ëíñØzŠ¶}ái.ÅÙxaÿ‡X6 (Éw%.笉½Æ….H÷.ˆ{yýÃÿZ·î +endstream +endobj +54 0 obj +<< +/F1 10 0 R +/F9 41 0 R +/F3 16 0 R +/F5 22 0 R +/F10 52 0 R +/F4 19 0 R +/F6 25 0 R +>> +endobj +49 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 54 0 R +>> +endobj +59 0 obj +<< +/Type/Font +/Subtype/Type1 +/Name/F11 +/FontDescriptor 58 0 R +/BaseFont/LFIHUU+CMSY8 +/FirstChar 33 +/LastChar 196 +/Widths[1062.5 531.3 531.3 1062.5 1062.5 1062.5 826.4 1062.5 1062.5 649.3 649.3 1062.5 +1062.5 1062.5 826.4 288.2 1062.5 708.3 708.3 944.5 944.5 0 0 590.3 590.3 708.3 531.3 +767.4 767.4 826.4 826.4 649.3 849.5 694.7 562.6 821.7 560.8 758.3 631 904.2 585.5 +720.1 807.4 730.7 1264.5 869.1 841.6 743.3 867.7 906.9 643.4 586.3 662.8 656.2 1054.6 +756.4 705.8 763.6 708.3 708.3 708.3 708.3 708.3 649.3 649.3 472.2 472.2 472.2 472.2 +531.3 531.3 413.2 413.2 295.1 531.3 531.3 649.3 531.3 295.1 885.4 795.8 885.4 443.6 +708.3 708.3 826.4 826.4 472.2 472.2 472.2 649.3 826.4 826.4 826.4 826.4 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 826.4 295.1 826.4 531.3 826.4 +531.3 826.4 826.4 826.4 826.4 0 0 826.4 826.4 826.4 1062.5 531.3 531.3 826.4 826.4 +826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 1062.5 1062.5 826.4 826.4 +1062.5 826.4] +>> +endobj +62 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F12 +/FontDescriptor 61 0 R +/BaseFont/DLLZPJ+CMR8 +/FirstChar 33 +/LastChar 196 +/Widths[295.1 531.3 885.4 531.3 885.4 826.4 295.1 413.2 413.2 531.3 826.4 295.1 354.2 +295.1 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 295.1 295.1 +295.1 826.4 501.7 501.7 826.4 795.8 752.1 767.4 811.1 722.6 693.1 833.5 795.8 382.6 +545.5 825.4 663.6 972.9 795.8 826.4 722.6 826.4 781.6 590.3 767.4 795.8 795.8 1091 +795.8 795.8 649.3 295.1 531.3 295.1 531.3 295.1 295.1 531.3 590.3 472.2 590.3 472.2 +324.7 531.3 590.3 295.1 324.7 560.8 295.1 885.4 590.3 531.3 590.3 560.8 414.1 419.1 +413.2 590.3 560.8 767.4 560.8 560.8 472.2 531.3 1062.5 531.3 531.3 531.3 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 663.6 885.4 826.4 736.8 +708.3 795.8 767.4 826.4 767.4 826.4 0 0 767.4 619.8 590.3 590.3 885.4 885.4 295.1 +324.7 531.3 531.3 531.3 531.3 531.3 795.8 472.2 531.3 767.4 826.4 531.3 958.7 1076.8 +826.4 295.1 531.3] +>> +endobj +63 0 obj +<< +/Filter[/FlateDecode] +/Length 3260 +>> +stream +xÚå[[sã¶~ï¯PӇP“5C\IìN:Óì6tv’NÖoqh‰ör"“.%mÓüúž€(€”d{½ÛöŦ—ƒs¾sÅ"K³lq»Ðÿþ¶øöòëïȂT‰Åå͂eiQ,.d‘ætqùæçäMuEEÞÔ¿×mS-/˜â M‹tùËåß½ÔŸ+÷9¡2ÍåèûzU—w-|)e²z_á‡_'Ü'ð*Ë™~ù'ÓëÈÒLÙÞ+*Œç"±ƒ0ïµ Ìk«öî~SíªÍ¿aRΒênIer½¼€¿Õz]­±™'u,…Ð"•ý0oõДqÛ»­^À0y–Ü/¹Jª÷'’Ü6µ¦Î£*¥@LÂSÎÍWûÕRd‰þSm·š¤‡[‘$Γ`<ý +KÓI²Ežª\›ó¥…îo‚±E*á—í¾Z;TiVØÁcäá©,æNJ0Û»®‘8EòºÜ¯Þã1ä*ٕ›Ê´Æ¸€dYJó¹ñ`cÜ_8Ьïþ"]¥ŠÇæ#ÞXŒ† ƒ:ÇÜÖü9Ȅzšþéùvë“ý—/,c0 4Œ- cãï¿/ƒáQ¦ŠÉ¥©”˹•Q5ÉpÀ¬ÄvŽàˆHά“R|ß|·¿¿$ȓ¶ë* KJ$áô³Lʍù¿«º»Ú žHÖÕfSšöm5 ¡ALyoÔó¿«võªÝ´!%E<퇍ˆ“ÔIšô9L³ÐÂRÊ}hA”ËP"b €«Èø¼ÙˆæE"89 çvIE¢éß웞Ћ”„Æõ~Sváæj…~k9‰â7ŸA–J9M8šŠ"F8XnÛ­58ÃâVmƒÙÁø´Höí~›Z)tC]PRJà?Vx¹WµÀ,°qž Ð~jRûÁJ(°-jã]]6!'0–’~?å«%|€ +êP6(@"›Ž‚Ï¡ñLZÝ´!U)Œ@fAÃcÇGð9Ùäý^†P”J5£|©ŽðMsvҚ~ÊOU?ùmÀ7±R8”w¨ÿ„@ý§ÿúß7ì{Bmê;sšužãA§¹~d'Œx˜®ï¡P&Ö°Ý߇kÈÁžd彶‘ËnW5·­ACÔ`r†gC”£íÙù’ù´|ÁDz7kžD°7é ñ +O=KYý°õÿ"˜ÔÚ3 ¡Sf0i2‰³À¯ŽpIá\žSÁq$ð’;p´$(cæ´ θ$„l,þÃ!œÊóGˆòJâ±txÓèùiëŸ;N ø°Í°`3×1Ñ ôÿîPãt tˆ¯áe ýèü£çIó?:mhé?7S.‰ÌS¡íK0ZM„äÇí¶ê>˜ (ٔ`[ïö»mé ðO󞈛Ö÷»{à‚ª?®›‡Uk)uS"üRôѬþ͗µwWmíÐÛ}hçqP°žÄFä|Ð,ÀŽx¤ÕVχ.hu»Ç•æ F¿®M3È9†¦°…߶Mj†\¸èÀÇËüãèpÞ³WÁ‰7_ÂzM "T]Ýv¶×Æ˨ñ§W£P·¯Ci–a´É#ÔºÒòθßÆ ov‘¬Aæ‚¿Fxlä YO8ŸU.cÚx`&0X{h!ÅÁìÆ?VcN'46óWsÓþÁPBÜy5ª&QÔö£ã›eɏÐr©Ld s"`ا†¡’ M²™(p~ÄW—ä ÁjrúðhSh7ô â,ÍØã-âYUþñ=¾Ù¨ æzL*ÃÉôsÛþìÄmâÒ³Öû¤fïbt÷¦c¼lÖ:G@“r ˆfŸu¶Et¹—)Š†À ¦L­[›LJöŠ +iš¿0*#"ey¶Áw`½¨yëŐ"2À‡¯ZïWQ ë‚1m{FÊç! ±ý(5' +CŒ0ªd1Ê,SΨQpŒ{I¶5;h¾¯ðxõr-Ì1…I.CWÔ."`ð iWšøïŸÃH{æb­™øuQ­œ¸èÀ]È ÌEݬÍ'£±à¢qƒ!GMGúñÀÑG»ˆvTÅS0Äѐ3õÏêpxîBÒ3ΟI¹}¨»ÍS‚ÈdoR^}²ºîڦݵM]šO´Ïÿ#Ô|Tœ/S3é–f2gÜãŠ0ªaWq» ÙÌÖÁÿ‰‚ |È ~²w¶Ó”÷wA%œA~FŒvŽÑ^'†™ò˜ +‚£eŽ›€LEòM(nÓOµ”èùirå2ÂØÛϧ]PJ{3Ô?†ÂÕ D—¬ž Ù£‚¬>R\{‚Ó¢’œ»á¿Šyƹ|3ðQR#ùT’µ Øóè“sÐs™×GCë‘@¹­DäúÅXóñ°ÚìuH!L² ž2¦ñ›)¶CR埚‘.8‹Ço G]ÀËt:èÁŽDpÕXùŽêÓx±ÿ/Hñ¡:Îãꘪ#äVŽÜ´îl҅K—ã~Ô}’üêˆ$KÕWá­­AºÚ×ÖJ‡ºBÿ:È`xEQrÎ-»ëcáu$÷.„+z; òIHø44?3AKþW²î³A^°>†ðöËr³ëZËXåÖ>é˜ :]¹ÛY¶«¯j±HÖöUpœÌƒM½âgeSnÚÛv˜:‚ý \d’fb˜þÎ5€tÙ,ÞyoRۑ›7 Œ>÷ ‘7 ]Xâ½iü7 Œ—ú³Û7»#‘È$ÆØu‚3ívk ò3•´’„dÉMÛé2ySÀ©û*Ó³®‡ü&¦Ú?àëU×WÈÁWW¶ôÞýÂ~¬I +;[B©Z’ã2ý¡u ßV×Æ[ÜÞî«°:3›ªËÄB|š’Ì<] .0üxÝ6K†«eV{[5¿c‡Tɛös<刯Æ>Õõô‚ÃQÍUsR—Н®æ$ʕ:ž[ꌥ–|¨æäj¢š“现G¶aM'×½Y A.¨²!ÚÐ¥Êíì·ÈºT>K”bºöž g…n…«_{¦ÂÒ8@ŸtÔu‹3UmÊ%¢Emò‘Em«ŸMç®ÜÔæhcՌ<Ã|Òi:†©Ç¤U@ßýß³lPѱ*‘9®y؄Ÿ0bosö1ø9÷¥Ëÿ8r±'“Yb >ȞJ6m§Ë*C‚‹'Y`…ÔXàF¾x‚ Ï‰…GbâN“åúߢ×ÔIY­ù|q).ÄøØ7—3]uNa˜P†¢µ¶1ux¯f]…†V÷·/xaµ,ôÝwÕªZ÷ÙXÓ¹”¤.k× Ð"s×>¢ÅÔ|ö&B>[¦ë*¢eºC®þ)ÊtÑ!x#ÊË1}ß´`ê5S}}Èv*,8% cÖK Z1¯›*] w˜u?¯nJ«›zxÎ_Œ‚…Ud‚ÂËËÇj$9m{REË™)žÊ?©†ÁMª{s Kšˆš(iò˜;žë sy¶¨ˆùĽÄYvŸ¬v£~4ãd^Ÿ,¬ˆ]½<ÐEã+0 Xýkl‘hq>‹Ë1=iŒ]”dr‰Ò]F“· É}C»¤<'˜”7m]½*—:9£6GBÒϪþãlMY`:rFS +?É ¤‰VÒ§!©Ìp,ó"¨Y"Œ2ÿÀ4ߏxÆ^€á涶WûfÝàõÞ^«|]våuÝÔUWû¡ïue‚›!¯ë™Gj´ðîR>Xäå µTçÞcxø S=cV˜ˆðHN‡]„Gb̌Dâ6Ø!‰·± ‘7aL2zÓ4„ovÛàfÿörA)Å¥ ™KI܆°ÛøÃ)R¾ +endstream +endobj +64 0 obj +<< +/F1 10 0 R +/F9 41 0 R +/F5 22 0 R +/F3 16 0 R +/F10 52 0 R +/F4 19 0 R +/F11 59 0 R +/F12 62 0 R +/F6 25 0 R +>> +endobj +56 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 64 0 R +>> +endobj +67 0 obj +<< +/Filter[/FlateDecode] +/Length 2185 +>> +stream +xÚÍYK“㶾çW({Yª²‚I$ˆÝò!vbWR®ÊÃs³¼.ŽÄ£Š$d>æ0¿>Ýh@$EJ35Þds"ݍ¯¿~@ÚÄ,Ž7÷ø~óÍÝWß%›D1žlî>mDÌò|³Ër¦øæî/?Eb»K.£om×·CߛGóôT<۔۟ïþ¾ùë!6IÂt:/°ÿ[³ÝIžFv»ã*:†“)j‹s*²mƒ,:–Uå‡û}ßÇÁ)xCS‡³êm*¢‚äÁúڗ¶-ë ÈÐó‡òÞé+»‡¡|ç 7»D2)U[—۝Hã¨ë‡£)zKo ‚ÃS[ÊcÙl¿¸tv±í.UôÃۢƯ÷Æm—šŒi5h²hÀ1ўgéVfIT҆ßPh—öKC‚Ú²7[¹7úk³«Ë¾5ÿýè¿óGùùh9èmÛgðpEgûÞ³ *ºQ̲,ú ÛGOŠXDZ‰‚ŽMK`°j¯£+ZB2×À‡zíGe¢¢¢9€8¡” ºg¤¶³4 ÜKtpï~ëmÁÖ_Kzi,‚§ã™ QÁ1È쇾÷2‘;&(8mU´åŠ“k”'Oµ÷ŠN—œÇI¢—V#çñ%ˆ™qþ ¢+3[ÇX6ò÷×a°4ËTÕÊAD-‹£êm >jž%!ýa0FžäS *}êz¿¸ ‹)ŸZK„°´¥oƒÄ¡ô¼ºjXcÑ=pZ®¥;5>$ó7•íš‰tŽc¢s«RPéIYÙ0Òǐ£ÎWßé1wñT0‘ZÔ÷:Z3Ío‹…_2êâ7G`¸Wx,p°ã¹fBOç-«"D †~kÛ£¡7œÌCè[ô¤àÑ¿Cˋ¦¨ SÄàB¿qŠpø˜¶ø¹7'ã5˜µ„è`¿€½O-&ç“"¥à„Éó×Ij¢xST£Ë=OUcFb’Ô—mm³RäA…žÂ†¯6§M¹º«»Á¯v1e«ÞÏï÷Þþ7~wq!}zšÁ_XUþ6`LJHŽçډ“¥«y +‘fê½ëèoMgëÚQRkJÀ°â~°[ ¸A .¶ðƒ©hö"ZDšÍK,qÈâ=¼0“¼Í}Iä˜t—ö ‚güBçîNFž™‰q|r«”à9”ä=y E¯ÂÒF—8qà‘#r2íÂò‰(ÿ²±ÏØȜI!¥K´[þOR†LÃ|…ˆEümÑRôÀTç'Óñ:¿ò0¸yÇï(pphº“$hÞQ@C¤»¤†Ÿöû¢±5D!É…8´Oi:;rÊ($ÝηH*(·Thì\¤È³i’EM×E{(úâ=0LCJàìeé+¹Ï«hÝPÓÌPt+Qf)†·uO@•|ìè¹*^È8úµÝ50ä:Nè±m]”Ä`ön›ÇѹZÁ^W­àìZÑÔ¹„,ŒÜ{#Že[ºìžGÅŸö—õÉX7«/ÔAϐ²ŒÖ¹B$â4ªÌ½ëÌbª!8õ Â¹ŸøÏû­—öhJ—•aIç;ž>l-ªÕ$J.RµP”)Ju>3Ÿ€ uÙáÏÚtCXì< Õ€ØàX;ņvIaѺ)–c+š‘^xº3ªrpLH¬r°IH–Ñ&Á ø3xÈÖ“EUà„JEo“¶´n?mgDY¤I†ÎsöAAU© "-œ:L xåaWCš§g®RJ–ÈiJX÷„¥¾n·[h‡Ñj|:Ë´¢ÓÔ͹]”þF*ñ2B£Ò}µ•"r%@î´äO)•NDq͒ êßÛ]} 5r²F2,þe!à +Êrk:îüx{ç.ây\9*¡Ë¡€Ð+ۑŽïb¥`šŸO´ÈYäQ)£ÎP¨Î‚R¦ô¬m:SÖ%µç{ª%’ǐ°l,ú@¥ Þ$gq>«®Ÿ”ÇӓR‹4oò±K°¤¸;a âÇ3¢ã dCV²wKkT>:{ë˜)µ‚ šú“ ÍãÄáº>Ãiì[”»æ]B ª®ºF³898¥ÈdÔ¯ Û<*L÷%Ë4ß"¨ºEP9'¨˜?¸dÉ3ÍÒ šÉ9ÍäK)–¾€d&®o»Â‰þ¸Ü›ãÏ$Wù2¨îè¦{„.éSáÈXL)£Q£îïÊÅÎÄ£§ÖB,ûñžûžgºÈ@zsÙÛ>·L͌koIá‰ïžÜj/Ï ™èì(¾I#"«Q­"Øô M¿ú‹O"c\æâýW$lšÄ'J²²Káüyz%J²1 W^bæO¼8aή³‚/3¬² azNèð¦I‚+}<ŠéñõÒ¤+SüÚãd7Ž£ôÕäþšó|ðK9f‚žó—ÐXg¾˜¿§ï—q¬H·dð¹ö™á‰œ¹:'W«Û®Ö¯wõKøøøø{$Éa6ŸDòhVÀ™4I7ãàž,ôÊ1åÑ%t&Xiþ¶àÃ<À¦°CQUsb]ÆmJܯwÞz›Ù‡…ڔţ?_œÆ2¬Iñëøjró[îË_ä¾Û‚o»/¿ÞŸLd¼Â}òeÆ=ç>\C«î³vâ>Êç"2‡æ8û¤íW1þ¿Ì“u¥× %€›ÿßVƒÏð/_àÀé8Ã? Ç"“>Cé Q™}ùNd=“ðϑ¯ñWÔ$úÓÚ¥ä|ÿ¢½ÇúٓÉX=»¸•âóɍY­ü¼2âú;@¹¸4‰ùE1;ÛÇÂÅ/ò;hxrú÷<ó¬ýÃùíÒ +endstream +endobj +68 0 obj +<< +/F1 10 0 R +/F3 16 0 R +/F9 41 0 R +/F5 22 0 R +/F4 19 0 R +>> +endobj +66 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 68 0 R +>> +endobj +71 0 obj +<< +/Filter[/FlateDecode] +/Length 2498 +>> +stream +xÚÝZݏ۸ï_áö¥2ºæIüV‚ëC‘»C‹ š¼uۃÖÖnȒcËéõþúΐ”D™”íìGrèËjÍϙáÌüf†\¤$M óùiñ—ßýÈYFr±øp¿àšp¶XIM]|xóÏäÕºÝoªbÛÞ,W\餀×ÉÝrEUR6å-j]µ¶uSÖøOžÔe×µûÒÍY/©L>–Ø¥’Ú­°nw»Êý›,ÿõáoßý(FJ¨J‰ä‹ÔR±\éäõr•I™lìPhšÆÜÈÛ¥ÝåPYB6Õº´{vů@'L^¬Xª‰ ‹UÆ çfÞ¡ÜV«mÙíßåŠå°B‰_mèeyžÜ˜ß”¥DR·H]–-]ï«`²&)˜4Ü›J =c”³pkJę錨ÜõþÞöJ¯Wu2—Mæ²~î¡5‡½ÙT‡û ŠçP>ˏ·«¬Øvûv·¯Êî–J±ä敕9eŒ8‘ ³ìV•I¹‡y°zûÐT YÝÓX¸ó¿3_JuÊ/ÍIÞKš†²ÊÍçù¥$Ï\ïç¥àIQ?´S œ’¤–ôŒ˜Ž>ûñ6‘)ÉÀ~2ʈ”3 +«èþPC½çDˆ Ç +l- V¦F?„"zè;Š1+{fS?C(/=ê퓙à7*Ô¨¼h¶T©ä{üè$}mŸ¥9jˊr’ZqÒK’çªw]_CòŽèÀy¥£®=Œ»yÙr ÃIKç„2+,ezØ%a© =ÄoBM¥Šy·AMAŸ<ÑÀuŒ>Nýä4ùSÌòg0„õ¼˜¡ãazgÖÃq–ƒ¨,Ný0ª+÷å}²äIÕØïý±;îM›Ì³m€}x«b_ìKÛVvuµ®ºb‹n[%k¯jûEüÛÜBE]»îЫ;UÈ £0A=eIY—ͺèL@YòéX4›Öv5åº< +X‘,W„â³ÅSd«­;¤G×¥mÜTÛöÐíƛªo2t¤> ݱ3`¬»Ï¾:ë®è[[ت©îªº²Ð³³±ÌÞöB$€"*mßííæXÔUÏxžÀra|:–uí~¨<ù˜Q 7<@fW{öÙxö)#±„¿1ÁTSÙ0cÅt +<…šÜ·IDÓ³õxï«ÂBÖD@[¢a°ÁB<Ù xz¤ä$ííΓƒ¾¼+ð00¾þ¢‹R„öÑ]“Ñ• Ì%u=ߟ ‡î"TҞÊC,Š#üœ‘ç_„vw[ˆp=Žj͟û9—Ê/,NîblÏä®hŠzëRâ²j+ܝÑr«F«>%'™šµøœH1áSf‰ÛåØCӗ2Š…ü¸Õ SXGúÖû ø¾¨ï½qÔµ 3Nªúß±qùdT>A¬ò÷ì÷{¢x=Õe)Ñp&LêÙääm¹Ý"sp¨Œ°Y¥MÁú²ÉÄ÷1>ì È概§1`dœq&Àç26ÓÇ­†!eô¨YˆÑ£u\…NaÎ¦=ÂPY±‚7f?œdc´÷ YÙµôB)ö•çèoŒqò(®)Þ:Hƒ…ØìBç#‡Þaiãé°rArku˜ë\F±Ã”gÄ#…•Ü©6==‹‡²‹_]8—¢yhk@é°¦É4Z$&(€¯¹<¦¸@Ÿ½¼åŸ¿)oq̽æÎߘ]μúCörõ‡YMÏ/iz~¥¦ç—4}Âê\©E=CÝlÎ>ŽÕi1ŸÒoÁ‰½öªR 9—X2”BÐÓ>Œ5¥›0¿•ÏSMŽ‰„Ÿw×úZo÷Ö:⬿Ã¹ä±@uòvŠg‚7b,uW6¶±Ý»^¡Bg¡¦ªP1eÍÒ¤)kÛ¼u—A€îv$ALnvÖX¦Ã*ÜgT‡ÖEÁUpšÖ³W2šHæå͈Da4‚@ØG#¿D²ýüê +ócÆ>¤2±pídæ´Ê ®Õ…_bûÇmO+@Ø í¹ù×ñX‘Ͳ,ñ^à$ÁŸ¦\ës.(:×0)à‚‘L{ykˆŒ„5åd¤m“ow×0îO#8DLT…i¿”Fxߙڰ‰³ $Ž^T*¼O¾¢Æ*õ—\PÆk¬ïJ”z6çÊ}ìgþ;$7uøڋ*[XŠ&{Yú¾ŠþøÝÌU¥½!@„e ÐEªˆ´*÷^s¸šB_>¨þBÓn_®ËM_f¸±¶¸»sEwtÐnä±éëN]{}?W þDåQ3Ê£¾r´õt¦ŸÒéS?? ܋iöùbu$Žñ‹ /y-{â3N¤–åŽãNý¿¸›HÌ-„Æ궡¼¨ë?u·͚s|aìš}k.ÕE§úÂo("úð®ì<g|°ëŸ£vMO;ëtØlíÒ+l>Þ°Ÿ¿$2¹›!Y~K½pÇöۆyËÎìþj&Hp.@âÛEûêÃøOÇjz¹„ÙÞLüî¦o½†ï®Â¨;´ô¢rש1ÊóGš†0~÷vï†Ýãñ»d¶!|!8…8^Ì¿Èñ˛?ó<‚#!—,žÒñæ…Æn§†<‘Ð}¼×‚Žo# ȾÐˆQ3ŒÛ±ŸO„7ð ®Jžy!ðŸ«6ÿ’ûs1¾‰]ÊçgÜBFtv7­»eJc-Æ+H”~ƒ•àÅ{ӕ[üãîâc"Hõx ôäÐk2“=Ïۃ<ê‰}òܛ‰{“&;sZÅôLÑk^J\D‹è;q¢d|z›+^úyǵTÏF—²½ÉÔޙ+Ìürô[8H9Ïô»ÿ ÿ› +endstream +endobj +72 0 obj +<< +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F6 25 0 R +/F1 10 0 R +/F9 41 0 R +/F11 59 0 R +>> +endobj +70 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 72 0 R +>> +endobj +75 0 obj +<< +/Filter[/FlateDecode] +/Length 2648 +>> +stream +xÚÍ[Y“Û¸~ϯÐÛRe KÜ`œMU\ÙM%å¤RëyËU‰ö²Š#É:&Ž}A‚xŒ†šÙ—ሸî¯¿n4)JÓÅç…yüiñþîûŸèc”ñÅݧSˆÑÅJ($ÉâîÿH>–Ë%"ُÅá±þ±^Ÿ_Šå¿îþòýO¼m- ¢‹Ô´Ëm!k 3ÄD]øO"dÐ$H]áޖzSHɺðXØYԏã®Úéÿ¤.¸ìTÀ2qÝnt*PªÜ”’ -Cœ÷®æS—ý;\IŠ„Û‡ûwËÂõà Ž¢Í†,—+"eòCÐIÉn»€ÿLZ@x$˜#œ €‡JRdkã¶öŠdI O‚²Ì4úûa·‡“KA¸Êoån«Tò„"aš/~¼3â™yCRØ´Å*ÃHbÓŇ%Oaq+ʲ䰄?E•Û®.×+`¯X=[Ñ +`§sÄܞ”ÛpS¢®ƒacŒoś/™dFBaNk=±Ýêt0“ÝËSù˜Û%®4Ä´»+ºÚÎüùÔÙÿà%âx±Â0)Yëi¾Ýs¦0+'c¹;Hó”0«Ë-"Ê\m®·’øs( 0§hë]¸{#Ƈ°A†gsM÷Áà¼=Z´\1ʓ®¶›ÝcÌ¡‚€=†Íâ¦V !ìfð;+Ê¡¶a…ø4më*=ë¨s£3qà SV êvÙ³lr^Ÿ$ƒK›ˆ‰Áð eÒGB’7aª­õ¢XNâXîõ€3”’i}DN°Y$¶ ÷l›xU[2¶äÁW¯¢Hé) ¾Rs¥›êSö™êê“z)Á¸ þÉÖ&‹HôŒèK!ÂJ/4ʎ¿5½3 ò¤HŸy„ìl«"¯+LORøøðïzèM‘R ñ +ëatÍC¹Î—às<–ùCÈ»8pØÁc͞lÐj¨lâ±^¶Žã„û÷¡PS”:…KÜràµûýù ‰.W±æE³›Š…BxÐò*u¥XŒn„ë8} «ÆE.óp¸EوKÛé÷0_Šˆì=Ë ×y} ܺç”~N}„wªM×x³¿äSümw2*þ_8€2Éïï] øîŸçÓ)?Õ?KýPàÑ>[­g§Ò|ÊOîßÇ%§I^•›Òv¾-*[`úTɦ¨ªº»õîxÒý—zÖ-Hí,­C}˜Å‰Ž¿×øϑxDc~»\qp96Ú } pZ=߂ +š| ú#aw’obä½qOþ +cÚRH³cz""2FZõ53!±™€Þe]™êë.Ó<¨³°Èä2ÄU¯+–⤪wjSϟÏùç +|×oyß(X{Ȫ&¢‰cÁŸÖh|í[c³¬Ï.pR8A‡Ö—ãâˤ‡3¸Z"Mü‰›è‰M\f:JÑñ)¿Æ¶§9’ÆÙp_ü£”ëÐӕÚ` áY->z5I]@lM¥õÖ½ˆÔ´¾°WÓ¾ðk*í”û£×/Úѵ•Ä•$L¢Œ Gxd'°Áƒ×Ç`$QL %fWßÉD‰ð ¼ëÀ%åO avÇuÓ.öU¹¶á ({h~žXI6„Ù„ $øµ!("S”Y7è£Áp‹éT¤VÏA¥Ö:öUǽʓÕ4¥ŒâpÐë[EAôé‹ì>~SÚX“`3%¬÷D3-Ê#’!ó«ÆÍ/4ÿbtü©/Neò!¯ñKp ã€íåCUå^ÃQ²;Gc;3þ ¨mêšÇu~8åÆ@Û¬8„½¼µ6çí—s—?ÇSn_׸Yº^+×{±Þm7yî— ÒÇ=)µìGÐ +„ôÑ̾ˆÔÔü¤SÓ¾ˆà^;zý¢=Ž{4U:¢oâÃŃÙkÉëT/Ö¥p8¸Ó0ˆX£î?ÄTMœcŠ6D=Õw&ùC±=¹Ÿ $S0h‚ç`1ÀWéÔaó`XÑâ¾C>P*®E>J±¶ºÙŸ·†—j-à `¦$†7 ÿÆÁY:Pxj€âh ·žÈÌQÆl0 +Ö0¸áÅËI}Lr–ŸBf=Öû‘;Äw–ÒQÝn@Kˆg ÑL–¥/õ#uV ksêY%˄ò˜ÝTøFwÉI#¨,\܏Q[6lõX><§C™‡›¨ q6€OM4ot^y䰍¤Æ»Æê%iOë%Ž2#WSø&x6 ôŽaü®IÄüm6–Í®D3Ñ +îð´'Þº¿uÞª‰I{zÕW SqޔùIÛüÖu…}Ý6Múªïò +ˆºkcÓxm= 8>"Ô#hä’ÒíÒœz´«~©©36:5틐 y£×/ÚÑ{š¢ˆ e½éŽ µ ?†Œ{zåob«›b Úê‹É:ðî¬;„ꭚ +ƒÎl,£¦‘¶IÄқ˜1Š##ۉ½µ,3¯´§–T;“¨‰”¦-´>ã’6²Pzý°`Ìw¿÷Ö9é´»rä|ÕØùŠ«|n´aü 6ib×˝‹Ió:RqËg©@wrá~É#—ÂX‡ÏLŠ ›ßl\™¡àm5è̅jú¦®p¥,w»÷£ÊHy½_™¿òkÊä»ÈEÀOI…xξ \…‹.’Ÿ‹»cKã}Kë—\¬]×aÉ£’K^WrçϼòwHj.5¸‹‹“¤HÎ~]ëOհקɻ—VʐǽF.ïçu®ä—sniðÎòÞcé”úr°*—œ'}QIÛMËyƒóYƔÇbõ¯HèË¿„±¿CªÛŽYÿnÆ|çR¶™TúАÛ&¼joOEsWµ7÷1:hÛÜÇÄ¢¿ûüp*×»*?<øíS`›Ny]ÉôÕòXß'¨ák œöRoFuJÆ&åâi¹¾a\¦›ê‹U7[—»lÝó6·|µ;†)Û|gÉë¦toö†Ë¾•yU»I+œaoº’op Âò÷ù6¯ÚVÉÚ¤Ãè •ÝûM¢WIM%¼I‹ã±´×è:à@Òä¯ú¢¼¾•W¬›èï[<ª´Š^9vsäO`ΤÎܽMȸuÚt´i1Šg‰öŒ'-³š_Ê(¿„9pŽñË[s õÐ× _ðŠ6òjú2G¦éÄ º_{^óüߨ´nOd ­†ÍéôÇí%"×Èû­¤Û¼Jªsêâ[ ÆÓܹ͔t<¾Ñ4¾!³'ÒΒ´ÙwF¬íây_$¼œ½Pb²²üZöðë‰É±"åŽï}>ir1æÊ>]Äþõ#®]r]÷Ѳkž)½Y!uÖÄgØõ‹°¦îSú5ë!ÍöF·/¼ÑãeA vûeª#ÊP¯×Â!QÚiÙóéi¿F»Á§[YGXÝ@§¼*í ï:òy§ÐÎJƞǥ²è׆KeÉ–„% zÀÎûδ½ÆšÁ1_GI}±O<'ßËbðCÞDLŒ4›w‰4C`=†?—Géõ"+Iõ€"€uUëÙoþ) î8 +endstream +endobj +76 0 obj +<< +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F1 10 0 R +/F9 41 0 R +/F6 25 0 R +/F11 59 0 R +>> +endobj +74 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 76 0 R +>> +endobj +79 0 obj +<< +/Filter[/FlateDecode] +/Length 2700 +>> +stream +xÚÕ[M“㶽çW¨r1U^ÑÄ7¸k§Ê[¶SIùxç–I\”ĝe%Ž)ɉ÷ק(€W£±/#F³ñúu£g‘¥Y¶xX蟿.ÞÞ}õC¾@(ÍÙâîý‚d©”‹—©À‹»ïþ•ü£]²,iôŸ÷éòßw_|§ß"ö-.R†Fo-1Ošj³Ä2ù°Ä"¹Çœ/)ÇI¹\†’º0¿Ûêpz8uUì?ê6œ[¸yhê¢-Õ|_ýÀìLHæ)¡‹Lϲ5]AÒLvïïeš2Ö=-Þ,Wˆód㠁xJq?ÆÒ<¦ö±LIÞ?Å\ø’‘ÛÉ·ÉG¸•o…Iž|é‹j’Oc­Å!5±»bL•B|dd>r–ÊÝJ[̊Pž‚Y!šRª_yl»>¿.MŠºÚ¯T|‘ÊXƺ8 Óg׎mюL' ˜Jª½2¼_•Å•í¡H—+–ñ䟧² ®l+˜“$êžæÉV  …ÌŒ|Ìèÿp¨šÆÛv¿my¬6Mݘ;X]µÚ•`­Ý"ô²U÷¢6?–»]a‘”¼ö-”©­0|6ý¥ò[ Æ!ƒ‘iί7>2>a0ÌCˆäo(œ¥8¿Þ¾)ï·åüÅg)ÇaEÒўÊð¬1üÕ³4£Ïö b‹ÿù‹ÿùI‹÷…“"Š¨ØŽýlˆãõ„ÿë¼&¢y*îù#`¦4ٞô³È$2õO]ë:nšÝc]‹}cîÜ©ßǶQ°fðÒ¼~PcÆG=€êö¡›a_Ö¦u§†5à—wŽ7 +aOÇc¥¡SÃS°§uÁo…ÕB2~ò)­™˜ã<ï= Ñ /¬`]Õ][ýE+®6ÅǪÙ<>ÅJ©fØÿy֓§ùEëéßþÍÿô™5Mê<={s4/åsçKí[œ‚J1~—ßý&4-%“Ë喛Ü/2—¥tñß…^à†`Ð±ÅÎ60®»^¼szâî5=¥¸oôäDIàô4 nO™R1š½k°³¿½[P©–·BR(õ«uü­6´á}q<6ƒP;íC©øXÞáTkKcÀbŠc¹7í¤£BíÁcO À©WÝE±ÝVGË3[I÷)÷‡n* 1›êP˜™…öüšï ¡@ÃÙ`uG`O¨wÊm©ñà¨$x̜ ð•¶Ü;§´Â>ћ¸iAb÷i.ÛåŠf€Aõˆˆ7Ú~ÐïE„PE¹B$Ýý±h›ºô)H¼C¨´ê€ C¨R´ßv—•R•.OR­{ÓZ`=¦éþþPíþlžµþz°£&jz¢.ÀÑ\&ßoTdc5Q>¬Çój¿©´ŠEr,ê]w¥åǬ7sÓËöða‡¢­š™ ,Ì-3½¶å˜V¦Ù¡ƒUjv²;¤Ã`Ù½sÐÆ@a-àQTåÄbؘÑ4×/¾«”[8ßó„œ{9qÎÃè!°%{À!üxDðù(¸|5èµRÛꃝÚ=+|.‘¥‚^¢7³ö¤ÈS9Ù0ö@37ܨÄäÄùäÄÔ"/&÷ížZiR7í~ŠËP·HDÐ4­BöÕàbÈõZ„ÅÈa1&H“4•#Ôúî¤7Ù8°¸ƒ¯oÁÕÅôê.{IùЈGœó`¨O›w˜„øÂDž½—¡˜³ÉÉ! ™\0n2þ¸ í:- +}Jfç¤w ?g­$V{åw«P$£¨Ã…ÈÖ÷u·ä«$aäg +E0š5ðz:Úf)ÊGa® ‡¹3“DŸI3¾à„5w0ÅéR¤9úC×+;f-Øˉh›É|›öN碄2%·æ_õ±íͦPÄ5˜u9«ãÉðh¸,öEÝ<4qB7‡À +±õ@ºì¿kô„1ɨ§iðãgö®Áήt‚|pð—Üå_DPÅ¿È4ÿBJãî› ¢b>'ƒÂói␓Ä+·^FQbpE³˜µÉê˜õƽË:ð&Îçn¸§ùæ'ÜMØÄ%MሦÈõþÆË1=‰|b_ ¹3$Êv¯$ȃ†PùŸŽ?ìvå¶*Ž£HW¥žtVÞ Íċ`&~zM¢•‘ÁA+ɔÛ` \ 2 ž0&õ4 ´²³w vö0ZQp—ðëF‹™:EnA+1zq2ZDò¬úcžîwë™EÖÉÁkx/‹\ çÉ»2äڏ…‹Ù¥p1Fæ‰lûói¼í奣¾³³Š|$5“N;%EXˆ˜E³÷’ßd ›±Êã³Y«÷Õ®%…šQûœ*´l>obٙ젓ÓT\vQ•P%öD]eøTºP'Ú±D†h"c®Šõº*vM ‘.í9Gp—ÑK¹‘ÁGnbyŒ+ޖ +a#YýlC)|KáóéÝqþ%\ab<ñXa„½È’+{£»@ßOû_N¡}FaŸñø>CYL 9½Ëà‚Ä-†y9Š‘òYG×ÿ +€áä¡->VÀ¨ &e#Øà7áÒdYWRfÉ·:¨±|ã•ïŒ 8ÏHÔ¡ix¸¨14Wc©qJóOTøx§ i˜ŒÉ¨â¥0ùIDz:1ëí¥;j ð"F¬5ß6xN_D"¾È#ÅX(¬Ù’b*tEŠOuÕŽªÛ5z˜hÔÓ4ø¤Ø™½k°³‡I1ËòÁ¶Í#@øÐCe΍Á÷i‚Ì& ²ÂB:e:œ3dfÈÃÞ2äáið\ŽUT}SðX]ÈG¡O‰ùÆû«—€{–”E›iÄxET:G Âsóƒ4Á¼ƒ¼Íó3Ô$¹ëa›ÇǓæxþç#ҖsÅ0îSåÃsùƘ•Îê)ýi';ÚÉeú™³G×®3fjq|F*C±ÅÍN{ž¸°ðYÔïÕ°ú$G*Ô¾2ÔaT(/mPÙ$y>tµ“Î!“:8¡Ü=XÊBÇ#ýgøÚäÒAƒT“>OÖsÅQȼáëŽBÐK…3¥O(0¼¤”Hu¥xÉc í´AÜpíÁ²ÚfÂ^‰žûü?ÿmöĵŵóꬷ¡˜ˆÌ¼˜äŽ€jè]\»/í¬úü¹¾Í-J|ßÄOV9ÒîJ ª“ò0Ûɯ Â~•gPkà4«_í_üW©Íi Lióu³†ûMÓ*:–a§z2CçÅÛÐF” 'óµqR~a3Fªô×tú2X 'cåØì̒H¸ :H/ˆ-yèv‹æ¨þhTzÃýZªtrǶôëÕÈCÛ¡Tʦ+ÏU•’“¦«ºÒÇV•½>öÕ«¶¤£l?öÿ¡tØÔ§Cóªëa²Æ¦4Äþ€*yJfÍy¬iTÿ¥5Y7Î)ìf'—Ä!& Õx¨v÷ÐÔÜúÁxnÉÜûi$;ow?Ìûö>VÑØ9WåJ[y'þŸþ‚&>[ +endstream +endobj +80 0 obj +<< +/F9 41 0 R +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F6 25 0 R +/F1 10 0 R +>> +endobj +78 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 80 0 R +>> +endobj +83 0 obj +<< +/Type/Encoding +/Differences[0/x0/x1/x2/x3/x4/x5/x6/x7/x8/x9/xa/xb/xc/xd/xe/xf/x10/x11/x12/x13/x14/x15/x16/x17/x18/x19/x1a/x1b/x1c/x1d/x1e/x1f/x20/x21/x22/x23/x24/x25/x26/x27/x28/x29/x2a/x2b/x2c/x2d/x2e/x2f/x30/x31/x32/x33/x34/x35/x36/x37/x38/x39/x3a/x3b/x3c/x3d/x3e/x3f/x40/x41/x42/x43/x44/x45/x46/x47/x48/x49/x4a/x4b/x4c/x4d/x4e/x4f/x50/x51/x52/x53/x54/x55/x56/x57/x58/x59/x5a/x5b/x5c/x5d/x5e/x5f/x60/x61/x62/x63/x64/x65/x66/x67/x68/x69/x6a/x6b/x6c/x6d/x6e/x6f/x70/x71/x72/x73/x74/x75/x76/x77/x78/x79/x7a/x7b/x7c/x7d/x7e/x7f/x80/x81/x82/x83/x84/x85/x86/x87/x88/x89/x8a/x8b/x8c/x8d/x8e/x8f/x90/x91/x92/x93/x94/x95/x96/x97/x98/x99/x9a/x9b/x9c/x9d/x9e/x9f/xa0/xa1/xa2/xa3/xa4/xa5/xa6/xa7/xa8/xa9/xaa/xab/xac/xad/xae/xaf/xb0/xb1/xb2/xb3/xb4/xb5/xb6/xb7/xb8/xb9/xba/xbb/xbc/xbd/xbe/xbf/xc0/xc1/xc2/xc3/xc4/xc5/xc6/xc7/xc8/xc9/xca/xcb/xcc/xcd/xce/xcf/xd0/xd1/xd2/xd3/xd4/xd5/xd6/xd7/xd8/xd9/xda/xdb/xdc/xdd/xde/xdf/xe0/xe1/xe2/xe3/xe4/xe5/xe6/xe7/xe8/xe9/xea/xeb/xec/xed/xee/xef/xf0/xf1/xf2/xf3/xf4/xf5/xf6/xf7/xf8/xf9/xfa/xfb/xfc/xfd/xfe/xff] +>> +endobj +85 0 obj +<< +/Filter[/FlateDecode] +/Length 2843 +>> +stream +xÚå[KÛ8¾ï¯ÐžFÆÆñM%˜2™Í‹ALú¶½ÅV:l«#ËÙt~ýT‘E[”úݓì^š2ŸÅªb=>²“<Ëóä"1ÅoÉ/g?¾f !Y!’³ ×gÉRêLÑäìק¿ÖÛfßµu¹mKFtÚ´¥ý¨7¶<[è<­š¶Úš•ž§+rèºúó‚Ê´9_؆uUÛ!ëC…EúªlË÷õ®®Ú:[,9£éïnö˶Á±Ÿ‚§å³ÅÎþ•,‰Ê„€‚gœâêuµ[P•võ +‡Q‘šB¥ŸÕfc¾%¬º±¿WÛ­k§¶XÒ¢HÏ© .IZÙ Úúl³+;×ÛÖT­fÕl/7UW}ýZfH׏¯ÉÀ¿>¸öü]E&ÅìÂêxá#=ô.(€f SNþ›p蕃#¡Tã‘Ø0§N6É» 'u ÌöÔòõ±ž +•<ìi*ž“žpõ¾Â¯‡ÅázTŒÛÃôrÐY8Ûj¿wßëڕÕ9jW·•ý½ù¡Ú_¶' 4/2)ÿ/Bóg·NT»µcÚ§Cå,ŒF3dãs-P™ÃóoÑJVµ}[íÁ”ÛÞxŒÑ}ízôrU¢€06_mJª "|/_ ŠdQÁ78*i,Lm̍R`yÚjë¾[˜£Ý»¥ëÝy¼**@yØÕ«º³P©Æ´Ìt]ÛTº©·5RŽßç–büöØÙM×M9âî«m½ÜV]3%*ÏèÍÀŒâÇ$­Ö¶Äý`éL-~®Ãh²9ËmòbçýaµêµÚökvz6 ïJFÉðœáÅ8Ϻ¶ƒ^•;?Žºzn÷ªdÆH¸×jµ2Ë @/ ˆVô‡Ýª.;§pÎVõÞµŸŠŒè׍‡| ¦q–h~Û6—ˆ¥Í¾þj÷'¤Æ„NMÁ˄Éà“cxœgàåÀÅ̃¸wƒJÙ,T +ÖZô’?ì@ˆf šV¶!š’œg„M"pÞsæ‘$˜oIt3¥OBœ«‘UAO,§ážÉxd¬ )MßUôWÂg*Ù_ž>)ºªˆj ú‰Y§T<)[®blaú±ñ¢gßC“Å4¶–#¹Sa[5þ ¼øIàU„|&üºÊMò}'èŠ)šYäêÝáÒÝÖíL,sJ ˜A.†žf9Ún>·Wè\Etʛd;G㻯Jczð@Œkٛ¤ätz­„œ ÁÎ"ýy´…p†{é›»rS/4ÒJö ðé´:ëá0FîÞtÖ´ŸÝ5(n02‰ç&_²|H_Øèz°wçT‘±]̇“¿‹;ŸI “à<>K +g»mǓ,qW2­M±žÓŒo±»½…Ö;‡Ô+Ìå9&àíŲ$ ‰ +,šQŠ— §Ü&b;.}…MT`N:ÌÙ)@ä2ô¡GvIqX—Pw±á¯êeG¨!‘37u>¨¡*óˆaö•Ï«šS»YWE¾üéÖ®êÞ +q/žAA-2&æĹ›‚GP1H1® Ô;ˆEɇ÷ÎS2L"îîÞ.¦¤bæøØOÿü'›¤m˱cdà6{}úQE¯lׁ1«éC…)yœfuÚý.b8 +<8Î?êýaӕýíÖŸ/V¶¨F4côÞ±â¬s¤³±ž¾),÷ÎûK Ž5™y¦'ôGã!ë›埶dGô…¹òôÍÚ1uŒK Ø6aÈ„ÁëÎr|E·MÂÍUô†, æú!°·ch»`):…Y2È),·w¡ž–k´ö3¤ø!'¤ƒ,õÄ̧†"Ӂ¼ƒî¹d˜àƒ¹@ۖøÔнêsOòàÔþпÊC¨~u³ ø+AÔ1ªŠ \¨ª«ˆô”Ôú"ßÓVŒñ×`uW1¬n¼Öx÷Ú a@ ã= ÔØw€Á,$³„ ;~Œmó0üˆAiPšQ”"(M¡2Ånˆ€¾Æð‘ð*äÆH>EØýh¯¡Tï)/‘åöÝÇ÷>.“:§§žÿ€úügž`qxâ~žcR“õŒ"óÁ¶‰WÜ<ÆBFòþxå¢6!”ÇXìÍ៮¼®<0O¯ñôK0ˆíûºkë&‚jj´9žPjOV<ð±D‡GmÌǒç4•11€8Ñg=>x‰¾ëñXTô]Wq‡`À^'Óh†¡ÚwœF‡Š͒”NŒÍò2µ¼EVeŽ–+lha eŸ£Å9¥å–y}>Ÿƒˆ¢À {¿ªý w^Ã_ÎC[ƒ¥Ã·+÷ÿAþ-b ý¿]+ÛkÜqpʂ{Æ ÀÞ‰È „Ú콺s „’Oºí {øox-NS·Ùµ»»>¾_hšNdoNÛ ‚ ñ㜠T˜“¹ŠXÏË°gqšÚd-X½¯ð«ÿráR¨ÓR*‰G7Lr·¿ý »µÏH +endstream +endobj +86 0 obj +<< +/F3 16 0 R +/F1 10 0 R +/F9 41 0 R +/F5 22 0 R +/F10 52 0 R +/F4 19 0 R +/F6 25 0 R +/F12 62 0 R +/F11 59 0 R +/F13 84 0 R +>> +endobj +82 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 86 0 R +>> +endobj +89 0 obj +<< +/Filter[/FlateDecode] +/Length 2675 +>> +stream +xÚÕZYsä¶~ϯ˜<…S^ÂÄI0Ž]åÄq*©”+•Ý·L’âÎP2«fHíŽ7¿>Ý8HpRÒJZ9/Òg£Ï¯X¤(V·+óïO«ß¿ûò{º¢‚p±zw³âÑz•+MJ¶z÷Ý?2NØ:§”‰ìoÇþÔl/ÿmû®YÿóÝ_V|gf󥤒ÁìÊüÃÙ?4ûuÎË2;5·—öÜ¿¯ªÈN—»»uÎʬ?›CCt¶¯íЗzw¼ÜÙOm2ÜìËïå¸ +‘rU˜-þ¾Îuö•#Æ1p"æ‡ü;Z¡$Ué:㩒0á:ÿµ<3§Je;;&`üàÌ Ú¬í©.=α9·Û~ß{¶ÚüМÐF Ss&aö*ú…4+üy¬âãÌk’`BÉnDÄ0´ë=µv©¶[3•›n×7LɵÐUV۾Ú!µ ,üÙ®ÙïûóØìks»r= +–,#:*Â*7àM4_å…53™ss¦Eöµ¥¨‰Vb%ñ+©h™Âõ¸Ù]}¾ëý¡qìðÌɝ$*J¨¶¢fÞ®?›QºÌvõ5ž.æ‡ÎNçætòçãåŒËÛ®]k›Gñ› ømÿ&û ii@0n£·µ8óÁ ݬÉh}+¡‘ï9å îÔÐøW´Á²®wóð·Çÿ e >À +6Ƕ?º8þm0š+xæùIÛ-œÒhiØ›ÓÖqÐ4QXd×8Ò-5`á0¼„ḫtfuPÑ ©`2»é»]íÅRï›7¶)іèh÷ö¿s-ÄJ›†ÒÎìk¶ý®Ù0Yv­ã‰, /+:²*Ðg.‰`H>'…5÷mÝõ‘Fß©Ẅ́§ +üÔώ¾Âº¯ô9%ÖUvÑڒ(Pl× ¬2ý!‘^/È\H‰ÂY‹*Û®e‘Y!5¶c{Ävà¼ééή¹í"Š©äèú'Þ¤š¸UáOÔàš»x…ª89´˜¸£Á7²x.'ŠÏn^‘Â/ìœ%ׂè‰~}×nÛÚh8èÕöÇ&ÚBU„^ɤš¸nÊFOZi¼ŒY틈iR)ώÁ¶ÊêÚ¶¢“H"½SÞaŒNš€WUI!Fþ° ’¾’ځ/ö[Ÿšß&‚óà«Ä^éÙ{¨oÓà’]…1ð¸ˆü¨êrÔ»6&<ЏOeJYÍs¾|‚-°¼c’؃ðêˆ ^¢Gyýhü?Ò1K911ÅæEàÌ èÎx…£#?n}p'FÌë úà ZM> "Z4ªÚ¦ˆ¶ë÷gë¬ÞĄèÓŨK‘B?«ôed®ß¿ŸSÀOW#ð»fUI´çã¯ã¹;}oqJ­&®/ß +0¦ –÷P@­Lƒ/ Ê"tZÅúígøáË3µ>»_#ð«6!hf ÀËÛ¦Á戈¥öÍ!À'¶çšÍFÕJbèÁ];¬Â„ í*fÁ‰`¤°†’ˆO8‰cSçÕÜ!˜vˆN8O6èÐ)t‚Í#̈́£1t ó2_Մ«'!ˆ·˜œÂN€p ` +7oOçÿ…¾¶€%‡xçÃÇ8+¡h“³¨‡Ž¹Qr±bÂém<¼Ç„óɹKO*"ãÕ]Èlló&éÍÝ4ZÿMbo"ÒL+Å ª–¸/ÒÊAˆ¹ê¿]3‘9eÏS§¢¯¦TMÌ!Ä} +¨Âԏ9ŠP1Õ)ZhŒñ¡‘…2næü·*Óå4X”V!³il¡`×Bæx†œ(HVM»MCñ§õ$XT=I©1Í)]ÙÅdLÐtnÀÇj¿²m„”۞ƒj€5…†¦ÀK»öí¡=7Ãa +8êVNƒ'眑Š®c“hzûÕÛ`$s̎Ô}Cb$¬YNFچp¤a]¸»kwsf."(þÈdÜ°Ùñã:Iƶ«$›ÚÃݾÝÖöc,Ç—»Ò™T¸~ŽypÓÏqvÀÀò˜‰`sx">)c™¥ûêgÁ¦qA<ApÜæ:`€óU…N:_³NĚ&z6ö÷ŵA¶w떲I6n²CksÀ"¤·“?ÏüP¶åX<ü˜Jw†zƒñ]°ñ˜²xP¦­«1r¿†b •ÝYñS"¯‚“ãšxH9t)â¥SH1®çVc"¼HÏsפ0J=[x +"ü½;'ƒü°ñÚCǂ“¢üÄ0/0 +‰ÁŸ„¼äÒ}¸$*Vÿ–8:d†és‘l÷Gž¥D9èþò폘Ò,$ÍzDЉ¤Yiñ†•Åâù€Y©³oâ0zȯ7Vbä¼Nq^ÁV³i탧ËYX§ÆÅ$X*¸óDåQ@X~¡ê…Š +z2ÊÕôãk2)†ßE€«>€ùRa¡6Ȭ08R‰¡‘™Àbˆo°È ÖdÚà ɷ]˜'( 9S‚Ÿ¤tr¸·±€êÛ÷ïM.Õâ)L"©AHz\r»ÇsÐg¬MéM|ÞB@U˄Ï +¯O¦B%(6{-ŠÂºòž<™"%,<§Tڜ³Dq~>«„!Ÿåc+MŒ±ì‹˜T=F›Ï^©äs•Êð¨0þž:3«Æuž&p`a’ú|Lzäáx½dæl3a0T/š_âPµ8i9ã…q_£Ù¼˜UˆÇÁØ_†ÀX¿ŸZ…®žQs–þå;¦H¡Š¢üӉÒ& <Á/H;Ù§hgõú>û^íäOòÙËÞH/½ÐÉ9qDtT! +ÝTÔ ó‘ù˜ ¨*d¸ÿvÅ9?H*ŸñĬB¢%^A6>1SOí©r{ù¢nH/{!ý@1ëe¤Ÿ+椏÷Õò?YV¸ Žôq¶ø¨çGWÎòÑHvt¬¼ºw+_Ś=ÄüobÊ8–»þ™I³¨¦"!K…ªv€t þ;‘e 34,.g²¬ +Kh&ųe#à—¶K\¤‚1Ó깞7¨‡VjøÂuLt9áT÷4˜”ñ•vT<¸rp ©‘‚°p¤iˆ/'‚Ý}ð»{Œ{ejª˜ÿá‰þÐûý¾>¶½}É c³•s&LVLŸyÃÆ^óÝLXLíáD²vŽ‰Ú96/ÖÎq@ò¦X,>t Þ©Í> +endobj +88 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 90 0 R +>> +endobj +95 0 obj +<< +/Type/Font +/Subtype/Type1 +/Name/F14 +/FontDescriptor 94 0 R +/BaseFont/SJGZEG+CMEX10 +/FirstChar 33 +/LastChar 196 +/Widths[791.7 583.3 583.3 638.9 638.9 638.9 638.9 805.6 805.6 805.6 805.6 1277.8 +1277.8 811.1 811.1 875 875 666.7 666.7 666.7 666.7 666.7 666.7 888.9 888.9 888.9 +888.9 888.9 888.9 888.9 666.7 875 875 875 875 611.1 611.1 833.3 1111.1 472.2 555.6 +1111.1 1511.1 1111.1 1511.1 1111.1 1511.1 1055.6 944.4 472.2 833.3 833.3 833.3 833.3 +833.3 1444.4 1277.8 555.6 1111.1 1111.1 1111.1 1111.1 1111.1 944.4 1277.8 555.6 1000 +1444.4 555.6 1000 1444.4 472.2 472.2 527.8 527.8 527.8 527.8 666.7 666.7 1000 1000 +1000 1000 1055.6 1055.6 1055.6 777.8 666.7 666.7 450 450 450 450 777.8 777.8 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 458.3 458.3 416.7 416.7 +472.2 472.2 472.2 472.2 583.3 583.3 0 0 472.2 472.2 333.3 555.6 577.8 577.8 597.2 +597.2 736.1 736.1 527.8 527.8 583.3 583.3 583.3 583.3 750 750 750 750 1044.4 1044.4 +791.7 777.8] +>> +endobj +96 0 obj +<< +/Filter[/FlateDecode] +/Length 3190 +>> +stream +xÚÝ[[³Û¶~ï¯PŸBM,†¸pâÎ4M™N'“Ö~«Û }DŸp"‰Ž.nÝ_ß]$AaII>ç$™¾Ø‡¸.v»ßîB‹"/ŠÅýÂý÷íâë×_¼´ Ær«¯ß-D‘³Xi“—|ñú›dßÈZ÷Ï»|ùÏ×Yüùµ›%†YºÌ‹g½:½¿\ñ2kwMµmqÚ/U4Áä[nì|¯záfC¯~Ãu™Ìg"72Œøè{crrÖu>[®dÁ²öphªåJÝ-¹Î~¬ñCeõ¡9«dy[ä¥ ++Àþ aeö‡d#dð0®Ë·»d9ÁsÝ´&¨-L·W–Ì•¹R“Œ²yÙñé_)€‹¼çÑJ¨ìËåŠé²['"8º¡o–Ä6¬gFYÂ·rË«ÒJ”6b±b2—Òõüñí[Tœ`"óZTïñ‹e þWd­·ÛÆ·8£o¬ûñ,%ѹ•c>²bQæ¶ô"Ð +hȍëß% 0¹Õ‹®›VHñ´BÃ|>-§"çgº<⽌4‘Þ˜7é–VÃM@†n+ϧŸOõáØzÖ¡ÎÂ¥8î+¼ }“We^H/ ,B‹RÑp©šÿ6í29g½}(r¹ø÷B0֖Ȝmÿm@oÙb³xã¾Ýúq&çe÷Žƒõd<ÎÇãL.Ëx_ÿ=ì‹ö‹%VqŽf ‰*¬–ãÁÄÈðÙøŽ¾g¾jªTóY$Åkî8¡›pÓ#åŒW¹†¯®¿»¾6V!S†åO;<””Ùát·”Œ!ØõŒ££”"»Ûc{}ð=»cíÇ¿ÉÖµ›°÷3únØÏÍkR³Ç¹Ìu·óßS²BO¾\•Bf¯ê`´D»Yg¤ëÔª2äдiì;9e¹$ÌËÔ÷« ê7öîǔ)Ðx=–a¿(t5º„î »¦ ;-;mØËA3~ŸÎUx¹:çvÎ$•›Ø²ƒªÍrÿmZ§A©S•Åà­RJ#y½@›_‚Š¾§W:žòf’¸ÈvíÑý%'* è²¼2‡DJ₮Ÿ¶*oËP‰‰ Õ J’’ò⣈®»÷ÁÄeî“óÐóbmKÁ`åtQL3Ô»uë?¼¥–ã`¨`‚—CZìvn„XÂô¶Íé̾>ÜÕ!ĉ¢6p1rû¦r 6µù¬Ú¿m0k꣝ FÍÞõ4DʂåZߊ]ƒ¯¬s·9­ÉT¼)tÉõœ ž5ÁâA&X<©£rÑ}Ç=_ ÓÄíͱùЌ€‡Óvinµ¯7UȸžÏÚýºÙÕ©¢6ÎÄtGgKxg&õ=JÜàÓؔNÛ¡úü‘ •¿ +Ïóö^ĬôÏ^Ä}šDŸƒoMy+r¦Ñ·¹}Âv?wé2üÒenC&Ç$™Î;¬<ýñ¢L¢ñõ”ϽXç`n ž¢'QˆÍSH„ÜD(4P#Kt¸ñHא‚§h÷®¡ßO²àˆ#ð¤4¾Îk? ž$f„ã™àIF‘Ð/^MÇ8]L¢'øC¨_ ?Å´9%­¥vœ—úC3«˜bCݕô¯ÖŒý+.O\"À"S~W•Ô&ùàÑJ?€HwD8ðv…‘6‹Q²gï5‰² îR3Ù1x)_És_‚Wh§*ϝ*|˜©‡ø6øÕz€A)IÓù`–‚jÖøb Èí¦ ºZ&N‚õb¬Ð¤êC—éŸÏ=%Pƒ½2 d'’@_ú.$F<€/!ܓ'›CûŒzÿxŽy¦Ì¥ò®wÂî ©Šé¡°tüâöQ¿þÒü¬B ÔÕ×®¡¤Õ*odòi™¼Ú]2ÈûæB¥ã±ù°T"ýY÷¶pô`Ä7vˆ­ëÁñy *6îÙØÏ÷µi‰éU=W›†³®taº•ü©RüN皏š\5y)âŸ*a…ü©’d¢Òš!Ï6û‹# ‹}ïK§ÅtR ±´½ Y Ñý„2Íðñè—)W½ð¶cÃÌǏT‰B)Hœ»Ú!ÈX> žF.#ºŸ3òEsdf>õaÙƏ^ –æڐäiÏÝÕ$ a©?uÝs˜ ³ Ì"ÌÙ£ +C>­0"óÃ죭«NûpaŒF+Ï Æøw¬Œ+1„98†uï@÷?#ÅšÏ +endstream +endobj +97 0 obj +<< +/F9 41 0 R +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F10 52 0 R +/F1 10 0 R +/F6 25 0 R +/F11 59 0 R +/F13 84 0 R +/F12 62 0 R +/F14 95 0 R +>> +endobj +92 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 97 0 R +>> +endobj +100 0 obj +<< +/Filter[/FlateDecode] +/Length 2801 +>> +stream +xÚÕZY“Û¸~ϯPžLUF4qÀºöagSI¥6N|¨Š]³\1š'Uý±Øï+œûú{1ÎZ1ž +ºXÑ<åfVa‡l!S-ÍÂ) žjÛÿ_³}¶XÉTiÓR»t˜!RÂ`vþŽØ^PÂӜ/¨ù#¾]®¨”É]ÐFr\Ï®ó)BV.+’J=Òõú{>N—©T‹¡ÿ?° %Éåt¹"¹ ~QJaÐs“_HƒÇ 8*í9™-´ë¬.‰4g#õwËÈñ(q³C²I†Ó6²Õ”ì©èùqÑ{§ú6¤›¦œ£;?%ré‹<Ø?Q80q¦‘€4ÂRýkSÇóåJRF&Újl:”/ÍRª¯gÒ1µïx–#;%@oöÊtnÏß]¤šŽí›GíÜ;¡6ŽüÛ®ßl}µTɶ°ßKpÜe[ÝQ!צM&›rk»uҕë¦Þ¸±E»/m;yUÖK*“C½®Š}sš`‡¼?ì÷\ÔŶ¹/z§Ê]°ûmµ+†¨“Aœø߂Ãi2”xªÝØ@~oqÔuP;~È¡!2֔“‘¶Á©R.'»»†qwd: ™žg)³âùk¹ÛÁ X!ƒm&aUûªÍÒ\Nf¾¯ŠÀ@˜ò¥žE͇°×ÝG=ÑúÁ85œ‰ƒéë%×ÉACÙuUS—؁H b64U}0ùG°¾N³¾3]®TF“÷‡‡\½©­ÖâºëÍ ŠØS¶¶µÁ?÷uxPÎÐi•3ö'ËzwAmo>ñ:C$ú!ä +E‡k{Ë®êöEm Á²¾YòÓ¡¨!Àïr[îÊ’ù·©"h„bt9ƒI7Á\tÞ+y 1OÙÄ3y˜Ž¡r¾ÌÄ@ ꂥ@Ñ|N´wå$†ÎOáÿؙ‹)K…Oå£û:Xþì)Ò -®ŒY;jϪÀ FâRÆ0Ž‡q µi–@çǏ1ŽgÜ°ò‡`oŽl¸ˆqb‚¡­óZ1ÅS%|/þݒŠ¼>á¶iÑCׅNô,ÏõEª L£ž"îKÛÓ\,¹ä F2¥¬3cJǝv¬Í™ÊÎöÔû҄:• )Û®«($ŸyàËUé‰EâÎsúěre… +e¹/ìukGÌH{E¢Üew—d’ƒ© :ï,A< ’&æÎy>:ŽÐë1¼DÝø€ ÅESÑ»«ÒD—Žœ5cgb˜ÙÌL½¸³kw_4Ïáì 8;þq +ùÕ)dÓԂ¾-·G¶TÁ·4½hh®ëʺð¤ù€*Þ·ÅS…fD |ÛÖ«#4:ò›H^Ãð׋𠸨iÆü0†_¨Æ ÷«áñ< ¯2vA(æwž¡ø¤òœÏÀãúØ¿üÂSƬ„ž´’­8#Éße(ß"$ÎSêÇÌMµkº}ëÜñ“æ]˜éó_Åë1CC¬TÉ¥*f$L.ƒ +ªµ9±±O@Œ‡øŽÉ}žôñݺ®Ð=ºÕ˜+ãÞZrÛâh/vnVcòƒ¨¼ì¬Š¥Ç+A$8« +ÎÚU»j[Z‹m_Œ(×å&`À´*ᘰóã°ÖYk ®!6R#0ôGš†°*áíÞ7 »{‚‚|ƒXoþ‡Æk«Òp]Ä2 + ?6Eëš #D(Y^WO £Ê rß[à×Þ Ó/Ûªég—á́¬ +ŒÃ¥0ÆB$Ð3–Q;ª^;ꦶ?뻊¶ÍIq×ÔÍôén™:EÁ‡¦o½ƒáTÆ1©Ùº £)C>ºÛŽXQâºf×)÷ÎVežè'0ŸMª2Œ¨XO¢U-±0r^Q†3e‘¶(ƒEl=R”PŸMdÌ_ž§%!'%™°À R=+R²SPƒ +YPx»VÂ/¸;Ù…à܀ÿŒii']ªç˜™Óôbg“ÒK/ Ë$5Wa¦*2…¶$´¿„IÃÊG£æds‰$l°Β·Õº¿ùÔ&r€µ åhT†s¡òc`£~EòS¬Ö:ä“rVXïš þ×Ö Lwo‚áå Äò3º)vÂMIîå×@c·n«GÃÀˆB)}ŽF9…ŽàV>šß´d Ø…Ós›«e¸hË©èmk¼g,¹ïS$«Œ&ëÆF¯¶Ùn –°›Œ±Áƒ•`®•‚{. +ˆ_ŸJhOÕû&¼….?É@¤DGÒ¦œàBÛè!< 6Z&!â35-ÛL¯Kùà¯û#Ø›T̬o?Ê §W/É&uʔ}f Ï ò*ÏDòöPÿt(-m–F6ARM( ù`YXÛ–¡.fU™ü³.R" ùèçfq·4åÒV(.ß°­¿|3íKÁÀY¹á£ð°¯ÚÚÖÞÃ`Ûsü†mˆñÛà ;ÈÃó¸BÄ¿°ÜC*WB7½¦˜7Oo0ęg7ÛWº" q&Œ¸³`“gæPσM–æ rš!ꚽÌFxóKߪTë ؔdlJ«ÝØ_Àк&dN+§&¥‘É©ÌÏD¬‚p/NK ÉÒT²ùX,#WNû(&a^,Gâl£DpPØÿ1ŽN‘‰Tå_-«Ð£x:w +ƒþ Ë +Ãu6Êã3^l&o¬>‚¥«‡³‚¥)׳‚•¥ì‹me©ŠÉ“Óqäçèëœ|ì$€P˜«¼@x¬ŽTáÃë´§X\V3˜'æåÀQu=’ \+Qe7öwU¿r^ˆñ®ür;ö&ësdêàŽO}ŠœfØõ|€Yå0MfûêPƒ ÙO0œÐî¦Âø€Èað]R÷Í]YwmíÊ]µÚ•û¶Z7º Qc(æ6㐢á,݆á¦ñ²‰¥ÂÜLfŽL¶ð³xp¡¼v¯yªƒšJþ¦ÄðÆy¨ÊŽ@zۍûó®mpØd@3Ð -CO »¾w#›®+ÛÇ*|îãPI…Ùßg$÷e]¶ÀÓ | ã…Vø$Ë +q(G>¢Ë/ð”yEÿ•»1÷)ö0mHX¢o(§÷ÛX5y°Õ ùAmµ‹1ÁœØÑCîúPY‡ørshÛ2bùøäteP_—<_ùb¸š%“Û¥" `ÓÂÖ"²e,7èió«j÷°­ÖÅÓX%®lÓÚfçjɽݸÊu³sµÜ¾æ¾oúÒ¡»íÊûƒ}¸¶w ïKÀ¶îõY¬rhÁØíRC4#­‘†ÉætÊâCi8RƎ9.¿bíP© œU‹Ã¹œFk‡¶òc› /çÇÅ#X*¼~>éQ((ä¹ÅK¥’÷‘Z œæÌÄß޽꙱-®Šb¸ ˆ=±ñ©`みÀKæ@ÌUI~?rpHëÒÐׁ–`µVâûB˜³Úßüx˜% +endstream +endobj +101 0 obj +<< +/F9 41 0 R +/F3 16 0 R +/F5 22 0 R +/F10 52 0 R +/F12 62 0 R +/F4 19 0 R +/F1 10 0 R +/F6 25 0 R +/F11 59 0 R +/F13 84 0 R +>> +endobj +99 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 101 0 R +>> +endobj +104 0 obj +<< +/Filter[/FlateDecode] +/Length 2843 +>> +stream +xÚåZ[“Û¶~ï¯PójÆBˆ "ž<ÔNÒIÇÓvâíS”v¸v©DnHj›ì¯ï9HKH^_¦µÛ—%…ëÁÁwnw•“<_Ý®ì㏫W_}¯V”U¬®nV<'UµÚ”‘luõíOÙ_»u‘g­ýsCÖ?_ýiõݕÅçY¥$f­Y™én½aReímcpâWßóQ¢XåvtãzÅÜKsÂ}'seÐI S¾÷Ï®—G½ªò½½©›v±5SD0?bËŠÒ  ùJ%qœ†­á<”.Ø¢"J­6ӽءšÏÈÄL¾eƒ*Ø`¯q•Æ ZåÙ®=j÷Ö·w]MÖÁòìGӟCí:Z¼€û{Su³f2–BnhUûPA„xGmw¥ˆ°[VÊÅ^”“’züºØ¡$ebêü°–ï~ëúï¥qeÁ)î@Á\–g,Ï×^‚/#¬:_Ž‚¸^ý ¶¯¤FzaŠÌ¸Ÿí {ól!•»Û/V/I>n½Í–'Š`ûD$ó R†Hx¾Þвï;6Ñj4àíz¡½ŠT¥ïýýrn‰7ézs§%´87öQ”ðD$ý7•àœ2hBážÖš‹Ñ {ԔyfødÙÕº¢™n;}¬±‚s1þå¤Ý—uW_›ÆèÎ ežÕ××àIZ7®>Ú®^ê¼?ã®ôóîAªó*‡Æ~«q™ÖøE…Õy…èò½Â½R~9Õεz½ôÆ_“茷ºoqܽ½ŽûuQd¨zp/ǶººÓSX͉Xýk%`ÛO žžÇ¹!„«Ãêu0’ùîFVˆŒ±!1at áȊíîæÝ_\­4"ÚxAhiOù—(Ü ’(Ëêf‡‘è B+¯²žœÚvwЃ~xÀ†\….ºû»úÁ¸Ž^Í樇ÎìlôcŠµ…û5÷ÆMºi›=î¿q×@%b*¸…¡>h§wsô.´êæ¡&qóuç« ãÄYÑ·>ø>˜¶ÁùŠfœp¥B*ôߜ¼} ŽÜ-’{ãáÙÎj^œ=ò¬[ •éÁìl†uh §Æþv H’z’Aý¸ÞT`‹%nÈ?–am/÷öôxjA˜ð¿<Óú¾}Ê9{dŠ*2Åéhö²¥|²Õ¸àÉ_;è”ÈÈ "ÐÚŘŽCw"òÌjŸæîPéÁñ÷[oð Ä»ÜÆÅ@àâü’b8]*ÆÊè$;ºÃBKr4úàÖë¦oÝ« À &`^ãŽx² Xê~4!%H.Bê½ÀPkv0úe}Ú½ùÍ½Û áiͼÈ+n4hª‰c†Šnx +sÎ>š{më‘[½]Ÿ+F¼gb¬ðüÚ:ˆ"kÚÁ¾•Ù쓠Ùù$ìMFìǑ‘£‚†úλªÆO3 .6t­Í÷í0ø‘7õâ@<à'ÒýîpêÍýNB‘|DAgnôm‰‚ëèÌèoñv™Â،»óHõ µs1ãuŸ²¬iÓ$“m5Áùñd}Ä(&¢xïÊÁ> %¬nŸ âAwõpê¼øA<€_Ûm‡.Ý£&h‚ÊPþžÚ/pK·}óà7_¾×ÿ4ÍÞýz4â·möª›½v§Æ=!à ¢ÇE"åQXÂ9¹‹Ø龯;q]ì(ÃûiÁÒ¡­÷‚—ˆ³ï:¨ïŒœ±WUV»É~q-Nì[àkMÓ}ÔK©úÓXԘ¶ ¤Áˆ¸…SßÌxC(vÌÑ µlêS ™‹¶A »•¥[y±âhª©ë"äÕZ‰9'…w°ìl€…tDBÕÊó’Hé ~š‡`Š[gˆÏÑÕ3¸¢”_€QåY?r œfßõ¦GépíÚGŽ¶KG +)ˆâ±†c†@Æw‘æ‹@`XÕæAŠˆâ`˜\Ü1wù5á÷&Úé´g P²Ùµ>(‘i”euIDŠX¡. ¹ zãbl Ó^AP)C«f‘ Q‹-$¬ÊÞ «çXB=À]°BgTùØAÑ%ÐÄ\ć'XÐn¶›P(¹©ú ӎԁ5‹kæ²·Ü¥œY ³¾O÷›JïýAîƝXT(-Ïfz)¢ìÑÖPþvÔƉxjË8pÎÎR<§˜ÓÕ7ÊXVÉ#£ä”Naoz†¤õgËl'Q_ÄIlJq–~˜ Ä_Èr8lîÍÈ,Içêåõ —TT†*òèaª@·máãcp=Bbfæé¶ $#©Cg:ªóVo¹,Èû~ZDA^3ž¤öG¹N};äc‘ðsâ+K„ÅdûY)ÿÜØ¿¥sqlºÄg˜@½¨ÝUØh/hüy&]’@’5óûDš«‹p‚‘Ó€ÄùüÉõ«‹Ýð‚9¦L¼ooµ>Æpc°LˆZO°U…Տý7ò‚|½Þ’†Ä­*Š/mÞ×ÏÆ…ãm=ÂOƒ9Ää#äs‡1¯k,Ÿ¹ 0{Ï_ü8·ÃIo|~Kžš3Ÿ÷–Ç‚gú gê|%¨ÄÙ²46ÙK’ãr²„ýL+;¶W¸OøìOV8‘m·øõ}@Öõ ?$ųy­W $OT¤²²’ÙšúÐÞF¼ 2tpÛfd µE 1§Ó\f·6¥È¡*2q½±‰ÏµMù1û]þ# D[ñ±Ì=¶‰Ì ‡Ÿƒ5‚¥?8k'éO?Œ¾ÔÑ0ÔS§Llüž A$Ë+˜’•øõãÿ)Çܕ¥É±ræÆ>ƒ„ð)éÔn _Ž¹1˜Ñá3§² â,_ÂoCÈXÛ£»G*J #͉À +™$[ +Ÿdüîßÿ²9 +endstream +endobj +105 0 obj +<< +/F9 41 0 R +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F6 25 0 R +/F10 52 0 R +/F1 10 0 R +>> +endobj +103 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 105 0 R +>> +endobj +108 0 obj +<< +/Filter[/FlateDecode] +/Length 3108 +>> +stream +xÚí[[Ûº~ï¯ðéKd fÄ«¨ž¶@šžiƒ¢m¶@³çZ[Ù•­$§Ùüúΐ”D­(Û{K“´/–DRÔp8—ofèELâxq¹0—?,~wöì¥XPJR¹8{»à1Ñz±Rš$lqöû£s¦’åOg|ö’Æ‹„¤ ŽJ K+J´òÚöËaE˜ZtÝßÛn>tKÂÄ"6¿ ÌM'S{ïHû¹¯–+¦¢¼^®×Q±Ûë¬Îñ)‰ÊܶÖy™}*ª]a›7OªzSì\gÞ5æï÷Ň¥äQVæ»O6+˜ÐŽ:&KdIJ„r«xíÖè1’rÂ\ï?'/›µÆ>wD;?~sE•Š6Â`Îñp´=çK˂ +‡-Vú©¦J¢º7Õ®r,ËÛ6w¢Ærٓ5§„Â(á’%Q J+Y üÅ+‹ò¦hZ3>öKF£uÕ´Ù9o_ Æ0€L7E ¢‰˜*°Žubü¯)õ -`<ÇmŠ$ÛÞ?MßMHÜÍÜf¥#iN2„Ä›ŽàJ`™”1ÚÁÃJûÑ©Îõ”rMbîFa˜h5(M·ìÁ1xóö›û{ziü,kIˆN-XÂÙmñ*a¡mQ$ýü»²â HVÀÑóáSu îíæÜR ›Nîñµìö”…½Ÿ# â1Qù݈Œ^Y‚šürŸ÷‰-e¾Ýº[k Ý8âǂ8Öz’DS‰“¯xn 9̎YÆ2â„sÏl?{™ú$s"à}£Àß쯮–2ŽX;fml¸”ÖØÁµZŠ4º4(º‹]›×²?•U`K$‰;Æü8aLKf8ŸDÓ9áþd{½eh¢´ëCƵ“ˆ¯ÒAóÁA¿˜¬.AÞzå&oR’v¼/³·K¬á‘Öçx>61›¢Ôt0ñS"Ò0èö‹ ¨žr7È&èj@Ð‘¡_g§_×ÅóÀ×}ùzòu‡a\?*ŸÐÑó%È,PV5ÒáhÚïÜM³_c³áHÞ4‹ó€ëӃ_?b³„£Òö„íà_ù&qüä€Ü ÂO×:5£ujVë’A«Á+È¥HDÔÁ @Ž\Ú3àæ‹l¿~w ÷ÀÔºh®Ãs*ۛ°ZBzêއ%O{’—ÛO»KS••»Ã&ý•Š ÝÐkºQÇøÃÉìÄæsس6_±ù,æ$ÿ·ù_²ÍKõÔèφ#V_œlõSzÔêëyÕ¬wMÖæ+°ùдùéQõÑóÚ#û/£Á×Iô¦ÈvSAlPÓ°¤¨£ö[6ßzÞzëN„­ÓF„œŽéyšaò#Yx©gã:0òc7O >Nt!Ä= ˜u¯‡¡ª÷/çA<Í-^Ýsñÿ dHƒa"0àtO•Û^ÓA`îˆ&FÒ(g¤Ññäc(g˜ž~²¹¬ë§Ö ³C^xbƒ¡òv†`6}õð'qT?K%у„ fj‚N ÈCAc4)%I”EE6¡ ‚aý˜ÈWtp˜Ãã¾ñ‰ Oì0Íx›Ý¾ucw¹/OŽafùÐvvd%ûNƒ?o¾mSEâI5@5ôàž{ t¹—K?Y™^å);¤tąj ԗÞÿÅêÂ8—”Ù(ÅäXº ÅU¨Fs$)Pـö¯C†0¦‡Böþ˜Í´€ÑˆÔD̅ì)ÓÀÃ4ÌÃ×òÆoS60,pämˆ Oütµâž@<®pci·!pD-âò¡mè ݇·!˜9ék¸.7u‡0½¡œ˜291ÑCd̘ô!˜<ï­ÛTbxÐãžvXúï‚ÍÕ¶ˆvÙAí§žo“üèVeçí‘ežÆÖÁ¥ô†ƒK[ŠƒNf+Ÿ5μITãD*Ò߅RVª—(ùÜ^Þïñô·½7°®à׃LYhŔ'C ç!Ü3à"áN\˜Â°¡dã(âs9rx‘Ò;ü¹¶ñ²=v®Bä*†å‹¯ÇePú ÞÇz­0 ðb@úB‰ž'ï÷î oe‡vá=/l+! Ífžà3'Îkw¼¸tþœ‚â£"Äk(\ë¨í¨° +9ͱŠd@^'&Yq1±pGౚïuzCX¡!$¬LªVXÙXXaáFtêDSõ¢‰}Ù®?&Ȝ£Õ;Íòí`Fë˜ôè/Þ¿P$5&]€Op•I¼µÇUW:N¢W»ªlëA3/ôÄaefghúôxÓºÖÕöªÌÛüÓ'×àsqo9SÞ8rœ`‰yÆçП`Ãï_6ã#õ'Á*¬!âpú93ÿc“ äÅÔÍLB˜G¯JË0§"0=ï {Ý끯áä;ÎJ?÷„ø\*¢õ6ê!ŠhOmýtcNۂsÚöØí&ßì×ÁRå½ðœü2ë㄰:$ÊtÀ´Ë:ûTtǦKÛÖ +4Ùc ²3˜¿þ€s¯žºtî* hÌ•Oö»b]´ÖïiBbæ/wÙ&“-é2P;ûR:ª¾Ö8ó@ú…œK8 +XC*£Ì•j&¢N€Ç-ã°1%ã@Ì;Ì|* ðÉQ©bâçE¥»HvJ †ØËuÚçÀ8˜OùãÌó4%:|×=÷ßÅ šÃêÂËÎËT¢1•p"`ï(¾¿£€%\X¾½*ªÃù}EM8‰3üð¡Ø¸?ÉåÛîæ) +:3@‚‰¤Ïë3¡#û7¸ÚLš„ÿš«÷mëþ÷jà»mâË ±q”nµ]çQe¾Ê£«Âôµ’°÷\Õùºh²1½Â}Q;²7Åv›oŠ¬uëª®Ê2«‹ÊTÖíl‰f¶ÓWÄúx=?w¼üe÷òn]çmõ+kb ûzŸ1ŽÕ¸ešý"ª.Š¼u!¬ xO­E€¾÷XÉì}“ã?Œ ª£Ô1¶¨mØ)€° +,–‚0äùnm³à¦ÕÝØÙË63¯wǵT€NñÜn½ù™tÒñ‹ÿ\@gA +endstream +endobj +109 0 obj +<< +/F4 19 0 R +/F10 52 0 R +/F5 22 0 R +/F3 16 0 R +/F12 62 0 R +/F1 10 0 R +/F9 41 0 R +/F6 25 0 R +>> +endobj +107 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 109 0 R +>> +endobj +112 0 obj +<< +/Filter[/FlateDecode] +/Length 3079 +>> +stream +xÚíZK¯ÛÆÞ÷W(ޘB-†óä0mã- +/j(%-¯¥H•¤Ü؋þöž3r(Rºò½NA÷’óÐ̙ó>ßp•¥Y¶º[ÙÇ«?¾þú{¶"$-Äêõ»ËR¥V©Òœ®^÷cÒOõšæI߬7\ÉÎÀ“ódK¥XsI ís§±E¢³ÛKà®Ü›U>™qßÝë¦Õ;;.én§Ý€?PŽêx(+Ó;5UER‚šqƓ×k•%eéV•É»óïucRKۋ×`+®PšB%Š I|iI“,éôÝÉ*<“|\ÞÀÇÆÏñúÖu~ì^öډ ^u¥Ú٘q?Cî•np×tf¿ù—nh»-«cÉS!bîÝé·-LãÈt¶®ÌÁôö  Y•‘:f NA)þ6Ó•Ê ËOž9»÷â7֊a§¾$„M<°Õq;VOËævž€]UvÙ•Ž4ÔôÁ³À¨ç•ÿ)ꀷî ÉÀñ©ƒeœúµ‘'%ª³(ð7³£"éʶ¬koHeU=m,e»]Ó¶^waÀÔ{ §7Ïpžô'd4z,S:s¬Á™x[Üy_†kmÍÝ&ö@Î$ÁÕue)j¦È“­_Š‘à:Iâ‡,Ù¸ŸPI埝Þk$JÊd×ê½)mæ›ì¼¦: ~®½kGsêÝîh(sÿŒÌu×T^ï­ÂàKP4¢:˜áÁ8êeã†" ç8[¤Õ õízɒ +¥%ãmWmj<H]Q½;¡ÃW –ê#{;}0çH7¾MœÖŠQk))£ƒRorpwvŸ§”û)of+äi‘žòü§"¥Âþ¼ôK9úXâÛϬ +^X0«íÚ ƒ–}A·iÏ_37Mk¼ß/ŠTÒXŒÇ¶9‚ë‹<ð>/lxeŠ ÓÑV+Tf£Ukޞ¬¸¤ô†AýÖÉ¡š(ÍKeJT ™ærv¨<ÍÂøÆꐕ$®ï´(êtÝù¾c«w¦Ã)îtœ¥TƧƒ ¢ò>ÝT/ŒGµùd@e\W×@(ÿÆCFb2\2%ο‹~†+1™°”å‘rN#4£0Š‘–¤9³+ü½v‘ÎÇbb`éë$Ž7syÓbÈԕ£”U]PVñ`eåה5¿EY騬çùŒJ³|P TÄ\X½nímšu¾ƒÏ£$jPËZQ´®Ñ`ã®6³Š"e!ºýâøÝh8ï§Ã@ú"X0-/TMÃåDuR’;ÈÝN˜O¯°Á›'„”‚8.̵і¶KSŒ1û—ÙàÈU…dc@ÿ¸°-ag’æ±²PrQ“pá %Ÿ0Qª8Õ¤a…ëf°x¨[7?ßVŒJ~ýToæG _§øãla•ª/A0ÆšçÉs|¨$sçsZ$zÎìá +uƒ>ýükéӛë}¸>Ýd$P§)³ØòºŸ¯Myq#³îS§Ë²ŸÇQð” Ç2rVgÁ”CY ÁT]¦,-ŠÆI˜åV0;—ï±Jý÷Ú½`º‡Ï… ©Íý!ÒJšÿfclAç1vÉ‚zíµ¯YNSÅâÄ +s=y5×ãEZ°ÏNõΉæy*Ã, Ú„«;ø eԊ¼t/ÝÉJՊ²V§YTaaû[7àƗ0 +!uH»¯K´×ˆdN6ö@«K´1œS/ؐy‡ñå4ˆÆ¨ÎÞÀ‘àƒD{RÊNŽÍ܁Ñ®¸)¿ù¼ùì¼2•ä¾ó²{Λ•ïËʗÜΘEvcr¦dzÍAf³œ…ÌÂ`D›³°«áe16©â ¤p×Cî%á>@—˜o±¥.ìOh¼ÿ„¦‹:Wyàې¢a#²Xh5K¥GAF_ÿøÚcI~_íy¤UÆàuK&ýr®çPIQ*Me>'—Žzqõ¤Mo/6^^Àè† G›Ñ æƒêŒö2ùæ"¶Ö]yviy–æa´¶.¬ÒΧ‚ÆA&ð,pg`i$/ úƒÙOml‡÷¾a}+<Ã÷ Æ]ØRIsð·˜]ïo«)PÅ'nÓÕ˜ý—.ʟ]fY/]L£x裱+ÛnADrò« áW–õ—²'{‘·¸OÝeµÿæ­ñPl· ÁûIúYhàÙó+.c~`#¤ÍXì]¯) »Q²¿5Ä.À«ãù®‰½3\zIœxùíâ(‘Ë)¬g×=Œp‘˜¼#R>æâ:¢g¿—‘(ºzŽ·*ž*ú(ÀM<€¢rÜæuêÈ̓ѱûÐÀA1çØ&fö ÀÚµliA²Ù]5tðúqN2ù&ÌGàbF¦ÂB™+þÏ<Qï ýŒý#ùôn@Äð˜È§qpšä˜ +r¶F qùçtüBâ«ùGK´ÿÑQ5µ<®ÚY8ù ¿ù™@ÙËgwÈçSpâIÆR†»a6 ß',ùðÊølRÿgñ—)xóø¿l„¢$X…Žþ·àqÑN"~l@E‘ZáR¶̬ êwYxøÕ[¡Ã1~'ð<›SÊQÁ€ëÊE˜Cø¸O"L8ò»œ°P¿Ö}émWÕ_Òù,^A¾¹<~ØMȂcžê™¼yÄ èÿÙz_ZÈuTàê]ÈØÀ£©Õ¿Á‘*ëT$U)ÏW‡“YÊøÐQ­^cçr‰ WBþ'Eìî¢ãÚ-Y(nM;°ë÷d¹ÄG¸“Ç‘'ö—„Sô§àÄÑÕÛcK´ßýæOj~ +endstream +endobj +113 0 obj +<< +/F3 16 0 R +/F9 41 0 R +/F6 25 0 R +/F5 22 0 R +/F4 19 0 R +/F1 10 0 R +/F10 52 0 R +/F11 59 0 R +/F14 95 0 R +/F12 62 0 R +>> +endobj +111 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 113 0 R +>> +endobj +118 0 obj +<< +/Type/Font +/Subtype/Type1 +/Name/F15 +/FontDescriptor 117 0 R +/BaseFont/IQPPWN+CMMI6 +/FirstChar 33 +/LastChar 196 +/Widths[779.9 586.7 750.7 1021.9 639 487.8 811.6 1222.2 1222.2 1222.2 1222.2 379.6 +379.6 638.9 638.9 638.9 638.9 638.9 638.9 638.9 638.9 638.9 638.9 638.9 638.9 379.6 +379.6 963 638.9 963 638.9 658.7 924.1 926.6 883.7 998.3 899.8 775 952.9 999.5 547.7 +681.6 1025.7 846.3 1161.6 967.1 934.1 780 966.5 922.1 756.7 731.1 838.1 729.6 1150.9 +1001.4 726.4 837.7 509.3 509.3 509.3 1222.2 1222.2 518.5 674.9 547.7 559.1 642.5 +589 600.7 607.7 725.7 445.6 511.6 660.9 401.6 1093.7 769.7 612.5 642.5 570.7 579.9 +584.5 476.8 737.3 625 893.2 697.9 633.1 596.1 445.6 479.2 787.2 638.9 379.6 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 742.6 1027.8 934.1 859.3 +907.4 999.5 951.6 736.1 833.3 781.2 0 0 946 804.5 698 652 566.2 523.3 571.8 644 590.3 +466.4 725.7 736.1 750 621.5 571.8 726.7 639 716.5 582.1 689.8 742.1 767.4 819.4 379.6] +>> +endobj +121 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F16 +/FontDescriptor 120 0 R +/BaseFont/WLWYLA+CMR6 +/FirstChar 33 +/LastChar 196 +/Widths[351.8 611.1 1000 611.1 1000 935.2 351.8 481.5 481.5 611.1 935.2 351.8 416.7 +351.8 611.1 611.1 611.1 611.1 611.1 611.1 611.1 611.1 611.1 611.1 611.1 351.8 351.8 +351.8 935.2 578.7 578.7 935.2 896.3 850.9 870.4 915.7 818.5 786.1 941.7 896.3 442.6 +624.1 928.7 753.7 1090.7 896.3 935.2 818.5 935.2 883.3 675.9 870.4 896.3 896.3 1220.4 +896.3 896.3 740.7 351.8 611.1 351.8 611.1 351.8 351.8 611.1 675.9 546.3 675.9 546.3 +384.3 611.1 675.9 351.8 384.3 643.5 351.8 1000 675.9 611.1 675.9 643.5 481.5 488 +481.5 675.9 643.5 870.4 643.5 643.5 546.3 611.1 1222.2 611.1 611.1 611.1 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 753.7 1000 935.2 831.5 +805.5 896.3 870.4 935.2 870.4 935.2 0 0 870.4 736.1 703.7 703.7 1055.5 1055.5 351.8 +384.3 611.1 611.1 611.1 611.1 611.1 896.3 546.3 611.1 870.4 935.2 611.1 1077.8 1207.4 +935.2 351.8 611.1] +>> +endobj +122 0 obj +<< +/Filter[/FlateDecode] +/Length 2493 +>> +stream +xÚíZ[Û¸~ï¯ÐÛÊHÄïdƒ<´h·Ø"XÙy(Ði e¬LÈRjËÛdúÛ{© 5’e{ƙ̦y™‘ER<—çÊ(%iÝFîߟ¢ß_}ÿ(%VFWï#žc¢D¢Ytõ‡¿ÅoòÍ&[%\‹˜‘’Õ߯þýñÊ­³Ã: +OT„ ÿ’oa™°q½‚?·U+¿ÿAk„&’E©›ýñÕ*¡Jşü,1Ìb”pÑÎb“oÀ³íè[?RÅ íF·Ån_6™ŸÃŽ Q:‚‰ÒMûïd‹„‘TGI?c=ù„"©iw¹Ž§l©æ¹ >A I;Y\¯&BÐÄèn”)=#ª[þúäIôñ{ôÙÙox„$Ì2ä;a€á±]ÉЀޏp’ +˜ Q‹©ò«VLÅJLÆõ,ŒQÝæÕDr4%œŽá£ÆðéDóӔi`A܃Сâ¢zŸ5Má9¥T43I˜vs7Å –tD¾Ÿ° ‰5§ioF–tü}œÁîøÇÌÂt•lAESXdµßôG‰¶¡hyHµ‚­ºñÔº ~ƒÎí®†ÝÕdwªœn?šâÃö¯fÈcâ¤SùiFlŒ}[LgH3Ýî·«„i=oŽÀf[ú З׌<ɌÏš/‰M}Q±é#bǶç‹Û?Cçé=_mQÁˆ÷7õ&_%‚êx]lóý ^W»üvŸWwí‹u~[þq×ä»]ûœÁS½i¬ ÿ%øNqS—u;=ßÉ&o¶ðŽ¬MÓø Š€> ¤sÖ°ãM¹‡¯U@³&®·™XçÛ◕äq÷;+Ëïö·û (ʐ@¯À0‚Ká)2ÄvÝÏ ½Š½†‹N@´YÂCPÖJŒ<½t_§Ž°?Ó þúï¡ÈS"LôŸˆ)IR•¸å&b†Eûeô3j§Ÿ¦ JPasœËv€“źñŽ8ŒwgëCàBŠFÕQïM*} QF*b/å²X;Ië8«n0úW«‘›z×l÷MÒÆ[R£yTØ šDœmòjÅtÜä$HA)®Ð”HRè_(†qRf²vÀø™cîÅÌLø&·áLÿ"œiˆÐ£ÝÛÃî /9¼´5ŠlýˆYKÈK +ÿxƒì¡T¸`1ž“ºªñ‡€  p¹]gþ7?lëÛ"oÀ ȕ01Œ‹®;a¢Ì0ބSêÖy»G…¯÷À¾Ø栘Wm¨Ñ’Ç3ƒa"føb¶©ýϨ^ˆe›Ì}­©}P[ºÙxâ7HDv‡® -¬¤a,=ÎÊ豬Œq†$âʟ ”Æ}3ã½cÏZ;ön.†Uö¤Xz&ƒ:#[õ‚´qUW È SÄ ¤Œ'~ünÅD\³Ëz‹ÃÓÌ-±mÊف7Ÿ ¼éŒ?6ÝÊV$ÙôëkFD&ð1|uì?•c;“v&òÅ\­;åO•.ÐÊ>Kªáþçͼ¥;+¿@¢>™D=wxÒ!©¸]Ê;9ú`º™éÎ°Ã ŀ9A—Úû€ €:-ÌÉfâC*¡ÍþyÜ» e»ç‡®£¬[z3¡¬,Ε™ AÝ~·¿ÁªŠûƒÁ ø€ç.ä\—ƒODcšãÔ¬l§ öc¡!n}›Ñè·Ã°Â/ƒy7às'Lƒ7çKH™áZ„LYp}(Z§K7‹r5X/ìǗá¬Úøôó6ÌfÀËõ㜬ÖA{Ö§›{*Zõ!\:õ‘x"!P@­­G¡x@PPÀ`]zÿ: ։ò^™ž°5Má_-ÀÈN¤ñT›ðØL‚«ÚÑV|Vù2:àñ°ézæ<ž¡ÇÃF0àqƇµI2W.ÁqPÞ»¦ êmܹòàTH‹[ +E šÖ®X½m†ò‚cÊ]«¦±j)eötqòqˆC#Žìq‡óL ãQO;Ҋî´âô›{+5£]¡g‹‰ímÞÄÀQéZ QËs4äç6qrrüǎRöÇð“!5v”m.ÉæaTšePš“! +uù¬x<ÉÊÝã1Påë9 ÿ<ŽMÏÈ[=Ôöœ£å³-Y6<æ„&óÂ6fŠÞGcŠf^Æ`æŗJ/’&‚ÛÎc¼ñŽ'Ä=à +Íâ +k 2UŒ Þ7_éKˆmŸL¸>™f]C¯ïÆ´o³²ì&äØ}­Š»¶éæÖx ¤ =è£ b çC% Ûú»¬ÊÊú¶¥`ÒÅíàqÈðIpˆ ±×Ó 順GÂMv%ÛãpÃ&ŽW©oʅM¶ã3?cˆ8힛\ĝ9ˆ;KR:º~åÛËmóLúënSyb™Q}Ãi‹€€pÆÑ`#j"Á½÷—U·u‰“$!+ö˜›R—uSwS é¡oujç즔yb&ŽCž +æ£`lš@þ4±ÀÈôÎJº‡çõê%¶ e|ÓV‰¹2.Ãlûl‡Aã<®w»|ë{Ùi<èØâô̋ø—bÛ¸Ãä"b×ӏæþL*Û± ~áÝ}üŽ.;ŒÏtªL1ԞEýқƒÑ¥ÁÐRè–"¨[]ö*#jՕžã-E;ð5Í;€ëþvΡëIôHÈ' àøn=˜/ÝÛýð­.³|©Ë<¶…t7SRü«’Ú±ÝÏhËÉ¥ŒòÐ ÆÑy±î^ +^îh³¼oçå×t^>͜m¥ÆŸµÔÄ9E®„16WIsýÕHÚÓ ùá~Ր”7áìQ<»ð9Ú¢Ìø%ùÐ{7à\ùª÷7þ̀ÿú øg:/ ï^´~¬ÆÄ386_ÀÉ<±½ü¿ð1_É¡Y¼«9J„»ðÎ^÷t_×mIî7ÿ¥'à +endstream +endobj +123 0 obj +<< +/F1 10 0 R +/F9 41 0 R +/F5 22 0 R +/F4 19 0 R +/F3 16 0 R +/F6 25 0 R +/F10 52 0 R +/F14 95 0 R +/F11 59 0 R +/F12 62 0 R +/F15 118 0 R +/F16 121 0 R +>> +endobj +115 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 123 0 R +>> +endobj +126 0 obj +<< +/Filter[/FlateDecode] +/Length 2523 +>> +stream +xÚí[ÝsÛ6¿¿‚s/¡&J|“ñäî’ÜôÚétRO_ê¸CK´s鐔›ËÃýí·øI²äXVâ¶/6€Àb?~Ø],£%It™ÿŒþ~úÍ[aŒ2^F4AiÍEŠ$‰N_ÿ¿Îgsš²øÃZ½€§,‹ÛËfÝuyµ¬m*õ_¬Vn0EŒÀh–$q隖E«–E“w¹½Tíúj_•*¯>¹1]?®ê2oŠÙûÓEI4Ç 1f¹žÍ‰ˆ‹ÆôŠ‰(ÂÜôýO7~ó–÷û˜”ˆh¾±´#;(Ia݉fs™ˆøu4c {-Ú®ÖÏ"Î/.T¾ªmǪn;؂ûµ˜Aÿ¶¤â,Õó=ˆ"œ ÉIgDð$.,ë*·m±RóU¬Zä†n¿jsKp[S3'øf¹gW»™ ÌSg„Ë &ZEYšGWÅ¢hÛøo/êÕuÞ© UªÎ’’f±{ 8` I±-…ë贆¬ý¸¦èÔÂHêޜ‚ÖE,EŒ‰øbi|÷íÏo^¿y÷”û}nÿßR=äˆ0½Iýo;·å.ùgžÙñä}†8w½m'ë;3D]߯“AˆÂ÷~¡°ød6ÇBÄÿLC’;g!›Yn“ÎQ&=é3à1!ñsk%ô`fñlÁ®ó|ǎ6|‘wñå|w|=_nO+5²m¬KN͏!±Ó‚偘7VŠ!©ápÎ^2cÁPjµàTÝÌ8ӆÉd/scÏLb0Í«uQi|ê +۹Ȼ¢r½KåÿL«°m0!ó°Ú¾§aW#‡í­¯*5Ù°!^!« ß1˜©ß7±½bÄuâ÷ûCH&d#Ò¸UݨFãááP·mÑÜ(‹ u€ËæGÝ8±Ç–Årý»|¦ôÞÒ¸îàhÚ¼)ܛܞk0“ƒ¯z²o ÂCÞMi'ˆ§8w °y±î”æúlö2 nT" + +G¢Ù>(й áÀØÝ454²×¼p ;'ðLi^fúàB2ª®-`-ß °½lp +<©žõàÞkâm,áS–ŒžnúGGÂx¥´§rxÝ_•ö…þ#sîHÊô”Xroe’2~€§ÌpoŽ¥vä¾<ÝCòt›ä÷A1ºeù;õâSd9ú¾ÂÄ<¼/ºK^øN‘;7&>_`‡µ·³Ùó€­%ÌÎó{·µó?míiÙÚùÓ¶µi´B#“0‘l¨x4'ê(û}µ•?¶[}+ EÍD”Ù„fñ†`6X6‘a§s_öy•Wªhò6ô[ "êi¬FRD2©±/©p%ÏwIFN$#À»¼kºÃ»æ_q¨v0–üáBµ¯Z™îò~Î)r¾ë”2ä~ÎÇö8pÚá;>¾BÈbîíøÀ{<†ü¾€óx´m7®þ¼máC„iá?„¥ÿiiOÈÒΟ¶¥}¥AÚñlð¸AÚ1öØpÝsöeÁ…ªS(‡­H3²¯°µŸT]é*„,›Ü¹-êjQ®} ×({Ù§ò•+e!<Ϋ…»/”îúOlÊZàQ—µlJõ~‹Жð I«¾OdTF? Fבڑ©¾6õ ‘0'´ Ñ)br´ºkèWïK-¨q¥†mßêÍ1vëžX·4ª]—©q¡8õLıë^Õ¥ébšBUvÀ‡µn—±}ÅùuS؞¼´ÿOgiuS3S8Äí/œ¡œ¯x7·ºŒSÙs]›Ò.Ìo—ÏŠkåê“àY +íj¥`3ùjp®Ç(ûZ[wªZU¬\Ã2p» $dtû-¯!Ð!-¨Ñ+\ÖÍÊÕâP’™kÜ~+¿Lé 7w¥Ó¥¢>uö^g(˜0K¦Òx¹v¶$§/NºeÊF’í5HØc£«lšú•E '=‹»¼Ô×파ٯ)o몶O`ÊK¥9/7²s[v»Ü&Xuáx\ku¹1%B«m§nL›ÔuO°¬nçñٙr“7¶’¢,Õ_Ot5ÕQ7KW0c;]õ¦ßè*)=k_.?L¢†5EéQˆ‚—Ïô$U  MMc\L‘àwd!+]«F²¡¾°Öæ卦˕9,r_Üp7®K¹X tåMq6CЇB:O;'@.¶HkqYdhÑـH]Ï`ÃDââ'•Wu j¤×æÜÕ]j׎ŒOùCêؕ™éµn1cY\ONˆ.$qDL݌ÑôN7ƒ"îÿbBë“h6ç’Å?ê:šÐª¥áƒ¼,IfÛã¿Mt÷FœLwž î{‹Vµ]à?ãúÌÞ¬„-a•hÏäKM¡ìȜ†½Ö§­7 ­#z÷$¸Nâ9 RØY€c W{º~»+´ä^Z·ËÌä¾®©‘ðíùe¯t¼ øPÞ ¾ !DjJØÄN¬ŸË ±W ¹Å läizI^ÏxbjË´0·ÚÒÇíՔpN±1TÐ߈÷opüz2ÞOv%ûSu¡wUW!Kâ-c«/ž0‚÷ñòåz Òܞ%¦ýÇÆpÈü¹D[|} Ä,D´QÃ[Õ¶æ8žìTŠŽ@S§B“hçØA @2£\N¡£)õ÷Ÿ@˜n¯f¨ÙÁŠ@:±AÑ¡õc(6¾:I‘=˜‘Ÿ.è èq•à"Ml’=X G҂0 Èv Ðe±0åú#™ïV†ÎˆKn¤Ño†ÈmκŒW•Ôx÷®ÁæÆ)ÿ +…ƒ Ûâ¸KíÌ¥ˆì“ìá\h46熩•®‚gÖUÒcG3ªc/º—¯,cÈDB®œhߝ ERñX/âç8¨ZŽ-ÿþI¨V`äõ'(ÂLÆo‘‰§³2í¨Wt[ê§`K{rŽåN dÄ{$ïlvHǏ¾ п‚ߤYT}ÜþÅî“(äNÌ;DêD“›€ÝëÏ 4á: ¦L’ +šëU±ùJút¾ËD֔Ä6U°îT©< z¶).³^ºœ™¨tðí•É ð4¾nêëFþƒª4víyÛֆ“ •w.‰e{|v‡ƒwì™m’ *(Ë^¬¿,nãBŸLÞ\qœ‡œ–Í'¡”ÓÞ֔E}thöárdú±­mfýÄW*„æá\ˆWÿօ·:i(MæTdÙtNnÿåÿ +ËFU +endstream +endobj +127 0 obj +<< +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F6 25 0 R +/F10 52 0 R +/F1 10 0 R +/F9 41 0 R +/F12 62 0 R +>> +endobj +125 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 127 0 R +>> +endobj +130 0 obj +<< +/Filter[/FlateDecode] +/Length 2282 +>> +stream +xÚí[I“ÛƾçWàf°$´Ñ{w\IU6§œR%ÏͲSà¡ÌeÄő|ÈoÏ{ndƒ ‡R#U.š™^^¿å{K·’œäyò¸Oþ|÷õ·<¡”X™Üýœðœ“dÊ͒»¿þ»u±-ßN&?Þý#á‚Ø$cŠ7ËpðëoeK@#“ÜMÎêÉuErã'ߦÑVA¤ò³¾™dT©ôcD‚’³@c2ɘ6é"R,'ür.äY\ð.Œ¦¯"R°Êª²á¦E;­‰Ña–)}#£Üq˜QM‡M~ˆø`”•ý;RNTs&U½€æÀ½Õõ)„‰¶nÍ/‡’P–4óµ:Ø%ê°ç3:ŸmŒm´ãÉcÇÛ·…T´¶ð¢¥|ž5Å4Ä ]MÊ]£„7˜Ä§¡hÂÌ-]ê§SÊ֑4Q£éZp}EÇNžR6=P¶>âRbl6Nˆ™ÞÖ¥´}–=Y̧} +Cºî é N,ɳŠ'à ?ˆÆ1H:”= ¢ þ2t“/ÉÒ.—îÇIÆeðÈ^S}&¡c-€¼P̼u€<‚™·sOæ¹@j#…àËcÓ´'!WâÖaíCŸŠšã Ãþ4’›h÷ê&þŒx5=nŸö)'ß׿q.ð‰Š˜aÉü͏û? ´d·”Ó“‹^fa æœÖ¹FFò·»$'Â$ÿI”"³x‹’E¢Y½Åý9O¾?l›„åDlÚÎUƒÑ֝”]r”•A8†±(ø† +qø8ayôtJa¶e„‚R1ÀI³al‰Pì@‰'"'C"iÖ?U&`cêJaúùUºÒæ&­3ì¢æºõl$*ÇðH< Ê7ô@±3kp3c„ŸnÐ÷Ú£® !¤ß+äuuö¢[hŸUö)Ú*Oó-šW"ú}ˆ.ý× Œk¬fpå¿ÖÅkÈ|(K7¥Û$Éu •nþ¿=‰ɁÓfÅK¼€(­h»€Fô;–è[2 Ü ‰:×ÑqžFjBà\b¤V YÙ Ô±ºY%(¡¶ Y 5‰I•“ 享qª:óy8å+ÞgP–#^ЎÕ`›ÆÅ|¾Z ÎZÇÕ!A¼CxÃè ’ÞúÛXL +jt?äQqÀbˆ¬øº§;yÏ1™‰Ÿ|{0.· åjY'\¹¼9Ð5Þ›¬b*½_-'L§Ûu±®V¯ë±jùs±ÝVþ¯uµÙͷ府N1MIkè¤ ‹H'¤Ÿ zê<ÞΉéÔMZŽ 8¦E ´õu«–Ùœèε:&þÛOŸå”pÙ¡r¬Êöé7ËèïÙ˜Ë +9&0]ˆm¡^´&ò*ŽTby,07l"^QI{\:ˆø€èîw*?à>,‹û8#>àþÑñNÄ¸Ø՞„ç̵N–uÞѐoNòÍpvÃÑñë•ÕÜ{4úó»²ãÞ +Ý{³-pHº!77ÿªzt½Ú–› +q;÷v“ïwÕrV¹K8 jÏ©<];OW7{6r‰§»¾„í÷tH°ñÂÁX¡zOçÆujü@ðô°L²ý^DëéGèc“Cwé+§ºCúaÙý^ S—yz°0qð¾¬ë 9ö•ð•JDú…ß¼S"ŽÛEÞ»vD’ (×½ UáGb»ý[¼\hÏszý€wÈ°Êä(ò“ý˜ö¹[Þv)¿(o{! ™ÿ{Û'ñ¶ÃXäp"iyChVøïÕĕ<žº55§zÁŸÀv“Þ•ú궥þE=a!›‹Äï°*•¨•eµ­~HžºF±¤P,-°~šVKGB¦s,‘„N×å}9+ë«òdªÍîaW<Ì«bù[鈰.~Á¶ÕòŠ»“PVÐ~ì¿m.4Yß<hü°¦Cê?? ò…‡üè›G o¿y´ªûJÌ]ôžèžëÏ {ΆºçPþòÅtZ‹Uì: µ‘È~Ñrµcö^šÁ+Cõ¤Ë¤„Õ•ÈwóI&”…­ÖåŽ'tžnʇ]Yw„Ëzz³-¦Õ¼ÚܗõŠùWåû‚¤H‹y¹ü­ðTÖþ—¹_7Ûy‹r»®î$ߕ=¸gÛ¨9ë…4?éÛÎ }¬@ôúĽß9¸w[mLj(öqë½ëj³]O„MËí¶ŒßØ ìGz؀hë.V”k/¾z\úFýÞ9Œhß`½é¥< =ñ™D÷¿i‹3&<"ÝM¬H5C Âî$麁íÊÜâèL y-Äï«¢¯¡Úvã}öÍ$ÓáÊn?_j"Rœ”êöÒ2Þ*۝? ït`ÑkWü,lW¼"Ìî ?¹I½ªÁež®æ+Õà.‹*óó~t†¦QMwK¸‹MU$2+³Úâ¨Î±ãÙ±¸iMwQ.·±—Kš7o™Vúµél^-ªm±]‘I&5CÝ-ãe §§ýéÀÁC@{4c_l¸z±„f§má,Ýæé}׏<öêg>Úxë)ÓØeۊà „§š0‘"öV­œZ‹š·ÝÒÿ²Ù9m:U—VËØÁ!ÜSd»£Â³Š–ýŒ_¶w‚Ëž„_ñèNÐ ÈYÅ»/.FÎl®¹í½È‰ÐÒ]€äf¨mÞ_ŠÝý»õï=,Lió9@ˆz:„€rÂ즬%àlz¸ßüˆû€£b왵älÐ5—HLIL Iì`ç~nIÇ«&=>ÞÜ‘ØQ©æøN2ÅÑ!\#ØúÐ÷»ÿØdçØ +endstream +endobj +131 0 obj +<< +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F10 52 0 R +/F12 62 0 R +/F15 118 0 R +/F16 121 0 R +/F9 41 0 R +/F1 10 0 R +>> +endobj +129 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 131 0 R +>> +endobj +134 0 obj +<< +/Filter[/FlateDecode] +/Length 3112 +>> +stream +xÚÕZK“㶾çW¨r1UYÁēຜƒÇvÊñ–ËÉNN™$Ź³¨¢È1Imâ=ä·§IpI3kmœ\$F£_wc“’4ÝÜoìß6_Ý~þm¾¡”ärsûvÃS¢õf§4ÉØæöë¿&?v[™&­ýyK¶»ýãæ›[ûŸ¿R‘4üê/M±Ý1Îsx¨Í¾ø`Ú¦‚–T%wLÉ­P,ÁwÎ`j¦’÷ïMñÞ%MLãÚ: v ­]”jN„ÞpB¥]áßØúù·r&bÇHª6»iDéF„d’ToRÛy—¬¾DJßû¯/¶;ªTòój +ªIÊÇ9¶®[ÌÝÑÙØËT¶Zƒ2¢¨ð‹éË.ÓgÏàþ²¤êÜ[{ߘÕÜ2%¹ˆo>Ø£„$°õÞ(a¹ïýóŠ°Ïr"øfGÂïñUu8€ p8f8ÝônØFh;>ϐeNAV²DåÐnwöRVÔCWà‹XˆÙî2™%ߚ¾·£Óʨ$ŒÍ'Å` +•&¿_‘ÍÑ#cR·h喃‰›õÄXÏóÒõ‚P­y˜>òðûõ·ÊwíÛCåˆmAŽí¸ÈˆÈCUy+€#R¤É¨R( +¶kœd´CÕlìM?DÈRb«Vr‹ªGr¡B™_~Èꐏ{Šºräîñ”ßU`x–ҋ}QéÍYÚxá=¬…W!ƒÆ“ÉÒõ&9áü4©)QãF…3ØQ’¹Õ›µh+ýžOëyp|0ÏaE# Ôó¯ú¢è|ž&ªù4ÍGB…Z/ÀGü.æl3uÚQ0Dq°Rö©-љÿ#@¯ybáKļ¸Xƒ¥œd˜ŽT/B` xʈ@6J‰né°á0§Õ×àMÔ4L)„à'ÄÁ~¡‰³Q_¢ÉÐ1#ÛÊ^ž@û>F :5ýÆ8T¯s€óç$ ”f_Ëʁ»Ú‚¼,)Í¡í°YŒöÂõ•Åà!  ¹îîÎTƒŸP'…›°Œ6•/Ž˜¹E@\:ŸFJFŸŒJ崛Ãܐ1"…åó<’ùŽÌÔގنÈH˜“-Fº†p¤FÒÂÕ}üú …Yjmnã;ô +án·š&UÛUÖ7È}ƒt]{„zïŒ=ì1eUԇÊU¾ d/y茝>{(º¡z ®*e‰i"L×ç`>(Ó{€Ù8Ȏӷ_Ç(l +~.C¿Q‘º,‡!ï\í+w´}u0»C5tÆmeˆŒ`·N“á8€,a8i +7CÕ÷UóÁø}gnßÐ~¼?µq_Y ÿ탧¶ŽqãúvØY2ӐÀÁ4½RÀ¡óÆNg¥©¥ñýíJ_Á¯æ(à3œ±Ê¶6#„4ÌÏ0gm ò泥y(îïM1ø0e#>ËH›šqºTÏqQ„%tŠŠJï[F„=Â1 OV1!•Ú½°öSMDL§ò!^C£Î˜Ž/"_O·:#Û^Q&Iv‰0æ”=K^úx«6‡õ‚à’ÅÊWJ®7 Ž:—ÏÚö9:/”"åã<ß5þ½®<,B„Ɖ_}ÈWAÔ3!;윀;pçûL˜XS˜XéK0pÅ} êYAöÔîW‹¬‚…3Β¡âU«éÞ©À©¥r‘1X‰gE-Ì2œŠp4`iµmy„%e琢z@zuM°0ü*"ÞL]B‰úL$/P"6‡(ßc(‘}Z¸.ÖN¯W¯ü8|™Û¢È(šeŸ&‘Ž%Ô¯ž:éúäò9\í†bV +àhÓbäåù{)‹Ú=Œ'xÄbžï­:ãòÀnš£Är9S…é&Z2s¦g* ã”V÷©ÀX}hè&Ç*_\šXÙGŽøâU,hmp̒0LžT{ÓÏVĦæŒNfÊë¡ï‹7ÆAŸÔ—ó,@=Œ[°ÅÒ^2§ì$ÅA·Å<gÉ Nú\药,äŽ-XÚglŒpÃ0Û!=ˆT"5ø Û­Tò¹¹ì|μÖ6/¤—×€‚‡cç—ö%NÅ0ß{-}²µ‘|ý™ËGÙ]4EóÁ¬ÔL§sVÐß»ªCSEŠËÀÙÔ宧,B¸R¾(çZÇÊ°‰EÃ(Ï @څ…GÙaM+“¡_õB¼bqҟÀ"ÁŸPå +ò¶*‹Y«={š0òù{âI÷ +nVÇÎ.eÙ%-Åý ª¾è®dˆlµû#ìbdðdt~½=œóK;žæ(lÌ=çV‘„°D»xæuuosÃÕ¡*'ðæ3»š9w„Æz©vîÈ*|š¼¶·6Ü ÍÛb°·ŽÆþhg§ZóubÍOfl=Š5¹k…žGï +9˜ÏEœ?æ2›{8QaQél¤n"V| +¦ˆ»ó ¦Û]h¹‘ë°|´çìµúu ñÄH|DôËtúÿ> ² ÖGÀ[üޙ˜KŽ‘‹ )Bè“÷Š¿°¾ qo‹äLgª~_EÄPä6íáAò¥œËÉXF_ӮƲ UËÿÖ-È«TöÏè”>/NúŒbi¬Æ~Ò´Ë/珼ÀòÇJʗ/×…ÏÄ>?èÁ‚¾:V8“¬;R4/8„ñ–¯ÊA¤Ü¶ï¶aaÙÎUYˆDeâcT_ZöÁØÚÞ%ÅT~Ęòm‡5å¡EB3XÄØ'_|ÄIÆHy•B„SÁ²þ6”±ùaxl*$PbÉҖ¢qŒË8(yo0rËa•t¢¶3]kè"€ÁÞ8x²’Y*÷C'l +„ûÈZ’>K`qW¡ÀÍق¿m +K2Ž!Í|zÝnLæ¬$áÕýɌià,#RŸ«¢H>]Êõ)º( Ø9~뵓\^ ˆKPà4—Oºá¯ŒLý¾ŒÓ¹cÔý +I4_ºß…!Ìó¥ -êÚäñ¶NÄ°J õú úHËe {d?qWH E«B +Bb¹ÿƒíYpýǽGÆÁ|,gß×·„æuýû´îW·>X<¾S™BF[̔zúó7Wæ +endstream +endobj +135 0 obj +<< +/F9 41 0 R +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F6 25 0 R +/F10 52 0 R +/F1 10 0 R +>> +endobj +133 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 135 0 R +>> +endobj +138 0 obj +<< +/Filter[/FlateDecode] +/Length 2749 +>> +stream +xÚå[K“ÛƾçW°rXa`ސÊGŽSI©RªxoÙljDBë©ÂƒAÙÚC~{ºgÄ`bÉ]®¼®$3ƒyôóëîÙE'ÉâvaþºøóÕ7?ÐEšÆ_\}Z03ºX K²¸úþ_Ñû|¹bRE»¶Ù·í¾ñ¯㛷úÎÔþ9/ͪÌÛƬ}Ëu´ü÷Õß¿ù÷ ¤™ŒiºHìäTFoá!£›& gҍ³t±JcåGÛÁneœd‹®ûzé͏®Mx,©_ú½]UL¯J²~Õ÷£UELøhÕRWk]ùsÃsÝhüp±"S iÊbÆì'›¼(`“$Q•¯óÝN7Æ¿×[ø•QÞ U+ƒÒÒ;›¼Êu ‹n9ƒÝõ¾øüyf +᧐‡)\«©\+l!mw›¸}r»OSm궅i)´Ý4>Þ_Á҇,&,æžÌÿ1Á’Ùu¾}ÊcÂ|ç͈îð ºOaë#É¢±è–ýçèã,N:©{펱«‘]øä&A€o÷y…älÍ/ý ª··"4¦ŽBßçׄËÊ PìTјe±¥å_®¬reá~•’$΄áGƒBsÿ(”Æ*ó»ýu’ÝA¿…U)ŸT4+1œ#r´—™Pá±¾tý åv@Tv›ÈNj'1W¾÷ËÔ(;ë_FU¾Øþ7ûÜí"/ò2¯ZãÞ6f´'Åc~° £)AÓnÇ×SŸƒiáì`ûÆ;"ÝÜ×K'C+ªÀN‹Ðz|•ÓåXf@ìä=~³pnzT#Y‚eV†æÀu¾ù_NšÖ¤ßü©ÒlO¡É=ôOo‘ÌÉBú0ÐYawǎ +30íÂÞ¼|ÂÞ|u‚'è9°Šcȑr…Ùaš0p”½y5®Io½ó©´£­‡JxgÏ¡­Õ`ÄEÔÚWUp‹.ü ?8€†ÆõVµ¶oMaÐS$Y´®ËÜ©c*ñ<6‚½hn{é=‹÷#°ˆíâð[7y©ã‘SIBwrµÌXäFâ 8žu&©@'²J3FÅY$žD$è¤Y†Ç‚¦#~ZïÓ¡ȔgèÄ@®.èfòÓ®×qwôÑn¨òûëxÛÚ÷4Úí¦<;Šƒk?»ÓõO~þ‰iЫžd}`ÑV {;,€óYÈù;šßW &c!®`l¬{µè0ðEÁnÉ¥PÔ±/A`pÐôà=¶§b(:C»Gf)#zˆ>A”ß’&䁰@œFo©¨ £(͢Ɗ`s”&‹Ï)•a@…ýþ÷\n‹¼­=JHØNb÷¿UuÑ:Ù|=NP˜'Ë&ãƒ˜ãŸãƒù çdÓ;£ñٜ·?؋k"ø’IŽf“]÷Q Ú"Ÿz‚+Ð0ÁøéÐ^s%³ì$Bõô·–õ9‹ó?P‰Å ýÝ+ µýïÓ1x€†@aVÄû˜ ØD§¨JEä?.î"»J'“øŒôÐñÊ®c\w·_c‚ÀãhØøßwz¿Æ@õ'üï‹ûÊTG‰’ +†O]p¼RSJÍzÕ|6;š.l؄ýÿ}¼"qÞaÄfBDM+ž²èb/ éxÕ·Õ8Kš¢ +zåÕ¡óFÝÄõŠü –ÿclH16f·/Ú./ú ëƒü$éÌáÅɇŸ50Ï“Ñóâs~,>÷¤ÿuÊ©,˜hÌÜ»Ô>Ë Ͳ±¡ QtŸ”g"ÇØU=$â/›Ëçˆü˜}›có¸|É@“D²ªJRô[/„ƒÏ¬ÿNJ +ºÏDtg/FY/Ƌ9b¸§çˆ»¼ .cQäÄ< L?‹o{º I¬‚€MÔöcš1Å!·ôóF–zðݦT˜ÅPiÜr×0ÊxËÇ[n§jN²˜“Ë¥ÏW‘¥–DùÓÚ²ΡQq@£Øg‹KÓ‡hU°ŒÊ#`”=Œža>ŒŠ³À(K³è»Jõ­^ù(ˆd‡Pݙҗœò €üÆý6ú¤‚E]Åͽ¯†%¸qzCOΏVÒú!bf"zWWnîŸ÷ùΦFáYühK v?Ÿ¦6˜¶[ëÖ·Úï:¯V].‚¢à…™2ÝæwwÚ'Ió3êˆë¿‚{4Ñíf¦ P‡|¾\¬ÎŠ•ƒH·K~S©pö¦¨‹¢£Ä ·{}[@À{çÂZÏ]Ô@4Ïü±æY|9ðË^›/Ƈ 5½Ï·G’|o1@àÜÍóyÉÁf¶Âë= ÙtNGqtÏÉqÁâ|v<‰ÃMMâ°¾8„ƒ 5¨#âûÆ4yÛj÷²®+W¼ó èö^i‡ÜßR"}~zV&^ww8n>ô¸¸6楠‹Ñ}-Z¶z·Ó··Æ&®Ud‹–LF…)‚uèÖâ7ÖKâ`8±F•à×áŸYk÷¾®]MÌïh¤Ã En[ãø5ßf'…_K¹ÆÍàîçðèúÚî¹ÚÔîžNWgu[þã„ȁ;E¤F€02¤ã@AuNáýÞ Hgo\ô¦iÅؽ8† êÿÉ©5󀐍û(ç‰G%q*Ý<J']ÂxˆD'™øAaº¯ ?7톚˜ÐÍRFoƱ,Oà4.Ó¼®½ [Ñ)…e,ƒA„‡#¶Mvô‘Gº3uý• 4dSÈoÊ'Ô¶.T?—©Úc‚ùÆx¾ôæ›Cठðyï߇áQgôëlL©«îfaw“D`a °Žnz{QS ø€&Ü ²áóÒú oMi­{«'" +NÂ[f[zÏIJ4Ó/òP©>{Á¦+G <±ßQ=øèe…‹§b˜Ë€³cå \‘…·ðN3f|D}Ô;tóØë|ÌìùJÜ¥å_·{Çx1ãå r[˜u^7„ Ddk4„ɍ»q’J‰÷?žÁô±N QçGH#`íü×U^¸m®ëfg"-¤ÑþÑ •¿‹Mzëó쓺O¥ÙÜæSÝT&aXvñ˂Á>ž\p4%eßÀí՚bñc0’øåFBh  #aN:é‘ +®îúÕ]Söˆx¶ïœ†Z¨ÂbáL ÚÚw¹¢mî:k³Õ^|ð¢g\ïäe@«~oˆ< ‹éPñ¤þøS8áK½t®Á³Ú»?¶sn:„ícƒW' +DEÑnï/>ÖM“cJ7¯ð¯ 죩*ÀÒ~p‰†eJeße—sÃÇ&/º¿ èfØ{w=ú²o^…(‹ºõÆýbzÛ=ù –åðÎ#ø³Ú…5¸¨|ÂE êH…ו +<œ +ïôŸppˆì÷ jVT€ÖI·>ÿ²ÆþNÂ*!z<ø,yóGœýÞµþ!U®"-ŽÜ6&o=ÞÌ¢î´Æ“`Q_îN¾É?:Q/:ÂËðz[Ÿ3]ÿaý]k"ÅèúW6€Ûìàrʀ¾ø;ˆ—mš õBû‡ÿ;~Œ» +endstream +endobj +139 0 obj +<< +/F3 16 0 R +/F5 22 0 R +/F10 52 0 R +/F4 19 0 R +/F1 10 0 R +/F9 41 0 R +/F6 25 0 R +>> +endobj +137 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 139 0 R +>> +endobj +142 0 obj +<< +/Filter[/FlateDecode] +/Length 2960 +>> +stream +xÚí[Y“Û¸~ϯPòD•-,qv6UÙéd].W4ûSD&ƒÍAs˜¤¸³™ˆ†°FoR*¨‡–«zÉåp)<µ   +§@‚7‘àOãbmT6N;qkâÚF«ÁÜE'Î`¿¦\‡±½m¾Ãځ^3Ó °´Î#Ö<`6p 8N;áhω0³Íø}‹TPKr6ÛÀX:kÖ³w>R`íKÛ%L!‡ñÅ*"ݍ?q=_4º¨FtQ(¢›³lÏ6сaKÙ¹KÇö0®A9Q •H¡ƒ ªFÕ1e2GFä}ÛƒWÊ»*´C?Ó7¿ ÖÀ¬%‚~B­­!9í/yLÝ~“:®îaUìDÅüü1Ê14<Ù|bö§ôVcÙ³˜dÓ9¾$7íqó}’›ì|ßò$܌c2£#0’äç_cÆÀˆS§Ù@§ŠÙ|op¨GŸ--Ê_Èa x#÷øÅHP.>T b”›ùçõºÞϽzXpÐߒÐe†Åyß eÌé$d1”á(dÁË (®®ªbSÇ~\w täöñ@ÁŒœÐ`üÓ<þù6ÈÌ´ +›5øä(| ôcÆ '±ñýmÀš„‚§á¢˜¾™M£X¬A ‡ƒ§á²ÑǝfC I0T_Ž.½‰!ɃõyÂ÷Oæ¾ÎÞLß|Ì}=ô4Õy|<“÷Å6z’ ì##ð9bŠ´`¿cnèÿVýßfÕäiîfÔOÇÆ3ÏRÐý®ö‘‚ 1íÉ܌] ΉÐc1½•DãTA”†¨žæE× $Âú°@É&wp… ÚÆòÏR÷~I'/X¢àªO +„Ñ)RÚ% bn¡…MÓ"¨»Åw´|=IK³¤£…?cÇ={Ä(‹˜"¦YòàŒ1Ê¥ƒ;Z,#ÔLÒÒ,9¦/^ª¥æëÔ½Ktf®Ø-Df4j»+*ÔÛåúfåîb“ÉÉIêZ6°ÑÜô®Ý£õ£æڝC{B¡e˜¬äcÉÊ$ 0:,Œ$Ô¦aúιxS×{ƒÛ!:,j&ÀŽ*E”÷ª£ì\¿¾†^æ$¦­­>L +yB*ދ҄M1Þ%î¤^ô?­]êqp·)רû;½êòàº%¦tK}AºEHChԓ9+ÄΗÓØɹ%~»‘òþ)·+WßSÙ;8„v píˏ7å+;¾ú¥²Å¡™ôi.yV¬«fý¶¬üª] £~lYﻛáúT½Àr˜‚WúI ~bª±…±]ÄQ†>OË<·¡œ¯¨/ʦ૱Ž¹ÕO¦‰äýl~¯L-œÂñÀók÷9¢=G¨+Ç务XSŽï7­JºìfîHƒûØu1pårŠ%&fÉ vµ=ðÕ¡¾ÿMÛªy[ ­@ø"+6 +Â9 +—²õŸ×Õ&Žµ9GZN4æßӘX‹Ñ.?UI†Q'p„NqDt5²ÐÈÁtñQ§A¯ “¬ª Ú@ŠÃ̶ɲ¦Æäâ˜}AzQaöËC8vóºg΄u3™{@ÑÑàLãøR3AªÃ™n ?Ó ÷woÚÝ¿¹˜ ˆÅóƒR]ûŒc +Å{ü‚cÙ|§§€ Ëjí8ÁТ°Y¡V-‹ÍÛR²›ŽP„Swؼ„Kî[²ïBá}òö%öåö(Ñá}Ž_îÊUu(ü©W…Lœ^é®:z×®“‡>ûh׉?E±íõ €žHMÕoAYãq•Í®wõõ®*ÞnŒÉÂ86è0 <ÚïK§;›vÀت«D(,E Vø©yöϛr¨Ÿã ÃND¯›-Œº!šméÝÄÂþ®Ä«îuUíëÛº×’…ÍHØk'ìsï~‹¯+Àsø‰`ÙuÎìß}Eo‰gÂOÛ]L±«Â÷¡%øÅ­à—dk—è:îîܕw÷^#uŠÆós®U販ºl<ûeµÙ”»}ý‡ *Tëõ®‡ò$,˜®ôÿ:ɞã{ÕÓB8þëDö­Ÿ^᥈çÞ·Pqì[ÜP¹öÖåf¦ £8fԐÁÀ·ë(cíJ¬M«›º)˜T­ÂK*§ 0RxqhיÑؓWtôŽ øð:9LÄp¢1? bÆ*4~ìÝ}‡L[ôs½^—‡òógï)}³y¯‰2ì$ ÆÃLÇx³,s-6B ÂeÓH¹ëº´ˆF׋ Í«¸'&G96CB(?셴dÎ%\º^Ómª½6sŠÉö—d ’%Y…aÒj²(û·Øw›.´H]Ró^gÎHÉáÓ Öèî³d0.:~k–REì98:}•?‹¶Ÿ¡ieuíºíÑ@Ð˜Ç DhìÄIî*†:«Æqžqe˜?Э^¦‚²6gõcŒz÷?½Aºëñþ)ÑTߚî¬&P’j¤×ó¤xåȗëù­}UÃ{4¸!;n„[#ÞÎø»ÿ%Óh¸ìUՆœà&‹•÷¨ÅP¸N ˜î¥µ03mRh™wYŒœxý.Ñi þÑÐÑÎLÛ=L4fÒ®i;Ùi,ù°ÓØgù“Æ(VŒÄ!f ò1!SŽºaCÌdŽžß+G/¾ä<ª<ênÔ {ŽnöÈÂdÒÂþèKG“*S…*–Klë[HÉ •Ø7 o£ªHªÚ% +Â>ѝvئø2ÕOßràþþ)ù_%°§Uÿéüü˜Ê»K\Z¯Ì™zűFöôŠK à'Ôª]q¬V>Y2ðÒ8Sñ¢r©™êî«¿$úù[Vb*V•‡(ë+T.TvY ѤÙV>I]bþç&ó×5üp17´ýÝ!NÆ—¿bôï’+ÛªI ƒˆm߉§Úcñ‡ +ƒŸýê²m,òâkôKºU™Nᘻ¬üíYK½ŸFˆÎ?£#¹¨E»>mê2råü(­>$3ÎU{2ó~Ù{`V¦y…Ht®ÕżTû®éᏔ««c Aƒº5úö» a_Ý +endstream +endobj +143 0 obj +<< +/F1 10 0 R +/F9 41 0 R +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F10 52 0 R +/F6 25 0 R +/F12 62 0 R +/F11 59 0 R +/F13 84 0 R +>> +endobj +141 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 143 0 R +>> +endobj +146 0 obj +<< +/Filter[/FlateDecode] +/Length 2353 +>> +stream +xÚíYsã¶ù½¿‚} +9‰âwӇfÛd’ÝÉd&îSwh™Ñjªc«#ÙÍC{ñ + $˖-Åz±Lâ#Žï¾È$GyžŒóómòõ՗ßÐcTðäêׄæH©d ’$¹úÇÏ鏑iµÈ”ðt>š³_®¾ÿòÞ>Â,É ôÇ×Ù ‘~²P¬…"Qõ–ÕÿÂþ¬@©-Ý·áQá ~íŠt9¶¿ïK€NJ¡œ'ÂþF¼¥8RõRwvç‰D…„ArŒdaÞ{(/’fü: q…8£Ê?‰Þ&uP×Y6 R¦ ¦"y‹²èV‹çØ*!éçÁTª'¶ÕMþ”HÉz”¬¡gÕgúW"FŸ’A>Æd‰8 ‡ç̑hιukÂEp}:æá?Áüaâ! f0+´3Ìnô ¬« 0õeòC°¶E௽…áä‰q@Q¼•:d+uÄyQ‡÷Q§×`†rö5ûŠMöŇèË]ì‹÷åސ: +<qøñ‰C·‡Ľ]O…ªÆŒ„´PN5þOÌLÜ<ÌLÈÈÄEÌðƒŒÄIƒwÑ—6ü1l½ðîɛˆ›‡™ˆÃ˜÷$œ^Ñ¿ (+äOh)Ê%U×Öó¸Õ6&œAG¡¢Ø:9–£ü`Wc§éjÆ<£:m✐…zÙAxÄ&Š#)žÒ ÞÆ¿#µ# +?S=ö}¢$Òá–ùS¦NKe7ÏXî9Ñ©ežÖÜWÁQ”Ÿš‚ëq¼n#¹nq‰>Ýø1¦›Cî…[êã§èøþg½õ­ßv(ßÎ{ôpÞûSÙåmfg¯ +õ•Ž¤°€§t¶Ö/õ$$Â:MhaK ^[~qØ.ÛÅa;³xù$ë&—x9–ÒÝrºW¦QåŸW=m9„0Díý0©V%ò²’Éï ӋÀç^ÜÜÓö†&.LZ²…$n€ZH½õdö!Í R!&;«»íê__%LA/ç€kæ.lÉ仉=øªš/ª©Ã²­¡/L%ž*@Âä³jY®Vsë—³r2Íëú¼›ò*SyÚNËSª8ä¸Ç5i¬?!Ðp{ºÊ +Ö<È(ÑrŠ|’>ƒöLB‡“¶WI¡DS +}6¾š”‘~a>Ù°}Ü ö¢S4kr¦ñ`@ Í-ïÃÎ)ýƛ(cÁS@{âqH uº"˼úßm°Ó¢=#³€O•´‘ç1ÃçQog¤FÂzVº]®‡+ÒaÆ5_-!v$¹V‚~ÉxkWklè›ésÜa¯£ïØÒÇ4À›Çõ¦@Ù@(•þ=#,Ւ¤<™/àÜ!‰´8?˜Dj;…T?¨Ç¥Z9HÜĈÒJÄ6OߔëáûOp¯h(â­ ´Xy£‘*ëÆ5¶Y§î{ßH¶ò>Êۆª›íOzFŒža‰½Æ ›W™—•E’ûYÎ's÷_e1i®s¶é(VM÷ƒ$¾4œ'rI‹Ü^‡¢¹Þù¬áŒ„ò­Ì Ð#sóçWÔã0 úaY÷æýkVZšŒµ0֞PÃu¦QèL3ԙN«»q¹*§­15p‹ƒÞUÓ©›M['¥%_2‘¾û¬œ¬\æ€ +ÈøÄ´–˜Ès›6s ù4¸aì/ËqúaQ «;oi=8q+ê¯Mæ åH¢´Æ®—^#ž]dZÙaÍqæŽ3/·¢`Ú[a­'&ÿ:ëq•¦-²¹¦ +ñˆû÷¥çýØëƒÆÎ\‡NR»®»nօvLíOÀ‡×„`‚Œ#@ÝþÿòÄÎL +endstream +endobj +147 0 obj +<< +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F10 52 0 R +/F11 59 0 R +/F13 84 0 R +/F12 62 0 R +/F15 118 0 R +/F16 121 0 R +/F6 25 0 R +/F1 10 0 R +/F9 41 0 R +>> +endobj +145 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 147 0 R +>> +endobj +150 0 obj +<< +/Filter[/FlateDecode] +/Length 3004 +>> +stream +xÚí[[Û¸~ï¯pŸ"#1W¼“(¶À6éXA‹MŸš¦Ple*¬-O|™NòÐßÞsHJ¢,JÏ%»‹.ddñvîç#y4ËIžÏ®fîÏ_fzûÍ÷|F)±rööãL"øl¡ ÑlööÕ?²ïnæLge½ÚÎœ‹l»+üÃr[ïüs 2[b¿—¾±.×þaWªåvú¼Ëæÿ|ûÃ7ßËnA–+’ÛYî{9_PýÁw]'ʉa¡Ï¿Shbuh•„‰ÐøÞ7òäÈwsOð:p°:–žæMyØUÀœBæN—¶”ä&Ì°ò­4÷ÓB«ÂÆ%&0wº<<ÐYӜ˜œP;5·íæ~=˜{Á #—gD ש%ÈV®³]µ¿ž/Pµ‡Cu3—"+6e:lz¬ŠE”bDŸ&¬UhtÜÌhN¬˜qB¥{ùßÁ„ Fr´6=’sÊ0ç~[o=iå§#Ò̳bh®°AeŸŽ…·ÔÜ ‡0¿†¢ò¯÷Çmxªê…£rA•& ¬ž +"<‡rçe²^W/@L–eKÅ Z4˜=>ÊÌ p‹?À|sêÎ÷XU›-PQìJÿ»±#øÁ“ÞÚbêÞÀ§¼AMyƒì{ÃØHŠJ˜tæ()¢íˆQk4̶݊I½cJ΅¢Yཋ (–}¹©ÞѶ^%Н(ãU¬w³)w{Ô-ˆ°ªý߄a`뒯“Â{´H26rBv,’ÝÐi*?’ sDC)X€€±¾Û_wÛk4èl»¯¾TÛ$,8Í8‘Ÿýù­‹ò6‚àÄ¢t¹ÄÉp–«¢ÞØâœ4<ßÃWÞÌ·@ÊSú ‘YÝ&˜’‘HêÁ"`¼gN®ƒÓqÐé/žC„õŸSô qýŸôK¢Ï‘/ΑßÌ^ÕÃÅ1¦ ‰±M ó…·únÎ …Øl½ÝÍáÏ0ˆ E$ŸTªl…rÊ.¤¤¡÷å-uÇïçÉÐÁ´ñ#³!W€üOX­Ëï=p.öCÕB*bã¶i;増–ûLÖæå!ŠÐNìŽt Yõ}r.Á!Ý{^{»& ьí†ý½†Ì"Œ†`w½®–EãÎh™>€2  Â(˜ÂßÍMU@z’!"âH̀Øt:3µ–{G´’ N²•JÂQ‘fo] Ô)Ÿ3$çäDg@DRc=äAvq9àÒÞº ê<N]ÒGl¯êjˆtTFcq²†ˆaáØP”0Û +|$(´†×{–ÃÔʵþÍYŠÎ€‡ XçÙöúÚ¡-hX¨Û¯Ω«b“°* 3žWÉTΓQ„|$­pȀÓ9ËrdÏ$’ƒ -8K÷Yœó8tŸÎaˆlHü£g +¼‚¢b,¼8 ²¹nºç˜¤ó:U‰ GÁö'œ¿/o†& ™L÷MRõM²±7C&`‘Ðz(֕Çn݆‘Å„¿’dÀ{îêaäÈI+G¦ó¡™Â6ˆR° +ø±À®˜º>›â6喺áòã`Ù¥œUÂÊÛMîS…H&æ\’‰Áçm +|;˜FĦÖÍò>•[ñ½@Ÿ¢2Jª?%€bï<%‚ô棿_æìNRL5z©‡³xt4)EfŸXŒìŒåÃŨ.3Ƨæ_Žð?©&ñ@2ù£[»Hªé +#ŸI£›UÄæ¦AD´Ié€QÍì?3͸!g‚áÙfƵp(:¼XÏ~<…í؆`Ç# !Ðàx˜‡5Hiý¬ÜWûCY)<(XUT UU¥Ðî˜"J.:~™"ºéZî÷þ´òÁÒ-£³«b°Juh((Ö¾ííÜЬÜîÊMh/õO%B­³º8wź9큝Xx”úڃ/ìO ν~VÔsÖýëöð†ÓäÉüÏ郶ºý½",¤³ÒÿIupþv¦n™pÆO«ÀõËâè35þ÷ٷ҇¡;ˆ¬ð¢Ãœáæӝµ™ðH&KÓb"‚Ç"{ã€X^ÆÑC4°We-e_†é¥0A`ÞA¼÷©m¬¸S›ŒRÄÑlrr:ÍàVXĶÎÊèÉFöÆ]££ë÷_Êry5@ØÈFweÔa§T%¤ª_²¦Ô£hŠ=š;%ºbO§š³^DŸV7²¯9æEã¦Ë —¿™îy ¦ÇE fǀ˜ð77sÜ ç^d¼y‘bí€já>ĸ¢Í^Ø+:Võj¸¸vwiLàÙ×KiŸñAþדG| îgÎÊÝÑÐûÔ¹bÿ/YyÁ˞•d.8<hÇv0û>ÚQ¿ªh6ìu*Ø '¿Yï»ùóÄÁgž»}†É¯bRÊqUú§ú×­*~p9 ÿ/IœØ鳪Á•EiÒ15ÓpøÈƾ7`|f£TlÁJ ñ¥PÏS4äzš È4"ƒåÂ]ú“Ñ ¸œ5I ÃK%QÂ4ÚÞ8%í€SJ𨽣åÛTÝ!B•/§H܁#°°È6·àþz`ëevÅþ°í^¹‡þé ‰8uHŒ’\¶sn¢9ÞÏ"«]Oæ(–ZyÌÆtû"Õ´Óïé^Ä= ÞæÆ«7/ÚÕQt(E¼Üî¶ëu±«q-ðHKŽÖr0EdøH-멛±\g-±(×YŠ +Od0hP,Î`þEª§E|÷t/¹®[½yÑ®žÎuÒ_•œæ:É5æ:5žë,æŠx8äºáu튄î{Û~ÿŠ>0”¶<çè º —˜ý–ŠËý>Ôuixã²b¹÷-õ¡ôýSµ€Rt÷=Ãä AÉv…~Ñj˜myw²1´@nF'ÑmVÎ$.1£È8\çà—Ý…H²<‘Ê‹ +ûNöSí­ìþx¨ëŽžîx÷ݓ€í.}]PreGîOƒ$Ì’â1X~.É:–{Uˆù¬:ÌWk;®ŠP\†÷ÄånӔ4¢$nŠuxºv>° ¥ß°5·½:PçE® 4åEØ°*Ýûoˆ| “¾›Þ­°6|"`ÐïðþR`%ñF¾æ "–dä~PG_ªÃÑ]¤b[{Ë û®¸°zVkß%™ø·¾Â4|‚Zv,×ßãÄË]¹_4u·¨ÄHÜËî;™kEàÁÉþšTHÕ SØWüˆç¥÷çÎtæžÓV(‡ ö%Ç=û/ã« }‡kÒ×w8÷õ¬ÖÛÚ+ßY«¡½:dì.#Üs±Ay}¨®ŽÕÁ÷3!£ã0Tbdfu¹^?ó¦v¬—•ÿ òÃÊ};†Õ­™‡/!ú¥¬Š:ÿr~•€áª;„¸M–@é{§h¢T‡Ã4`YæËr]}¤Eá_Ý|Š\y®ÿ±^ãwzC™@:ШžÎí]˧ïSÅ(FªODoǯ–¢oA~?«:'ͽœ‚ìF.Ôðó?¼KÖª×ãžÊº^ÒS'á<(ù„® +ØLwóÇÙÚ`¶ù5?ùº0È ·¨š|l£Æ`eþ¶8ᆉô~÷?­~Åì +endstream +endobj +151 0 obj +<< +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F10 52 0 R +/F1 10 0 R +/F9 41 0 R +/F6 25 0 R +/F11 59 0 R +/F13 84 0 R +>> +endobj +149 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 151 0 R +>> +endobj +154 0 obj +<< +/Filter[/FlateDecode] +/Length 3237 +>> +stream +xÚÍZY¯ÛÆ~ï¯Pýb +½b8ûÐFgA £H㋠h”¼­2 È.Ní‡þöž3 94Gòµã y‘ÈÙç¬ß9‡›,ͲÍicþ¾Þ|~ûÉWlCHš‹ÍíË ×)g›Ô©¢›Û/¾O¾«å«-UIÙõÅÍv'˜Húñþ~»ƒ¶¶©Šs»ýáöoŸ|%æE©›Ì,ð_ÛìAXÊ´ëýÔö’l£Ò\aož’ÍŽ¤Út?_O¦ižo|?œd½{žJ²ÜœçHðàH‰U¬cÙ¹Ã|Óµ¨X:iûêÍL–½ß‚0j¡’o¬2º֖Ì4“xCfa¿Ýj¸cەgCo‹†ú›Ñ÷b‘$ÍÞÍ•_g‚ë·\и dÀ‘m*/2…PPyõN®¸3<[QÉ™ºŸ¢“‰5pe7 î>´†vÄm‚M@I(دªn€IÒ^N‘ŒÛƒEŽeg4Oíù¾.‡òÍ׀Çÿåy–j«g Ã +ζÒQ–jêÆü{µ„¡@æ®õöT‘Ro`~ŒÍ”ÓLc>Öt…ÁŒ½ƒ°Y2ÿÆ^¶ì«~(×äÜî׫ãæ©?-]“ +NÂ'JEü ñ—Šºt¬0Ú=û5¢´¸ñšõ¥6‰KÚä8ó:fg&1ì°½l×EÊ|o–:aW¹eõ$ì/ÊÓ¸¦{ùPÚ]ôˆ¿!íد§ÆU.ÒîÈfŸÈ$‡k€ýBôo,±Ö­7¾õ6cž—çsaYÊ5I|.ퟃZÕZêµD°vfe©b×`YsC,¦³€^¯cësO(o-í‰ëÇcSªÁZy'…#À…zÀ4‚U’ÔÕ¹ÐÂ[óƒÐz¬ŒTœ%Ϗ§±8ÕUѼYc3ÊiªÈeÚÐ4“ƒ Ï"î&dòâQ ¢“”]õj+xRØ{ ã ð6ó%wΉk…êgº=·œ[}üòÐ;ßü²á°U†R/@iÕæ<7p•rµ©7/‚‘ÔuH;R§TM ‘‘°&YŒ´ áH›„»»†y÷Ïo}HA”ÆQFؐ€Cm?t£g04ÿcƒÿ(ûò|_µ¶q¿?´Í¡+‡ö‘m˜•‰{Pÿ .êž_¡ë†Àw¸Aª“æWOq¢Ð¢¨©.Š1pµîÏq‰ ™~0@_•çÒx³ÌÊ0Ž<ÜbD[ǍÏË;«=Ì͉?ÔﱧB5E}.-Ò(í&*Ca™ž…‚ñ¸P-Œ¾±ISIrPœ¾ì¬à5G?f†QÌa@ö`fä†Â¾Ëc;½8ì³8ÉÏcÙæÎ<éK/®~ŠzèZÛÞ´ ²j û N„£ F‚‰§²)»¢®#Ëyï,ß¿øà&†WYç#ý!|}968¨Â7™œ«~슻ªvïåюª7Ns§i4ƒ¾ÏÖ`ÆÛhkƒ©G(ä»Xa׺/º¡êJû‚öÁ=.‰šPƒQu¦‚Ü%úÜá„ÃyUÓ;Éa—ïL p´¢8¹¯ ýJ•¥Ú«Y´ +ü³ÚÚå@ ËÉêÌÚ “ÓÌf^àzµ¹±Bi_ѹá¿U¸ºµopjw.‡ÚlK ùjãv,µ¾…°'|ù _ßøòkÀWEï[ÎÁ\ÃË<Œ3÷/êjº|ÈC.,ÖçXS`a¢ k>F9DÛâ´¹®[k#"ˆy–?L9;BfR'nÏÚý·Þºî.Øhí³˜yºâŠHòÑ⑥ÃöX£o›Ög¦—à cÕ@+îGK½Ñ™WeÍ+ˆû¼j–RºD¯, ?¤?ÝÂ~ùîô£‹+d(áN#÷.ÊSVõT z7Áœ¦í΅Gœ!êUÀ°TÉ g3È:{j~ 1,õr}ZYÍa´‘k¥’'œ¢EìRëÏÿå†Ð04„¡;xy³ ñ£Ós‘Wò¸ŒäjGü´1fÕ{‰§ãSNbabîIqZM°ûÕmŸÌÖpA=á:8L(Óà,#&Ä ©PZQ(0W֗[á\tHúä³NÜ Ùcç<žœÑ(铡T %ÿ % Êä˜íÁk+ðÚÕ݈ nÛÚÖґơ§6@Gk"Ðo禍± Üë‡~LƒV,Z€z=Á½ÊŠˆ·¼Y™æì¡ûû}Lë7=ÂDßÚGuàñ gâ<˜ÈcÚ>í!@À'9ûÞ¦½±7Ìyš-½ÉM™MgY£ý93¶KåAB°²Ã¼Ì-äIϜŸÕŒÄÕ¬‰ƒ«·Âë ôâ/sº©ú~Aø2 DXÐ)}çߣáð\8pö÷#K}Éÿp§_T ×è仕wfÁ-h>¸MěNᩃÏ@ #rÀs_Jûæ󝷜† 8?+\¹ôjiô[÷ *”`loð”ÒÉ:º',0jM„Xù\Ö@ ñØ_›#8d¼«ÝÙ^Kgi®Á¸k°ÿ·Úig»iD L«v«/!¶Ä* lÎî~Ã;lf’ƒ9>"² æˆ@·gëÝ8¨1gd°ëÔ¬óG¹œO „?›IM¿ÒüâU|3L$ËM’€Ì@}(Õ{ȳ¡Àœé=|À"¹NÉn±øÂßÊç²yÔ³ævMñr®Z¯Îâ~{s39O±òÌ’žâ:=Ù“s&ÆÕháéjÓ Î%‘ DѐơÁa9V&œÁaZOæÇœÅé© ¨“1ã“fA 8«s"WÍÆ_"Ñ•) +)æ›^Ž‹¸V5z?)2™ü<CÙ5æMÇôWesò÷Ì­eƒm¦ØöšûzHľÅ뫤«ú± +ûrFP4—o(…Ѷ`³Òcçhçûçd›„8Äy]ptj¸$\$·a&qpЗw.{mòç,c&ˆil¤ai®0 Ûڧʵ|Öu… +¾|[Z8‡ýµïÜ>²kmsD XFS-ß«nÜýš«@…)T»Zצÿ`ÀÀ†ÜðÈK³TèenöB¹·_lù‘+ûWâvŠÁf»§š&÷]y¨ú"¨Z`«a®faÖÞ|rƒä¨æIߞÏ>½ûÄg;]ÖÝl> +$e/a Ye$‘?—xßõ‰Ï³h˜9Gj&¦ÊVIAÐÍýþeÛ å£ÔÖÿ1“à„¢¶ÿ%ÁæˆDaF^ztð<ªo;ÒßDžÔµ/E®| 'Ÿj±l©P\†ñÎW¡"ž‚|DWFXc]Ô¤Š”-ºØ~Ò2lžµ ßÂ4¥hU± Šôa +ôÓÂʸ=ʜèN6¿É‰¿h+ðÊaîý?]#b6ēň·Ähicáú1#±®e­‹+m¹Ô‡)rŎ>Å|‘0æ+µù ·ÿìîÎ×cMÚd‡ÆòXùg+Ûa* Èø*ò]pÓö‡jZ; Ž³=U…`‹ÙЁ¦LÛ.¦úMÛ¹­ËUm{ªÔšâ G›ÝÔyò⾂õ`…$åaYùƖX ` ¶r}.ºƒ-•C_íþ1-$P½yãZ +ûçN¼ªÉžªñˆ™MKãUqIJ ¯NËœ»q¬)ñYwüº€j 4Ә×,yfQ‹&°gðU +ì—'ý}UžLæû›{ÅÇ©œMm نD†ÿãüIÀ öÛìŽÛï{“ÕzS<²«àçñ ŸhÎß h÷̀öß 0‡´EîÜå‹ ~JؼìZ'ÐO°ÖK.È1À¥i–Ï2Ã#š‹Çmw¬·Ç«Þ”€H3PMš#n7‘ƒpÿÓÿ•.© +endstream +endobj +155 0 obj +<< +/F3 16 0 R +/F5 22 0 R +/F10 52 0 R +/F4 19 0 R +/F14 95 0 R +/F12 62 0 R +/F1 10 0 R +/F11 59 0 R +/F13 84 0 R +>> +endobj +153 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 155 0 R +>> +endobj +158 0 obj +<< +/Filter[/FlateDecode] +/Length 2664 +>> +stream +xÚåXKÜƾçWL|ñ´É~‘”‰ „ pöæ±îL\ñ±òÛS&Ù#rVgeÈe†ýîªúªê«ÞÄ"Ž7§ ý}¿ùóÍ7oÔ&IDn67w‹,Ûìl&R¹¹yýcthê­L£üqíÉÕŠíNÅiT» +?²¨su×àg]UÜ»‡þs¹ÛoÏ®oËC!¶;-óèmÁ3ë¦ë[?>ú¾øP6µûz•5¼ +8ÝF}³ýéæo›x³K´Ðš.Ö=”Õp_ô°‹L2¼Oõ¢8ãôÛPçѕüѺ¾<4µr¾_¬„#¥N@ÎSU:ž|.N§²iώ÷½Õ ×u$pCw9¢.t’D7Û,‰\ÓºsÁ^#øù]CÛ]j^7ç²&9°…²kÐA ;´ãîŠÍŸKwt<î×ðÜý´9ô»¥–ú¡-¾"ÝÛèOd0É&µ¨ö¶lP㱍N¨,ÚS3 +N] ƒúç}Ù÷®í¸µ÷V’ÑíÐÔv`ÖÂCŠ®èýân@E,ï7ÛMŸòa í7¨IÐcE§ÀÀéOû-ªhP8<Ô<ö°5**ºÞw€8¢áÁL0àÆ>:¸¶/HØ­¼¸\í`rÔ(ÐØ耀¶ÃV‘]åM ¶¨·Ðø/J¢S;A\gˆ1žS75oCþ„=‡¢kø«óÊËî¥IÍ~ ƵRGEãæqt?°8(d–³:±»h{ï»AïhQ¼SlÀ w` ô•æp€5[meäxÑûÄix!m}:öû@Îä\:ÉÝ®¨Nîðør»3àrÙNêîQ5¸ã¸sýPºî­7÷ ï—ì#<à›7f]R%Â8ûa»K£W‚@!§šbç×¼sõ¢A0Ã¡Þ VL¢?.„ù4N؄XËêSŽ…Þ±?4gHåmY¹¯Ðáµ>(G%&¢ ‰×ån0ÐLjHR)äxèÛåL“£Zώ÷™à Gp8Ó gŽ_&rÓyÔüµî†Uƒáƒ„J22k CW´;f澤¿¡á^ +ËÏNˆàH¶æ…¦¥ˆÍ&Vy_Y…ónš è>¹²°Ñ™Ð +ð*Sa2V &`0EçàFGJô‰ŠþŽ±A0ԇ’B°´1§J Q¥Ó$®EUàÿ[wË!¯; ™¯X¥`î¿9Ý·Þ}¸ ƒ e{T‰òùKÉ0Ú)¥8òbÿ¥(‚ŠÖµåkËÐETÌpԔF?bF*ñÌfŒÌ>)4í±¬Wò p%’ßøtH‚çސ~ÿ†:ÓQ)×6S°÷«yì8–,ˆÞõåÌb`NÝ ÆÊq˜ÿ×D!Lä34Vä£wòº÷<‡­E­Št žèÝ·Üº"`ZH-GúWó|ѹ‹‡ v–ø­ß…Óƒ_ÜÂH$ÄSR÷~(h0œOô%ï4's"± $¾zD]4äš%F˜h!v”粇¸B‰×˜„í¤XÇ ‚üÓlßçíВ±¢#8®$¼Ð ãw `§6mï»öh ªpí +ˆ^;duD× „ÛXÈ1R}ûíZhó’˜œ@"í¼o“Žn õŠs«$gpâàÁñăqD e)$„uÞÝ«;øƒŠ‘î ææ2­u՘ 5„càH—i0™™3DºS‹|ŒæeíM SˤþÏ Izl¸é“ ½ìû8dl¢¹q†¯2#Ðj¦Ã¨Ô ò6•Eo_”gΌ`èb¤¢@ ôìá>ú§àš Æ*šcØÓ±ãÒÓ±gÔZé'\ÓÚG¬rT[s@½bÜA®ËiÎw+Ä  6?J®ì¯‚í—iÎ7óþ¥C$Hð½ oGqŠ1ŒÎ‚'Œe&~_”ر²Üúµ¾~àŠúЌ«‰µáù 07V‹$»+ØŽ=”COÅU¦ájT]¥—6I›@K }Lª}Y3àú®ï/d* ‰Îo1øՄ­eX`´!¬~v »iàu™·ÌqEíù8ÈñF’t£DÂhþ÷b¿ aœ±Üӊ8›Í+¦,Eš .•yv™“¥‰€ t§:7%Ubœ½Ð‰ü E`ø“¾˜B¢JÓe1Î@˜Wù+ÞH ³E¯ºæ&ça‹ä£b¨u¨Ž\ å7̳˜#­=¨h™‰,a÷Á`a)÷aÄ>ÊζŠÃ$(µ(Öb_çÆÐgú?²[ß?e@ÜØϙŸ<°Å¸&üù{Rà¢Ló¤ECdÄðϝ>e÷¾I7ÊЁN”:˜=Æ¥e?@x'(c×2Ε<àº÷å´Ý ø¼Ý`B?ö¥·!~ä8Ôï‰Gj)£±+–VØàR;§"¾QBH²ÞãÈõ²Õ÷ù +ÙÀ‚#ë̎ù̬¤JBTë²YŠŠÿŒ½ ì6ã.#ÜmuMviF~&9£E2%9N(õ‘A¦Àî\"²‚òÇ굒:Q¹0z.©³+%µy¬¤¶•Ô沤¾VŒïÍ{™&kÌEfAéíËÁk—ÀTÑ'.ýrq–R"›¤\©§"/|Ñ2¦ÒMK|´CŠèhü¤½CÓ7¯ÐÛrJØØçÑÇIàc…H&N?ÃûÖÿ£ Kñ3a’Kñõ…‚µZ”åæ’;ªëËxü~¥¾2¹®y¨G™° MWÞÄֈ$¿x_º(Ÿ/Ž1q”!]}ÃPöª~ì¼zU?J^ +hCg2½. œÝ«óu¹;®^0³ùZ£kð( ‰Yy[ºž™eQñ¤tX× Q9ÕËW ™ØY±…÷®[ú‡ºr‰Ê|vb¹4a2¿,%„êÐ $X¦Bq,LD˜*ÍE’€Ó-‘Æ_µU:ß}%di|ð’-$É&7_:WB!ãbåoItP a%þÇ¥^ãY¿ìêöK_à)º{÷¿è€zp_I~„¬OÁÂB¬°_·‹Cuøî‹VÉÖ­¢žÅ(·‹›§óåÖ¯.³Š¹´ÊÇ)Q~!$ÉÇԝýŠN𨾟à ¤Âwr_€|ÂòDاúÀŠl¹H’G̒æÏâK¥M9þñ‹ˆÕ³Ük~‚Fž#ïž#ÀÅ™ âþD¼±H¥œ«ÖeûBÉå‘h£ñQ÷‘t-'ÿ&HÞeû‹–|Zj™écN1nF²ù’u,ôo=Jýa¹EÌúebŸv•«º³ÏI¯iÀÃÒ¡âÅ K%õ üÝïˤ +endstream +endobj +159 0 obj +<< +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F1 10 0 R +/F14 95 0 R +/F9 41 0 R +/F10 52 0 R +/F6 25 0 R +>> +endobj +157 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 159 0 R +>> +endobj +162 0 obj +<< +/Filter[/FlateDecode] +/Length 2507 +>> +stream +xÚí[Ýoã¸ï_aôådôĊßÔ.¶í^‹+Å¡—·¦»ÐÚÚ¬ÙÊÚJ®¸¿¾’²¨ˆ’eGJZܽĊø9ÃùøÍp´JP’¬îVæço«?ßüñ¯t…1JùêæóŠq„Õ* +I²ºyÿ¯H õ¿oþ¾úîÆôämO‘ Lýž·DbèۙO¢„­ÛÙVo†8w­™mdm£Bʵ}ìM‹$è¤y?õæ•íн‘01q­›Þ²Ü£f}»îM bÍè["dzÒN¿8¿ÈúÔ[”¡TÈzÛL)Z~Ï‚gL®?c6‰Ï=c™ÏŸáŸ‹_ם±§Ó+¦Ózœ +„±iþ~S"¢c~÷ï×ú©.à >gµ}Ñ6?kN£l_ÙÆb·Ë·EVg;7(w=³»Ò ʎǢڹò2ßo2;ŸŒŽÕý!{c7ÛMÇX7bÂ3{û!ßí²uÌQÄeÇ6¥+ô“Äz8I·Tý˜ôRRD՚¥Ñݾè3^!,ο]ÇXˆè“ù•Ñæmï((Fªá(é†×úOÛêïOoÞ5ŠãCYg}¥(% IQŠ:fZ•¸Z픓ÏÓÄW¨E 5­ËY©´úñr²N~jݓ½j3­cNÒèýCVÆFªcÊD¤b-üÜôѪUçßöEE!Î^É@Ïà„_Å@¿˜C»Ž¬¤ð“¤ñÀ‚ˆÖ6þxXóD›7øó¹c½U„ƒcž"*¬ur(f‚DÅÞy&°¦=»¿/‹M¶ßVßêW©ˆî×±¶Ö`J¡÷1ßA{Qk…äk¦Ò(3ýX´«Êº²noËâ“Ö:‡ßÛ%ÊÌɺy0¢n‰¹?hPäÞÌÖÍhR™É6Ú×8d[¶yYf71^ÜÌ>/íÃ΃^•íµ©ŽõᡆY¸7‹óO‡<+‹æ ¼C$šDs] šþZ5N3RFïú¬aH±9]–/·{ÚB¢?ô©P(³l ˆŸä¤ ÈY,Ë$ûÐ9ÝÖ¢1‚#)Ÿ“3 ÄS!šðs‰ºˆÛ]¢Ò¢ÏÅ¢´a-Œi¬1•ìg3Q]eä]ÀW*#»^Õ ZƒI°îUw4ò]ÏÑ4ý¸T¥_ D“Õ‘“ºB;Aª2“¿)ãoÊø¿«ŒÏõŒóéâËÐôêàn +†º +n,wZ×ÄÙ:Žb(Ig7~„Ûô×l4^Ê,³÷pˆ™ ’þ?¤n‹¾ÈÊвŀ!à×$º¿ÉÊúPÙ\Ä&;º§£ËNԇ¬®]¶£Øw3.½‘í³²º«N‰ ±ÕÏ+¦×Løi©÷"?^®~òzӀáJz*“t/B=ݞæ…ßS4ä­Þ¼8­¬Á=ÖЄ"¢ü;*ܨ±;Ì:#íKGîLvçÉ@ßò¥@ÖHêÿ$£ÁÔ?Vgrÿ1&Æ<½d–iÀpžó•#7m–ž†s¯;-¹Ö6›þÜÛ÷æü(zš +» ¡àúš¸Ö:= E?e‹7ôÎÚÆ w‰~hüÖ.ûOoÝ.Õ{勤ïαW ³Wn@\)µcìåaö^'€b™¼å­ð½OÇŔ*à)šË/((‘öÎXû ÂÓè±8ÔÆ ™¼=Ç"z€ywÛÃYox„\ûn ~¿ôm!æ|ɌLÉ*¿8æí•s?ͨ<“pù¼|о{óžÏ2^Uâ²TùƒGÖNjÉêDxZØò­ýÍö¸ú’j6ëÝK-yRy¾ Ùº\´¡øh-}þÄáZ:M-Ã2èE_áZ¼ ÃƋØTs³ôa 𤽟T(VÀ4úKqºž… ƒƒuhâž$->¼ +€Ìcé óà;Œ \ÇT¤ˆâù Òb÷SZBeÑ÷¥ Fù±î„°2z\›’-B\nÜmý!»+ª=ÔØÿÛr±}ÈJ¿Ö` ´¥ŠÁŽÚЖJcÅû+4î¬îE §žSvzÚýÐÖ[ݽhW‡¶,IAãoïsàƾøEs!?…¸é`ˆK©©Áõfø©€Š¼^…iÕn™°6m˘˜ÆŽï‹M‘íŒQH¢MÀµJÑ&¡BvŠ5¢'g‰ky‚ì‰|¦ ¦fÒcÀ×c©u +û1÷6`E’‰ˆ¬Ëd߆(¼ébÎ7/@Ï×tñ×Uñ%jž=}˜5z’mçŸBîà$nIÀ™©`Ú/íAÀ;™ð«Ú[½aŒEž*뤪úâª4ÚPúáĬ€šhVÒA5Á^¸óU[ÜÊD„}–3í I7²ìœeËÖ ÅÓßüEÚß'küœ;¶ádM©›Pšçšñ_ŠÇ¬„²ËÚK¬Ù%+Ó+bÇ­<{'Ë8 VŠSø"hâYõê.'seÍÙ\7ë g&Æâi¨db(SãŠûybÒëÐó¤j´|­¡!B#©Òþ>³²}ö¶¦7Õ~Ûàè»-š1€øîmI›!v¨î’Ýß +Ü)k HßÕ¦-[ÍÇM¨†t‰Ý:È·!$U6ñ¥¥¹-è„f‘×M­¨!Pº¯xô°oJFó]ïòúPl2ƒ]yôCX5u;° +‘Ùª“Þ2e©@·^E™ž_EuÑùÄBã™TŸ‚†ªÑ3=ޖñz(¤û¡á;¸µ“ÑçlS”¹}֜?ÖYmy ÿŸx¬  À.3{:=s*ië‰ÆìiL’¤a‰Üb™eWPI~<–L»¼ëu„¯? ï4›¨¾ÿú; +Smªü#ÛÀ”_Ü 45»-†Ï°4ífg§Òßܝái¨÷%IâJ?Aٍ²E2Œ²¹IwrøÔ ¡lÖ^í £l¢=FÙ>§DÙmü®…TÊ´ÚL„¶¢ÞVÈ×6Z&™Þú¯ V`jSëÁBLZû27¯Æ|¦ñ8‰QZ< `Í ÜSJ_vsC=T`.C HT륟 Ä;#éìñ‘çmÀjŠE9Er÷€‰ªþµ)ÃdJ4wö£È`ØƟˆëHåK P?ºëÉp³÷5Ç ç‰ùÎ0¶šÿÇc~xtÿ4¶ôéî´­RxÎépUâöDÌ6Üϱ‚+ÌSKœ{‘ïÌ8S³†ï;»g.ò¦ßAº°|¥É$¾ +¹Ø‡o¢µ¡ûÂ_›­“±sÀÇ Îñ? ªîµK´†µ8Øb¦‘ÑjJí(O±á²q 6xBfBx±áI jE,’ìèY-rÕKu×0mÛo*óv[4oŒáοÚm¡¯bóm¥6ùˆZJ¤£÷wÿ¢Ë3 +endstream +endobj +163 0 obj +<< +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F1 10 0 R +/F9 41 0 R +>> +endobj +161 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 163 0 R +>> +endobj +166 0 obj +<< +/Filter[/FlateDecode] +/Length 2353 +>> +stream +xÚí[[oëÆ~ï¯úR +­6Üû²Aš&)Z¤@ø­n +‰>&@‰Iç×wö"ré%)Z¢l /–¼÷™ýæÛÑ*Fq¼ú¸2_}s÷Õ÷É +c”ðÕÝÊÆH©ÕF($ÉêîÛG?VkG¥ùó€Öÿ¹ûçê»;Ӌv½„Dû½þö˜§UºÏk"¢&Óݾúžy"«Ø4½'BÚzo@ø¢¼|͉²õ†PU9”ÄY]çŸÖœF)ZoXÌ£•uSåé¾Ô­T´Õ3?†3c*¾pn5Uz¨óFÏÌڙÎÓCi‡áÝ0 G2qäÁ2ÄD°¯7&Hœñ!Xâ†*ªØ`†3²p÷ð¦ñ's§ßÓs3W©E@Yô£–vV­7>sûñC¶ß»¯q©¿I-GW ì·:·i°jT‘pD©[©ÄÁZd·–û(‚!ÎGÏ@!åê~ ÏÀý:W"%[áÊxR¸ç÷4°«îd_sSÏ8ÔV†Õ ¼!RF † ±¯’7>h:¼ôéq·2‘Kˆd\(œè³Þ`‰Ø‚6à{n„™6„D ÷¢P"9›sÊ1 uí¼ ‡ 3_¦ƯVšÿ.¬4"™Ô:%+ékMp·­&g<^ÒÈúšÄ{š„G4I¼•&ákU‰-¥JïÜuŽžêD×?@C(1LjX¤ò]]g‡†i2‰Š>Uíòúøñ˜~,K}¡¦r£ã‹£ @-YœY·öë ê:Û?U™÷'‹×R[s¥‡mY¹£x҅ÌéÿòÂ~j4g¦DK}|r3…†s÷ë?YD·-Ûâ¸3P<ÔöØGßïÏÝÌÌļãrr,!ÂÅÉRaÅ h‹ë9Lj­þ·bÐnÒ \__û®€K½žbõ³×’¸ŠÄ¶„`C¶-aLÖki ü– +1ٛÝt³k·ƒC·£?I’–UYi•ƒç¡’Î +ҋg_L4º×ý‡5K@à +•þžéç¼û&@?ÿº&,•†›¡(+{Qû‘¿bÐÛ,–sw{ÝÊfô¤‡–è¨ç3«8­‡Ù ì4&¦@wë(lÈ%wR“êlçèí¢ã·S[eèìçûådqòz4À=Õ¹8¿Û1“ßš°z;I¾‡pþÃEAg u2¨³BU·ê,|ƒD9@ Óð‡²h*ž&δF·€§\Âa¿•…S†÷ɑþòå+ø¾`Lq€ƒOLľ\ýÆ$޽ҝ§×G_¿Ä"Gôòç•íqâ9稔_€JϽO^JÅLT:<Æ×ӗ# S·yéXŽ6ÃÄ OÇ[hÜ9B¸A:â€A%Õ +åÑ®` %ŒÉz-mAHx³»‚nöoîVLoÂӅ†RÔø™’è)O·z“”Fuöñ†aÔÿž^ôw@Þ{½«Æ¼™âS:üƒ­Œ pŸ>=…‘.‘žGÞ ÑNñé,k·´ûûZÏ©¢ìóçÜ­i·Ë›|ãÈ&D/´d”!î$œÕ} C9bmÓ&;hŠ“b=¤MSÚò´®óí±JK=msÓDFåaׁiюlªE´Kۑ5[åYc5G¹`vä=Èb z5ámcMr9Ýz8ÆPæëÓ¾ÙJì§+hn†øÁXËéœÁ¦˜"ªu)‘ÚïLSE}·!ŸÛí3ªˆNREb’*’Ϩ"9JM2Eì ý¡žQ¬=ŠB±QŠB3¨ã‰‰ŽŒLœŒNìÝL†e"³Y&:ÁSS<\q×up3ôr)z÷¼£ ¨bHõ,úÛ£±:kq,bá¥èîÛERúzÅ ÿüíðº7¿Þ¼- Ÿž9\°½O-CÎ¥&ÜYø?™xµ”`°ì¬×0pBœrƒ{“»¼(©èfáHNyÕ,†ºæÖëòôu°x6)Õ䳊qŠa“Pó¤Á%·bz؛¨È»ÉŽ8Ï Þ8Iñv²»€oÅ(’ Ÿ{º=]ëŠF¨8…$_.+öÍyßn…»1Ãvžz\À1M¦û_ñ0ðò¤™ùþKÿ:îV‚¤üͼ¿ó~‡LæyørcôpAÆÿñәžš†ñޙw?ÛãÉé‰^ø&µÜXÂsŽ…7ØadNßÖL(ëX¤wª .çù×c~8eÛõi¥‰¤çʯדŠrt‚U +˜z§»S/ôˆCIкBùIЮ` ¥~Êìµ´!SïÍî +ºÙ‡Süc(–>që2¥ù8q‹5Œð{Ž·°‘,$ŸmH:_I†n 2žÛ—t씎âY2±dZx×¾J_÷ Ûë8½«o´ 9÷ÇC’¢—ó†3:OÉ©õ*³R•ÆèñàçÙ81)(àÒ4î1ʬœýîÿ>ˆ€ +endstream +endobj +167 0 obj +<< +/F9 41 0 R +/F3 16 0 R +/F4 19 0 R +/F5 22 0 R +/F1 10 0 R +/F6 25 0 R +>> +endobj +165 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 167 0 R +>> +endobj +170 0 obj +<< +/Filter[/FlateDecode] +/Length 3210 +>> +stream +xÚå\Iä¶¾çWÔQ¸dq'=ðaœÄƒ˜dú–‰ê.M€Z:µL€ùõ梩â"ªw€\ºU×Ç·|ïñQ³ª¬ªÙËLÿûË짇ï3JAfŸg¨*9Ÿ-(/œ=üé_ŇݜTÅVÿù\Îÿýð×ٟt+d[QVà¶úe½n–m}¨P-¾ÿ™8uQ é¬ÒÕ>AL§3VVøô¾ðšã’îmm^bû’—ðôòW¯_ WÌ/ïø4çG¯¥ê˜uoŸ¼aq)úQçŸæód¬øÑëâ’ã«ÈB‡³w·§}ÓøªŠûíËùn·/gNïËykQ‚îõ‚òSÛ_6ÛÕa×|7_ ŠûÏ»ãáPo–[-) (p‰¤d\b¬ë·+Y“âoÍz]«GZ ’põĊ]û\Ï!+¾¶õz믁 ì- +ÐR® $h)hŠ–,“–^ǬDIáa"³ã Ĺ ¬ÄMDç)0÷~vW%>wp¡_2]ã/—ü=Xêñ^,õë=Xj˜d*j—Ün{K (µ +s—po}>2T%žýw†e­ŠÌB.ÌÖýo.Jf«ÙG§4åÂԓʜ~ûõdØ­g~»õx‰™;®ùmÇU xP(õÁôZ:Œ+&u2¥´ã`$ ŸØ áǶÞøú¡œÈT¿›/¥Å“þϊçîÿÒã J~BÐg çí?Í[gf§ý.ç EñїwH­äøòª,¦!”LPybËgô’œ8º è Σ²ÀíËØ°à´¶¥7®œ5éé,Í«„ª«ínŽÅi…Ã=A(º~QV(¥¯8½ÉžÊ@¤&Y«oŠŒ#-~V‘…Ôt¯/ê%–í(™Ð²¡Ud¡eÓ¼ýeS‹íŒœ.(.’ •˜Nv]áJ§éfsH‹f'M•ŒT›ÿvÛW©iy±Ý·ßÚí¦1ÅRMõŠfiþk|'ÿŸð|”•ˆyªŸž‚ÈNªg¥«b Øs!¥²P–l¤ujK±¦Ã="{$Ò¬ ‘Ëš!þb£b5°p.2‡Ö͓ȏÃèºÞ|§6Ëãæ?GŸX¢§¸s“7üU4»×²•;Dhñ²«¿µJT¤*͌ˆ ¢¥+S%ííûM½Ú¾Ôëf£¤ï ý)]'%r]©7Sd!ÁéD5ˆ0' g +_ó)rЍÍÜ¢±Ï%ޝÝ®_WÒã @'â(´7ZvH4XÖ°IɈ eÀ™v.&”âõq0àÚX Ü„jJû:¬© |ÌìŒÞØÑèÊ„]ԌVÍR¨àAËÚÊJœ¶U`íeÓú +RZgx¡}û(JÊS¹m2¤ïÚýqu€FjÙ"ōý8ˍ?†XÃç1=h‹(Ó ½•ÜÝz¥i•^ böì ¢´?ÊýɈÄÈá’G Ó,ç1‰0o§ˆÆv6$‰íLéÂQ›Åx*0vŌOû¢053`aƒ‘ÊG…%DÀDÿ8¶›e«bƒ†¤kˆÏâˆÀT6rÝ¡Ç;¢ˆ ¤å„ø¹$Þ¯V[I +‰¦ö‡f¿ïž¥ó¡¼˜åéUkþ5>Oû ö\›²g‰þJg…°›-b"Šº\£T8‹¥Í3”H]šÔµS 5 ]õ‚Çèv¡šBuåÖÔ¾yvF?ô£GÌ3ƒ*êå›g>jžmˉæ9µ—XåÓ[Í£r_|à ¹5üuiö㇭ºÚÒ]o^§Ì^Íû9F +aX)^›H‚*@¥£¢Í˱1öe½Ò‘ù¨” ­¤Fj¿¶ùH昫H|YËÆÖkVµ‰´øp)y9WhÀ>ý©FÓõ\·¦_%Ý£²æmӐ˜0ër4—RËCr-_`îʵ)ÔDœš¦  ìè]=¬Åd $™åEJ 1hi4…I ÀA@ï=Ü *èÏ‚ªÀFl#ñ3iÔAJ®X}ž«áH\÷O?¸N*šr0&Š€%´)*Á$•DÆb®!Rcâ,*¥<œSÉ9ò}×y« »]ZëպلBQDÒêÎj<˜¾Ò›éÜvhä6†ßÐօ‰„®?Íò©‡ÜF’ÜFÎL¬´­^jbaŠ´ªÙ·ë¦CòÛ×]±]]k»$œ*) X$õ‚SÇ"ušDŸÁ;5Mo»œÑ»;zÄvq â\ÛE´]¬ŠÛ®Jé6·¥±]%m€ÁóYˆþAa“Âp–Çm´AO gå´¾øl¹ídºˆ#’â^À¦È8vy›Ñ¬ŽCqmt¹Ÿ/EÎÃ&K9à.‡8‡ãI)W‡>ˆ{¹g_”ºöær~]úˆO ˜o Ò ÒRx8-ÝÙþ]D[Ô¸jR§‹‹U»R‘wª}³o÷¥ÞEUlâғj×ÛýaWë”C\Ñ¢~5‡(:¤#+´¦ÁÉͽ›#Œ›c +H×zÕ-Ý@ËvÑ!"ªÈâ0èþør¬_Vm½ùÖٜÀ60hó n*ÏåÙǜí ë™ Žý¼õ܎_q¡Æ””Þ¦PoZü_[UàÌ:pâ†o +‡, ®'Fða•æä+°47Á„zAÝDW¨iÒٜš¦À|Îè]= ø0¡Êû2ÚR%Ú ÊI´Á„+ð¢àkåöMÈ£ô ðu;€Ité„ÉÝë)+߄©óE_á,³ïÉëPš<9½ó¼@˜Ó! Å$#$½r<Ô+©õ1 Ås t‘—­;”m‘ O³;kÔþöùÅÀ•w—Ø„XÅN…]xfggkÎÌ´&f& –3±r¾ ˜ïçÒâJÏ!šJ¨2ª•o”›‘2U8gIYáë±ÝÀ®ÁÄYt–1’”§HJÕûÔf¿ñ)óÕËJ.º‚ ’$8Fú'ÕX`åµEeØÄS¶!¥ˆ·”óPHjïyêðð‚óÓ1¾ŒÏmYoBFÛ Ö“Ž½üç›ä—MàO¬”gJ ý¹]N·äžÖ“Ò¦„=?¼*Y+“Oã˙Ú4ŠQ§w•­`rŠ!‡:[ò>RÙë (jæX•_6úNØ\'<íéAN•§9+vÇíJ¥E@aÎóUٗÚü=î¦sçb”Ãb„×(›F¹A¸ §÷ œ2f³åsæ6°DÃÙÜ;E$ŸcÌöÖ$à ¥Y·[5 b©UëñâùØñâªãÅC³o#þ +©T¢ÒÚù ¤ìû>ˆ*w3&ÌïP=1¨%^Šóôû4fØG!*BD|ÄTʃqEI»½D|hÙ©>Jœ'®É¿x֐cººHÀ͒/&øgþ—N«² »royÅ9uÇz$øy“ñLj†b3+”‰T_x£†Ho Ñ¯`/Ñ{è‘Bœòûà¨Cz°¦1öúBÖRJŠýV'Ï©'ßP`Õeð²$c×mÄè>&æMyçøVc½Ԇp:ϝ~ø$TÝìRø÷@>u坟ãð¦Çf€¯¡¹Š~$M?žC@¥ßq¨³“ šwKâ¾ú,+âwÐt$­éæ!/ +~“OnLRÇç“|sÇò¾3ôÛî÷m@”…{Ù,< r+“zŸkî7ÜļeúŽ®ƒo) ÙÕ îÙ»‚@MÙ'Ô4 kGï +ìè¨+°"š9…ÜmW«z×JsHtZ=CQŒ …¾]á4`\ Ã2 .Š†á¹£j³¢ð(¥»¹;}…dÆöó+Ȍm>Z…—0…Ç^àbxXÕ+õæ!6õ5Ó< òµH?`?Gâûzê%ɚY<ŠF" è¸ºÂ…W—°]ƒ™¼7¢„†)¬îâ'äi£k¦‘gôÆϤ|©ªTÚÉtÃNžìŽUlýB?"S`]„mw}¿G§‡@‹£ztzxÔM‚|xÝ5ÏͲÑ1²Ck꽞ÝÖ×·†2¹W²Mè*ö; +wã 6ø Oäƒ@Üé3\ηzÂWù/?Ì&Š`úœŽÐ·Knõ9û¥Cý^_G›vøD¯;­cÓ#áT…à7£ÍÍæR´ùÿÑû,K1•¿-”¥ˆC°ªÜ½{n~êÉþ [OÿöQ¬·ûݏûӃTšBÅ ”Q•A«á›èæÿ‡ß]µÍz +endstream +endobj +171 0 obj +<< +/F9 41 0 R +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F1 10 0 R +/F11 59 0 R +>> +endobj +169 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 171 0 R +>> +endobj +174 0 obj +<< +/Filter[/FlateDecode] +/Length 2705 +>> +stream +xÚí\Is㸾çW¨r¢jZbƕKϒJ*‡To㑋–h7+é&©NÕ̟‰¤ ÒZ½LæÐ%ÄúÖ=‰QO&öç×ßþ„'#Í'×÷#¥&3¡$“ë~‰þ•®×ÉtF(’ M½þçäÇkÛO7ý0ŽçíŽÿNKӍˆ¨˜2=äôüö'Þôai9‰mëäj:ÃBDw®k¬‘P¾éa +Dû¯ŸÜ×öªÒØýš¬R׀6 E‚ø7Q…°'¿ÀÞÂÂÛuÝö×ûOw½9ÒÛ~7ÓÞ¨qýü¨IoT˜ðÿÖïG£c‘#S¢w÷¢Û]Õv/i`ID½CÚöGUˆŽ’–œg:¸+«q3ªRFÁ0CŒ¹ÙòdULy=$ë4¯Ó½uK¤>šÛÌC2±ÓšCy —/áäèÍÐAFh„ùˆ€sùNÉò!}9ò²Æ8Ï2#’#¦Í/FT;GR‚[I/î;þ§µz!ÇF;bKuèö}±NªŠÇ2ÙuŒ›üwÂLϘï:¬wZ Á'«ÉÏ­†ÄÕ+×ÎJnÿi»¡¯h·TˆÉÎÔ®¢™:ì”1áHӎW– ¼2ïP¥ã1¬ÓsÙc¼@ñžfºë£[C`¨h„Ò0Q„ˆÄˆ²Œù»—?¿$2br¼BÊ' +ّp.ºŽ Ÿ¥ÃÎ?€V(£N;¾fe fÉ0Jð)Ç"ÚxXE%`¤¬Z¦+ç6¶6ÖÍ)9‘-‚9EJ„<g(mÏà*-͘¼ÓÒU|H3»¯hfp"Š‚Kh9"81x´‹ ÇžölG$9ÛñFÂv~ÑEéD#-FÏxjìŒG¶BQz‹øtÚ^MàX ù È©ãÝĽ1B†,„ÀLKƒÓŽë`QñaTÍÇEoRÞ2h}O&‘Â](ÜW°“ ¼X¼…ÅÑ–GR¸5顧>>õ큕hç*u²Y㇀½ˆÒXÉçD€ ÉØÉO Š»n8u8‰é¥HLÆHÌ^›Ä‹‰[«ÚþŒ?㠷ݦÆkÛ¤6 ºÖ;‡nŠÆ¡s8>a˜À&ÃéiĺhXã ;ŒÏ"ƒœÔp#¸z0"À oÍČQ}Ùdù23˜‡aé0ÙãSÌà æ±ôp§GæJ‹l{LQOLÏ]RÙÓ#Ѻ¨ê2)á€Í¨á¬¡öçc܄C‚£GåYŠÇ»s7C«ÇIŽ}ßó“÷Aè&'ˆÂq¦š~Hpo ØÁ¨ÃŒ¶x©‹`ŒA[¦`Þò췬Ȉ_ÄðkVI‡€ò™ÀêíIç‚!$¤ª ¿^hïó=ö~ZPù9½0‚¡·H•DþZcó°+m[î[Icä¥ó#”h¿ e€FM8. ¨'æ­nPꡑWãqèà ª5î¡,}n½|?Q ¬Ø0ó™`q ̈Oâë0‚ PZ;7#Ø~zšaÎ3߄âÛ\œHí}?gR?ÿ£JýüIýü4©×ï†?3Pj¯ë åU•æËâƒs öl´MÙʞ^H{C`‘Ç„J¤uǯœÙ³ÒC®Z»vø ±ÍãüZ¡Íù¥"¹G ¶6j +D…äAó|»b/<¥á+Š‹%6¯)ó iÊíéšžôê gCÆg¸°½•ÀEQMq¬~¦Ê†|©;W=nÊôÜ6íö½Ù´Û·|]ó³ió?mÚ xÿùÛõþGÙ4F$$u@˕ÏHù²Irˆ|×Y½»~ðÑo›îØ `g +y´N²¢LjêׄÃ5ÿAQƒ ÏùoGoOQ†Ð97ásnBÒï^óé5š#qrqª¼%ðK_YŠÆr¤%}式á´áí¡ufœ,£ÿ¯6éOÛ×RóžŽÑ®Ž‰½ÖýÒ2Fނ¾9{}ï6f˜ ³žÝ0uS}ø^W`â,~ãrlä¡Ò[ÐÓpvÕ~·Ž§-à5<*±wÔ_ýÙ¿ ¿`r«M¶¾Ç /Æã™û+x…isŽüIt™¹d@››¾©^ùbµ©†ÞàùA×­Šøés—Ndûa„¯µ4 º-mE?ñª5û¶b7ûÇë S`Ûg ü³«¤ª6ë,Yh:“G?Cy:cŒGIiŽä™ûïíï&÷C§M]oJÿçÒ·+Ó:[+?Ä D,mÃÌ&·ŽcÖÍpÞÍ}ã,JV›:±yrD…„ÇÍÓÍOәrÁ†.jbxô•V6¦î*pWF†CPžV4ƒŠ /8Ôp’‚÷ îëc™}±ãÔÒ~-m¡PB[ºÚÊ!å¤ió°IVY’ÿæÛfy–yøïpc$®à鎒»;ËÞÝs!!Ü3Ój³X¤U•9^¬S•Et—·SÃ5ØâêøšäKÈE,2«‚ŒHeÅ:óÍì¦à{ÙlZ-3WÝÞ¬+nKE–‡ò‰Ÿæݵéoðk^Ðø«ÀÚʔԐM™¸ÒŸp¢âÈþšªb{qh—™¹™'B™§ýA£n1>—°u¥¨y©m׶]ö:y|ìºi¿-‘A›GCv$¯pE™¹¿·¤mPH9bªÍ Åw÷ây‘½!n·rò#¬ü°˜™ª¼pï7¹'0‹Eô»«Ì!‘ÛvMóªpŸÖIšƞ¸OKÇ>(ÛT¸²’ÅmDÐÛꞏí]Âå0Ì:ò;vyšYcœ~¹#;q`»À}çG[–”RâèOh±Xª-|‹›h +¥¯6ßn™|p͒¥«N«tý˜Ù[rÊܽ¸©]ew¥·ŠÁ1Ò~?h3Wiô1+ÿó¹0ú/àoýB½™B†3VѶ ‹³'AÿÛÙÛh™. «Œ0J’o“íí$«ÄµÉS0BI™%®ÙÍÍ¢X?1¸ËVíñ_ûæ¢.­Qô*ÍqO¥{G65–½s’·^ÜØ¥X 6¿Œáaý°ÉPÝxùèSêÞ/ÀËdd®lô®NœÚž¾•“‰Vn¹ù6ôցÄx ƒ8{/)TÛsôòùr¨ŒÈe³uZ—Ù"ùÎ=ðHFª=~ÂÊfÔ¤ F¢±VùewŽ¸ +endstream +endobj +175 0 obj +<< +/F1 10 0 R +/F9 41 0 R +/F5 22 0 R +/F4 19 0 R +/F3 16 0 R +/F6 25 0 R +>> +endobj +173 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 175 0 R +>> +endobj +178 0 obj +<< +/Filter[/FlateDecode] +/Length 3115 +>> +stream +xÚíZݏܶï_±ÍK´¨—¿DÒn +$—¤@‘E|}ê5†n¥\ìJ—•ÖE¾3$%JGj}vÎI ôeW"Å!9œùÍ79ÉóÍÝÆþýyóåõgßÐ ¥ÄÈÍõž­7»BÅ6×_ý3ûû©»ßîxžu}ó¦éÚ^”Ì8Qšlÿuý—Í×ז† 4¨à$gs"ßnež•0R˜ìXÞßoá¿Äџ}#Ã8ɉ›ÜŽ¨\/½ɍï¼É\¯½‚H9ö2Á"ڜpæû_Dƒ%a"̓ƒo¶®w¶]MŸFr+”Èj·×s‹›†½÷õ±ÙëáÔìÝÞmwÓF뤴 F{rßEs’Sß鸿ãÌ1ÿ´?1ävg~XœÑœ›šHµÙi8"–n)R’@©bÇ×ÛS*»-ÛòP»ç}×öC9”'û®³ý–©ìÇ:Þ ,ª0—NT?8Q™<ÑòÅvG‹"»H·xŽÆ®îóˆË ûË'¸õË(µŒ‘W[V¤xà ÂÔÓ±&±&E$XcÏ+'۝ &ûk׃D–ÇÎ<3 ^@!츟ÎM[5 ¬…Ê(´…Ϊ¦?ߝ˻CS¶o|RiïºH–Ež½„†.>V­žªýGNEz¢8*fyºmìbë9:ÔnUý¾> [ER4aÅRøEuҒP=çÁK¤ŽgX>s÷ÈĬ>¹·æ€ÿ*û¶>K×Ø(ŸEKɁÁ‚hù‘+ôŒEþ»ÎWÑHƒ8“T£8,:JÇ÷)cg¼wPs„èÅÒ&©œS  "ýMy,Bç«K¬Ø{íIr“ñw˜|ÉM5$*iö‡˜iêiì RqI>‚­_V€K§~Y‡%r'Zœµ/½ãç+îˆw;©Ê ×ìŠÝξ>½¶/t4¦Ïœù +@Œ}Ä"g#cx¿e¹ï¥àˆóRuîåX‘àí©ssUõáà‡>°r¸ê|nö]Óî› +¬Ð¢h×°Ê>„ŒÐšR˜øíá’dSóÑK¶ú?º¼ë$^Ë'Q“• sǸ$…þŸÑ†'™^ W,ü9ÿ§J:<>÷ñk(Ò>©ÏÅSDBLs¢]öªqiem²]P 7Ž÷‡zð©Ḿ#[5GÌç•6K?å}s"6ÿÞ oÝSGö”D¯û°y9û’ÙŽãüRc°;6$¾šÅâK×0ÿR¡³û†0û—×a3é;žcRúêÇæ\ÙåŽawŠÿ}í+ør*÷ûâ´º±­q?”Ãàû¿°™CÛ³¶>ŒÔîÎ!©ˆ]Cݝêcùܝ߬:‚ð%å<Ù~½ +îs,Œp Ìja·){Ctá£Ü8q‹}”~·ÝéD9¶ž@QÁÏKVBÖí€ +Êãà†)ë#L_*—¨LÎ-ÖAtvšH=@<†5‹CçZ_—‡óP«•øŠJßÄu# +:SÈ¥Z›|M›²º´£zŒKþæ†(:ûnn«a(?qÓWñì…q~à‡™³mH̻ÿØ2fx6Ù¡;͊as›kø8„ Rxx«—¥$Â<<µŽL +*^A ZøœŸ€E°N +¿ò°‰%žgV²`j[àPæîÜCêŸÃ”ÝeÄ9ü;åX@+eóSm}äÚ[Š…Â$“/¨ÔÃÀUe‹¶õ§sÝ[dÇâƈsn\ßTµ+׌„š¶¶E8|½™H˶©O‰¤PF ²%åЌʾk÷M_Z«ir²¶¾>O@›»…ãÃ~ÆGDÍÎ ¨×mùˆ #±Ñò1^‘ç,è…2ÒåüP<pc¾F(KÛl)ëÂ`W[•§ +3}à|̲‚ÐÙx*ÀkLæ¹Æ1Ï'Ý˜ ŠÖuj,‹^{nc¦©rVÖJ(ìõ¾:4o;o‡?ÅRi3öËx¢ìÍt皫q –×™F!¿k¼E¿™9Áºfvd4ŽBjĺÑvì¸f)|`" ¬›/®’Öfž¡A‚NàaÒ|žk‚mAÁÓ< ÉŬ\ŸüõçMÛ7õÑ£öhFºçý¾î{8èÆÍ,suJÁˆ0óãº*Ï.—‡?ÿ¯¹W(nRÜ)rø;Å[¹ƒð­XöO¹>Ô3À9Ý +—ys‰.Ï*#Xb‡……ã+›Š¯|¼H)õêö(€ßäÉú³¡¹CnëæR‰U~çÀ´ ‡"†±ÛŠO^U`p +tµ´ +Gœ;óéq@eåóüprr2ȂƒÖžºûSSÞÕՙo¯¸¬¦XÕþtwm“Ø;8¡ >±ÿS|°£…Ë1×~ð™â`Åç»q?mÒç™,ˆ¡¶K§Bfm9œA³'öÍUy8ŒExp1‹EîÖÕ÷q-³YZwG¥j‘z€Üx¯%ؗ™Ìi¾¾;jG¯.m\àý_(OIՑ³4Oäx/e•ÍÐ;²ùÔôgLô'.VЧ«å.õF Þ(3_\(ðbì_fftÐ;Ò3BÇh‘𥠄qä,ùøGr'%D‰Ê™ë >ÐW¥;ä¶ó×wL±z}G3¢×õ›9bhߌ—'r¼-³ôŸÇútW‚S) ÊÌèÌFt`Ž:÷º/[@ù}7}Û‰áꌚPéFw*çàX@Ü8 ꔕ½V&‚P;O¢÷ Ç×±l‰"¤1â’!b$¡~ŸL ¨w½…ÔRùÀŸž ” &(Áø$tdxSìô·ÄĔå„?"Ñûu±ìà!IêñÃ>í»û{tRð¹²mjiÕ±#eÀ +ò‘UD¾¦ˆ~8Q½:+pÀ"¿¶`¯Ño›ŽÇÓU~Î7)&ßDR™’p]„ûwÉ\ý¨‹?{æ‚cƊÑkàãöÊÊë"×f&]ôçt:ˆ‚ì2Ù™IYUbÂõ$xÓu¿¤“\­»B2Ü´ûË»:÷†©q±~8®³D[ˆ­ûÆî‹ûØg—¼éÜ>Oµwî—&†¯ñòcðBª„ŒåóC¿J`t>Çè'J["D?ÿÿevhŽ1QIø/¿Èø~¶?°m*¡+˜ka亂`— +óoÑߣü –Û骱uǬ„S”pAÙV»£ˆØxzËvrmðÕfùð;ëßýGUí-EoKεÄ:f(C HP†|üá"O´ Z°œ6ƀCƒúÁŽðì‚Y{çĆQ‰¨Æþ/qâE“ÎF>sN«…5 žE~2 ‚½A]ÄÚ¸ÇòöÖ-_õè¨ã6Nú£Ð$]ԏ}ƒÓ<á¡möù뭝-ÞC û¦Äàkƒ{ >îò0¾aŠÃ^"Ŏ +óÜt߆)ßí? +'êÓÝøù̎/ <¥Œ÷Pkpk„ +òù<ÆéPO¹Š“n ó‡ÓMržºh8ݱºJåì¦kˆÞ(ÞÜ‹&ã-Á‘¤°9‹1Á)5^±Ÿ Uˆê1Â̓‘8‚Óùt +¦òאR ×â)N]Z ÿFì(‹ËU€3!ºH™ü¯¤¿ŽÆ*¬ÕH\Qãþ½Û‡>”ý(º‰EanïA<—L‡L³€e1¤nûnLŠ ²@˜\Þl_à-5<+ÐL!Ʀ–_º÷ NÆà&ë,šAØX,µÒƒ®ÄÙMyª1?xœ…²ÜcìŠÎ> ž~y×´µGV“£0ό¬ã/h¾‹FõØ1ÅVù3'`&,å“©¥ø”ËôÍÜbÞbÅéÒáڅqÅ)ƒ¹ +›B¦Þñýݹ6† +endstream +endobj +179 0 obj +<< +/F1 10 0 R +/F9 41 0 R +/F5 22 0 R +/F3 16 0 R +/F4 19 0 R +/F10 52 0 R +/F11 59 0 R +/F13 84 0 R +/F6 25 0 R +>> +endobj +177 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 179 0 R +>> +endobj +182 0 obj +<< +/Filter[/FlateDecode] +/Length 3200 +>> +stream +xÚÅZ[³Û¶~ï¯Pújb!ą‘LÚØî´ãéxl¿ùø‘èŒ%Ræå4ñ¯ï..¼ˆ ŽNâL_$ +€€½ï· nR’¦›ûýúçæï¾É7”mÞ}܈œ¾Ùɜ(¶y÷ü}ò¦l»b»cš%ÿ}nê-SÉÃ6Iє8H“ý–ÉäÿãX»•í¹øbÂsy2»SÙ5fïGî’í‡wÿþþe6Ϙ&šnR{ôOÛUɏð)UrpkiºQD+\KaéfGIîÛù +ŠÐM˜½Û‘R$wLf[!i¨®OçcÙÕÏð§Nê¶5žÉÀìºÙ1%ˆp| »a}_·EÛï÷%ü¯®ÊU¶rM”ð\ F$¡b#çv¾Z0’)6»aå>wÞOEïˆE¥üææLµNKJäRÀòkþŋ¯÷ÍÉt^0¦Z# ©¹<@Æý$ÙîãÉ+¿ý2\6æŽej_¸£«ºrÚâ© Š:meößç¦lË +僶Ì3àþ*é¾>vÎ$ò<)~€3´Lö—(Gº)Nµûiÿ˜ƒÅ´]Ó4{E>ñûîÎqú×¥I犰 ü_Ý´§é¨¶ø/>°[ÄöËÁ¼»¦8íÞÕ¡ö² 9Ñzj¹Gd¤w—œMßuÀNíŽ}u_ ñÇÁœQt_´k¢Û£üœG̉ԚþãNs4"¥W­(՛a>b°‚dÙ5ßÉÐwÄÔw²™ïpë;n·õ_Tàƒ?Dp©$Eråg¿Yþ5#,̦ĊýÅ;ˆ«!–R&‰pÜý ­ECè4MF›»x”Q™ônâP­~tUk‚ujk~¸À,å131ó͒À4¬¡,ä6fþâ短”U‰¾¦” Õh9Sˆq)èd@§>ñkċuð„þ†g¨(öJ cOs˜+ŠÂ̓4Å9¤^éR/à’¶,»Î€äI<¸t³Ö驧Ÿø¶Ý,ú„VÅW£xi*“À 0%å°µý¾„RHñ¨‚åϚ Šë^ô´z^ùL؜ çnû£ƒ%ˆavU^”^n/%ºÕHµôeZñH¦7fÚüJªÍ1¦\Iµ2̦ˆy2€ðP` œUzI—‡Òç€"ÔAF»€(mÑEk‹bQ3!E_ø¥ˆÈ”f|7⾊_¬c‰Ñ(¹Ô.\ Þ]­7"þ-hKü +©€ÚpÄ)žy‘+®=a à•Á-_-v€³DÐÖΐÀ²ÊœÂ÷S¶_F”5#§$Ï1$¦¸‡e¡>aƕYR¸`böæ\`HÁ±ÊéR€0Œ›njƒ½¾`bYš&æè–lâ╠yF»²nÊSá~ •¸Ý«Òóö¾/C¾µô`Ê«dw]á@¸ŠM@†ÔÝþ+†€°©üÈaXT7¦ðcÞ.aã(,ïgø™ý¶8áÔÏƝ‡ v·$ð¾£²ðþ ’{ ÚB=øÅá˜Ö@v6ÉGÇ#]vøþhÜpÐ&Žúo«M,îr™¼S…/»`ÁçÞ<[’‡õ-Ϲ ¨«v?«ý±€³ƒ–J7¥ŒêÆú)-¡¹X”9¹eÃÍy½q2…~k¥/']„ e.)8uú"Ê¿Üæ4½Ž–lx/?<{¯>DŠÎ‘«¼F” È&K€hwÀì©*ã Æ¡²u'â2k~0/ö/~Ì9Ž}lœ…<81 ¡-¬ÇŒxøý¹/ üìm‚†õêQhž¾nl{´«æ¾žækW`:hÜoPîél¬`D0ÁƒA– ±g<¿à5g `&2õ}=U9Öa)V4¸Á[äœËAhí~ ¬.„ä#\óIOcžžÄ#ÜÁ˖gÀãÁŸñfËD‚FwÀ«1ø¶gÖç³)"u–ÙM˜üD¢÷ÿÒ¤Cahb‚á“Š 4°.J/’¯Žˆ4ƒjì!99T*RLÍáÅb+À^CñçübwéBx_¡‰ +ŠsŒñaºárÉ6ãˆGG¾ |C´ú´ †ec±é©#5…;µª›“lûX«j`hÉ®&\Mz1`ªÅá`ãú #•·T# /„ÆÆؐ÷¿‹X%‚½a?ÔVÑhã]@P¾™èªÀl¦}”Öӗ:Î&nT¹RÅÄ aÓÙ»k«â:‰!%±‘7‹LÏh¶[ …>æ!…®il-ÅýÃ=V†QX‡Á¾ó +„*f­?Sjá?‡baI 051$Ƃ!±¨!¥$ªè-YÁ!>˜ @:LŒÁ¼À +Ħ,Γº)ÜCaÓ&ãðEsÂuý1$$œ/—ë.²NÚ¬…s¯ÊÓÉolÄð é„ÔÕ=Y æo̾n>çÒlìTض$ÁBó"ß0C`G=2%yËåO³ì9 ÏåÄ´[ãÎ ¨Æõ‡€²@PX»'ßAjÑñp±Ž5Í ôÊ ŸUÌC[ú™+ m‘ñ»æÐê6DóYXä?#Qñi¼O‹(¨Ö‘/]ïc¤Óùj«yÒˆ¶š‡ÂëE¬c!ÃÆ?,#ÉÔ-§Þ1•F·É7]ºç˜ ï#ÅÑÀíIì(•(ÇO¼ÛjˆR¬È„­¢ ì  çŒdÌ£‰¥ÎÅÐj˜£ô‘Ö«;³O€4ÅP+( ¼¦€‚ph^‡õxVŠÑËfÜ, •´Mª–ÆÞFk¨‡Zy°5uÑùewXžøF ÏmÑ;úT-FMI]œÃÜðmÝà¾S•îrF»ÛiF¨|4ñǒ,/¡hòwD'>‰:*–jAØèµÕ¶©–îÊOӆžvJÀzÂtٚÖÞ³Éè=›co/b§ /(ܬß’rì–é6JÕjO_¾þß\?qqÑi;‘®Ÿ9ô~ù ¨j’‹)X’%âd}º!¶FhVú:Ñ~>º»š؉‚û[—BÙëý©¶×P`!(„vÏð~è2ѳ|¸´ÇÛï\Ûì™Ûr çf•¦½Om*f3ÃMMé–z¡ª¨®×†Ÿ&8>5s-GÁ…þu۟[qŽ)lÇHÎÖ/PÄ<B¬'@ðŸ ï3üΟÓޙ@ 9rb§3lN]f™(h¹ô`åb¯ßüQ9.ÇË¥QŽgÉA<³^"Þ¶ §_ Õå—/…+Ã}«çf=Pœ‹õ@•3Ãï0lÆ»-°s÷غé<1“—6.k·\¬w€ù˜2Ѿ2Á®‡/(Ž†kÑßÁ<ðɕ·ݾŸ›^\×ïm“Ë|¸‘®Ã"£7"Z WaTusÀZê¤ïÌÑXÝâ¯Ï½¶ðZ¥ÉÇÂfR¯Ê—¢g·¢i¥]ÿö†âsíþVR¼¢›¡#¾†ŽÙë6{Ãe4tÊzSÁž‹¦ƒpxÄ7˜.ãm6açy‰QöP~‚Jri ” ™|ZÆ„§sVú.ƒFÂÆÂr'E–¼ýØôP¼V¶¿©Uˆ»fhb.2yªñÕ·GHe³³è«®:Sõ¦ûmÜÔؽp®íQ¸ é!{ºÉ"mÊŬUÐÓ”ÁÆ”º]٘ھNÃl)ז÷}Y} -T Ç÷¯ç¾+­á²h—†j5¾ÏµÄÁþ·Ïü.¥oÑϘÂbÚ¾lvÃõ͐@L«¢I‡*òbEB¤Æc£U}ºfú±,˜Úâ^ßòA4fWr H6lK;{ƒ¼Sx%ÿ§¤@K©ßüÖ(ÖR`L)|ÐÉ*Ê ö­†ë~ +ȸ¼ûÔ«Wì9¡zx‘çO’¾¾&}öU¥Î㸝M^{[1qñ5ðÿ6q±fâ¬ù +ö¿öÓRP"N¯gþÜjéÇ%’¥p>¹]ÝÙ/‘þò?þÔì +endstream +endobj +183 0 obj +<< +/F3 16 0 R +/F5 22 0 R +/F10 52 0 R +/F4 19 0 R +/F11 59 0 R +/F12 62 0 R +/F1 10 0 R +/F9 41 0 R +/F13 84 0 R +>> +endobj +181 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 183 0 R +>> +endobj +186 0 obj +<< +/Filter[/FlateDecode] +/Length 2731 +>> +stream +xÚíZÝoÜ6¿¿bq/Õ¢^Uü”˜ I“-|½ 1p8Ä}PֲͳVòIZ§Í_3$%Q+i×ÞØ×p/»?†äp>~3ä" +£hqµ0?-^ýð–- •Xœ].X&Éb%“0¦‹³×ƒµ.—4ΩK.i-WTñ Oñ_MVk,Éà«2Œ¨õ¯ÑrîÓ6žÓ8&,¤l¸oE2T‰k<%HTºÞæM:š‡ó~¢›8TÒ5êâÒ6“«c³’%Llׁt(Šàî.<2ÉpŸ\ÂRíß'ÆJ1šÛÛ YÒ ¿.ÐÅ-ƒj÷êMGUHZ84ÛX|„¿Ø1#Aº(ï8ieäNW£‚€¦1_1®B¦¬° 3äÂjmڔ {e¡Ý§óMì´rþÆm„vÒrÁCfµèû©•*˜»ëáM]€B%Hr¤ØJЊR +âԖƜ QæçËÐìøÍØ0¾ø¼àÐ->+8{²Øt߉ +c²È¼~ÔÖ+Û/ iÜ~û=î÷³ß~¿yæÍk¿ûy_-8Ô18 +k"fý?çÈ4e•m—.´­<Í>’ «¯¶™­ºÈ*}·,0]y 7›ìB§MºÉ +´”MÛ/Í-­<ÛX²Â‘•ÁÛeB0’Û[_V©eâŠÄ¡¾‰|Wéá¢d`çÙkVyi)Tz]V°ŒMiû8{~âF¦Öúu&‰äPYÆKÅCS*¦”&CñdþP{– P»¥[“ZW #¢+Êb,‚S ù@…éP…y¨öH>GÁwž½À ã Þގm XßÖâ_Ž-{o}>ž†ôÞ"š°#‰pW£¡áçã3IBÉwìñ7/û̓‚’GÛOÌ?eŠv<ä,T?õ‹±§!§Ç™Ú$é‡w.Í'.M~ 'ˇ'+†HA üÕD99@ À<{1u‚2ޑ§û+N_˜¾Ÿ2±Ü'®bJ\ð J|qu4<›Àâ(Úp§Øél H±3ÖP߅˜·utðñcY,YÜ- w•_\÷×åF`¯=Dž¨[ù(B†1Zá$A“~ÐéXYÁ ’¡Tp·'³;x0ô´=òÓÑ`³­êÛ%WAúE£i— S‰&5º‚ùîã<ÍÌÑÃ<"±ˆt¾-<éÐùƒÆa¡Û5n`½øÑZ—Efr½Ñ ~€Â°Ã묨K[¼À:˜WVHåBLkÆOÀ&*T¯¡“gҝX“晝c}í +<ÕMzb?&¨C(“ uð@ÝxÕ#©“ ywԑMzÜÖn‹Æ¶‚…Š<ÀXù'¨F'èÚC¼€½/—€dr ‚Ü2z,\e¸i»eùF7éÑñÍ^£{Ï5ó¹5ßLŽ{y“û¬kÚðNŽìNkÄäQ f$†‡-ŽCù/ÍÏåÀðøÆ.Š~SgHLüӟá$Õ×Eôñ#¸èbzÏ1¼·©Â…/ÿÞêâBO`rí¡yTÃ…Ì?ÇINRtÃ+p)ä Î4½£<%E«Â*Fhø$Ú`–Êè6 +Ÿñ"ë6†ÖÓLf_:³]±ævɓGçqŒ(®£›'{ÚøÐβ®mY43Úg˽öÕ<Ûcñ¥Â›¡în/ᄤֲŽ¯*„wu2©€²¿øí/Ǒ(8VÅ×xI΁I±¬Êly*S¥Ž‰§û®wWõ-¦ 1¥T{×VßÞ +ukƪµ¶Ÿ©M–BéΦô9ñ:uWQIŒjìYAkïƶ„Fîqÿ<•Î"&¢=äuØ>¯CçòFC·³_k†ù6>.‡~œáxÌÕO+ȳ ®“–«ï–ž/ÒîVò´½•ŒÇ·’ö3ýôÉHÎÈs€ãbtiRhꆒ؞Õ¾BÁMód1̟ëÓGŽõùœêõÕ$óJcôn€ôïsPÕVDÊÉ<ÖçšÃWïª\²Gå 23äMý¼÷'­áœás óââ»4o*0»œª`Ýú‘̶ƒÝ½5P¾¸ÀváKÎHp~^ÙQF_ëµ.ÿjÇç¥íP7à*ܧ¿XDýÅÐßÈé/Žòôwøêêv[m¸RøÉëu$ßÙ¼Z+/™pfd{àfgë&• €¶úŠé8ÍNv4;ñ¹£ÙtW³'_Äýݑžƒ«Úò¦óPQDQ[èw§/0úŽƒ&Û´„_‘ ÖÚB¿$ }E$X—‡É*sé±é‹´˜„ÿ*ýàÒãŒ@Œ=%"˜Ã¦üÏGwÏ'n¢’vÝ6J‰MDÔ>µÑ2^¤Ì3›p‰Ö<|”¨7ˆTi•Í¼âD uíŸñ‰(FÀ>~Ÿ‡ \xô\ÅDOb,’×ÓVŒßòy³»Š~vTNbÞQ_9…#«ï³Kˆ«ŠuVOøñľ)¡Öp$¿yî\#³ ]˦—¹¾­ŸunëæÚv~y»jßš¹|Ï°Ã mtYà@ݼ1-eQnôº>™ˆiIÈÛ8îåbED5fê¿¥Íu¶šk³¨ùPšW“k5Ȳ?0°8± åb|7{'sâVj‰{+¥QÄÚ'‘ #ÞEúG:qT£´zø*­š¼}øø>üiââ¨Çg&‹ +Œ|“£ ojûU^ÚÿŸ‹&C¾\™ë{÷ ÞÒÇ°ÿÐyÖn/íÍ>ÛµüáYYݸz¢¤p;±Á^œ AAŒ¹-þå?«BA +endstream +endobj +187 0 obj +<< +/F3 16 0 R +/F5 22 0 R +/F4 19 0 R +/F6 25 0 R +/F10 52 0 R +/F11 59 0 R +/F12 62 0 R +/F1 10 0 R +/F9 41 0 R +/F13 84 0 R +>> +endobj +185 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 187 0 R +>> +endobj +190 0 obj +<< +/Filter[/FlateDecode] +/Length 1248 +>> +stream +xÚ}VËrÛ8¼ïW°öUY0ñ&s“ìø‘²³®µ6©Ú(J‚%”)ÒER~Ä?¿3iÑ1µ'‚C`ˆéîi ŠiGëÈ?ΣéìøLDŒÑTE³»HhjD4Ö 5<šþ ?ÄÏÑÏٗèó ¦FJÒôÝç©«î7åœ+=«˜“sz„ӏÏÒ}NRm¢ØÏ¿ɔdMã–# ‹XLf‹á²zi÷6”hʺœ­­Ü2+¯®³fc·¤Êò¹-Gcž¥³Íˆò2J9‚OR‘›ªqMÝØW3fJÑDÂSR)}ò•-–f ˜ÆRmh;1¡<s˜ÆrªL H½) M“ÏÆXƚL+·ZÛ:DO bœÃoB•'eQ7ÕnÙ¸G‹Ë2qIŠ,©]ý!Æc*;ˆn*W¬m5þ†ÅÛ*ÏÖ~ŠLáÅG¡*.9rÒ+Ÿ¥‰úPr¨X U,u‡È‰Ëÿl»²€ ¥É+Z’Sç.+€8À¶) WbHÁ=¡[IG:Ì5–íª0zrÍG@´WM-a4©0jQ^¨ \Qì¶í!s¯î…Ÿ] àÊ5Î ›p 9.b2Ÿ£¼È¬]Òuˆ—wødß±´²ºG1|‚]$†Ì¼&Að°íº»² +óCZ‰êȊÕۗu•më?;êü¶z\}=¹ ²åܘVÁ’½*~HÂzˆÐ4¥AÁg¸õÊn½Z` )(öb€%£¨î4;I@öz™—øX‡G +8 ü7JØÙú¼BøöÁû@0:ÄBŊ‘kïY „Àÿç\ˆ½Iœd[”Ù·\@ÄàWi³ +÷ˆtñ®õ +ÛMe뺅ðª,VeñæFh3€& UrN©$Â9€¦y3€ë Þ}ýRÊ^ý‚|óç»m;áòòrÀ”¡R´yW®êƒ\¸×ñ”<`Ée»<<”òS+7!©}잞ž(,±Ï4[ÒÝý1Xð¦>®ïÇw¡ÔX%CXAéГ^Ê»g»E:» +}‹§’|§ú…¶/ÿfYa½,S&s2hœJՖܓ`üƒì06€šI°äákY5›ñE™ç Ïv“ÎN¸f4~g'uc«U¶Ý«†jÂt +Á4å¢5r×4ޗ0J¦Cç*x™<4„H óÖvá½0ƒVô!W4^Dk/,89Ë?o[› Š‹»ßL +`6$ÈÍ®Â1@ãá!o‹ä&¥B¿3§ríÿŽ`sÂãXÏG$CD¿Â¹Ø¥€¿©¾dX<ßq°+ï´vÌhhg<îE.ÀÕµô?Xï&ƒ½åá>‚ç@"—o 1ž=øº¶… HæîW ÆÑõqZSz]}t> ï%èë »è+æwMŠÖ +…à‡3 8¦eøì¢A<þ‡. 0O"ÜKà +åGéÌB,ÐéƒLÇ!6%§  ZöÉz5i^… °Õ:cÂÍÅ2È¡`lCåü7¨÷bäIÄÁ_žº•­Âk{ih\±sÍK­Å[û¼Év54|h…$¦J÷Q Njի>-®x \ùWŽ¸ª®WñÖ LˆW%ú´LK*À¨•I s‹âÿF)ða +endstream +endobj +191 0 obj +<< +/F3 16 0 R +/F9 41 0 R +>> +endobj +189 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 191 0 R +>> +endobj +9 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-53 -251 1139 750] +/FontName/NGVWLS+CMBX12 +/ItalicAngle 0 +/StemV 109 +/FontFile 8 0 R +/Flags 4 +>> +endobj +8 0 obj +<< +/Filter[/FlateDecode] +/Length1 716 +/Length2 7315 +/Length3 533 +/Length 7870 +>> +stream +xÚí—UT\ÝÖ¦qw Ná´pBpw € +©B +ÜÝÝÝÝ!w$8|‚:ç;ÿù{ô9}Ó£ïzôÞ7{Îùîw>k®=ö‹™^K—KÚf V€Aá\@nà€¬ºŒ!äæÅbf–uƒàT¿EEiw[/(ô†_à 3@æìí +±µƒØdÙÿ¡H;]!V (@·;ý1±9taV0ܛvtèüã7€Ø ìê¶æÆÂÖ+8Àl bñüJjÿ3míîü¯’ØÕí€í';à¥5 êè °Û`ñhÀþtÿaù?ÆúßPý»¹‚»££Èéöê?ê 'ˆ£÷)`NÎîp°+@f v…þ»ÔüO8˜ã´Q†ƒ!VÒP[G0€÷Ÿ)ˆ›Ä l­[Ùl@Žnà¿ó`¨õ¿#üÛß<Šï Ôt9þkKÿYÕA p=oçÿöý‡üïø?ã?ãq…xLx¹yy„î=½ÿ·nòP+˜5j Ѕƒ Ö WëÿNü'•Œ Ì˗KÀÅ'ü¢aA^¿ÿU¨…¸¸ƒ•å‚¼¼¼ÂB¢g­Ü]]ÁPøߟÁŸÿ+¶ü™ì¶ÂÊÎ!… šsÒpÜX\,3tM¯haõ–žeސ͎]b;¢r±uк^Å}8ъI¿c£“ŒhôWK¸5ûìíMY³AöÚf²Çd÷æMmì!׳3³<çP ¥Îá÷㵿‹˜±ôv†bL´c€™˜›a$mlªvï]à>…KäÜ}\®yª™ ¨ssÒ¬.–ÝÔ»ä÷[ýG^xß ºèFO‘kÙû£Ï1§Iy×>Ž¯Ziê–G=ýTbßz‹!¿[ÏíæÇTã¢îQùnfÅqQ6d¾¡ñröɐHÉ= }PkM›Óy#.vr!w[—ô03ìa˜™}Ig"µ@µ€˜Quøaâá­ç‚ Q6ØGuQûæ.=¢êÞì¶{T«HbЀñÌðå}5Ý~Žn¾P“k·%þ^¯pñ»½Ñ»—æªîØ’x¸j.*ÓÊdÐG&_^©÷6?¯zîJí%[Ž }Wûx™=tf¶-£Î¶VÙȨ¢Ik™V3Ò±Æ +¿Kè½Ýû>Ÿw@?<#uÄ{—€He…a3aaa·vĘvrCÕ¼G}Ç\r¦E.TOê~fí…6[UÄñWU ¦£?æàKŒÅ&rVr+I`àB¡´Ù¦`!êsâŒHŠwþ„œ@ÝǤ¹T§ÛšÅA gZDï…éûâÖp9UâK>óÈìøB3Âlù{À/ñÏÊ0§íM9òBrZo*åR6›Ñ\axJßK•œ4aOÉÇ£«÷»ÈCöî7À’óÇ·ÛȲ.¹óÃåÙÚ ²÷.éèB¾%q9Ú|¹}I+IâouÊ¡è0!æ¹G¾Y,¤YØƒ<ќ.ӚHÖþ¦•ÐJTý¶¿¼Ð&ü£®E$ŒU«sK"Ù³ ×7¦‘S+k¥-†#ÏÎKŽo+ {už”]ÎfÎQÇÍè’a0×¢7¦‰ë/8j%`üm™Ð +³à¥€Aá>Åâ€öÜ}Ñ ,IβYÿ‰ùÒrì¬Ú‚߆(ä?3 ‘2ZzsxÕ×ê¸äÇ¢.r¼ r¹c+p°ËÊôÆÙg T‰¾`–™K»|Eó'©»GTwE°u*»Ó¿ãÔ[ÐxÆH‹ÐS",2jfKÞpZÅ%/cEšK>£•þ°3m›™‚2²ø×yv7²tY•4[å.À»_÷ŇóWÔç#¼yòµ1»QÚƼڣ(À‹<¢U®‰‚]õ€ÂØ#ù¸ŒÃÁ€*‹žפõú‘ ì“Ë͐y1-á³î5v¿.Jч騌8+Žü;´UBy";/=]uˆÕ²1@dಸ@r¢ÍŸæh1¾²ZÙÕ ‰ù°y‚·éêT'pƒ¤¼¿é×ç]jՏËxºN÷ºþð3`œ=\Ùã·«`}áFÌzs`Ó1\?B58^›”sQYËl3õmpõ7[9Œ›w¹ÉnÓh¯eª·Ã*-•«Ò¨¸4¡¡ub+Œ:哽袃ÒGԹڄFäy/¿M ˜•†!'½áïpãú䓻ĝ\[TÊnl„®~[õ£˜ð]¤R…W¨¸Wó¥×€ÇÛ4Lƒ8T ÌàÃÒø¤%k¹Æ"8?þÀ!øsÇ%¤ŒálodZýû/¼Ü¯»Mçè›`‚åy·óèã:K®ç!)Káܱ³ç6…›¨ÕA:Þ·Þ£0êÏo³ËŒMd +¸?+’x†Õ‹8ž.ÌhR¬Myþ6ÿ\Vn,cb²ÿ¨ó]4V}Ì7„joòSºbÄEç4é‹Ñ>%ˆ Êœ‰üí#©·:¾OæQŒ}lÒâ'w~Ʀ—‹æ ¹$¦Œ-wÚäM²/^ò ˆí6d»d‚(l»êäÈ] ©Ì Šþl-kO´Ÿuô.´XŠ}|-u NŠC,ðÔvš”©+°ñïAŽ¤iC:8Q]º^æo½}/ªªÅû#YÄùÕã®fnx´Ç Hºk6O¾J!cb3sù¾²õ'1󸠒Àu•®¡xP¯ò/T•“âÌ8ŠìzÓB§ý¡ÂGç´H;­nT.ÝÃ8b¢;rn/IõÕӔµ9¨yod¨T/*zñ5¿¢Jvð¯"ŠµƒhÊ5}±ùïýÔá.)A/Ýëô–-Ü5qWÍt¡àÝe{P·Ö§¨A ÕnfþÆ|šå,ÎoQêw³ê"Ó­ˆ°esø‹?}…]ÉjÛϡɝ²¬ Ɛވãȅ¹Ï”µtô|b½2y@O÷dVÑ}±h´uÖ«qgíÎÜâî¶×‹YÍ$â¦Í¤Ó jr:~åêwTM7ó“š(\ï+íÅI½x·p?–pãzGž†‚¬ar½È—q§ã¥¨"}/F:\C¿üKÛ÷P[ðD‹¨Š{ú÷•‡¡„“:4^sÞå׌¹·:6\g¼Ý œ[E5 ¾ãª^ÔìøÂ“Ø̋÷H¶'¡²„O—l[æSÞpÊ)ιo¾–F­eDòt5Z!ڃ”Î,2h9Tëi äіø«cTøe ìMOÈ8ÈçùàâpÁUMš‚ÖÈÎ( ··Û¤ϲ/Öë«­ÁÓks=šÆe#5;ǁÎIÂr„¥R~¸’ÆÆËíœ °¿u1âT«ýBü“Èë!x±Ÿƒó¦Iû%Ð W4¿G"¯ þ2l({SlºÛ¦‚0>èQªz”ªVq›…ˆð­°Ó\¸ô±Ï ~çÅiCüL„êý•í_J¼içÏÜV­=vhsCXçÁ€·áÑÝåäë~g5­V–aTøI™êï]F/j™Içðã“Nâ¼3ޕ~¦Z[Û`e“O2ƒÄCÑv~¬¸%°ÆpÕe2fü+=PåóZ ã©IXâCÒÌôåo9vÄJFý[Miû™àª·»4r8Gï#ä"µ‚Šb_ß¾J&ÈB«ö­™$]YU$N8¶ &Žî ;ãI:1Ç+©W–/ÂS§U4r';ÜÒ¿r–²í\¾«Ûoх–Uf–¼uÀ)¶ûÚJ±QÈM‹="vá§£ØNa!Œáä)I>ˆÛïy“žðã‰=¼­¨4úZ±ä>›.ºŸ*®ä{¤ç”Ç\èu_„C³\¹ÍT#ÿÖÙ0âTî8/·è‹ ¹ÁGÌê7ý×"l߄iC¯Q(ƒÓ7}~ò…Þ·e9…Ù]F£;¶¢™ÅŽ•ÏK}…c8$ñ—QÉ]cˆaôè÷—¤·   , ·uæ܌†ê»r‚\¸{¸d›‚àú0 ìâÏ„”µ5^ÍP·ÜΤ’ÄJ¿: i~\~¶“ê‹\SG3#ӂ/Hð4š±¿4´Ö;½Ó ä~wx}}¯=¹D½™´Ù øF¬L1GÅù!413¹Ÿóɓj€¶ Ø7GszCòzy‹ÛÍæ#n¬ßNÚó+dTvõ«D˜³èÕFžãu†Rår,3ª,‡mRóËAEøjÇ·œ4œTa%Ñî¦cök`»jè76!”é…áîák6ëû·”— [DÑ  ô‰¦H£,ÛÉæÒé¦~4R©©F_zÌúùù#j3(ŽÜöÀµ»vœSÏõäÚ¬:}°è‘÷^{n ,wõ•ÃDµß{úG—@&(³u+N¸þökÃ8½ÇKM6ôXÚáQ/EKÝã±âIó.D lËÐ| ¯ùI~{Ž€!s;Ê*¶ˆ¶a)KVt„ì&|z['ßV»fí½zú†r ڔš`£DBǎi¶¬m¦™ÃԁeùÁ­dµŽÛò1ØY¶düÏÁc³¨™ÆԜ¯_ÐìY›²E;¼4“¥ñSØ{± g¨gµ86. œÍXwF¥Å‡g§>±êmÒÇôxCr‘ÆÍ¥žÈÈÂòì 0Cd—‡+†ô?¦ +én… •Y»š`œ8 겯ÍæC—»/uî™E$ãZt$փç)¤Ri÷£²AóZ‚ˆ?á»æŸnÝÞ9τNGû¤äñ4©¬—¥¨ï¿èroÅôf/³¨~:Ni…’- ˆ¯†Ïîð~`ŒyY1 F9t™ÀKªöpýýqüG‰ +Y-öR§Ãþ—ÆӅ{R²É½îrÇó<1†v Ÿ=A9¯×¨¯b¤ò–É1pÜÉãPÎSöU1žös–†­èIû׊¡ã«ä˜—yg‰ +×WbPabì6Vûó<° Fç%Û̋ͬŽˆd±©¬§õD!fE¹ÐÝ¢~Aëù&2µ}I>ÁǽÏÝÄ/ e$ 7•ñðzz·çÚ:…Êh,²Ñ=dc^¥}|K”wfCLæJ‹¯ë1ë4<y€„ñ`q,r’ôEJKHko,{St4¿]7½Þ‰˜½š95Ç8S­ò9’H;¤æa®¹ù»}¤!÷¨vçBFFÛn`°06ñQÓ܏©÷}™ï#Fû=*®‰ì_°ŽNÌé/ô¿<¬ É_ßð³»=y‹KldºR|gÀ àLœÂ{ýÝÎÅ-óWR®žRõ°‚¾E¯ð“š4úŠ!•ë¯Ö¿®T”?RFDw¶¸zuöµò YîÀµ¸ÃÛ¸²Ê•‡ÊK&èrÓß"_̦¾+=§ÍúæÒóºY¿€xâ­ßïBì¹8j|i6ìéZfˤ L8Н¹û}§¶" É#¦÷Úñ®֌5|ò¬TU^³;'&)Jý¤Ú&fzã ¥Lb[d©z<õ™¿¢ÞÑ õ£ß2NvJÿ–ÝFH鲖£Çè~´ûKôÈæG…¿)¬ý¨^Ùá“ÓòD¦õ°Âð0àîN^„ÆpöUrTÅXÙ¾LPÓ ¦~-ûAօ˜ “ òI;èñR7V@¸|ç^P´ãHÕ@Æ Í=4oÛÐt¯ýˆæ/eñgozgTçó½|ž/æbm†ª‰¼KÀB^“8§^räÇÈÉÓHqD˜3Sˆ"ÆA“žG¶üU’õYÓï~!V_…Õ“º°8=)WX¯K¿«3×ä±X]M«ï â-çîS[%ïkú7bCDÀnÆ¥»sQõSÐ]NØ\ÚÃÞ>Q8µ}×¢î›ÓWáJeÃTÊZ¯ÃEGó}ÆÉZ·<]uI2»Ažf8֒ÉÕZ„åü8ô ƒ;Pb„!G-ŠmrÐÙ +rD¥m®$F΀ï˜Æ &ÝxY ‚¿3 á§' ÒPmÊq±T:V±àµÁY‹€o•–ü×øCIaÈíj9p˜™Ÿ* p¼„j‹à¢ê­a³çJ±þnAßà8ô¬·*ØÅÙ.~Ò+œþ±,âùK*?hL¨yY#4²é3Òašúx ۜb‡Ò—º¦ùš¦v@!ýy²i‹YßEh dI$Álº<{aÁ&ÏÞ¾³Å<¨Mzq,R1H]Haӂ´×·=î¿çM˜¿kD~YKÉñójö«_p+QJeág‰>ù‹ˆc‘9½@¸PùÎóþS«FçzH€ím?sé àÏïHM¶ÒR…ÖÞív–Zbíî¾ù!&–¯9æ<^kh(êê EÀx‡<¦ÐÍÓÑÏØÿ +¥b&nOú H<ƞYñŽ ¯ù©…îõo1³ñHw+ ÍiL#÷/ì,n^·WÖ ‡ŒO.™IOâË^¦jð5m0—ž™wß6Êץ㑈u= J5é¡bMÇOæëÈ?¨{Êd¯éÕÿÌwÓ9ê²Q#?‘~\’’nx!¢ç2qeTV¨{!gkà£DÖ·2˜¥ÿ*nGuj7‹‘ãé~Rˆ œÓšq]ZÒ±Jeñ ,þ¹^Ö3혥$ÂBxúYCs¦dV˜ën]gý‘÷[Íõ.ßV*Ńb$ëCI, ÒªyÛ´&åGûÇ_ú ;÷ìP¨@ü!Rvš­OýàìAÿdŸ9µFÚ>jkSÃJ (Í÷Y¿à™U/pnOÉø™þ%nxªP!`I-¡É%{ƒ!ä´h##4®ýYã ¥¨˜Â•]-œóå-¿Y•öF5w°ÇÔJ/Í2èûi·¬1¼¤b{(\5bITîEåzBϳ4Þ[Ò=Öî¨èù|ò›#kìK‡ŸÊ@9xæs|J‰¦²þµ7QŒÞ¨¬ÿ5´Ž•º[£[(­,{8 ï(¬îLŒ[\íHfÒ°_)^Đ(½¸Ý#T¬;%Ö÷¼È÷±¹cËÔÀ!’ô]ŸçfðÁÕ{‘tð‚ŽD‘_ӊy¥œR¾0JÈ Â§)Ó6.½T%Û<@X–ÖjÀ”ËaW‘÷ˆ`2«:ÿ~Xµc1EJô…|€—vx(»ôÕdñpO’rAg±° ”õÁ0&xuÛ½g|΄Ãð³/Ai× + m-"Ë£Ÿ†Û%ïÄÞmjwχ±œ?â9ó’(Õ¸¿ÎÀÑ%* #vîM`c‚wP»@>^¥ú+ý*¼Iàiw½¦ÓéîÉó8ðCì’;|já¨^¢„‘Žò„‰qc¬<¨©æቋ%æœæNNa%NbN&¡ÕY^I±?Aè*ó¥–ALy9òGõX—n0ËïÅ/(¥Ijõ„ÏÃ<Ê¿¯nàJs«Y…åóÆ×bXJ}ÿY¼<7ٟsêãÃw68R(X8‡9Ю<^@Û;šL‰ÚÒÊQÀÝ¿ê2rֶޔjT߈Å_ç›<7íM͗Ùg.FLÍGfŒ¼³x~Røȑ1ïò5‡³ÿ,v4…Í*=<ћSe9Ú2r› ÀÿªɚÍ÷ÝKöEkû4~…ÿ*uh1ÎÃ4X–‚3_µ…4½b¢Þ‰ùæ|%HÖrçiÑüûXNÁ%…üÆz6¯ß¦èÌônûs(ê‘mV“åèFü(îõB?eWÁÊÓ0Ë<÷ÃW»£ˆÆµÇhàð²:Åñ×ÜjS¸Y9 ™^Àp–òÖFÖqG\ÌȞ«qÒ¤ß!áŸCNxùҜÙÃ¥mð›ÈÂT y8=èSNYóžO“—6<ârIh›³¦9{ޅjcúêdS #ódW%—êM3֞p…üsÚ +3eÅa?(ü”Ÿ—eçÍbJ]Ç)Ii¿É#}r¢ª‰x0úêýÏZÍÁ¥)Ǐ¤Šþ²¯hÚÍ>gÚPWô„ò«œ‘Ô®’Þ? 3yö“òÏ$z߉õ_ùÎÈ0’€>™~F›¨‡Z>¼¢ªÂ_Âî ¬œ]¦¤1ezà +‘kùE6»ˆ P½Õó®þTԃ$óõ#’Sáð¢F—o‘ŸáBB¢˜á:sepÊj’>^¦zš&Ý.FB@ym9r‘­ü×U˜p”î¹F5‹Þvä‘ô×X¶Ë¤'1=b‹ºN|F=½ rß#þÏâû1ë­W8…ºYŠFÝ*ÁLEI(K7 ÿø@ÑÉ!®¼¬ªáÜmPý²È~ ƒø™;uƒiè–K¦oþØB ›SZru5VP%¯ýQ…Õ¥\…‡ÓÈ@Û%+5?s­ÖÕäu@s‹â˜-2eÆÜ?-&£¬øYx(ƒM!õʊòþ˜æä­QììCéšEëÂt-ղڔ’SoA20MëãêÕ³˜bIoלp`öJ¯'O\£È«âùä-j€¡uÚê#ÑfžÈÒl[ Ga—S¹KÃí¾91­:«ç  GúuÛW`‰ Üå"ãKežW­7—t„|‰®Lèíw@£¾ï»“–"šÆPå Vاg]BQ‘ù}%5D3kÊ!§ùPçyqô½ó«½Ê _ñ{«Í™ +îùÅÉÌêi ËϜãÙ¶Þ½­~Pˆ ˆ˜š?΂r¸&õþelÅÕà–ÝØ[ºg"8zܸP"øi7рÝw¼Â=°b›ï"¤ÇNƒÈ}3’eyý™6Ç3ǏòñãDµ\û»Ç¨‹ÒB“zN눅”iZêð ÎË9JãûÝ«+ñ½ ߉©ä8ng:¬¹¦Ž¥¢ôI{ssZúËéún¼š&‡´ò2$˜{v à”lÉëì’yë;øò|"Aeu-ÚC­Ôþ«aM=ÛÜl7QùÜNïùÎÃãSø¶ž¢|äÈV|¸æý„½wÕ?µ:êk%—ð?¹4~?ú^ŸuåLwž½V+”,ц°ÊÞSœ§<Üà€¬Ò–9üͳÏõ£kêO­O(xÍ —OiE¨K¤ØÒ쁞Û5óÒè\T¨ÁhÃÈÆ]Ší?° 9YŸYœº§Ïe¹ïqÐMnÀÕaã|á¾Ëý…dG‹'¥K®aÁ>m%VL§Ü‚¶Ý׺ÆÎlï|ºüHhòUS$ –‹4~ñ/–I 3‚ÅTfè”õ„â*/]šiãB5f& é w(eýxÚ‡‡M«ex0]c|*pfLŸñ8µî3Úqg ªxM/„þŠCWi,«ð/—Í2#qj8@'LYK)´RˆzNËX3¾cDÇäJÿð^‘u”#y®ùy£`‹¡¹ûtdðîÍ&½emü‘ŽÍá70&YAârîê8¤%3·-ì憳¿æӏòm¦ì…—ºÑxŽêÓvܚ E9E×1 +Å ÁÊ^ôš}I³¾Ö<H¢tËvu¦›šm]]Շ NðeîU²»^ØèäŒWÌÔî—áG¦í¹1v4#ÕDãÕÇ Éñ‘º¯œ>WM~jC"t{mŠ~“0".çpÿ`_¦3v¢ û‹ëåÍî\\ÌÞD^> €½ ømw»½ù‰Ž4Ë6ÔÛë0a_zæ’ý~}éºÐ„q–÷I9ŸOÿ†¬tzŠ [Y¯ÖÅ­‚ÿÇɜ¬Ï[ÏæU_ Þf‰ŽC_]³‰O‡îï€_K5 DۋH‘=x'•×“7évù¢+Æ-§ÑK‘yÑÁT­™CÜê£~ø&©IÉý¤³a“õÔÕjçñ«!Q*(±è”±ã*¼ÿ—Öÿ7øÂÀÊ r…Ãœ@®XXÿ"™{¯ +endstream +endobj +12 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-33 -250 945 749] +/FontName/ABTSXQ+CMR17 +/ItalicAngle 0 +/StemV 53 +/FontFile 11 0 R +/Flags 4 +>> +endobj +11 0 obj +<< +/Filter[/FlateDecode] +/Length1 714 +/Length2 2433 +/Length3 533 +/Length 2973 +>> +stream +xÚí’y<”íDž,3…LHNvÆÌMÆٍ֠Șy0̘‘%ûK)•(ûš”T–W)¥(”Q©0ö´"²g-ËQ÷=ŸÓ{þ9Ÿóßùœçþç¹~×ïþÝßûzU‚.žÊò÷°˜]…,l ° +„¨ªZ°A2‡ÆbZ’9 @¢<×@#ÔœþN¨,ÿ6ÍۇhXh~wa<dÓ(d&`Kæø€Œµ +™XÈ AžN|ßAvHE@ (@¥Q8€'èMcBô¾3Y1½Xö§LåúÿÑ +فk\€Æ§&°FIe1é!ô‚èÙ±ÖN×Xþc¬Cõkø.nGf|ÿ>§¿´É =äßËـ-‹ +²™¿ZÁŸl¶ •ÆeüÚµâé4 +žéMäO‰¸‡ RhŠàE¦‚?tIýbmn?ôðæNGퟟôgӁLcrœBüÿŒýîþQ£þY¯‡M \‘$µf\[¼¹ýrØn&…E¥1½‡Ì¤’ÙÔ?…¿B™›³‚Ãtõõ]´0ÄXŒaø¿úˆLZ´² H$ÖÐà‡Já²Ù “óã/X»ïµmm:  R YÙ2´uGt”´g=fêøۜï>ïp€Ü/K7˜Ë—}Ñ4 ¥¯Gtúós˜éÚøõ³Cbڂ†²Ù‰Š[£¤º9÷ú­×ûdµ¼žÖ¸¾ŸÅÝ8=¤û +v‹$¨W;&Vq­ÔÎ7s_/ùzššÏñ0Õ¨"_õÿ$âA7õ:Iû¯«òãɁ{8 +÷Q›díœ#så"Ì * ¶%¤ gÄèÇ­¿ìÒ%F¶ÝÜç÷áà£lÜè¹ ¹Ù¶M±¦¾3½R¾½nŸNïzz¬Ö^’ýsE¬lÛ`vËä€p}†?w»AÜØ”º·é¥âj¹ Ó¤·$¼(A:>¶íʅáî¤åƒez‡µ ¢¶BEÛY×Ë G·¢ß9X¢ <­SëM¬ñNWsÎÍi>k +rt“-¹ú»ÐÝ yóýúÜéóY“CYž*ªz'SÉg¨¾åÑ¢Þ©ÑG~ØØ£Üí5W´£O£vqò”í”ñûÚ:…^éÊå¦AùnÂ%™9isf:á÷¥s-ˆ ú¸8ÈºÕԑßÏDn-OÓâ]N¸xÕzŸCò öì|Y³ÕýM;»Hi÷b»Du›¢¤–¤NyԈ´/³ b-ÆðÂ'¹àX'-¼âØÛ·Ò7°íB’úmÀeÐ5ᬧ|=ŤÓ!fzÊÇ_û]Öã ~üÉQ­›Åêl"ë«zKWÄ?‰o|S´ƒ!•²ÑÔ§™ð‘­<«g¶?Ø^G—/‰é~#Ð_Sº û±î[߇ô<ƒT›ý¢CÑaQ®+‰2“uŸ§Õ^̉Ti:MÎè®&ªXƒØk^ ՝ٖ½a.^–ÐڇØíçÏ'¾º±G=oÍú¶»ˆZ®Â†EŽÏÇt¿í|7x,5 »9×&g¹)âPƝøR#{‹É‚Gċkî#+ÝÓ!§Œzö©-TM +|–x±£˜šAø ÷t]-»V@G”¢íxáb…ºß‘o¥ÖÕH! ‡ä&Nõ« s²ÇúÈã3ÉÜ«PòØ0±•oÎÎìYäLêxæ؍¦˜77À·›öÄÄ&öó‚ÏÎôí}I´‘D›¢ù²ûN}¹¸‚áqìZøŽ‡wL‡¼‡TXg5Í iÈI-v•åè^¿pvnQoçu^6˚'B¼†­GÇäx¬TQ®¦ß:tp”+YhÐW+ã^vRܚ7?DíU<ÐS|µÈjüøí[›ÅnN¯¶ë·[+I_ȶ’ƒšeˆ¶Æ÷PÍ¿>’W÷–8fYËW>w{)¿çðK» ~¨E9™ÀJ53•ÕAT5  2›Lï@”²®½¨¾û•=Ý»{ȀxÏaê̄9|ªjÓ@k²ÿFøSñ-5}èCAVŠ$w³©@;³uúãÞlZ’ì;ý½î͝/YúmŽ[oš%©ò&­—½GvÑ=%ݺ®my4­o%a ®NÀó΂wñەe$ÃU'Ò-75å¶ï¹†rþØ¡Îä‘}û)áÍ›Ó B’'Då\호$u¬”R¬œ²ìnõ Üdö{ÌEOõ³Y•¿Ù®; Xwô+\HõÝ/ÓNÅR ˆçCnlA˜Î§äiñäÇ=; ªâÔ¥³Ë›7.MS™8`9®]U¬Ò+®ñêCíüÎ|G·æ%kòùò˜åLÃŒ™Rüüj1ßö•[Å®£êb˶±/—Ô׍%o¡Â7%„å={¨‘±TßõÈüSîmÖ-hºiñ›Ô±*Aœ¼yè}jI³'<˜Qtj¹úÒá }’â +ç‹ñáÇõËlFm'yZâ.` ëÉ0Z¼¸£EÚÉÐãÅ"ŠßÄíKÐIYŽ¡M•54Ä=?Y:Ôâ¬!…|þ·c5 C;‰à„"ôKæT}[ uÇ·g ӨѮ€Î^ ÄÊí$iüZïãû¥–õ%B‘ÔN†ÇG1ž$QMçíý$¡ù*•ga_zšP—!Ù“ª:Øç¨aqÕÐÍÄ¾× W|~3C£WNq­æ Y°¿iùe¡aë¼{÷ ç`\¼$ܕ|üv(T‡V”° ÆŸØñU9V$=ضՇ†q&|IãyJµmqIîÒݯ26ïï*S'pûD$«Ä«Ö) {ÚÃ󗜲òäéWTî/~]M¨z¿nPîŒmu ¦G¦õÒÔÖÖòÊÆTn;ǙÁ;ë†Zð>"❑8k 5™‚¼.[Œ§¥45ßɈpíRòŠxs–¹ôúޕ(p\¥çNáѯ¢®Ìú+W·ˆëáì's¸ cCÁ?õß!ðÁt¶ü΢ê§/Mp…ÑÁé¹_oMËa'ïÝaÎMÞ-½ °ƒò6?à¼É²ï™Y0ý´Ge£RCñÀè1éGSùük’u՝zuâ*_‘IJ•|Ú?dä.+[qG8oЯó,MÀ\+öÕè"nEWm•Þà ÿ/+’Ú¢l>sùñ~`¾Æ’iäž<¤=ê"Ü´%ÙÙáù&‘ssÙÉ<-õ!|!t0QÐ8¦ &st²…ŽEIVf¹8²ŒÆ´Rä„ÓŸÀf㩈þf +ûòÍ +Óm¨Ó!¹øC«;Ã¥¿‰Ï^÷ùÍ#j~¦OÂ>¹èáésOb¹žBþ!¬<ÍQXŸ hŒªIïÄsµ›Æ?Í©üîQªB?ìqÝî%ÿEP:m¸fè4¹_¼u½bî ;„t:Òí¤Z„ØôÒÄɁ±.¿A&Wûjp}E)J8®æŠ•¯™m^»Ãß;ê¢àn¹ˆÑèöä¢Ûëü1‚’ šÏ +'–ûmK}¼»Ïf+æùÐN¿%iqoÚWÕ$]i¼…AêàÉߖ,Ü ^Ú£vF“òž‹¢”ÈxºÉ8¶i»+'6Á™ç§ÄôKçµU%7yåˆ{ +Èÿòü?à"€BÉl‹AfûA ¦ÎùÁ +endstream +endobj +15 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-34 -251 988 750] +/FontName/WIVPZW+CMR12 +/ItalicAngle 0 +/StemV 65 +/FontFile 14 0 R +/Flags 4 +>> +endobj +14 0 obj +<< +/Filter[/FlateDecode] +/Length1 714 +/Length2 13724 +/Length3 533 +/Length 14282 +>> +stream +xÚí·UP&íÒ®‰»»óâ6î/îîîîîÒ¸Ó¸»7îNãîû[kÍ¿'æßs²cŸMLÕIeæ]÷s=YQY$Š* ¦öÆ@ {;F^€¨¼2 +€…‘Ž‚BÔ häbio'fää°ðð°„]ͬÌN^6n^f88 +€¨½ƒ§“¥¹… €Z”æ_*.€°-ÐÉÒÄÈ oäb´ýÇÄÄÈ bob tñd„mlÊÿºÅ  t:¹MáàXX¦–&.c ¹¥Ó¿˜¤íÌì\ÿI›º:üWÉ èäü€úNÀ?”¦öv6žS “‚ý?«ÿaùßÆú¡úïæ®66 +F¶ÿ²ÿWŸþ—²‘­¥çÿ%°·upu:äíMNvÿ]ªü›<ÐÔÒÕö¿W¥]Œl,M„íÌm€æÿ¤,%,=€¦Š–.&3#gà¿ó@;ÓÿñOßþÀ¤!­®¨­A÷ŸGúŸ¢¢‘¥‹ª§Ãÿ´ý—úß1ËÿÿÓ'K€3#33Ë?ÂÎÿºÒûo‹‰Û™Ø›ZڙT\ŒìLœLÿgâ…±÷ðf`c0°r°x¸¹\̾ÿOš¥£+PZ ÀÁÌÌÌÅÃþ﬉«“ÐÎåßoÁ?ûý¯ØÌòŸî@¸ìLKPzBºGǾ%RŽéeE¸îÒË Ž§¬?c7ð6Œ+Vá¡ÖŠ«ˆoçŠ1é/ÔĂ ~ò| }Oúƒžžx՛X´f“]:û¼5±Ç s迵Á˜z¯€1í:MtÞúÈ[w¦.=·Ã$¸-ïK£~=k¦ÕÚt=ã«M£;AxM–ÄÝe“èr žê¡ìfDMµÑq<ëYÑ}mƒØB¿Ôî…Ôüš¥,4K~L1â?ì—KIýàû£÷×g˜Ž7ͧڡ¬X'â·(&.!Y3”®—(MxrŒõe ŸSÉ@b´6[ÜQ¡ £ %ôé#y _*e_”àV[Ÿj¸„ÇbÕ¤nàóqóÂÓó»Qµ+zR¦k¬ThÐÅé)¹u g´¥AÁ>$`Õör™Dö×|Y ¨4U¯ÍY\ðRÅ/ޮՇn2<ƒ²Ûä„ó“Áaa%5ӊwê‹6_®òlZhkU–äè®î×ÐæèV¥²§bÓâå -ÝÇ%‘‹–ân¥=™ð„¢çVó8ª2öŸbØÌ®ûeµ¿PpÖÆÄWa_výʱBq +«äíH®ªaóZ¯%ÎÓ¹å ß›ÐùZqº`kËõ\”"î̚ü< M±.SvÕ°‹ILŽåºÓ6õêÍîJYømýa%Ôa&…$Ðwo4¡yo@»ßÞ{s ú–úhÙ%ï¦ûMˆØ)u)XªC»'G‡‰^/wèrpr”U^ŽE‚–oTVæ‚k±Ï°õõ»„ˆÌçñòÏÐs:ï;Ñ5GÑË4E›²,+éð¼Ó T¾Iç6ùv¼¦±ë +×IԃQF‚„›ùÁ{…dàërús\Û5»Ž1 À'¾èkÁ©*[À©e”|(·]ÛFž*+¶{d.`&dMm=<@ª7Ät~ë¡LyWiðdÇáIÂ^’³‚¨†ÿJÏ©út8+ x@­Hˆ¶åeô³äò`õ¬ÎRª¶ä ]å¦þº8£Žú!{E ŠãY7Œeä(1˜-oºcJÝ­óyÌ€ï¿Ü!öPX]|9ñ¾Ýv;E‡Ý_·”Lv«¿ÀûdiOÆ+áiXYÇ”ž—±š€P”‹Æ¢{°˜GÒhÛÅT(mueé!ÑÀ{êÝluÝ`f5»Ú¦y8Ê·ÈÞ/1.ÆÒ½~^nz'GZO3-Îyb!-[ ~…Ô_ +Lüð°¿vHÛ°2ÁïÆÖØӛ ’2½£S‡–@V¯öhÆ8ݳéo[ål³j-}.g2( Ÿ¨ÑA¬ +ï²w¹Âb¹ }ŽQÖ+àn5–ð!P<^:^’•*,<ꈕ‘¢* ÕoÅþt.Ì3è;iñZÉ.ª+YÕ¸=ÝëüPÆÊ»õrh²d}ü<ˆÝ 4ïÀ +eîGË_d*q5Ø35Å`z€lFj2}ðó$Çö=¿ur93ù2ì~„åTPç·©û!ù*àþÆåÁ±J%ӛ~ßR‰²;•.Ã¯É ‹Zª–“ãM”Îh¹c±ô&*šz¯ê^k€Ó ØÆõëhòÕ8á‘LÄ?Þ§¿'›»U9:cx²l¶øXe%•­Yü«=²²K&?…üGŸ@¾¦v'cp Özµn9^š‰‰§'r]k0hƒ@# –‘´ÄUtA•$ncµq#J‚9šÿ×ä£Dj¸œ/.ñ¥ôcØ%–,;µäPÍm‡F؅ÅþÚGžÐ{;H—ǐ'¥§4¾ì-‚>cÌfæ±=ýsç2DÓös +zú +Ma‹žƒÇË=›@þ® â°{XY¹xÄÒöVÇ«hÍ·gsO=?–• UËD¿€ü"ååá4Ó ³kØuò•<ܛ(ɐ㯨„ ®•7CæÞ1§HøYuYÌó-”•AÞGïêþ™Ì=™N¹f¸uÄ{•Óê¿à˜Š0cÍ:ŠÄ¢ ùËá¦ÜQaÁV4ڋËøƒ…–¯‰—i÷YРr߈ÐBÖj€ÓÝ¢.ò`Ñd¸ì4÷^d+cÇü„+Íq‚òý¾¦]òœMC#ú˜¿[3e.Áäþò…‚F}·+ޒÙŽt3Æh´öÚ(¿1A$¹ÚÎ +xz œcá[õ,‘£yJ9î×\ aËIʔa·²Rᥝ;:º%Aé®äµó­ E—Ú/FÝiÑ{š‡o1Ÿƒ0µ+>Á5&vZ½˜`³_R¶f%‹üӍ´ Ò-ãa&Ö\S0•¢Uþ¨ÿ ?†X+t/š‚ZÒ³2v‘QÙcõ‚flœVñ‹…á–¡gs<9&Í5]îçþD\Ñë\rªª77ÁؙƒuJ||}5íÈدÈçƎvc`XšxÀŽäyUTi~7‘{SŒғg3I۝W : 2cE¦ÕϺУB¾?âRJMôÅÿ‰Ãt¦¾¸í ×3ÎÀÁLTļÒ_[â©.¸k“Š©×Þòf(uÔ/¿ ëßÐÀ¼Ö†z«:Sí9¤/+Œ[“Dµs°¾cÃçA>w&&kƒÇ§zŒ½Ch0æå¼=w»|‡Õèñ;ÏåeQç»Ibší(&„j‘P;?p®’•¾×Š”ò]±æ8HÊöý·äÊêò—DLeš®—îŒ`)“yFP)xvhÖGjæë©ÖCkB+ÖüßMùԊ#$y›0¤¢?Ói ¾ŸÆ$ º~DØTMCuëkî„q*— :èåø”þ*ÐòÒLÃt²WŸb÷™ +ÌÜþ¶°¹™7ísz˜aaçÑ6Jz<²— ²u€i'þSÒ$f™HN¤V/vuÚ0›nÉ¢¤Éòn¹ŽŽ¸©‹#„aç(³Í‹vAê§ÅpD›÷h­J 8ZìzéÀ²PÕ}¹üQWB¹¶ëdnînw… .`5å,˜¼øZKڎ 4Dµ±po^ÓÑJ“Aa‹ÉkuÁjºâ†yÚ©Ò±0™¤áR‹&–kîNxzmr æPÚá²ä'§¥ŒÚé㐧 ¸¦1,F¡§†x¢Pøaøšû¨Ê¤|éû;kÝ®RÏ×̦Oøï|Î2§àIšˆÄAbúQ§—Pé,|Çß‹–3 ֟ݤ~•gȲ‹­ØÉ#éT1Ñ´.*‚ì{)¾Y”Ôàœ3¯NÌi¸ö%'Ä &g¾ñªBÔiÿZ ê•FôÍØïû•z +Ùˆ¯<ÆÆ;ôÒX’’7#A”>J1€µbp]H2Qcf~yþ‹¾ë»cÚ/¥{Q ^m w™³»BüP_f‰CNÏx‹8oÕҀ¼„ šm}/?ZGȟŒ¡Q"ãpÆ|ï )Q¯A‡ríÁ=#{ÿ—óK>&Å,GL²|Æ]ÈLjìq3ç+#˜{]K/†â)!ãè³oðjXD})î£×Ø ?$³ïl³O +šçãÂ÷µ!3rd†ŠZ/paž†cqxwÚ/YÊTJôå‚$uï(¤]‹ˆ=¹`¸¸˜.ž0ò¨£Öì ÒWsóØ_°ˆ{à9?I hõ´›Š„oX¼ûJ£á™k–Á•²%d+ú,B$ÞöÕü|Åë]N…‚~€™"Æ7ŠþLá”ANR¸Ib-¸ÂIFß­4²¹Ôæ}Lv¸¬Š´ ²CÁ:áòzWŠíKä’HKaxQ‚ «Ûù¢‰Ø)µÞŽ¾'iÅٙ¡±Eët˜Êñäb—Ä;ßÀ¾'¼‘°Í X#¼ +ƨŇça"ãþSžÑÞù6˜Lgj‰ìkiÀ@ä— æ0ô¶¹à%œ&–ãéOYÍú7Æ©möù—€ß§ƒ+ua¨#~ EÃÕu:•jÞyjµYÃK¬‹0aZE ÓvœO+0öÝO߆ЮÁ8&#.OÕ_Òî°ÖEg.tþ­à„p퉹ÀŸy‚¦YL_~ ±5 æWÛLáÇ Œž®p‰÷]Yø†cÄ^Q™‡Wü¡‡Mè¹a¥¦ÑZPsûDúBuµþ<‰^Uà‚É?ãú¹5†¥2 +G4*Eìžrø å'0³R(ö´’Å”=SÊUÝ[A¡z2È0Œ†àx—G9¨úT±mòè)=êœñ‘I£túÈ¿Àýd¬;ŒØlq9õªñÑ 34´ÌŠùØQ„q))J’”¦cï.-€w,Þvø FHv=tBÄk½¥Ö‰Un¡z#þx©ü‰q9wå¢òø‡ÆúÊã1å}é&ɸ_¿áÆö¯MÞΣ?¨ºÛÖó +´ïlœ@ôõžˆáßäç’Rjé‹#û}¨bò>äFö`ê/É>–”ᄲÑð¨Vq +išþvÍJ_Ø gpÝ)){S%IªÅÜ¿*¨£…1\íä­1‚”Ô¹©‘ Îse¨F α¶~øýÞFŽ\&­[Ë)ńNžì¸lz¶º>C´¤Ÿ'$ : m}8¦tè÷^-ýå´²=íkº$ô‘¡Tñš×~ž¬q2s£2>*#ëh ‚2¨Ã™½-•&®3léDÁ Ë­õ¬üóQ*3¿ëük{GQ¯C¼hpߘIôfI^<³Û[YŠxPöì>@åk;ü™a#ÊÑ;RÃïl8̈‡P™,ÐY ³|xبâ~3^qüõQ.k‡†òɶ¬U¤þÍöÝ¢„¨$£9;"ŒÞ¯µ2݀ç€Èðm³iLŽÈA¿÷T{qÅq›ˆå÷ëªLɶÚ'®Fá¨wáË7“]Û:t%F†*™t2BèŽ65ÙÓY-ç}•c§&"†Ø›r¢Þ³jå~­ÙëHŽÌºµ ׃ÔÍrߞj¹+¦P(6¥ †¯ÚŸt=*»?˜’“\µ³ŒÍ¨ßLjAj]¸Þ†ë.ì~Ÿ“ëBhˆ <þ¸æ¤Ã¸f7‘ÝKv;‹Ä} +âLrôs¬ÙDÉì;A†1¬pD°Ýwƒt˜~kZpqÆ¥Äû]RzX6[æKL:êÖTzYR°Ž»2Gg ǘQøtKD&Ao÷ú• ã?(–é¥Y™S>€Æ‘Ú˜ßõQ$[ïçtIÚA´ÞmPÚ¸\ȌÈ~§ÑO:ë…,Æ|Ép¼:ÊTX˜‡t'8b@³a~’Ó¹kÙ÷†ïEWÓ(22í·PB>!›ÂE9<àu7*Uµ_†EááH3-¥ÌIñ»Ìˆ÷§nÿ˕eg¤on1â}û«Šû—E<â,Æ:¡Á«÷»nìO~ƒÂ7‰ È¿Sš‚v?kÄØ_æÐzÅÒÄR{y‚ Óäü:‘½’"D?äàŸ šÉíT˜ØLêÌ +Á÷‰ð»C¤þ¤=JsÞöÚã wœuiI'¯¥IJOX%[d6ÏX½fH:{4% ø3õ¬4Ú/Bœb÷wmÅkt[Š¹žèN™lV:W҃«st °w×6{¹6–ÖFd$lã;Á­lë?Î[pPS™à¾‹±œ€Å`C@Tõ!>‡â:B´V˜\w;åÙí)nï/Z<…÷ë>ó(˜V¸³Ò\æ»0ÜPõ)D6ٜ=°_wh‰\ap)â_ځe``õÚNÌóc/Šæ]ða„e¤Xù"0 )ËÒŀÏý–rMUOAü8@Üáuç–W¾ä•¦Kb‹Qeу<ÕCì~ÔE‹÷i?¹ëÀ·àyXZFGËïƶ!]8ožæ»}q£H@ÖQ,ËuúQ×$] °²Z‚ŒiP¬\ ï%Ü ýh™99ï6ñGe'þ=wN@+5Û%ã´·ðÂ|òӞ€và ĥU»UL)åJ‹Ó×"Op–ëþ·&S ¿æ,<ÄzP³³€ú8ëÄÑ-êõÈóW¿N¥4Ç9©×Õp˜ˆ8ƒ¾¹n²Þ¾°•®—?䱑/Ë6 æÁñTMbä©FµHÀÎÎV‚×Oô­ðÌ·Tx¬@øZæµÍiÍTïQ4jCh¶C1ÏbÑO̱ ½NAžg"·ÇÉÀu))'ð.u`† î#Ëm/g3 ¢Á`$Œ†ãÛÙŝaS ®É~?3%uârm“pè0å”t¿|i±†©B~¡i°ì9¾Ñ˜½2Lv)Ÿt….z: + ™°¦ÎˆR²ò­Nå°£Ü”Ú»¼¬œ™º$ Ľ–ò÷Ñ!xPÓg1d¼]—÷þ7 ?’Ý(¨ˆæҜR–¥…2œÏ +x„²¸å×;…N*¡{¦0•]iF ^uôûR$Ù2¾VëBÑÐÃJ4éUU;¢|¿¯¡…Š¤=º}µ¼2@»Ã,âF.O„üÃP¯Ósxs;†Ã·"ñƒ×e-h<ÜfÈÇ3‡d.Zn„Ñ\ŸNؑ4YTN‚²bŽfûòG?€9ö±æÌ]M¸eƒDh² Ø´¤ÞáõãqÃü–Žüg>€Ü…RÚRéݓˆòNðìµ²ž²ËHŽ +’Lé,Ò®Fl)jïXå‰c­ïَ͵ÏOkgù#½Væ¯MkÖÙÔ$üJ[ú·> ó%6‰ÄÎP×YØ– +þ1ûë¶/å³H$)•ßµÆo¡=½èBõ +åQÿÇÓ;Ž#»%lŠ£*)…¢ÂµÊÜ˹wêo÷sadœì÷g|ú“Gr>ñJ{0°ËK=l³e*êój%Î ãô8ý¡چ ëbšUo°Êþhji“ž?òJ½ýKðcš‰Óâ.¢Yθâr¬B~ÇI@Âo3Á;+!Hþv8_A‹"êîÛÈh™øFƒi½sÒ× Ò, «MŒtZ±šHAvŸŸ«÷–}Bë7žÚKxx哇¤Œd\j+9ׄŒ~ ²{Wc2!G‡X®¡rƒÉ@«ÀNñšuù6Ó܊¯†)°¨ų̂ý¶X 1†-?ã=2á +X¨9ZX¼`рˆ-ó‹O5ÑËuâF¾ŠL‰wmÿ]b¸K¯ám>cÄïkv1 Z\ƒ?¾TuôHQ.´4+}<s½ôùl Þmqy£ +àˆq‘ ˜ÌbÖNµO+ ö3iëÕKÃ° Ž˜î/½Ò +!„LøèDqºÃ¬p NÚÐxW꣹PþГMÜ[)q:ٚ„$eÇóíÝF¹$#æ9èf#_‘i +eV61%õÓ¯çW`žöz2bùӑ gÏÛhÝ¥¨ºmúüÖq*g’댍ò™îËj âTW#ðY9A!„Ø»fâïß!“V>U¿2cƵ¬=7r’õaV‡\:̑ßCÙ8s¯o®}ýîïOÿʈZ[õLèÈA SŽ”ÿ…qk£\O!Ý5Þ«åÈzå²4^Âýؽ|l]ÖUãE¦¢àPv™=l½]ªyäBQæ´.¿‡_FuV 4Ÿ$µíN£™µ3=°­4~L”÷«ÿï,gMåÉM›ßFIs×ó×_·ÄL%Õ½i§2`j„w ˜1$ÇR÷³X"Ûªáó:áµ´¼Jo±ÍÁ›ÎB7¡U7’¿W?ÚÆIãÏoÀ°ùÐóa:÷Ÿ4÷=ÐjÉ/þ'>§Ðƒ~.¶;xVÏæ@ËÖÝq<¹Ü€ +†¶F#ú.NËaû»–®LïnÖOÓ»;­Ã$î*Ý%¬å³æ¬PÄ#ÙÁ0î…ô>å ÍåD¢³Ära`~–â'ÒkqŽ4‰B[+XM×G66šÅìÓç½UµYŠGãVRÑ~䜲šß…¹¯±V¾¡´N0Q ÀzÖn3y0¥z"!þˆ·î0´¥ÕÕNvÜÞ%̧ìÝp¡KŸ¹Ã˜'ðĹ’–8 +õºƒß»·ˆaµ2ñր}zÕCèY ×@+qaV† ÛZ±‡pµ¸×µkÁ»h«2fíd qgiýkJs»­<ïÈúl‡#aøÕÓëÒÊDÈՕ@"Õ¢IdVÅEdöÈô꩙Öö*ŠÖÒ=w/“Pâ>îñ(="dFB@a ÀIE’\÷—ABõe<{W•Ÿôdõ”•> +â&wßp¦ÍÇá2J›ÙZ§6ö¶ÿ/YWëߖ=FRNj¶ì›?  ŒòójëPÔñãºo&õ…¿u„Ì;I¼ n£¤h—rWðÏ¡¸ã¶Ü}“v®Z¼##¾ÙwN´Óè2Y³â9½ÔipwS+–D .¾Üv|TÝÅ`\‘[[n,(šª Ÿz ÁàyZøäô1„0ú È©+Ö¤/Xřs´£øâÆ}¨ù©jûÉçî:òÖ¿Q ÌZSL†rëî@ÀF‰†ýIÊ¿i±3Í'ØópF,ñ/+~Óõd² &’;"QªóoÊêÛ9¢@l>uEÆîŸ]³Gq¡ä™´|=m"Lë÷<ˆª¹f¥^9X)’®¿ ñ(Î?_qIº¡ _]rÄÐL¢+L#\œßCʲSDõì6P7¼ûÑqÐ;²6àΗãT®)°‡t>·¿‹~ƒ–AžcûËïs¶yDr%çoŽ”æH0D7¨[ÙÓÒ°ž7°çmŠaãÖ®{Mh‘I^'Tt¬~ùP¢¨±#|=—#,÷ܶvf”îè†Â¼= žÜ[”HÌ 6‚!¦ ¶ÏFýI +‡Ñ–à >þ¾©<’Q63Эۘ¾T)š¦ÿleMfœ¤T6é+>г–¶íjNµ_Í×د,ÎU\ð +S:ÒmýæÔ¶µ6ÀItï4¯í~› -?v-'Dƒ¨ +Pɱf»»åΠ‘½ÃG3œË‹û€§Æâ…‡ËoŸ[”qË´ ȏÁ›³H:‘=*äZ3júsÎ[0靈*"±' þÏ?ã™6¼Ðu®¤äD„z…Tѯ‹uT#éÓª ˜ °BBíìI;Ë>Þkõ±ÓéJä¥*ر²e€§´Â'OO¥¹„ן¬ Ì´ñú ö¿+¡C@­Øü¥Æ•6-—²c_Dô¢Ê$jd*.|ø“ЏzÎYd´Qw`9P_ÈxßÈeÏcȬËrLU{œ;Âñg¹HÚFû!ÙÖ-½æµ,¡Ž ¹»Èý=PŒÎ‹í5C¹¥WÂdwZm˜§DÔ9\Úõ|”[ò ûy'Œu+óÏ.׉®oùŠ à%9”Öñ´Ø0+h?3tSI¯o“”ÞinÉìVW 7•!tNCÚ~Ó=þàÏZüÓĐäP7·jÓ[þ1L37ÃÊö›4¡ø<Î-dѯ“ù`ývq3agÔ3¬;Â1§'< .‡øõêýdwìôlNÀØ‰5øB Jêãô 6Ëý͚<”OE5‰N!òïP ¶*ôæYœ*Dö;:aýY¿ÐHãŒÂ)rAÚïÙv Açٵ،7c«à”¤y¢ù·²:-óŒ(Æ|z|K"VHè.µ¤]uÞËpŽŠ¿ñâ>JdôSýu]xqwí‹b²1wՏHç ÈTШÊ^¤ó”Äëá£JWö{€Úø…UBñœZOñ6¯Õ͚{·ýpíâðs8DØl-ˆAD€€'Ìü؝©îdçá¤õ°ŒÖܝ¯üƒ¥DCÿ!ÇüÒÿ\ÞΛ3–¹»DÞ&L ¼2ى ò™¼ÈiŸÎ°Ÿòkàe&¼²d›q?’O—¼i®¬tú¥ƒ|á.ÿˆ7 å¹¼eÜzU"˾ž‹Ü ëÕ›Ò#fs‚6VvÚ +ÛL“hy!l÷-ÜÆø°òe¥{ØœdCD=×~âde¿¦ U^•JRPèx3ôLù!¾"¬½œyW±¯˜£¢…CãHß=×PŒmô^‹ |oCíWÕÄãa\oÀ‰ÅÂǁž*ñ ñ$]Áè©ôÖÖ¸ayªMèùfÆrT8ۑîÙ,°>8 Ç\zÜ ½¶`ÐüÐxҟ.MLžäËóË]QY*Ð,~”-òFԍ®×T_W[Òø©S§S )~ ŸÛïô bŠ+µÙ•¥Òਉ ×TÐ= ™î÷Š·ÜBïÝøÁ:%¼!‡b;}¹ž!ã!ÙSòPÜ)üä‡ú‘DÜHá}fmµ¸’2drgÇ4´ÈtîªP*­Ÿ< ,;%?¹ql7 +x_÷½7‡`©DA4Iµû›NÓ¨œ­f<Ìûց'A@ŸUÍ$P(›¨õ›0D(Ìłâ¥[ÁW²Ÿ~†pc>ȑ¦Gbȉfp\Ûò„ie`’§žߕ&…¾û.˜ZÚÛyÅÏbR=ç$_÷/dN͈­å¤¹UO´ÑÔ4ŽËÖþPú… ir29+Êy°Èïr~\µ?º‚ºêhŠWÅ%wQî +¼³%}^³ìf*Û)0U±Ôãߝ8;`¶µÃ¢sÎIøÑ®÷›­.<)ø¼6£µÚo˜¼àn„l€ãʼnžäšÅÏq +™ $Ïo'˜n³&¶j +2º +ëU¿ìãÞ·†@ÅMhק-Ó1KÅTր{á”"ûsšß2Øheœwb ?/¶û\³9p © £âŽ%²TÁzË[AA6ªy]K¬o¿:ëžUXYx&ZÔ+Û3mœà¢5 yÚ?ê[­–Ê&â_x¿sŸÊ&ْxìT½UBÀÖ¸SýHÓC¶ö¥t’ÏDZI×ÍÝÂYD š¡|èí uŸ([¶%x(%i'ì"Q‡I“xLJ¹øñq­ç/ÍG½P‡?ÃJ|› (j–ù¥t³¸ÿÔÈ þü’I]U ¦ËþÒõý.$™i˜VLVYÒƪT\zìüÝì«ÿ­Q3>ǚúر›í|ÅW„¿“Þø¼j ™Òn‚)¥§3#®Vé„|û¦ûBf ä~³Õ 1T"yèNӔ +–8íåú³3Èäºßu›Çr™Cê6îÑĖ;’šé*Ð^ƒí²Æ’¶âzjÃ0YÔH·‹4bˆµ?úäÉQnð‡]ÛQÒý“Á{€=YÏPljòÓëÍ;¦š¬N mT&Ùt˜åÃ÷Àþ¹Éy„C[úò¯¢h¼RDÏ>âþù+£e!Í3—çQÇ_2Í7Ÿx;5þÌeÞ½n¨/W ܟíWAà…nãjT¹Ž#ø¥ r밁쬟Qìö ê™RÚÜ6ëÙA‡¥˜²V|DhJò.]ЭCa….²¥,…4^¯¥à©;%`Jw àßôó_k—U°(ƒ¥Š÷|®ûE?&a7·œ"A6V;Yåhs 'âoM§¾cš—ø]5#÷€×ø‘‰Å5Œ6~!7@d]¾Üƒd³qؾs)²w¡vÑ|YPt~E]xіÞÿ¦dnsÌúG 4s_|ô҆t%VnyËá) (AÚ;³Ùëyƶ&¯T3"@roW¯N['‡¥ NñÉBÅ¹kÑ{˱él V;­2ÂÅø4©N)~‰Î)›ŒžÙ ïCñÄ«•#º:]pt®i2 +pxÛS7a2Õ€ÈÒ×iæÏ®˜Pâõï†B£§ ,ŒäÀŠž­"·ƒ[AªáÎ8½ŠÁ‰’=ÐÄû8}ºItÒ¨MGN<ëb +Á¥”‡¸1×R¿Î¥V¬Ñär;Á¡FÌõB…>KòØ>YØd)åoQ•M?5k¤rH#‡Ùeü ý6ßêQ_¶WhbµÓ8‚.ä׎ø^¾ëÖ•M?\2Š@"m~€ËݾÖ+VpÐÕÿ}¶7¤¯¥Ì'*ÞiÞ|ø{è9V0Dbózd·WÝ +†Èu„å¼hH–æ„áÌw@”ìæ=U6Ô2Ó1Œô +!èxÕÎÎ:Õý9eÌí䳚ÂÊwÜ #ƒ»ý»syÏMcKî}âX%©ÚG»œ1îráåp|Älc–zƒ£ú1>Z}‰Ò÷”/~)˜È#—G‡Â-|Ïs¢º¿dËFQfvæ“V¶5 *˜­:³e˜%Î#19¸,*% +¦vËi;¼>Ÿ8j×6åÏnJÖVÖíwŸw®Ü_> D{µ-§¦ocsöp ±îç®ëÄõeKv8ãØ-Y| +H@q1aÁDñ¹M–ïýgäºmÜßñJs¯šÚ*‘±ûÉÔé YCvNL×gËõ,º.U믈ÐôYWœ+ÃT@ù{ÆÊˊßHé‘`[„ÿtŒ¹ìå ºî$äüÁgtö„‹QÞqYR††s^Òl£ M)è7c^FäÝ"$ôŒzVý¹5bYãtî¡V!ÈA).´Í#T˜`K5ÉÔÀ؈´ôÖ¦ÆHsb°(&M9?pÔ¦¿ö áç׫‘­¼ݍťÎIb6„ñTä-ZËá^§ù©~.›3 ¬!|¦7 +À4ʚªy³°li6eX#«o]‹hÜß×ÙμsÏ[®&RO]™ñ:,Y'`î®÷S6?»^h 2‡ô‡åv‹~ÜEÜÜËn !g:%Ë IÀc(#¼ùÀªæÀª÷æŽ2Ï5  +¶·B×ƎO¼`6K$a£ïFFÙïhö@“ýµ~BÎÈoÆ:Õýp’YX_G±'jc´í/ð#a¼¬Ñ®Ì©Mé\¥”g_Ù$…£Ž…ÃÐ__ÃøãÞëg%{½ ñuQL›ŸCfž³À’¬ƒ|HÐÕiW›e³žJ¹¾Ì%_N´þpâfôVò‹š?¨”‘T¤¼ãÉê^{˶ù-¥Å1F¤_¾'ab銪<îà_"J!•ƒužD7°Ó»¨Óäâ& J€Îåi‰T +ä†j‰~}TRÒ3Ô½E^&í¼åMEm*m¶¬À5øÖȔ®½¥CÄDçôޕҽHQeˆŸ¥]r<àUsr¸†,ÆïRHïGYs3øEÛF®÷øqŠv*þ;e]v +ºU¿ŽÛÀŠ†éWuÀQ¢ÊÑ>3E–‘Û¨¹èÃ3½.9m3Åíď± E·E¤–^/â #ã³ðÛǵkT•í Zl¸ 'WëŒ&¾¬¤ñJ.ó>Pð™.F6àª!†b¹ ÜýavCGëì„Ïôô³cH¤kNñŒ‰óö©tÅõƒMñ5*­ê§i •I÷ö‘άëj$¶¡|q'øQCögE2‰^06<¨­½9 M…ø=$c§è©"¼”œ–ýU2yÓeÚ6ÔË0õŒl×=pZOÅd–6üÝ?4mú¬©+ÑÖ"y_p!r!î$ïJLxП±Øk>ëå a‹”—þ«Óm%C´%atÞÉØ.Œé'©®ìloÓQ’ÙHkšå!P¦.kCßÈå1špL#:ÓÖY’‹#Û´X£ôαMë=×JÊþæ›…麣²P +­¢NƒÀ'¦mpÀ ñ´û 󃳳’ÄÏÐEV×ðÅZ±UDÁµwތ!‘y8¶![TQ™¦Çnûyâ¸B''K­÷¯æ~ˆâ?F~µ€³3Qý ]›c”§RXrÒÀ܏íÆà6P¸ÁÐO>°-7ˆ_~>A%ÚÊg¬ðˆFÓVåõkç4‘ +;×1á$ý¿]=…W9Ý'ž”[¯ðÚã+ƒõ·ß!a kÍK×y#øllƱ2ömðÛ1iˆ,'l[ìѼ{Ö§•Ï¸!„¤DDL7™Æ=¯ïßŽË–>ôŠŒÃJØÿÔØÒ01¯êmx—µGt _\""t0à@ŠÌ1, ÉÛO_ £-Öã^]V»çÃ#‚ŒÈŸ¶ƒ>¥ÅB\Ȑdv¯wW/ÊÒxD©‡øçÇkúÙٚB³•:Ì0öu/rrLö!˜/ûm t{Üï=úçJýDÆ.Ÿ Y¢Á+B’Qšm"‘ 'ŗ`\ +Pz5þŒjáTƵ<·ãÁ֔kaÃ3M„‡+•:qæã‰*;o!½»c‰üO3ÞÛÏ[ŒPùº*Ãû' ݂t‘ÇX*IC¿ÐŸë“‰+[6o<Þ(3ª‰“KÒû Ð¤@É6吶芪oW¢-¨¹QÖfؖܠYaUԚ‰zõ”V4È$•Û¹˜Ê(Q‡Žl!³¯­Ýj1õƒæ‘—@ô&ÝPj/Y|•Ü·dR ¡Rh5 Ç¡¸Uµ!oû ÉÍQï9-³[_UðSÇ¿¤áp°ö÷®Â¥cèxÎ9ªô„:› BZ*¯Šüªß°š"9  p4o†%Põ Ǩ¸LoŽr–¼[Þ\ô|#µ–ÄÞIŸÎ;)í k;P2­"¬Ò$xK«ÅT3ƒžK^f.yáõ¥UÏÆ»~af{8Õ× J˜ªNz©E3$Æî7åVbÇÍÓˆßcñdCóúFDWê?å.ŽQ7ƅ4wJgºn¡lý"Lão)…rÞ§%Î5©âqíQÁýkxð +ŒØE@Õ µDpeiù(¤¶Z{¿³÷ïPj{õw‰y«ç§d>>Ù쏞¨>Í_nð3Vèr®I¤7Ò{°ß·žö…Â^ݽt툽Q’³£Ÿ®äôVB²·Gc~Ænó4 Å*EW:-fjìμ@¶'Y·ËàC…sBß0mV|“µÂ჻›Ç†&&bëJR0Õ4´ˆƒƒ-• +·½eI»»Ž§j"‚ƒ+"zþɝ‚c_ýð€®°¼. ™ÞH!ºÁˆÍó„ 1lY¢‡ÿ!Êfã¬øI8ÌJ¤#kEi·ö€ˆÖ×ÎÓ²Sy?±ÅўÁ©íÿË}i™Ðíº_»`<:7뱚ÇáݵÄ&Í֙-£~´RÜq9î'ò†»8£XúÐ0»¹†S皠Ê_©*KѩߌÌ?×æþC†U +Kx9€³šr\ƒ}3%­¼…ùÿð€ûÿ þ?a`b4rr±·5r²†ƒûų ] +endstream +endobj +18 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-29 -960 1116 775] +/FontName/XWWIDL+CMSY10 +/ItalicAngle -14.035 +/StemV 85 +/FontFile 17 0 R +/Flags 68 +>> +endobj +17 0 obj +<< +/Filter[/FlateDecode] +/Length1 1326 +/Length2 4050 +/Length3 533 +/Length 4923 +>> +stream +xÚíTi<”íÛ&kC(²UÜd+ëÌ`ìkÖ¬É.Œ™13Œf#!K$$²„HYC¶(û£’-»"KY!TֈÞiyÏóüß/ïïýöþޙ/÷uœÇ}\Çuœçu‹ +YXIk# n(}ž, –«º¦Vö`9,#Õ%¢àd,NF©`ee0 í‹À +€L"§¢D]‚w‹Æ ÝS?X0@Û EÄ"àxÀNÆ ¼¨"8°" °(r€ hãpÀ¹¯€s(Šè‡Bʀ@`0€Ä"Ȁ +Åƒd˜2»Ø/éëýgÉE$Q}TŸ§ªK$ (w¬ºŠêålë¿qõoq}_Î îõCþgPÿQ‡{aq¿/o_2Š˜("þßT[Ô/s¦($Ö×ëßU#2‡EhãÑ8 –—‘ƒ*ü*`IúX + +i%#0€;GBýÄQxä¿­PãûiDÖÎÖÖ茉äïÖþªZÀ±xòùo ·Oÿ¹ﯩ1±ÀQNFNL%Rÿ>]ø×nzx‰Å£ˆ‚"'á êQW +@ Àâ‘( +€¢P-ËÊà dê+5› À@ýè+X Èzañ¾¤øoÈzSF@"PxjŽ(äßjP*ÝGÆzS ì£ò€,œD¥bIžÔîbö+JTy"ʇ¢|ÝH(òß*T%ŠDBùøRga¦J¡Œ?ußT T>õ|ÿ_³õ,ÿ¦>ÿ…)üƐü_¨<øOÔ ÷O yùýŠáoöå•Y,Þ‹Ç’÷O« È¢p(/j6ûUBÿ¼´$œ´/A탬ܛD&ìCJԓÐ?îµ%Áʐ›QÏMB!~èìäÿâÃñû½PVø &÷”£Ê¸áªE÷¿Å-ý ÿóè`9E*ÿûû°Ÿ5Š} B G£Q¿xÿ9ï::J 4DVV¤Ž¬À` +Aÿ$Zã±>¾(£3Ôåä” ¿æáK$R“üù¡¡Þ¥?×îXêýC¡(((ãöQ,­‹Ô Éu×µæW¶uí=#åéâ•`>³Þ°›çÂf©zzÚ$¥Vï^Mëz+8¢Ð—ªz×Z£6a~²6ÿP•`š_ ‚è`_én4‰8°D“ƒ'G!L™ï¼tX˹f“«-¥ÊR¶½èøé흝‹®8 yËÛÔlëõ‰%ý¬äîí¬´¶oxŸ£\GÓÕ;Ï$C£X:«¼†Y¼J­Ñy=‚ÓQ½+®þ²šgœpúŒf÷™Ígù{Ê6åEãÒÖo“q¥¬~£™ :ÛÚknБùOÏ>±wyJydÜSYžøn¶÷ì-Ð8Îs†Ç[í=3,D4…mm)¼*ƒ¶†´š¯ÜC³j#œôϽ©¹¢ZÃ&™ù½`Ó]±mJÊð—C›ÙøÊ·>¯ÿÜ ·"6ÄÍ"»¦X!¯Æ‰Ð.Pä£×àØüøi©kŸUÏÛf:.~¥qÎë2 h.v¿nþñlˆCVõ§™æ«Ý¡×»ÌÏj}Œ¸uì ԕüÈD—öwsXuôÚÇÏÖr̎Òê8¹öíúÏÜÏls>­I7ÿœ÷,O¶nº`RCœ~ ü[¨M½Lü¥ÃHH¡þe6qD…ÇϤå>â0¥=n†òúJÛÞ-ÝÕÊ +n»¾‚5°°¼Gas9 +÷œý²Ÿ€Aü“…; œçåDÅrõR¸;.lè'ßà7^ç0<ì×S¨ ®Håt ?~ÐSâ­ƒŠÃ‘ØCì\›8ÓbÑ情EEâœO•¿L2M•¼ƒÜÑaBYñ '65­ë&gªûqXÔ4—ÔŽwÅ} Ÿ=·Møtk§æʈÒqýPÖnš-û´nU‰ FŒš†,Bªގ–s¥œOp8ÔFóìÚ¢EÚãz؊‹Í[×w±Ý c +ù¯gŸp9–F gœœ|ÓžSÇÀð ©Ñœ X6ù”Ýçc’„Êm ¦eµ«BߏjØk£¥ ´1º:âÅ+)ü÷w›zïî;pj}q4cÜåáç9£S3ƒi8ºó\ó_{ µ­Ì¡Ÿ@OÙi¹…®Œ¹>¿¦‚¸#ܑ°B2F2Ô£Ù×ÓÇ)KSá%ÂGå¡ÕÙÃ'…tvxΡ“Eê%w­y/ì\ ¿`©ÍèTpÿµ§;ý%‡û‘ÝéL¡rÄO| „? öËÊ@—’b‘Ñ€s’þú¼. uZ¯¼-àÀ͸Š _‹Vÿ6)ßúNÇBÜç>ö#Ë„$…®éÕïâÎCØãT¬1îjÅi‚P T‚@&h į$¼ŠÕ½á·Ü¦{9%Çì°ÏŽ*Í}¡á—GÎíØCsüf[:/kî±'ö’Xé騸 ~ÉÅ÷Õ:grCä5,ÒûÒä c6°OrtÃ:ß]xÀF„>ÌQ|*KõЇïØ®/Aüß^EI_ YL¦”£w¸HLÝZð3ê7Õ •„ú¤ª?žrçŽã&q7¡Ñë–éuß®»s¬/_:ño®8Iïº$xÖHîÍpŒI¼.ø‚¦c¤š\öêiín0„áó¤ø NÏ4aQ?´Ôë% tå†:‘)ːÜûJ–KQ ×i %o°æ¾Ä~–é¬z‚¡3ÃÇzî|‘‚þeè‘Ç•@$ûԃpËõÁüð–áC§a\,cK{\KΙ±˜géxÆ´ÙÆéFh¸sÖASÂbAqu F™£sǙ|ënß$9Y›¶nsäsóåúè5¥¨%ëÉ9mÖ¸%›6ìrLß!çoŒf…—ÔYM ´ùûË}¿^ž´>u´Ûw«2sj¾ù˜mØ*–çYzʷمõQ™çÀæ`(ÿóÔÊÀÏ®‹Q‹ãõÞÕs µtrèâý¬îb³ÎÈA߁©/‡¯ÐÃrá}àÛW÷œ)Τ›è +W†¾1¤NÃpµdÖUtë'Æ«ü;÷³_ã×õªXQÊÓcÜÚKIs+õ„ü¸[7+–Í4¶I‰!Iú7ˆl¤:ï8…Ü°¨ƒlʲ/Úòï#ƒc9dïó_¸(ÕoùýÔÏ܀N:ð†šER˜á]ƖT%‘¹õҔɮ'>–ÿ!½Ð÷f¼S¨es‡ƒM5¿øDCá“)»à£*¢U’¨Ý§Ì6ê᧽ÛfùíœMO…ZŠæþ p0¯|¿{ó`à“,ì†,˜æ+pvç‡_¥q»Õ™5ÿÑ ýì“e¼“ŒŠaZm‡ÊžI ³ùóݖXÊ 4^P™=Èl ‚ž·œ½?¢]ǕI_ÚZ‡)Œ¤©ëìQJ®Ì9e½tÊWÜ9gÌ5Ó«š“ît23¯ +÷í¤¼8eF(+/÷‰7g’ù.—›Ñ®yôÈëæI:“Î+q ¤7„D3JXó¹ÑcE[؛ÑÒ1_läõ±Îæð“nÖùŒÅÀáöÁmWHP2]ÿMûó㢾{'·eÙ¢¢[iqšVEü#Œn¾“·gÐD[̓¤šk²²ñ®¹K +ÖÜ•Ôt(ðñ‹ûê%ó²>E nyÍz{™¬ß;‘’0\fxóH)ÁÍöNM­ˆQ¿êŸ` tvLsÅÃ9¼Öz×J‚VÌÃòËÉe˗tè)¢=Ʊ^&RÁ؄ÅÇÕS¨«ÚWò½¾J|-´œ•bä¹]¸á¤Wϡöv`”®/Œ‘þAƒOV9ãsÎâq!w®Ó³£e°ÃÕÝé‰c+'#o4.ÙFêÒ¶u•ú¢TdÞi×ô<ÀV­›•0(m¹›Ä·HÇéþüÖåð˜WJœ¶´üpªÍ°ñã·ÎDÅ™å4Áû±¸¢‡*\ôÜ|ù2¢øÍ7ʌ‰ð•k#IîÆ寨 •¥VÊè¤Ø¹I…Á|iÙ¬Ýd̽‡´ÆÑqä—²š@­9QÖOXÝx˜w¶Í®î’0 •ê¬®?0 +eÕ· wÀòH²¾¾ËHˆêMS윘~tï%Ÿg§ÙÚã‰)…§¹_Ài—¬Â9äDË<†úz¯><Ý õö±<>róÞ #Â^ÀëRÉåÝQº=è/̓(ñÛFÔÜ{£Rd*–©U$8ý­8ÓTýÙÖ¬HìÈÆu7êaN ³j¥m¾mÄç…`Œ²)¡¨Î®£ãF2{$Nר +GŽë“_ßÈ=†2qŠ‘Jl1ÇóäXôÒ÷,ùՌ÷ù;ûS¬w[ƒ2ç ÍÊ z_0÷=®TØÕl×?°4ï^ZŸìyÇÁXÏäú° +¹‡¦Ø­9PŠš*ÂL 7P™ŠäOƒ÷æ"0™çƒ‹ü=\¦Z‹Û%»¶›²N„ñì”ØÖ§LŒ½'.l¢ÚD[WV`×èŸ/rÕ«¢étxi1bÕ4–Ö’¡x=Èú¾Ñ ±Öi^ñÚ4—³³‰C QôiŽR=¼Ø–¥³¨N?9—žúªiY%!í±`¶ã—º[Y9u×"®?gÔ,|‰‘EjèÙÙ¤`î ÛO= àÚÕćÂ@ÈX¬Ã®[˼øTn)£Ìjk"¼ésûZçUA¥»­—úÝ}Ħ3om—5Ÿ`šŽ1fß­ÒõS2|6hg‰K ýnØþèHUy+½bØód“²9¥Ar¤$£m°<ë®Ô½wBÛ`—ôèbõPU«G³Ö‘««*ôÛŒá¶vʽ­Ú·ÎôÓ}W>t;µOsüË)són…Õ¾©÷þK^¯9>¯z0¹öóóXo쾅} Áï*c{AdÂ$šaŠï_Ë0mªüCÁc´è}áþÝ#XöÇ b£)”€à§×€ g§µ“ñB©;|±CCùœ~yöyú‚|Œtgå? FE =Øb ˆ-à»(âÉgšá4‰±·¯ö]JywÛ9’9{F o‹ßó¥ã +R–ŽW))ŒY˜sì7{F¼ö©„;žiͬ]GVMÜá÷sõ‹lâÇèv]ÍAÏNË»Èc8å•äþ—?Ðÿ üŸ@àPp"™à'z‚@ÿßìO +endstream +endobj +21 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-30 -250 1026 750] +/FontName/MVQYVL+CMMI12 +/ItalicAngle -14.04 +/StemV 65 +/FontFile 20 0 R +/Flags 68 +>> +endobj +20 0 obj +<< +/Filter[/FlateDecode] +/Length1 1343 +/Length2 9670 +/Length3 533 +/Length 10524 +>> +stream +xÚí—UX\ݶ¦qBá.A*¸»»»»§ÐÂÝ%4HpwîîîÁ‚[‚;Ášï}vþ³OßôÓwýtÕÍzÇò1çZ«Šâƒ²ƒˆ™½ HÒÞ΅…‘…(¦  à+|»ffPPˆ9Œ]¬ìíč]@¼@N ¬+ÈÊdææåàâåà(€böžNV–.@j1š¿¼¸€"¶ '+Sc; ‚±‹%Èö-‰©1¨fojrñdEÀ` ê_!Î@U3ÈÉ dÆ°°Í¬L]€& +;Ó_²dìÌí\ÿ4›¹:üגÈÉùMúJi€o:ÍìíÀž@39€IÑþ­èMÍÿ±°ÿ®ÿL.é ++Ûþ•þÃúëƶV`ÏyØÛ:¸º€œ€ +öf '»ÿtÕýSœÈÌÊÕö?We\ŒÁV¦"v`…‘™ýŸv+gI+™²•‹©%ÐÜì ú‡dgöŸJÞæ÷L +š*:šòtÿÚÝ®*[Ù¹¨{:€€ÌÜÿÁ,ømJNV@=fFff–7Ç·ï]éÿG5 ;S{3+; +'ÐØÉÉØÀü–Š•ƒèÍ´²3yAo’™íì]ÞB€o£ñšÛ;þÚX.v “1ØÁÒø/û¿L@&Ëß-\@&3ø¿™¸L g+°½Ë+÷[¨­ëæa29[YØþ äx‹sx; öfL<@&S{Û¿9q¾…AÎÎ ,oyÀÆΖ,¬@&‹¿î“·mþ·íM¦ØzK+ñoú«)¹?Ä d’ÿCoq +èM¡â¿‰û­Žêz‹ÓüCožÚÿ¦·cÎô§ž·5“?ôW‹ÆÂü֟Ùßð­†ùßí­µ¿á[Më¿á[›¿á[ðßð­ídy+d÷7|+äð7|Û{§¿áۈþŒœ…õ-Öãoø¶ž÷T^ÿÀÿyúEEí=¼ؘ ¬ÌµÇù6~fßÿî¨agåè +’r0ss±½ ö/«©«“ÈÎåϝ·;ë¿ØÜêíf<@¦€vÏ 2ÑeæM«bddi"'ƒOȄn¹ŒÒv)).½ Tç_µH=¨®Åæ‚)é9‘6Ö78µÔxµÚp»ÚžšxA0Áê"ÏÃ\˲Ï3PŒ‚ÃØsõmÞþØÜ1¤ãÆ)g–ÙßëÄív¿­Q-L`“‡p+ÞÜľ®ˆ]Î ÅTGäyÕBê¹+Ô —?O°í£âFIb«aY×Su,®`¨ÉåxTxÀ`Å£8}ˆdvýúq Ÿ ý)„ùi~:š×Ú¶ví±’ORí`“Š™EªA–˜Æ–î,ÂS„è+ÅÊbýþÂÃ$\Xczz|Vb€Ÿ÷BœbÜoäÒhQ„Ò]øâÒQ£x“ÔrÙ²3¨‹wn†(qL¼Ï'\L“vrX8±Ø¸+1Lu#/^¡íö³àù† ¡UÒXÎ"~6É\A4ÎXú÷×L}¸Ã€.(€TxŸí.llΫx™­ªÌэê7ï&sbrJñ@aÈa1”CÄù_ævûb: ¦;µñ%f˜™¸Ôþà¢r7¿V¥ÝPnÖN&øl£ÛOÕ¶/T”ò8,‰s’)Hí9õ1p&Ö”œ:¼°­Âü[Ý÷µßóç?z|¡å +ª>Á\¾IÇ¶Çä¹O +Љ®²u— f‰3X¡sÒÆö¹ß©Ú•g%ÕYCw>#§Ö³™ˆà·¥óÐ9aº·ž©ô + P§3>m¥­÷µæ^1Ù8C‡IŒŸ:æ³­â6˸ޕw.ÓÂíÕq›NR }.0g}ŽÉó„‚W6ÚàelHw—ws ]mpßAÎ¥îp‡+à½ÿ<իـZbyçn]ŽXÈí‹þ‹Œ½çš.ã#ЯˆU1ôÚ 9 BIS1Ÿ3Gg¨I3ËTÈÛ‹z`\jÅ'To.F‘²À©æQõ»iÙC³pó}«Dûd£šÅ°ëZç{Àú—ñvÒÚ +‚ßgIÓ19š‰Ý¸)[ƒ‡3ïÞBÞï½íóZA_âä†îɎáid„a t‰ -áýúé;Šwüà˘—€‘D—¿N‰æNF 5Ìój$ÃÏç +Z5µ“<½ŠHàJë“.»›Çè¸òµÃ×Cx÷=õȪ4¿%0¶ð.ÜٝëqÃvq ]k©ƒ¾‰ÖÏ·Wr +þü.ì§÷ñÏ"’<™³ü–M¦|Ë{é •2|ÊXº•󤵺ºÅÅ` LTYÓIÕ×Ãi¨Ñº¨ï®ÕÁaðŠG„Ÿëf™ŸðÈõACZ„ìèðY°½»äåÎ!:Ì  hwãQË·¿lS”Ú~ÕNÀÉÝjèDÜL¨…å0³²ëjÐ3&Ê0ò+춖¿g:Ëi1ÆຘrÖ@ܘþ¼"#¶¹®*L0ŒT9@|ô<°–˜éQ­Ñ@7ª ×$g3·%Naٚ±kªópÇbßiÙ8.¦Þ®.å;…PE鄭 +A9WCI¿î*÷(ÒðÚ†/+?3ŠuþÚÝÑæfϨ…\OH…²¸‰_”>cV¨Áæs°çUuº{œˆ;ܼ‡2Ç+(|!ôʌ/4Q¥¼žT¨ß°Ùš‹…†ò",\%¢ŽFKŠÝ;{_7o~5l +õÝò<6®´ã^.ÊãSúÊØ¡ô8©bŒõÅê×õ÷-]>ñÊÁ¶á½…ïc1i 勍–0g¯ïØù—) +'Œ½QN/øñ?–’{4œÛw=½ôõÏm‰áb·~Œ¡É–`± [R³Ð5>ÜÍ \êKòy Ì1£†Ë#dReWð¬e–ò ÙI“7™Âãìâï´{H3ÅÂó»¹'?ÆÇ ¶„p™Y"¥(|¥¨AzWX§ÑuûÍÉaÉrœÃ£)Ü;lI{ÃuƜd€qkNBæî i?#þ~CVu:œg~’5‰ñ·‡§LçÔ'UÝ}ÆøLˬv™ú†#¶*q n<.\ÞVÁ]IE%’£aÒò g rM £7 ¦Þv$-R~rcä»÷Åtcñ4ßß qaOvœ`K¶ú'K§œóyØX°Z‡´Ñɟ¾”m\~ÏXJâC‡‘܅ù7„‹sxŵÏ)”Üp¡D¬àvf\ÙM6'¢fÐ@õ½FcPï+ᣪ²Jÿ*š4‰Íó(C¸Û焤R—>—vϸ‘Íz*ƊL¾Šå®2ÛýžKÜÃ(*Ákâ°¿ˆ<KÎfȘ5% Çé¤RC#‹ûöÒ~â/Á™ »(Iî¿´}:„äW881ôa;ö[ó '¬!¾\Õ Qqž/Á+De$&5uõÏø³¾Pµ­\ +uì³|6×û{¶K8 +£Q8N?͘Wƾ]¢˜, +ª"¯ó÷'7tr5þDàsð F4ôè‡ +ZE¾YbsÃ_žû΃pô¹€}T§¯XÃïÇÖQ€4³>óGªdqú)ÄdaXfd¥ÕþýÝÃþl~7ÜÞ‡˜!DÒæZUÊFɟ+Ø'6²?ÉÌ5ø1Îí#~K +hÃÔ¬}xßí=jßX£m‚ @967ž˜êGÖ±> ~;0¶_º*ÞVj€©r_¼ÃÓ¡1¢<\<&wø¶có9>žýÆʖî‡wÖѝBµâ“½wo¶ó‰©É$À'%dÔl/"ïü™*¨tåc÷dšn¾ã⊸–¹`ÞsÌRÚXxN‚¬ã$Qèø ïqÏIçë/SR$Êu‹Ý§o#ßGÄ 7¾”¸åÕçøYËA¿ãÐ?p“èÆ=²u žîsï (abDü¼Âd¤Pÿëz¦žUZ8yQ—@ÐT·òŽC=Ë4-?삶ƒÍnÏâ8Œ]ä‰Çj#c3{ÙqÀ“‰G«µHt:[М¥ØÞ¢;'­‡pŸÍžðK +ês¸tê ÜïLϒǧ“Ÿ\5G¡°P‚›Ã²Dˆ5‰RS¥¨ÓäœÉ_ * !úB[ôŒÐFd·§îs.³ÛMÏBŒš1DQpŒó`ãòØL:ƒ¨Sמ'ÌÀ@"^궟u³Qñ §ýj¼‚?Pê¼ò`j$ö\¦V”ê¤ڍ‰MEó8 `/tÙʻÈ8À@1܉ˆÃŠž'[¥¯t™§}Ñ_Èý« )4[IñÖê/9Ât0Í ÿøN‹Ì>+RÐ[eD[¢>ÈVO°¼@:ØwÆv\%:Dÿp€årNy +}\Ç6ÓEƒ+emi­Á¡*ÑE-c¾eèÉå4'K¢p¹ueÅ O™c{pB$ +)„x°YÙÔX¡ý=P¦6éAªô¦…L-»b®š$Ðudpö#´`€“ëÊWåÖ:ÈE´Açw alo?t¶é¤HÜñ°—VŽs­ÍÛìÔÇä¤Ïu$Q²?ºpð}âµ=%³ã×¥! ™%Hi•Œ1ûF‰]ŸÈå'z~!õÛ®Øÿîµýîsú bÃoh>Df»ÓÄOÒÏK^¥¹TÐK»˜Éý‰ª…¾ïÉð<êÀ¡E{œÕ(U¿d„¨00µý¿ÜîЏ¶–^A6Ü,KÙÜïƒ µ÷òùò[ÊxT­÷1Æ_ ± ;0qš¡Ðrê ²ðóÉø”,Gz™Ãɬçžè‡{çóž™ÛÖv»›7•Ÿ×Ihs*Õe Šªñ[F‘®PŒÖ³D‹ +n;6Xj·o¸ ý]k¨Ý:Ä޻خm¾×õˆ÷+ß5“¿½|„ÛL¿düd•!¨ÎÞ¦  ý +;F­¥6‰ðŽ‹½ê$_sœ›VTÙó¥%۝f/Ta£!E(é£(²«Níµ5EåÌ–gš˜£ª:ÏäýÃ3·CòBy/ åż¿c/~õ ôy"GôäR½ %@ ´Òçò¯ŸÚÏ6˜x ªÅ¢J–…Û¤3 _ñ‰kr­ã§í.àXTƒð³VðÃ+lûêKîU7àç H¤÷cP /ÜD‚ Üҏˆ9в'g¿ —¼œ¶ðšäQœ˜ÜÏÇ‹ÁþF䇶t`«ÌM1rbaJÕ}“¶` šö„ʏؤ´5à))Èð¦b-*ý\¢Å¬TkەÈi qYÓxd¬g˜7¥~ê[kwŽñ|!z¦C薿ÇkuqM¨7(‘LEˆd¥ðG¡_“ªü¶ä›(óö÷H“¿ÇRÙƒ6ƒm۞¤c¦ »á^¡&\œ"6ÖîÕçԏ­í$&ý:·°šÝïÌ¡ïýï ÂG‹,[8¯~ùÌ4ÿüEÇX‡R&Ók 8ÿÞa¥Þ¼€Ñ·]ìr[2+ tëu°ò0÷ S‡ÄÜ4´'ãÒÑùšrêkGD/±¥!‰äÊ&Ê ü„Ô‡.ÞÚ#¼s>Ü9·e×Dˆ¿À« U&0¡ÖöâzΧ+ègðڈ™uµ>xV Þ±½íŠë†¤¹ki‰Óu@‡ÃÝÀþ1EJÝ¢™ÆN$°‰ïôþ"vu4Gò,ÍPwªŒ3ò"wDÔòj6~}:åÄú…xòù(ékbš¶‰.>وò¡ +¤" œÐ{¡úÊkP »H$´k]ɲڹĬÙMXðç6^D,TÛÁ-™Kr4â×}0r‚éÐršªbÐ+ô=†-»Â×MÖF׆R =¢ÝÓO;[,k¼¢ß^Héбï!$¡øú.iۀ‚'â÷'š'ÒºYŠ÷Ulˆ|ýÕߢ»ò³P︡Çy”q0IwV~ΎÔ8E44†l7WÔãÕ/jnÁ‘À£äW%Å¥ú‘4CBqõêäEË&K ë›€íŸ¾v(´lڏÕÁ%s  ˆ«ØÛïx=FÀã9Ðw+&ò»¾§V!w‚ðôøUrª˜Üª«¦=W }óSG;ܲ³ÌÆ̂‡å~±'µwÙ JE!5Ë@Ïëcd:`l3ÿG….Œ¨¦dá;§ÚU‚ŽJ(_Õ¤£}‚¹ðU¬Ý}¿$¹nÀˆ:õïz±¹#d¬ÑUªoTa®¥P–¥ú3 (¼¢Éʼn~S$o8RF¨`‘öå«3Ó¯ØxӠÊRßGمezÙ=Ô× “|zB˜W_(™eožÄxî“;;³•<ÒG\c*ŠÁÉÀ&À`r^^ R{ÐÝo‰ò}.mÛïYXUÑ¡„=l‘¡G¹T_K­ Õ~†â”Ÿ1%¥†µà“$f¡Ç>\ ÛôeíÍíAü-ñ8ɑbÕ÷ÎùUO¹l-ÚÒ_k¤;/­n#Êsó…Œín˜=X³Zš–†Z”¸öÐ ¼÷P'¹‹Œei#·<ÌĖܸÊ]ò”Ð,æX¸8¼ØH'†ï¬·@AÀ¶¶<­Î:J’„Ty6røÈÄsOÐyæé¼þã›Î.äkXSS +.O1GÞo#ëÂxYŠ¥F^5åºLceÈ]ŽDDŽeÓw˜&öɨ,²Ò¤ì¯®>œÂ›´•¯1áÐî·B¨¿ÔÚ¥ 8g7#‰MӃOúF„‡ç=aÙÄkLÞÖC,#°^O®ÌËj,–}¨ù_¬ƒGÅü({3IßqÇ)u_QeJ‡ŽÁ°Zí†ÿ²‡BIy,<÷°EyØV€BI "¬éwÚçåcäé%,s4ŒêkÆHšìùÕkCÍ.âŒ3%]2Çê#_Ö<íaÈO¡ÇÉaù+m©!ÍÅÊ/ùC¾ ;öú SûÖµC5¦X*AWùô>9Úåé8˜SMCú&j—ƒ²õК}ùñû ¨…‘ñsèd bbè»ý¶YeEp¼æuÖ°x"M~ÙJãfqÂ¥7ÕÚ2|eªb<œñš/÷𰤿1Óè6‹ºÞŽnqhdGÔƒ;)îsÈÜm´Ë¸DƒÑ•}|~ƒýa!2WP%– ò‹)óÁ V6/Å ‹âuØd‡ÚÐé¬Îî|cò×Ò™ð¿EÅvß@’{ÊÈ"l÷@Íd{aý ¦E»S‹´0”ªYÖ¦è—<€.£:ZÆ$Épý’OËpí¤@÷بZ +]BS¼Ñfq¾i÷ó­F­éa´T56\Åùž¹øs¸î‚‰6lÃpä²2ês½³ày̋ç.ݨµ@ ¿=ʚjà˜”E@ÌøÝ¢d££¢DÒ͛2ØüÈmú†ª²’PÖY½Ch&Òz¦rp£‚*H•­5cP¦æ—¢RGzì*®ÂŸ¤ôK¸aùàù;Âen×Ôé~Ö·Ô³ ‹×Ðø­4)^‚ϺɑžmÂ܎~B2E”3Ì!ÃÑ¢;þ‚úmÕÇ1ôß,/þvÆf”ÒV¾}sìQû©A…'­?ˆÒ›/}„ },ý† Ò)>£®x)‹¹Là=6 §‹ƒ +aˆQ˜äcw«æïöÞǦ›3.}åºÙÓM»ËÔ)ÓL>ÌYÞW¸Š3ÖݙæHjêïøùŸO¶°Ñ\)ŒnGvÜ¡[8©'P­u’„ÇÍ10®c‹œiÉä➾¸KƇâ|N~?ãø)™k ×̇ÏXe¤ƒOvN¸ßÉ + @?YÜreÉ]ªØÌO =ÕÖ +Óú€Ò\,Š…â×OdIRÛÉ2:Oß9~5–9-U+Ñ'»c•BZ\ÀØÏNR_~~QëþŒßâ.ét•…ÿ&‘¦z¢è3ÜŒ„ŽžF’¹ŽÍ¹ºúë¼?¾à.âk~.)Møí{Sî-ßÿÔG©}útϲdÞø⑺ÇwT“‘¨IyTpúðËqo²»öpÚ:ցWç–U’jì^¸ÔŽçÓAü+L!ÛsMÌUÀIxÛÂÈ£‡¬ÅG…؝½áxvã+…Õz$€hK{Ã´M1pÌäÞøÚYÕ'¥¼›%hû§É6m¢Ø«ˆ®ƒ?sàHÍoq_ŸËÕ|£â…l Š!Á§/ŽU‚#ù¿!œhP9, 2‡ÂO³‹Î&IÏZ0vV$ŠÙX…—¥îâòƒÞ¡P‰Àoˆ"ÜNxK…2§ÝߟYŠ.•1%Ö|z ƒ•öˆŸtUø©5OEUqÑm=M½‰Ø…u a3áÓjÌžV˜03`üs;ÄLçÄùpud#M;dY:œ£¢’)­b?[Ê<ÐT¿‰A:m¡-®—ð?4ý’§Ü°)î\½‹Yˆî¶8©râÅaðþ¤86¿ q¨h28´‘5ÅÈÿÌýQ׸ðñ÷³:ÊS®׊ËV^'ü}Y^;9¦¯‹,è¯ÛcP/Þîà‘ZùFå†zHL*é"Ûn% +4*ÔMùäs³Vⱃ¸±²Î+øú{™Re©bG¸«Cù;·ô´AXGxN²cƒ¯µMÙh¦4  +a`ªÆËØë׃‹ÇÙ®eŸ¹É¾G×üââbÓ¬s@­[²ó`wôW„ÔhS]%æa¿ÀaS&õ@Á¬êTG˜‡ä¿°ª¤Ìq3¨Fµ…¤NÈû…©o¶$߇|NˆóÊÖü~²,zeCpÐ|bbûÉéE&ÈO4~B'•°p\4 á%NºEZO>í@›Ü>OXäiÐToôGbÞêÊ?&çàåÎ!x¶ÜÓBÞ×F:֝ê½VÓ'cñ°^âŸ)eSû¹;j¶ÈàhâÉY'~Ã(ày,z$kSJv"‰V=SÅr d·í‰æMxWžÝôk°Ü£RÞÕèóïYG6Gy´jp£~©_Ñ»Pí¤Þ稧š~2F((þ=›íAÏüÊÀSÜå)¼Çåï£k$ï=^s¯uƒ!S¯³ƒtnYBÙ-f§rcQÕ^n‹/oÀ̓øÄà7úIMÑpjܘüs©2n{ØöŽL Î—ÒñUh°lmUåˆÐT¹Ä•à·0©uŸÑ ²T<ñ¸ñ3Ž|ƒ¡:Ü¢C €íyôTT¬„KÞl–±çbää=­ú*ÂF\0ppúq¶+ÿÑ­nNJÒVY¡ÖB±‰mƒ“|šs^Jš‰’"ì!F¥kÌðÑÝ=+U]»;Š®$ÇG»øw*Ò|ÁÙéþ²¾ÿ' ˜4îmÂZD^ŒÖ1ĬØõ8Ë®ÀyFÚ.B±põ`gP5ēvڐÿ,ÒvF ú6¹½7žoºFPK‰„};[ÓÝðH›%eÿ1P¬¡T¯õ V³xžXóò-ýŠÓ;ÿ–þ‹}×5€ŠZ¹÷¨£õ®2€ˆ¯÷ƒ‰; ÞÙ6¡ù»mxHWÂ@ÐÅ.sõ€/µÇ}ᔈï,ÝõéÔûӎ=Ïâqw4›ñQh_ ؛ॹ¿Jsù)ÓÞきg'0WØZMäýj_u ì¬J²Ì¹åG«àü*•‰û+g†6ôõ´sÎðÏw(|†$‡†àe8s•A—bO÷”Î2&‘Ó©Õ¾DjN †½+”õ¥ÆË,º ”upQU +—U}n󤍢+ÍñÛdƊ¾ŠS%¹ÏˆQËíî&8AY¶IâšÓ2}íJiÉg›Ò†¯êy»nG.úÓ1ðë8¿"œèwæý 'ù~Rëw ”væÑßõÁþNßìÇÜÃ;]!EýõÔÈÓÃLœ.·<›lh´q‡£#žã¶ÔEË@½åä•íšA ?v“|*?)©^bý Œ<;Ën¹N èƒ,ˆS•e0BŸÙÙJí¼(Þ/¬­ô䦆ƒ"KóŠ€!uúÑ9JüÓÚ,¹Í„Kö™¢2±?ƒ `;m _Ã#gW>[´öh–üF%)Óv3ýˆ{-ÏČv\®[ÿË@cò]ÌÏÊEÿ/•Ú|)ö¨Lžic™¨ê²ÉêHòÅ +I©“S\z±Ï:ÔîÖ)Sª÷s‚Œ¼Z±Õ¨è”"‚ *ÇÄ`-|èªÞ» ½âa‘— 1 ÷SxÈb†Y˜@mÊÀP~n šÉMÙ@;½ýȟ%I¹Õo¼^Wë㙐å¸m£À gõÍ<ùä. ï!þ oML]´—qŽóáçÕ÷¥Å*!…~/]ŠÃÏ:Ívw-y›UlZqrîⷎçºdÇžc‰ßa$}òPóî+SfuV„WaòûéÞÁV ^&t5¯…u+-§›ì}1D µ ˜2 h]Ïbjp¶y,Þ윰ôº« Ü§@,%†è,8é)V%GÀ•Z¢6‹Õ(Ñ4ªJ-‚[?Rû^ÄQ&wj:‘âÔ>•n”¼8o$ë+ p´º}ž~ŽWY˜{+(ùû­Ü˜‡ïz\èéˆ*öã¼ü¹GÀ5:7'ƒÞ¨.SÆîÒ¥-‹_<_2£Ky4NP1“ù;vóW‡-Ð+@MÒ¦<õ…–ˆ„nPÌml',ä½ͦ3‰:öK×åIŒÚyPì$‚÷7iÛL7g²-C8~Âf9¶Õ¤iE°Îä[|Y=Y‹º‘x$ŠÃÔPf{œäÉ3üVlc $îßýŒó}’Ѳš_®$ ~š€¾>5%ÌʌœÇï^ªÜ`?o³©ØÂãÒ(„÷k+êÂç5)<—Eɀf…j®fZyÛþ<±¼Ó©J†ø¸ùxoo¥WzÂ#ØsþZ¾:à ‰¨‡úE›)Wß'ÌÚN¢f¦éÒÀÝ\dÍ÷Ü7’±gk遱÷ù°jÕ©ˆ:v±o]"þu—_ÁÄ×q4ãíïó#ïDÐ6¤€¸R7Ç„ˬ×÷¤þ)gõÙm¶ÔÀ2¼d°‚𪂡Ï@Övpã˜Rœ¿{Á7g0XHà›Èä_2A‘ÍÃäAíÿ,Åwd”oоË1ù!…9?L`«²‹=Æòšvv Üҝɡ¸€#®¿é„L³JUr)Œ©,Ê$yÛr1ÎáT$×$liÖdm@$ç&ôã2-Ù]²t™µ1H“Xðl$²‚¥EŽÔ-’ž7¬æL0xǚàó3~Kî—y>&‘]iP*¹¼ÖèÊ|NKD'Y¥Œ}K¢½"Ta¤ÉÇ/<’\T?'ËNs(D}ôªM%‹µûïæ*éW«È€U/CAbí= -_œzÙ礥GûHÜ°r°hci£¡ç•uó$-4/-\ê¡P:Œsô¥ ¤bè +=„bèúUH`=Ž|‚x³ƒ»›µ%aŸÐp´–cüdº2Àà/F¨Dy‘’`ÔJÜí*K$E}ÞÃÏűø࿉ƒ:lJ{Ó¡+r$ò¹#‰Ÿù´‚=×"A­¾ÉYÆLq;Y[àZþ ¼÷–ø/¯D]´^­#ð»)ÅÃΓ‚…T},wÅß~p ¹å +!3iQÔó4Ên‚¢p__îøœ&õO,³¼ÁýV¨JÂW•øl°n¥^¹ºÝæXùŽ5jkãTп3¿oöèÌ]Âû/ÅؐË^$+-×¹îߍjŒTy>m¤Æ)òÚ\8—¨ôTëºýNzص `GÓa5³JÏIL ï¹çbAÕ> :¢>\9 +»`Zj[F.;Šuº¹>5 ¤„¹îõçýœ:løÀc`‡ñ{ŒÃ.²ŒºPGŸ.+D”ä{{.sù| +W‚œÈ·P4ÐÍÂ|]/ÝÒoïj{9 +pz[4>)aÉKX¿ÿ†;>í]?l–›Ã776 ¥Ç„\l nÁÉ­ôŠ‡ONg°dŠâ?¤†Ë”ÏóÒXDÀTœŒ…n{9´›&´õuOP‹§ˆ³O!à›È]¢ºÎUXÂÌBÒ»’õ£¦+f‘q?µ&]/æÛM´–¾Ã¸Þ/)ÐQ4v0 fŠ™ÑN !ëŸ u„p@mO—ÄÃ'¦%£ÈŸß …hH]ŠŽïâ©”ƒ<›E ÕÖ*´> +endobj +23 0 obj +<< +/Filter[/FlateDecode] +/Length1 841 +/Length2 2106 +/Length3 533 +/Length 2723 +>> +stream +xÚíRgTS A”0È8ôÁÒIh!é QÀ ¨ CòO“—BEš""„¢¥ƒ* RAPŠRP)CQÛÐFêFÝÙ=ëì9{öì¿=ûޟ÷ÝûÝï~÷¾«ªDpѱ$Ó}@;:ÌÖAë¢q€£‹•#è뢪ªÖLÈ†è° ‘ â4k¸€ Ðh…3À ª€#‘í¸ðh>t*@±.È2Ȃ|a øð¶XÒ@&D"Â_ù M L"R: Ù<]Ž5ÁcB¾~l@ÝZãK7Ì¿©K*Øÿ¥„ìY 3$ë"h4@†HlÀô…`„Þ—áð0…`¾…ÉÆ©Ę́ æÕӒé0•'°NAè9ÑÝ@—ÿØÖ¿põ½¸‡Ju"Òòßþ§<‘Qy߶*ÈüžpüfÉ$CÚ÷Y<›H…H–°/PßBË +ɈMò(D* üaò÷­ëúÚXÏÉn·­ín­¿Ä·,ÁlWãïº_è_1úX°&Aé¢PhQðþñåù]7[˜D'C°/ od ™L"HéÁh‚É`  +,ëéÂt¶ `pØ¡‚;c"¾üGŒ‰Àæ—ÐWd¢èíÿŠþ<’•=0XG «c¨/¸oC« +ýgâòç€xÀe€Æ +ä¾DI&„Ù_oG°®?0,A"ܐYŒµ@@…’’öhEÿÄEiœÚd’r€ôÆ0ó°”{|jGcí1M{£L CÓÅþ“2¢ã&}:Xáñ Åñ…d'©òÁY+|§¦L†4ñY™1ê¯×'Ïšûîi¶žíªO³ŸW”SÁÉÎæمmtâkÃ³aÍ +¸ˆ czŸï/±RhÅg)QÝH7<®œ ¶Á,|¿¹{®¤¼w×¥ÌÎ}‹Ë´ƒø­CWÚbêaÛ ù˜ÇÅ\XdªðíAþÔ­ÊW—§EJ_4$ã4¯ŽÏ j—ZŸŠ?k½iõ㻤=ákm±5Rå’7ŒÏO”+ΜrKî»t&,r·üÚƁ§¶vJˆOªs>cÜ&»¬£ #‚ÐFÖµ©{l=ôz=£{õ£øä®ËC56cª +œ‡©²9ÍC‡([Ï1¾wüXÖIÚ>³¡Ý{GFvõLí~»NtÃÔG«Õ©ô„S¨Q½´t-ÂË´ @흷Ú偸ŒmïU×[å¿ïë<ŸþË#÷Â÷F\b+B£'/i>HÖhmihé¼VÎùԖºoehËËñ¦‰Ò »¤‘÷wd4s†Ô¨¾¬Ò͘ñ,찗ƒžü¾Aê‡ÌÇÂïëÅ7‰š8Xœ™Î”Î +êg™[àÌêrý@˜¶áŽœ>z×TvÜVö £ävŠG^éSíл5·^tmzT÷©èÚÎáWLß9.+¥W Lèæš&U]•¼Äí±Þ$zúœÔwʞºü—I\¤„T庥R‡‡×ö­ª¥½ÛHOYIU®ÚÐðãÔqìJ@ã„AùöMÇî­Á旙ƒ†J‰žFíʳ: KŒ>¼•ý’f”…‹óòQXUĤ*f zà™5פf=*Bkkzg=¥«z€ï”ãä éÈ}§®FT‰y«’©'MÞîcR—E~Y¶Ó¯'¤=ñãÂHÃ¾DS¾õæ[¥uåeÃêH1„¤FÛ¾*reƒ&hNÙþ™ØèÏCø`Wµ€íŽ2豸™ÏcÑ=Þ)$øA|ÅbY§é‚˜›*qÔÝkrFïאcœôCïô4:È«Âë«!̀æe§Ö¢L•Ís&Ôí wLs&#<ŸDkTœŸž5Ã8¶w£TInaݼwˆ¦Éæ0à· +¤FQµŸ9Q½ÁìFf.âýi±§‹nôM í³¡`Ûà˜eu A’ü¸iÌy§í*œ]ŽŸ2KŸ_ú°jœˆñ(œë·™‰¿ž‡Í|œ0ì*vM±-"Yêcó¼ÜŸ {ò÷r n[pH¢ðë¬.í±4Œ1Y>vD͕ m‰ÎY¬Ú¦áÁØDžÐbÆâ4…ö…?7-œ_½ÖW(#éô8+‘{Ž¿IÃûy]Q#knîü½r…–9ùÑúë`ÍÆôÒÈù²“öVÜ¢#íQ„ +„hÊ°WþÈóTc0êÉJ.ÓêSÉ£Åd/ÖòņyÕÎø%ÏóÈ­úâ +½:ìÜ­`ïsJM„,^Î/6è†[&d*øè`Qî³·x{ßY±-Ã4¿¦¼&ÿëÐF i[/ø¶G1[yAdé|X»iŠvªaþM«í)²ÙõŽ4³W'¼žpnÏi>mT¥‡êbáÊ0EòƓKý– ¬%³]#¢9nå5 ‚Ò,͇WäÞ¬w¿S´²v˜ö³F”€¹£sÓÚ릥t\J—‡ `hoJorB|}¨“a,÷ªÝ=u»Á¨›ãHýººò"·S[«Xš·X䨸ç=sI&d÷«ÓT +µÉÅÜ£_0ë_È=};û¨!64Á¿)Î5D©½&»¶uÀu›ôg­³(¼Hÿòe¥îÚÃÖvÏQ¿öÎ%^7\ŠÛ)WhÍ{)^<’8*‚NÜr—_i”3;³6r»eEXbîe|þSCÿ·iÙè)‡7wÆ-:4Káúú¨³3Æ+c Õ@&N3múÄ¢ª‹³„_÷ÖgĜJ­á–,÷¥¥F©{›Ç3¯oAJJ.8%_ùýR˜JZ`‰j ’Z°z+3èViÅý®×ÏÉL©7dÍ.†/á‹E¹KYç~ø-ö®BÏhÍýa‘HÂDÇGëùä×°’q|@ړ xpH¡×­7ÿª6*Z8×ý|H\Y‚ß9C)fCæÙ+ù„ži+•ãë=? ÝXï/š'éï¿”}NmD9ª £Ø§öp1+!bxÈêøh_¹_‚„µpùà"_¥˜=pBö6@j»6oö À.ÐÌN=‡ÿ)yüºEê¯G='îD›¥¯Ú>«ªì®tÞ!dÝ»^£»e7ï6ßsW6ª"‚»£;l³žØÎK:!våuz“¢wl¿^{Scuþ–é‚Øg=Èj=ù»ö•áÒJŸ§E·—Ï›6&ÝùªfŸPÞ¨e„~qû\sW¤!ì*háaL Þ㘠V—âӈži%‰²á»Õ]Éè¶üù{çN:NTžTöD۞¾W—)Ä:#±•3ýPÞ``oY$˜û¢V\xùÁ£ÚÁú­-D¦™ +·š/ÿÙþEns:®d:WŒ¶`\¹³ÿ³ÿšV~í‘ýÔòæO9̓ðµœÁ¿›w·JÕ>žá#ªüBú^²‰z¼#50"—¾*»{_y^;µ£y° ¨³Žߚµ‘j£•¡ÛÒ%³W=,¿›m̎Îh  ‘ÿôSÇþ$wŠ%G-Wú|ðd{‡œ„òûò\k†ünɆûiÎ΄SÊICÃMU}QìG-…r4Fç}¤8®ä]G_Ì-u5O[þ% õ_>ˆÿ üO¨ ‘ɦӈÌãÄ_²»– +endstream +endobj +27 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-15 -951 1252 782] +/FontName/UQCFNZ+CMSY7 +/ItalicAngle -14.035 +/StemV 93 +/FontFile 26 0 R +/Flags 68 +>> +endobj +26 0 obj +<< +/Filter[/FlateDecode] +/Length1 800 +/Length2 971 +/Length3 533 +/Length 1556 +>> +stream +xÚíRiTW¬ +A£(`µ>Ô *$3à@D!²©‰,"Š"„äF’˜L€ˆ‚»â҈€ˆJdSà˜º£µÚ‚»R°‚@¨zꂊ +n Øêñû§§ÿzúæÏû¾{ß}wî÷8Ö~öîR2z‘mrQ .䔋°8Å4N3Å4t¨³3 +ÜU2€bá»8 .˜‹Å2FMá²(Ø +&ô°øÀ])\"&€PLGA#"ËA )Á!­æà.—ƒ€ž#J•ŠƒR.‹…¢@ŠKhe8Áâõxò%"IÀïkKU1¡8H)_À–ñ90.¥$!W)ŒdñD$sd¼üc[㪿¸—J.‰=ò=9}‹¸\ý'TĨhH!)…џ û¼ ¡W)ú£¾´XŽKÜ ™{t2qÄú\é…'@©NK¢@¤X®„½}HHû[aÒë5 òx‰B&õ ¶ôã=Oò‰Ý[£Ÿj&$ +O‹.‚  ‘ù>îBû]æIHH)NȀ6ˆ)J¬f!Œ”†Dà„&˜À8æq ’fŽ&š$IR¬ž©¢S&žXɄ…+£™±DõÀ}ˆ +xR±LÆäØÓûü=<ȄD{æIÚ;c(ÃÇßÉ!é¯Ä UAߙCÄ å÷v%*Š‚Ýû¶˜ü>֑8“9„ PÂÊÙeŽë‡Ùšô2¼ãlí˜à“«t;LJB­D?§j¦’¢ÌЪª “ìÚóÖe_m݀U箜j$?µyîØò¡GFgǕ::H.Þj»vzÎ*ƒ'zûz­Dh¸çFHǾ óóÝí¦ìlM|Ö´§kÙªð3Þ!2KÝ×`Ïj› *.p ¢íj;ñµ[žtk€¦wÇUhÁ.Ö^W•G5J6èLqíõ¶tx7;`¹àk“ïÊ Øk}v\-´èvã, _]au9ª¼É VÙM”ñšÃévÉå•F%ê”GµKöl‰N» ·®¦S‘<Ƭq½í=㎳®S5GÍ5 *PZš^jýÌú®æf=hkúCn½eñ 㬧»nop .K"Žó +°ÛŠ®Š}k¶oXÌ)í8­%÷1ÿyÞ¹[›A&2Ø܀ßXxfÀ¬TYüÓ֖­f­Ý‹•ßŒðùΚwònƒ0%,tPÔ-lÙaw´(d–¦á„rùÜíZ3x©îõ‘Òmôò]íÒw?¹ûe˜†n›æ±cùìôWN—‡Þ´ò½Õ“epAنþÉÙ^}»yÈ0¿•CÐðMüǹFiÝÜïlX{½àb~á7ìû[rtÔµ!-Óí-uºRvÐ|K«õ»¼S‡6go2WkŒ +?ìë +—{@dNQú[9Äͤ˜nšó-5—+_0ƒ3K®U9kg¿Ìa:èµú¢þUòAYí<ÃLÐÔí–>ýÀ¬Õ—¦Ž[w34µ±ÜªDS*Â~tþÊþ§Ã§ë¾_sÍÇÀ'BavEÓÂrÊ=Ü5fþbc“‚Ýn¯ó6ô—ëcç|±HoÉä±êʺÖƙ5z +j*´7f%îîZQþ¨¢è´É.ç4͇Òáºãñ3÷Ÿp“QE’‡ÏkÙS¦fd*ûw ÒèìÚ¶(ïøq”èN‰iñ +?S]þ“ó9ïù Ó8ãgwv¨ˈ;•MfïҎ?ݛÕJTT¿ŽoL%Ñ_±«ªKZ«óK·?N¾qÌ?•wÔÊb¸gj¼í3¤©ân‹QâàLvÁþᗴ¦Í>—0—¢<^žՐ%©µ¥ ,Íî-œiõÆS8?–ÿ"qV£Z_ëûm}g¤Wý—AGƒ9h£±ÉI“³~'ß iÓÛýr"ÂJÞÛº#3xÓÐQñè“euíI{|Öx±3búΓIøJåÃ)Þ¼‰#ŽAìe{m–ç㟪?O8Ï7WWd[ðöˆï4N§¡1ò/ëÿ„€DÅM*ÄT4‹õÿWC +endstream +endobj +30 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-251 -250 1009 969] +/FontName/PKAFIM+CMR10 +/ItalicAngle 0 +/StemV 69 +/FontFile 29 0 R +/Flags 4 +>> +endobj +29 0 obj +<< +/Filter[/FlateDecode] +/Length1 720 +/Length2 8790 +/Length3 533 +/Length 9345 +>> +stream +xÚí’UT]Á¶¦!¸»ÛƝàNp‚m®6°q6.ÁÝÝ-¸Ü!¸;Á݂»—›sNßÛ£Ïí—ýÖ£W­±FÍ9ÿõ×W³Š–ò‹«¸©1XÆâÌÊÁÆ!ªr°8ØØÙ%ii%Á gK;ˆÈ,ààȀÿNþ¾‚<܂<œÈÈ´I;ûoŽ–æÎIƨøâ¶`GK9[€mÿš˜€ljv&–`çol€¸ @õ¿8TÁN`GW°)22ÀÔÒÄ` 6·„ ü•ÄÌÀ÷¯´©‹ý–\ÁŽN¹ ÿ$eüå4µƒØ|˜‚͐?*Ùý]ü—æÿìÃõïæ2.66J ÛØÿ£Wÿ­ ²µ´ùö?v¶ö.Î`GÐÎìùw©ø_l@°©¥‹í¿WåœA6–&âs0€ý_)K'Kw°éKg €ÈÆ üÏ<búï;÷O„_Äeä€Ìÿ:Ö¿€,!ÎêßìÿËöêÆÿ3þÛGKw€ûßþrüþÿ9ûúo‹ICLìL-!æ5gÄähú_‰ÿ%!açîÉÊÉÃøûù{ÏØÙ¼Þÿ«Rbéà–“ð°³³ó pý3kââè†8ÿó&üÝñÆf–û»ƒMýÔT€ § +øìø†t ³/%aþÂ|o6"+1{-©Û^5ô†DW­‘½h_x° o~<¿ûÊ󳤏ÇÎz Ë­tŒ&y\j¢ˆ)Ýcq×Ü,§s¿|GQ2`µNµhöŠ&Ç +ë~ìDÐö¦ÐrÍâTRy©ckV¦Áû²(FÞ7wSRm¢’&A8ÚÓ4!e»:¶Œ·šù¤ä®h}ϟ³,‚Jébí/íåcÜ3cyßÁýaÇlãEÈÀ;"ú£Þå›íºØ´Sü¦r¥¼áÚNs¬%3ãõA/t³˜%}Ü«9Js_•’CŁe6Œs ÿ”ïÏè=V6ÏF ÄÇî(ݶèŸòNlAÛ³{xZñèØ^ÒÖ¾ª–âÜ+ +:eÄóˆû£QŒõiëcºc³ |ÏR­4¿,ÀR–ÊÌÊSTѲ§J.ÈH¼H¼#Lo9†¯IèëكÙßåÝ*{¢Ò² g¯îÅøДµþðüñ”¥Þ9_Pþ©¨–ñ-¥Ó„A²µég|ž6qÚ×FkrèQ£sËф)}ĀÓ}¶•Ùmø%î0*1 ³jp,Ód:6 +S‹*Ó©»t +wÔÆáR˜IvêqÊ¬OÞÄåÝ-ó‡(Ü$7.«…yI²ÿuÝ –¯99›”ID*¾[™©Ç1~o%cÜ1׀ôÖ0Äö°Â +(V‚ã™ïr“þ–¿³ YÙ³ð8ãÇWè;g9ða Œ×!?)6+IúîM¾TQóC«±1¿Y%Ù3¥_í¬ye¯ú5¾Ð61v+ËŠ,x&I}unËÍtLTCS¤Ê¡§¦¼F×6KŽ4€ÆöctIë?Bƒ’ê3Þï¬7.T?OÜ TnjëÍþî2Œºc$¦°¼!xŽ.š@<úˆ Å¨^ԇopìÉ\ø›Ë’óÞ¨8Õ2¦~Æ)ò¹Ú£*¥Hû2T54´ ÇÞî™î‡ú~®——1‚1‰%é¹½þrù³ÈE](Eª„4”nºJ·£Õ‚z?ZΑ íUŠG„Gʂû@îàß$èzT§Æ8IGی5æùøú”¹ñ4⢥§ ªä)R8—ü*5N™÷f€'Ž/X¿­#½ ì“æGæ&óYÒm2ñöF ùy~õÍM+.Þ£ÕÒ$ÍòÂ*šþ¤yZeJ¥•¦ªé7·{akçð+8À î¶C Á§_*¬Å,šÊ¢âÿ+Drr 6î{Д«ƒs}÷ð©eyÎæOŒ¡³ÔSó%÷càÊðhÕë`"ë=e ñ_…fãç¹o âhf ñ±S2„î &•^ 2¬¡Î§N¿‚ÀÉ#Š(ò\Ü×Ëí•“È^µ¿_°Ä͏Qê´ªqE9Yô|ÃF¶èÊGI‰‚ÁIóiµb+gÁšZâß/—-ͶݸyÚΫqïL Åý`¯a•²ã¨uU)ó¬šå­^5ˆ¡®("wåÊú£ SÐ ƒ×éTéÿXqZĕ=ÉlJ Gí”ëƒÎov‘QU–ò”P!%Œø„vF×fq¤Ø+Üs—‰!ì«Ü=0:}_Àyð¨Áà1E¬–å þèÁ¸¼[ՋóAðlÇznÔÁ¢Ë)|ÕS¼?RRD_ҁ•¶˜º ó߯ËU­)%‡ðPŠ‚òSïÒh`–ٝÆà­53<~ÍUøÐA—Ý1{Qv˜IvSã^J¬á9$ÙÃDõzñ +ƒ +Ãæ¿Á!‘ß}¶ý󻦩ØÏS #Fýã‰y…éCëïKOýÒBãNnÛû?ªùJ ¢±:IÎ,ñnæÏ£iP¼Žj•§ªça)íèÖèŸ1@Úâ:åÈE¤ý-ÑÝ!Œf¢‚c+›¡‘û f‘^ÀV¹KKAÿrêË iä^Ä1`¿>%±M\\OQÙe/ ¸Þ,ԚE¸rSQcZD7a‚-Î+Bx±ºEà ë„¦_²tn » 7.& +y…X4UŸcÞ¶22ÂĨåo7 ÷CjàïÖ9¨ù:çø±_.:œ›ëN‘"%MÀÚVô”¹XBÌWKjO‘ðÌçùúƒHiS@þ† Q…1>Ê´¼”‘Ûë±½ àˆlҌÅç־ãý éµQU +ÁÃGÏOÃõÕS„­æ1í±ºI¿÷õ¿rplZÛ)ºœ¦©›õÿ òÅu!ÿXÜå"Ë·òáñÐâmÒ?KI¾ÌócÔi{,S<¡9X4ɑ¡^)6A0žë|d€ÅÂhñ}^¹«ÕžŽ÷yÉë«ÿµ;~hà—CÁú©…Ñ„í9//®£J*ŸÅWv>ŽÎⸯ®b2ç³VðCÚe ˆŠZNø­Á%®^îÈñbû[ac‰s‚²ñÒ0(7ÐIX;“•nq[5c…HÕÿ¼tїS³gÌ°a>rgÚTäÆýÊL2Óßhɼy²0zü1NÒ¦6$‰JþóSŠõ¤X4ƒ‚udf4™­ÿ+#¨\ý–ÓnØË ®fì'Mú—Ù’>µ…øEÏ\Ža±á[A*Ôç¬ßŠôñëÆ^¹Î.&3{©Ir¶U#v¯²Ç¯u9?£ãYçk(À'+0 +ŽD[©æð”p!ÆíOe]éÙ9{ýûŠíÎey!âÜ ˜˚°jué)7“xӔ4·ÆЋQýìMªSœ_åv²ÂòÈëo†j@Ï=+€·Zi™ÑYøQ}õXG¾kškéÒÔ8czÜ<å–ëT`è<®¢Ÿ å—Ìäc¼ñG÷` +܍@Äf6,ÂÄK® °ŸgÓ×ǗNt]©}ŽÎ:§áؤ)…"µƒ"Ÿ£‘m‹þìÊñ_’ÄcЖ~¤wþ=zt÷½“ò<ê}‹¢d}ÎÎç–íd~ÓX[N5­|^½Lfœ5‹‰Å]`ú’)-¸ö…Ï–M J¶ÎÃKªÉŸ€(8’ÕþÇL÷Àkǝ$ +ÃIZa(©V’ÍFP»½eì‚û+‡ûð4™5]—¯¬®¾Ð¬í4…@ ÷oŚç‰ÿËè–ô§àúÎ¥¾9cd¦ü•Ôeö¸£–#Óþø¾ª]=6¥Z– JäÄTÐiÃQtV^î1¸°9q:±¢ý E4kÏ_l:ùþ»RxUӓÑ×ÍZ­’$¤hm_ˆ§"„tîRÓpÊ5>RLm¶ 7´¾>C¥MB0pܔ~I¿›O’=>Å-Ug\^p{,ÎÿédA`뛳iµ‰H„Á] FÅ k aüº†¢í™óí%&å5[Çócn-hŸ;\Ð WùdX V‚¼~ä1âÃuá£û\ͱóNùihñ‡Š‡\vH H5Íğ§RÒOݞ"®å3ÃûXI@Hß7XAëX€Ä¬ º'D&u¤Hˆ¶¦1¶WRjRÉ1{nK<77dÆä=Õ7–9…Œ|VùóÂÑÈø §¯·ž˜‘wD Æò.·÷H óVÜÐ P‰΀C…ÑÙ K²·´ÌÛÚ'—t«_1é†0Iíª°Y&àì2­$Ž8ÉP ½ša—Œx;ž¥S´aä|+^DkãF»ï4 \‘Ç +Pyçä4~>û9âÕ¹Wô"-?úÁ<­"Â`«=Ïtm³×‚V]‘ÒÿêÚ{ôPBˋÊNoš$YjB…7rBÝ•ã ´Þ +ãñ î‘íð˜96Ë©Ś½l9ižYÀv/l  ƈ?€lԐR[‡*ÇA[ŠOöÂ9bhWsûM›©ŒÖí˹o F;H„Hp Óœ û©¾I¤:Á߈C—~Ò@jÉñ5Rì6>渠©#_`8ùØ3,„ܽ´‰*cÜr"R“«ÑL‹“ÑÓ¹M>¿3‚Óm´Žh¦s!Và 0‘h˜Í¨7i +"9˜~ A˜T¿Èu"ï‡âXÖ§,ÞE«©‰ö?ýý|¹óYˆ)’”ÿëaÈùéò“?ÍóÞäNƈa%~O\ÈÓ^E1ÈrÆ{ÏuÌD­rÉkú¦LXö%àA _•ÙqkT<½E"˜%«­ãŽs$ñ6,/=l¤ï.÷¬6ìÓ¡NëR6粬´bKØ=ƒjÎÄ ¦>p…”‚C%wwc‡ó‘ ùl·*£/^lwtið}E²óà`ŸIéó5™Åõøw„û¬GÖZ×8%Ls˜J/Ýä‰!Ê¼ê[×¹Ho}™ @º{Wäãsg]t’äí›Æê`MFÀ™^æ½^2^×, ¯h©Ý^Oã5“KÂÂÊAÕn±ÙGªOU'Ö5þôÝ-!š¥ÃeXLà|Ü<¹ƒp#žN‘—^á£3aøWҊ½îºohºÉ‹w½4cUîL.:³\| +8ì/€¯º„kŸ¹QÓÖ¿ü´î„•^wfwÍHglZCþàk“‰’M£dëe‹÷Τ…¦×Ó0ãÔÚý$ÂÖg:oRŽd™›ÇìâL%ÅÍî„J·{7èOá³ß½(¼¨à†×R‘¹4¼üÕ±r¶õLˆ܀âO¶OðbwÝÏu¿h(‘GT,7ã&®ùWܜê9õۘ¼f7|Àó|¢gsöH x÷¤o’s}u‰%Ç +qM÷Dƒc¿•…ùõq© +-F¶œ2+"ÅúNµġ|è'Ò+G>b„Tî}|×Æ(Ì®\Jj ¢‡G¨›íhèâШÍèøvbCõÎ/vS݊Ëð2ä¾åZšÓ&ûc¡¿+Rp!ÕpŒš;Î*•ΤY¯èTš;^]yÀ¹oÅ"Y>i…ŒH,yÆN4äCúI~o@CÚtƒKuAZ»‰Q܁þÇB3¢ºtçó€1”dÿ´öMn:Aeø}Ð;®ï,¥ð½™[=ñç=‡á`—”¦?î2¯bVa;#OC¨êR0·ÅDÈBÂŕ¸÷^AöRÑEôÓ¦C#›hÙKRÖ/˜3Øo¡eøTåéÙÎLoèËv—3\L…†ÕmÃöãóZ°¡¾è«”Þaîí7ZìFeš®<Ôf¨’,ޗç^Mü2Ì+þ·ƒƒàW Ùú±ÞöG‹õ +pæn"áÇ å Âyº’æ˜âN2¼ÎùŒ1W1ÌÂ.–cÀÓ¸7Ì4-Êš˜ŒÞ‚ä©Û‘ºD7`{¿o€ î1KÞ0nÐåšÔ™õªñÎU{} +\d.þ¤Ö>-~msed¶Žl—?$HPd«>³bhՀÊÆ'¡‘è<—qŽ¡ ÕPt¤5²a~î½U <—b0˜R\ô_ùýÅ 1xßpÆÑ)‘I q‰´Àý:mhþT‰ ++ñÚÂC”“gz隵yÌ¡Ír=¿˜’ˆœ_QŸDéFőKÁïjÅÓ6&(«}ф®3u϶4æ×O%vÞÄH/±¯®É‘"£ÿ5À¥(M${RýµÔsíG#çjM»°¦ˆÉ #ڗœu!µaÂlønYϤ„aâtkŸ„Nb=Ձº ƒ¶–€_k)®À®6–4ë+VS3ªmó°RÊõK׍oz *¿ÍJáÛÑý¢ÿuYQ„á/®«™Zގ¦Í˜¾âÄò ™ö…-Y•®<üho4 +L&šdäb5[w§¦Gþ +3Hі÷ÉÜÃO +»M¿7Î.üÓîÏÌ +³ääS}+œ1ôõ~•3ñÝ/¶H“ÞGÇ5‡äÓÐF¿ûàMt0Ñc· ñFÂýžçGªltć/Tqž>Ë¡Na=ÍýXt‚qÜ>ӗ +PÒV"ù³¹ñ£¶,„Æ´Ýõû–1™¤<óò7ýO Îðòã^Á+ì´(ZDôY2¡S³÷(YR-»þ8ɻͭ^b¾—¹@=å}ãOKq I£c¿Åkv šAJºÁºô¨ÛæÍŽ¨]vÞ[ ²QbÄJ‰úd«m´A‡VÐÜ1«Ö‘üB-QØL¯DN2…³ÒЀûÆ #¡(՝]Xöë’v¯-÷Ü.ÍbÈk+š U¶¡T¤ë$¾0ÇÂTB9ùŒ|~aª¼Faä,WX⍃™à”Mm‡È~.›f}‘Ø}âcœÆ(¡j„^ÀE¤.-Ÿ‡åy1¤åÃ]fé¯7Óݸ•7úѧ$Ò y½à1 ­«ÜØeTÜ=âäRüÖ¤®(0RûUM–W•ØAüàK¹`—¨–||µÞÔmb«.œÚ­vó´æ=ÜYÆ們{3+ê—ùƒl:*ù­+EtOÎöò&è}󏰦tÄëíؼba‚{F§ãÞ®ù¿†QWsIuü58ºíΪ¹JpþTÞ$¦¨ ƒ(‚Wkl79T4bÞgæ]Xљˆµðè<͋ȳ›ö¾äšn.OqH[ï³ñ†‹Õ=~ni—( È}ç[²ê_î3h+% D´}’¨ƒ&é“ÅÜôög1 Žê=Ô +›ýšzµ%¦µbuétz,ú\¬Óø­D"ácž˜Rµ;½98u1{½CVV”ˆøò]YØ8bjF'ø z3¾fE»&…â¬?ÏܙâÄy¸<çžLÔdړó˜ÖGÇ•…&:ÆÏø$ßcƒpÄr·+u_Xnez72m ›¹AU½ +©0L·­ö Õ¡ NWz.ÌïxÃ8³™C$‹2}¤£Ê`A όv"»þˀ%Xo¤¡G"¿ÔÙf…Qùûâá&>µÏAŸL5œ`àY \£y)xtË&šüùdb?H}gšApçêÆ ï—Àê_?ù +U:3£“´i_r«Þ^ýdÖʘv÷µF{ê{Z˜'øf=‡ñç¨Y‹§b‘Ÿ*7!`XõEB†ö iSöyI=sóãg¾ïzæp¤­ß±VòÛØaÜøeÑþ7ȇö¯öëÁá^hÅMwô Ó¯<¿ì;Ú?­û§btRՐ„x4—b}’ã(&Þ „oPûtÉKùЕse³xS)£}•u[ÎÖþ„ã/halê hùÙíx­[|:¨KpgC¢T–®@8]BzJÛGÑÙï²½ gñ5› ßWÒ_X׶GÊϐ¨›Ç¶Ó¿ÈSç1¾÷G®ô{Œ-HÕÍOlQS6½˜„Uð×ág9²n,ÏL§€nLbÑ.t›ºß‡åôæ±Ï»ß›ÎètRŸÜ°Øjpùo˜°ç«RÄ–mPÚ§ò…¬hÄÕëÚÒÉ\Y ž +Rcò±¥·¥j$'|B Q0ƒc÷Ô6ý{Øá°Dê ËåÙBô33'¿ƒ}0ßä#ªG&æ„7áREÕ_ÞOŒ£È@¢a[w¢eƒŽ37Nøë4~¿kW׶ñ…Â…³äðÓÙ¢°Xú72ù´_††r YÑkI7J„ z¾„åŒoŽúì!ɾ ÛKþôm¯`%ݓ­³Üñú½¹ôt}—éz©Û`—Ý–þÝ~æ&?`Í¥.÷Qæw•–edLR¢^¥v ™lÐ%˜Š}lŽfô4UF‰~÷v~ž:Ó +…Þ“q;|øý3<IÁšaZ‡IZât@Pl=G²Z9AÜ3fJ‰¯ÅTk7qÙ¦aÉKÃw?Ôbh°…‰©Dzy”î–fëú¡‚ä:ê}2¯ +›Ð¼¡ei»&…ô7ƒ6ÿpó¹¶EØÕ%vðøÁ Ôû\®Ñ±¨ yŸ†Év…W꘳<}Ží;u#P–Òýf¹uhhŠùIežSx-Îz·°4ŸY ŽƒY:åJј;ø}¯USŒŽDˆ&tvÒW~;†J,Ë;+íþØpH>Þg¿Åú(7ӊÚýH¿ÿ‘ÌúЖ‡™âÁqÕßIMq¥±Šq#>¿~²©ósWœt´0‹‰£ÊüœÒI‰z´ÝH؞I[ô·dóA| 4ìU +”²:#͌l3Ú:ý`û’>ÝRÏÀ¼»Â);öÛ½•×bêNȽ¹ñ6òCÿ#¶òÑÍçBte³¶³©ˆ5ôñèREgžÀü̖é·zêDýû[ºr¸Ò;g˜·Pž-ŽÙOTcù˜\"–ð{nÛBe~§PޛɁq\ÆGXÃ’›Ü*òRÑxz,‚a6ŠdU@9‰WYó…ù‹ÞÏ!Þ]ÙêŒäÄÎQÃ^uC­"×;÷{f +]Ϝ›„€¯£›¹Î9p£oR§.%^ªOô^ÊÊ\[“i&ÉÊ¢Ëux0òþ!ÖÙ¹=ÚO…@½ŸÕ'àr²Û“¯C îŠo-0ÒÚÄ^"FšSEÝÓu¹Â{x†¼?фlöð> 0ä´æ÷‚Ë{BÍ  h8qfÿÄÊ°1ӑÊ&®úòkû +â†|‚&|]ÇU~p9a_}ú£elÇK3=¶.j"ßÒYó…¼ëœúLɹWÄ Ü1ÔYk•^m¸Vk4µr ÑJ ,1—’öѐ}t¸ã¸°†ôîOۇöN°éʉV³í/öEÖ%–;D!û%äl‰|îÀô”ƒ½ø“¼¦SõÜ%–ëyÓ¯0·Ëڈ‚£ç:æ3zÈX=„uŨ‚ìI˜"Ďð 2àÀ4TÀš]–gñõ4%¹Ÿ0×À4õ +Á@œšÏ©LŽ¦P5’ð©è4á@XøñØ~U“$.,önž¦ZÕôÓ¢Ë\8PIoS8˜XÙ³»Œ××?ü”Z`­‘ Ü{÷íégÀÞíþÕý‡±“hQáÖe÷Mç¨Ø@¸c 7O š¦‡¿ŽÌd1£Ïo£À!Õ`¼üC²i÷2²L tz{“©oN®ð–ANý(»¿LÛttvo-4Ü(ˆ/(N±õÕ{©Ç‚(b_2ªÌ*½»¨ä½ø¿ã£FÒV‹§ ¼ª¶\Á÷È­%#„^mÈÿê½ÓÁµ)õKì ¸¬^ TMó +54T¸b¹¸+9%•ˆ§îë)x~ºÜáJÍÌðK¹Z²‹™\ó³ÙifFÿ Àš³Vâ'÷³Âˆ*Ô¥O68Ú´þÍËýæý*é£öÈÇÚEqƒ¦Qއ»¯Ë…4Éþù ÿƒÿ' LlÀ Gg;[£52òGì]é +endstream +endobj +40 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-36 -251 1103 750] +/FontName/PFLRKF+CMTI12 +/ItalicAngle -14.04 +/StemV 63 +/FontFile 39 0 R +/Flags 68 +>> +endobj +39 0 obj +<< +/Filter[/FlateDecode] +/Length1 723 +/Length2 10984 +/Length3 533 +/Length 11550 +>> +stream +xÚí·UT%íÖ¥™¸»CMÜÝÝÝ6¾qwMÜݝÄÝ]7’¸{" ‰»Kbýó×ß5êTÝôè»qk®ó}bÅ{AE¦¢Î(jîhj!åèàÆÈÊÄÊWԐee°2± RQ‰»XÝ@Ž@7 >+//+@ÔÝ +ÀÊ`cåcáâãdGD¤ˆ;:y»€¬¬Ý4â´ÿrqDí-\@f@€"ÐÍÚÂþŸ3 @ÝÑ dáæ͈ÚÙÔþu‹+@ÍÂÕÂÅÃœ ‘•`2s˜ZX™ÿ%ë`éàþ/ÙÜÝé¿[.®ÿphþá¤üCiîè`ç 0·°DdVrüg5‹Xþcý¨þ3\ÊÝÎN hÿ¯øêëíAvÞÿÃáhïäîfáPt4·pqøO«¶ÅÁ)Z˜ƒÜíÿ³+ë´™‰:XÙYY9˜X8þK¹J¼,ÌU@nfÖK «Å¿u óÿ$ùgzÿæ`V‘RP“—¢ÿoö¿º*@ƒ›†·“€åÚÿ]³þÏúŸ)¹€¼ú,L,,¬ÿÿ9ÿûÊð?V“t0s49XÔ݀æ@óÿ[øß©ÄĽ|Ù¹Œlœ¬VVv7'‹ÿÿjÔt9»[ÈJ8YXXxØxÿ­š¹»¸X8¸ý{7üóÄÿ][‚þ’……—…bN.˜˜þÁä~`™\»kæ ¤tœ—Wâ\K2i‰?ÉfDIƪKOň8O¼ýÀüÞpª´ˆ4*ö£Ñ+wC}9Ve!לYO+- ³5ÿCǓÒGÀȲj‘íñgf^Ô ò;ð +¾—;µ mo¡|Ïã~Úe­É t·€ž‡%úF]™œ-º/´xAqdLìP2[wÈH¯+øšy™2&ßäQŽ’¶^â^ ÓKAâîl$ÞR‹ j˜²% Ñ\hŠ¬fItÖ±¸Çp8sH ¾í “c9à šª¦‡Ôç6Ñ}ý\ݤ ¶t³Ëk()=Jª*åڍmYÈWv}Š3lUø+¾wCnõÓ¸kk6 Y߯­“2 +XO%¿¡þÚ4_Q¾b\*±§ÉÆáê̪j#8¬„ìŠU²“Q³4ò"2NêòU•ú>€UÐ^eh|ô¾‚Ò̽˜fPðð;b,@î<՟ù ÄæÓ©Ui‡*5}$Zý:šëYó ¿?EÈ;£p½¸‘­öÖÌȧ®Õ3 ܙ£7†õÚ tP÷YlA)· ÝáǪ̃Z½eT¿ÀÕ8ìzß ړ\…ék|ÛËö¹´@ö¾¿ä@"š’»¢æïb£½z]ß±ž‘êxO\B¶ðJsE½<;K‰ZÕH¥ÿEÕMhCÌ'°ó-šû¯!º}L“ÐàšÇ"§]çûË™¤ˆ‚Õò¸Çß¾i6cÄPŠ«Õ?¦¯C×ÅË¿!A¼[?ÓƒÖ +o,ñn¦0ýTÉJ,HC-uQ• E’Ød¸…]™··«Zí<|äÝßwôÿÎÐ~šøgÃrÙ¥Ü=Æ'QèQ #—w¹7+~I_\gsZÿ+,“¹.‘umËñÉØ¥*4’üî(Bh¤é¬RÅzDàcçí}‹¹9ɇÃGÜ÷ëZ;CàÅAs\Bgä|Æ" +UãJÅÌåUø­dЌR R‡è÷›¶®N)ÊÒ¥‡ÇúúìÐZ]²i,N’ñ™Ï\]ÿºî¨‚I’uZ#‡Ã-;v%•Á©.Ñá£Ãiì©É­ˆ^a˜¿'öµI8þðš±e—ƒË[¯; +вt]B֘²º6xç…Â$ÕΡ¼»ú­Š!Ì5·xÙ!ä +t…*GUÜÝØLKoàd‚Óp)=Ýû!~‰ý§{Š‘Š¨Èô‡DdI4êLϒsãy"œälle…v=#øóhs\ôUá…÷Ãr0 ŸÇíxgM·HÓÿó“mî8Ë2®Ð¨¹µ7ØÖ^!ù‰»3»›P¢ê·;«Ãos¤†—¢Ôƒ”Ì-ӗ³ä@:°Áp³y¦¤x,Oor‰°ë&I" ÇfùL·ËfÁjeæß½t%WAnŸ$ø<ÆÒ´gΖÇÎ +£¡ØçQˆ®‰©É Å̷ˌ¨0²‡µzÒ1Ñb†® \A$ö53±SfƒR#5MsšUèK†u÷“œ/uñrMϙ ßU{—Ü,Ü>ÇÿÛKY>ÍÕ;ª•9[ªÞÏ w§D›£X¹×PûÐўþ-½UJŽž‰=ËÊ«oùß%×æsb„·R×ek*Òݏ^û:$½T°á“³>Ç(ÞÝPøvHqB̍•«—'^©w +–G‰„Ïðw~'xª_ë¡Þvee)ZTXSâVM +¬§ÙŠJ¢šœ˜FÍ&Cjýɶ”UÁÖlÁ”Áš›²ä¡¯gÙk¢ÒHӞž›#1 + !öo¦Ì}¨ér^™°´”ìÁ©ÃŸV*iO9„ùˆò5ØÇëßú8!°ºjºÅò’Œx„ [O„â +Úü´ÃÆ1íxŒÎQ›žáeìýÌæZ{–#PV¡Vè„ü•ŠÊ\!M^—ž&Uœþ©I«g•²s¥$žë„#‡Ÿ;ŠPӄ&•m€³Ü¬ Œ7?z8¬þêK“ã8 QΦ1ÞIoTÄ\DáC§áwCòµBžBº•Z1{©× +çà^Á $੕pŠ +?2Ñ_Í(°»…M W@ÍØ£ëDðËÀNO®»®Þ݊å{ÑèQJyL®†­<…¹á™­%èPÔæài C™ íp\‹v^Š rxÜ8ÝS*Gîn=!5«v9 +D¬(!쉠neZäUüÚ´ÿ’Ӂ‹d3™£¼ìM”Sv²’ê/i«Š ýË[o•ø˜&ÍOÙ/d+i0͝Ý+@«û£øÔ.âÛÎWKùҁù˜E€z­40jê„x.(%ƒ~3þ}Ȕõ’S±J‘gv ¬4L*Û5D~ÿ³;Ad©žŸítÓ'‰z>i5)³óQK ±Yæúk´’©çF×Uė7[”‘ò…C‡‘oàÛ»•÷ ãt…ï&FÔyõ\‚M´ï£ì¼“%ÃbnMsŸ³PKX13ÕÅ÷WU¿úÎ%P¤,ô¾ •täî«<ÝnÒ0c{ëltH’MVŸ­ÙŠ¶¨bübژI.rbB:} EÌ<§ +Þe}(+-fÝÉÎܯO6®¤ëGëøÁlN@Üú‘ÀT<á«”b0‡ $–k4EJÃ`šî÷¬5#뤬æ>èz÷V:¨+³¥…ðYŠ¿]-æM›pIÁÊ3Ý­j1œDB‚ “ugw¹ø òlo–(ÒBß³Vô×Á‹WCZ˜NM.½W“TÎj‘d š8›®éù +LŸ}b/ßWû¦¯`Ç1ïSÃFøa¶›¾¸Ã(ý¢™¥9*»¿QÕ΃ÎWÚ}NV7í ;´°û %‘¤s@X©›È,ÖKYð›2Ú\†}´Hê“/QWåGq¿>ÅÍBÈüÕoA3Ñ$IÏkôHe>mÂãýâ;“Þzí˜P—Í#ø1ÁlXC|¬<ŠENOêé™H8|÷ƒ¬mFÁyÓ^¨jxHˆç~?ƒÆ*3b®¾RÀ 5Ç\®ÈD‘‹7Ö ÆçKÑøgõ6kdçÈ(BMøfU€àæà-²B÷ÂrëŒ(¼²5Q=eV'ö«3Z» QjŒC–²‘–â1Ê +ù¨ Y^ÔiE[ùVX›ƒÖòxq$7"Á²üë9>«€yè$ÚeÎϸ q}»Èa B÷o’¿Ž,!ñ+{ 8Z×ð×»l9»m™äܬ7 +(öÎÁ¬A ÎéÖäÜýݵ©¬OÌâné̼%™ý·}L7®Vý¥úFÁ +c~¨ñö>–Â2Øä=ú"—µ§†™g`Ìî^ÛK¢ÓäþC³/BoÝ[ú,Ô®Êéš%Ž¯¾¼oï ­å:ßpCh›Ñd6~&òBº~ú4‘)T©²¹ÿÉiú¶=­y‘ÙEö§!ûƒ@PÇSçÛlf“n-#QA x‹Xÿ ,c…0¾Ûû ¨Ä_< +ÕÔNjRo´ ¬Iæ=ÐÐòúâmð—ùܵObêl½ba‰²´hï—•læ¬ü܁ÄNA­G3ì0’|ƒ +9TÄçþʾӓչY¿y$Rèþ©ú¡—±”së®ñ )ÇÆÿ4¡ð¡Îf]6Ë%ŽÆ¼¥žš@í½½ +Äf«; f¯¸gM~²fð¬òP‰ ø*rqX!^\]¯UÄúN$¹A‰Ï™úf·IÔ6ß,=6ªï4/ˆÂÌãð±Î +ß¾r2ŽÍ7û鑣⏯¹[ó”ˆjSö«})©þê9v¬»“ɍB7Ë­±\IM^ž¯ãÔâo XQ¦É¯¦¶™Dœ6:Qý¬¦‚]Ý›<½xZC±;\þ:Ö D‘`Á Íy +#Xž½ü]oӉ¹÷,У‰Ï-ÕØf"ÁõÿY~s:9kÏ ål7O@µÔxû–K°A%gN =eX&ëM]W©š.:¬fÁ•Ñå¯u ¦f榑ÎñÝ*àÃ?'Ã:}i "CòYôZ4%*ü:ˎSÑ IœÃ¦±åÅ¿<|ºGâ×r¿eU'Už?=»á£?ÑîŒðz₿ì%øüÕYþŒ‹Fã5[ñMÊJ’ºHŠå.kz5›föj‘ç³·pÏLü×MN¹¡*éց¾:…Î+Tm¾ÁîßȤÐ)£ ѺL#í€i!~¿<ß _¼º¾QµÍïÆ:—ÓsËL4ÿàý"8¶{Ÿ•œƒ²5æ:CœêmNfÑ=¢â:Ç èՍì +8EŽDOª,‹É.j1»+Æz–;±X4Þ`«Ø³¯ÖÕ°ñAvhÔ}L%¢ÂÓQ”X° ’ÈÍ¢aµ,eŸì©Ô"¿ªcJo†±c5p¡f áÝv‚²ÿM~8œ>Rë¦Ôl¨Â›¸ C²ÄTú{ÙNÙ&ðãRRæíS<ëšêe }Ì·yÊ+6§ê-Ò¸sY »á£p”Vfd&†Ur#öá)?۟;·¾ºD½œ(úÙU»»&3F:èÛdg.EO©cç§^+' Ô48nÕ[ؼѥ™½6Ɯy6i¨¨Æ½š¾ nv¾ÿº¶ ‘1Iðûïó$°Àö×=?O%= +Œ’ÎÚxœÐg)–/ê%6_"á-¹tYcó8E“åZ«ïµ¥äbœ?Ëã˜Ô—Ä@i‡òçÍ}ÁMúp´=åµ@Vg/îLó;혁ˆ|9Æg);»Áõßýóͦ­Ã]0N' ÊԎ5›d‹^Wk‹]Á·Q³l«F¨R QзP÷gՍ>Œùáóïåü(‰^ÒÕGý¬ÐîMÔyèAG[M[^ˆ4™þÌçv3êÑ®^1¬NÍxR}ä\–,ç¤ CæÀX+Ú`ö#ùõ¨¬ÈÚVhuÃ<7ëќæF?3»Õœ˜õº˜Ü g²VØëgù†MX~E*Æˉ^œfÄTUÖ XЂ´H—ãyšg}n0ù,Ç’_3‹7å@î¬ÌÎýÊÂ,°‰‡áÀw/-""ßP·³ÛN׬(qQƘ.æ8ÓVE¹ù>´@&µ2\N̏};\ËQI¬¿I•] ÷q·xá·W0§'ÉÜTDJÎ¥è%QwŸÓ䑝gÝÆT5ʸ‹—^d!G¨|SӁðØî°X¿åe$eíŠ+iùýû§+_&{h¢%7Rï·©¿â¾¾­­¼z8Êp¯OY–í*P±Vêú¼~Ià¶Ås +ýH‹ÃF¿-êÒE2¦'rz¦s̼–ÜF~ô~[™ŽQ]‹XÊqœ0kq}Œ? [š8) +ÎûÔ!d3µ “Øwà‘ߍ@PÑ@¦’h®þ V€²(¶ó/ÇZ?} \ –¢D&WVk퉒\ÅÁ2áz’»j¾Œ3ÇfØ +‘à†ñÖH,gbDx³{àfql¾Š÷è¾f‡FT ÐÚºò`Ã2MX0^Fo%z¹ˆ°øä ü”Mv"¢CÊè:I/ÜGYšï,^0rk)nۄ‚ʧk|èæÎûb…G¥ß]XáK¼¬ÃàlwœÌÈÞÕ]såHÙ§´ŸLŒ"Oy–íÐU¤k¢ßQ4D\ÁŒh·#>™† ÌÚ`UŠZJxkQ‡ˆÝѽÕ'i°®hÔÚ#W쿾°‡&kÓsE2á.EÅÓ<Œs¸Î¨–­+ì’K?QÍpÆ +ýŠ^4iû÷”M“U'ÜOÅ-Ø(þøH>îìV8 󯍐k`fþœøFS/ÂßhÂÔ¦Ob‚e®¼“«ÊBæÚ:ú1BCULáµÐ»Œ¥£˜fÿwÞ}+H–ÿN¡Ë%$À̋èg†´¬€€@¹¡zTL!K ^‹½‹ûݨ­šçŠXb‘gsš”p­$ˆÔd¢WØ +ü( éù="óv¸±€»¦Aˆç‘ü5C®¤IÙÔþ"Mv©“ø'ß¹)tk™‹wgÛ%‰uA¯m[¦š¦ÜH®²gHåxXe98ɪ7šnûeýê4ÐêœO&’Ža`½Êð«ß1ýQ„Î5Mñz± •É¨ÂR…Q…ß= +EG]gˎo!Öè"éÈømyw”C-y[…”¢äa $§aÈ®­1f•ta‰ÐÄGŝÃ$Áí'%ÀDåû^!Í}ʋÜTHyvµP:}gqX^þ£xæÐJàþÜ|LËÄ¡!°Y~ÍûšÈ‡!=ͤìSn^Ö× ¹ÙŸkÓ ¯ÑÖNû+Ùaìœh¥Þ2­ ¦çÁå-Îþ‚¬þ-š›d¤{êv²nÿ$ª Öµm:*l¢åÌ`ã™Ѷ:·“(%äïìe¨ÙR?(²çšÃï ŒwRÒÀ¾o9_º0=ìÖ× DÜ©*6cwïÊ#Ò(o^ÖÀˆ h59]“£¦¾Ô lC+ð„”?:Vä›ö¦¼PÁ?”ÏQ#ÒùõÐE¼®Ê›°‹ù팛´‰ÉCø n‹0¦›ûaé‡Õ@W5¾íÍɺ¿l.Q+z¦áD&­-ғ. +N‘¬)’´·â´›®F,­TiÅdoª|Tz®8›ÍàÑMÑúWô¾×}ƒæ@1( wØ|΃þ³ë”ÆÊöwL»¹Š²}g3ÒœÁfEî›Ìԏ3œK™á¶j¡Î8 IŽÿµ¶zRN+üaVØV¥{€Õ“ë±þË×ýævïxwCV¤d¡›z“ÌÏøÏz̋‚¨tA¡…ÌyS1k6Í°£æ;DXö>£ã±õ •Qѵ?c7ZED"˜ ø@^ãdð.ÙܛR)þrà9›×º-*È K=^Ó¡3ƒS͝ÀòMnÁYÍ*Ia`Â{5£LÔ_;֔ݽ ášFïÆŸvÓu€ÿyAPu–ÊÍLݐÕГz$J@º=`’XƄWoŒX +퇑sþo«UŸ®Ÿ9dª+ˆQlÍ*Î!u›>ž…àjù9å!)ŽáÖÂY(¿íÕ,TmŽ¾)î×3¥VŽÛ=?v³GC3$ eU”‘Ø´KUÀ«š3<,-ôïÚr·ÊUIA[V]èëb¢—/C£ +ԕöÊD/žÜÌÜ Þû¡Mpót?!º`8í2× +}åè‚,él™+ +…è46Ø´»_=IJV„¡’â;{3} ôtÁµ¢wwgG]ha¨GD"6kôr:·ÖÖe1¸Èz©Ö¿¢pJÔ2)]6Š˜*Ì5¤–ˆÕáËJAç´¾-^Wž•a@f‡@t®©><@s–¥¸êVËtjû„â÷ŠØYlæÃÅ@'ˍ6 »àædÓB-Ap¿ˆ„^ÚIUÆ»k½ôCÁé s ´«ÇMøoUN2@ê+³ÁaiGï‰=ï/Õ­¢+à’M:)*¬„~‡.®èV ¼ŽÒ?ÒI½;ß½”pôiŒÂ BÏÉì¯| ½L=€Ÿ®øÛtä[ä;ª#žPóIÝRn†ø ñ2§7—Ý{´¸xO¸‚vâðpjj}6fä×ÂÇÅ¿@™¥—hú3-N¯ÛZX¬É…M0k¹¼¨\mLBBáJ3c«ÜK‘ƒZ™c»Ûe†EÀò÷ †áٌºÖtÑBƒŒiû|ސ:ë—Ëu¹¼oô£§ 69p„C&9áRPÏ ]B¨;Á—è¹UJéF%༳—Ê»Q‡H¢ÇqD.>™Fc¥“ðvŒ¶¿|DBÛt“A7#=¤%ˆ;¡ã…•¨[Ò±|ÉåÌáÝhAFÃ8oòç¯ô:Yô§ÆËnDœª.œdsÏ` Ûá‹G‹Ç‹¬*çfúDBký8ÜB×;Ïhɼ‚²Ýl¥8€öNPçØ®3<¹XÓâwÊÿ +é•ÌÆ£îïÀ´Y†¼z<ØS™Dà‘Æ3•HžÍ}÷«.¢/™{m¢•J.ºP»9y]øºÑˆÙ«î+žŽ¬;bÍù äžt½ٴÙMñy”ó¢Ìjí;¨Ã…Kìz|îû"Û- Ãfõ—~É4˜W]Þaò6È]FœÒÞÒ}ãшؚŽsdÉûg~¥Ö{‰7XÅ©g_…“”ùM:Jk{ö?OÁ’‹8§`f¹Fg,¡ò˜Ñ†O!~ìšNgÄe­ÛxÚF`41¤Ïx2XG/3JŠ<éf¤Ø/e°ÚMˆÜÎt U¯÷ûW'éâ ÌO3BÍ5³™àÇÚ¤åÆj1·'†ÝúàFœqéÊɦ|˜1Ô8©?,úy´IìS ‰{=j¸ 8ªÐÚMpø‰¯u‘`îèåð°Å}¥UâpÙK•$ø,qu$¤oEå$>Ù®ýÔ5­5Ñôµn'–˜?bvéKŸ¹¥qh––3„žÇ/m¬…zãÉ>ë¤ H£¯lÑ̇hTF÷«Ü[` My­ò9Çò³é/–¼B3…hž¸“]| æŒdív÷†ÇÁøýl¥d–9$Kþ*þC†®Ö0c=ó;YÜ$átU(\žU³É9Ȭž#ö–È‚ä®D¬€à¼TKxŸ#ká>ÅyCáR¨:'Úz[¬ÀÉd¾˜3êSMM—"9$ø®ú©½NkYhOôùì®yþbdš£¥Ü“åÍë™oÚã†|„[%‹~Xº3íÙ'Y„x58RZrkvñ ÃÅ*֖?ނñܹm&¾œï‹ž! kë@åc ïžBQ´Ž±D’ýk|ã µƗz¿R¤8ø;$“×äAG;^â¥æf£³VîMNž¨tR=QҖ·P!*Çù”´Y٘³n®5/-ýY™2²ðN¡f'±o]'¯`Ót+yòêi½÷ýlÚ|Đ0AA[ÙÇWÅ¡oïöR½ ¶7ÿdwVêÆí§|.šû·vÄj7ãDA¸š t“†?ê‘øà ‰>¡Ç‘ß~ãÓÊúŸ™ï,ª;¥ÔK]ÞV¼¿íÈ+^DFVô+Î$¢m“­Ñ‘û˪ïL"‡Ô£(V¾w;éW#ðÕÙªQÈð@f;ÆLëûâõ0b¾-Xfs[úàiÁ©³æ… ±œÍ]ç›ß/鐰4•d9ÆL¶“îÞÅ?Ð}<ŽMëƒ(ýÖÚGdP"%8÷i]GULÊ¡dkvžA¶•ù?b¶Ãm³¥9£‰®n“ŽóÊ-ƒ*¾Çq`ƒ–m ‘Ž'ÑäyJ4%jÚDçÓ¼†ñøÕÖ$Ø öï|X¸¹I‘ýÙs7¦Ï+úçœÀtf£æc·XÑ® ƒr/Š±•ß ¦°Ž¡T^’ŽDý€fÖ°Ó²¥Õ=0Ã$¶™Š®3ÿVì.°¦…ké$Ët¶ºåk±……\¿ +G[v;²ÑYK©ËÎ`±dŒÉg‡—{5q£H­W̙þOLD)óYØû¶Î ¿¼ñsgJy¦ÿóæH Aä¶oG¥†- ®(q¨#6ÈáÛtX_Þd ¢öÂlÞ{ìtUx6~Xj=Ås{V™¥ÈµFV·<û¯±ª_^­ _ÕV7(Çu2EäG•¤Ùd(RÖ.®ºŸÀþH"åÕB!(±Â¥å£‰F¾Ÿ(1ñÿ[ëçM}Ïûƒ@¨¦•Æ›5}ýPð[z|ww”Èù~eÕ¾Ïͩؽiž¯¢#`Êu]וÝÅ·†Bÿé&â>&ÖÖ¤EJCûw±qîO0ô—‹K<åV;G L1Ѻ$º¾úŒ«ËÜ< ÓD>O©JMXÝê¶{'繯¯²H:/­ ƒõêPj·ÃVsäðÜè3_s$âš°±Š ƒ£éê(¯I$ð)aÂåȜ„cÀ¼Ë‹ÒintŽãªê+²½HjN‹"{H›z1nOz Òôã‹œäô׊Î$XŒæ˜˜±pý{¼N7·ß82Œmþ‚ÌXœ­ÝAFùw¥°ÕH ò¦ž-¹ ˆ(—×fº›ÝGÒyí¥œJå  +J>‡Æ?ù žø³0ˆËjÙ®U„Šãø9ˆ§ ÝÐÚùËúol1yքJ§›½æ‹WkµöµÞËà%z?F¤N¤¸>®mä¶_éևªö{A¤.§m¯™tÐeçÜ_4]”B_»Qêùƒˆ»`Œˆ=O²¢>Æ}·0QB˜Û_/—?ÿjÍ®±ƒ©=šÊÂؚ ÁòPÙF”yx)^Zï@Í´,æô‘,!>¤ÿL†Ä!òcw]þ˜•[G®zŠ7úfUçïªRX\7åÜBÛ}‹EgÔg·ï‚w‹ò±ýÌ;~#‚ÍÆÒð{ЏQ‰;6=ôᗝ™yé-µò®ît £É ¥Ÿ®²—°”rûÞt´þSkD”¡¬‡1ÿùýÇÈ'(Eœ¸×>¢™kq‚Jo×јÐŸëÈ÷•†mŠQï«Õ„‘R);Sæq‘|­ì-8<™›@qpO.ÃçY=õ9yoªû’ð¨[¶åQ¼ºÁm°™¯Ò=Èâ×û3’™B…‘"ã¥^^¥Z“ð&ö» ÜñN—q–Ç®Nn%Y¿^~â–ÆV .ڐ0Òë7ù}ÌXxÝñŠ» ^̤’6/çüý Æü§/Æ-úE¾q©Iq³0œHôåÌj‡/›ª¹hQTT7z”›ˆ™¹êéQšjªÇ¸‡*% \ä*&ŽX`úÕLڔ?(ûÀv T{E<ÿ¨áÇ2…ˆ¥ÜÅ2ЄQ@q,èžcš¯½Þ‡›GŒ±ãoZn®Á)4r…ub–ìn+l¥í®óÉ ð`pñÖaŒíÄ:øù”óÞ¼0‘èýªøš 9²š»ä-B©õ7T…(ÒÃÜ×w¼uÍ5ab2¤F¯²8®À8·8}ñ”C0“ع>“¸®R@%îTÿ6/tUËr¿0ßÒøˆŒ¨?ÚñˆûßKe¸R֔ ݹÑYÌ0¤¾~1ˆhn†ñòv§ÍòuûÁC»L¨Cï¦SÝÂñžç G +Øêý›ôvœ'ž—£™/ðÎ"ù³S1ï#‘ûM~™ß(™ó"‹q¤·ï;`6 \Š3ŒuÈüÎUWƒ†V(ɤ¾6 mød7u)Š¥¸–¨ZâaÉvIxÌoI¥ô™÷~ 2å]Ëì|.ñr­¼º+BS®Qw›ªÚ€{¶Û‚&: {®'µ òYÄé–è²|öÅ뉳ݬ}8|*̅ɂžª¨ún#ü e|Ô"™°E—Q!›¯ˆ\õ*Z'»üÆMé0°\+]; àœ_ibtèÉò<Í$°•'O?Ýe[`šÐÖVÐ/jÙe”.šÒ̄,|`$"ñgD'äоm-žWÀpÒ·^ˆý <÷ +’Æì3 +„KL KL~& oaK3®Òböø3fxtÂÞ;Ä% { ®õÄ €OjÝ7`ÙԞbèJ»’ã°H0]»´SJƒõÅ$W7sÿ®t ë– œ>ðèmBîSðb"~ðy*û¤±ö~“©þrëöþòeù€TaÏØ-ññ‘Ô Ø­÷ùæmÐQexo^îëƒpãdmàTø˶øF#'—^½(³1”Vzã#è4<‡RcLl~wŠ˜÷È—“XÔvEýÈYÐ59½Uä‰é‡¨•ÖEÛaŸžG·a“©_L鎟‰æDí=áÙò3D)©:”?FH‚&‘/¤‚Ó½ªÛ`ùO\‚º~W•!ÙzÓqÕ' °D²µ±À»”ißnë«Ù‘ŒÒxݘ© ÿ¹Çí®ð˜ 6yϬ¤$òŒÍ½Ôj9Ìv L¶nü\ÁTº%Ói’wÝÂ7ìÙۄR¥Sç¿3P(¢½Xþ¼„®sÑaí{h@! 2feق"ô`)¯M 3—îl?XgÑý„¥‹œ’^‚H&ºìÒ%Zd¸ƒª_, ¡6 +\C¥ûMªíY?é#é5Ïä +Š•<1zκU˅a¦R¡¬dc‡MQ”4ZÀÃ/óôg)½Œ©ÈÇ1¶˜a@‚?‹HG@ÿÔ¿JsJ7?€cXù±Ã¿»LÉMwB±³?÷Vˆt~€ž4öR/Ž¥Åäâò7ÆÃÊÚG o¯S= ¬‹­>Æ&žšÆ™˜¤ÚÚ¶1{úD0yÔNã 9®üsˆ6FÀgú%M(4CFaTù¾Sˆ Bª–Y°î< ½¡,+có®­)z½çÿQW¿9õ%ôÏ ¤Çêâ-)ó„€IåK_œ6óžåÇ3—P㶋ˆ±Ú§ÇéhÕ2²ZÃÆ êó0Ý}œ ‘(ö¥¥»Ð±£§-!Pðy ·^ÆÎýÝ|uä·ä¢Í÷Ú£õš:Æ|QFj‡rk'MIÇÏt(’ +6ag·ª,gɛôïG’6Þ2¾ÓÕÞȘÊ.Ÿ)óþ_O]‹DÈNØ­ï0ɓEyìDq°æˆÌz63”Ê]d6…(äԉ‚ 4Up"ü—§‹‰xÓCœ:oW'ÜÄ.l}ŒL_îb +KíÑTç՞sö]˜@ë·úyý„Tó½J”â`8Á j8Õ4¸ß2kCÄѿʼÎ0ìLP´liœwÈm!aï…ωqÜÝ¿Ü$7‰7j=&¼䅢ÑÁC+¾4¤T9gyÁt ô tŒ°öÒÉҚóx²`¸­w–ŒÑ9‘Bù”ÿJ 3Yø’N77ñ³Ç(%«dœ¦¤¿E°¶°Ì¨Øý©Ä=š f•.·.wlы-S¿×·sËËNÊ¡¿íÇv‡uüc\äÛõÔû›9“‘JÑ÷Ã%ˆ& ökuò<†ÏÎîú$lQúï±Iñ˜[ó>mƒW·ª5)ŽèÛj2q7ÉWð¢Á§øa݄ƒ kRañÆ9vvsÅd*ÜcÔ&oßk8UêØô¥f{͐Fip“s…±ÓL 4Ý@B—ƒâÎäLÉ‰ëVŠ¹Ò-¡#äM¾…\U[ËMVÉ¥”¬õ* ʼ3ã³(*?GÚ¥Ña?ÇÝe6ª½ð;”́Îpš ƒúŸž½¨´ÕÂáW¨Ïcõ¬¼«¨‡­Ùß >ƒà<§Kû£?u©¿C,G5~áS+óߪ´«ú­ãò  }ÿé}EH㍬ËÉÒtt̎îÚÅzџ=¯Ó`ïYÞùR.ý+ÏqánEòʽ%…®‘C|òÞ]@¡ÁÐà ­”Fпv¸° àt›ÍîügaÉJ{ŒèQÞ£qKcœ¶$ï!BtA%Ö]z0øžÙ½‚¦¯w±>™@ÔǤ;²Ú„åÿåøÿü"ÀÌÎèâæht±EDü¿=± +endstream +endobj +51 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-24 -250 1110 750] +/FontName/FIVCRW+CMMI8 +/ItalicAngle -14.04 +/StemV 78 +/FontFile 50 0 R +/Flags 68 +>> +endobj +50 0 obj +<< +/Filter[/FlateDecode] +/Length1 929 +/Length2 3545 +/Length3 533 +/Length 4216 +>> +stream +xÚíTyV=³TjÖ¼zeŕÜUéXÃ×w!ޞµ¼~ӗ[\~úÙ¾ÙËçEgd»{ò_º9«gÌʜ5N$oÏ#߂­ñ(>å۟°×tvòe]Ѿ5¾}0‚œ/ß^ºeʀ¸äor{/’Ÿ±©ˆzü‡)Õu+µ¸øÂÓ¨–Êûg« XžÐs´)GN¥,k:+Àñ¨ÁòÎ琉_—}¨^xtº%¦vUðÁE,ÆßæjèqŠ˜u#JÄÌL«1¿¦ k¾sëñê‚LóU7ž;×u\¯%¯ÐvúØÒ?t–YÔºb̙¾ÂÓ´›Žr {ËðI47æl|B͂v×®նwO˜lú|´ËŽõ†¯dQÄܼOcÎÔËæSϊ™‡ç&w„mæ²¢LÉϔnªÅ.óYt+U¾òN}®T +6M°¿Exm…4¾:°õ´qBä.ËJ¡jEåþ1Kw¦‚ÄߞäO~#*Çës*l—§¶^b[•ØæL_@R‡ s2O5TÁN 3¾ÔT¾“¹]PÕè}2æ)×…AÀw~l§Éè®nw‹ç"퐥cŽƒf|Ýjmº˜‚¿€Ôã{`I&FfÂ_Pm »h´áLéðMGue2ûé0ÇX4ÄclNIÒ¶8CøÍQD¬Ð×Ìrr¸`Ã@ö‹Zk¾¤WD5zgo%‡]÷¾¼˜Ù¶þã†D!>@“«,y-ÕÒwàv%¢ÿ½þ4ÿ1%µÙ…Ë×oê¤ 8Ë):¿ºŸ(Ö”myw$ ¹í}eA֋ÛÐ`i•º@’…ó±nª#/‡UȆ1®|?•âƘøA|>±GW•#¨´®7jµà»!À>֘ ¦˜:Ü»9’›Ð«(xçT=ûYÓïB±½o‹M÷ᤝÄsw±Ä²õݔ/ 2ÉzÃŽМ ^֎'1k€õ1úú×JXšOYç,_Ö*vÚÕSüd´E¶eN§â‰ Æ캷‹—ƆfZ°9 òsf ä÷ÌÜÃ:ãD7«Åõ¹Üo7~‡Ã©¢bƒh±\=O—Ä\½‚16 +?ℚLJamž½äNxDγ}«ÿÛHhÞ~+y…ÓÜÈ¡ºÙUÞ8áqzÍ-QBk6k]&݉ñXëki-¶ÕÒ§=žµOœC‰Y\ŸŸBE8ì*ujFñ) èÂÓVHx4náÓFÏJîÖgï§íçivÙ êôé‡% ù~æÇw«ª–ÊàËÔë‚ýÓ}Œ5ê"Âg¦(²[Ÿž4tt}WÔ-³$ú4xxêûÊ°ÎÙ&1¾’õ»—,8#19ËE†£°5FZ/Lȵ¡Èæª&W8³ÙÙ1fWÕ>YÈá§r7´û*ÞºÍÇÞÞ0Õ­Õg5†–ž -ëÞñØæÿæ¡C-Éîš0P~Ÿ¾KèªWͦE¸1sC³ßTD;r[e;>]žéí€Ñ¯Üz½ž¯ŽÕOº"Â>3]àkYáÏJߔ¡A9P|,‡Lõ°6ëmPÕ©1qE»ÜÈ)ÿàÀÚz$@±ñ<»V˜¥(‰ù*›6×CU ’Á&¹®¥%¯tXN§ 3µ/ûŽ]i½—°òõ§QjUœ…Ó흼o,|.+w=JÛ:ûa0xÉg¦¼ytSyô¤Ñ£k7Põ‰;·àVu¦ ÝMNX›¦Ü֔¸IQ|ÅÃÅ|3%ã–ð!"ËrÏP›—:×GÞ9iŽ­­e†qÉ ´¢(E:É.¶éwso—‡«<¤½OëËugRXÄîù¹÷–‰‚…vÊŽmÈX›4.ÒÃ;-03Mk"%®÷½¦ò¿ÂZöAV®¹ÚÚëC'Ä ’;zmY3LýøR.Ë­†N ½âž%¹êoª4škøhß+Ño#í$¹0~ÃRøñ3C—W8mòo.,S¦âeb >ï=9hãÃÈ܀ύ— +?=9n0>C9EýúMáùnshè¥ðܸ5â{ù‰i3Ã>•CÃېó;Ýyo¹áðx«ä± wÚÞ(¯†mºfn„Ð#øCªÉ„þ64‚ß²J63hÙäûȑÄT\LÑ*‚ûô= H«8‘j·~+~âÇSB>—+Dr¯v:¬—»€±2–WÀMøl“Ù¬¨©#ÃÔ#`Ó>×I=GïÈYsW\¥ÅwׄŒ“ {=^rXaïÛe<÷úN³ 4‰›iP:äåO>Y‡}Ã<’?{ê’ַאÙôҐÿ‹tX_ÅÙLqzµ‡ßi1)RBåYË=]¬þÀ(3nZ—V빀”•Ë¡{ÏÝ>ˆÕºý¹È£žë]ù'ù +5Õ6qË/)·f@‹žµÖ^™¿%©Ž(噘’ˆx-¿fº›Ú"ésUº}T¢œç¦]ÝÑ«vÅ~)¤+r&ÂýÈz•ØZ­½'÷Ë7:”› æËÔš$¬îê»}+-«H D[~=1O IO*´ðy{Û+ƒ¡ð“·Ÿ¢Ú-N8¯2PzB…&ëâUR„Þ;”;¯]Wzd\f¢yñ³ž&ÊçœJ£w¢r¬½Šn‹™ïa›”“Ì®<îµ@¾¨ä\‹eE4~pÏVλ”ÇÆ·.—ª,ÙRèý‚;ºñD]ìmŠÛøïb·Ù/yŠKÜÍÔ”5¸ +?)/„œo™WnU€v¼Dk + ”¡{IMÚ¬þ®[_lä‘ò곟/x¿‹4ó‚j‹­¡ê™?nmÙ5Ò_5v¿ÝÇ9^sÚKšÍ*w›ºyõy9£¸xeNt§ƒXŸ#š`”Tb¹GÂ8BÛßú¥ñãS]+VÙH±¬¥ÂÞÓu{©ìƒþðòÌ2w£€‡µv䖒,R?],ƊGˆFs¼1ïÜF0-ŸfE¬bL ™Ï Ì0•¯›ßæÕ6läß d£èÊÞ÷}:MºïC~)1H¸dœ±®÷)úšÿ)6ûd±ù™'Â?žTdCì2Ð$uYâq[éè•÷/üʙstĕ«¤ÄƬªNUŸæۊ£ „-æƎ¦Ó‘˜Î9<6¼P·¿wÃÜ>Ëzˆ ûáýM‹OgŒêìRéLûC¨HL£âà²þìºÿ5°ÒÀ™e[hp‡öÌD¿[óÁÐä·ÅNüûÔÎÂy>ÎRâLFQÖÀuš6ªÞKÒëÖ;½¥°>Þ ÊK¯©•^Tˆ#ÿªñjQü¡Àe‹óý4'B¢3?ü†w_ÜW­ºlŽBñ‹:õðÞÒütö N¶CØ®,ëk#ÑfnpaÈL_0Ó8u#Xzo‡àQ¹+æ¡_‡ê0ߪ–."ˆpÜézq}՟Å!rZpŒ•Ö™nHBÔ§ºðœ±ŸŸ~<$8K©l¤(áBÞ0o›'òšêT ¹®Í#×°ñ9õ>1à}–à³°ï!Þq¥çú¸­êŸe©´“î)¢ïusK-ufzdâ*©!ó'XНzqÓʜæË{Ænç‹cŽ©‹7ÄZ#Ï$&˜Û„'çjÔ¼{þqISa¢QB«É°}.½*'~ìD”Xúœ„ö àˆ/ö÷ÄÍ|ŠçlY;e`Éj˜xô¤6öꚥ/ZC—wèJ³£•„Åckºþg2ޟ™øEC(ßQá#B;<—¿ž—ìæ ¸[œ5{9s‡yG3f恲ªÃË´¡f¦gԙUßøMŒXÒ‡¾&|ÿ’*Öó£[γ«€x…;w›ßz¤Õc¿-ѕQdßuÅqÝ3=õ®ã—8ÇÔc‚_Ý¿Aj<ٕ)ò‡ñµF§²¡ÜÃc§ËZñºÉ.ô៎O¼×«• 9M3Q¦/Â'ô2é=¥ ÿC3[ y£’Ç£¿îӰڔ'BI 7N(#ˆóiºqÜéAŠõ“3Ï"Òê ³”© =H Lu>¨ºË•d¢²Zë÷(zd"U°ï¹U ´©…0úRv²ð—Z("ùwküÃí¹^yóqí F„^åÞËáÒŒyµÛr¯¡Èš +ÝF-^»y&tpâ¯wpïaÑ1v,9©•.ö…søMdMPÓ»FûÔõÊ(lð¬€md¶ÀÿJeªhrâ<«ÔޒõªýÌoúû„©ÔRغk›öé²*-Š;x\Ÿu Ôª{\Ÿd'E°,o|Âà7ç/êˆÈVÌ>Läq§:.MR•~\–¤Ú)ݞѫÿÝNg»ž˜Ñÿq2I?41]^$Ç£Gf.mRíq*'P> +endobj +57 0 obj +<< +/Filter[/FlateDecode] +/Length1 904 +/Length2 1478 +/Length3 533 +/Length 2126 +>> +stream +xÚíR{<”ù–"MT4²Rù‘û\Ì`ŒjÝM†,‘û6fÞáÝÞyÇÜìŒk+Ñ**º¬ˆ³”¨S¡J–ÔJ%É¢”DÊý®(œ‘ÓöÙöüs>ç¿ó9ïûÏû}žçûüž÷ûýééxx™Ú²y!™͈ÖÀÞÍËÏ +Í=={ÄÁ<ԁ)‚¬‘J%[q( RÁҚD²&0=`Ï — +àÐ00°7œWY[.$€YL¸1EaWfÂb"À‹Ç‚!‘Ô [žó-Bà !AÄ6Ã`ˆDÀ†Y"…Â(?Ÿ‰ŽrxÀrf‹Ã?Q@(Ë d9 ,%›‡"RÀ†8¼;Ov$ËòÇú7©¾4w#ˆ;“;o??§¿ÐL.ŒHÿ%àqÃÅ"HÜxlH€~)Ý -dsƒØ°˜û%K1˜e‹†"0%’Íæ”:Áˆí‹Xa€ÃD„ÐGBÙ_F‘Mïc<Éîâím¼°Ø҃ £¢Òp>«?ÖÄϵlHXfQ&”½Ÿ¾‚¾8ÌeñØ0 +H À˜R AfE¢P@À(’H"KŒ7Cy"Y &pxÌüV‰D€ç¨X8/@Væ@B!ÄËvô&|èüµ„fÌezÙɼïvþ &[|¸–Íá„ +ð0ʁQX$ý¤B .„.´þu–vv?þMR'Í×6'=µÏwéL¿æ„ ör[–”<Ô­§Ø›vì@Ûš©°­ùÕC/¢›|¹:ËÔ=·{¿vúíÓÖ.eF‡a_8GòÀJÎj0¤ÜK!»„°®Bç÷$òý’Õ{+ZÞòƒò‚G Þõ´N5kŽöZ|˜Qt¯j86(Ç:çSuõk·œ˜ñµÜW}ÎÓ@S f¯1%LGÞ:Xu=®oè­wrA¹¥k´ýŒoÒ ü«`6cj‡ÓžÃÄu¬ù.Ê.xoŸՙÔÕ6¼ª%•qS½/$_”H»mJ5Whn¸«št°©gÒ´ ¸åURÔbǖRÿSµNèoÝû§ÊoZ¥®c6ÎhRzŒ”§Z4'ÕØÕÒõ 3‹t\Ÿ>«==Ùq(µŽÔ‘/gñl«Ó¹ai¯Ë䨞<ã>7äMÖ/ä}âқ.ú#:·Ÿ}pž4 ¹i>ž<í“r[Nµ°Ør5M|ïfâ–HÒl_8˺>Âî\ùš..µj.>¢ÃQ>¹Â®i™KLˆ{Ög9 }Å¢ ±‘ÌŽÐ÷£œ‹~Úïø\h³§Rò°}ãŒK~Wì‡8ì‡\ÿèåùNÍÔu'4ÎδLga–óù¬ÍɤùÞKèí®n×Ö0­ò€F“Ç&^cO{“o´Ö*1²Ú·¤>±5åÁÍè7f¥ÍÅ°½Á¶b÷•lW¯Z¥e÷8Q}ÝéRd]€n«ºP¨\îtûÐ,Š ÄY>Rê/×5Rä]áNWzY_Û;SöÞ´ÜÑ÷̒¬X!·§ +)Ûّ‚ 8¬ ¯?ï/jh©8û%ô¼üۓõ?“É3©KÍ=±%|Ã×Åú<ðkdškv~ŽüDÊY©¾TqK5mõÚ,%~a1ZPÕ»£aìf{ºh´Œ¯Æ˜ÕéÜû¹{y%¬Fã¥vãñ±+Ôâ¦=S×lCç²³ã·k«ÍÓ©$‡¼ÄÛ\ẩt¢¥µxC{³œá×[å¿?:W…Ó|ÎʹȍЉ&#-Ò#ì«%ŒÂ¨‘Œž°e{·¶ÑUÛ¹gÞŸ ¼óÐÃ8õÙ§þ€Òãà÷Znùۆ¼REîÉuÝÁèÞñé—ú£*¯TºÊHòØʆ¬§ï™ Îm?œ»)RÛU¡•u×v©hàMìd͜èфÊvÇh^ê+cîÜì™YóšÇoK 5~‚¢Ì;B°Ó4»ß+këä9Á‚o'cTפØürÁãä`çl‚á¿|0ÿ7øŸ0`!S âq™‚ÝÌ?Þàh +endstream +endobj +61 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-36 -250 1070 750] +/FontName/DLLZPJ+CMR8 +/ItalicAngle 0 +/StemV 76 +/FontFile 60 0 R +/Flags 4 +>> +endobj +60 0 obj +<< +/Filter[/FlateDecode] +/Length1 712 +/Length2 2085 +/Length3 533 +/Length 2619 +>> +stream +xÚí’y<”íÇÑ Þ(YâA¼–w“u”eìɾfmÌ<Ƙ1b*¦Tö-IdiMeM£d/dɚ„JS…z%Žê¼ïùœÞóÏùœÿÎç<Ï?Ïuý~ÏïþÞ×}«(:º@MqÔВJ¡Cµ`Z(ÀÌÎYЂ! **f4C'P)æ:ˆ´ ´Óp<€DZº¨}(m¢˜QC4>ˆ¨™©sé¦dFÀb(€†’7C°àBÅ@:¦$àüí—0À iGA ÑÒp,ñ +þ ɆHô~´qá!HGAZØ& ¶É©lRâ¨À¸=us5p“å?Æú7T?‡[†“Höò·øÍ1ýEŐ $Æ?t*9$œÒ;*¤Q~¶z€?Ðì@!œü³jCǐXS +žˆ-B˜%!Ä9èØ C +¿÷A +îgˆÍ±}G€›:äåxPóûþÐ1 +ݕògê7ó÷ZëŸõæph„HÀC ´6›ï_¾?­eAÁRq +p¡c(8 ÷gã¯Lh45ò8tŸ.Eêl^ „ÐÓADý«ÑB mÌ¡gðƒ +N£ú÷K°¹ß?ê@Âæt@0ÄBróvxýÛ£¹xd¡yHÉ£¶ç©#¤¡øC¶ÎkW_ǜ0I6w–è¸0"º2ã˜|qYMÁ8þV´azó’_ ƒ!Súb—Fà£zïñETYÊt@¢Ú‹ÞôL¾çï}[“¥sÜO@llÇ¢‡4~jS”¾³:ÔÝ8Š+õÒlì¹ý&ñm +;da›¡™ï¿T¹•Òk†ó’ØͨDJD‘cö]wûlucr¬ƒ<«ŠªYÝ0مñ"֔µõ~Ã>ß7'ÚT!¨¬¥!ì«ÞñÕf;¥÷ð+s¶ú3S;ŸLüPfH+Ã>8—Dñ¤,¢EíëÛm¦Ÿ-fu½ó¹Ñ°×=‘wðÞò6:0ÙªÜ*yûE/¹(e ã’{ä«þñù€B]YêýD,I;tÕsëe¡n!ÊíjV2(¶ ‡6L¢îçrnóɽ÷«^Ço+·+x2̍n¶èÛ+U:šuñ•rçÛÂäÆٖmL壨G±=Ã=ú2SöÖ6~í+Î#ÌĔGûcÂ-sƒxâ‚-¢£ä½ßáÛou—èɹQ3kÍù¢2È“ÚKÙ°L—Ó…²‘êîí[ÂœAžªy¨Æ‘²—ÐB[©¿9ùáêd5E8{~*·GuÞy–:6{ð¤HbYÇ°Ÿu×[E½W>[ðLßà˜ËÑù¯L÷§0Ÿ#^²‘Ù5&r¿•Êð*]é`ß|•%8ß6Ÿqž•›sØ ãtc‚€¤sBŒþ݈çو ³ÝW²«[¯í<]YÄ=•µ_ /Ýà®À¯ªVÊãUeo?ïð4Ÿ¢ž—(q1zM|du*ð¥ߝTÊýiŒø"rkŸÜz‘´‡,ŸÙ^[ä´~K> Ò°Ï*ù@[n¶†µ¢al¼ïüΡÏ7#øMÒ¥ú÷°<=s¦Ûê.’ˆ¨ )=ÕØ[õ…)¢ÐÝ*.¥ã>«Ó’ï]ïxÇ­ûFúΚö½ßI +N‚½W~¯Xucdš)Z¶÷´ )Ԓèû…;dÅ\Í1 ¾^5†¶Y{*±CAí/=ö ‚'° +*zèqz´ˆs.Œt—9r‚p=Ñøéó*«jmƒ× Ž(ÝH^Ê)C'ž‰u3Ùé6™5Ï²áAlïQµ#góO:Wà™É_ôж7›Oôñ¶Y ª<ÌZ{Çã|¿¢^”ãp·­p»9ì¥ù‘Í9û€'_¿Šá³¸ë•pݖ¢o +Džé…GZ;×h£Œà"¼FM˜˜}nô™/oÑãÈo/i‚Ç튑O!›tÊ:Å¥yl|~ðLßÕ¦³¾±6'­Ëv‚C«û'S§²Ÿ*ëwQä˜ÝB\z”@Nõ +ƒ Dgêg„NÕT`¶v—ðcÛôÊq¿¼»Å¯SñJR;gçR!–„º¤¨ö ‘!®ýE qï¹ú„Ž%lZ 2Dmnú€‚`×kÛ4íã2(ù aüêú‹«S1»òËâË_X±rž I¯n)A^÷ÂӔ kì&Õ£5Cj.Å)á0.?K¬<+ŽŸ6DÍ +åß=ìlx Œï¥ÈРÂQ +ãÕ7Š:<–o¾â‘YY1ÇBx +*ƒ ÷ß_‹}6¥ôZ¡õÂA0_YíÚþ¥9m}ÎL^yÏ 1Ó·‰gZÒÄ.E²/om.õ]éÆ綛!ýÅuØ%¬zêÒn!‡Èí#3óÆ8y½8¢¦÷Cé›Êl7áíZÂå¡íõÞÌ^åwYš!!÷²×MÇL¸¡Ç¹¿÷¡sЧäOÖ5›ˆÎ6'Û-œºgþG"­qýuœï9‘]gª8û‰pl¸zÏÜÁ…®Ôð¹û®™N“»Ç]Mx´z; Jٕ¥ÊÜm]0S Uïhsj¼‘©D^³‹ZHGÔà!-+÷؂líS¦Š~¥2ÚV¶ÝÑ­ÃÓóˆø€L¥nÝ°WˆVÿàrÒs¥“,<ÿØH‰#®½ûr´nisÃôœšø,ºªåmÔ5ÕA¿\dƒ»MŒÒZ`°É?€Ìi”ÍlÒù –ñiçî«¿N^Õ8n¹¬åìUÉíṏo‹|Œg$hK‡ùbÕKF’ISæ|tº{‚¼&> +endobj +93 0 obj +<< +/Filter[/FlateDecode] +/Length1 921 +/Length2 1989 +/Length3 534 +/Length 2624 +>> +stream +xÚíRi<”{î0T#"Ôä©8a,3“=’}‰IJ†B³<3F3ó0 &Y*ŽÝ¡ì*ÊR"Ž%IÖc+e=´0$[QÂ¢ä:k½_Þßûíý½Ïóå¹ï뺯ÿõ\÷_i§ÃuD-![­6Ìì-ph€Ö@¡àJJfLϦB s<4ÐúúÀ–C0{ ڃ1Ð҃Õ3țˤR<ـ²™Ê +K0¡ƒL*ÏìñlO.!âiÀˆHÙ\ 0¡ÑǕà²@¦/HҀÃÑh€D%²H¡2àš+®ldÐýÒ&q¼ÿ€|A&Kà P^1ªl’  @2\ Žfþc_ÿÆÖ×â– ‹§¯È¯Fõ Ž§SiÜßݛÙ€=D™Œ¯©Îàsö ‰Ê¡Ú°ñ4*фA¡êK‹Ê²¤úƒ$*›è ñ4¸Ú¤¯M’[µ yÄÖÊÕ +ùûZ¿ x*ƒ}”ëý§î +}µFÿU bRýã(AÀhQðþñåöÕi "D¢2(F[À3™x.\pƒ•6€¨ è€þ˚ ˆ-©dˆ _Y© +Ðdqèô՛ÆýÙ+ðh +¬‚&žöO@ïo#$*˛†çþ ê£þšúÓ4ieeëxéTûObþü6]SSÈ?@£¨côu«¥­èêbÿÉtbP}8 9 B¡tuµV»D“ 2Ø«WZ°º?j2U°hô‰ð-î¹}Óg¨aêuqqk4Â'~Q]ʇ֛''9ŝžÔŠÕmkeE»Âö4ܳUµÖ.Ôõ·kLº6¦WÞ§®ÿÝØiÄØü즲~¾©M§ªdã9UÕæ+3Bù•È¾CsßϪ÷£;kS¬ç²Š2üËàuØ8äƒܼÝàlÚh{žæBÓGV½ š|¾GšèSæðýÚý!ŽÆ.Ùâr™‡?яِM…  ïêõÅ*RÖ.¿|¬ «mº³aç;Nmi¥$iȞ¤>Q7ìÞöd3!1ÿR±˜ŒJu ýÄ]Ú ÔyÉÙc7ÿ–h֘;ú8B_Q¢6–ÎzêŸ9ƒË:m8cœCۅ:­©ëÎ÷Aoø$Ñ»]^&°Æã½d |Žñ`8¦ «ž¿<áQbe ãU$ë›cbkvhWC‰‹B8·xQtgÓ§ Gù6‰d¤ÂšébóŽS±ç—›ú]‹¯VOK•O—Ûj]u"àj~θG*Õ ýöÔ@$3èV»Æ¼ùäச…ÖË°Œ÷žÚ¯ü‘~`KÆ`¨|êÌ2¿óâќÁå¼È¡d„ŒŸbBkqMðòéµ¤–¸$ìx“S®'×å\Fc™\é–À©e²ZªyXsjýÉôZìMɑ­Õs¬éjëÂWJŒÛšÊ~ÞԜ½`¡Ž}nù(a€R¡Ø;ó Gèc¦D±ý՘1üúà¤^3Ý£”·RÍqîÍƄÊý j­NÅæu˜Ê€¨Éٙóêñ…ÅUíÊâ7—‹––éîËߓ3 +)ÓDNŽvmÝR¥flÄ*×Å𤗃öç?sõúXkG¹I?‚8Eo«¼è<²Qçé¼ÆÎÎYã!£Ì¥Íóù"¨%7شڛaĕ}~¡ŸÊ Ó|º•ÐAöôâÝR­IÍ4ÈÙÒusØEþæH™Dàùë¢ëÞMKc$ +k»¶d¼¦½•I|‡ª{s(äi·²‘¢yŠ‡¡Ðºò¬Ä¯'¸×½°¤ÍĈ‰D½X›¬q  Ê/Œñôþ)úiHE W‡Ô6§KuiWRg弬0bM’C-mi°°v­ŠôΖ™k·1àɝìÝÇ[:ãÆ`Þþb±_/óxŸ6A;Œ +^ì|gP߂šÞýÊTM€®–fD]F^—˜|5Ô»×fS7j§#Âö¶š×KŸzTÉ|WqêqCÿ𚾠Â‰»6/\iÎ áxøº àðŒˆ2vZŒLlóBžVЀSî ØQ’$œ*²·èŽvžÖÈÑøi͉Ço}c£æ¡–Âä·6"ë²cP^å‹¦¢­ˆØjWuc¡-7Ôð¾Ižè²¶8¶‚Aåz—GáÜÜЯª±üþ%§‡»™0lVøxq‘æÇÞ'Þê^`ãeQ@vŠœWøU[÷CÕQ5»îŠ5[ÉÖΌ"¿×l·? Ó¾~RsâJÖg׸‹Üs’î’¡)±·UXÏý®óƸøË¢çZKܧ¸-oÝmÞ¸GìFô[d°P[ólÙæá4ߓÃYÆ +Kä{¸awbGªªÃ^fžP_äÙÀ »­›×lm4_¿ôŒ¸>j=¨ró˜¯øô çlÕuã(»Qçæ„×,yÑ)Šm„vÉÁφŽ’ÍÈÊ#^22Û`gð[%OM(¾Ô 7eâ‹Ö† 4d"/µ‘>óa6ÌÚ¦¸¹5éù·f~Èqñ¬‡£™@éxç\Ÿ“Û½Z¯€‡½¹Â©JŒò‘ñ›6MiìØCÊu«‰ÎiŒNÜíÔ ‡9™§eÿ¶äÀ›ã”ÿ(3ӚóxV:ý{õ挅 nœ+ð¹¿-_JÌð9VyÀU„x]¬³¸Ï †ÍÜj–Ï—¼»Ž¦ß¥øÎê ;W¹»mûQ‰£3É[h&ˆöâûÛÜpéòÐpâLôx|ŸFލH '´t°ôýî1…¹VÒÚ ~o À5j}P3oõ£èmcU¦ZqÒéˆ{S¼—É>>¦Í–´ÂsfxZsmÕÇÊÞÞù4Ô#8S*¹Êkï·Yðú04¿Ã†Mž»³ÎòÅ`ëÍmAγÈ+Q»ºSXÓÚUPℴn‘ñr¥Ú%ý}¯É¯XRõ„¥8 +ïæ€v˾ªaÉ©¬ì}Q> +endobj +116 0 obj +<< +/Filter[/FlateDecode] +/Length1 786 +/Length2 1526 +/Length3 533 +/Length 2113 +>> +stream +xÚíR{8”i^‡d'js)½Îª5ŒaúŒsŒ4Z¼Í¼x™S¯͐ó1D(‡$ÅV”)[!£ƒ²v“´E±9Ô& ÙÁ×µ××~ÿ|×÷ß^û¾ÿ<÷ïw?÷ï~îçÑÕt÷4´¡³÷ClׇÆ[2ÙÙ/±X”®®-\˜Í²¹À™››Ûy ÀÈÀˆxc"Þ…ÒlÙrÛ͋,`Ę²2È „˜bÈ<Ù4â +Ð`Ã`”Å-! +PˆŽF¡p8€Ó¸À~(f¡0‹®œYþl€°\¦ó8_Z¡"ö,9Ý ˆ}ÒÙ,† Cþ(Œ[<»ùŸý__‹;ð 7¹(¿˜Õ_Ú fþM`39<.„d6BX_S©Ð²72D‡y̯»Î\ÓlX 0ę ±&Ëu8ÄæCtw˜K üAF´T‡Xô¯ˆã[òqöpw§ºm]¾Ûå¦;³¸^`ÿd/aܟXœó_,‹Å‰‰âÿËjÏWÃìY46fFxSDP€ÂŠ¥Œðx À,:Ä ¾Ø1ÍbsÅ[q2€?A-^+K0Á‹µeˆÃÖüë™H$6?\üT ðâF&8€€ÇFü'ϛàAÎvkF06[>‡ ‹»ô–Äq}Áþ°8aâC4T´‰ ö¢9©;Ÿ——wÂmDöÆÉo=ƒVpbåÌã6^ӟ̢jñ9úïí8¢x½ïMåž=}fJõ$Rk×Mcêkçjˆt¼„—Í|+áRïöÖÙI´uë[eQumx”²Y†ÖC0oâU`]Ñ£«v¬—¥ýú]mÊ: fnSSÙ1 }¶ï:ä2®¤‡UIø$WʗϷ¯QIsPöT +ªÖ¯ëîSðt9Í¿dŗVÊ^h¦byY»Ÿ«aÖÎ%`ç:_H¥ƒ˜Uý³—-<_ êcqn’׶klfnHØlÌÒíë®îšy,“|½ xmv½ÒñèÈ0€±H›‡ºå Ž’Ò§¥^ˆ¨ZwÊ6 L‡r¢­—<7¹E¶¥r¦úYÜwf¾‰‰F2z¨¿SëµQŒ«ùTdíÝÓ‰>”;F&îü<•3u4Xm L—ì^—nÙ¤¼ñÓíLL0óBC>7‰iž3¡* ®•¿²OùÅëñڒÞUTzƒÕïRD.þo-‚'0U¹„T][×5€§â›ŸÊ(“é—ñu¹~Ù »•+Há¤cCÖH3î¹:Áñ†«ÞyjÓ™oTòZÎb­¼t\r",TÇF?ø^³tżÚ뢮Ü(<’½Š”ÓºFöfŸ‚½Fz‘¬WÓÕ£gXú•êVöeÓè…ÔKcZ¤þ¬0p`0'æW×÷èy ë”ß'_Õ<Åd½Ôb™2øðpû5QBoùÙ]ۇ#º¯’SLO<‘¡G¥,$+uõ¶5lwÂg¦{àÞ½ýæ\;9Ê¡L“çú Nf¢œü/üC? ŽtÞznèðƒ¬íLñÔYѐ]͉DÓ!…{u:<´ Ú|~:Ôï¶s¡Þ}ßÜ|Þxäsµœl抲DïøúñjQÓ¨wÈ3õrI{€cè7Pò:”k2âìR ÌÔøä~+?³æ©;ªIߖzK¯t‰õÐyRx¼³ƒ¥ìs´{¯<û˜“áÖʖz¤l°x™Ö\:Éhj¬–É߅”Õ³©4–ß:×Ï:Ÿ.>"fp؇c­ŸQ(;Ç6Ô ˜°ðEé½$=žœµ½¡Y‹ºÇÒQsÚú³ ©ð˜Ì¤mĨhú‘¸Í5'sæÉs¯§k'ùP¿9>¿KF-£®Õ¢h¶Ì*f&~›å˜ÂSRÎXù0M1?ëúøÅ\MÛÄÎ+6óYÏÛ(³ÇD Jc°È‹‡åœ¸¦äÜ*h‚¯ÕŸàmïù46ëÐiF©âX¶ªßc|^O˜–fR±Ç0õ]¡Áǃ°\Qpù˜‡ò«ýlò$>ݨ^Ô­³?t–¤,\m~Ì›Qulã|[˜ÃNëDŽ¹²r6…{«ÔötP0+øfè÷‡Ÿxûve±Sfßûɗõ½©R°÷cî2 *õ/p iÛOy%ºµ·¨Ó¿ tOIÀHèNɵþ.§ªî«2‡Û¨êÊÂ7 +g™±—¯W¤ nØ5ÑJÜ룸`_–ŒjElg…tÍÑ£ð] +ùC&fRµ^÷š7ٗ¨„~ŽÏ¶œÜ³¡¶ãfa³ö©º}˜ÝHû€•º³~kw¶ÞÈz0å4…ü\Áˆ‘²\™Tè™s|úö jй"þÁeÌ wð÷ã§`\F¦|YX¦¶6Ôä†û@Ï«k^ôg(›î»%içßJWàô¿C~÷l¥vÖþ|û½ä™ Ó*ëY\ ûî­e²ó4#¶@¯ns¶£›¥¬¦öÿüPÿü-h D¸l&ˆ£PßrO +endstream +endobj +120 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-20 -250 1193 750] +/FontName/WLWYLA+CMR6 +/ItalicAngle 0 +/StemV 83 +/FontFile 119 0 R +/Flags 4 +>> +endobj +119 0 obj +<< +/Filter[/FlateDecode] +/Length1 712 +/Length2 1468 +/Length3 533 +/Length 1999 +>> +stream +xÚí’{<”ùÇC¨Ùl4®Yëa—d3îF§ŒÉ`åe0˜y0Ì<3Í%„áTÖÝ*צu©†R¬Êes©»Y…•R ¹Öý’Rq&ö¼N{þÙ×þw^çyþy¾ŸïçùüÞÏ÷ùji¸¸éc) π8úh$à]M4ÓÒ±@‡Ê€’8 @[X ,70DhSŒ‘eƒi83œE â:¸½\f–²¨d8’8A ]B&Ñ7™ +r‘€¥Ñׯ°W ²N€$ †F*™øƒTfðÉ +`fe +—ù©ud±E\€Žˆs/ ¢¤0 Z8@`N Ñi ˆåOcýªÏÃñ\͉Dÿ/Óº$:•þ¯>ƒÎär@àÈ €,ès+üˆæR¨\úç]{‰F%c¡@ >JT6žR\¨r@¢±ÁM„(ŸCˆÆ¶‰`@8Dð<„ElþЏ=â gþžúÁ¼Y£ÿ]‹†Ã¢†D…B‹Œ¢ûÓÓ±ÏβÈ + +Ü8$ˆBbQ~þÈdmÍ‹Ð펾¡‰hÐF€™ *ê?G!êq.h0A¡Pfæ›*™Ëbgs Dßû© Š¦‚a váGª˜¯žbÅo¹¾O“PóË#؝™“WŠÚæ¿ I"ûƒãbC\–ˬý撜ýZGý@üMž£eZý+Ÿûáá»Kž)êtÖGV0¥)úÝðJ/qƒ{³`rµ/±Q`á#¹óù"¥€Ã¼»Ð¬¡Rõ¶¯•w÷ ¥Ä q·ýqùhâXí ¹Ï&Ôá"×÷Õ )¨ Gñ‚+‡ß0„GÑOÅ®]²Ò?Ý[aäqKPY Dª. +&ììöY>86Ù¬ ÃdE–0¯\&ÆWâTÔ¶~S!å}·7.=9d¦Ô’UJn<›yJ6<§:ÀABý@KÃߢ®ì9™Q#–z>§üy|Œ\a`Ÿ°´3-)ÓÍrà _ž~|Št;ã\˜<Û¶=dÉ[±ðÎáZ™;Ú|·ãðc¦AÇ^„uˆá«ª÷ŸwÿÙ1=×ɤr‚e>èÜޔ÷ÝñëS¨!·Ù·•€\(ó“ÅJÌÑìچÔrø.1+Ôòâür~^rô¢øwF±®©ÎSW&qdôÀØôš«ó.ž¯0,5tÜ/Ç(øQô¨°c^ːÕ÷"ü{‡åŸ;ùž}„Çur·‡Ä5~k@f:¨ã¡Òӂ¶ f:¹®xëVÙB}O¤ñ¬•ç³vN_ý÷k`&ü’ƒjl£ÆÅ8¢ÿÃÛy„ËA†ª1¸ÂCfÙ~Ü#Ä|)]e@˜¶ÝW8~yÛ„EŽ§Ý”)”˜qG +d¿ËŒpùò¶÷84ç wqîûòà…Ù¶ÊdãÅ×ïÎD,u½T`°•¤úV%$¨Œ‡ç½ƒRÖýîC¹ŒŸœçSzÐì{˵r«g··G=“L8¹º}J…Ÿön6y´õrQYi¶Þq¤÷íÕ%ë¬bbê×)/Ù”öøA/vRžä^“@iŽ7éH„¶¾“ìWR-c©¸‘‚7 +՚͉¼Ò®M úsB­÷òû:¦áçT¯ ŒÄ¢hYsê ‹’Ͷ§|8=º_Šç“.á\{òÈuŽÚ]vâʒÐ\®¿ïW«3ö6Jâû&»Ê˜]åe…œ¶Ú¤ÐÓÙÒºðêîýxóK͂)¨S8³u—¾ú†{ÝàÃ[BŸâøSC¯ÅÆÁû§åÇ%žÞ,´l)nóx´:ø…[Çlú·ô¹f¯m-&í=½1Ãüu‡ýï_jr…»s^]67j}š#“·çXí@¨’œ ²©©mÔx~à'³¥æºibG6ôà‹à¢fNán¯tTVHlÑÁ¥©+SÄhœZcÕRÕó°DcUÛõôŠ2uI?¥S“ú52¶ÒaѾÆÜ.n¹Sw8¬]z‡ü #ÖÌ|Ä®Bm`úY„iêÞ=y†wy3m2ÒÅh¯á0Ü=(Nsçyÿ“ÎK:EZâ.êìÞ#¬ê_z<å'O¨4¥rT$ðU¡ÚGO½q²†’Vµ1+ +´âŽ˜‡ ¬Âèø +d‘¤{ÿWfE˜Dß ¾Î¡¥_‰_ÉȾmƒ¾Í;[i+¾æáÁ[ݲªÜµÖ÷v•«”½*£wåj”™é‹.ùaÏg<+»ÒN®*Ê5æry¾ÃÏ5çζ- ×ù!ãM‰ÅÝNÃlw½FÐÊ0?Nöš¢{]țy$$ùûëæ·´Ögk¨¼)̀_±êæ*¦ÏÀlˆ*>›ûã¶Ãp>¡sW »"ê­Èí0…¿·1óò|“•EX÷îî"Ⱥ Æü¿‹ ØޙÆn,ÅJ+i‰“ã#Ï;íÛ}'!¸/çÌ>˵)ØJQ_ñšch†ÍLÇzG÷Dí2¥!/¯Ð)àü‚ÄévxÖaîëºvUïœÍ !d×ëkýC§ïJåD$´f¦+.á•Nßí^ǚçùÝV7¹:-ëIZçî=Û'·éÖ#MšÛSn¶n(ÎÆD?Þï9gônÁœÌ_¤¹©£þâûÀÿD™’XÄ +Áþ ç)û +endstream +endobj +192 0 obj +<< +/Filter[/FlateDecode] +/Length 270 +>> +stream +xÚUÌ¿JÄ@ðØn#–V™póçrYR-œŠ¦´º8ÅÊ"¢  .–VÁ'¸g¹*¥¯àÁv—kXvÜÙ`á ü†¯˜Oä9ÏsHyšÂ,åYGÓ)«œÏ+(…àó\gÐ@Y漐ú©àeñÿcuÇ5K–P,9‡B°¤¾€‡ûÇ–,.!óyŠõ DÚ(šì­ÂomœÄ/= D£­ŠIÙ;2þ!÷{ò̐·¹²dc•÷ÉIï ƤZ{_eÚ:rݓíŽì ÙäÎ6^ãÈÁe^«¼N}ò͋ñ†l·ä'}aèÄ~$Mp AûLºŠÄÉÃà»$âFÞ­Žöþ4ýŒšÖìêJãõŽ +endstream +endobj +193 0 obj +<< +/x4e 192 0 R +>> +endobj +84 0 obj +<< +/Type/Font +/Name/F13 +/Subtype/Type3 +/FirstChar 0 +/LastChar 127 +/Widths[826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 +826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 +826.4 826.4 826.4 944.46 944.46 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 +826.4 826.4 826.4 531.26 295.14 236.11 413.2 649.31 767.37 649.31 767.37 826.4 826.4 +826.4 826.4 1062.52 1062.52 1062.52 1062.52 1062.52 1062.52 826.4 826.4 590.29 722.22 +666.66 722.22 722.22 666.66 611.11 777.77 777.77 388.89 500 777.77 666.66 944.44 +722.22 777.77 611.11 777.77 722.22 555.55 666.66 722.22 722.22 1000 722.22 722.22 +666.66 2006.97 2479.2 2006.97 2479.2 0 590.29 678.83 0 0 0 0 767.37 590.29 826.4 +708.34 472.23 708.34 826.4 826.4 826.4 826.4 236.11 413.2 826.4 826.4 826.4 826.4 +826.4 826.4 1062.52 1062.52 826.4 708.34 555.55 576.4 576.4 456.6] +/FontBBox[-247.9 -763.6 2726.9 1118.8] +/FontMatrix[0.001 0 0 0.001 0 0] +/Encoding 83 0 R +/CharProcs 193 0 R +>> +endobj +1 0 obj +<< +/Creator( TeX output 2007.11.02:1122) +/Producer(dvipdfm 0.13.2, Copyright \251 1998, by Mark A. Wicks) +/CreationDate(D:20071102112308+01'00') +>> +endobj +5 0 obj +<< +/Type/Page +/Resources 6 0 R +/Contents[32 0 R 4 0 R 33 0 R 34 0 R] +/Parent 195 0 R +>> +endobj +36 0 obj +<< +/Type/Page +/Resources 37 0 R +/Contents[32 0 R 4 0 R 42 0 R 34 0 R] +/Parent 195 0 R +>> +endobj +195 0 obj +<< +/Type/Pages +/Count 2 +/Kids[5 0 R 36 0 R] +/Parent 194 0 R +>> +endobj +44 0 obj +<< +/Type/Page +/Resources 45 0 R +/Contents[32 0 R 4 0 R 46 0 R 34 0 R] +/Parent 196 0 R +>> +endobj +48 0 obj +<< +/Type/Page +/Resources 49 0 R +/Contents[32 0 R 4 0 R 53 0 R 34 0 R] +/Parent 196 0 R +>> +endobj +196 0 obj +<< +/Type/Pages +/Count 2 +/Kids[44 0 R 48 0 R] +/Parent 194 0 R +>> +endobj +55 0 obj +<< +/Type/Page +/Resources 56 0 R +/Contents[32 0 R 4 0 R 63 0 R 34 0 R] +/Parent 197 0 R +>> +endobj +65 0 obj +<< +/Type/Page +/Resources 66 0 R +/Contents[32 0 R 4 0 R 67 0 R 34 0 R] +/Parent 197 0 R +>> +endobj +197 0 obj +<< +/Type/Pages +/Count 2 +/Kids[55 0 R 65 0 R] +/Parent 194 0 R +>> +endobj +69 0 obj +<< +/Type/Page +/Resources 70 0 R +/Contents[32 0 R 4 0 R 71 0 R 34 0 R] +/Parent 198 0 R +>> +endobj +73 0 obj +<< +/Type/Page +/Resources 74 0 R +/Contents[32 0 R 4 0 R 75 0 R 34 0 R] +/Parent 198 0 R +>> +endobj +198 0 obj +<< +/Type/Pages +/Count 2 +/Kids[69 0 R 73 0 R] +/Parent 194 0 R +>> +endobj +194 0 obj +<< +/Type/Pages +/Count 8 +/Kids[195 0 R 196 0 R 197 0 R 198 0 R] +/Parent 3 0 R +>> +endobj +77 0 obj +<< +/Type/Page +/Resources 78 0 R +/Contents[32 0 R 4 0 R 79 0 R 34 0 R] +/Parent 200 0 R +>> +endobj +81 0 obj +<< +/Type/Page +/Resources 82 0 R +/Contents[32 0 R 4 0 R 85 0 R 34 0 R] +/Parent 200 0 R +>> +endobj +200 0 obj +<< +/Type/Pages +/Count 2 +/Kids[77 0 R 81 0 R] +/Parent 199 0 R +>> +endobj +87 0 obj +<< +/Type/Page +/Resources 88 0 R +/Contents[32 0 R 4 0 R 89 0 R 34 0 R] +/Parent 201 0 R +>> +endobj +91 0 obj +<< +/Type/Page +/Resources 92 0 R +/Contents[32 0 R 4 0 R 96 0 R 34 0 R] +/Parent 201 0 R +>> +endobj +201 0 obj +<< +/Type/Pages +/Count 2 +/Kids[87 0 R 91 0 R] +/Parent 199 0 R +>> +endobj +98 0 obj +<< +/Type/Page +/Resources 99 0 R +/Contents[32 0 R 4 0 R 100 0 R 34 0 R] +/Parent 202 0 R +>> +endobj +102 0 obj +<< +/Type/Page +/Resources 103 0 R +/Contents[32 0 R 4 0 R 104 0 R 34 0 R] +/Parent 202 0 R +>> +endobj +202 0 obj +<< +/Type/Pages +/Count 2 +/Kids[98 0 R 102 0 R] +/Parent 199 0 R +>> +endobj +106 0 obj +<< +/Type/Page +/Resources 107 0 R +/Contents[32 0 R 4 0 R 108 0 R 34 0 R] +/Parent 203 0 R +>> +endobj +110 0 obj +<< +/Type/Page +/Resources 111 0 R +/Contents[32 0 R 4 0 R 112 0 R 34 0 R] +/Parent 203 0 R +>> +endobj +114 0 obj +<< +/Type/Page +/Resources 115 0 R +/Contents[32 0 R 4 0 R 122 0 R 34 0 R] +/Parent 203 0 R +>> +endobj +203 0 obj +<< +/Type/Pages +/Count 3 +/Kids[106 0 R 110 0 R 114 0 R] +/Parent 199 0 R +>> +endobj +199 0 obj +<< +/Type/Pages +/Count 9 +/Kids[200 0 R 201 0 R 202 0 R 203 0 R] +/Parent 3 0 R +>> +endobj +124 0 obj +<< +/Type/Page +/Resources 125 0 R +/Contents[32 0 R 4 0 R 126 0 R 34 0 R] +/Parent 205 0 R +>> +endobj +128 0 obj +<< +/Type/Page +/Resources 129 0 R +/Contents[32 0 R 4 0 R 130 0 R 34 0 R] +/Parent 205 0 R +>> +endobj +205 0 obj +<< +/Type/Pages +/Count 2 +/Kids[124 0 R 128 0 R] +/Parent 204 0 R +>> +endobj +132 0 obj +<< +/Type/Page +/Resources 133 0 R +/Contents[32 0 R 4 0 R 134 0 R 34 0 R] +/Parent 206 0 R +>> +endobj +136 0 obj +<< +/Type/Page +/Resources 137 0 R +/Contents[32 0 R 4 0 R 138 0 R 34 0 R] +/Parent 206 0 R +>> +endobj +206 0 obj +<< +/Type/Pages +/Count 2 +/Kids[132 0 R 136 0 R] +/Parent 204 0 R +>> +endobj +140 0 obj +<< +/Type/Page +/Resources 141 0 R +/Contents[32 0 R 4 0 R 142 0 R 34 0 R] +/Parent 207 0 R +>> +endobj +144 0 obj +<< +/Type/Page +/Resources 145 0 R +/Contents[32 0 R 4 0 R 146 0 R 34 0 R] +/Parent 207 0 R +>> +endobj +207 0 obj +<< +/Type/Pages +/Count 2 +/Kids[140 0 R 144 0 R] +/Parent 204 0 R +>> +endobj +148 0 obj +<< +/Type/Page +/Resources 149 0 R +/Contents[32 0 R 4 0 R 150 0 R 34 0 R] +/Parent 208 0 R +>> +endobj +152 0 obj +<< +/Type/Page +/Resources 153 0 R +/Contents[32 0 R 4 0 R 154 0 R 34 0 R] +/Parent 208 0 R +>> +endobj +208 0 obj +<< +/Type/Pages +/Count 2 +/Kids[148 0 R 152 0 R] +/Parent 204 0 R +>> +endobj +204 0 obj +<< +/Type/Pages +/Count 8 +/Kids[205 0 R 206 0 R 207 0 R 208 0 R] +/Parent 3 0 R +>> +endobj +156 0 obj +<< +/Type/Page +/Resources 157 0 R +/Contents[32 0 R 4 0 R 158 0 R 34 0 R] +/Parent 210 0 R +>> +endobj +160 0 obj +<< +/Type/Page +/Resources 161 0 R +/Contents[32 0 R 4 0 R 162 0 R 34 0 R] +/Parent 210 0 R +>> +endobj +210 0 obj +<< +/Type/Pages +/Count 2 +/Kids[156 0 R 160 0 R] +/Parent 209 0 R +>> +endobj +164 0 obj +<< +/Type/Page +/Resources 165 0 R +/Contents[32 0 R 4 0 R 166 0 R 34 0 R] +/Parent 211 0 R +>> +endobj +168 0 obj +<< +/Type/Page +/Resources 169 0 R +/Contents[32 0 R 4 0 R 170 0 R 34 0 R] +/Parent 211 0 R +>> +endobj +211 0 obj +<< +/Type/Pages +/Count 2 +/Kids[164 0 R 168 0 R] +/Parent 209 0 R +>> +endobj +172 0 obj +<< +/Type/Page +/Resources 173 0 R +/Contents[32 0 R 4 0 R 174 0 R 34 0 R] +/Parent 212 0 R +>> +endobj +176 0 obj +<< +/Type/Page +/Resources 177 0 R +/Contents[32 0 R 4 0 R 178 0 R 34 0 R] +/Parent 212 0 R +>> +endobj +212 0 obj +<< +/Type/Pages +/Count 2 +/Kids[172 0 R 176 0 R] +/Parent 209 0 R +>> +endobj +180 0 obj +<< +/Type/Page +/Resources 181 0 R +/Contents[32 0 R 4 0 R 182 0 R 34 0 R] +/Parent 213 0 R +>> +endobj +184 0 obj +<< +/Type/Page +/Resources 185 0 R +/Contents[32 0 R 4 0 R 186 0 R 34 0 R] +/Parent 213 0 R +>> +endobj +188 0 obj +<< +/Type/Page +/Resources 189 0 R +/Contents[32 0 R 4 0 R 190 0 R 34 0 R] +/Parent 213 0 R +>> +endobj +213 0 obj +<< +/Type/Pages +/Count 3 +/Kids[180 0 R 184 0 R 188 0 R] +/Parent 209 0 R +>> +endobj +209 0 obj +<< +/Type/Pages +/Count 9 +/Kids[210 0 R 211 0 R 212 0 R 213 0 R] +/Parent 3 0 R +>> +endobj +3 0 obj +<< +/Type/Pages +/Count 34 +/Kids[194 0 R 199 0 R 204 0 R 209 0 R] +/MediaBox[0 0 612 792] +>> +endobj +32 0 obj +<< +/Length 1 +>> +stream + +endstream +endobj +34 0 obj +<< +/Length 1 +>> +stream + +endstream +endobj +4 0 obj +<< +/Length 30 +>> +stream +1.00028 0 0 1.00028 72 720 cm +endstream +endobj +214 0 obj +<< +>> +endobj +215 0 obj +null +endobj +216 0 obj +<< +>> +endobj +2 0 obj +<< +/Type/Catalog +/Pages 3 0 R +/Outlines 214 0 R +/Threads 215 0 R +/Names 216 0 R +>> +endobj +xref +0 217 +0000000000 65535 f +0000205846 00000 n +0000211711 00000 n +0000211359 00000 n +0000211564 00000 n +0000206009 00000 n +0000010679 00000 n +0000000009 00000 n +0000118624 00000 n +0000118437 00000 n +0000000908 00000 n +0000126793 00000 n +0000126607 00000 n +0000001853 00000 n +0000130066 00000 n +0000129880 00000 n +0000002847 00000 n +0000144659 00000 n +0000144464 00000 n +0000003764 00000 n +0000149891 00000 n +0000149697 00000 n +0000004698 00000 n +0000160719 00000 n +0000160531 00000 n +0000005651 00000 n +0000163750 00000 n +0000163556 00000 n +0000006530 00000 n +0000165607 00000 n +0000165419 00000 n +0000007522 00000 n +0000211464 00000 n +0000008439 00000 n +0000211514 00000 n +0000010569 00000 n +0000206112 00000 n +0000015432 00000 n +0000010740 00000 n +0000175260 00000 n +0000175066 00000 n +0000011825 00000 n +0000012628 00000 n +0000015366 00000 n +0000206297 00000 n +0000018227 00000 n +0000015494 00000 n +0000018139 00000 n +0000206402 00000 n +0000022524 00000 n +0000187119 00000 n +0000186926 00000 n +0000018289 00000 n +0000019272 00000 n +0000022424 00000 n +0000206588 00000 n +0000028036 00000 n +0000191643 00000 n +0000191449 00000 n +0000022586 00000 n +0000194069 00000 n +0000193883 00000 n +0000023577 00000 n +0000024578 00000 n +0000027912 00000 n +0000206693 00000 n +0000030434 00000 n +0000028098 00000 n +0000030357 00000 n +0000206879 00000 n +0000033168 00000 n +0000030496 00000 n +0000033068 00000 n +0000206984 00000 n +0000036052 00000 n +0000033230 00000 n +0000035952 00000 n +0000207267 00000 n +0000038976 00000 n +0000036114 00000 n +0000038888 00000 n +0000207372 00000 n +0000043152 00000 n +0000039038 00000 n +0000204833 00000 n +0000040099 00000 n +0000043016 00000 n +0000207558 00000 n +0000046075 00000 n +0000043214 00000 n +0000045963 00000 n +0000207663 00000 n +0000050526 00000 n +0000196991 00000 n +0000196802 00000 n +0000046137 00000 n +0000047114 00000 n +0000050378 00000 n +0000207849 00000 n +0000053601 00000 n +0000050588 00000 n +0000053464 00000 n +0000207955 00000 n +0000056683 00000 n +0000053664 00000 n +0000056582 00000 n +0000208145 00000 n +0000060043 00000 n +0000056747 00000 n +0000059930 00000 n +0000208253 00000 n +0000063398 00000 n +0000060107 00000 n +0000063261 00000 n +0000208361 00000 n +0000068170 00000 n +0000199923 00000 n +0000199729 00000 n +0000063462 00000 n +0000202339 00000 n +0000202151 00000 n +0000064436 00000 n +0000065439 00000 n +0000068007 00000 n +0000208657 00000 n +0000070945 00000 n +0000068234 00000 n +0000070832 00000 n +0000208765 00000 n +0000073494 00000 n +0000071009 00000 n +0000073366 00000 n +0000208956 00000 n +0000076846 00000 n +0000073558 00000 n +0000076745 00000 n +0000209064 00000 n +0000079835 00000 n +0000076910 00000 n +0000079734 00000 n +0000209255 00000 n +0000083071 00000 n +0000079899 00000 n +0000082934 00000 n +0000209363 00000 n +0000085726 00000 n +0000083135 00000 n +0000085563 00000 n +0000209554 00000 n +0000088994 00000 n +0000085790 00000 n +0000088869 00000 n +0000209662 00000 n +0000092497 00000 n +0000089058 00000 n +0000092370 00000 n +0000209950 00000 n +0000095413 00000 n +0000092561 00000 n +0000095300 00000 n +0000210058 00000 n +0000098137 00000 n +0000095477 00000 n +0000098059 00000 n +0000210249 00000 n +0000100718 00000 n +0000098201 00000 n +0000100629 00000 n +0000210357 00000 n +0000104157 00000 n +0000100782 00000 n +0000104067 00000 n +0000210548 00000 n +0000107090 00000 n +0000104221 00000 n +0000107001 00000 n +0000210656 00000 n +0000110469 00000 n +0000107154 00000 n +0000110344 00000 n +0000210847 00000 n +0000113934 00000 n +0000110533 00000 n +0000113808 00000 n +0000210955 00000 n +0000116941 00000 n +0000113998 00000 n +0000116804 00000 n +0000211063 00000 n +0000118373 00000 n +0000117005 00000 n +0000118328 00000 n +0000204453 00000 n +0000204797 00000 n +0000207170 00000 n +0000206217 00000 n +0000206507 00000 n +0000206798 00000 n +0000207089 00000 n +0000208560 00000 n +0000207477 00000 n +0000207768 00000 n +0000208063 00000 n +0000208469 00000 n +0000209853 00000 n +0000208873 00000 n +0000209172 00000 n +0000209471 00000 n +0000209770 00000 n +0000211262 00000 n +0000210166 00000 n +0000210465 00000 n +0000210764 00000 n +0000211171 00000 n +0000211643 00000 n +0000211666 00000 n +0000211688 00000 n +trailer +<< +/Size 217 +/Root 2 0 R +/Info 1 0 R +>> +startxref +211809 +%%EOF diff --git a/helm/software/matita/contribs/dama/dama/excess.ma b/helm/software/matita/contribs/dama/dama/excess.ma new file mode 100644 index 000000000..9068d297b --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/excess.ma @@ -0,0 +1,279 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "higher_order_defs/relations.ma". +include "nat/plus.ma". +include "constructive_higher_order_relations.ma". +include "constructive_connectives.ma". + +record excess_base : Type ≝ { + exc_carr:> Type; + exc_excess: exc_carr → exc_carr → Type; + exc_coreflexive: coreflexive ? exc_excess; + exc_cotransitive: cotransitive ? exc_excess +}. + +interpretation "Excess base excess" 'nleq a b = (cic:/matita/excess/exc_excess.con _ a b). + +(* E(#,≰) → E(#,sym(≰)) *) +lemma make_dual_exc: excess_base → excess_base. +intro E; +apply (mk_excess_base (exc_carr E)); + [ apply (λx,y:E.y≰x);|apply exc_coreflexive; + | unfold cotransitive; simplify; intros (x y z H); + cases (exc_cotransitive E ??z H);[right|left]assumption] +qed. + +record excess_dual : Type ≝ { + exc_dual_base:> excess_base; + exc_dual_dual_ : excess_base; + exc_with: exc_dual_dual_ = make_dual_exc exc_dual_base +}. + +lemma mk_excess_dual_smart: excess_base → excess_dual. +intro; apply mk_excess_dual; [apply e| apply (make_dual_exc e)|reflexivity] +qed. + +definition exc_dual_dual: excess_dual → excess_base. +intro E; apply (make_dual_exc E); +qed. + +coercion cic:/matita/excess/exc_dual_dual.con. + +record apartness : Type ≝ { + ap_carr:> Type; + ap_apart: ap_carr → ap_carr → Type; + ap_coreflexive: coreflexive ? ap_apart; + ap_symmetric: symmetric ? ap_apart; + ap_cotransitive: cotransitive ? ap_apart +}. + +notation "hvbox(a break # b)" non associative with precedence 50 for @{ 'apart $a $b}. +interpretation "apartness" 'apart x y = (cic:/matita/excess/ap_apart.con _ x y). + +definition apartness_of_excess_base: excess_base → apartness. +intros (E); apply (mk_apartness E (λa,b:E. a ≰ b ∨ b ≰ a)); +[1: unfold; cases E; simplify; clear E; intros (x); unfold; + intros (H1); apply (H x); cases H1; assumption; +|2: unfold; intros(x y H); cases H; clear H; [right|left] assumption; +|3: intros (E); unfold; cases E (T f _ cTf); simplify; intros (x y z Axy); + cases Axy (H H); lapply (cTf ? ? z H) as H1; cases H1; clear Axy H1; + [left; left|right; left|right; right|left; right] assumption] +qed. + +record excess_ : Type ≝ { + exc_exc:> excess_dual; + exc_ap_: apartness; + exc_with1: ap_carr exc_ap_ = exc_carr exc_exc +}. + +definition exc_ap: excess_ → apartness. +intro E; apply (mk_apartness E); unfold Type_OF_excess_; +cases (exc_with1 E); simplify; +[apply (ap_apart (exc_ap_ E)); +|apply ap_coreflexive;|apply ap_symmetric;|apply ap_cotransitive] +qed. + +coercion cic:/matita/excess/exc_ap.con. + +interpretation "Excess excess_" 'nleq a b = + (cic:/matita/excess/exc_excess.con (cic:/matita/excess/excess_base_OF_excess_1.con _) a b). + +record excess : Type ≝ { + excess_carr:> excess_; + ap2exc: ∀y,x:excess_carr. y # x → y ≰ x ∨ x ≰ y; + exc2ap: ∀y,x:excess_carr.y ≰ x ∨ x ≰ y → y # x +}. + +interpretation "Excess excess" 'nleq a b = + (cic:/matita/excess/exc_excess.con (cic:/matita/excess/excess_base_OF_excess1.con _) a b). + +interpretation "Excess (dual) excess" 'ngeq a b = + (cic:/matita/excess/exc_excess.con (cic:/matita/excess/excess_base_OF_excess.con _) a b). + +definition strong_ext ≝ λA:apartness.λop:A→A.∀x,y. op x # op y → x # y. + +definition le ≝ λE:excess_base.λa,b:E. ¬ (a ≰ b). + +interpretation "Excess less or equal than" 'leq a b = + (cic:/matita/excess/le.con (cic:/matita/excess/excess_base_OF_excess1.con _) a b). + +interpretation "Excess less or equal than" 'geq a b = + (cic:/matita/excess/le.con (cic:/matita/excess/excess_base_OF_excess.con _) a b). + +lemma le_reflexive: ∀E.reflexive ? (le E). +unfold reflexive; intros 3 (E x H); apply (exc_coreflexive ?? H); +qed. + +lemma le_transitive: ∀E.transitive ? (le E). +unfold transitive; intros 7 (E x y z H1 H2 H3); cases (exc_cotransitive ??? y H3) (H4 H4); +[cases (H1 H4)|cases (H2 H4)] +qed. + +definition eq ≝ λA:apartness.λa,b:A. ¬ (a # b). + +notation "hvbox(a break ≈ b)" non associative with precedence 50 for @{ 'napart $a $b}. +interpretation "Apartness alikeness" 'napart a b = (cic:/matita/excess/eq.con _ a b). +interpretation "Excess alikeness" 'napart a b = (cic:/matita/excess/eq.con (cic:/matita/excess/excess_base_OF_excess1.con _) a b). +interpretation "Excess (dual) alikeness" 'napart a b = (cic:/matita/excess/eq.con (cic:/matita/excess/excess_base_OF_excess.con _) a b). + +lemma eq_reflexive:∀E:apartness. reflexive ? (eq E). +intros (E); unfold; intros (x); apply ap_coreflexive; +qed. + +lemma eq_sym_:∀E:apartness.symmetric ? (eq E). +unfold symmetric; intros 5 (E x y H H1); cases (H (ap_symmetric ??? H1)); +qed. + +lemma eq_sym:∀E:apartness.∀x,y:E.x ≈ y → y ≈ x ≝ eq_sym_. + +(* SETOID REWRITE *) +coercion cic:/matita/excess/eq_sym.con. + +lemma eq_trans_: ∀E:apartness.transitive ? (eq E). +(* bug. intros k deve fare whd quanto basta *) +intros 6 (E x y z Exy Eyz); intro Axy; cases (ap_cotransitive ???y Axy); +[apply Exy|apply Eyz] assumption. +qed. + +lemma eq_trans:∀E:apartness.∀x,z,y:E.x ≈ y → y ≈ z → x ≈ z ≝ + λE,x,y,z.eq_trans_ E x z y. + +notation > "'Eq'≈" non associative with precedence 50 for @{'eqrewrite}. +interpretation "eq_rew" 'eqrewrite = (cic:/matita/excess/eq_trans.con _ _ _). + +alias id "antisymmetric" = "cic:/matita/constructive_higher_order_relations/antisymmetric.con". +lemma le_antisymmetric: + ∀E:excess.antisymmetric ? (le (excess_base_OF_excess1 E)) (eq E). +intros 5 (E x y Lxy Lyx); intro H; +cases (ap2exc ??? H); [apply Lxy;|apply Lyx] assumption; +qed. + +definition lt ≝ λE:excess.λa,b:E. a ≤ b ∧ a # b. + +interpretation "ordered sets less than" 'lt a b = (cic:/matita/excess/lt.con _ a b). + +lemma lt_coreflexive: ∀E.coreflexive ? (lt E). +intros 2 (E x); intro H; cases H (_ ABS); +apply (ap_coreflexive ? x ABS); +qed. + +lemma lt_transitive: ∀E.transitive ? (lt E). +intros (E); unfold; intros (x y z H1 H2); cases H1 (Lxy Axy); cases H2 (Lyz Ayz); +split; [apply (le_transitive ???? Lxy Lyz)] clear H1 H2; +elim (ap2exc ??? Axy) (H1 H1); elim (ap2exc ??? Ayz) (H2 H2); [1:cases (Lxy H1)|3:cases (Lyz H2)] +clear Axy Ayz;lapply (exc_cotransitive (exc_dual_base E)) as c; unfold cotransitive in c; +lapply (exc_coreflexive (exc_dual_base E)) as r; unfold coreflexive in r; +[1: lapply (c ?? y H1) as H3; elim H3 (H4 H4); [cases (Lxy H4)|cases (r ? H4)] +|2: lapply (c ?? x H2) as H3; elim H3 (H4 H4); [apply exc2ap; right; assumption|cases (Lxy H4)]] +qed. + +theorem lt_to_excess: ∀E:excess.∀a,b:E. (a < b) → (b ≰ a). +intros (E a b Lab); elim Lab (LEab Aab); +elim (ap2exc ??? Aab) (H H); [cases (LEab H)] fold normalize (b ≰ a); assumption; (* BUG *) +qed. + +lemma le_rewl: ∀E:excess.∀z,y,x:E. x ≈ y → x ≤ z → y ≤ z. +intros (E z y x Exy Lxz); apply (le_transitive ???? ? Lxz); +intro Xyz; apply Exy; apply exc2ap; right; assumption; +qed. + +lemma le_rewr: ∀E:excess.∀z,y,x:E. x ≈ y → z ≤ x → z ≤ y. +intros (E z y x Exy Lxz); apply (le_transitive ???? Lxz); +intro Xyz; apply Exy; apply exc2ap; left; assumption; +qed. + +notation > "'Le'≪" non associative with precedence 50 for @{'lerewritel}. +interpretation "le_rewl" 'lerewritel = (cic:/matita/excess/le_rewl.con _ _ _). +notation > "'Le'≫" non associative with precedence 50 for @{'lerewriter}. +interpretation "le_rewr" 'lerewriter = (cic:/matita/excess/le_rewr.con _ _ _). + +lemma ap_rewl: ∀A:apartness.∀x,z,y:A. x ≈ y → y # z → x # z. +intros (A x z y Exy Ayz); cases (ap_cotransitive ???x Ayz); [2:assumption] +cases (Exy (ap_symmetric ??? a)); +qed. + +lemma ap_rewr: ∀A:apartness.∀x,z,y:A. x ≈ y → z # y → z # x. +intros (A x z y Exy Azy); apply ap_symmetric; apply (ap_rewl ???? Exy); +apply ap_symmetric; assumption; +qed. + +notation > "'Ap'≪" non associative with precedence 50 for @{'aprewritel}. +interpretation "ap_rewl" 'aprewritel = (cic:/matita/excess/ap_rewl.con _ _ _). +notation > "'Ap'≫" non associative with precedence 50 for @{'aprewriter}. +interpretation "ap_rewr" 'aprewriter = (cic:/matita/excess/ap_rewr.con _ _ _). + +alias symbol "napart" = "Apartness alikeness". +lemma exc_rewl: ∀A:excess.∀x,z,y:A. x ≈ y → y ≰ z → x ≰ z. +intros (A x z y Exy Ayz); elim (exc_cotransitive ???x Ayz); [2:assumption] +cases Exy; apply exc2ap; right; assumption; +qed. + +lemma exc_rewr: ∀A:excess.∀x,z,y:A. x ≈ y → z ≰ y → z ≰ x. +intros (A x z y Exy Azy); elim (exc_cotransitive ???x Azy); [assumption] +elim (Exy); apply exc2ap; left; assumption; +qed. + +notation > "'Ex'≪" non associative with precedence 50 for @{'excessrewritel}. +interpretation "exc_rewl" 'excessrewritel = (cic:/matita/excess/exc_rewl.con _ _ _). +notation > "'Ex'≫" non associative with precedence 50 for @{'excessrewriter}. +interpretation "exc_rewr" 'excessrewriter = (cic:/matita/excess/exc_rewr.con _ _ _). + +lemma lt_rewr: ∀A:excess.∀x,z,y:A. x ≈ y → z < y → z < x. +intros (A x y z E H); split; elim H; +[apply (Le≫ ? (eq_sym ??? E));|apply (Ap≫ ? E)] assumption; +qed. + +lemma lt_rewl: ∀A:excess.∀x,z,y:A. x ≈ y → y < z → x < z. +intros (A x y z E H); split; elim H; +[apply (Le≪ ? (eq_sym ??? E));| apply (Ap≪ ? E);] assumption; +qed. + +notation > "'Lt'≪" non associative with precedence 50 for @{'ltrewritel}. +interpretation "lt_rewl" 'ltrewritel = (cic:/matita/excess/lt_rewl.con _ _ _). +notation > "'Lt'≫" non associative with precedence 50 for @{'ltrewriter}. +interpretation "lt_rewr" 'ltrewriter = (cic:/matita/excess/lt_rewr.con _ _ _). + +lemma lt_le_transitive: ∀A:excess.∀x,y,z:A.x < y → y ≤ z → x < z. +intros (A x y z LT LE); cases LT (LEx APx); split; [apply (le_transitive ???? LEx LE)] +apply exc2ap; cases (ap2exc ??? APx) (EXx EXx); [cases (LEx EXx)] +cases (exc_cotransitive ??? z EXx) (EXz EXz); [cases (LE EXz)] +right; assumption; +qed. + +lemma le_lt_transitive: ∀A:excess.∀x,y,z:A.x ≤ y → y < z → x < z. +intros (A x y z LE LT); cases LT (LEx APx); split; [apply (le_transitive ???? LE LEx)] +elim (ap2exc ??? APx) (EXx EXx); [cases (LEx EXx)] +elim (exc_cotransitive ??? x EXx) (EXz EXz); [apply exc2ap; right; assumption] +cases LE; assumption; +qed. + +lemma le_le_eq: ∀E:excess.∀a,b:E. a ≤ b → b ≤ a → a ≈ b. +intros (E x y L1 L2); intro H; cases (ap2exc ??? H); [apply L1|apply L2] assumption; +qed. + +lemma eq_le_le: ∀E:excess.∀a,b:E. a ≈ b → a ≤ b ∧ b ≤ a. +intros (E x y H); whd in H; +split; intro; apply H; apply exc2ap; [left|right] assumption. +qed. + +lemma ap_le_to_lt: ∀E:excess.∀a,c:E.c # a → c ≤ a → c < a. +intros; split; assumption; +qed. + +definition total_order_property : ∀E:excess. Type ≝ + λE:excess. ∀a,b:E. a ≰ b → b < a. + diff --git a/helm/software/matita/contribs/dama/dama/group.ma b/helm/software/matita/contribs/dama/dama/group.ma new file mode 100644 index 000000000..104dcf274 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/group.ma @@ -0,0 +1,220 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "excess.ma". + +definition left_neutral ≝ λC:apartness.λop.λe:C. ∀x:C. op e x ≈ x. +definition right_neutral ≝ λC:apartness.λop. λe:C. ∀x:C. op x e ≈ x. +definition left_inverse ≝ λC:apartness.λop.λe:C.λinv:C→C. ∀x:C. op (inv x) x ≈ e. +definition right_inverse ≝ λC:apartness.λop.λe:C.λ inv: C→ C. ∀x:C. op x (inv x) ≈ e. +(* ALLOW DEFINITION WITH SOME METAS *) + +definition distributive_left ≝ + λA:apartness.λf:A→A→A.λg:A→A→A. + ∀x,y,z. f x (g y z) ≈ g (f x y) (f x z). + +definition distributive_right ≝ + λA:apartness.λf:A→A→A.λg:A→A→A. + ∀x,y,z. f (g x y) z ≈ g (f x z) (f y z). + +record abelian_group : Type ≝ + { carr:> apartness; + plus: carr → carr → carr; + zero: carr; + opp: carr → carr; + plus_assoc_: associative ? plus (eq carr); + plus_comm_: commutative ? plus (eq carr); + zero_neutral_: left_neutral ? plus zero; + opp_inverse_: left_inverse ? plus zero opp; + plus_strong_ext: ∀z.strong_ext ? (plus z) +}. + +notation "0" with precedence 89 for @{ 'zero }. + +interpretation "Abelian group zero" 'zero = + (cic:/matita/group/zero.con _). + +interpretation "Abelian group plus" 'plus a b = + (cic:/matita/group/plus.con _ a b). + +interpretation "Abelian group opp" 'uminus a = + (cic:/matita/group/opp.con _ a). + +definition minus ≝ + λG:abelian_group.λa,b:G. a + -b. + +interpretation "Abelian group minus" 'minus a b = + (cic:/matita/group/minus.con _ a b). + +lemma plus_assoc: ∀G:abelian_group.∀x,y,z:G.x+(y+z)≈x+y+z ≝ plus_assoc_. +lemma plus_comm: ∀G:abelian_group.∀x,y:G.x+y≈y+x ≝ plus_comm_. +lemma zero_neutral: ∀G:abelian_group.∀x:G.0+x≈x ≝ zero_neutral_. +lemma opp_inverse: ∀G:abelian_group.∀x:G.-x+x≈0 ≝ opp_inverse_. + +definition ext ≝ λA:apartness.λop:A→A. ∀x,y. x ≈ y → op x ≈ op y. + +lemma strong_ext_to_ext: ∀A:apartness.∀op:A→A. strong_ext ? op → ext ? op. +intros 6 (A op SEop x y Exy); intro Axy; apply Exy; apply SEop; assumption; +qed. + +lemma feq_plusl: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x+y ≈ x+z. +intros (G x y z Eyz); apply (strong_ext_to_ext ?? (plus_strong_ext ? x)); +assumption; +qed. + +coercion cic:/matita/group/feq_plusl.con nocomposites. + +lemma plus_strong_extr: ∀G:abelian_group.∀z:G.strong_ext ? (λx.x + z). +intros 5 (G z x y A); simplify in A; +lapply (plus_comm ? z x) as E1; lapply (plus_comm ? z y) as E2; +lapply (Ap≪ ? E1 A) as A1; lapply (Ap≫ ? E2 A1) as A2; +apply (plus_strong_ext ???? A2); +qed. + +lemma plus_cancl_ap: ∀G:abelian_group.∀x,y,z:G.z+x # z + y → x # y. +intros; apply plus_strong_ext; assumption; +qed. + +lemma plus_cancr_ap: ∀G:abelian_group.∀x,y,z:G.x+z # y+z → x # y. +intros; apply plus_strong_extr; assumption; +qed. + +lemma feq_plusr: ∀G:abelian_group.∀x,y,z:G. y ≈ z → y+x ≈ z+x. +intros (G x y z Eyz); apply (strong_ext_to_ext ?? (plus_strong_extr ? x)); +assumption; +qed. + +coercion cic:/matita/group/feq_plusr.con nocomposites. + +(* generation of coercions to make *_rew[lr] easier *) +lemma feq_plusr_sym_: ∀G:abelian_group.∀x,y,z:G.z ≈ y → y+x ≈ z+x. +compose feq_plusr with eq_sym (H); apply H; assumption; +qed. +coercion cic:/matita/group/feq_plusr_sym_.con nocomposites. +lemma feq_plusl_sym_: ∀G:abelian_group.∀x,y,z:G.z ≈ y → x+y ≈ x+z. +compose feq_plusl with eq_sym (H); apply H; assumption; +qed. +coercion cic:/matita/group/feq_plusl_sym_.con nocomposites. + +lemma fap_plusl: ∀G:abelian_group.∀x,y,z:G. y # z → x+y # x+z. +intros (G x y z Ayz); apply (plus_strong_ext ? (-x)); +apply (Ap≪ ((-x + x) + y)); +[1: apply plus_assoc; +|2: apply (Ap≫ ((-x +x) +z)); + [1: apply plus_assoc; + |2: apply (Ap≪ (0 + y)); + [1: apply (feq_plusr ???? (opp_inverse ??)); + |2: apply (Ap≪ ? (zero_neutral ? y)); + apply (Ap≫ (0 + z) (opp_inverse ??)); + apply (Ap≫ ? (zero_neutral ??)); assumption;]]] +qed. + +lemma fap_plusr: ∀G:abelian_group.∀x,y,z:G. y # z → y+x # z+x. +intros (G x y z Ayz); apply (plus_strong_extr ? (-x)); +apply (Ap≪ (y + (x + -x))); +[1: apply (eq_sym ??? (plus_assoc ????)); +|2: apply (Ap≫ (z + (x + -x))); + [1: apply (eq_sym ??? (plus_assoc ????)); + |2: apply (Ap≪ (y + (-x+x)) (plus_comm ? x (-x))); + apply (Ap≪ (y + 0) (opp_inverse ??)); + apply (Ap≪ (0 + y) (plus_comm ???)); + apply (Ap≪ y (zero_neutral ??)); + apply (Ap≫ (z + (-x+x)) (plus_comm ? x (-x))); + apply (Ap≫ (z + 0) (opp_inverse ??)); + apply (Ap≫ (0 + z) (plus_comm ???)); + apply (Ap≫ z (zero_neutral ??)); + assumption]] +qed. + +lemma applus: ∀E:abelian_group.∀x,a,y,b:E.x + a # y + b → x # y ∨ a # b. +intros; cases (ap_cotransitive ??? (y+a) a1); [left|right] +[apply (plus_cancr_ap ??? a)|apply (plus_cancl_ap ??? y)] +assumption; +qed. + +lemma plus_cancl: ∀G:abelian_group.∀y,z,x:G. x+y ≈ x+z → y ≈ z. +intros 6 (G y z x E Ayz); apply E; apply fap_plusl; assumption; +qed. + +lemma plus_cancr: ∀G:abelian_group.∀y,z,x:G. y+x ≈ z+x → y ≈ z. +intros 6 (G y z x E Ayz); apply E; apply fap_plusr; assumption; +qed. + +theorem eq_opp_plus_plus_opp_opp: + ∀G:abelian_group.∀x,y:G. -(x+y) ≈ -x + -y. +intros (G x y); apply (plus_cancr ??? (x+y)); +apply (Eq≈ 0 (opp_inverse ??)); +apply (Eq≈ (-x + -y + x + y)); [2: apply (eq_sym ??? (plus_assoc ????))] +apply (Eq≈ (-y + -x + x + y)); [2: repeat apply feq_plusr; apply plus_comm] +apply (Eq≈ (-y + (-x + x) + y)); [2: apply feq_plusr; apply plus_assoc;] +apply (Eq≈ (-y + 0 + y)); + [2: apply feq_plusr; apply feq_plusl; apply eq_sym; apply opp_inverse] +apply (Eq≈ (-y + y)); + [2: apply feq_plusr; apply eq_sym; + apply (Eq≈ (0+-y)); [apply plus_comm|apply zero_neutral]] +apply eq_sym; apply opp_inverse. +qed. + +theorem eq_opp_opp_x_x: ∀G:abelian_group.∀x:G.--x ≈ x. +intros (G x); apply (plus_cancl ??? (-x)); +apply (Eq≈ (--x + -x) (plus_comm ???)); +apply (Eq≈ 0 (opp_inverse ??)); +apply eq_sym; apply opp_inverse; +qed. + +theorem eq_zero_opp_zero: ∀G:abelian_group.0 ≈ -0. [assumption] +intro G; apply (plus_cancr ??? 0); +apply (Eq≈ 0); [apply zero_neutral;] +apply eq_sym; apply opp_inverse; +qed. + +lemma feq_oppr: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x ≈ -y → x ≈ -z. +intros (G x y z H1 H2); apply (plus_cancr ??? z); +apply (Eq≈ 0 ? (opp_inverse ??)); +apply (Eq≈ (-y + z) H2); +apply (Eq≈ (-y + y) H1); +apply (Eq≈ 0 (opp_inverse ??)); +apply eq_reflexive; +qed. + +lemma feq_oppl: ∀G:abelian_group.∀x,y,z:G. y ≈ z → -y ≈ x → -z ≈ x. +intros (G x y z H1 H2); apply eq_sym; apply (feq_oppr ??y); +[2:apply eq_sym] assumption; +qed. + +lemma feq_opp: ∀G:abelian_group.∀x,y:G. x ≈ y → -x ≈ -y. +intros (G x y H); apply (feq_oppl ??y ? H); apply eq_reflexive; +qed. + +coercion cic:/matita/group/feq_opp.con nocomposites. + +lemma eq_opp_sym: ∀G:abelian_group.∀x,y:G. y ≈ x → -x ≈ -y. +compose feq_opp with eq_sym (H); apply H; assumption; +qed. + +coercion cic:/matita/group/eq_opp_sym.con nocomposites. + +lemma eq_opp_plusr: ∀G:abelian_group.∀x,y,z:G. x ≈ y → -(x + z) ≈ -(y + z). +compose feq_plusr with feq_opp(H); apply H; assumption; +qed. + +coercion cic:/matita/group/eq_opp_plusr.con nocomposites. + +lemma eq_opp_plusl: ∀G:abelian_group.∀x,y,z:G. x ≈ y → -(z + x) ≈ -(z + y). +compose feq_plusl with feq_opp(H); apply H; assumption; +qed. + +coercion cic:/matita/group/eq_opp_plusl.con nocomposites. diff --git a/helm/software/matita/contribs/dama/dama/infsup.ma b/helm/software/matita/contribs/dama/dama/infsup.ma new file mode 100644 index 000000000..cc3292fd0 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/infsup.ma @@ -0,0 +1,53 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "sequence.ma". + +definition upper_bound ≝ λO:excess.λa:sequence O.λu:O.∀n:nat.a n ≤ u. + +definition weak_sup ≝ + λO:excess.λs:sequence O.λx. + upper_bound ? s x ∧ (∀y:O.upper_bound ? s y → x ≤ y). + +definition strong_sup ≝ + λO:excess.λs:sequence O.λx.upper_bound ? s x ∧ (∀y:O.x ≰ y → ∃n.s n ≰ y). + +definition increasing ≝ λO:excess.λa:sequence O.∀n:nat.a n ≤ a (S n). + +notation < "x \nbsp 'is_upper_bound' \nbsp s" non associative with precedence 50 for @{'upper_bound $_ $s $x}. +notation < "x \nbsp 'is_lower_bound' \nbsp s" non associative with precedence 50 for @{'lower_bound $_ $s $x}. +notation < "s \nbsp 'is_increasing'" non associative with precedence 50 for @{'increasing $_ $s}. +notation < "s \nbsp 'is_decreasing'" non associative with precedence 50 for @{'decreasing $_ $s}. +notation < "x \nbsp 'is_strong_sup' \nbsp s" non associative with precedence 50 for @{'strong_sup $_ $s $x}. +notation < "x \nbsp 'is_strong_inf' \nbsp s" non associative with precedence 50 for @{'strong_inf $_ $s $x}. + +notation > "x 'is_upper_bound' s 'in' e" non associative with precedence 50 for @{'upper_bound $e $s $x}. +notation > "x 'is_lower_bound' s 'in' e" non associative with precedence 50 for @{'lower_bound $e $s $x}. +notation > "s 'is_increasing' 'in' e" non associative with precedence 50 for @{'increasing $e $s}. +notation > "s 'is_decreasing' 'in' e" non associative with precedence 50 for @{'decreasing $e $s}. +notation > "x 'is_strong_sup' s 'in' e" non associative with precedence 50 for @{'strong_sup $e $s $x}. +notation > "x 'is_strong_inf' s 'in' e" non associative with precedence 50 for @{'strong_inf $e $s $x}. + +interpretation "Excess upper bound" 'upper_bound e s x = (cic:/matita/infsup/upper_bound.con e s x). +interpretation "Excess lower bound" 'lower_bound e s x = (cic:/matita/infsup/upper_bound.con (cic:/matita/excess/dual_exc.con e) s x). +interpretation "Excess increasing" 'increasing e s = (cic:/matita/infsup/increasing.con e s). +interpretation "Excess decreasing" 'decreasing e s = (cic:/matita/infsup/increasing.con (cic:/matita/excess/dual_exc.con e) s). +interpretation "Excess strong sup" 'strong_sup e s x = (cic:/matita/infsup/strong_sup.con e s x). +interpretation "Excess strong inf" 'strong_inf e s x = (cic:/matita/infsup/strong_sup.con (cic:/matita/excess/dual_exc.con e) s x). + +lemma strong_sup_is_weak: + ∀O:excess.∀s:sequence O.∀x:O.strong_sup ? s x → weak_sup ? s x. +intros (O s x Ssup); elim Ssup (Ubx M); clear Ssup; split; [assumption] +intros 3 (y Uby E); cases (M ? E) (n En); unfold in Uby; cases (Uby ? En); +qed. diff --git a/helm/software/matita/contribs/dama/dama/lattice.ma b/helm/software/matita/contribs/dama/dama/lattice.ma new file mode 100644 index 000000000..78046c688 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/lattice.ma @@ -0,0 +1,446 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "excess.ma". + +record semi_lattice_base : Type ≝ { + sl_carr:> apartness; + sl_op: sl_carr → sl_carr → sl_carr; + sl_op_refl: ∀x.sl_op x x ≈ x; + sl_op_comm: ∀x,y:sl_carr. sl_op x y ≈ sl_op y x; + sl_op_assoc: ∀x,y,z:sl_carr. sl_op x (sl_op y z) ≈ sl_op (sl_op x y) z; + sl_strong_extop: ∀x.strong_ext ? (sl_op x) +}. + +notation "a \cross b" left associative with precedence 50 for @{ 'op $a $b }. +interpretation "semi lattice base operation" 'op a b = (cic:/matita/lattice/sl_op.con _ a b). + +lemma excess_of_semi_lattice_base: semi_lattice_base → excess. +intro l; +apply mk_excess; +[1: apply mk_excess_; + [1: apply mk_excess_dual_smart; + + apply (mk_excess_base (sl_carr l)); + [1: apply (λa,b:sl_carr l.a # (a ✗ b)); + |2: unfold; intros 2 (x H); simplify in H; + lapply (Ap≪ ? (sl_op_refl ??) H) as H1; clear H; + apply (ap_coreflexive ?? H1); + |3: unfold; simplify; intros (x y z H1); + cases (ap_cotransitive ??? ((x ✗ z) ✗ y) H1) (H2 H2);[2: + lapply (Ap≪ ? (sl_op_comm ???) H2) as H21; + lapply (Ap≫ ? (sl_op_comm ???) H21) as H22; clear H21 H2; + lapply (sl_strong_extop ???? H22); clear H22; + left; apply ap_symmetric; assumption;] + cases (ap_cotransitive ??? (x ✗ z) H2) (H3 H3);[left;assumption] + right; lapply (Ap≫ ? (sl_op_assoc ????) H3) as H31; + apply (sl_strong_extop ???? H31);] + + |2: + apply apartness_of_excess_base; + + apply (mk_excess_base (sl_carr l)); + [1: apply (λa,b:sl_carr l.a # (a ✗ b)); + |2: unfold; intros 2 (x H); simplify in H; + lapply (Ap≪ ? (sl_op_refl ??) H) as H1; clear H; + apply (ap_coreflexive ?? H1); + |3: unfold; simplify; intros (x y z H1); + cases (ap_cotransitive ??? ((x ✗ z) ✗ y) H1) (H2 H2);[2: + lapply (Ap≪ ? (sl_op_comm ???) H2) as H21; + lapply (Ap≫ ? (sl_op_comm ???) H21) as H22; clear H21 H2; + lapply (sl_strong_extop ???? H22); clear H22; + left; apply ap_symmetric; assumption;] + cases (ap_cotransitive ??? (x ✗ z) H2) (H3 H3);[left;assumption] + right; lapply (Ap≫ ? (sl_op_assoc ????) H3) as H31; + apply (sl_strong_extop ???? H31);] + + |3: apply refl_eq;] +|2,3: intros (x y H); assumption;] +qed. + +record semi_lattice : Type ≝ { + sl_exc:> excess; + sl_meet: sl_exc → sl_exc → sl_exc; + sl_meet_refl: ∀x.sl_meet x x ≈ x; + sl_meet_comm: ∀x,y. sl_meet x y ≈ sl_meet y x; + sl_meet_assoc: ∀x,y,z. sl_meet x (sl_meet y z) ≈ sl_meet (sl_meet x y) z; + sl_strong_extm: ∀x.strong_ext ? (sl_meet x); + sl_le_to_eqm: ∀x,y.x ≤ y → x ≈ sl_meet x y; + sl_lem: ∀x,y.(sl_meet x y) ≤ y +}. + +interpretation "semi lattice meet" 'and a b = (cic:/matita/lattice/sl_meet.con _ a b). + +lemma sl_feq_ml: ∀ml:semi_lattice.∀a,b,c:ml. a ≈ b → (c ∧ a) ≈ (c ∧ b). +intros (l a b c H); unfold eq in H ⊢ %; unfold Not in H ⊢ %; +intro H1; apply H; clear H; apply (sl_strong_extm ???? H1); +qed. + +lemma sl_feq_mr: ∀ml:semi_lattice.∀a,b,c:ml. a ≈ b → (a ∧ c) ≈ (b ∧ c). +intros (l a b c H); +apply (Eq≈ ? (sl_meet_comm ???)); apply (Eq≈ ?? (sl_meet_comm ???)); +apply sl_feq_ml; assumption; +qed. + + +(* +lemma semi_lattice_of_semi_lattice_base: semi_lattice_base → semi_lattice. +intro slb; apply (mk_semi_lattice (excess_of_semi_lattice_base slb)); +[1: apply (sl_op slb); +|2: intro x; apply (eq_trans (excess_of_semi_lattice_base slb)); [2: + apply (sl_op_refl slb);|1:skip] (sl_op slb x x)); ? (sl_op_refl slb x)); + + unfold excess_of_semi_lattice_base; simplify; + intro H; elim H; + [ + + + lapply (ap_rewl (excess_of_semi_lattice_base slb) x ? (sl_op slb x x) + (eq_sym (excess_of_semi_lattice_base slb) ?? (sl_op_refl slb x)) t); + change in x with (sl_carr slb); + apply (Ap≪ (x ✗ x)); (sl_op_refl slb x)); + +whd in H; elim H; clear H; + [ apply (ap_coreflexive (excess_of_semi_lattice_base slb) (x ✗ x) t); + +prelattice (excess_of_directed l_)); [apply (sl_op l_);] +unfold excess_of_directed; try unfold apart_of_excess; simplify; +unfold excl; simplify; +[intro x; intro H; elim H; clear H; + [apply (sl_op_refl l_ x); + lapply (Ap≫ ? (sl_op_comm ???) t) as H; clear t; + lapply (sl_strong_extop l_ ??? H); apply ap_symmetric; assumption + | lapply (Ap≪ ? (sl_op_refl ?x) t) as H; clear t; + lapply (sl_strong_extop l_ ??? H); apply (sl_op_refl l_ x); + apply ap_symmetric; assumption] +|intros 3 (x y H); cases H (H1 H2); clear H; + [lapply (Ap≪ ? (sl_op_refl ? (sl_op l_ x y)) H1) as H; clear H1; + lapply (sl_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (sl_op_comm ???) H1); apply (ap_coreflexive ?? Hletin); + |lapply (Ap≪ ? (sl_op_refl ? (sl_op l_ y x)) H2) as H; clear H2; + lapply (sl_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (sl_op_comm ???) H1);apply (ap_coreflexive ?? Hletin);] +|intros 4 (x y z H); cases H (H1 H2); clear H; + [lapply (Ap≪ ? (sl_op_refl ? (sl_op l_ x (sl_op l_ y z))) H1) as H; clear H1; + lapply (sl_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (eq_sym ??? (sl_op_assoc ?x y z)) H1) as H; clear H1; + apply (ap_coreflexive ?? H); + |lapply (Ap≪ ? (sl_op_refl ? (sl_op l_ (sl_op l_ x y) z)) H2) as H; clear H2; + lapply (sl_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (sl_op_assoc ?x y z) H1) as H; clear H1; + apply (ap_coreflexive ?? H);] +|intros (x y z H); elim H (H1 H1); clear H; + lapply (Ap≪ ? (sl_op_refl ??) H1) as H; clear H1; + lapply (sl_strong_extop l_ ??? H) as H1; clear H; + lapply (sl_strong_extop l_ ??? H1) as H; clear H1; + cases (ap_cotransitive ??? (sl_op l_ y z) H);[left|right|right|left] try assumption; + [apply ap_symmetric;apply (Ap≪ ? (sl_op_comm ???)); + |apply (Ap≫ ? (sl_op_comm ???)); + |apply ap_symmetric;] assumption; +|intros 4 (x y H H1); apply H; clear H; elim H1 (H H); + lapply (Ap≪ ? (sl_op_refl ??) H) as H1; clear H; + lapply (sl_strong_extop l_ ??? H1) as H; clear H1;[2: apply ap_symmetric] + assumption +|intros 3 (x y H); + cut (sl_op l_ x y ≈ sl_op l_ x (sl_op l_ y y)) as H1;[2: + intro; lapply (sl_strong_extop ???? a); apply (sl_op_refl l_ y); + apply ap_symmetric; assumption;] + lapply (Ap≪ ? (eq_sym ??? H1) H); apply (sl_op_assoc l_ x y y); + assumption; ] +qed. +*) + +(* ED(≰,≱) → EB(≰') → ED(≰',≱') *) +lemma subst_excess_base: excess_dual → excess_base → excess_dual. +intros; apply (mk_excess_dual_smart e1); +qed. + +(* E_(ED(≰,≱),AP(#),c ED = c AP) → ED' → c DE' = c E_ → E_(ED',#,p) *) +lemma subst_dual_excess: ∀e:excess_.∀e1:excess_dual.exc_carr e = exc_carr e1 → excess_. +intros (e e1 p); apply (mk_excess_ e1 e); cases p; reflexivity; +qed. + +(* E(E_,H1,H2) → E_' → H1' → H2' → E(E_',H1',H2') *) +alias symbol "nleq" = "Excess excess_". +lemma subst_excess_: ∀e:excess. ∀e1:excess_. + (∀y,x:e1. y # x → y ≰ x ∨ x ≰ y) → + (∀y,x:e1.y ≰ x ∨ x ≰ y → y # x) → + excess. +intros (e e1 H1 H2); apply (mk_excess e1 H1 H2); +qed. + +definition hole ≝ λT:Type.λx:T.x. + +notation < "\ldots" non associative with precedence 50 for @{'hole}. +interpretation "hole" 'hole = (cic:/matita/lattice/hole.con _ _). + + +axiom FALSE : False. + +(* SL(E,M,H2-5(#),H67(≰)) → E' → c E = c E' → H67'(≰') → SL(E,M,p2-5,H67') *) +lemma subst_excess: + ∀l:semi_lattice. + ∀e:excess. + ∀p:exc_ap l = exc_ap e. + (∀x,y:e.(le (exc_dual_base e)) x y → x ≈ (?(sl_meet l)) x y) → + (∀x,y:e.(le (exc_dual_base e)) ((?(sl_meet l)) x y) y) → + semi_lattice. +[1,2:intro M; + change with ((λx.ap_carr x) e -> (λx.ap_carr x) e -> (λx.ap_carr x) e); + cases p; apply M; +|intros (l e p H1 H2); + apply (mk_semi_lattice e); + [ change with ((λx.ap_carr x) e -> (λx.ap_carr x) e -> (λx.ap_carr x) e); + cases p; simplify; apply (sl_meet l); + |2: change in ⊢ (% → ?) with ((λx.ap_carr x) e); cases p; simplify; apply sl_meet_refl; + |3: change in ⊢ (% → % → ?) with ((λx.ap_carr x) e); cases p; simplify; apply sl_meet_comm; + |4: change in ⊢ (% → % → % → ?) with ((λx.ap_carr x) e); cases p; simplify; apply sl_meet_assoc; + |5: change in ⊢ (% → ?) with ((λx.ap_carr x) e); cases p; simplify; apply sl_strong_extm; + |6: clear H2; apply hole; apply H1; + |7: clear H1; apply hole; apply H2;]] +qed. + +lemma excess_of_excess_base: excess_base → excess. +intro eb; +apply mk_excess; + [apply (mk_excess_ (mk_excess_dual_smart eb)); + [apply (apartness_of_excess_base eb); + |reflexivity] + |2,3: intros; assumption] +qed. + +lemma subst_excess_preserves_aprtness: + ∀l:semi_lattice. + ∀e:excess. + ∀p,H1,H2. + exc_ap l = exc_ap (subst_excess l e p H1 H2). +intros; +unfold subst_excess; +simplify; assumption; +qed. + + +lemma subst_excess__preserves_aprtness: + ∀l:excess. + ∀e:excess_base. + ∀p,H1,H2. + exc_ap l = apartness_OF_excess (subst_excess_ l (subst_dual_excess l (subst_excess_base l e) p) H1 H2). +intros 3; (unfold subst_excess_; unfold subst_dual_excess; unfold subst_excess_base; unfold exc_ap; unfold mk_excess_dual_smart; simplify); +(unfold subst_excess_base in p; unfold mk_excess_dual_smart in p; simplify in p); +intros; cases p; +reflexivity; +qed. + +lemma subst_excess_base_in_excess_: + ∀d:excess_. + ∀eb:excess_base. + ∀p:exc_carr d = exc_carr eb. + excess_. +intros (e_ eb); +apply (subst_dual_excess e_); + [apply (subst_excess_base e_ eb); + |assumption] +qed. + +lemma subst_excess_base_in_excess: + ∀d:excess. + ∀eb:excess_base. + ∀p:exc_carr d = exc_carr eb. + (∀y1,x1:eb. (?(ap_apart d)) y1 x1 → y1 ≰ x1 ∨ x1 ≰ y1) → + (∀y2,x2:eb.y2 ≰ x2 ∨ x2 ≰ y2 → (?(ap_apart d)) y2 x2) → + excess. +[1,3,4:apply Type|2,5:intro f; cases p; apply f] +intros (d eb p H1 H2); +apply (subst_excess_ d); + [apply (subst_excess_base_in_excess_ d eb p); + |apply hole; clear H2; + change in ⊢ (%→%→?) with (exc_carr eb); + change in ⊢ (?→?→?→? (? % ? ?) (? % ? ?)) with eb; intros (y x H3); + apply H1; generalize in match H3; + unfold ap_apart; unfold subst_excess_base_in_excess_; + unfold subst_dual_excess; simplify; + generalize in match x; + generalize in match y; + cases p; simplify; intros; assumption; + |apply hole; clear H1; + change in ⊢ (%→%→?) with (exc_carr eb); + change in ⊢ (?→?→? (? % ? ?) (? % ? ?)→?) with eb; intros (y x H3); + unfold ap_apart; unfold subst_excess_base_in_excess_; + unfold subst_dual_excess; simplify; generalize in match (H2 ?? H3); + generalize in match x; generalize in match y; cases p; + intros; assumption;] +qed. + +lemma tech1: ∀e:excess. + ∀eb:excess_base. + ∀p,H1,H2. + exc_ap e = exc_ap_ (subst_excess_base_in_excess e eb p H1 H2). +intros (e eb p H1 H2); +unfold subst_excess_base_in_excess; +unfold subst_excess_; simplify; +unfold subst_excess_base_in_excess_; +unfold subst_dual_excess; simplify; reflexivity; +qed. + +lemma tech2: + ∀e:excess_.∀eb.∀p. + exc_ap e = exc_ap (mk_excess_ (subst_excess_base e eb) (exc_ap e) p). +intros (e eb p);unfold exc_ap; simplify; cases p; simplify; reflexivity; +qed. + +(* +lemma eq_fap: + ∀a1,b1,a2,b2,a3,b3,a4,b4,a5,b5. + a1=b1 → a2=b2 → a3=b3 → a4=b4 → a5=b5 → mk_apartness a1 a2 a3 a4 a5 = mk_apartness b1 b2 b3 b4 b5. +intros; cases H; cases H1; cases H2; cases H3; cases H4; reflexivity; +qed. +*) + +lemma subst_excess_base_in_excess_preserves_apartness: + ∀e:excess. + ∀eb:excess_base. + ∀H,H1,H2. + apartness_OF_excess e = + apartness_OF_excess (subst_excess_base_in_excess e eb H H1 H2). +intros (e eb p H1 H2); +unfold subst_excess_base_in_excess; +unfold subst_excess_; unfold subst_excess_base_in_excess_; +unfold subst_dual_excess; unfold apartness_OF_excess; +simplify in ⊢ (? ? ? (? %)); +rewrite < (tech2 e eb ); +reflexivity; +qed. + + + +alias symbol "nleq" = "Excess base excess". +lemma subst_excess_base_in_semi_lattice: + ∀sl:semi_lattice. + ∀eb:excess_base. + ∀p:exc_carr sl = exc_carr eb. + (∀y1,x1:eb. (?(ap_apart sl)) y1 x1 → y1 ≰ x1 ∨ x1 ≰ y1) → + (∀y2,x2:eb.y2 ≰ x2 ∨ x2 ≰ y2 → (?(ap_apart sl)) y2 x2) → + (∀x3,y3:eb.(le eb) x3 y3 → (?(eq sl)) x3 ((?(sl_meet sl)) x3 y3)) → + (∀x4,y4:eb.(le eb) ((?(sl_meet sl)) x4 y4) y4) → + semi_lattice. +[2:apply Prop|3,7,9,10:apply Type|4:apply (exc_carr eb)|1,5,6,8,11:intro f; cases p; apply f;] +intros (sl eb H H1 H2 H3 H4); +apply (subst_excess sl); + [apply (subst_excess_base_in_excess sl eb H H1 H2); + |apply subst_excess_base_in_excess_preserves_apartness; + |change in ⊢ (%→%→?) with ((λx.ap_carr x) (subst_excess_base_in_excess (sl_exc sl) eb H H1 H2)); simplify; + intros 3 (x y LE); + generalize in match (H3 ?? LE); + generalize in match H1 as H1;generalize in match H2 as H2; + generalize in match x as x; generalize in match y as y; + cases FALSE; + (* + (reduce in H ⊢ %; cases H; simplify; intros; assumption); + + + cases (subst_excess_base_in_excess_preserves_apartness (sl_exc sl) eb H H1 H2); simplify; + change in x:(%) with (exc_carr eb); + change in y:(%) with (exc_carr eb); + generalize in match OK; generalize in match x as x; generalize in match y as y; + cases H; simplify; (* funge, ma devo fare 2 rewrite in un colpo solo *) + *) + |cases FALSE; + ] +qed. + +record lattice_ : Type ≝ { + latt_mcarr:> semi_lattice; + latt_jcarr_: semi_lattice; + W1:?; W2:?; W3:?; W4:?; W5:?; + latt_with1: latt_jcarr_ = subst_excess_base_in_semi_lattice latt_jcarr_ + (excess_base_OF_semi_lattice latt_mcarr) W1 W2 W3 W4 W5 +}. + +lemma latt_jcarr : lattice_ → semi_lattice. +intro l; apply (subst_excess_base_in_semi_lattice (latt_jcarr_ l) (excess_base_OF_semi_lattice (latt_mcarr l)) (W1 l) (W2 l) (W3 l) (W4 l) (W5 l)); +qed. + +coercion cic:/matita/lattice/latt_jcarr.con. + +interpretation "Lattice meet" 'and a b = + (cic:/matita/lattice/sl_meet.con (cic:/matita/lattice/latt_mcarr.con _) a b). + +interpretation "Lattice join" 'or a b = + (cic:/matita/lattice/sl_meet.con (cic:/matita/lattice/latt_jcarr.con _) a b). + +record lattice : Type ≝ { + latt_carr:> lattice_; + absorbjm: ∀f,g:latt_carr. (f ∨ (f ∧ g)) ≈ f; + absorbmj: ∀f,g:latt_carr. (f ∧ (f ∨ g)) ≈ f +}. + +notation "'meet'" non associative with precedence 50 for @{'meet}. +notation "'meet_refl'" non associative with precedence 50 for @{'meet_refl}. +notation "'meet_comm'" non associative with precedence 50 for @{'meet_comm}. +notation "'meet_assoc'" non associative with precedence 50 for @{'meet_assoc}. +notation "'strong_extm'" non associative with precedence 50 for @{'strong_extm}. +notation "'le_to_eqm'" non associative with precedence 50 for @{'le_to_eqm}. +notation "'lem'" non associative with precedence 50 for @{'lem}. +notation "'join'" non associative with precedence 50 for @{'join}. +notation "'join_refl'" non associative with precedence 50 for @{'join_refl}. +notation "'join_comm'" non associative with precedence 50 for @{'join_comm}. +notation "'join_assoc'" non associative with precedence 50 for @{'join_assoc}. +notation "'strong_extj'" non associative with precedence 50 for @{'strong_extj}. +notation "'le_to_eqj'" non associative with precedence 50 for @{'le_to_eqj}. +notation "'lej'" non associative with precedence 50 for @{'lej}. + +interpretation "Lattice meet" 'meet = (cic:/matita/lattice/sl_meet.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice meet_refl" 'meet_refl = (cic:/matita/lattice/sl_meet_refl.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice meet_comm" 'meet_comm = (cic:/matita/lattice/sl_meet_comm.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice meet_assoc" 'meet_assoc = (cic:/matita/lattice/sl_meet_assoc.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice strong_extm" 'strong_extm = (cic:/matita/lattice/sl_strong_extm.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice le_to_eqm" 'le_to_eqm = (cic:/matita/lattice/sl_le_to_eqm.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice lem" 'lem = (cic:/matita/lattice/sl_lem.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice join" 'join = (cic:/matita/lattice/sl_meet.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice join_refl" 'join_refl = (cic:/matita/lattice/sl_meet_refl.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice join_comm" 'join_comm = (cic:/matita/lattice/sl_meet_comm.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice join_assoc" 'join_assoc = (cic:/matita/lattice/sl_meet_assoc.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice strong_extm" 'strong_extj = (cic:/matita/lattice/sl_strong_extm.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice le_to_eqj" 'le_to_eqj = (cic:/matita/lattice/sl_le_to_eqm.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice lej" 'lej = (cic:/matita/lattice/sl_lem.con (cic:/matita/lattice/latt_jcarr.con _)). + +notation "'feq_jl'" non associative with precedence 50 for @{'feq_jl}. +notation "'feq_jr'" non associative with precedence 50 for @{'feq_jr}. +notation "'feq_ml'" non associative with precedence 50 for @{'feq_ml}. +notation "'feq_mr'" non associative with precedence 50 for @{'feq_mr}. +interpretation "Lattice feq_jl" 'feq_jl = (cic:/matita/lattice/sl_feq_ml.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice feq_jr" 'feq_jr = (cic:/matita/lattice/sl_feq_mr.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice feq_ml" 'feq_ml = (cic:/matita/lattice/sl_feq_ml.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice feq_mr" 'feq_mr = (cic:/matita/lattice/sl_feq_mr.con (cic:/matita/lattice/latt_mcarr.con _)). + + +interpretation "Lattive meet le" 'leq a b = + (cic:/matita/excess/le.con (cic:/matita/lattice/excess_OF_lattice1.con _) a b). + +interpretation "Lattive join le (aka ge)" 'geq a b = + (cic:/matita/excess/le.con (cic:/matita/lattice/excess_OF_lattice.con _) a b). + +(* these coercions help unification, handmaking a bit of conversion + over an open term +*) +lemma le_to_ge: ∀l:lattice.∀a,b:l.a ≤ b → b ≥ a. +intros(l a b H); apply H; +qed. + +lemma ge_to_le: ∀l:lattice.∀a,b:l.b ≥ a → a ≤ b. +intros(l a b H); apply H; +qed. + +coercion cic:/matita/lattice/le_to_ge.con nocomposites. +coercion cic:/matita/lattice/ge_to_le.con nocomposites. \ No newline at end of file diff --git a/helm/software/matita/contribs/dama/dama/limit.ma b/helm/software/matita/contribs/dama/dama/limit.ma new file mode 100644 index 000000000..1250511e8 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/limit.ma @@ -0,0 +1,67 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "infsup.ma". + +definition shift ≝ λT:Type.λs:sequence T.λk:nat.λn.s (n+k). + +(* 3.28 *) +definition limsup ≝ + λE:excess.λxn:sequence E.λx:E.∃alpha:sequence E. + (∀k.(alpha k) is_strong_sup (shift ? xn k) in E) ∧ + x is_strong_inf alpha in E. + +notation < "x \nbsp 'is_limsup' \nbsp s" non associative with precedence 50 for @{'limsup $_ $s $x}. +notation < "x \nbsp 'is_liminf' \nbsp s" non associative with precedence 50 for @{'liminf $_ $s $x}. +notation > "x 'is_limsup' s 'in' e" non associative with precedence 50 for @{'limsup $e $s $x}. +notation > "x 'is_liminf' s 'in' e" non associative with precedence 50 for @{'liminf $e $s $x}. + +interpretation "Excess limsup" 'limsup e s x = (cic:/matita/limit/limsup.con e s x). +interpretation "Excess liminf" 'liminf e s x = (cic:/matita/limit/limsup.con (cic:/matita/excess/dual_exc.con e) s x). + +(* 3.29 *) +definition lim ≝ + λE:excess.λxn:sequence E.λx:E. x is_limsup xn in E ∧ x is_liminf xn in E. + +notation < "x \nbsp 'is_lim' \nbsp s" non associative with precedence 50 for @{'lim $_ $s $x}. +notation > "x 'is_lim' s 'in' e" non associative with precedence 50 for @{'lim $e $s $x}. +interpretation "Excess lim" 'lim e s x = (cic:/matita/limit/lim.con e s x). + +lemma sup_decreasing: + ∀E:excess.∀xn:sequence E. + ∀alpha:sequence E. (∀k.(alpha k) is_strong_sup xn in E) → + alpha is_decreasing in E. +intros (E xn alpha H); unfold strong_sup in H; unfold upper_bound in H; unfold; +intro r; +elim (H r) (H1r H2r); +elim (H (S r)) (H1sr H2sr); clear H H2r H1sr; +intro e; cases (H2sr (alpha r) e) (w Hw); clear e H2sr; +cases (H1r w Hw); +qed. + +include "tend.ma". +include "metric_lattice.ma". + +(* 3.30 *) +lemma lim_tends: + ∀R.∀ml:mlattice R.∀xn:sequence ml.∀x:ml. + x is_lim xn in ml → xn ⇝ x. +intros (R ml xn x Hl); unfold lim in Hl; unfold limsup in Hl; +cases Hl (e1 e2); cases e1 (an Han); cases e2 (bn Hbn); clear Hl e1 e2; +cases Han (SSan SIxan); cases Hbn (SSbn SIxbn); clear Han Hbn; +cases SIxan (LBxan Hxg); cases SIxbn (UPxbn Hxl); clear SIxbn SIxan; +change in UPxbn:(%) with (x is_lower_bound bn in ml); +unfold upper_bound in UPxbn LBxan; change +intros (e He); +(* 2.6 OC *) diff --git a/helm/software/matita/contribs/dama/dama/metric_lattice.ma b/helm/software/matita/contribs/dama/dama/metric_lattice.ma new file mode 100644 index 000000000..f0242da28 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/metric_lattice.ma @@ -0,0 +1,117 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "metric_space.ma". +include "lattice.ma". + +record mlattice_ (R : todgroup) : Type ≝ { + ml_mspace_: metric_space R; + ml_lattice:> lattice; + ml_with: ms_carr ? ml_mspace_ = Type_OF_lattice ml_lattice +}. + +lemma ml_mspace: ∀R.mlattice_ R → metric_space R. +intros (R ml); apply (mk_metric_space R (Type_OF_mlattice_ ? ml)); +unfold Type_OF_mlattice_; cases (ml_with ? ml); simplify; +[apply (metric ? (ml_mspace_ ? ml));|apply (mpositive ? (ml_mspace_ ? ml)); +|apply (mreflexive ? (ml_mspace_ ? ml));|apply (msymmetric ? (ml_mspace_ ? ml)); +|apply (mtineq ? (ml_mspace_ ? ml))] +qed. + +coercion cic:/matita/metric_lattice/ml_mspace.con. + +alias symbol "plus" = "Abelian group plus". +alias symbol "leq" = "Excess less or equal than". +record mlattice (R : todgroup) : Type ≝ { + ml_carr :> mlattice_ R; + ml_prop1: ∀a,b:ml_carr. 0 < δ a b → a # b; + ml_prop2: ∀a,b,c:ml_carr. δ (a∨b) (a∨c) + δ (a∧b) (a∧c) ≤ (δ b c) +}. + +interpretation "Metric lattice leq" 'leq a b = + (cic:/matita/excess/le.con (cic:/matita/metric_lattice/excess_OF_mlattice1.con _ _) a b). +interpretation "Metric lattice geq" 'geq a b = + (cic:/matita/excess/le.con (cic:/matita/metric_lattice/excess_OF_mlattice.con _ _) a b). + +lemma eq_to_ndlt0: ∀R.∀ml:mlattice R.∀a,b:ml. a ≈ b → ¬ 0 < δ a b. +intros (R ml a b E); intro H; apply E; apply ml_prop1; +assumption; +qed. + +lemma eq_to_dzero: ∀R.∀ml:mlattice R.∀x,y:ml.x ≈ y → δ x y ≈ 0. +intros (R ml x y H); intro H1; apply H; clear H; +apply ml_prop1; split [apply mpositive] apply ap_symmetric; +assumption; +qed. + +lemma meq_l: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δx y ≈ δz y. +intros (R ml x y z); apply le_le_eq; +[ apply (le_transitive ???? (mtineq ???y z)); + apply (le_rewl ??? (0+δz y) (eq_to_dzero ???? H)); + apply (le_rewl ??? (δz y) (zero_neutral ??)); apply le_reflexive; +| apply (le_transitive ???? (mtineq ???y x)); + apply (le_rewl ??? (0+δx y) (eq_to_dzero ??z x H)); + apply (le_rewl ??? (δx y) (zero_neutral ??)); apply le_reflexive;] +qed. + +(* 3.3 *) +lemma meq_r: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δy x ≈ δy z. +intros; apply (eq_trans ???? (msymmetric ??y x)); +apply (eq_trans ????? (msymmetric ??z y)); apply meq_l; assumption; +qed. + +lemma dap_to_lt: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → 0 < δ x y. +intros; split [apply mpositive] apply ap_symmetric; assumption; +qed. + +lemma dap_to_ap: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → x # y. +intros (R ml x y H); apply ml_prop1; split; [apply mpositive;] +apply ap_symmetric; assumption; +qed. + +(* 3.11 *) +lemma le_mtri: + ∀R.∀ml:mlattice R.∀x,y,z:ml. x ≤ y → y ≤ z → δ x z ≈ δ x y + δ y z. +intros (R ml x y z Lxy Lyz); apply le_le_eq; [apply mtineq] +apply (le_transitive ????? (ml_prop2 ?? (y) ??)); +cut ( δx y+ δy z ≈ δ(y∨x) (y∨z)+ δ(y∧x) (y∧z)); [ + apply (le_rewr ??? (δx y+ δy z)); [assumption] apply le_reflexive] +lapply (le_to_eqm y x Lxy) as Dxm; lapply (le_to_eqm z y Lyz) as Dym; +lapply (le_to_eqj x y Lxy) as Dxj; lapply (le_to_eqj y z Lyz) as Dyj; clear Lxy Lyz; +STOP +apply (Eq≈ (δ(x∧y) y + δy z) (meq_l ????? Dxm)); +apply (Eq≈ (δ(x∧y) (y∧z) + δy z) (meq_r ????? Dym)); +apply (Eq≈ (δ(x∧y) (y∧z) + δ(y∨x) z));[ + apply feq_plusl; apply meq_l; clear Dyj Dxm Dym; assumption] +apply (Eq≈ (δ(x∧y) (y∧z) + δ(y∨x) (z∨y))); [ + apply (feq_plusl ? (δ(x∧y) (y∧z)) ?? (meq_r ??? (y∨x) ? Dyj));] +apply (Eq≈ ? (plus_comm ???)); +apply (Eq≈ (δ(y∨x) (y∨z)+ δ(x∧y) (y∧z)));[ + apply feq_plusr; apply meq_r; apply (join_comm ??);] +apply feq_plusl; +apply (Eq≈ (δ(y∧x) (y∧z)) (meq_l ????? (meet_comm ??))); +apply eq_reflexive; +qed. + + +(* 3.17 conclusione: δ x y ≈ 0 *) +(* 3.20 conclusione: δ x y ≈ 0 *) +(* 3.21 sup forte + strong_sup x ≝ ∀n. s n ≤ x ∧ ∀y x ≰ y → ∃n. s n ≰ y + strong_sup_zoli x ≝ ∀n. s n ≤ x ∧ ∄y. y#x ∧ y ≤ x +*) +(* 3.22 sup debole (più piccolo dei maggioranti) *) +(* 3.23 conclusion: δ x sup(...) ≈ 0 *) +(* 3.25 vero nel reticolo e basta (niente δ) *) +(* 3.36 conclusion: δ x y ≈ 0 *) diff --git a/helm/software/matita/contribs/dama/dama/metric_space.ma b/helm/software/matita/contribs/dama/dama/metric_space.ma new file mode 100644 index 000000000..2266fe9e9 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/metric_space.ma @@ -0,0 +1,46 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "ordered_divisible_group.ma". + +record metric_space (R: todgroup) : Type ≝ { + ms_carr :> Type; + metric: ms_carr → ms_carr → R; + mpositive: ∀a,b:ms_carr. 0 ≤ metric a b; + mreflexive: ∀a. metric a a ≈ 0; + msymmetric: ∀a,b. metric a b ≈ metric b a; + mtineq: ∀a,b,c:ms_carr. metric a b ≤ metric a c + metric c b +}. + +notation < "\nbsp \delta a \nbsp b" non associative with precedence 80 for @{ 'delta2 $a $b}. +interpretation "metric" 'delta2 a b = (cic:/matita/metric_space/metric.con _ _ a b). +notation "\delta" non associative with precedence 80 for @{ 'delta }. +interpretation "metric" 'delta = (cic:/matita/metric_space/metric.con _ _). + +lemma apart_of_metric_space: ∀R.metric_space R → apartness. +intros (R ms); apply (mk_apartness ? (λa,b:ms.0 < δ a b)); unfold; +[1: intros 2 (x H); cases H (H1 H2); clear H; + lapply (Ap≫ ? (eq_sym ??? (mreflexive ??x)) H2); + apply (ap_coreflexive R 0); assumption; +|2: intros (x y H); cases H; split; + [1: apply (Le≫ ? (msymmetric ????)); assumption + |2: apply (Ap≫ ? (msymmetric ????)); assumption] +|3: simplify; intros (x y z H); elim H (LExy Axy); + lapply (mtineq ?? x y z) as H1; elim (ap2exc ??? Axy) (H2 H2); [cases (LExy H2)] + clear LExy; lapply (lt_le_transitive ???? H H1) as LT0; + apply (lt0plus_orlt ????? LT0); apply mpositive;] +qed. + +lemma ap2delta: ∀R.∀m:metric_space R.∀x,y:m.ap_apart (apart_of_metric_space ? m) x y → 0 < δ x y. +intros 2 (R m); cases m 0; simplify; intros; assumption; qed. diff --git a/helm/software/matita/contribs/dama/dama/ordered_divisible_group.ma b/helm/software/matita/contribs/dama/dama/ordered_divisible_group.ma new file mode 100644 index 000000000..15dd52cdb --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/ordered_divisible_group.ma @@ -0,0 +1,75 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "nat/orders.ma". +include "nat/times.ma". +include "ordered_group.ma". +include "divisible_group.ma". + +record todgroup : Type ≝ { + todg_order:> togroup; + todg_division_: dgroup; + todg_with_: dg_carr todg_division_ = og_abelian_group todg_order +}. + +lemma todg_division: todgroup → dgroup. +intro G; apply (mk_dgroup G); unfold abelian_group_OF_todgroup; +cases (todg_with_ G); exact (dg_prop (todg_division_ G)); +qed. + +coercion cic:/matita/ordered_divisible_group/todg_division.con. + +lemma mul_ge: ∀G:todgroup.∀x:G.∀n.0 ≤ x → 0 ≤ n * x. +intros (G x n); elim n; simplify; [apply le_reflexive] +apply (le_transitive ???? H1); +apply (Le≪ (0+(n1*x)) (zero_neutral ??)); +apply fle_plusr; assumption; +qed. + +lemma lt_ltmul: ∀G:todgroup.∀x,y:G.∀n. x < y → S n * x < S n * y. +intros; elim n; [simplify; apply flt_plusr; assumption] +simplify; apply (ltplus); [assumption] assumption; +qed. + +lemma ltmul_lt: ∀G:todgroup.∀x,y:G.∀n. S n * x < S n * y → x < y. +intros 4; elim n; [apply (plus_cancr_lt ??? 0); assumption] +simplify in l; cases (ltplus_orlt ????? l); [assumption] +apply f; assumption; +qed. + +lemma divide_preserves_lt: ∀G:todgroup.∀e:G.∀n.0 sym_plus; simplify; apply (Lt≪ (0+(y+n*y))); [ + apply eq_sym; apply zero_neutral] + apply flt_plusr; assumption;] +apply (lt_transitive ???? l); rewrite > sym_plus; simplify; +rewrite > (sym_plus n); simplify; repeat apply flt_plusl; +apply (Lt≪ (0+(n1+n)*y)); [apply eq_sym; apply zero_neutral] +apply flt_plusr; assumption; +qed. + diff --git a/helm/software/matita/contribs/dama/dama/ordered_group.ma b/helm/software/matita/contribs/dama/dama/ordered_group.ma new file mode 100644 index 000000000..44529cadf --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/ordered_group.ma @@ -0,0 +1,328 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "group.ma". + +record pogroup_ : Type ≝ { + og_abelian_group_: abelian_group; + og_excess:> excess; + og_with: carr og_abelian_group_ = exc_ap og_excess +}. + +lemma og_abelian_group: pogroup_ → abelian_group. +intro G; apply (mk_abelian_group G); unfold apartness_OF_pogroup_; +cases (og_with G); simplify; +[apply (plus (og_abelian_group_ G));|apply zero;|apply opp +|apply plus_assoc|apply plus_comm|apply zero_neutral|apply opp_inverse|apply plus_strong_ext] +qed. + +coercion cic:/matita/ordered_group/og_abelian_group.con. + +record pogroup : Type ≝ { + og_carr:> pogroup_; + plus_cancr_exc: ∀f,g,h:og_carr. f+h ≰ g+h → f ≰ g +}. + +lemma fexc_plusr: + ∀G:pogroup.∀x,y,z:G. x ≰ y → x+z ≰ y + z. +intros 5 (G x y z L); apply (plus_cancr_exc ??? (-z)); +apply (Ex≪ (x + (z + -z)) (plus_assoc ????)); +apply (Ex≪ (x + (-z + z)) (plus_comm ??z)); +apply (Ex≪ (x+0) (opp_inverse ??)); +apply (Ex≪ (0+x) (plus_comm ???)); +apply (Ex≪ x (zero_neutral ??)); +apply (Ex≫ (y + (z + -z)) (plus_assoc ????)); +apply (Ex≫ (y + (-z + z)) (plus_comm ??z)); +apply (Ex≫ (y+0) (opp_inverse ??)); +apply (Ex≫ (0+y) (plus_comm ???)); +apply (Ex≫ y (zero_neutral ??) L); +qed. + +coercion cic:/matita/ordered_group/fexc_plusr.con nocomposites. + +lemma plus_cancl_exc: ∀G:pogroup.∀f,g,h:G. h+f ≰ h+g → f ≰ g. +intros 5 (G x y z L); apply (plus_cancr_exc ??? z); +apply (Ex≪ (z+x) (plus_comm ???)); +apply (Ex≫ (z+y) (plus_comm ???) L); +qed. + +lemma fexc_plusl: + ∀G:pogroup.∀x,y,z:G. x ≰ y → z+x ≰ z+y. +intros 5 (G x y z L); apply (plus_cancl_exc ??? (-z)); +apply (Ex≪? (plus_assoc ??z x)); +apply (Ex≫? (plus_assoc ??z y)); +apply (Ex≪ (0+x) (opp_inverse ??)); +apply (Ex≫ (0+y) (opp_inverse ??)); +apply (Ex≪? (zero_neutral ??)); +apply (Ex≫? (zero_neutral ??) L); +qed. + +coercion cic:/matita/ordered_group/fexc_plusl.con nocomposites. + +lemma plus_cancr_le: + ∀G:pogroup.∀x,y,z:G.x+z ≤ y + z → x ≤ y. +intros 5 (G x y z L); +apply (Le≪ (0+x) (zero_neutral ??)); +apply (Le≪ (x+0) (plus_comm ???)); +apply (Le≪ (x+(-z+z)) (opp_inverse ??)); +apply (Le≪ (x+(z+ -z)) (plus_comm ??z)); +apply (Le≪ (x+z+ -z) (plus_assoc ????)); +apply (Le≫ (0+y) (zero_neutral ??)); +apply (Le≫ (y+0) (plus_comm ???)); +apply (Le≫ (y+(-z+z)) (opp_inverse ??)); +apply (Le≫ (y+(z+ -z)) (plus_comm ??z)); +apply (Le≫ (y+z+ -z) (plus_assoc ????)); +intro H; apply L; clear L; apply (plus_cancr_exc ??? (-z) H); +qed. + +lemma fle_plusl: ∀G:pogroup. ∀f,g,h:G. f≤g → h+f≤h+g. +intros (G f g h); +apply (plus_cancr_le ??? (-h)); +apply (Le≪ (f+h+ -h) (plus_comm ? f h)); +apply (Le≪ (f+(h+ -h)) (plus_assoc ????)); +apply (Le≪ (f+(-h+h)) (plus_comm ? h (-h))); +apply (Le≪ (f+0) (opp_inverse ??)); +apply (Le≪ (0+f) (plus_comm ???)); +apply (Le≪ (f) (zero_neutral ??)); +apply (Le≫ (g+h+ -h) (plus_comm ? h ?)); +apply (Le≫ (g+(h+ -h)) (plus_assoc ????)); +apply (Le≫ (g+(-h+h)) (plus_comm ??h)); +apply (Le≫ (g+0) (opp_inverse ??)); +apply (Le≫ (0+g) (plus_comm ???)); +apply (Le≫ (g) (zero_neutral ??) H); +qed. + +lemma fle_plusr: ∀G:pogroup. ∀f,g,h:G. f≤g → f+h≤g+h. +intros (G f g h H); apply (Le≪? (plus_comm ???)); +apply (Le≫? (plus_comm ???)); apply fle_plusl; assumption; +qed. + +lemma plus_cancl_le: + ∀G:pogroup.∀x,y,z:G.z+x ≤ z+y → x ≤ y. +intros 5 (G x y z L); +apply (Le≪ (0+x) (zero_neutral ??)); +apply (Le≪ ((-z+z)+x) (opp_inverse ??)); +apply (Le≪ (-z+(z+x)) (plus_assoc ????)); +apply (Le≫ (0+y) (zero_neutral ??)); +apply (Le≫ ((-z+z)+y) (opp_inverse ??)); +apply (Le≫ (-z+(z+y)) (plus_assoc ????)); +apply (fle_plusl ??? (-z) L); +qed. + +lemma plus_cancl_lt: + ∀G:pogroup.∀x,y,z:G.z+x < z+y → x < y. +intros 5 (G x y z L); elim L (A LE); split; [apply plus_cancl_le; assumption] +apply (plus_cancl_ap ???? LE); +qed. + +lemma plus_cancr_lt: + ∀G:pogroup.∀x,y,z:G.x+z < y+z → x < y. +intros 5 (G x y z L); elim L (A LE); split; [apply plus_cancr_le; assumption] +apply (plus_cancr_ap ???? LE); +qed. + + +lemma exc_opp_x_zero_to_exc_zero_x: + ∀G:pogroup.∀x:G.-x ≰ 0 → 0 ≰ x. +intros (G x H); apply (plus_cancr_exc ??? (-x)); +apply (Ex≫? (plus_comm ???)); +apply (Ex≫? (opp_inverse ??)); +apply (Ex≪? (zero_neutral ??) H); +qed. + +lemma le_zero_x_to_le_opp_x_zero: + ∀G:pogroup.∀x:G.0 ≤ x → -x ≤ 0. +intros (G x Px); apply (plus_cancr_le ??? x); +apply (Le≪ 0 (opp_inverse ??)); +apply (Le≫ x (zero_neutral ??) Px); +qed. + +lemma lt_zero_x_to_lt_opp_x_zero: + ∀G:pogroup.∀x:G.0 < x → -x < 0. +intros (G x Px); apply (plus_cancr_lt ??? x); +apply (Lt≪ 0 (opp_inverse ??)); +apply (Lt≫ x (zero_neutral ??) Px); +qed. + +lemma exc_zero_opp_x_to_exc_x_zero: + ∀G:pogroup.∀x:G. 0 ≰ -x → x ≰ 0. +intros (G x H); apply (plus_cancl_exc ??? (-x)); +apply (Ex≫? (plus_comm ???)); +apply (Ex≪? (opp_inverse ??)); +apply (Ex≫? (zero_neutral ??) H); +qed. + +lemma le_x_zero_to_le_zero_opp_x: + ∀G:pogroup.∀x:G. x ≤ 0 → 0 ≤ -x. +intros (G x Lx0); apply (plus_cancr_le ??? x); +apply (Le≫ 0 (opp_inverse ??)); +apply (Le≪ x (zero_neutral ??)); +assumption; +qed. + +lemma lt_x_zero_to_lt_zero_opp_x: + ∀G:pogroup.∀x:G. x < 0 → 0 < -x. +intros (G x Lx0); apply (plus_cancr_lt ??? x); +apply (Lt≫ 0 (opp_inverse ??)); +apply (Lt≪ x (zero_neutral ??)); +assumption; +qed. + +lemma lt_opp_x_zero_to_lt_zero_x: + ∀G:pogroup.∀x:G. -x < 0 → 0 < x. +intros (G x Lx0); apply (plus_cancr_lt ??? (-x)); +apply (Lt≪ (-x) (zero_neutral ??)); +apply (Lt≫ (-x+x) (plus_comm ???)); +apply (Lt≫ 0 (opp_inverse ??)); +assumption; +qed. + +lemma lt0plus_orlt: + ∀G:pogroup. ∀x,y:G. 0 ≤ x → 0 ≤ y → 0 < x + y → 0 < x ∨ 0 < y. +intros (G x y LEx LEy LT); cases LT (H1 H2); cases (ap_cotransitive ??? y H2); +[right; split; assumption|left;split;[assumption]] +apply (plus_cancr_ap ??? y); apply (Ap≪? (zero_neutral ??)); +assumption; +qed. + +lemma le0plus_le: + ∀G:pogroup.∀a,b,c:G. 0 ≤ b → a + b ≤ c → a ≤ c. +intros (G a b c L H); apply (le_transitive ????? H); +apply (plus_cancl_le ??? (-a)); +apply (Le≪ 0 (opp_inverse ??)); +apply (Le≫ (-a + a + b) (plus_assoc ????)); +apply (Le≫ (0 + b) (opp_inverse ??)); +apply (Le≫ b (zero_neutral ??)); +assumption; +qed. + +lemma le_le0plus: + ∀G:pogroup.∀a,b:G. 0 ≤ a → 0 ≤ b → 0 ≤ a + b. +intros (G a b L1 L2); apply (le_transitive ???? L1); +apply (plus_cancl_le ??? (-a)); +apply (Le≪ 0 (opp_inverse ??)); +apply (Le≫ (-a + a + b) (plus_assoc ????)); +apply (Le≫ (0 + b) (opp_inverse ??)); +apply (Le≫ b (zero_neutral ??)); +assumption; +qed. + +lemma flt_plusl: + ∀G:pogroup.∀x,y,z:G.x < y → z + x < z + y. +intros (G x y z H); cases H; split; [apply fle_plusl; assumption] +apply fap_plusl; assumption; +qed. + +lemma flt_plusr: + ∀G:pogroup.∀x,y,z:G.x < y → x + z < y + z. +intros (G x y z H); cases H; split; [apply fle_plusr; assumption] +apply fap_plusr; assumption; +qed. + + +lemma ltxy_ltyyxx: ∀G:pogroup.∀x,y:G. y < x → y+y < x+x. +intros; apply (lt_transitive ?? (y+x));[2: + apply (Lt≪? (plus_comm ???)); + apply (Lt≫? (plus_comm ???));] +apply flt_plusl;assumption; +qed. + +lemma lew_opp : ∀O:pogroup.∀a,b,c:O.0 ≤ b → a ≤ c → a + -b ≤ c. +intros (O a b c L0 L); +apply (le_transitive ????? L); +apply (plus_cancl_le ??? (-a)); +apply (Le≫ 0 (opp_inverse ??)); +apply (Le≪ (-a+a+-b) (plus_assoc ????)); +apply (Le≪ (0+-b) (opp_inverse ??)); +apply (Le≪ (-b) (zero_neutral ?(-b))); +apply le_zero_x_to_le_opp_x_zero; +assumption; +qed. + +lemma ltw_opp : ∀O:pogroup.∀a,b,c:O.0 < b → a < c → a + -b < c. +intros (O a b c P L); +apply (lt_transitive ????? L); +apply (plus_cancl_lt ??? (-a)); +apply (Lt≫ 0 (opp_inverse ??)); +apply (Lt≪ (-a+a+-b) (plus_assoc ????)); +apply (Lt≪ (0+-b) (opp_inverse ??)); +apply (Lt≪ ? (zero_neutral ??)); +apply lt_zero_x_to_lt_opp_x_zero; +assumption; +qed. + +record togroup : Type ≝ { + tog_carr:> pogroup; + tog_total: ∀x,y:tog_carr.x≰y → y < x +}. + +lemma lexxyy_lexy: ∀G:togroup. ∀x,y:G. x+x ≤ y+y → x ≤ y. +intros (G x y H); intro H1; lapply (tog_total ??? H1) as H2; +lapply (ltxy_ltyyxx ??? H2) as H3; lapply (lt_to_excess ??? H3) as H4; +cases (H H4); +qed. + +lemma eqxxyy_eqxy: ∀G:togroup.∀x,y:G. x + x ≈ y + y → x ≈ y. +intros (G x y H); cases (eq_le_le ??? H); apply le_le_eq; +apply lexxyy_lexy; assumption; +qed. + +lemma applus_orap: ∀G:abelian_group. ∀x,y:G. 0 # x + y → 0 #x ∨ 0#y. +intros; cases (ap_cotransitive ??? y a); [right; assumption] +left; apply (plus_cancr_ap ??? y); apply (Ap≪y (zero_neutral ??)); +assumption; +qed. + +lemma ltplus: ∀G:pogroup.∀a,b,c,d:G. a < b → c < d → a+c < b + d. +intros (G a b c d H1 H2); +lapply (flt_plusr ??? c H1) as H3; +apply (lt_transitive ???? H3); +apply flt_plusl; assumption; +qed. + +lemma excplus_orexc: ∀G:pogroup.∀a,b,c,d:G. a+c ≰ b + d → a ≰ b ∨ c ≰ d. +intros (G a b c d H1 H2); +cases (exc_cotransitive ??? (a + d) H1); [ + right; apply (plus_cancl_exc ??? a); assumption] +left; apply (plus_cancr_exc ??? d); assumption; +qed. + +lemma leplus: ∀G:pogroup.∀a,b,c,d:G. a ≤ b → c ≤ d → a+c ≤ b + d. +intros (G a b c d H1 H2); intro H3; cases (excplus_orexc ????? H3); +[apply H1|apply H2] assumption; +qed. + +lemma leplus_lt_le: ∀G:togroup.∀x,y:G. 0 ≤ x + y → x < 0 → 0 ≤ y. +intros; intro; apply H; lapply (lt_to_excess ??? l); +lapply (tog_total ??? e); +lapply (tog_total ??? Hletin); +lapply (ltplus ????? Hletin2 Hletin1); +apply (Ex≪ (0+0)); [apply eq_sym; apply zero_neutral] +apply lt_to_excess; assumption; +qed. + +lemma ltplus_orlt: ∀G:togroup.∀a,b,c,d:G. a+c < b + d → a < b ∨ c < d. +intros (G a b c d H1 H2); lapply (lt_to_excess ??? H1); +cases (excplus_orexc ????? Hletin); [left|right] apply tog_total; assumption; +qed. + +lemma excplus: ∀G:togroup.∀a,b,c,d:G.a ≰ b → c ≰ d → a + c ≰ b + d. +intros (G a b c d L1 L2); +lapply (fexc_plusr ??? (c) L1) as L3; +elim (exc_cotransitive ??? (b+d) L3); [assumption] +lapply (plus_cancl_exc ???? t); lapply (tog_total ??? Hletin); +cases Hletin1; cases (H L2); +qed. diff --git a/helm/software/matita/contribs/dama/dama/premetric_lattice.ma b/helm/software/matita/contribs/dama/dama/premetric_lattice.ma new file mode 100644 index 000000000..bfba3710a --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/premetric_lattice.ma @@ -0,0 +1,69 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "metric_space.ma". + +record premetric_lattice_ (R : todgroup) : Type ≝ { + pml_carr:> metric_space R; + meet: pml_carr → pml_carr → pml_carr; + join: pml_carr → pml_carr → pml_carr +}. + +interpretation "valued lattice meet" 'and a b = + (cic:/matita/premetric_lattice/meet.con _ _ a b). + +interpretation "valued lattice join" 'or a b = + (cic:/matita/premetric_lattice/join.con _ _ a b). + +record premetric_lattice_props (R : todgroup) (ml : premetric_lattice_ R) : Prop ≝ { + prop1a: ∀a : ml.δ (a ∧ a) a ≈ 0; + prop1b: ∀a : ml.δ (a ∨ a) a ≈ 0; + prop2a: ∀a,b: ml. δ (a ∨ b) (b ∨ a) ≈ 0; + prop2b: ∀a,b: ml. δ (a ∧ b) (b ∧ a) ≈ 0; + prop3a: ∀a,b,c: ml. δ (a ∨ (b ∨ c)) ((a ∨ b) ∨ c) ≈ 0; + prop3b: ∀a,b,c: ml. δ (a ∧ (b ∧ c)) ((a ∧ b) ∧ c) ≈ 0; + prop4a: ∀a,b: ml. δ (a ∨ (a ∧ b)) a ≈ 0; + prop4b: ∀a,b: ml. δ (a ∧ (a ∨ b)) a ≈ 0; + prop5: ∀a,b,c: ml. δ (a ∨ b) (a ∨ c) + δ (a ∧ b) (a ∧ c) ≤ δ b c +}. + +record pmlattice (R : todgroup) : Type ≝ { + carr :> premetric_lattice_ R; + ispremetriclattice:> premetric_lattice_props R carr +}. + +include "lattice.ma". + +lemma lattice_of_pmlattice: ∀R: todgroup. pmlattice R → lattice. +intros (R pml); apply (mk_lattice (apart_of_metric_space ? pml)); +[apply (join ? pml)|apply (meet ? pml) +|3,4,5,6,7,8,9,10: intros (x y z); whd; intro H; whd in H; cases H (LE AP);] +[apply (prop1b ? pml pml x); |apply (prop1a ? pml pml x); +|apply (prop2a ? pml pml x y); |apply (prop2b ? pml pml x y); +|apply (prop3a ? pml pml x y z);|apply (prop3b ? pml pml x y z); +|apply (prop4a ? pml pml x y); |apply (prop4b ? pml pml x y);] +try (apply ap_symmetric; assumption); intros 4 (x y z H); change with (0 < (δ y z)); +[ change in H with (0 < δ (x ∨ y) (x ∨ z)); + apply (lt_le_transitive ???? H); + apply (le0plus_le ???? (mpositive ? pml ??) (prop5 ? pml pml x y z)); +| change in H with (0 < δ (x ∧ y) (x ∧ z)); + apply (lt_le_transitive ???? H); + apply (le0plus_le ???? (mpositive ? pml (x∨y) (x∨z))); + apply (le_rewl ??? ? (plus_comm ???)); + apply (prop5 ? pml pml);] +qed. + +coercion cic:/matita/premetric_lattice/lattice_of_pmlattice.con. \ No newline at end of file diff --git a/helm/software/matita/contribs/dama/dama/prevalued_lattice.ma b/helm/software/matita/contribs/dama/dama/prevalued_lattice.ma new file mode 100644 index 000000000..53b2b0a1b --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/prevalued_lattice.ma @@ -0,0 +1,243 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "ordered_group.ma". + +record vlattice (R : togroup) : Type ≝ { + wl_carr:> Type; + value: wl_carr → R; + join: wl_carr → wl_carr → wl_carr; + meet: wl_carr → wl_carr → wl_carr; + meet_refl: ∀x. value (meet x x) ≈ value x; + join_refl: ∀x. value (join x x) ≈ value x; + meet_comm: ∀x,y. value (meet x y) ≈ value (meet y x); + join_comm: ∀x,y. value (join x y) ≈ value (join y x); + join_assoc: ∀x,y,z. value (join x (join y z)) ≈ value (join (join x y) z); + meet_assoc: ∀x,y,z. value (meet x (meet y z)) ≈ value (meet (meet x y) z); + meet_wins1: ∀x,y. value (join x (meet x y)) ≈ value x; + meet_wins2: ∀x,y. value (meet x (join x y)) ≈ value x; + modular_mjp: ∀x,y. value (join x y) + value (meet x y) ≈ value x + value y; + join_meet_le: ∀x,y,z. value (join x (meet y z)) ≤ value (join x y); + meet_join_le: ∀x,y,z. value (meet x y) ≤ value (meet x (join y z)) +}. + +interpretation "valued lattice meet" 'and a b = + (cic:/matita/prevalued_lattice/meet.con _ _ a b). + +interpretation "valued lattice join" 'or a b = + (cic:/matita/prevalued_lattice/join.con _ _ a b). + +notation < "\nbsp \mu a" non associative with precedence 80 for @{ 'value2 $a}. +interpretation "lattice value" 'value2 a = (cic:/matita/prevalued_lattice/value.con _ _ a). + +notation "\mu" non associative with precedence 80 for @{ 'value }. +interpretation "lattice value" 'value = (cic:/matita/prevalued_lattice/value.con _ _). + +lemma feq_joinr: ∀R.∀L:vlattice R.∀x,y,z:L. + μ x ≈ μ y → μ (z ∧ x) ≈ μ (z ∧ y) → μ (z ∨ x) ≈ μ (z ∨ y). +intros (R L x y z H H1); +apply (plus_cancr ??? (μ(z∧x))); +apply (Eq≈ (μz + μx) (modular_mjp ????)); +apply (Eq≈ (μz + μy) H); clear H; +apply (Eq≈ (μ(z∨y) + μ(z∧y)) (modular_mjp ??z y)); +apply (plus_cancl ??? (- μ (z ∨ y))); +apply (Eq≈ ? (plus_assoc ????)); +apply (Eq≈ (0+ μ(z∧y)) (opp_inverse ??)); +apply (Eq≈ ? (zero_neutral ??)); +apply (Eq≈ (- μ(z∨y)+ μ(z∨y)+ μ(z∧x)) ? (plus_assoc ????)); +apply (Eq≈ (0+ μ(z∧x)) ? (opp_inverse ??)); +apply (Eq≈ (μ (z ∧ x)) H1 (zero_neutral ??)); +qed. + +lemma modularj: ∀R.∀L:vlattice R.∀y,z:L. μ(y∨z) ≈ μy + μz + -μ (y ∧ z). +intros (R L y z); +lapply (modular_mjp ?? y z) as H1; +apply (plus_cancr ??? (μ(y ∧ z))); +apply (Eq≈ ? H1); clear H1; +apply (Eq≈ ?? (plus_assoc ????)); +apply (Eq≈ (μy+ μz + 0) ? (opp_inverse ??)); +apply (Eq≈ ?? (plus_comm ???)); +apply (Eq≈ (μy + μz) ? (eq_sym ??? (zero_neutral ??))); +apply eq_reflexive. +qed. + +lemma modularm: ∀R.∀L:vlattice R.∀y,z:L. μ(y∧z) ≈ μy + μz + -μ (y ∨ z). +(* CSC: questa è la causa per cui la hint per cercare i duplicati ci sta 1 mese *) +(* exact modularj; *) +intros (R L y z); +lapply (modular_mjp ?? y z) as H1; +apply (plus_cancl ??? (μ(y ∨ z))); +apply (Eq≈ ? H1); clear H1; +apply (Eq≈ ?? (plus_comm ???)); +apply (Eq≈ ?? (plus_assoc ????)); +apply (Eq≈ (μy+ μz + 0) ? (opp_inverse ??)); +apply (Eq≈ ?? (plus_comm ???)); +apply (Eq≈ (μy + μz) ? (eq_sym ??? (zero_neutral ??))); +apply eq_reflexive. +qed. + +lemma modularmj: ∀R.∀L:vlattice R.∀x,y,z:L.μ(x∧(y∨z))≈(μx + μ(y ∨ z) + - μ(x∨(y∨z))). +intros (R L x y z); +lapply (modular_mjp ?? x (y ∨ z)) as H1; +apply (Eq≈ (μ(x∨(y∨z))+ μ(x∧(y∨z)) +-μ(x∨(y∨z))) ? (feq_plusr ???? H1)); clear H1; +apply (Eq≈ ? ? (plus_comm ???)); +apply (Eq≈ (- μ(x∨(y∨z))+ μ(x∨(y∨z))+ μ(x∧(y∨z))) ? (plus_assoc ????)); +apply (Eq≈ (0+μ(x∧(y∨z))) ? (opp_inverse ??)); +apply (Eq≈ (μ(x∧(y∨z))) ? (zero_neutral ??)); +apply eq_reflexive. +qed. + +lemma modularjm: ∀R.∀L:vlattice R.∀x,y,z:L.μ(x∨(y∧z))≈(μx + μ(y ∧ z) + - μ(x∧(y∧z))). +intros (R L x y z); +lapply (modular_mjp ?? x (y ∧ z)) as H1; +apply (Eq≈ (μ(x∧(y∧z))+ μ(x∨(y∧z)) +-μ(x∧(y∧z)))); [2: apply feq_plusr; apply (eq_trans ???? (plus_comm ???)); apply H1] clear H1; +apply (Eq≈ ? ? (plus_comm ???)); +apply (Eq≈ (- μ(x∧(y∧z))+ μ(x∧(y∧z))+ μ(x∨y∧z)) ? (plus_assoc ????)); +apply (Eq≈ (0+ μ(x∨y∧z)) ? (opp_inverse ??)); +apply eq_sym; apply zero_neutral; +qed. + +lemma step1_3_57': ∀R.∀L:vlattice R.∀x,y,z:L. + μ(x ∨ (y ∧ z)) ≈ (μ x) + (μ y) + μ z + -μ (y ∨ z) + -μ (z ∧ (x ∧ y)). +intros (R L x y z); +apply (Eq≈ ? (modularjm ?? x y z)); +apply (Eq≈ ( μx+ (μy+ μz+- μ(y∨z)) +- μ(x∧(y∧z)))); [ + apply feq_plusr; apply feq_plusl; apply (modularm ?? y z);] +apply (Eq≈ (μx+ μy+ μz+- μ(y∨z)+- μ(x∧(y∧z)))); [2: + apply feq_plusl; apply feq_opp; + apply (Eq≈ ? (meet_assoc ?????)); + apply (Eq≈ ? (meet_comm ????)); + apply eq_reflexive;] +apply feq_plusr; apply (Eq≈ ? (plus_assoc ????)); +apply feq_plusr; apply plus_assoc; +qed. + +lemma step1_3_57: ∀R.∀L:vlattice R.∀x,y,z:L. + μ(x ∧ (y ∨ z)) ≈ (μ x) + (μ y) + μ z + -μ (y ∧ z) + -μ (z ∨ (x ∨ y)). +intros (R L x y z); +apply (Eq≈ ? (modularmj ?? x y z)); +apply (Eq≈ ( μx+ (μy+ μz+- μ(y∧z)) +- μ(x∨(y∨z)))); [ + apply feq_plusr; apply feq_plusl; apply (modularj ?? y z);] +apply (Eq≈ (μx+ μy+ μz+- μ(y∧z)+- μ(x∨(y∨z)))); [2: + apply feq_plusl; apply feq_opp; + apply (Eq≈ ? (join_assoc ?????)); + apply (Eq≈ ? (join_comm ????)); + apply eq_reflexive;] +apply feq_plusr; apply (Eq≈ ? (plus_assoc ????)); +apply feq_plusr; apply plus_assoc; +qed. + +(* LEMMA 3.57 *) + +lemma join_meet_le_join: ∀R.∀L:vlattice R.∀x,y,z:L.μ (x ∨ (y ∧ z)) ≤ μ (x ∨ z). +intros (R L x y z); +apply (le_rewl ??? ? (eq_sym ??? (step1_3_57' ?????))); +apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ -μ(z∧x∧y))); [ + apply feq_plusl; apply feq_opp; apply (eq_trans ?? ? ?? (eq_sym ??? (meet_assoc ?????))); apply eq_reflexive;] +apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ (- ( μ(z∧x)+ μy+- μ((z∧x)∨y))))); [ + apply feq_plusl; apply feq_opp; apply eq_sym; apply modularm] +apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ (- μ(z∧x)+ -μy+-- μ((z∧x)∨y)))); [ + apply feq_plusl; apply (Eq≈ (- (μ(z∧x)+ μy) + -- μ((z∧x)∨y))); [ + apply feq_plusr; apply eq_sym; apply eq_opp_plus_plus_opp_opp;] + apply eq_sym; apply eq_opp_plus_plus_opp_opp;] +apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μ(z∧x)+- μy+ μ(y∨(z∧x))))); [ + repeat apply feq_plusl; apply eq_sym; apply (Eq≈ (μ((z∧x)∨y)) (eq_opp_opp_x_x ??)); + apply join_comm;] +apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μ(z∧x)+- μy)+ μ(y∨(z∧x)))); [ + apply eq_sym; apply plus_assoc;] +apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μy + - μ(z∧x))+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; repeat apply feq_plusl; apply plus_comm;] +apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+- μy + - μ(z∧x)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply eq_sym; apply plus_assoc;] +apply (le_rewl ??? (μx+ μy+ μz+- μy + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); + apply (Eq≈ ( μx+ μy+ μz+(- μy+- μ(y∨z))) (eq_sym ??? (plus_assoc ????))); + apply feq_plusl; apply plus_comm;] +apply (le_rewl ??? (μx+ μy+ -μy+ μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); + apply (Eq≈ (μx+ μy+( -μy+ μz)) (eq_sym ??? (plus_assoc ????))); + apply feq_plusl; apply plus_comm;] +apply (le_rewl ??? (μx+ 0 + μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); + apply feq_plusl; apply eq_sym; apply (eq_trans ?? ? ? (plus_comm ???)); + apply opp_inverse; apply eq_reflexive;] +apply (le_rewl ??? (μx+ μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_comm ???)); + apply eq_sym; apply zero_neutral;] +apply (le_rewl ??? (μz+ μx + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply plus_comm;] +apply (le_rewl ??? (μz+ μx +- μ(z∧x)+ - μ(y∨z)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); + apply (eq_trans ?? ? ? (eq_sym ??? (plus_assoc ????))); apply feq_plusl; + apply plus_comm;] +apply (le_rewl ??? (μ(z∨x)+ - μ(y∨z)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply modularj;] +apply (le_rewl ??? (μ(z∨x)+ (- μ(y∨z)+ μ(y∨(z∧x)))) (plus_assoc ????)); +apply (le_rewr ??? (μ(x∨z) + 0)); [apply (eq_trans ?? ? ? (plus_comm ???)); apply zero_neutral] +apply (le_rewr ??? (μ(x∨z) + (-μ(y∨z) + μ(y∨z)))); [ apply feq_plusl; apply opp_inverse] +apply (le_rewr ??? (μ(z∨x) + (-μ(y∨z) + μ(y∨z)))); [ apply feq_plusr; apply join_comm;] +repeat apply fle_plusl; apply join_meet_le; +qed. + +lemma meet_le_meet_join: ∀R.∀L:vlattice R.∀x,y,z:L.μ (x ∧ z) ≤ μ (x ∧ (y ∨ z)). +intros (R L x y z); +apply (le_rewr ??? ? (eq_sym ??? (step1_3_57 ?????))); +apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ -μ(z∨x∨y))); [ + apply feq_plusl; apply feq_opp; apply (eq_trans ?? ? ?? (eq_sym ??? (join_assoc ?????))); apply eq_reflexive;] +apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ (- ( μ(z∨x)+ μy+- μ((z∨x)∧y))))); [ + apply feq_plusl; apply feq_opp; apply eq_sym; apply modularj] +apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ (- μ(z∨x)+ -μy+-- μ((z∨x)∧y)))); [ + apply feq_plusl; apply (Eq≈ (- (μ(z∨x)+ μy) + -- μ((z∨x)∧y))); [ + apply feq_plusr; apply eq_sym; apply eq_opp_plus_plus_opp_opp;] + apply eq_sym; apply eq_opp_plus_plus_opp_opp;] +apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μ(z∨x)+- μy+ μ(y∧(z∨x))))); [ + repeat apply feq_plusl; apply eq_sym; apply (Eq≈ (μ((z∨x)∧y)) (eq_opp_opp_x_x ??)); + apply meet_comm;] +apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μ(z∨x)+- μy)+ μ(y∧(z∨x)))); [ + apply eq_sym; apply plus_assoc;] +apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μy + - μ(z∨x))+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; repeat apply feq_plusl; apply plus_comm;] +apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+- μy + - μ(z∨x)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply eq_sym; apply plus_assoc;] +apply (le_rewr ??? (μx+ μy+ μz+- μy + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); + apply (Eq≈ ( μx+ μy+ μz+(- μy+- μ(y∧z))) (eq_sym ??? (plus_assoc ????))); + apply feq_plusl; apply plus_comm;] +apply (le_rewr ??? (μx+ μy+ -μy+ μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply (Eq≈ ?? (plus_assoc ????)); + apply (Eq≈ (μx+ μy+( -μy+ μz)) (eq_sym ??? (plus_assoc ????))); + apply feq_plusl; apply plus_comm;] +apply (le_rewr ??? (μx+ 0 + μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); + apply feq_plusl; apply eq_sym; apply (eq_trans ?? ? ? (plus_comm ???)); + apply opp_inverse; apply eq_reflexive;] +apply (le_rewr ??? (μx+ μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_comm ???)); + apply eq_sym; apply zero_neutral;] +apply (le_rewr ??? (μz+ μx + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply plus_comm;] +apply (le_rewr ??? (μz+ μx +- μ(z∨x)+ - μ(y∧z)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); + apply (eq_trans ?? ? ? (eq_sym ??? (plus_assoc ????))); apply feq_plusl; + apply plus_comm;] +apply (le_rewr ??? (μ(z∧x)+ - μ(y∧z)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply modularm;] +apply (le_rewr ??? (μ(z∧x)+ (- μ(y∧z)+ μ(y∧(z∨x)))) (plus_assoc ????)); +apply (le_rewl ??? (μ(x∧z) + 0)); [apply (eq_trans ?? ? ? (plus_comm ???)); apply zero_neutral] +apply (le_rewl ??? (μ(x∧z) + (-μ(y∧z) + μ(y∧z)))); [ apply feq_plusl; apply opp_inverse] +apply (le_rewl ??? (μ(z∧x) + (-μ(y∧z) + μ(y∧z)))); [ apply feq_plusr; apply meet_comm;] +repeat apply fle_plusl; apply meet_join_le; +qed. diff --git a/helm/software/matita/contribs/dama/dama/root b/helm/software/matita/contribs/dama/dama/root new file mode 100644 index 000000000..c57405b94 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/root @@ -0,0 +1 @@ +baseuri=cic:/matita/ diff --git a/helm/software/matita/contribs/dama/dama/sandwich.ma b/helm/software/matita/contribs/dama/dama/sandwich.ma new file mode 100644 index 000000000..aaea369f5 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama/sandwich.ma @@ -0,0 +1,81 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "nat/plus.ma". +include "nat/orders.ma". + +lemma ltwl: ∀a,b,c:nat. b + a < c → a < c. +intros 3 (x y z); elim y (H z IH H); [apply H] +apply IH; apply lt_S_to_lt; apply H; +qed. + +lemma ltwr: ∀a,b,c:nat. a + b < c → a < c. +intros 3 (x y z); rewrite > sym_plus; apply ltwl; +qed. + +include "tend.ma". +include "metric_lattice.ma". + +alias symbol "leq" = "ordered sets less or equal than". +alias symbol "and" = "constructive and". +theorem sandwich: +let ugo ≝ excess_OF_lattice1 in + ∀R.∀ml:mlattice R.∀an,bn,xn:sequence ml.∀x:ml. + (∀n. (xn n ≤ an n) ∧ (bn n ≤ xn n)) → + an ⇝ x → bn ⇝ x → xn ⇝ x. +intros (R ml an bn xn x H Ha Hb); +unfold tends0 in Ha Hb ⊢ %; unfold d2s in Ha Hb ⊢ %; intros (e He); +alias num (instance 0) = "natural number". +cases (Ha (e/2) (divide_preserves_lt ??? He)) (n1 H1); clear Ha; +cases (Hb (e/2) (divide_preserves_lt ??? He)) (n2 H2); clear Hb; +apply (ex_introT ?? (n1+n2)); intros (n3 Lt_n1n2_n3); +lapply (ltwr ??? Lt_n1n2_n3) as Lt_n1n3; lapply (ltwl ??? Lt_n1n2_n3) as Lt_n2n3; +cases (H1 ? Lt_n1n3) (c daxe); cases (H2 ? Lt_n2n3) (c dbxe); +cases (H n3) (H7 H8); clear Lt_n1n3 Lt_n2n3 Lt_n1n2_n3 c H1 H2 H n1 n2; +(* the main inequality *) +cut (δ (xn n3) x ≤ δ (bn n3) x + δ (an n3) x + δ (an n3) x) as main_ineq; [2: + apply (le_transitive ???? (mtineq ???? (an n3))); + cut ( δ(an n3) (bn n3)+- δ(xn n3) (bn n3)≈( δ(an n3) (xn n3))) as H11; [2: + lapply (le_mtri ?? ??? H8 H7) as H9; clear H7 H8; + lapply (Eq≈ ? (msymmetric ????) H9) as H10; clear H9; + lapply (feq_plusr ? (- δ(xn n3) (bn n3)) ?? H10) as H9; clear H10; + apply (Eq≈ ? H9); clear H9; + apply (Eq≈ (δ(xn n3) (an n3)+ δ(bn n3) (xn n3)+- δ(xn n3) (bn n3)) (plus_comm ??( δ(xn n3) (an n3)))); + apply (Eq≈ (δ(xn n3) (an n3)+ δ(bn n3) (xn n3)+- δ(bn n3) (xn n3)) (feq_opp ??? (msymmetric ????))); + apply (Eq≈ ( δ(xn n3) (an n3)+ (δ(bn n3) (xn n3)+- δ(bn n3) (xn n3))) (plus_assoc ????)); + apply (Eq≈ (δ(xn n3) (an n3) + (- δ(bn n3) (xn n3) + δ(bn n3) (xn n3))) (plus_comm ??(δ(bn n3) (xn n3)))); + apply (Eq≈ (δ(xn n3) (an n3) + 0) (opp_inverse ??)); + apply (Eq≈ ? (plus_comm ???)); + apply (Eq≈ ? (zero_neutral ??)); + apply (Eq≈ ? (msymmetric ????)); + apply eq_reflexive;] + apply (Le≪ (δ(an n3) (xn n3)+ δ(an n3) x) (msymmetric ??(an n3)(xn n3))); + apply (Le≪ (δ(an n3) (bn n3)+- δ(xn n3) (bn n3)+ δ(an n3) x) H11); + apply (Le≪ (- δ(xn n3) (bn n3)+ δ(an n3) (bn n3)+δ(an n3) x) (plus_comm ??(δ(an n3) (bn n3)))); + apply (Le≪ (- δ(xn n3) (bn n3)+ (δ(an n3) (bn n3)+δ(an n3) x)) (plus_assoc ????)); + apply (Le≪ ((δ(an n3) (bn n3)+δ(an n3) x)+- δ(xn n3) (bn n3)) (plus_comm ???)); + apply lew_opp; [apply mpositive] apply fle_plusr; + apply (Le≫ ? (plus_comm ???)); + apply (Le≫ ( δ(an n3) x+ δx (bn n3)) (msymmetric ????)); + apply mtineq;] +split; [ (* first the trivial case: -e< δ(xn n3) x *) + apply (lt_le_transitive ????? (mpositive ????)); + apply lt_zero_x_to_lt_opp_x_zero; assumption;] +(* the main goal: δ(xn n3) x H2 in H. + assumption. +qed. + +axiom R:Type. +axiom R0:R. +axiom R1:R. +axiom Rplus: L R→L R→L R. +axiom Rmult: L R→L R→L R.(* +axiom Rdiv: L R→L R→L R.*) +axiom Rinv: L R→L R. +axiom Relev: L R→L R→L R. +axiom Rle: L R→L R→Prop. +axiom Rge: L R→L R→Prop. + +interpretation "real plus" 'plus x y = + (cic:/matita/tests/decl/Rplus.con x y). + +interpretation "real leq" 'leq x y = + (cic:/matita/tests/decl/Rle.con x y). + +interpretation "real geq" 'geq x y = + (cic:/matita/tests/decl/Rge.con x y). + +let rec elev (x:L R) (n:nat) on n: L R ≝ + match n with + [O ⇒ match x with [bottom ⇒ bottom ? | j y ⇒ (j ? R1)] + | S n ⇒ Rmult x (elev x n) + ]. + +let rec real_of_nat (n:nat) : L R ≝ + match n with + [ O ⇒ (j ? R0) + | S n ⇒ real_of_nat n + (j ? R1) + ]. + +coercion cic:/matita/tests/decl/real_of_nat.con. + +axiom Rplus_commutative: ∀x,y:R. (j ? x) + (j ? y) ≡ (j ? y) + (j ? x). +axiom R0_neutral: ∀x:R. (j ? x) + (j ? R0) ≡ (j ? x). +axiom Rmult_commutative: ∀x,y:R. Rmult (j ? x) (j ? y) ≡ Rmult (j ? y) (j ? x). +axiom R1_neutral: ∀x:R. Rmult (j ? x) (j ? R1) ≡ (j ? x). + +axiom Rinv_ok: + ∀x:R. ¬((j ? x) ≡ (j ? R0)) → Rmult (Rinv (j ? x)) (j ? x) ≡ (j ? R1). +definition is_defined := + λ T:Type. λ x:L T. ∃y:T. x = (j ? y). +axiom Rinv_ok2: ∀x:L R. ¬(x = bottom ?) → ¬(x ≡ (j ? R0)) → is_defined ? (Rinv x). + +definition Rdiv := + λ x,y:L R. Rmult x (Rinv y). + +(* +lemma pippo: ∀x:R. ¬((j ? x) ≡ (j ? R0)) → Rdiv (j ? R1) (j ? x) ≡ Rinv (j ? x). + intros. + unfold Rdiv. + elim (Rinv_ok2 ? ? H). + rewrite > H1. + rewrite > Rmult_commutative. + apply R1_neutral. +*) + +axiom Rdiv_le: ∀x,y:R. (j ? R1) ≤ (j ? y) → Rdiv (j ? x) (j ? y) ≤ (j ? x). +axiom R2_1: (j ? R1) ≤ S (S O). + + +axiom Rdiv_pos: ∀ x,y:R. + (j ? R0) ≤ (j ? x) → (j ? R1) ≤ (j ? y) → (j ? R0) ≤ Rdiv (j ? x) (j ? y). +axiom Rle_R0_R1: (j ? R0) ≤ (j ? R1). +axiom div: ∀x:R. (j ? x) = Rdiv (j ? x) (S (S O)) → (j ? x) = O. diff --git a/helm/software/matita/contribs/dama/dama_didactic/depends b/helm/software/matita/contribs/dama/dama_didactic/depends new file mode 100644 index 000000000..f96fe3984 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama_didactic/depends @@ -0,0 +1,10 @@ +sequences.ma reals.ma +reals.ma nat/plus.ma +bottom.ma decl.ma nat/orders.ma nat/times.ma +deriv.ma reals.ma +ex_seq.ma sequences.ma +ex_deriv.ma deriv.ma +decl.ma +nat/orders.ma +nat/plus.ma +nat/times.ma diff --git a/helm/software/matita/contribs/dama/dama_didactic/deriv.ma b/helm/software/matita/contribs/dama/dama_didactic/deriv.ma new file mode 100644 index 000000000..5c2e734c0 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama_didactic/deriv.ma @@ -0,0 +1,114 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "reals.ma". + +axiom F:Type.(*F=funzioni regolari*) +axiom fplus:F→F→F. +axiom fmult:F→F→F. +axiom fcomp:F→F→F. + +axiom De: F→F. (*funzione derivata*) +notation "a '" + non associative with precedence 80 +for @{ 'deriv $a }. +interpretation "function derivative" 'deriv x = + (cic:/matita/didactic/deriv/De.con x). +interpretation "function mult" 'mult x y = + (cic:/matita/didactic/deriv/fmult.con x y). +interpretation "function compositon" 'compose x y = + (cic:/matita/didactic/deriv/fcomp.con x y). + +notation "hvbox(a break + b)" + right associative with precedence 45 +for @{ 'oplus $a $b }. + +interpretation "function plus" 'plus x y = + (cic:/matita/didactic/deriv/fplus.con x y). + +axiom i:R→F. (*mappatura R in F*) +coercion cic:/matita/didactic/deriv/i.con. +axiom i_comm_plus: ∀x,y:R. (i (x+y)) = (i x) + (i y). +axiom i_comm_mult: ∀x,y:R. (i (Rmult x y)) = (i x) · (i y). + +axiom freflex:F. +notation "ρ" + non associative with precedence 100 +for @{ 'rho }. +interpretation "function flip" 'rho = + cic:/matita/didactic/deriv/freflex.con. +axiom reflex_ok: ∀f:F. ρ ∘ f = (i (-R1)) · f. +axiom dereflex: ρ ' = i (-R1). (*Togliere*) + +axiom id:F. (* Funzione identita' *) +axiom fcomp_id_neutral: ∀f:F. f ∘ id = f. +axiom fcomp_id_commutative: ∀f:F. f ∘ id = id ∘ f. +axiom deid: id ' = i R1. +axiom rho_id: ρ ∘ ρ = id. + +lemma rho_disp: ρ = ρ ∘ (ρ ∘ ρ). + we need to prove (ρ = ρ ∘ (ρ ∘ ρ)). + by _ done. +qed. + +lemma id_disp: id = ρ ∘ (id ∘ ρ). + we need to prove (id = ρ ∘ (id ∘ ρ)). + by _ done. +qed. + +let rec felev (f:F) (n:nat) on n: F ≝ + match n with + [ O ⇒ i R1 + | S n ⇒ f · (felev f n) + ]. + +(* Proprietà *) + +axiom fplus_commutative: ∀ f,g:F. f + g = g + f. +axiom fplus_associative: ∀ f,g,h:F. f + (g + h) = (f + g) + h. +axiom fplus_neutral: ∀f:F. (i R0) + f = f. +axiom fmult_commutative: ∀ f,g:F. f · g = g · f. +axiom fmult_associative: ∀ f,g,h:F. f · (g · h) = (f · g) · h. +axiom fmult_neutral: ∀f:F. (i R1) · f = f. +axiom fmult_assorb: ∀f:F. (i R0) · f = (i R0). +axiom fdistr: ∀ f,g,h:F. (f + g) · h = (f · h) + (g · h). +axiom fcomp_associative: ∀ f,g,h:F. f ∘ (g ∘ h) = (f ∘ g) ∘ h. + +axiom fcomp_distr1: ∀ f,g,h:F. (f + g) ∘ h = (f ∘ h) + (g ∘ h). +axiom fcomp_distr2: ∀ f,g,h:F. (f · g) ∘ h = (f ∘ h) · (g ∘ h). + +axiom demult: ∀ f,g:F. (f · g) ' = (f ' · g) + (f · g '). +axiom decomp: ∀ f,g:F. (f ∘ g) ' = (f ' ∘ g) · g '. +axiom deplus: ∀ f,g:F. (f + g) ' = (f ') + (g '). + +axiom cost_assorb: ∀x:R. ∀f:F. (i x) ∘ f = i x. +axiom cost_deriv: ∀x:R. (i x) ' = i R0. + + +definition fpari ≝ λ f:F. f = f ∘ ρ. +definition fdispari ≝ λ f:F. f = ρ ∘ (f ∘ ρ). +axiom cost_pari: ∀ x:R. fpari (i x). + +axiom meno_piu_i: (i (-R1)) · (i (-R1)) = i R1. + +notation "hvbox(a break ^ b)" + right associative with precedence 75 +for @{ 'elev $a $b }. + +interpretation "function power" 'elev x y = + (cic:/matita/didactic/deriv/felev.con x y). + +axiom tech1: ∀n,m. F_OF_nat n + F_OF_nat m = F_OF_nat (n + m). diff --git a/helm/software/matita/contribs/dama/dama_didactic/ex_deriv.ma b/helm/software/matita/contribs/dama/dama_didactic/ex_deriv.ma new file mode 100644 index 000000000..6ce9b9f31 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama_didactic/ex_deriv.ma @@ -0,0 +1,247 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "deriv.ma". + +theorem p_plus_p_p: ∀f:F. ∀g:F. (fpari f ∧ fpari g) → fpari (f + g). + assume f:F. + assume g:F. + suppose (fpari f ∧ fpari g) (h). + by h we have (fpari f) (H) and (fpari g) (K). + we need to prove (fpari (f + g)) + or equivalently ((f + g) = (f + g) ∘ ρ). + conclude + (f + g) + = (f + (g ∘ ρ)) by _. + = ((f ∘ ρ) + (g ∘ ρ)) by _. + = ((f + g) ∘ ρ) by _ + done. +qed. + +theorem p_mult_p_p: ∀f:F. ∀g:F. (fpari f ∧ fpari g) → fpari (f · g). + assume f:F. + assume g:F. + suppose (fpari f ∧ fpari g) (h). + by h we have (fpari f) (H) and (fpari g) (K). + we need to prove (fpari (f · g)) + or equivalently ((f · g) = (f · g) ∘ ρ). + conclude + (f · g) + = (f · (g ∘ ρ)) by _. + = ((f ∘ ρ) · (g ∘ ρ)) by _. + = ((f · g) ∘ ρ) by _ + done. +qed. + +theorem d_plus_d_d: ∀f:F. ∀g:F. (fdispari f ∧ fdispari g) → fdispari (f + g). + assume f:F. + assume g:F. + suppose (fdispari f ∧ fdispari g) (h). + by h we have (fdispari f) (H) and (fdispari g) (K). + we need to prove (fdispari (f + g)) + or equivalently ((f + g) = (ρ ∘ ((f + g) ∘ ρ))). + conclude + (f + g) + = (f + (ρ ∘ (g ∘ ρ))) by _. + = ((ρ ∘ (f ∘ ρ)) + (ρ ∘ (g ∘ ρ))) by _. + = (((-R1) · (f ∘ ρ)) + (ρ ∘ (g ∘ ρ))) by _. + = (((i (-R1)) · (f ∘ ρ)) + ((i (-R1)) · (g ∘ ρ))) by _. + = (((f ∘ ρ) · (i (-R1))) + ((g ∘ ρ) · (i (-R1)))) by _. + = (((f ∘ ρ) + (g ∘ ρ)) · (i (-R1))) by _. + = ((i (-R1)) · ((f + g) ∘ ρ)) by _. + = (ρ ∘ ((f + g) ∘ ρ)) by _ + done. +qed. + +theorem d_mult_d_p: ∀f:F. ∀g:F. (fdispari f ∧ fdispari g) → fpari (f · g). + assume f:F. + assume g:F. + suppose (fdispari f ∧ fdispari g) (h). + by h we have (fdispari f) (h1) and (fdispari g) (h2). + we need to prove (fpari (f · g)) + or equivalently ((f · g) = (f · g) ∘ ρ). + conclude + (f · g) + = (f · (ρ ∘ (g ∘ ρ))) by _. + = ((ρ ∘ (f ∘ ρ)) · (ρ ∘ (g ∘ ρ))) by _. + = (((-R1) · (f ∘ ρ)) · (ρ ∘ (g ∘ ρ))) by _. + = (((-R1) · (f ∘ ρ)) · ((-R1) · (g ∘ ρ))) by _. + = ((-R1) · (f ∘ ρ) · (-R1) · (g ∘ ρ)) by _. + = ((-R1) · ((f ∘ ρ) · (-R1)) · (g ∘ ρ)) by _. + = ((-R1) · (-R1) · (f ∘ ρ) · (g ∘ ρ)) by _. + = (R1 · ((f ∘ ρ) · (g ∘ ρ))) by _. + = (((f ∘ ρ) · (g ∘ ρ))) by _. + = ((f · g) ∘ ρ) by _ + done. +qed. + +theorem p_mult_d_p: ∀f:F. ∀g:F. (fpari f ∧ fdispari g) → fdispari (f · g). + assume f:F. + assume g:F. + suppose (fpari f ∧ fdispari g) (h). + by h we have (fpari f) (h1) and (fdispari g) (h2). + we need to prove (fdispari (f · g)) + or equivalently ((f · g) = ρ ∘ ((f · g) ∘ ρ)). + conclude + (f · g) + = (f · (ρ ∘ (g ∘ ρ))) by _. + = ((f ∘ ρ) · (ρ ∘ (g ∘ ρ))) by _. + = ((f ∘ ρ) · ((-R1) · (g ∘ ρ))) by _. + = ((-R1) · ((f ∘ ρ) · (g ∘ ρ))) by _. + = ((-R1) · ((f · g) ∘ ρ)) by _. + = (ρ ∘ ((f · g) ∘ ρ)) by _ + done. +qed. + +theorem p_plus_c_p: ∀f:F. ∀x:R. fpari f → fpari (f + (i x)). + assume f:F. + assume x:R. + suppose (fpari f) (h). + we need to prove (fpari (f + (i x))) + or equivalently (f + (i x) = (f + (i x)) ∘ ρ). + by _ done. +qed. + +theorem p_mult_c_p: ∀f:F. ∀x:R. fpari f → fpari (f · (i x)). + assume f:F. + assume x:R. + suppose (fpari f) (h). + we need to prove (fpari (f · (i x))) + or equivalently ((f · (i x)) = (f · (i x)) ∘ ρ). + by _ done. +qed. + +theorem d_mult_c_d: ∀f:F. ∀x:R. fdispari f → fdispari (f · (i x)). + assume f:F. + assume x:R. + suppose (fdispari f) (h). + rewrite < fmult_commutative. + by _ done. +qed. + +theorem d_comp_d_d: ∀f,g:F. fdispari f → fdispari g → fdispari (f ∘ g). + assume f:F. + assume g:F. + suppose (fdispari f) (h1). + suppose (fdispari g) (h2). + we need to prove (fdispari (f ∘ g)) + or equivalently (f ∘ g = ρ ∘ ((f ∘ g) ∘ ρ)). + conclude + (f ∘ g) + = (ρ ∘ (f ∘ ρ) ∘ g) by _. + = (ρ ∘ (f ∘ ρ) ∘ ρ ∘ (g ∘ ρ)) by _. + = (ρ ∘ f ∘ (ρ ∘ ρ) ∘ (g ∘ ρ)) by _. + = (ρ ∘ f ∘ id ∘ (g ∘ ρ)) by _. + = (ρ ∘ ((f ∘ g) ∘ ρ)) by _ + done. +qed. + +theorem pari_in_dispari: ∀ f:F. fpari f → fdispari f '. + assume f:F. + suppose (fpari f) (h1). + we need to prove (fdispari f ') + or equivalently (f ' = ρ ∘ (f ' ∘ ρ)). + conclude + (f ') + = ((f ∘ ρ) ') by _. (*h1*) + = ((f ' ∘ ρ) · ρ ') by _. (*demult*) + = ((f ' ∘ ρ) · -R1) by _. (*deinv*) + = ((-R1) · (f ' ∘ ρ)) by _. (*fmult_commutative*) + = (ρ ∘ (f ' ∘ ρ)) (*reflex_ok*) by _ + done. +qed. + +theorem dispari_in_pari: ∀ f:F. fdispari f → fpari f '. + assume f:F. + suppose (fdispari f) (h1). + we need to prove (fpari f ') + or equivalently (f ' = f ' ∘ ρ). + conclude + (f ') + = ((ρ ∘ (f ∘ ρ)) ') by _. + = ((ρ ' ∘ (f ∘ ρ)) · ((f ∘ ρ) ')) by _. + = (((-R1) ∘ (f ∘ ρ)) · ((f ∘ ρ) ')) by _. + = (((-R1) ∘ (f ∘ ρ)) · ((f ' ∘ ρ) · (-R1))) by _. + = ((-R1) · ((f ' ∘ ρ) · (-R1))) by _. + = (((f ' ∘ ρ) · (-R1)) · (-R1)) by _. + = ((f ' ∘ ρ) · ((-R1) · (-R1))) by _. + = ((f ' ∘ ρ) · R1) by _. + = (f ' ∘ ρ) by _ + done. +qed. + +alias symbol "plus" = "natural plus". +alias num (instance 0) = "natural number". +theorem de_prodotto_funzioni: + ∀ n:nat. (id ^ (n + 1)) ' = ((n + 1)) · (id ^ n). + assume n:nat. + we proceed by induction on n to prove + ((id ^ (n + 1)) ' = (i (n + 1)) · (id ^ n)). + case O. + we need to prove ((id ^ (0 + 1)) ' = (i 1) · (id ^ 0)). + conclude + ((id ^ (0 + 1)) ') + = ((id ^ 1) ') by _. + = ((id · (id ^ 0)) ') by _. + = ((id · R1) ') by _. + = (id ') by _. + = (i R1) by _. + = (i R1 · R1) by _. + = (i (R0 + R1) · R1) by _. + = (1 · (id ^ 0)) by _ + done. + case S (n:nat). + by induction hypothesis we know + ((id ^ (n + 1)) ' = ((n + 1)) · (id ^ n)) (H). + we need to prove + ((id ^ ((n + 1)+1)) ' + = (i ((n + 1)+1)) · (id ^ (n+1))). + conclude + ((id ^ ((n + 1) + 1)) ') + = ((id ^ ((n + (S 1)))) ') by _. + = ((id ^ (S (n + 1))) ') by _. + = ((id · (id ^ (n + 1))) ') by _. + = ((id ' · (id ^ (n + 1))) + (id · (id ^ (n + 1)) ')) by _. + alias symbol "plus" (instance 1) = "function plus". + = ((R1 · (id ^ (n + 1))) + (id · (((n + 1)) · (id ^ n)))) by _. + = ((R1 · (id ^ (n + 1))) + (((n + 1) · id · (id ^ n)))) by _. + = ((R1 · (id ^ (n + 1))) + ((n + 1) · (id ^ (1 + n)))) by _. + = ((R1 · (id ^ (n + 1))) + ((n + 1) · (id ^ (n + 1)))) by _. + alias symbol "plus" (instance 2) = "function plus". + = (((R1 + (n + 1))) · (id ^ (n + 1))) by _. + = ((1 + (n + 1)) · (id ^ (n + 1))) by _; + = ((n + 1 + 1) · (id ^ (n + 1))) by _ + done. +qed. + +let rec times (n:nat) (x:R) on n: R ≝ + match n with + [ O ⇒ R0 + | S n ⇒ Rplus x (times n x) + ]. + +axiom invS: nat→R. +axiom invS1: ∀n:nat. Rmult (invS n) (real_of_nat (n + 1)) = R1. +axiom invS2: invS 1 + invS 1 = R1. (*forse*) + +axiom e:F. +axiom deriv_e: e ' = e. +axiom e1: e · (e ∘ ρ) = R1. + +(* +theorem decosh_senh: + (invS 1 · (e + (e ∘ ρ)))' = (invS 1 · (e + (ρ ∘ (e ∘ ρ)))). +*) diff --git a/helm/software/matita/contribs/dama/dama_didactic/ex_seq.ma b/helm/software/matita/contribs/dama/dama_didactic/ex_seq.ma new file mode 100644 index 000000000..fcefda244 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama_didactic/ex_seq.ma @@ -0,0 +1,201 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "sequences.ma". + +(* +ESERCIZI SULLE SUCCESSIONI + +Dimostrare che la successione alpha converge a 0 +*) + +definition F ≝ λ x:R.Rdiv x (S (S O)). + +definition alpha ≝ successione F R1. + +axiom cont: continuo F. + +lemma l1: monotone_not_increasing alpha. + we need to prove (monotone_not_increasing alpha) + or equivalently (∀n:nat. alpha (S n) ≤ alpha n). + assume n:nat. + we need to prove (alpha (S n) ≤ alpha n) + or equivalently (Rdiv (alpha n) (S (S O)) ≤ alpha n). + by _ done. +qed. + +lemma l2: inf_bounded alpha. + we need to prove (inf_bounded alpha) + or equivalently (∃m. ∀n:nat. m ≤ alpha n). + (* da trovare il modo giusto *) + cut (∀n:nat.R0 ≤ alpha n).by (ex_intro ? ? R0 Hcut) done. + (* fatto *) + we need to prove (∀n:nat. R0 ≤ alpha n). + assume n:nat. + we proceed by induction on n to prove (R0 ≤ alpha n). + case O. + (* manca il comando + the thesis becomes (R0 ≤ alpha O) + or equivalently (R0 ≤ R1). + by _ done. *) + (* approssimiamo con questo *) + we need to prove (R0 ≤ alpha O) + or equivalently (R0 ≤ R1). + by _ done. + case S (m:nat). + by induction hypothesis we know (R0 ≤ alpha m) (H). + we need to prove (R0 ≤ alpha (S m)) + or equivalently (R0 ≤ Rdiv (alpha m) (S (S O))). + by _ done. +qed. + +axiom xxx': +∀ F: R → R. ∀b:R. continuo F → + ∀ l. tends_to (successione F b) l → + punto_fisso F l. + +theorem dimostrazione: tends_to alpha O. + by _ let l:R such that (tends_to alpha l) (H). +(* unfold alpha in H. + change in match alpha in H with (successione F O). + check(xxx' F cont l H).*) + by (lim_punto_fisso F R1 cont l H) we proved (punto_fisso F l) (H2) + that is equivalent to (l = (Rdiv l (S (S O)))). + by _ we proved (tends_to alpha l = tends_to alpha O) (H4). + rewrite < H4. + by _ done. +qed. + +(******************************************************************************) + +(* Dimostrare che la successione alpha2 diverge *) + +definition F2 ≝ λ x:R. Rmult x x. + +definition alpha2 ≝ successione F2 (S (S O)). + +lemma uno: ∀n. alpha2 n ≥ R1. + we need to prove (∀n. alpha2 n ≥ R1). + assume n:nat. + we proceed by induction on n to prove (alpha2 n ≥ R1). + case O. + alias num (instance 0) = "natural number". + we need to prove (alpha2 0 ≥ R1) + or equivalently ((S (S O)) ≥ R1). + by _ done. + case S (m:nat). + by induction hypothesis we know (alpha2 m ≥ R1) (H). + we need to prove (alpha2 (S m) ≥ R1) + or equivalently (Rmult (alpha2 m) (alpha2 m) ≥ R1).letin xxx := (n ≤ n); + by _ we proved (R1 · R1 ≤ alpha2 m · alpha2 m) (H1). + by _ we proved (R1 · R1 = R1) (H2). + rewrite < H2. + by _ done. +qed. + +lemma mono1: monotone_not_decreasing alpha2. + we need to prove (monotone_not_decreasing alpha2) + or equivalently (∀n:nat. alpha2 n ≤ alpha2 (S n)). + assume n:nat. + we need to prove (alpha2 n ≤ alpha2 (S n)) + or equivalently (alpha2 n ≤ Rmult (alpha2 n) (alpha2 n)). + by _ done. +qed. + +(* +lemma due: ∀n. Relev (alpha2 0) n ≥ R0. + we need to prove (∀n. Relev (alpha2 0) n ≥ R0) + or equivalently (∀n. Relev (S (S O)) n ≥ R0). + by _ done. +qed. + +lemma tre: ∀n. alpha2 (S n) ≥ Relev (alpha2 0) (S n). + we need to prove (∀n. alpha2 (S n) ≥ Relev (alpha2 0) (S n)). + assume n:nat. + we proceed by induction on n to prove (alpha2 (S n) ≥ Relev (alpha2 0) (S n)). + case 0. + we need to prove (alpha2 1 ≥ Relev (alpha2 0) R1) + or equivalently (Rmult R2 R2 ≥ R2). + by _ done. + case S (m:nat). + by induction hypothesis we know (alpha2 (S m) ≥ Relev (alpha2 0) (S m)) (H). + we need to prove (alpha2 (S (S m)) ≥ Relev (alpha2 0) (S (S m))) + or equivalently + (*..TODO..*) + +theorem dim2: tends_to_inf alpha2. +(*..TODO..*) +qed. +*) + +(******************************************************************************) + +(* Dimostrare che la successione alpha3 converge a 0 *) +(* +definition alpha3 ≝ successione F2 (Rdiv (S 0) (S (S 0))). + +lemma quattro: ∀n. alpha3 n ≤ R1. + assume n:nat. + we need to prove (∀n. alpha3 n ≤ R1). + we proceed by induction on n to prove (alpha3 n ≤ R1). + case O. + we need to prove (alpha3 0 ≤ R1). + by _ done. + case S (m:nat). + by induction hypothesis we know (alpha3 m ≤ R1) (H). + we need to prove (alpha3 (S m) ≤ R1) + or equivalently (Rmult (alpha3 m) (alpha3 m) ≤ R1). + by _ done. + qed. + +lemma mono3: monotone_not_increasing alpha3. + we need to prove (monotone_not_increasing alpha3) + or equivalently (∀n:nat. alpha (S n) ≤ alpha n). + assume n:nat. + we need to prove (alpha (S n) ≤ alpha n) + or equivalently (Rmult (alpha3 n) (alpha3 n) ≤ alpha3 n). + by _ done. +qed. + +lemma bound3: inf_bounded alpha3. + we need to prove (inf_bounded alpha3) + or equivalently (∃m. ∀n:nat. m ≤ alpha3 n). + (* da trovare il modo giusto *) + cut (∀n:nat.R0 ≤ alpha3 n).by (ex_intro ? ? R0 Hcut) done. + (* fatto *) + we need to prove (∀n:nat. R0 ≤ alpha3 n). + assume n:nat. + we proceed by induction on n to prove (R0 ≤ alpha3 n). + case O. + (* manca il comando + the thesis becomes (R0 ≤ alpha O) + or equivalently (R0 ≤ R1). + by _ done. *) + (* approssimiamo con questo *) + we need to prove (R0 ≤ alpha3 O) + or equivalently (R0 ≤ Rdiv (S 0) (S (S 0))). + by _ done. + case S (m:nat). + by induction hypothesis we know (R0 ≤ alpha3 m) (H). + we need to prove (R0 ≤ alpha3 (S m)) + or equivalently (R0 ≤ Rmult (alpha3 m) (alpha3 m)). + by _ done. +qed. + +theorem dim3: tends_to alpha3 O. +(*..TODO..*) +qed. +*) \ No newline at end of file diff --git a/helm/software/matita/contribs/dama/dama_didactic/reals.ma b/helm/software/matita/contribs/dama/dama_didactic/reals.ma new file mode 100644 index 000000000..7d8a068c8 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama_didactic/reals.ma @@ -0,0 +1,103 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "nat/plus.ma". + +axiom R:Type. +axiom R0:R. +axiom R1:R. +axiom Rplus: R→R→R. +axiom Ropp:R→R. (*funzione da x → -x*) +axiom Rmult: R→R→R. +axiom Rdiv: R→R→R. +axiom Relev: R→R→R. +axiom Rle: R→R→Prop. +axiom Rge: R→R→Prop. + +interpretation "real plus" 'plus x y = + (cic:/matita/didactic/reals/Rplus.con x y). + +interpretation "real opp" 'uminus x = + (cic:/matita/didactic/reals/Ropp.con x). + +notation "hvbox(a break · b)" + right associative with precedence 55 +for @{ 'mult $a $b }. + +interpretation "real mult" 'mult x y = + (cic:/matita/didactic/reals/Rmult.con x y). + +interpretation "real leq" 'leq x y = + (cic:/matita/didactic/reals/Rle.con x y). + +interpretation "real geq" 'geq x y = + (cic:/matita/didactic/reals/Rge.con x y). + +let rec elev (x:R) (n:nat) on n: R ≝ + match n with + [O ⇒ R1 + | S n ⇒ Rmult x (elev x n) + ]. + +let rec real_of_nat (n:nat) : R ≝ + match n with + [ O ⇒ R0 + | S n ⇒ + match n with + [ O ⇒ R1 + | _ ⇒ real_of_nat n + R1 + ] + ]. + +coercion cic:/matita/didactic/reals/real_of_nat.con. + +axiom Rplus_commutative: ∀x,y:R. x+y = y+x. +axiom R0_neutral: ∀x:R. x+R0=x. +axiom Rdiv_le: ∀x,y:R. R1 ≤ y → Rdiv x y ≤ x. +axiom R2_1: R1 ≤ S (S O). +(* assioma falso! *) +axiom Rmult_Rle: ∀x,y,z,w. x ≤ y → z ≤ w → Rmult x z ≤ Rmult y w. + +axiom Rdiv_pos: ∀ x,y:R. R0 ≤ x → R1 ≤ y → R0 ≤ Rdiv x y. +axiom Rle_R0_R1: R0 ≤ R1. +axiom div: ∀x:R. x = Rdiv x (S (S O)) → x = O. +(* Proprieta' elevamento a potenza NATURALE *) +axiom elev_incr: ∀x:R.∀n:nat. R1 ≤ x → elev x (S n) ≥ elev x n. +axiom elev_decr: ∀x:R.∀n:nat. R0 ≤ x ∧ x ≤ R1 → elev x (S n) ≤ elev x n. +axiom Rle_to_Rge: ∀x,y:R. x ≤ y → y ≥ x. +axiom Rge_to_Rle: ∀x,y:R. x ≥ y → y ≤ x. + +(* Proprieta' elevamento a potenza TRA REALI *) +(* +axiom Relev_ge: ∀x,y:R. + (x ≥ R1 ∧ y ≥ R1) ∨ (x ≤ R1 ∧ y ≤ R1) → Relev x y ≥ x. +axiom Relev_le: ∀x,y:R. + (x ≥ R1 ∧ y ≤ R1) ∨ (x ≤ R1 ∧ y ≥ R1) → Relev x y ≤ x. +*) + +lemma stupido: ∀x:R.R0+x=x. + assume x:R. + conclude (R0+x) = (x+R0) by _. + = x by _ + done. +qed. + +axiom opposto1: ∀x:R. x + -x = R0. +axiom opposto2: ∀x:R. -x = Rmult x (-R1). +axiom meno_piu: Rmult (-R1) (-R1) = R1. +axiom R1_neutral: ∀x:R.Rmult R1 x = x. +(* assioma falso *) +axiom uffa: ∀x,y:R. R1 ≤ x → y ≤ x · y. diff --git a/helm/software/matita/contribs/dama/dama_didactic/root b/helm/software/matita/contribs/dama/dama_didactic/root new file mode 100644 index 000000000..a9ae19c08 --- /dev/null +++ b/helm/software/matita/contribs/dama/dama_didactic/root @@ -0,0 +1,2 @@ +baseuri=cic:/matita/didactic +include_paths=../../../tests diff --git a/helm/software/matita/contribs/dama/dama_didactic/sequences.ma b/helm/software/matita/contribs/dama/dama_didactic/sequences.ma new file mode 100644 index 000000000..7e558030c --- /dev/null +++ b/helm/software/matita/contribs/dama/dama_didactic/sequences.ma @@ -0,0 +1,57 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "reals.ma". + +axiom continuo: (R → R) → Prop. +axiom tends_to: (nat → R) → R → Prop. +axiom tends_to_inf: (nat → R) → Prop. + +definition monotone_not_increasing ≝ + λ alpha:nat→R. + ∀n:nat.alpha (S n) ≤ alpha n. + +definition inf_bounded ≝ + λ alpha:nat → R. + ∃ m. ∀ n:nat. m ≤ alpha n. + +axiom converge: ∀ alpha. + monotone_not_increasing alpha → + inf_bounded alpha → + ∃ l. tends_to alpha l. + +definition punto_fisso := + λ F:R→R. λ x. x = F x. + +let rec successione F x (n:nat) on n : R ≝ + match n with + [ O ⇒ x + | S n ⇒ F (successione F x n) + ]. + +axiom lim_punto_fisso: +∀ F: R → R. ∀b:R. continuo F → + let alpha := successione F b in + ∀ l. tends_to alpha l → + punto_fisso F l. + +definition monotone_not_decreasing ≝ + λ alpha:nat→R. + ∀n:nat.alpha n ≤ alpha (S n). + +definition sup_bounded ≝ + λ alpha:nat → R. + ∃ m. ∀ n:nat. alpha n ≤ m. diff --git a/helm/software/matita/dama/Makefile b/helm/software/matita/dama/Makefile deleted file mode 100644 index 2eefa0cbd..000000000 --- a/helm/software/matita/dama/Makefile +++ /dev/null @@ -1,10 +0,0 @@ -DIR=$(shell basename $$PWD) - -$(DIR) all: - ../matitac -$(DIR).opt opt all.opt: - ../matitac.opt -clean: - ../matitaclean -clean.opt: - ../matitaclean.opt diff --git a/helm/software/matita/dama/Q_is_orded_divisble_group.ma b/helm/software/matita/dama/Q_is_orded_divisble_group.ma deleted file mode 100644 index 762554dd0..000000000 --- a/helm/software/matita/dama/Q_is_orded_divisble_group.ma +++ /dev/null @@ -1,272 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "Q/q.ma". -include "ordered_divisible_group.ma". - -definition strong_decidable ≝ - λA:Prop.A ∨ ¬ A. - -theorem strong_decidable_to_Not_Not_eq: - ∀T:Type.∀eq: T → T → Prop.∀x,y:T. - strong_decidable (x=y) → ¬x≠y → x=y. - intros; - cases s; - [ assumption - | elim (H H1) - ] -qed. - -definition apartness_of_strong_decidable: - ∀T:Type.(∀x,y:T.strong_decidable (x=y)) → apartness. - intros; - constructor 1; - [ apply T - | apply (λx,y:T.x ≠ y); - | simplify; - intros 2; - apply (H (refl_eq ??)); - | simplify; - intros 4; - apply H; - symmetry; - assumption - | simplify; - intros; - elim (f x z); - [ elim (f z y); - [ elim H; - transitivity z; - assumption - | right; - assumption - ] - | left; - assumption - ] - ] -qed. - -theorem strong_decidable_to_strong_ext: - ∀T:Type.∀sd:∀x,y:T.strong_decidable (x=y). - ∀op:T→T. strong_ext (apartness_of_strong_decidable ? sd) op. - intros 6; - intro; - apply a; - apply eq_f; - assumption; -qed. - -theorem strong_decidable_to_transitive_to_cotransitive: - ∀T:Type.∀le:T→T→Prop.(∀x,y:T.strong_decidable (le x y)) → - transitive ? le → cotransitive ? (λx,y.¬ (le x y)). - intros; - whd; - simplify; - intros; - elim (f x z); - [ elim (f z y); - [ elim H; - apply (t ? z); - assumption - | right; - assumption - ] - | left; - assumption - ] -qed. - -theorem reflexive_to_coreflexive: - ∀T:Type.∀le:T→T→Prop.reflexive ? le → coreflexive ? (λx,y.¬(le x y)). - intros; - unfold; - simplify; - intros 2; - apply H1; - apply H; -qed. - -definition ordered_set_of_strong_decidable: - ∀T:Type.∀le:T→T→Prop.(∀x,y:T.strong_decidable (le x y)) → - transitive ? le → reflexive ? le → excess. - intros; - constructor 1; - [ apply T - | apply (λx,y.¬(le x y)); - | apply reflexive_to_coreflexive; - assumption - | apply strong_decidable_to_transitive_to_cotransitive; - assumption - ] -qed. - -definition abelian_group_of_strong_decidable: - ∀T:Type.∀plus:T→T→T.∀zero:T.∀opp:T→T. - (∀x,y:T.strong_decidable (x=y)) → - associative ? plus (eq T) → - commutative ? plus (eq T) → - (∀x:T. plus zero x = x) → - (∀x:T. plus (opp x) x = zero) → - abelian_group. - intros; - constructor 1; - [apply (apartness_of_strong_decidable ? f);] - try assumption; - [ change with (associative ? plus (λx,y:T.¬x≠y)); - simplify; - intros; - intro; - apply H2; - apply a; - | intros 2; - intro; - apply a1; - apply c; - | intro; - intro; - apply a1; - apply H - | intro; - intro; - apply a1; - apply H1 - | intros; - apply strong_decidable_to_strong_ext; - assumption - ] -qed. - -definition left_neutral ≝ λC:Type.λop.λe:C. ∀x:C. op e x = x. -definition left_inverse ≝ λC:Type.λop.λe:C.λinv:C→C. ∀x:C. op (inv x) x = e. - -record nabelian_group : Type ≝ - { ncarr:> Type; - nplus: ncarr → ncarr → ncarr; - nzero: ncarr; - nopp: ncarr → ncarr; - nplus_assoc: associative ? nplus (eq ncarr); - nplus_comm: commutative ? nplus (eq ncarr); - nzero_neutral: left_neutral ? nplus nzero; - nopp_inverse: left_inverse ? nplus nzero nopp - }. - -definition abelian_group_of_nabelian_group: - ∀G:nabelian_group.(∀x,y:G.strong_decidable (x=y)) → abelian_group. - intros; - apply abelian_group_of_strong_decidable; - [2: apply (nplus G) - | skip - | apply (nzero G) - | apply (nopp G) - | assumption - | apply nplus_assoc; - | apply nplus_comm; - | apply nzero_neutral; - | apply nopp_inverse - ] -qed. - -definition Z_abelian_group: abelian_group. - apply abelian_group_of_nabelian_group; - [ constructor 1; - [ apply Z - | apply Zplus - | apply OZ - | apply Zopp - | whd; - intros; - symmetry; - apply associative_Zplus - | apply sym_Zplus - | intro; - reflexivity - | intro; - rewrite > sym_Zplus; - apply Zplus_Zopp; - ] - | simplify; - intros; - unfold; - generalize in match (eqZb_to_Prop x y); - elim (eqZb x y); - simplify in H; - [ left ; assumption - | right; assumption - ] - ] -qed. - -record nordered_set: Type ≝ - { nos_carr:> Type; - nos_le: nos_carr → nos_carr → Prop; - nos_reflexive: reflexive ? nos_le; - nos_transitive: transitive ? nos_le - }. - -definition excess_of_nordered_group: - ∀O:nordered_set.(∀x,y:O. strong_decidable (nos_le ? x y)) → excess. - intros; - constructor 1; - [ apply (nos_carr O) - | apply (λx,y.¬(nos_le ? x y)) - | apply reflexive_to_coreflexive; - apply nos_reflexive - | apply strong_decidable_to_transitive_to_cotransitive; - [ assumption - | apply nos_transitive - ] - ] -qed. - -lemma non_deve_stare_qui: reflexive ? Zle. - intro; - elim x; - [ exact I - |2,3: simplify; - apply le_n; - ] -qed. - -axiom non_deve_stare_qui3: ∀x,y:Z. x < y → x ≤ y. - -axiom non_deve_stare_qui4: ∀x,y:Z. x < y → y ≰ x. - -definition Z_excess: excess. - apply excess_of_nordered_group; - [ constructor 1; - [ apply Z - | apply Zle - | apply non_deve_stare_qui - | apply transitive_Zle - ] - | simplify; - intros; - unfold; - generalize in match (Z_compare_to_Prop x y); - cases (Z_compare x y); simplify; intro; - [ left; - apply non_deve_stare_qui3; - assumption - | left; - rewrite > H; - apply non_deve_stare_qui - | right; - apply non_deve_stare_qui4; - assumption - ] - ] -qed. \ No newline at end of file diff --git a/helm/software/matita/dama/TODO b/helm/software/matita/dama/TODO deleted file mode 100644 index 353329bea..000000000 --- a/helm/software/matita/dama/TODO +++ /dev/null @@ -1,4 +0,0 @@ -changing file resets the display-notation ref, but not the GUI tick -mettere una maction in tutti i body (ma forse non basta) -la visualizzazione dellea notazione se viene disttivata e poi se ne definisce una... la rende causa -il fatto che disabilitarla significa rimuovere quelle definite fino ad ora, non disabilitarla in senso proprio. diff --git a/helm/software/matita/dama/attic/fields.ma b/helm/software/matita/dama/attic/fields.ma deleted file mode 100644 index 824fdfa9e..000000000 --- a/helm/software/matita/dama/attic/fields.ma +++ /dev/null @@ -1,60 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "attic/rings.ma". - -record is_field (R:ring) (inv:∀x:R.x ≠ 0 → R) : Prop -≝ - { (* multiplicative abelian properties *) - mult_comm_: symmetric ? (mult R); - (* multiplicative group properties *) - inv_inverse_: ∀x.∀p: x ≠ 0. inv x p * x = 1 - }. - -lemma opp_opp: ∀R:ring. ∀x:R. --x=x. -intros; -apply (cancellationlaw ? (-x) ? ?); -rewrite > (opp_inverse R x); -rewrite > plus_comm; -rewrite > opp_inverse; -reflexivity. -qed. - -let rec sum (C:Type) (plus:C→C→C) (zero,one:C) (n:nat) on n ≝ - match n with - [ O ⇒ zero - | (S m) ⇒ plus one (sum C plus zero one m) - ]. - -record field : Type \def - { f_ring:> ring; - inv: ∀x:f_ring. x ≠ 0 → f_ring; - field_properties: is_field f_ring inv - }. - -theorem mult_comm: ∀F:field.symmetric ? (mult F). - intro; - apply (mult_comm_ ? ? (field_properties F)). -qed. - -theorem inv_inverse: ∀F:field.∀x:F.∀p: x ≠ 0. (inv ? x p)*x = 1. - intro; - apply (inv_inverse_ ? ? (field_properties F)). -qed. - -(*CSC: qua funzionava anche mettendo ? al posto della prima F*) -definition sum_field ≝ - λF:field. sum F (plus F) 0 1. diff --git a/helm/software/matita/dama/attic/integration_algebras.ma b/helm/software/matita/dama/attic/integration_algebras.ma deleted file mode 100644 index 1b775fa78..000000000 --- a/helm/software/matita/dama/attic/integration_algebras.ma +++ /dev/null @@ -1,368 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "attic/vector_spaces.ma". -include "lattice.ma". - -(**************** Riesz Spaces ********************) - -record pre_riesz_space (K:ordered_field_ch0) : Type \def - { rs_vector_space:> vector_space K; - rs_lattice_: lattice; - rs_ordered_abelian_group_: ordered_abelian_group; - rs_with1: - og_abelian_group rs_ordered_abelian_group_ = vs_abelian_group ? rs_vector_space; - rs_with2: - og_ordered_set rs_ordered_abelian_group_ = ordered_set_of_lattice rs_lattice_ - }. - -lemma rs_lattice: ∀K.pre_riesz_space K → lattice. - intros (K V); - cut (os_carrier (rs_lattice_ ? V) = V); - [ apply mk_lattice; - [ apply (carrier V) - | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? Hcut); - apply l_join - | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? Hcut); - apply l_meet - | apply - (eq_rect' ? ? - (λa:Type.λH:os_carrier (rs_lattice_ ? V)=a. - is_lattice a - (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) - (l_join (rs_lattice_ K V)) a H) - (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) - (l_meet (rs_lattice_ K V)) a H)) - ? ? Hcut); - simplify; - apply l_lattice_properties - ] - | transitivity (os_carrier (rs_ordered_abelian_group_ ? V)); - [ apply (eq_f ? ? os_carrier); - symmetry; - apply rs_with2 - | apply (eq_f ? ? carrier); - apply rs_with1 - ] - ]. -qed. - -coercion cic:/matita/attic/integration_algebras/rs_lattice.con. - -lemma rs_ordered_abelian_group: ∀K.pre_riesz_space K → ordered_abelian_group. - intros (K V); - apply mk_ordered_abelian_group; - [ apply mk_pre_ordered_abelian_group; - [ apply (vs_abelian_group ? (rs_vector_space ? V)) - | apply (ordered_set_of_lattice (rs_lattice ? V)) - | reflexivity - ] - | simplify; - generalize in match - (og_ordered_abelian_group_properties (rs_ordered_abelian_group_ ? V)); - intro P; - unfold in P; - elim daemon(* - apply - (eq_rect ? ? - (λO:ordered_set. - ∀f,g,h. - os_le O f g → - os_le O - (plus (abelian_group_OF_pre_riesz_space K V) f h) - (plus (abelian_group_OF_pre_riesz_space K V) g h)) - ? ? (rs_with2 ? V)); - apply - (eq_rect ? ? - (λG:abelian_group. - ∀f,g,h. - os_le (ordered_set_OF_pre_riesz_space K V) f g → - os_le (ordered_set_OF_pre_riesz_space K V) - (plus (abelian_group_OF_pre_riesz_space K V) f h) - (plus (abelian_group_OF_pre_riesz_space K V) g h)) - ? ? (rs_with1 ? V)); - simplify; - apply og_ordered_abelian_group_properties*) - ] -qed. - -coercion cic:/matita/attic/integration_algebras/rs_ordered_abelian_group.con. - -record is_riesz_space (K:ordered_field_ch0) (V:pre_riesz_space K) : Prop ≝ - { rs_compat_le_times: ∀a:K.∀f:V. 0≤a → 0≤f → 0≤a*f - }. - -record riesz_space (K:ordered_field_ch0) : Type \def - { rs_pre_riesz_space:> pre_riesz_space K; - rs_riesz_space_properties: is_riesz_space ? rs_pre_riesz_space - }. - -record is_positive_linear (K) (V:riesz_space K) (T:V→K) : Prop ≝ - { positive: ∀u:V. 0≤u → 0≤T u; - linear1: ∀u,v:V. T (u+v) = T u + T v; - linear2: ∀u:V.∀k:K. T (k*u) = k*(T u) - }. - -record sequentially_order_continuous (K) (V:riesz_space K) (T:V→K) : Prop ≝ - { soc_incr: - ∀a:nat→V.∀l:V.is_increasing ? a → is_sup V a l → - is_increasing K (λn.T (a n)) ∧ tends_to ? (λn.T (a n)) (T l) - }. - -definition absolute_value ≝ λK.λS:riesz_space K.λf:S.f ∨ -f. - -(**************** Normed Riesz spaces ****************************) - -definition is_riesz_norm ≝ - λR:real.λV:riesz_space R.λnorm:norm R V. - ∀f,g:V. absolute_value ? V f ≤ absolute_value ? V g → - n_function R V norm f ≤ n_function R V norm g. - -record riesz_norm (R:real) (V:riesz_space R) : Type ≝ - { rn_norm:> norm R V; - rn_riesz_norm_property: is_riesz_norm ? ? rn_norm - }. - -(*CSC: non fa la chiusura delle coercion verso funclass *) -definition rn_function ≝ - λR:real.λV:riesz_space R.λnorm:riesz_norm ? V. - n_function R V (rn_norm ? ? norm). - -coercion cic:/matita/attic/integration_algebras/rn_function.con 1. - -(************************** L-SPACES *************************************) -(* -record is_l_space (R:real) (V:riesz_space R) (norm:riesz_norm ? V) : Prop ≝ - { ls_banach: is_complete ? V (induced_distance ? ? norm); - ls_linear: ∀f,g:V. le ? V 0 f → le ? V 0 g → norm (f+g) = norm f + norm g - }. -*) -(******************** ARCHIMEDEAN RIESZ SPACES ***************************) - -record is_archimedean_riesz_space (K) (S:riesz_space K) : Prop -\def - { ars_archimedean: ∃u:S.∀n.∀a.∀p:n > O. - absolute_value ? S a ≤ - (inv K (sum_field K n) (not_eq_sum_field_zero K n p))* u → - a = 0 - }. - -record archimedean_riesz_space (K:ordered_field_ch0) : Type \def - { ars_riesz_space:> riesz_space K; - ars_archimedean_property: is_archimedean_riesz_space ? ars_riesz_space - }. - -definition is_weak_unit ≝ -(* This definition is by Spitters. He cites Fremlin 353P, but: - 1. that theorem holds only in f-algebras (as in Spitters, but we are - defining it on Riesz spaces) - 2. Fremlin proves |x|/\u=0 \to u=0. How do we remove the absolute value? - λR:real.λV:archimedean_riesz_space R.λunit: V. - ∀x:V. meet x unit = 0 → u = 0. - 3. Fremlin proves u > 0 implies x /\ u > 0 > 0 for Archimedean spaces - only. We pick this definition for now. -*) λR:real.λV:archimedean_riesz_space R.λe:V. - ∀v:V. 0 archimedean_riesz_space R; - irs_unit: irs_archimedean_riesz_space; - irs_weak_unit: is_weak_unit ? ? irs_unit; - integral: irs_archimedean_riesz_space → R; - irs_positive_linear: is_positive_linear ? ? integral; - irs_limit1: - ∀f:irs_archimedean_riesz_space. - tends_to ? - (λn.integral (f ∧ ((sum_field R n)*irs_unit))) - (integral f); - irs_limit2: - ∀f:irs_archimedean_riesz_space. - tends_to ? - (λn. - integral (f ∧ - ((inv ? (sum_field R (S n)) - (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n))) - ) * irs_unit))) 0; - irs_quotient_space1: - ∀f,g:irs_archimedean_riesz_space. - integral (absolute_value ? irs_archimedean_riesz_space (f - g)) = 0 → f=g - }. - -definition induced_norm_fun ≝ - λR:real.λV:integration_riesz_space R.λf:V. - integral ? V (absolute_value ? ? f). - -lemma induced_norm_is_norm: - ∀R:real.∀V:integration_riesz_space R.is_norm R V (induced_norm_fun ? V). - elim daemon.(* - intros; - apply mk_is_norm; - [ apply mk_is_semi_norm; - [ unfold induced_norm_fun; - intros; - apply positive; - [ apply (irs_positive_linear ? V) - | (* difficile *) - elim daemon - ] - | intros; - unfold induced_norm_fun; - (* facile *) - elim daemon - | intros; - unfold induced_norm_fun; - (* difficile *) - elim daemon - ] - | intros; - unfold induced_norm_fun in H; - apply irs_quotient_space1; - unfold minus; - rewrite < plus_comm; - rewrite < eq_zero_opp_zero; - rewrite > zero_neutral; - assumption - ].*) -qed. - -definition induced_norm ≝ - λR:real.λV:integration_riesz_space R. - mk_norm ? ? (induced_norm_fun ? V) (induced_norm_is_norm ? V). - -lemma is_riesz_norm_induced_norm: - ∀R:real.∀V:integration_riesz_space R. - is_riesz_norm ? ? (induced_norm ? V). - intros; - unfold is_riesz_norm; - intros; - unfold induced_norm; - simplify; - unfold induced_norm_fun; - (* difficile *) - elim daemon. -qed. - -definition induced_riesz_norm ≝ - λR:real.λV:integration_riesz_space R. - mk_riesz_norm ? ? (induced_norm ? V) (is_riesz_norm_induced_norm ? V). - -definition distance_induced_by_integral ≝ - λR:real.λV:integration_riesz_space R. - induced_distance ? ? (induced_norm R V). - -definition is_complete_integration_riesz_space ≝ - λR:real.λV:integration_riesz_space R. - is_complete ? ? (distance_induced_by_integral ? V). - -record complete_integration_riesz_space (R:real) : Type ≝ - { cirz_integration_riesz_space:> integration_riesz_space R; - cirz_complete_integration_riesz_space_property: - is_complete_integration_riesz_space ? cirz_integration_riesz_space - }. - -(* now we prove that any complete integration riesz space is an L-space *) - -(*theorem is_l_space_l_space_induced_by_integral: - ∀R:real.∀V:complete_integration_riesz_space R. - is_l_space ? ? (induced_riesz_norm ? V). - intros; - constructor 1; - [ apply cirz_complete_integration_riesz_space_property - | intros; - unfold induced_riesz_norm; - simplify; - unfold induced_norm; - simplify; - unfold induced_norm_fun; - (* difficile *) - elim daemon - ]. -qed.*) - -(**************************** f-ALGEBRAS ********************************) - -record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop -≝ - { (* ring properties *) - a_ring: is_ring V mult one; - (* algebra properties *) - a_associative_left: ∀a,f,g. a * (mult f g) = mult (a * f) g; - a_associative_right: ∀a,f,g. a * (mult f g) = mult f (a * g) - }. - -record algebra (K: field) : Type \def - { a_vector_space:> vector_space K; - a_one: a_vector_space; - a_mult: a_vector_space → a_vector_space → a_vector_space; - a_algebra_properties: is_algebra ? ? a_mult a_one - }. - -interpretation "Algebra product" 'times a b = - (cic:/matita/attic/integration_algebras/a_mult.con _ a b). - -definition ring_of_algebra ≝ - λK.λA:algebra K. - mk_ring A (a_mult ? A) (a_one ? A) - (a_ring ? ? ? ? (a_algebra_properties ? A)). - -coercion cic:/matita/attic/integration_algebras/ring_of_algebra.con. - -record pre_f_algebra (K:ordered_field_ch0) : Type ≝ - { fa_archimedean_riesz_space:> archimedean_riesz_space K; - fa_algebra_: algebra K; - fa_with: a_vector_space ? fa_algebra_ = rs_vector_space ? fa_archimedean_riesz_space - }. - -lemma fa_algebra: ∀K:ordered_field_ch0.pre_f_algebra K → algebra K. - intros (K A); - apply mk_algebra; - [ apply (rs_vector_space ? A) - | elim daemon - | elim daemon - | elim daemon - ] - qed. - -coercion cic:/matita/attic/integration_algebras/fa_algebra.con. - -record is_f_algebra (K) (A:pre_f_algebra K) : Prop ≝ -{ compat_mult_le: ∀f,g:A.0 ≤ f → 0 ≤ g → 0 ≤ f*g; - compat_mult_meet: - ∀f,g,h:A.(f ∧ g) = 0 → ((h*f) ∧ g) = 0 -}. - -record f_algebra (K:ordered_field_ch0) : Type ≝ -{ fa_pre_f_algebra:> pre_f_algebra K; - fa_f_algebra_properties: is_f_algebra ? fa_pre_f_algebra -}. - -(* to be proved; see footnote 2 in the paper by Spitters *) -axiom symmetric_a_mult: - ∀K.∀A:f_algebra K. symmetric ? (a_mult ? A). - -record integration_f_algebra (R:real) : Type \def - { ifa_integration_riesz_space:> integration_riesz_space R; - ifa_f_algebra_: f_algebra R; - ifa_with: - fa_archimedean_riesz_space ? ifa_f_algebra_ = - irs_archimedean_riesz_space ? ifa_integration_riesz_space - }. - -axiom ifa_f_algebra: ∀R:real.integration_f_algebra R → f_algebra R. - -coercion cic:/matita/attic/integration_algebras/ifa_f_algebra.con. diff --git a/helm/software/matita/dama/attic/ordered_fields_ch0.ma b/helm/software/matita/dama/attic/ordered_fields_ch0.ma deleted file mode 100644 index 898148d6c..000000000 --- a/helm/software/matita/dama/attic/ordered_fields_ch0.ma +++ /dev/null @@ -1,151 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "attic/fields.ma". -include "ordered_group.ma". - -(*CSC: non capisco questi alias! Una volta non servivano*) -alias id "plus" = "cic:/matita/group/plus.con". -alias symbol "plus" = "Abelian group plus". - -record pre_ordered_field_ch0: Type ≝ - { of_field:> field; - of_ordered_abelian_group_: ordered_abelian_group; - of_cotransitively_ordered_set_: cotransitively_ordered_set; - of_with1_: - cos_ordered_set of_cotransitively_ordered_set_ = - og_ordered_set of_ordered_abelian_group_; - of_with2: - og_abelian_group of_ordered_abelian_group_ = r_abelian_group of_field - }. - -lemma of_ordered_abelian_group: pre_ordered_field_ch0 → ordered_abelian_group. - intro F; - apply mk_ordered_abelian_group; - [ apply mk_pre_ordered_abelian_group; - [ apply (r_abelian_group F) - | apply (og_ordered_set (of_ordered_abelian_group_ F)) - | apply (eq_f ? ? carrier); - apply (of_with2 F) - ] - | - apply - (eq_rect' ? ? - (λG:abelian_group.λH:og_abelian_group (of_ordered_abelian_group_ F)=G. - is_ordered_abelian_group - (mk_pre_ordered_abelian_group G (of_ordered_abelian_group_ F) - (eq_f abelian_group Type carrier (of_ordered_abelian_group_ F) G - H))) - ? ? (of_with2 F)); - simplify; - apply (og_ordered_abelian_group_properties (of_ordered_abelian_group_ F)) - ] -qed. - -coercion cic:/matita/attic/ordered_fields_ch0/of_ordered_abelian_group.con. - -(*CSC: I am not able to prove this since unfold is undone by coercion composition*) -axiom of_with1: - ∀G:pre_ordered_field_ch0. - cos_ordered_set (of_cotransitively_ordered_set_ G) = - og_ordered_set (of_ordered_abelian_group G). - -lemma of_cotransitively_ordered_set : pre_ordered_field_ch0 → cotransitively_ordered_set. - intro F; - apply mk_cotransitively_ordered_set; - [ apply (og_ordered_set F) - | apply - (eq_rect ? ? (λa:ordered_set.cotransitive (os_carrier a) (os_le a)) - ? ? (of_with1 F)); - apply cos_cotransitive - ] -qed. - -coercion cic:/matita/attic/ordered_fields_ch0/of_cotransitively_ordered_set.con. - -record is_ordered_field_ch0 (F:pre_ordered_field_ch0) : Type \def - { of_mult_compat: ∀a,b:F. 0≤a → 0≤b → 0≤a*b; - of_weak_tricotomy : ∀a,b:F. a≠b → a≤b ∨ b≤a; - (* 0 characteristics *) - of_char0: ∀n. n > O → sum ? (plus F) 0 1 n ≠ 0 - }. - -record ordered_field_ch0 : Type \def - { of_pre_ordered_field_ch0:> pre_ordered_field_ch0; - of_ordered_field_properties:> is_ordered_field_ch0 of_pre_ordered_field_ch0 - }. - -(* -lemma eq_opp_x_times_opp_one_x: ∀F:ordered_field_ch0.∀x:F.-x = -1*x. - intros; - -lemma not_eq_x_zero_to_lt_zero_mult_x_x: - ∀F:ordered_field_ch0.∀x:F. x ≠ 0 → 0 < x * x. - intros; - elim (of_weak_tricotomy ? ? ? ? ? ? ? ? F ? ? H); - [ generalize in match (le_x_zero_to_le_zero_opp_x F ? H1); intro; - generalize in match (of_mult_compat ? ? ? ? ? ? ? ? F ? ? H2 H2); intro; -*) - -axiom lt_zero_to_lt_inv_zero: - ∀F:ordered_field_ch0.∀x:F.∀p:x≠0. lt F 0 x → lt F 0 (inv ? x p). - -alias symbol "lt" = "natural 'less than'". - -(* The ordering is not necessary. *) -axiom not_eq_sum_field_zero: ∀F:ordered_field_ch0.∀n. O ordered_field_ch0; - r_real_properties: is_real r_ordered_field_ch0 - }. - -definition lim: ∀R:real.∀f:nat→R.is_cauchy_seq ? f → R. - intros; - elim (r_complete ? (r_real_properties R) ? H); - exact a. -qed. - -definition max_seq: ∀R:real.∀x,y:R. nat → R. - intros (R x y); - elim (cos_cotransitive R 0 (inv ? (sum_field ? (S n)) ?) (x-y)); - [ apply x - | apply not_eq_sum_field_zero ; - unfold; - autobatch - | apply y - | apply lt_zero_to_le_inv_zero - ]. -qed. - -axiom daemon: False. - -theorem cauchy_max_seq: ∀R:real.∀x,y:R. is_cauchy_seq ? (max_seq ? x y). -elim daemon. -(* - intros; - unfold; - intros; - exists; [ exact m | ]; (* apply (ex_intro ? ? m); *) - intros; - unfold max_seq; - elim (of_cotransitive R 0 -(inv R (sum_field R (S N)) - (not_eq_sum_field_zero R (S N) (le_S_S O N (le_O_n N)))) (x-y) -(lt_zero_to_le_inv_zero R (S N) - (not_eq_sum_field_zero R (S N) (le_S_S O N (le_O_n N))))); - [ simplify; - elim (of_cotransitive R 0 -(inv R (1+sum R (plus R) 0 1 m) - (not_eq_sum_field_zero R (S m) (le_S_S O m (le_O_n m)))) (x-y) -(lt_zero_to_le_inv_zero R (S m) - (not_eq_sum_field_zero R (S m) (le_S_S O m (le_O_n m))))); - [ simplify; - rewrite > (plus_comm ? x (-x)); - rewrite > opp_inverse; - split; - [ apply (le_zero_x_to_le_opp_x_zero R ?); - apply lt_zero_to_le_inv_zero - | apply lt_zero_to_le_inv_zero - ] - | simplify; - split; - [ apply (or_transitive ? ? R ? 0); - [ apply (le_zero_x_to_le_opp_x_zero R ?) - | assumption - ] - | assumption - ] - ] - | simplify; - elim (of_cotransitive R 0 -(inv R (1+sum R (plus R) 0 1 m) - (not_eq_sum_field_zero R (S m) (le_S_S O m (le_O_n m)))) (x-y) -(lt_zero_to_le_inv_zero R (S m) - (not_eq_sum_field_zero R (S m) (le_S_S O m (le_O_n m))))); - [ simplify; - split; - [ elim daemon - | generalize in match (le_zero_x_to_le_opp_x_zero R ? t1); - intro; - unfold minus in H1; - rewrite > eq_opp_plus_plus_opp_opp in H1; - rewrite > eq_opp_opp_x_x in H1; - rewrite > plus_comm in H1; - apply (or_transitive ? ? R ? 0); - [ assumption - | apply lt_zero_to_le_inv_zero - ] - ] - | simplify; - rewrite > (plus_comm ? y (-y)); - rewrite > opp_inverse; - split; - [ elim daemon - | apply lt_zero_to_le_inv_zero - ] - ] - ]. - elim daemon.*) -qed. - -definition max: ∀R:real.R → R → R. - intros (R x y); - apply (lim R (max_seq R x y)); - apply cauchy_max_seq. -qed. - -definition abs \def λR:real.λx:R. max R x (-x). - -lemma comparison: - ∀R:real.∀f,g:nat→R. is_cauchy_seq ? f → is_cauchy_seq ? g → - (∀n:nat.f n ≤ g n) → lim ? f ? ≤ lim ? g ?. - [ assumption - | assumption - | intros; - elim daemon - ]. -qed. - -definition to_zero ≝ - λR:real.λn. - -(inv R (sum_field R (S n)) - (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n)))). - -axiom is_cauchy_seq_to_zero: ∀R:real. is_cauchy_seq ? (to_zero R). - -lemma technical1: ∀R:real.lim R (to_zero R) (is_cauchy_seq_to_zero R) = 0. - intros; - unfold lim; - elim daemon. -qed. - -lemma abs_x_ge_O: ∀R:real.∀x:R. 0 ≤ abs ? x. - intros; - unfold abs; - unfold max; - rewrite < technical1; - apply comparison; - intros; - unfold to_zero; - unfold max_seq; - elim - (cos_cotransitive R 0 -(inv R (sum_field R (S n)) - (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n)))) (x--x) -(lt_zero_to_le_inv_zero R (S n) - (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n))))); - [ simplify; - (* facile *) - elim daemon - | simplify; - (* facile *) - elim daemon - ]. -qed. diff --git a/helm/software/matita/dama/attic/rings.ma b/helm/software/matita/dama/attic/rings.ma deleted file mode 100644 index d4db003dc..000000000 --- a/helm/software/matita/dama/attic/rings.ma +++ /dev/null @@ -1,103 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "group.ma". - -record is_ring (G:abelian_group) (mult:G→G→G) (one:G) : Prop -≝ - { (* multiplicative monoid properties *) - mult_assoc_: associative ? mult; - one_neutral_left_: left_neutral ? mult one; - one_neutral_right_: right_neutral ? mult one; - (* ring properties *) - mult_plus_distr_left_: distributive_left ? mult (plus G); - mult_plus_distr_right_: distributive_right ? mult (plus G); - not_eq_zero_one_: (0 ≠ one) - }. - -record ring : Type \def - { r_abelian_group:> abelian_group; - mult: r_abelian_group → r_abelian_group → r_abelian_group; - one: r_abelian_group; - r_ring_properties: is_ring r_abelian_group mult one - }. - -theorem mult_assoc: ∀R:ring.associative ? (mult R). - intros; - apply (mult_assoc_ ? ? ? (r_ring_properties R)). -qed. - -theorem one_neutral_left: ∀R:ring.left_neutral ? (mult R) (one R). - intros; - apply (one_neutral_left_ ? ? ? (r_ring_properties R)). -qed. - -theorem one_neutral_right: ∀R:ring.right_neutral ? (mult R) (one R). - intros; - apply (one_neutral_right_ ? ? ? (r_ring_properties R)). -qed. - -theorem mult_plus_distr_left: ∀R:ring.distributive_left ? (mult R) (plus R). - intros; - apply (mult_plus_distr_left_ ? ? ? (r_ring_properties R)). -qed. - -theorem mult_plus_distr_right: ∀R:ring.distributive_right ? (mult R) (plus R). - intros; - apply (mult_plus_distr_right_ ? ? ? (r_ring_properties R)). -qed. - -theorem not_eq_zero_one: ∀R:ring.0 ≠ one R. - intros; - apply (not_eq_zero_one_ ? ? ? (r_ring_properties R)). -qed. - -interpretation "Ring mult" 'times a b = - (cic:/matita/attic/rings/mult.con _ a b). - -notation "1" with precedence 89 -for @{ 'one }. - -interpretation "Ring one" 'one = - (cic:/matita/attic/rings/one.con _). - -lemma eq_mult_zero_x_zero: ∀R:ring.∀x:R.0*x=0. - intros; - generalize in match (zero_neutral R 0); intro; - generalize in match (eq_f ? ? (λy.y*x) ? ? H); intro; clear H; - rewrite > mult_plus_distr_right in H1; - generalize in match (eq_f ? ? (λy.-(0*x)+y) ? ? H1); intro; clear H1; - rewrite < plus_assoc in H; - rewrite > opp_inverse in H; - rewrite > zero_neutral in H; - assumption. -qed. - -lemma eq_mult_x_zero_zero: ∀R:ring.∀x:R.x*0=0. -intros; -generalize in match (zero_neutral R 0); -intro; -generalize in match (eq_f ? ? (λy.x*y) ? ? H); intro; clear H; -(*CSC: qua funzionava prima della patch all'unificazione!*) -rewrite > (mult_plus_distr_left R) in H1; -generalize in match (eq_f ? ? (λy. (-(x*0)) +y) ? ? H1);intro; -clear H1; -rewrite < plus_assoc in H; -rewrite > opp_inverse in H; -rewrite > zero_neutral in H; -assumption. -qed. - diff --git a/helm/software/matita/dama/attic/vector_spaces.ma b/helm/software/matita/dama/attic/vector_spaces.ma deleted file mode 100644 index 5002b022c..000000000 --- a/helm/software/matita/dama/attic/vector_spaces.ma +++ /dev/null @@ -1,151 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "attic/reals.ma". - -record is_vector_space (K: field) (G:abelian_group) (emult:K→G→G) : Prop -≝ - { vs_nilpotent: ∀v. emult 0 v = 0; - vs_neutral: ∀v. emult 1 v = v; - vs_distributive: ∀a,b,v. emult (a + b) v = (emult a v) + (emult b v); - vs_associative: ∀a,b,v. emult (a * b) v = emult a (emult b v) - }. - -record vector_space (K:field): Type \def -{ vs_abelian_group :> abelian_group; - emult: K → vs_abelian_group → vs_abelian_group; - vs_vector_space_properties :> is_vector_space ? vs_abelian_group emult -}. - -interpretation "Vector space external product" 'times a b = - (cic:/matita/attic/vector_spaces/emult.con _ _ a b). - -record is_semi_norm (R:real) (V: vector_space R) (semi_norm:V→R) : Prop \def - { sn_positive: ∀x:V. zero R ≤ semi_norm x; - sn_omogeneous: ∀a:R.∀x:V. semi_norm (a*x) = (abs ? a) * semi_norm x; - sn_triangle_inequality: ∀x,y:V. semi_norm (x + y) ≤ semi_norm x + semi_norm y - }. - -theorem eq_semi_norm_zero_zero: - ∀R:real.∀V:vector_space R.∀semi_norm:V→R. - is_semi_norm ? ? semi_norm → - semi_norm 0 = 0. - intros; - (* facile *) - elim daemon. -qed. - -record is_norm (R:real) (V:vector_space R) (norm:V → R) : Prop ≝ - { n_semi_norm:> is_semi_norm ? ? norm; - n_properness: ∀x:V. norm x = 0 → x = 0 - }. - -record norm (R:real) (V:vector_space R) : Type ≝ - { n_function:1> V→R; - n_norm_properties: is_norm ? ? n_function - }. - -record is_semi_distance (R:real) (C:Type) (semi_d: C→C→R) : Prop ≝ - { sd_positive: ∀x,y:C. zero R ≤ semi_d x y; - sd_properness: ∀x:C. semi_d x x = 0; - sd_triangle_inequality: ∀x,y,z:C. semi_d x z ≤ semi_d x y + semi_d z y - }. - -record is_distance (R:real) (C:Type) (d:C→C→R) : Prop ≝ - { d_semi_distance:> is_semi_distance ? ? d; - d_properness: ∀x,y:C. d x y = 0 → x=y - }. - -record distance (R:real) (V:vector_space R) : Type ≝ - { d_function:2> V→V→R; - d_distance_properties: is_distance ? ? d_function - }. - -definition induced_distance_fun ≝ - λR:real.λV:vector_space R.λnorm:norm ? V. - λf,g:V.norm (f - g). - -theorem induced_distance_is_distance: - ∀R:real.∀V:vector_space R.∀norm:norm ? V. - is_distance ? ? (induced_distance_fun ? ? norm). -elim daemon.(* - intros; - apply mk_is_distance; - [ apply mk_is_semi_distance; - [ unfold induced_distance_fun; - intros; - apply sn_positive; - apply n_semi_norm; - apply (n_norm_properties ? ? norm) - | unfold induced_distance_fun; - intros; - unfold minus; - rewrite < plus_comm; - rewrite > opp_inverse; - apply eq_semi_norm_zero_zero; - apply n_semi_norm; - apply (n_norm_properties ? ? norm) - | unfold induced_distance_fun; - intros; - (* ??? *) - elim daemon - ] - | unfold induced_distance_fun; - intros; - generalize in match (n_properness ? ? norm ? ? H); - [ intro; - (* facile *) - elim daemon - | apply (n_norm_properties ? ? norm) - ] - ].*) -qed. - -definition induced_distance ≝ - λR:real.λV:vector_space R.λnorm:norm ? V. - mk_distance ? ? (induced_distance_fun ? ? norm) - (induced_distance_is_distance ? ? norm). - -definition tends_to : - ∀R:real.∀V:vector_space R.∀d:distance ? V.∀f:nat→V.∀l:V.Prop. -apply - (λR:real.λV:vector_space R.λd:distance ? V.λf:nat→V.λl:V. - ∀n:nat.∃m:nat.∀j:nat. m ≤ j → - d (f j) l ≤ inv R (sum_field ? (S n)) ?); - apply not_eq_sum_field_zero; - unfold; - autobatch. -qed. - -definition is_cauchy_seq : ∀R:real.\forall V:vector_space R. -\forall d:distance ? V.∀f:nat→V.Prop. - apply - (λR:real.λV: vector_space R. \lambda d:distance ? V. - \lambda f:nat→V. - ∀m:nat. - ∃n:nat.∀N. n ≤ N → - -(inv R (sum_field ? (S m)) ?) ≤ d (f N) (f n) ∧ - d (f N) (f n)≤ inv R (sum_field R (S m)) ?); - apply not_eq_sum_field_zero; - unfold; - autobatch. -qed. - -definition is_complete ≝ - λR:real.λV:vector_space R. - λd:distance ? V. - ∀f:nat→V. is_cauchy_seq ? ? d f→ - ex V (λl:V. tends_to ? ? d f l). diff --git a/helm/software/matita/dama/classical_pointfree/ordered_sets.ma b/helm/software/matita/dama/classical_pointfree/ordered_sets.ma deleted file mode 100644 index 2630da77c..000000000 --- a/helm/software/matita/dama/classical_pointfree/ordered_sets.ma +++ /dev/null @@ -1,424 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "excess.ma". - -record is_dedekind_sigma_complete (O:excess) : Type ≝ - { dsc_inf: ∀a:nat→O.∀m:O. is_lower_bound ? a m → ex ? (λs:O.is_inf O a s); - dsc_inf_proof_irrelevant: - ∀a:nat→O.∀m,m':O.∀p:is_lower_bound ? a m.∀p':is_lower_bound ? a m'. - (match dsc_inf a m p with [ ex_intro s _ ⇒ s ]) = - (match dsc_inf a m' p' with [ ex_intro s' _ ⇒ s' ]); - dsc_sup: ∀a:nat→O.∀m:O. is_upper_bound ? a m → ex ? (λs:O.is_sup O a s); - dsc_sup_proof_irrelevant: - ∀a:nat→O.∀m,m':O.∀p:is_upper_bound ? a m.∀p':is_upper_bound ? a m'. - (match dsc_sup a m p with [ ex_intro s _ ⇒ s ]) = - (match dsc_sup a m' p' with [ ex_intro s' _ ⇒ s' ]) - }. - -record dedekind_sigma_complete_ordered_set : Type ≝ - { dscos_ordered_set:> excess; - dscos_dedekind_sigma_complete_properties:> - is_dedekind_sigma_complete dscos_ordered_set - }. - -definition inf: - ∀O:dedekind_sigma_complete_ordered_set. - bounded_below_sequence O → O. - intros; - elim - (dsc_inf O (dscos_dedekind_sigma_complete_properties O) b); - [ apply a - | apply (lower_bound ? b) - | apply lower_bound_is_lower_bound - ] -qed. - -lemma inf_is_inf: - ∀O:dedekind_sigma_complete_ordered_set. - ∀a:bounded_below_sequence O. - is_inf ? a (inf ? a). - intros; - unfold inf; - simplify; - elim (dsc_inf O (dscos_dedekind_sigma_complete_properties O) a -(lower_bound O a) (lower_bound_is_lower_bound O a)); - simplify; - assumption. -qed. - -lemma inf_proof_irrelevant: - ∀O:dedekind_sigma_complete_ordered_set. - ∀a,a':bounded_below_sequence O. - bbs_seq ? a = bbs_seq ? a' → - inf ? a = inf ? a'. - intros 3; - elim a 0; - elim a'; - simplify in H; - generalize in match i1; - clear i1; - rewrite > H; - intro; - simplify; - rewrite < (dsc_inf_proof_irrelevant O O f (ib_lower_bound ? f i) - (ib_lower_bound ? f i2) (ib_lower_bound_is_lower_bound ? f i) - (ib_lower_bound_is_lower_bound ? f i2)); - reflexivity. -qed. - -definition sup: - ∀O:dedekind_sigma_complete_ordered_set. - bounded_above_sequence O → O. - intros; - elim - (dsc_sup O (dscos_dedekind_sigma_complete_properties O) b); - [ apply a - | apply (upper_bound ? b) - | apply upper_bound_is_upper_bound - ]. -qed. - -lemma sup_is_sup: - ∀O:dedekind_sigma_complete_ordered_set. - ∀a:bounded_above_sequence O. - is_sup ? a (sup ? a). - intros; - unfold sup; - simplify; - elim (dsc_sup O (dscos_dedekind_sigma_complete_properties O) a -(upper_bound O a) (upper_bound_is_upper_bound O a)); - simplify; - assumption. -qed. - -lemma sup_proof_irrelevant: - ∀O:dedekind_sigma_complete_ordered_set. - ∀a,a':bounded_above_sequence O. - bas_seq ? a = bas_seq ? a' → - sup ? a = sup ? a'. - intros 3; - elim a 0; - elim a'; - simplify in H; - generalize in match i1; - clear i1; - rewrite > H; - intro; - simplify; - rewrite < (dsc_sup_proof_irrelevant O O f (ib_upper_bound ? f i2) - (ib_upper_bound ? f i) (ib_upper_bound_is_upper_bound ? f i2) - (ib_upper_bound_is_upper_bound ? f i)); - reflexivity. -qed. - -axiom daemon: False. - -theorem inf_le_sup: - ∀O:dedekind_sigma_complete_ordered_set. - ∀a:bounded_sequence O. inf ? a ≤ sup ? a. - intros (O'); - apply (or_transitive ? ? O' ? (a O)); - [ elim daemon (*apply (inf_lower_bound ? ? ? ? (inf_is_inf ? ? a))*) - | elim daemon (*apply (sup_upper_bound ? ? ? ? (sup_is_sup ? ? a))*) - ]. -qed. - -lemma inf_respects_le: - ∀O:dedekind_sigma_complete_ordered_set. - ∀a:bounded_below_sequence O.∀m:O. - is_upper_bound ? a m → inf ? a ≤ m. - intros (O'); - apply (or_transitive ? ? O' ? (sup ? (mk_bounded_sequence ? a ? ?))); - [ apply (bbs_is_bounded_below ? a) - | apply (mk_is_bounded_above ? ? m H) - | apply inf_le_sup - | apply - (sup_least_upper_bound ? ? ? - (sup_is_sup ? (mk_bounded_sequence O' a a - (mk_is_bounded_above O' a m H)))); - assumption - ]. -qed. - -definition is_sequentially_monotone ≝ - λO:excess.λf:O→O. - ∀a:nat→O.∀p:is_increasing ? a. - is_increasing ? (λi.f (a i)). - -record is_order_continuous - (O:dedekind_sigma_complete_ordered_set) (f:O→O) : Prop -≝ - { ioc_is_sequentially_monotone: is_sequentially_monotone ? f; - ioc_is_upper_bound_f_sup: - ∀a:bounded_above_sequence O. - is_upper_bound ? (λi.f (a i)) (f (sup ? a)); - ioc_respects_sup: - ∀a:bounded_above_sequence O. - is_increasing ? a → - f (sup ? a) = - sup ? (mk_bounded_above_sequence ? (λi.f (a i)) - (mk_is_bounded_above ? ? (f (sup ? a)) - (ioc_is_upper_bound_f_sup a))); - ioc_is_lower_bound_f_inf: - ∀a:bounded_below_sequence O. - is_lower_bound ? (λi.f (a i)) (f (inf ? a)); - ioc_respects_inf: - ∀a:bounded_below_sequence O. - is_decreasing ? a → - f (inf ? a) = - inf ? (mk_bounded_below_sequence ? (λi.f (a i)) - (mk_is_bounded_below ? ? (f (inf ? a)) - (ioc_is_lower_bound_f_inf a))) - }. - -theorem tail_inf_increasing: - ∀O:dedekind_sigma_complete_ordered_set. - ∀a:bounded_below_sequence O. - let y ≝ λi.mk_bounded_below_sequence ? (λj.a (i+j)) ? in - let x ≝ λi.inf ? (y i) in - is_increasing ? x. - [ apply (mk_is_bounded_below ? ? (ib_lower_bound ? a a)); - simplify; - intro; - apply (ib_lower_bound_is_lower_bound ? a a) - | intros; - unfold is_increasing; - intro; - unfold x in ⊢ (? ? ? %); - apply (inf_greatest_lower_bound ? ? ? (inf_is_inf ? (y (S n)))); - change with (is_lower_bound ? (y (S n)) (inf ? (y n))); - unfold is_lower_bound; - intro; - generalize in match (inf_lower_bound ? ? ? (inf_is_inf ? (y n)) (S n1)); - (*CSC: coercion per FunClass inserita a mano*) - suppose (inf ? (y n) ≤ bbs_seq ? (y n) (S n1)) (H); - cut (bbs_seq ? (y n) (S n1) = bbs_seq ? (y (S n)) n1); - [ rewrite < Hcut; - assumption - | unfold y; - simplify; - autobatch paramodulation library - ] - ]. -qed. - -definition is_liminf: - ∀O:dedekind_sigma_complete_ordered_set. - bounded_below_sequence O → O → Prop. - intros; - apply - (is_sup ? (λi.inf ? (mk_bounded_below_sequence ? (λj.b (i+j)) ?)) t); - apply (mk_is_bounded_below ? ? (ib_lower_bound ? b b)); - simplify; - intros; - apply (ib_lower_bound_is_lower_bound ? b b). -qed. - -definition liminf: - ∀O:dedekind_sigma_complete_ordered_set. - bounded_sequence O → O. - intros; - apply - (sup ? - (mk_bounded_above_sequence ? - (λi.inf ? - (mk_bounded_below_sequence ? - (λj.b (i+j)) ?)) ?)); - [ apply (mk_is_bounded_below ? ? (ib_lower_bound ? b b)); - simplify; - intros; - apply (ib_lower_bound_is_lower_bound ? b b) - | apply (mk_is_bounded_above ? ? (ib_upper_bound ? b b)); - unfold is_upper_bound; - intro; - change with - (inf O - (mk_bounded_below_sequence O (\lambda j:nat.b (n+j)) - (mk_is_bounded_below O (\lambda j:nat.b (n+j)) (ib_lower_bound O b b) - (\lambda j:nat.ib_lower_bound_is_lower_bound O b b (n+j)))) -\leq ib_upper_bound O b b); - apply (inf_respects_le O); - simplify; - intro; - apply (ib_upper_bound_is_upper_bound ? b b) - ]. -qed. - - -definition reverse_dedekind_sigma_complete_ordered_set: - dedekind_sigma_complete_ordered_set → dedekind_sigma_complete_ordered_set. - intros; - apply mk_dedekind_sigma_complete_ordered_set; - [ apply (reverse_ordered_set d) - | elim daemon - (*apply mk_is_dedekind_sigma_complete; - [ intros; - elim (dsc_sup ? ? d a m) 0; - [ generalize in match H; clear H; - generalize in match m; clear m; - elim d; - simplify in a1; - simplify; - change in a1 with (Type_OF_ordered_set ? (reverse_ordered_set ? o)); - apply (ex_intro ? ? a1); - simplify in H1; - change in m with (Type_OF_ordered_set ? o); - apply (is_sup_to_reverse_is_inf ? ? ? ? H1) - | generalize in match H; clear H; - generalize in match m; clear m; - elim d; - simplify; - change in t with (Type_OF_ordered_set ? o); - simplify in t; - apply reverse_is_lower_bound_is_upper_bound; - assumption - ] - | apply is_sup_reverse_is_inf; - | apply m - | - ]*) - ]. -qed. - -definition reverse_bounded_sequence: - ∀O:dedekind_sigma_complete_ordered_set. - bounded_sequence O → - bounded_sequence (reverse_dedekind_sigma_complete_ordered_set O). - intros; - apply mk_bounded_sequence; - [ apply bs_seq; - unfold reverse_dedekind_sigma_complete_ordered_set; - simplify; - elim daemon - | elim daemon - | elim daemon - ]. -qed. - -definition limsup ≝ - λO:dedekind_sigma_complete_ordered_set. - λa:bounded_sequence O. - liminf (reverse_dedekind_sigma_complete_ordered_set O) - (reverse_bounded_sequence O a). - -notation "hvbox(〈a〉)" - non associative with precedence 45 -for @{ 'hide_everything_but $a }. - -interpretation "mk_bounded_above_sequence" 'hide_everything_but a -= (cic:/matita/classical_pointfree/ordered_sets/bounded_above_sequence.ind#xpointer(1/1/1) _ _ a _). - -interpretation "mk_bounded_below_sequence" 'hide_everything_but a -= (cic:/matita/classical_pointfree/ordered_sets/bounded_below_sequence.ind#xpointer(1/1/1) _ _ a _). - -theorem eq_f_sup_sup_f: - ∀O':dedekind_sigma_complete_ordered_set. - ∀f:O'→O'. ∀H:is_order_continuous ? f. - ∀a:bounded_above_sequence O'. - ∀p:is_increasing ? a. - f (sup ? a) = sup ? (mk_bounded_above_sequence ? (λi.f (a i)) ?). - [ apply (mk_is_bounded_above ? ? (f (sup ? a))); - apply ioc_is_upper_bound_f_sup; - assumption - | intros; - apply ioc_respects_sup; - assumption - ]. -qed. - -theorem eq_f_sup_sup_f': - ∀O':dedekind_sigma_complete_ordered_set. - ∀f:O'→O'. ∀H:is_order_continuous ? f. - ∀a:bounded_above_sequence O'. - ∀p:is_increasing ? a. - ∀p':is_bounded_above ? (λi.f (a i)). - f (sup ? a) = sup ? (mk_bounded_above_sequence ? (λi.f (a i)) p'). - intros; - rewrite > (eq_f_sup_sup_f ? f H a H1); - apply sup_proof_irrelevant; - reflexivity. -qed. - -theorem eq_f_liminf_sup_f_inf: - ∀O':dedekind_sigma_complete_ordered_set. - ∀f:O'→O'. ∀H:is_order_continuous ? f. - ∀a:bounded_sequence O'. - let p1 := ? in - f (liminf ? a) = - sup ? - (mk_bounded_above_sequence ? - (λi.f (inf ? - (mk_bounded_below_sequence ? - (λj.a (i+j)) - ?))) - p1). - [ apply (mk_is_bounded_below ? ? (ib_lower_bound ? a a)); - simplify; - intro; - apply (ib_lower_bound_is_lower_bound ? a a) - | apply (mk_is_bounded_above ? ? (f (sup ? a))); - unfold is_upper_bound; - intro; - apply (or_transitive ? ? O' ? (f (a n))); - [ generalize in match (ioc_is_lower_bound_f_inf ? ? H); - intro H1; - simplify in H1; - rewrite > (plus_n_O n) in ⊢ (? ? ? (? (? ? ? %))); - apply (H1 (mk_bounded_below_sequence O' (\lambda j:nat.a (n+j)) -(mk_is_bounded_below O' (\lambda j:nat.a (n+j)) (ib_lower_bound O' a a) - (\lambda j:nat.ib_lower_bound_is_lower_bound O' a a (n+j)))) O); - | elim daemon (*apply (ioc_is_upper_bound_f_sup ? ? ? H)*) - ] - | intros; - unfold liminf; - clearbody p1; - generalize in match (\lambda n:nat -.inf_respects_le O' - (mk_bounded_below_sequence O' (\lambda j:nat.a (plus n j)) - (mk_is_bounded_below O' (\lambda j:nat.a (plus n j)) - (ib_lower_bound O' a a) - (\lambda j:nat.ib_lower_bound_is_lower_bound O' a a (plus n j)))) - (ib_upper_bound O' a a) - (\lambda n1:nat.ib_upper_bound_is_upper_bound O' a a (plus n n1))); - intro p2; - apply (eq_f_sup_sup_f' ? f H (mk_bounded_above_sequence O' -(\lambda i:nat - .inf O' - (mk_bounded_below_sequence O' (\lambda j:nat.a (plus i j)) - (mk_is_bounded_below O' (\lambda j:nat.a (plus i j)) - (ib_lower_bound O' a a) - (\lambda n:nat.ib_lower_bound_is_lower_bound O' a a (plus i n))))) -(mk_is_bounded_above O' - (\lambda i:nat - .inf O' - (mk_bounded_below_sequence O' (\lambda j:nat.a (plus i j)) - (mk_is_bounded_below O' (\lambda j:nat.a (plus i j)) - (ib_lower_bound O' a a) - (\lambda n:nat.ib_lower_bound_is_lower_bound O' a a (plus i n))))) - (ib_upper_bound O' a a) p2))); - unfold bas_seq; - change with - (is_increasing ? (\lambda i:nat -.inf O' - (mk_bounded_below_sequence O' (\lambda j:nat.a (plus i j)) - (mk_is_bounded_below O' (\lambda j:nat.a (plus i j)) - (ib_lower_bound O' a a) - (\lambda n:nat.ib_lower_bound_is_lower_bound O' a a (plus i n)))))); - apply tail_inf_increasing - ]. -qed. - diff --git a/helm/software/matita/dama/classical_pointfree/ordered_sets2.ma b/helm/software/matita/dama/classical_pointfree/ordered_sets2.ma deleted file mode 100644 index 7e74cbba2..000000000 --- a/helm/software/matita/dama/classical_pointfree/ordered_sets2.ma +++ /dev/null @@ -1,127 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "classical_pointfree/ordered_sets.ma". - -theorem le_f_inf_inf_f: - ∀O':dedekind_sigma_complete_ordered_set. - ∀f:O'→O'. ∀H:is_order_continuous ? f. - ∀a:bounded_below_sequence O'. - let p := ? in - f (inf ? a) ≤ inf ? (mk_bounded_below_sequence ? (λi. f (a i)) p). - [ apply mk_is_bounded_below; - [2: apply ioc_is_lower_bound_f_inf; - assumption - | skip - ] - | intros; - clearbody p; - apply (inf_greatest_lower_bound ? ? ? (inf_is_inf ? ?)); - simplify; - intro; - letin b := (λi.match i with [ O ⇒ inf ? a | S _ ⇒ a n]); - change with (f (b O) ≤ f (b (S O))); - apply (ioc_is_sequentially_monotone ? ? H); - simplify; - clear b; - intro; - elim n1; simplify; - [ apply (inf_lower_bound ? ? ? (inf_is_inf ? ?)); - | apply (or_reflexive O' ? (dscos_ordered_set O')) - ] - ]. -qed. - -theorem le_to_le_sup_sup: - ∀O':dedekind_sigma_complete_ordered_set. - ∀a,b:bounded_above_sequence O'. - (∀i.a i ≤ b i) → sup ? a ≤ sup ? b. - intros; - apply (sup_least_upper_bound ? ? ? (sup_is_sup ? a)); - unfold; - intro; - apply (or_transitive ? ? O'); - [2: apply H - | skip - | apply (sup_upper_bound ? ? ? (sup_is_sup ? b)) - ]. -qed. - -interpretation "mk_bounded_sequence" 'hide_everything_but a -= (cic:/matita/classical_pointfree/ordered_sets/bounded_sequence.ind#xpointer(1/1/1) _ _ a _ _). - -lemma reduce_bas_seq: - ∀O:ordered_set.∀a:nat→O.∀p.∀i. - bas_seq ? (mk_bounded_above_sequence ? a p) i = a i. - intros; - reflexivity. -qed. - -(*lemma reduce_bbs_seq: - ∀C.∀O:ordered_set C.∀a:nat→O.∀p.∀i. - bbs_seq ? ? (mk_bounded_below_sequence ? ? a p) i = a i. - intros; - reflexivity. -qed.*) - -axiom inf_extensional: - ∀O:dedekind_sigma_complete_ordered_set. - ∀a,b:bounded_below_sequence O. - (∀i.a i = b i) → inf ? a = inf O b. - -lemma eq_to_le: ∀O:ordered_set.∀x,y:O.x=y → x ≤ y. - intros; - rewrite > H; - apply (or_reflexive ? ? O). -qed. - -theorem fatou: - ∀O':dedekind_sigma_complete_ordered_set. - ∀f:O'→O'. ∀H:is_order_continuous ? f. - ∀a:bounded_sequence O'. - let pb := ? in - let pa := ? in - f (liminf ? a) ≤ liminf ? (mk_bounded_sequence ? (λi. f (a i)) pb pa). - [ letin bas ≝ (bounded_above_sequence_of_bounded_sequence ? a); - apply mk_is_bounded_above; - [2: apply (ioc_is_upper_bound_f_sup ? ? H bas) - | skip - ] - | letin bbs ≝ (bounded_below_sequence_of_bounded_sequence ? a); - apply mk_is_bounded_below; - [2: apply (ioc_is_lower_bound_f_inf ? ? H bbs) - | skip - ] - | intros; - rewrite > eq_f_liminf_sup_f_inf in ⊢ (? ? % ?); - [ unfold liminf; - apply le_to_le_sup_sup; - intro; - rewrite > reduce_bas_seq; - rewrite > reduce_bas_seq; - apply (or_transitive ? ? O'); - [2: apply le_f_inf_inf_f; - assumption - | skip - | apply eq_to_le; - apply inf_extensional; - intro; - reflexivity - ] - | assumption - ] - ]. -qed. diff --git a/helm/software/matita/dama/classical_pointwise/sets.ma b/helm/software/matita/dama/classical_pointwise/sets.ma deleted file mode 100644 index f03c3e7f2..000000000 --- a/helm/software/matita/dama/classical_pointwise/sets.ma +++ /dev/null @@ -1,104 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "nat/nat.ma". -include "logic/connectives.ma". - - -definition set ≝ λX:Type.X → Prop. - -definition member_of : ∀X.set X → X → Prop≝ λX.λA:set X.λx.A x. - -notation "hvbox(x break ∈ A)" with precedence 60 -for @{ 'member_of $x $A }. - -interpretation "Member of" 'member_of x A = - (cic:/matita/classical_pointwise/sets/member_of.con _ A x). - -notation "hvbox(x break ∉ A)" with precedence 60 -for @{ 'not_member_of $x $A }. - -interpretation "Not member of" 'not_member_of x A = - (cic:/matita/logic/connectives/Not.con - (cic:/matita/classical_pointwise/sets/member_of.con _ A x)). - -definition emptyset : ∀X.set X ≝ λX:Type.λx:X.False. - -notation "∅︀" with precedence 100 for @{ 'emptyset }. - -interpretation "Emptyset" 'emptyset = - (cic:/matita/classical_pointwise/sets/emptyset.con _). - -definition subset: ∀X. set X → set X → Prop≝ λX.λA,B:set X.∀x. x ∈ A → x ∈ B. - -notation "hvbox(A break ⊆ B)" with precedence 60 -for @{ 'subset $A $B }. - -interpretation "Subset" 'subset A B = - (cic:/matita/classical_pointwise/sets/subset.con _ A B). - -definition intersection: ∀X. set X → set X → set X ≝ - λX.λA,B:set X.λx. x ∈ A ∧ x ∈ B. - -notation "hvbox(A break ∩ B)" with precedence 70 -for @{ 'intersection $A $B }. - -interpretation "Intersection" 'intersection A B = - (cic:/matita/classical_pointwise/sets/intersection.con _ A B). - -definition union: ∀X. set X → set X → set X ≝ λX.λA,B:set X.λx. x ∈ A ∨ x ∈ B. - -notation "hvbox(A break ∪ B)" with precedence 65 -for @{ 'union $A $B }. - -interpretation "Union" 'union A B = - (cic:/matita/classical_pointwise/sets/union.con _ A B). - -definition seq ≝ λX:Type.nat → X. - -definition nth ≝ λX.λA:seq X.λi.A i. - -notation "hvbox(A \sub i)" with precedence 100 -for @{ 'nth $A $i }. - -interpretation "nth" 'nth A i = - (cic:/matita/classical_pointwise/sets/nth.con _ A i). - -definition countable_union: ∀X. seq (set X) → set X ≝ - λX.λA:seq (set X).λx.∃j.x ∈ A \sub j. - -notation "∪ \sub (ident i opt (: ty)) B" with precedence 65 -for @{ 'big_union ${default @{(λ${ident i}:$ty.$B)} @{(λ${ident i}.$B)}}}. - -interpretation "countable_union" 'big_union η.t = - (cic:/matita/classical_pointwise/sets/countable_union.con _ t). - -definition complement: ∀X. set X \to set X ≝ λX.λA:set X.λx. x ∉ A. - -notation "A \sup 'c'" with precedence 100 -for @{ 'complement $A }. - -interpretation "Complement" 'complement A = - (cic:/matita/classical_pointwise/sets/complement.con _ A). - -definition inverse_image: ∀X,Y.∀f: X → Y.set Y → set X ≝ - λX,Y,f,B,x. f x ∈ B. - -notation "hvbox(f \sup (-1))" with precedence 100 -for @{ 'finverse $f }. - -interpretation "Inverse image" 'finverse f = - (cic:/matita/classical_pointwise/sets/inverse_image.con _ _ f). diff --git a/helm/software/matita/dama/classical_pointwise/sigma_algebra.ma b/helm/software/matita/dama/classical_pointwise/sigma_algebra.ma deleted file mode 100644 index 580fe9645..000000000 --- a/helm/software/matita/dama/classical_pointwise/sigma_algebra.ma +++ /dev/null @@ -1,40 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "classical_pointwise/topology.ma". - -record is_sigma_algebra (X:Type) (A: set X) (M: set (set X)) : Prop ≝ - { siga_subset: ∀B.B ∈ M → B ⊆ A; - siga_full: A ∈ M; - siga_compl: ∀B.B ∈ M → B \sup c ∈ M; - siga_enumerable_union: - ∀B:seq (set X).(∀i.(B \sub i) ∈ M) → (∪ \sub i B \sub i) ∈ M - }. - -record sigma_algebra : Type ≝ - { siga_carrier:> Type; - siga_domain:> set siga_carrier; - M: set (set siga_carrier); - siga_is_sigma_algebra:> is_sigma_algebra ? siga_domain M - }. - -(*definition is_measurable_map ≝ - λX:sigma_algebra.λY:topological_space.λf:X → Y. - ∀V. V ∈ O Y → f \sup -1 V ∈ M X.*) -definition is_measurable_map ≝ - λX:sigma_algebra.λY:topological_space.λf:X → Y. - ∀V. V ∈ O Y → inverse_image ? ? f V ∈ M X. - diff --git a/helm/software/matita/dama/classical_pointwise/topology.ma b/helm/software/matita/dama/classical_pointwise/topology.ma deleted file mode 100644 index 72c9dbb4d..000000000 --- a/helm/software/matita/dama/classical_pointwise/topology.ma +++ /dev/null @@ -1,45 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "classical_pointwise/sets.ma". - -record is_topology (X) (A: set X) (O: set (set X)) : Prop ≝ - { top_subset: ∀B. B ∈ O → B ⊆ A; - top_empty: ∅︀ ∈ O; - top_full: A ∈ O; - top_intersection: ∀B,C. B ∈ O → C ∈ O → B ∩ C ∈ O; - top_countable_union: - ∀B.(∀i.(B \sub i) ∈ O) → (∪ \sub i (B \sub i)) ∈ O - }. - -record topological_space : Type ≝ - { top_carrier:> Type; - top_domain:> set top_carrier; - O: set (set top_carrier); - top_is_topological_space:> is_topology ? top_domain O - }. - -(*definition is_continuous_map ≝ - λX,Y: topological_space.λf: X → Y. - ∀V. V ∈ O Y → (f \sup -1) V ∈ O X.*) -definition is_continuous_map ≝ - λX,Y: topological_space.λf: X → Y. - ∀V. V ∈ O Y → inverse_image ? ? f V ∈ O X. - -record continuous_map (X,Y: topological_space) : Type ≝ - { cm_f:> X → Y; - cm_is_continuous_map: is_continuous_map ? ? cm_f - }. diff --git a/helm/software/matita/dama/constructive_connectives.ma b/helm/software/matita/dama/constructive_connectives.ma deleted file mode 100644 index 78e2ec571..000000000 --- a/helm/software/matita/dama/constructive_connectives.ma +++ /dev/null @@ -1,53 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -include "logic/connectives.ma". - -inductive Or (A,B:Type) : Type ≝ - Left : A → Or A B - | Right : B → Or A B. - -interpretation "constructive or" 'or x y = - (cic:/matita/constructive_connectives/Or.ind#xpointer(1/1) x y). - -inductive And (A,B:Type) : Type ≝ - | Conj : A → B → And A B. - -interpretation "constructive and" 'and x y = - (cic:/matita/constructive_connectives/And.ind#xpointer(1/1) x y). - -inductive exT (A:Type) (P:A→Type) : Type ≝ - ex_introT: ∀w:A. P w → exT A P. - -inductive ex (A:Type) (P:A→Prop) : Type ≝ - ex_intro: ∀w:A. P w → ex A P. - -(* -notation < "hvbox(Σ ident i opt (: ty) break . p)" - right associative with precedence 20 -for @{ 'sigma ${default - @{\lambda ${ident i} : $ty. $p)} - @{\lambda ${ident i} . $p}}}. -*) - -interpretation "constructive exists" 'exists \eta.x = - (cic:/matita/constructive_connectives/ex.ind#xpointer(1/1) _ x). -interpretation "constructive exists (Type)" 'exists \eta.x = - (cic:/matita/constructive_connectives/exT.ind#xpointer(1/1) _ x). - -alias id "False" = "cic:/matita/logic/connectives/False.ind#xpointer(1/1)". -definition Not ≝ λx:Type.x → False. - -interpretation "constructive not" 'not x = - (cic:/matita/constructive_connectives/Not.con x). diff --git a/helm/software/matita/dama/constructive_higher_order_relations.ma b/helm/software/matita/dama/constructive_higher_order_relations.ma deleted file mode 100644 index 8d195396c..000000000 --- a/helm/software/matita/dama/constructive_higher_order_relations.ma +++ /dev/null @@ -1,51 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "constructive_connectives.ma". -include "higher_order_defs/relations.ma". - -definition cotransitive ≝ - λC:Type.λlt:C→C→Type.∀x,y,z:C. lt x y → lt x z ∨ lt z y. - -definition coreflexive ≝ λC:Type.λlt:C→C→Type. ∀x:C. ¬ (lt x x). - -definition antisymmetric ≝ - λC:Type.λle:C→C→Type.λeq:C→C→Type.∀x,y:C.le x y → le y x → eq x y. - -definition symmetric ≝ - λC:Type.λle:C→C→Type.∀x,y:C.le x y → le y x. - -definition transitive ≝ - λC:Type.λle:C→C→Type.∀x,y,z:C.le x y → le y z → le x z. - -definition associative ≝ - λC:Type.λop:C→C→C.λeq:C→C→Type.∀x,y,z. eq (op x (op y z)) (op (op x y) z). - -definition commutative ≝ - λC:Type.λop:C→C→C.λeq:C→C→Type.∀x,y. eq (op x y) (op y x). - -alias id "antisymmetric" = "cic:/matita/higher_order_defs/relations/antisymmetric.con". -theorem antisimmetric_to_cotransitive_to_transitive: - ∀C:Type.∀le:C→C→Prop. antisymmetric ? le → cotransitive ? le → transitive ? le. -intros (T f Af cT); unfold transitive; intros (x y z fxy fyz); -lapply (cT ??z fxy) as H; cases H; [assumption] cases (Af ? ? fyz H1); -qed. - -lemma Or_symmetric: symmetric ? Or. -unfold; intros (x y H); cases H; [right|left] assumption; -qed. - - diff --git a/helm/software/matita/dama/constructive_pointfree/lebesgue.ma b/helm/software/matita/dama/constructive_pointfree/lebesgue.ma deleted file mode 100644 index c7e5d7c5d..000000000 --- a/helm/software/matita/dama/constructive_pointfree/lebesgue.ma +++ /dev/null @@ -1,31 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "metric_lattice.ma". -include "sequence.ma". -include "constructive_connectives.ma". - -(* Section 3.2 *) - -(* 3.21 *) - - -(* 3.17 *) - - -(* 3.20 *) -lemma uniq_sup: ∀O:ogroup.∀s:sequence O.∀x,y:O. is_sup ? s x → is_sup ? s y → x ≈ y. -intros; \ No newline at end of file diff --git a/helm/software/matita/dama/depends b/helm/software/matita/dama/depends deleted file mode 100644 index dcbfcc6f0..000000000 --- a/helm/software/matita/dama/depends +++ /dev/null @@ -1,38 +0,0 @@ -metric_lattice.ma excess.ma lattice.ma metric_space.ma -metric_space.ma ordered_divisible_group.ma -sandwich.ma metric_lattice.ma nat/orders.ma nat/plus.ma tend.ma -premetric_lattice.ma lattice.ma metric_space.ma -ordered_group.ma group.ma -divisible_group.ma group.ma nat/orders.ma -ordered_divisible_group.ma divisible_group.ma nat/orders.ma nat/times.ma ordered_group.ma -sequence.ma excess.ma -constructive_connectives.ma logic/connectives.ma -group.ma excess.ma -prevalued_lattice.ma ordered_group.ma -excess.ma constructive_connectives.ma constructive_higher_order_relations.ma higher_order_defs/relations.ma nat/plus.ma -sandwich_corollary.ma sandwich.ma -Q_is_orded_divisble_group.ma Q/q.ma ordered_divisible_group.ma -limit.ma excess.ma infsup.ma metric_lattice.ma tend.ma -lattice.ma excess.ma -tend.ma metric_space.ma nat/orders.ma sequence.ma -constructive_higher_order_relations.ma constructive_connectives.ma higher_order_defs/relations.ma -infsup.ma excess.ma sequence.ma -constructive_pointfree/lebesgue.ma constructive_connectives.ma metric_lattice.ma sequence.ma -classical_pointwise/topology.ma classical_pointwise/sets.ma -classical_pointwise/sigma_algebra.ma classical_pointwise/topology.ma -classical_pointwise/sets.ma logic/connectives.ma nat/nat.ma -classical_pointfree/ordered_sets.ma excess.ma -classical_pointfree/ordered_sets2.ma classical_pointfree/ordered_sets.ma -attic/fields.ma attic/rings.ma -attic/reals.ma attic/ordered_fields_ch0.ma -attic/integration_algebras.ma attic/vector_spaces.ma lattice.ma -attic/vector_spaces.ma attic/reals.ma -attic/rings.ma group.ma -attic/ordered_fields_ch0.ma group.ma attic/fields.ma ordered_group.ma -Q/q.ma -higher_order_defs/relations.ma -logic/connectives.ma -nat/nat.ma -nat/orders.ma -nat/plus.ma -nat/times.ma diff --git a/helm/software/matita/dama/divisible_group.ma b/helm/software/matita/dama/divisible_group.ma deleted file mode 100644 index 3a79b11bb..000000000 --- a/helm/software/matita/dama/divisible_group.ma +++ /dev/null @@ -1,99 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "nat/orders.ma". -include "group.ma". - -let rec gpow (G : abelian_group) (x : G) (n : nat) on n : G ≝ - match n with [ O ⇒ 0 | S m ⇒ x + gpow ? x m]. - -interpretation "additive abelian group pow" 'times n x = - (cic:/matita/divisible_group/gpow.con _ x n). - -record dgroup : Type ≝ { - dg_carr:> abelian_group; - dg_prop: ∀x:dg_carr.∀n:nat.∃y.S n * y ≈ x -}. - -lemma divide: ∀G:dgroup.G → nat → G. -intros (G x n); cases (dg_prop G x n); apply w; -qed. - -interpretation "divisible group divide" 'divide x n = - (cic:/matita/divisible_group/divide.con _ x n). - -lemma divide_divides: - ∀G:dgroup.∀x:G.∀n. S n * (x / n) ≈ x. -intro G; cases G; unfold divide; intros (x n); simplify; -cases (f x n); simplify; exact H; -qed. - -lemma feq_mul: ∀G:dgroup.∀x,y:G.∀n.x≈y → n * x ≈ n * y. -intros (G x y n H); elim n; [apply eq_reflexive] -simplify; apply (Eq≈ (x + (n1 * y)) H1); -apply (Eq≈ (y+n1*y) H (eq_reflexive ??)); -qed. - -lemma div1: ∀G:dgroup.∀x:G.x/O ≈ x. -intro G; cases G; unfold divide; intros; simplify; -cases (f x O); simplify; simplify in H; intro; apply H; -apply (Ap≪ ? (plus_comm ???)); -apply (Ap≪ w (zero_neutral ??)); assumption; -qed. - -lemma apmul_ap: ∀G:dgroup.∀x,y:G.∀n.S n * x # S n * y → x # y. -intros 4 (G x y n); elim n; [2: - simplify in a; - cases (applus ????? a); [assumption] - apply f; assumption;] -apply (plus_cancr_ap ??? 0); assumption; -qed. - -lemma plusmul: ∀G:dgroup.∀x,y:G.∀n.n * (x+y) ≈ n * x + n * y. -intros (G x y n); elim n; [ - simplify; apply (Eq≈ 0 ? (zero_neutral ? 0)); apply eq_reflexive] -simplify; apply eq_sym; apply (Eq≈ (x+y+(n1*x+n1*y))); [ - apply (Eq≈ (x+(n1*x+(y+(n1*y))))); [ - apply eq_sym; apply plus_assoc;] - apply (Eq≈ (x+((n1*x+y+(n1*y))))); [ - apply feq_plusl; apply plus_assoc;] - apply (Eq≈ (x+(y+n1*x+n1*y))); [ - apply feq_plusl; apply feq_plusr; apply plus_comm;] - apply (Eq≈ (x+(y+(n1*x+n1*y)))); [ - apply feq_plusl; apply eq_sym; apply plus_assoc;] - apply plus_assoc;] -apply feq_plusl; apply eq_sym; assumption; -qed. - -lemma mulzero: ∀G:dgroup.∀n.n*0 ≈ 0. [2: apply dg_carr; apply G] -intros; elim n; [simplify; apply eq_reflexive] -simplify; apply (Eq≈ ? (zero_neutral ??)); assumption; -qed. - -let rec gpowS (G : abelian_group) (x : G) (n : nat) on n : G ≝ - match n with [ O ⇒ x | S m ⇒ gpowS ? x m + x]. - -lemma gpowS_gpow: ∀G:dgroup.∀e:G.∀n. S n * e ≈ gpowS ? e n. -intros (G e n); elim n; simplify; [ - apply (Eq≈ ? (plus_comm ???));apply zero_neutral] -apply (Eq≈ ?? (plus_comm ???)); -apply (Eq≈ (e+S n1*e) ? H); clear H; simplify; apply eq_reflexive; -qed. - -lemma divpow: ∀G:dgroup.∀e:G.∀n. e ≈ gpowS ? (e/n) n. -intros (G e n); apply (Eq≈ ?? (gpowS_gpow ?(e/n) n)); -apply eq_sym; apply divide_divides; -qed. diff --git a/helm/software/matita/dama/doc/DIMOSTRAZIONE b/helm/software/matita/dama/doc/DIMOSTRAZIONE deleted file mode 100644 index 197c3ff97..000000000 --- a/helm/software/matita/dama/doc/DIMOSTRAZIONE +++ /dev/null @@ -1,126 +0,0 @@ -############### Costruttivizzazione di Fremlin ###################### - -Prerequisiti: - 1. definizione di exceeds - 2. definizione di <= in termini di < (sui reali) - 2. definizione di sup forte (sui reali) - -======================================== - -Lemma: liminf f a_n <= limsup f a_n -Per definizione di <= dobbiamo dimostrare: - ~(limsup f a_n < liminf f a_n) -Supponiamo limsup f a_n < liminf f a_n. -Ovvero inf_n sup_{k>n} f a_k < sup_m inf_{h>m} f a_h -? Quindi esiste un l tale che - inf_n sup_{k>n} f a_k + l/2 = sup_m inf_{h>m} f a_h - l/2 -? Per definizione di inf forte abbiamo - esiste un n' tale che - sup_{k>n'} f a_k < inf_n sup_{k>n} + l - = sup_m inf_{h>m} f a_h - l/2 -? Per definizione di sup forte abbiamo - esiste un n'' tale che - sup_{k>n'} f a_k < sup_m inf_{h>m} f a_h - l/2 < inf_{h>n''} f a_k - Sia N il max tra n' e n''. Allora: - sup_{k>N} f a_k < sup_{k>n'} f a_k < inf_{h>n''} f a_k < inf_{h>N} f a_k - Assurdo per lemma precedente. -Qed. - -======================================= - -Lebesgue costruttivo: - a_n bounded da b ovvero \forall n, a_n < b - f strongly monotone ovvero f x < f y => y -<= x - liminf f a_n # limsup f a_n => liminf a_n < (o #) limsup a_n -Dimostrazione: - per ipotesi - liminf f a_n # limsup f a_n - quindi - liminf f a_n > limsup f a_n \/ liminf f a_n < limsup f a_n. - per casi: - Caso 1: - Usiamo il lemma liminf f a_n <= limsup f a_n => assurdo - Caso 2: - Usiamo Fatou e Fatou rovesciato: - f (liminf a_n) <= liminf (f a_n) (per fatou) - < limsup (f a_n) (per ipotesi) - <= f (limsup a_n) (per fatou rovesciato) - Per monotonia forte della f otteniamo: - limsup a_n -<= liminf a_n - (Da cui: - liminf a_n # limsup a_n) -Qed. - -############### Costruttivizzazione di Weber-Zoli ###################### - -Prerequisiti: - 1. does_not_approach_zero x_n = - \exists delta. \exists sottosuccessione j. - \forall n. x_(j n) > delta - 2. does_not_have_sup = ??? (vedi prerequisito ????? sotto da soddisfare) - 3. sigma_and_esaustiva su [a,b] x_n = - d(a_n,x) does_not_approach_zero => a_n does_not_have_sup x - ????? inf x_i does_not_have_sup x => liminf x_i # x - -======================================= - -Sviluppi futuri: - Spezzare sigma_and_esaustiva in sigma + esaustiva o qualcosa del - genere. Probabilmente sigma diventa - d(a,a_1) ~<= \bigsum_{i=n}^\infty d(a_n,a_{n+1}) => - a_n does_not_have_sup a - La prova del lemma 5 in versione positiva e' ancora da fare. - L'esaustivita' deve essere rimpiazzata da un concetto tipo located. - -======================================= - -Due carabinieri: - a_n <= x_n <= b_n - d(x_n,x) does_not_approach_zero => - d(a_n,x) does_not_approach_zero \/ - d(b_n,x) does_not_approach_zero -Dimostrazione: - Per ipotesi esiste un \delta e una sottosuccessione y tale che - \delta < d(y_n,x) - <= d(y_n,a_n) + d(a_n,x) - <= d(b_n,a_n) + d(a_n,x) - <= d(b_n,x) + 2d(a_n,x) - We conclude (?????? costruttivamente vero per > 0 e vero classicamente) - d(b_n,x) > \delta/4 \/ d(a_n,x) > \delta/4 - and thus - d(a_n,x) does_not_approach_zero \/ - d(b_n,x) does_not_approach_zero -Qed. - -======================================= - -Lebsegue costruttivo: - x_n in [a,b], a_n <= x_n <= b_n per ogni n - d sigma_and_esaustiva su [a,b]; - d(x_n,liminf x_n) does_not_approach_zero \/ - d(x_n,limsup x_n) does_not_approach_zero => - liminf x_n # limsup x_n (possiamo concludere che eccede? forse no) -Dimostrazione: - Fissiamo un x tale che d(x_n,x) does_not_approach_zero. - Per ipotesi d(x_n,x) does_not_approach_zero - Siano a_n := inf_{i>=n} x_i e b_n := sup_{i>=n} x_i. - Per i due carabinieri: - d(a_n,x) does_not_approach_zero \/ d(b_n,x) does_not_approach_zero - Per definizione di sigma_and_esaustiva su [a,b] - a_n does_not_have_sup x \/ b_n does_not_have_inf x - Quindi, per definizione di liminf e limsup e per ????????? - liminf x_n # x \/ limsup x_n # x - Facendo discharging di x concludiamo - \forall x t.c. d(x_n,x) does_not_approach zero, - liminf x_n # x \/ limsup x_n # x - Per ipotesi possiamo istanziare x con liminf x_n oppure con - limsup x_n. - Nel primo caso otteniamo - liminf x_n # liminf x_n \/ limsup x_n # liminf x_n - Poiche' la prima ipotesi e' falsa concludiamo - limsup x_n # liminf x_n - Nel secondo caso otteniamo - liminf x_n # limsup x_n \/ limsup x_n # limsup x_n \/ - Poiche' la seconda ipotesi e' falsa concludiamo anche in questo caso - limsup x_n # liminf x_n -Qed. diff --git a/helm/software/matita/dama/doc/NotaReticoli.pdf b/helm/software/matita/dama/doc/NotaReticoli.pdf deleted file mode 100644 index 76a6842e9..000000000 --- a/helm/software/matita/dama/doc/NotaReticoli.pdf +++ /dev/null @@ -1,3078 +0,0 @@ -%PDF-1.2 -7 0 obj -<< -/Type/Encoding -/Differences[33/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi -173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis -255/dieresis] ->> -endobj -10 0 obj -<< -/Encoding 7 0 R -/Type/Font -/Subtype/Type1 -/Name/F1 -/FontDescriptor 9 0 R -/BaseFont/NGVWLS+CMBX12 -/FirstChar 33 -/LastChar 196 -/Widths[342.6 581 937.5 562.5 937.5 875 312.5 437.5 437.5 562.5 875 312.5 375 312.5 -562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 312.5 312.5 342.6 -875 531.3 531.3 875 849.5 799.8 812.5 862.3 738.4 707.2 884.3 879.6 419 581 880.8 -675.9 1067.1 879.6 844.9 768.5 844.9 839.1 625 782.4 864.6 849.5 1162 849.5 849.5 -687.5 312.5 581 312.5 562.5 312.5 312.5 546.9 625 500 625 513.3 343.8 562.5 625 312.5 -343.8 593.8 312.5 937.5 625 562.5 625 593.8 459.5 443.8 437.5 625 593.8 812.5 593.8 -593.8 500 562.5 1125 562.5 562.5 562.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 675.9 937.5 875 787 750 879.6 812.5 875 812.5 875 0 0 812.5 -656.3 625 625 937.5 937.5 312.5 343.8 562.5 562.5 562.5 562.5 562.5 849.5 500 574.1 -812.5 875 562.5 1018.5 1143.5 875 312.5 562.5] ->> -endobj -13 0 obj -<< -/Encoding 7 0 R -/Type/Font -/Subtype/Type1 -/Name/F2 -/FontDescriptor 12 0 R -/BaseFont/ABTSXQ+CMR17 -/FirstChar 33 -/LastChar 196 -/Widths[249.6 458.6 772.1 458.6 772.1 719.8 249.6 354.1 354.1 458.6 719.8 249.6 301.9 -249.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 249.6 249.6 -249.6 719.8 432.5 432.5 719.8 693.3 654.3 667.6 706.6 628.2 602.1 726.3 693.3 327.6 -471.5 719.4 576 850 693.3 719.8 628.2 719.8 680.5 510.9 667.6 693.3 693.3 954.5 693.3 -693.3 563.1 249.6 458.6 249.6 458.6 249.6 249.6 458.6 510.9 406.4 510.9 406.4 275.8 -458.6 510.9 249.6 275.8 484.7 249.6 772.1 510.9 458.6 510.9 484.7 354.1 359.4 354.1 -510.9 484.7 667.6 484.7 484.7 406.4 458.6 917.2 458.6 458.6 458.6 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 576 772.1 719.8 641.1 615.3 693.3 -667.6 719.8 667.6 719.8 0 0 667.6 525.4 499.3 499.3 748.9 748.9 249.6 275.8 458.6 -458.6 458.6 458.6 458.6 693.3 406.4 458.6 667.6 719.8 458.6 837.2 941.7 719.8 249.6 -458.6] ->> -endobj -16 0 obj -<< -/Encoding 7 0 R -/Type/Font -/Subtype/Type1 -/Name/F3 -/FontDescriptor 15 0 R -/BaseFont/WIVPZW+CMR12 -/FirstChar 33 -/LastChar 196 -/Widths[272 489.6 816 489.6 816 761.6 272 380.8 380.8 489.6 761.6 272 326.4 272 489.6 -489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4 -462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2 -734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 -272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 -544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8 435.2 489.6 979.2 489.6 489.6 -489.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 611.8 816 -761.6 679.6 652.8 734 707.2 761.6 707.2 761.6 0 0 707.2 571.2 544 544 816 816 272 -299.2 489.6 489.6 489.6 489.6 489.6 734 435.2 489.6 707.2 761.6 489.6 883.8 992.6 -761.6 272 489.6] ->> -endobj -19 0 obj -<< -/Type/Font -/Subtype/Type1 -/Name/F4 -/FontDescriptor 18 0 R -/BaseFont/XWWIDL+CMSY10 -/FirstChar 33 -/LastChar 196 -/Widths[1000 500 500 1000 1000 1000 777.8 1000 1000 611.1 611.1 1000 1000 1000 777.8 -275 1000 666.7 666.7 888.9 888.9 0 0 555.6 555.6 666.7 500 722.2 722.2 777.8 777.8 -611.1 798.5 656.8 526.5 771.4 527.8 718.7 594.9 844.5 544.5 677.8 762 689.7 1200.9 -820.5 796.1 695.6 816.7 847.5 605.6 544.6 625.8 612.8 987.8 713.3 668.3 724.7 666.7 -666.7 666.7 666.7 666.7 611.1 611.1 444.4 444.4 444.4 444.4 500 500 388.9 388.9 277.8 -500 500 611.1 500 277.8 833.3 750 833.3 416.7 666.7 666.7 777.8 777.8 444.4 444.4 -444.4 611.1 777.8 777.8 777.8 777.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 777.8 277.8 777.8 500 777.8 500 777.8 777.8 777.8 777.8 0 0 777.8 -777.8 777.8 1000 500 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 -777.8 777.8 1000 1000 777.8 777.8 1000 777.8] ->> -endobj -22 0 obj -<< -/Type/Font -/Subtype/Type1 -/Name/F5 -/FontDescriptor 21 0 R -/BaseFont/MVQYVL+CMMI12 -/FirstChar 33 -/LastChar 196 -/Widths[609.7 458.2 577.1 808.9 505 354.2 641.4 979.2 979.2 979.2 979.2 272 272 489.6 -489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 761.6 489.6 -761.6 489.6 516.9 734 743.9 700.5 813 724.8 633.9 772.4 811.3 431.9 541.2 833 666.2 -947.3 784.1 748.3 631.1 775.5 745.3 602.2 573.9 665 570.8 924.4 812.6 568.1 670.2 -380.8 380.8 380.8 979.2 979.2 410.9 514 416.3 421.4 508.8 453.8 482.6 468.9 563.7 -334 405.1 509.3 291.7 856.5 584.5 470.7 491.4 434.1 441.3 461.2 353.6 557.3 473.4 -699.9 556.4 477.4 454.9 312.5 377.9 623.4 489.6 272 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 606.7 816 748.3 679.6 728.7 811.3 765.8 571.2 -652.8 598 0 0 757.6 622.8 552.8 507.9 433.7 395.4 427.7 483.1 456.3 346.1 563.7 571.2 -589.1 483.8 427.7 555.4 505 556.5 425.2 527.8 579.5 613.4 636.6 272] ->> -endobj -25 0 obj -<< -/Type/Font -/Subtype/Type1 -/Name/F6 -/FontDescriptor 24 0 R -/BaseFont/NFGEEG+MSBM10 -/FirstChar 0 -/LastChar 127 -/Widths[777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 -777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 -777.8 777.8 777.8 888.9 888.9 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 -777.8 777.8 777.8 500 277.8 222.2 388.9 611.1 722.2 611.1 722.2 777.8 777.8 777.8 -777.8 1000 1000 1000 1000 1000 1000 777.8 777.8 555.6 722.2 666.7 722.2 722.2 666.7 -611.1 777.8 777.8 388.9 500 777.8 666.7 944.4 722.2 777.8 611.1 777.8 722.2 555.6 -666.7 722.2 722.2 1000 722.2 722.2 666.7 1888.9 2333.3 1888.9 2333.3 0 555.6 638.9 -0 0 0 0 722.2 555.6 777.8 666.7 444.4 666.7 777.8 777.8 777.8 777.8 222.2 388.9 777.8 -777.8 777.8 777.8 777.8 777.8 1000 1000 777.8 666.7 555.6 540.3 540.3 429.2] ->> -endobj -28 0 obj -<< -/Type/Font -/Subtype/Type1 -/Name/F7 -/FontDescriptor 27 0 R -/BaseFont/UQCFNZ+CMSY7 -/FirstChar 33 -/LastChar 196 -/Widths[1138.9 585.3 585.3 1138.9 1138.9 1138.9 892.9 1138.9 1138.9 708.3 708.3 1138.9 -1138.9 1138.9 892.9 329.4 1138.9 769.8 769.8 1015.9 1015.9 0 0 646.8 646.8 769.8 -585.3 831.4 831.4 892.9 892.9 708.3 917.6 753.4 620.2 889.5 616.1 818.4 688.5 978.6 -646.5 782.1 871.7 791.7 1342.7 935.6 905.8 809.2 935.9 981 702.2 647.8 717.8 719.9 -1135.1 818.9 764.4 823.1 769.8 769.8 769.8 769.8 769.8 708.3 708.3 523.8 523.8 523.8 -523.8 585.3 585.3 462.3 462.3 339.3 585.3 585.3 708.3 585.3 339.3 938.5 859.1 954.4 -493.6 769.8 769.8 892.9 892.9 523.8 523.8 523.8 708.3 892.9 892.9 892.9 892.9 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 892.9 339.3 892.9 585.3 -892.9 585.3 892.9 892.9 892.9 892.9 0 0 892.9 892.9 892.9 1138.9 585.3 585.3 892.9 -892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 1138.9 1138.9 892.9 -892.9 1138.9 892.9] ->> -endobj -31 0 obj -<< -/Encoding 7 0 R -/Type/Font -/Subtype/Type1 -/Name/F8 -/FontDescriptor 30 0 R -/BaseFont/PKAFIM+CMR10 -/FirstChar 33 -/LastChar 196 -/Widths[277.8 500 833.3 500 833.3 777.8 277.8 388.9 388.9 500 777.8 277.8 333.3 277.8 -500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 277.8 777.8 472.2 472.2 777.8 -750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8 -680.6 777.8 736.1 555.6 722.2 750 750 1027.8 750 750 611.1 277.8 500 277.8 500 277.8 -277.8 500 555.6 444.4 555.6 444.4 305.6 500 555.6 277.8 305.6 527.8 277.8 833.3 555.6 -500 555.6 527.8 391.7 394.4 388.9 555.6 527.8 722.2 527.8 527.8 444.4 500 1000 500 -500 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 625 833.3 -777.8 694.4 666.7 750 722.2 777.8 722.2 777.8 0 0 722.2 583.3 555.6 555.6 833.3 833.3 -277.8 305.6 500 500 500 500 500 750 444.4 500 722.2 777.8 500 902.8 1013.9 777.8 -277.8 500] ->> -endobj -33 0 obj -<< -/Filter[/FlateDecode] -/Length 2056 ->> -stream -xÚåXK“ܶ¾çW°t§âùøˆ/–,)唒JI¤QRX»A‰CŽùX'ëüøô‹ÎrìÒ%§\†x6_wݘ RQÜôùcðòæÛ7qD*˂›» MT™û8ÎU”7¯>…?tÃØOãèüã£}ô]ëvû47aínÜìÊ4t]ïŽ4Î4v÷ùæOA© -ì­J‘ÕîÒ8|À×ß»öQv¼êŽ¾µ£ɞ¿oÝ-4`ép?9”÷í›ä¬jC«XIgO§Ý>É®;ØÅ¡ow‰ G×·ïOƒX«Tãþ½I•ÑÁ>5J¬^c§ÚãVòÞV®¯»Ñs÷Nòе,GÃÕJVCe£’˜d­7G¥™Ê8p^ôºí}%ç|ìÿTfV¨(?Ëü7ÏÇX‡@÷4.U -†ÊÊØNñ¬–èðG€8 -Ǟë‰-†Æx}CÖ½bUÒ+R"X–*â£>àuS×ÈÌNg€ý7h‹$lɦû4KÃƍ€¨§^Žvۏ¾¢¾+03`ƒ'­ëm묚Z^ÆêÓª"ÌA•34ìízÏ>;j¥5éÇ®µOŠ"<ú4HŠ2tüYfK²|bîûÙgqëyÁ‰¾|Qgá4¯ájè?$Pÿ4dk»þh›£“xÛàöke ){?y¤ >nT]?ÈXíÓp': -FmUÙÚ}åÕn¯£"ü«'”.Õqxê]å»èð&¦XîÝÖÞå ©µÜT÷[LhÉ.ÞcTFA -“‡Ãƒo«®(}Æ ,«-ßTæÎA,sëØñ˜«eKÓ8nÝM-Úåúž+f?$&oýHÜ…ÄßX˜bðè_E ¦² AÇKtHWáö¬ ÉÄB71Ûä·Þ0o¶Í½»ÅXݏørÓÝc«£mmãGŽëTÏÖÅæp个eèwã„œ2ö~6$-Haû8αxèÊm¤ÏwÃ5þ ì6k7 -6¢°÷Ï;uæƒ@J§xZ¤˜ށ%@‡ -û®­/³¤C^P¤=7dÝ;gѶi¡ õ<2Rz±Z_º“`ÊãoÝ5Ûѳ%ÚÇá›l´c7qŒS™M8a 8”0hè@^]Wc¿ò£í[™: j”`›jjÉ]qٓœÆ0kǃȀÏí'n)®Q….¶.‹:érÆ̀ÓRzÇ]¢:üvÄÕÐ:|(>ã.X‘9'¬˜Ã€L”…qþéNtY -“ÃUD“c-ì„î²Õò0K›<|;ýËñý¦þþ—X»å™OÅgnœÀQ‘Éu‡/ê%ØüðËË©ÿDðO‹çþ,ûbÙçðS°ùÀÀ·º|Ê>ó)ÿŒ -çLϗ¬—ê öV3á冎¬¦ñâ5¤ 2—.˜ôP҃·<"äc‡CKù °þh–ç!Ý\€¬+(MÁ·¶×Œ+A†Gé™%°«SÎ×æœhËL•DP|íöEøݜò—% <1²ä¹*s™Ün…Baþ÷¥ö¸²“€*$\@Q†¨HÏ´<^KA’­´‹eË žR`“{b;â‚ªFùS@…”•¢ÜU¤_AO#°ôz†`¥¨—Dzæ÷[øUü[àÍ¡vK6{S•&_ƒüôWÃ2¨õe£dc9<Û£(IC?Ilu‡)ÉÙwñqÇʋç[ˆpæÞKWí%b¿–ïáPuÇP9§«}FLÖ~ŒùväZ*Lìi„ô‡Ž çᷛ++‡Ð$§ìhÀœÆÜÖ­óRåùà*«Ð¸Hó ηs}6ô‡­€7Í»¯¸ƒÄ±íýVñĨ²¼ ÈÕI˜Á”ÎÖ`n/_bjýŠÀü˒‚«@ËùA‡ÍóÅ5úÑ.Õ&Nõ®Y^bÐe{áúš¹çè[ÞYFK©ÁµCÇMJå]_ûv{LÄú"_$Y¾El2› ¸^ÕÇ4n֔¡6fÓB%¿Î/¨À<[s‰R»9·‹MŸª_À{©üp*¸™NÎn†wBèñ+5$@_œ¡G]z¦¼"Vi±u6”q£\IÊL.ê𨂔G4‰I·Ž[¦g·CV¢4J¬””×X ¬7/¿j•g¿påtbImMNŒªóGª};—°ÂRíÁsÊ+DðE8gï–M±Œo¤Ó©ñÕÈð:“‘–ÕçrÞS0L"£¶›+&<¦“TÌ|²‹ÙBMbÄòLË µ›D[¾…š QŠò«÷kãf˜À)‹u®¬:(ûÆÉô°õw𺔦oø{YH*¤^ç–Ä,ï*£áï—Çð]ðóüŸ)À/‚c&Pé7Á{ú!GVÏ)wCYƒ}”1Ôå?$Åò‡dx™ªŒŸ ¯üÉö£Ÿ³eE#Y-ßWŠR_Æìõc{‡¡@”HiՄk½Ðß ÎDðrMž¿/1ÌZ uu–éðƒ—é?S%„G½ôÛ-ϒó'[ýˆï"¼• N%8<Þ ó¸§£8ɹy>Pƒ+¼Þ­o°ÕÀÈòÓ÷Õ  ½eP~d¬Îˆb@æÁžžm«‡Ö`ƆÀLþoÁtêžÀß_Áq×è“%<}—?cqõßý¡P‹˜ -endstream -endobj -35 0 obj -<< -/F1 10 0 R -/F2 13 0 R -/F3 16 0 R -/F4 19 0 R -/F5 22 0 R -/F6 25 0 R -/F7 28 0 R -/F8 31 0 R ->> -endobj -6 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 35 0 R ->> -endobj -38 0 obj -<< -/Type/Encoding -/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/sterling/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi -173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis -255/dieresis] ->> -endobj -41 0 obj -<< -/Encoding 38 0 R -/Type/Font -/Subtype/Type1 -/Name/F9 -/FontDescriptor 40 0 R -/BaseFont/PFLRKF+CMTI12 -/FirstChar 33 -/LastChar 196 -/Widths[300 500 800 755.2 800 750 300 400 400 500 750 300 350 300 500 500 500 500 -500 500 500 500 500 500 500 300 300 300 750 500 500 750 726.9 688.4 700 738.4 663.4 -638.4 756.7 726.9 376.9 513.4 751.9 613.4 876.9 726.9 750 663.4 750 713.4 550 700 -726.9 726.9 976.9 726.9 726.9 600 300 500 300 500 300 300 500 450 450 500 450 300 -450 500 300 300 450 250 800 550 500 500 450 412.5 400 325 525 450 650 450 475 400 -500 1000 500 500 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 613.4 800 750 676.9 650 726.9 700 750 700 750 0 0 700 600 550 575 862.5 875 -300 325 500 500 500 500 500 814.8 450 525 700 700 500 863.4 963.4 750 250 500] ->> -endobj -42 0 obj -<< -/Filter[/FlateDecode] -/Length 2664 ->> -stream -xÚ}YKã¸¾çWsihk%QÏìi;››Em$‡vØÇC@½zÌ¡}êEÙ²Ü9"‹ïbÕWË»(Œ¢ÝiGŸ_wŸž~úªvqVÙîéÛ.-ÃTíyÉîéËsðEÝÖso±ž ülõHÇ$Ïöi†ûŽ“žS›~ŸäŒÀBhIª wØë*YLó4iìöÃj¥UPcõ»tž{ÍKŸõ¼<ýcwˆ‹0Ëà“†iJ[m`;i’“n –pQ7XÍe=NƒÆU¨Ö˜¶}°²³Ó ß¬ë ?f¬mßȍn[3À>çAª?p´™&\£åME¼ŸŒ÷k€Ò< Æ3®€]~úš]´çØ7¢ÞÿáÖ«»¨Â4‘Æp(³$ø{ÓÁYÚi°<ód†Îö”–E ÐR˜ÛÛ9<õ`¤Y7Ü`Fӝ­#iؖg}ڗp…n€»e YX+ օʂώnóǞÖ;™þM¾8؏ž¤Fw¢òà7óÊ[O3*6*WVƒ]yïní«mE6šÓlÃsÌ= õù< y•A]³R½Þy—g4˜çÏâ,˜÷{4™†Ê@}íð"±Œ›ÄïŸ3ß–Gwö͵KUYòq²Ólú†:FÁ2€¯˜Ê½:tÛûVEFñ»~ö«³Ô fÃá–u |uöpÜw ¢Fit³pœ§è,¼ð?ñڃŸ÷‡.½Ùì"Qa’J×ã,/«R¶ R,{j­ìešëFËëÚNÌï÷/=lÏm Z@qܲ‹jí¹ƒ!D%§ jÜꏣªàoºQÿ%}¥Û5õUàŸÜè -‡H€6h—ÐVËâ?g¾~¡£¨'á2hÐ µÞ:òwì12à¦"0ƒóÌhæ¸é9Ž^Ÿãø%Dl¨ÈSU”¯³ë5Ñr4¸ î;Ž€ŸÆH |/d'NðŽÙMt\iÁE¬´f MºuÑ^D -†4îcØ8M§`((lR¤}ÜT™‹ª û$8@Ú|oœEx©TèýÈÆ4ó0Hs«ýêµ€å‚dwՕsä*¬”MNۊÍHãÕñØä÷`Éòwykö™ -Ër±ú[C³PygÄ#&°94p A–ƹ®AËbžIZ‚äìÁŠâ\²ŠV¥ ›±*“Õmb×Övˆ.rʼ -ã•c aâúl7ºËòËAù&@/`£€Ý+‚Õƒö ÖÆö†QtIæ¹Ìöï;ai04v•¿Ï쎰·ðØ ˜ÒÉ~y¢áÉE’@ä.i‚Ï®CEä -|Ëöµ=³æò4p¯B«¥K,¡Ó·¾¯;þ»ža…ˆ48ÆqyÐþ¢/jdŽoÑ8÷ÜBxÜŠÌkŸ‡ø0Šõ,8kÇT¶—¥^˜Í€5¡Ø,NtY8»u"é‰ EªRÂÒX;ÙÿÖ½ „1Žêáä:!Y"¢¨U7€ ·•— -¡ÑÒGá«ÃØ·7&BxxͱΎµtn®»³)Ošþ0žSAE=2·ê}{îÁ[lYq ÐR¦ˆ!ƒ:‚Zˆ¾“‹R9]N\a^ÂyX>Úþ„à¿ED=Žút ˜Ìh…ß\5n݊ÈHa°ã܂¯Z´z f!\ÆaZìT1a&Óg{ -£Ë7üòÈóàæþ„–Kv]x­`ãñ±æž(t˜®ÁÛÑÙªÂk‹ %§z\Y(:СvÝyžè\a ³¨"¨Mc°aº…n/TýÿEtwШeŒBÚ!¥Š‡ƒ¬ŠED@¤;œúÕ±› KØáq¿ -•”a.@1˜†}=¨Ÿ'fˆ9ò8æð¼/G‘‡älhЙiú Œ’`9¡$^W¤> -mžõ=¬2؅« oíçô……—,Ü c|Ò[ý`Dôk±¹i-ƒÛTÞ_·—Cï|Ì#Ñ AòR#&+ZahœÈ`­^Þ«n6ŸËú¤GîôÇÙâMŒ,~®^ „ÿc»§¸Ðø]³6р†ýjýv›+&G+½ª€Õ%ÙÇâ÷T¼y -àp±1©Q²:Ü°9KÂâ#q`ìcs‡÷‘Õdñՙ“,á&¿ä"z‡Á—3µÔjdz…m؟º+£Ý0:î⯤>%Ã=6o“m´…“ö<”¤†ç}x,Î;:¢º¬™pd_«@†‡jœw¡ I–à -ý›H$q”p0íü2û„eÎ KòvÓ02Ø TÜñþ¬,‘Aà$Ñnä€ S,(ΑÒó*V„>sB%7/ž„7Ð:ÝJQ^×KvD>àbÑMï!Às†>¦de p–ÏV£Î4Ø'Çݔ˜~¾Xîò«eK&­·.äwæÇó¹µùþÄøàÚdx=ÇsåKÏIcÎÖ{‚‘·Å P{é£.ï;®²»µ¶¹Ä_nh¼’Ë%ÏS‡¦6IüaÑ'þ¸ÆïvãKNʍ|ç;€€(þµ¼³V7ËÙ¡››ÅØâ³aù: ©wó:diž ó̽ÁìÇ}ü eIó,iS”"€Ž–­7¦Yà,žÊ%bÔù¨ì8ñ -endstream -endobj -43 0 obj -<< -/F3 16 0 R -/F5 22 0 R -/F9 41 0 R -/F6 25 0 R ->> -endobj -37 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 43 0 R ->> -endobj -46 0 obj -<< -/Filter[/FlateDecode] -/Length 2571 ->> -stream -xÚÍÛnÛ8ö}¿Â;/#cjŽHŠ¤˜¢-:³˜E±´ö¡iŠ¥¤Âڒ+ÉÙ¢_¿ç”D‡’ã&i¦‰$^ÏýêELâxq½0,^ÿú;]PE]œ_-xLÒt±’)Qlqþú}Ė+JY½Üíšz¹â4Z¯K|Q"jŠ®\כ¬)–Îÿ¹øíܜÆ”-¼ÓðŽzW\ï‹*‡Í K£/S—Ë“QÑà˜ŽÞÓøó÷”~xß"‰Ö¥‡-LÁÅûy)šb[ۙ²²§}Þm—Ù±¶øZÖUa'òbcG»¢†mnI^ˆãŊ&$I xoz`Z–É4ºª›í†ö›¬Ã ¥Œªb³ù93£—e?—lðd©Ì5ef·çEi¡J²\¥"þUWvA[fXRV]± -jŠ¶ÍºèÁu Xöo™¹«4Úfm[n͇Š®‹ªh²MÙ]0)–IšFfb€7´{÷âagv¶\ .£u]­‹ -'ºÆRڃÊr²šrXPÕmg¤ÞÛnŸ—ýû¾Ä`Yݖy^t]i'zBد›¥à€É¾Ë켈.¢ºßXÝ^c`¼X’QÖIJ€ F”²2†´gšÃI¸î×ßÅ(Œ)Ãìçv:§)G°Óÿ 6+¢•› · -Â7ùÑNòɝK ܾ²OGo–×Åe=MiØpc¥„ie¹]Úðy¤©>£¼âpJP£„ı[Ê#'U+%ˆô%«-¶;äã"zÏQãh*Xjô‘( Èà3/.˜PUéô -‡Üc㞻¦Ü¯5|½ê(³—€Î™y;—>ò\È#‡WI, +}˜`kB„pô}»\© öÀv&ŽqVã¬8äìÜÎCpÁ €2´/)J@f_@ö]·oÌ'p03…‰5²þ*eB'řrJ¸1Oïƒù#É´@ԑݒÉH™e3`ÔÖ]W{¼Ԍ$ÀÔRà‰(ÿ‹•ô9jŽB+g4‡«˜åKáÕ¾BU@^ÝABYÒ¤4Ä#×΂íoêY ÏïÏþ»•Þ, xk¯-%*à2¬b–UªFuÛØâ Dp)$¡³wõŽ6E‹ã6X¤Ð2k 7ŽŠIèe´µÑA¾7ˆÁÃ<À5ÖUÝÁߙå#ìCàù±Ý} Ï©¯«2´.‚¤½ß,“ô)´¥OƒÀ2$zÁIÌF×hBñ¢Õ0ñ›õÄWÙº4ñ¥F_®/7L6^º<ü0¿ÆÄu3„z:Pt¤ç›©°Cô鳈n^(V <)DÆÏÉî -yªe9œŽRÍÇpùYx.Xé 6ãã7Ú ¢SÈ$|öRÓðª#·ò£—²Ç±ŽóU!Î@M©­r”í~cĂjÂ‹/|,ŽòŸë&/û¯]Ö|-m²Dõ”`²˜Êöf*¢ÍOäŽ;W™ä.ȪQ#h:uƒ¦c¨?›|–k½Ûïlv]7CUeÅ!¡QyyiR{:T´0í*Z˜Ð¯Ñð~*&H¯‘žG4q•"Ÿz4FíIق/²Pv˜Ò…q]cqÏlÕþ½œð^Ô Rup<£ ˜ gL qJD`|âÂMìõCépEgÌIjmÌëÃúWIÄ%¾üú1il—’p+À¯‘ JÌ3=uÐ>šñê“èÁÆfÛ:ô¸tô/ù„‰ÓÓ\Ó!*¾”È1µí£é³Su8!~üÈí–çg£cOèŸô÷ÇéãÃqғ—’ShŒ/@cæßAˆ!C ®xTn·E^šr9ªVôªº]›0z£Ú6 -Ï#Hg@QE÷¤“ Ìõà¡£ØÂvˆ’þô»é - #{ÂØ10ôi©à<¡Ô¼—P*z]ZâìLíΊ 2Ú?sŽŒ+LÑ=G6Ô2°ðb#J©¢\ýõ>»Þ”YõՌaŸ>®kW¿¡ -H ø\ÁNáÁ™-"o*±¼Ü5î6p*õ¦Ã¥T¢@ϝb~3Q€’Ò,ðÒÛrµ-uæò"ÍÈmïÖqÇDm>Œ8 ýlôÜØùRƒ»6—ubl։aAœX’˜ònÿÓÂLáßd1LÔÄØ<hÍm»èPòùVÏF½ºÃÍd~ˉ~<]\O)AÂ'¼|òÛ}-£wTÝ@¦Ëy2AŽ!æbl/`Êe|oKS[pm/n+ñæ¹)L/Á~ Œë4zU6ÿýTCÔ#íð{þÁNô½b·Õ-ÏË-6-ûħL9_Ηi<êd¨ ?Î×)DÄ«_`÷´*m#U­ê¬ 6À†–l2ÆîØ1ï—Øä»iÇxóâb]Û^+µüdÇsgwmcÏpìgasì¦lº}¶k3¦§Z殛‹VÉôTÝ‚q 3¼ç®aëSSêÈÕìN웜7Åv46|ÖØĉ‰˜»‚öÚ* Q9õ궁ùfëà Ž‡ÎéIfö®žH!=gs¿2Do¾LìÖê‹z2°Ãn)€ÿrɒ˂:ÚÔ "4Q]A>êwl;Õ q ƒøa²ªÎф ÁH½˜ûiL¤šCz¾by쌳õq¡hlÿQYO½3Œn@µ—"Ž0‚ÂgÜø釘mŠ#ˆºê½ -›š£¸=€D_æ#ÎCN9ÑO•7†Þèi`\žÄ©dòŒk+ԓš ¤ÔOéúï¨Q%P¦R?šð?ÌÔæß՜—–Ê¡EÜöòòr²Ê°f -íWpó];gSƒ»êò‰zŠ÷¦Œ¸?eԏPJù2Aš±'öíÖ»øË«L‡R#žÊg_ÎûìC| ÁÄN‡üD‡t´É!È#m‰¿‚QŌ·¼h!Po².³x–ç%¤åÁÏèìB/ho;[E±?ºÜ˜=™uEU ¶<þ·H¨m -Z¶ã7ÇbúfñÎ[Çܸ2ëR¬{¹ï‰upóיodxÊ¿×}÷¾:_Ÿ ÅA T¬ƒáü¿ýb”›3 -endstream -endobj -47 0 obj -<< -/F1 10 0 R -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F6 25 0 R -/F9 41 0 R ->> -endobj -45 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 47 0 R ->> -endobj -52 0 obj -<< -/Type/Font -/Subtype/Type1 -/Name/F10 -/FontDescriptor 51 0 R -/BaseFont/FIVCRW+CMMI8 -/FirstChar 33 -/LastChar 196 -/Widths[660.7 490.6 632.1 882.1 544.1 388.9 692.4 1062.5 1062.5 1062.5 1062.5 295.1 -295.1 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 295.1 -295.1 826.4 531.3 826.4 531.3 559.7 795.8 801.4 757.3 871.7 778.7 672.4 827.9 872.8 -460.7 580.4 896 722.6 1020.4 843.3 806.2 673.6 835.7 800.2 646.2 618.6 718.8 618.8 -1002.4 873.9 615.8 720 413.2 413.2 413.2 1062.5 1062.5 434 564.4 454.5 460.2 546.7 -492.9 510.4 505.6 612.3 361.7 429.7 553.2 317.1 939.8 644.7 513.5 534.8 474.4 479.5 -491.3 383.7 615.2 517.4 762.5 598.1 525.2 494.2 349.5 400.2 673.4 531.3 295.1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 642.9 885.4 806.2 736.8 -783.4 872.8 823.4 619.8 708.3 654.8 0 0 816.7 682.4 596.2 547.3 470.1 429.5 467 533.2 -495.7 376.2 612.3 619.8 639.2 522.3 467 610.1 544.1 607.2 471.5 576.4 631.6 659.7 -694.5 295.1] ->> -endobj -53 0 obj -<< -/Filter[/FlateDecode] -/Length 3078 ->> -stream -xÚÝ[K“㶾çW(›ƒ©ÊŠ&^°.b¯JʕJٓS”‡ÂβŠ"ǔ´‰÷קIP5šÇÚ[>ìÂ‹@?¿îÆ®²4ËVw+ûøëꛛ/¿'+BR-V7ïV,K•Zmr•Jººyûïä³ßë #,¡)w/Ûdg*÷º;|áÉ·EWÜVMeºj»N×ÿ¹ùûê»»ºW§T§Œ‡ËÿTM‹£¿üž» )U«ÌŽØ&®[ŒÝ<Â÷®“d+™j‰yJà $U¶¿™­-Ҝ¯úîíúÒâ_E&S~Õ¾ngûâ©Vì‹=°¯üùûú_„^¹xô¾žª”ô‹NåZd‰ýc‡ªmPJ²,©šÙž$Msêçý8[täN9…}ñ”s;èXÔ¸Z®’ò½™‘àq%|œ R)Ç3Ò\ÎÖ',Íèãhøäõ¯”€\”yê{KÿΫ]sÜ#f)'þ‹óʲßu½yÐKÒ\ûÞÌwÃp7®×¸]ôÌÓQæ ’Ê^¶w3ÌÓìEmX°_­7$Ï{î²ÉiUÚ^x¨ƒ­úã|.|¢ïÍb|£ù@©óÝéTªçSåJi o©"ãTù4DÙ0ES¡œî‹3‰a>5ð„ß?ŸŠ:&MR¥œMUu¢Šƒ s-$)ՋF©ïI×ßÿ˚ò¤†wÔm‡jVÌùGx> — ŽÔ—%Û÷?U´eªä%.R¹ÈE‘*1Ð ÑÀ†’?¶¡àÜ[ÿÙ!_[ûçÝ3„T’© pV¢S•{Ì@óä}ñ_dRÜß×UY4»ÖuTµ{Þ¬ˆMÛ‹`¨CÝ ³›Ž¬=ʁ®ûΔfgš54Íëea¾m(C¤ô;àlÜîùW?;;ŸŒ˜vÏô|!¶D( HIþ>êçËÊe?ò¸ó=‘•ìœ•t•òS‰ß‡V¾+<Ÿg“}̽-å©z ³,X -è£ë¡h0â |È f -™cS8¯Ržª×îíh ‚±ÞƹšÊ5·GsèÖÞ •mSÖ' ¡Ìà3Àÿ…H‡¤™¾·„FÌ^¯~ -FRß¡ÝH….»oˆŒ„5ùd¤kGº’“¯û†ñëñ”Q¥;È)P¥À#‹¥dÉ(FáÄ5vZf#M\A¤i\Gi˜9¸žæhæ"ÊøµÁòµvà’Ó9ÇEr@ͦ?ʽÝrWµÝÞîØ6×Õ¾:G{^   ÏÆnVÁTdùhKĚKîb °¥ƒëB*¡’o‹Sùþ¸R8€Ûµhw…ÝŠ©@ ^¸—(#˜ÉÎØöÎu,³ƒ*(ÿ%Íփú=É^¨0TTÍ»€Ž^™Æ=ô¹ƒI„;BŽ âÇX„Lz1¨[‡MG&y¼,‰ÅOƒËDêš7EÀ§²çÏ,`’©$ƒ¨H2£¢ãù—Á@—]»Vž9±LâìÛ¦=¶‡ñeÕ#t×dúcö–Öqpž½vä%Ì;`êϧªAEàD&ýy¿†UY+ŠÑŸÌdòö‹¢>v-ŽR ÄöK-¨g:0÷ØÛÆÒ/”nï]Ø<C%Òg1ÃÐMò0K7¢ð'‘-Œœ‹d€hJF"³ˆJy?`û··U±o#¡ÄÇJN Ñoþ‰ÃÓ _²¨‡Öa†x/“¯çäÎÆä§R³G%q'À“Ž€“XbD‹_eïQòª`ï pˆæaÆ>h 8qrh’­ãb#5&ªÂ‘¶a‡‚¯÷ Ã׿¹Yq›’ËçÌ·uÖ¸,¬’‰s¬’:[±a9ŸXlÛ°óvÂi&³¤3>¹Êg†1§‰Ÿ8,øUì7ÞJäL {s´„ 7Å¿o“*5)ì‘â’‡cg@m³¸ÊY\ƒìÙðL%?VeÛí¬ÖÛaΈúÕÀ_Úç¾8ødÀ߀—[Xùtt{ËÂà±ú°°oØ¢¬œP:i]KÓ⒌Lµ0¤óSo«Ú·mmڇ‚¯w͝ivƵ7I_À‘ÜïÃñgé|ï00:ËAöàs»=¶Ç¢6á!& Á|üX¼Ú®ß «~çZŸ¹¼փRVµÿ½ÝîÌöÙTy傄QD*5ôü‰òI2jôߞ‡#2‰í“«~…óÒd²J ¸vYuÙ֖T6ÂéókV–|ŒSYñ@“å@Þ¾Ë.på&€;½6 c‚|@9ÌFM¸ò‡µwgš¾£1¸œ4Í¡u¯;S×_ ö(hs ¾±Tˆ]³¾¿ÚÛô#žŽÛZ—]¾n:ÛL\`ÇT°EÔ¯† ¹gÓ²(i6÷´+êÚ¾‚æ™}µ}íPf;W)¹\‡ÙlÂ1WJ’ª¬íôÑVLM¸…»êµÞ£ ;©vÏí¶i-ëJàtݾêM G'úz,"ƒMLºêpªA:íOh%ô•¾±òV­CÅlZÜ5e–ñØ{0w§Ñîá¼û®½ï*sô–BYÛí»jÆlªr¸LþÎê";üÕ6Ǫ9UÇ_ft„àe¨\ Jåb€ïJ„6¬öPüÝ©ñtÅ_{GªÝÉ*ÍÜïB /9^’ ï\£ÞµÍ®èQ°ExœûÆ{á‹jQ¸7Þz{ÓïâˆÈÃu*R jÉ!ÞgîÄo«ÒyƲháƒ6;Ý´@–ëh{N„aÐh˼LôºvDÙQÉ©=æñŸJu\ÆíÔÇãîÇP?µ¿bá®Ó` !5Ùýpè+C¨ß,¡GÁŠfR)/ůcdá4dwÈXÄ86Þ|&’[‹¾ - àÿµÑå¤Úê9ôÓXB5ÓWeCål(ʆ ©˜sm*dCêT‡&ò ù<±P©dłñ«ÒÄBœ]t`“²±¤©ªy7— -°­ì‘D˜§õe©¸ª üڙD:yx+r̲^šÄcôâÀ‡ÀŒ8á¡âZ¤ÓçEžù³ ÑC)8É/܁ù‹ÄsY³ÉÃ( £"—£N¾ _Lk㍸v¦^ÇR‰>/°.“Êå |nwÆÀSÝß׋©´ä½8Åýø -”ƺhžOðºgÛ³;™ÓI•L32TiàT=DïrŠ•ÆOçq/ :ø<²|ÛzÏo°é‰I’â‚]phÄ.ó´ït±øÂ-:Ìf§yz k 1½í6ÒáUD¥‡Œæüœùx›!¾Î¯»f#RÂ>Ÿºo«‹²Ë·¥ÈÅÛRäº{6#ÁƲ f|DR”ÏM·ïC:lû`Ã=–‡¨";WÛÉó%°;Å,|‹¢Ÿ f±Pk7½(fjƒÅœ¹ƒ³6€ÐÛ@Î/#!qòw¹^º¸*^ Êü)¢l’™Ÿ0ð€Ã-ØΓïh FûøÛjÉ¼"ˆtmÒçǪ°™/Þ§ª±¾^îã×9¹ä遀Âç(C]®ˆ,ƒŸVóۅ۵Ca1z»–]º\KõbQGÖӇóŸü{?·‹"•½oõÀeµ+}âr‰ÄÆñ,ó}¢"I~%fþÌJ O‰æŸqSSD=țËW\„Ê°†#ÿ¶ëÓÌ%Ö@yžtÅèún²­bHº1˜!ä\&eqhݛ­³ÂÓ:|™”=pÎΜU5°1B`°ôxËþÿýbòßBìg|ÕsÍù/äªóáÎÀÜn)=Ioc~_?æ22‹BޅŠ˜Ðö~ÕX*Ç Ý¼Î%”ÄdñXçò ‘‘°&(r0Ò5Ì+bÁ×}Ãøõ1‡Ÿë9¬£Y÷6UwCJ³>“ß—84M¶ÛΠÐÕEW½rM;›Ü‡—ãp××%zíósëÌõáîäW5góúÛ¿Á¬ïñêp±T%;¶'ÑXÁj°xÅÑ*6eÛÙwi‘¶UÍ]gvUPã±?©öÏí¶l÷÷µqÅ!׶›{vœÓE™€ -5B»ÊϧÂ}½õ’Ì&7ëíñØzŠ¶}ái.ÅÙxaÿ‡X6 (Éw%.笉½Æ….H÷.ˆ{yýÃÿZ·î -endstream -endobj -54 0 obj -<< -/F1 10 0 R -/F9 41 0 R -/F3 16 0 R -/F5 22 0 R -/F10 52 0 R -/F4 19 0 R -/F6 25 0 R ->> -endobj -49 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 54 0 R ->> -endobj -59 0 obj -<< -/Type/Font -/Subtype/Type1 -/Name/F11 -/FontDescriptor 58 0 R -/BaseFont/LFIHUU+CMSY8 -/FirstChar 33 -/LastChar 196 -/Widths[1062.5 531.3 531.3 1062.5 1062.5 1062.5 826.4 1062.5 1062.5 649.3 649.3 1062.5 -1062.5 1062.5 826.4 288.2 1062.5 708.3 708.3 944.5 944.5 0 0 590.3 590.3 708.3 531.3 -767.4 767.4 826.4 826.4 649.3 849.5 694.7 562.6 821.7 560.8 758.3 631 904.2 585.5 -720.1 807.4 730.7 1264.5 869.1 841.6 743.3 867.7 906.9 643.4 586.3 662.8 656.2 1054.6 -756.4 705.8 763.6 708.3 708.3 708.3 708.3 708.3 649.3 649.3 472.2 472.2 472.2 472.2 -531.3 531.3 413.2 413.2 295.1 531.3 531.3 649.3 531.3 295.1 885.4 795.8 885.4 443.6 -708.3 708.3 826.4 826.4 472.2 472.2 472.2 649.3 826.4 826.4 826.4 826.4 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 826.4 295.1 826.4 531.3 826.4 -531.3 826.4 826.4 826.4 826.4 0 0 826.4 826.4 826.4 1062.5 531.3 531.3 826.4 826.4 -826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 1062.5 1062.5 826.4 826.4 -1062.5 826.4] ->> -endobj -62 0 obj -<< -/Encoding 7 0 R -/Type/Font -/Subtype/Type1 -/Name/F12 -/FontDescriptor 61 0 R -/BaseFont/DLLZPJ+CMR8 -/FirstChar 33 -/LastChar 196 -/Widths[295.1 531.3 885.4 531.3 885.4 826.4 295.1 413.2 413.2 531.3 826.4 295.1 354.2 -295.1 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 295.1 295.1 -295.1 826.4 501.7 501.7 826.4 795.8 752.1 767.4 811.1 722.6 693.1 833.5 795.8 382.6 -545.5 825.4 663.6 972.9 795.8 826.4 722.6 826.4 781.6 590.3 767.4 795.8 795.8 1091 -795.8 795.8 649.3 295.1 531.3 295.1 531.3 295.1 295.1 531.3 590.3 472.2 590.3 472.2 -324.7 531.3 590.3 295.1 324.7 560.8 295.1 885.4 590.3 531.3 590.3 560.8 414.1 419.1 -413.2 590.3 560.8 767.4 560.8 560.8 472.2 531.3 1062.5 531.3 531.3 531.3 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 663.6 885.4 826.4 736.8 -708.3 795.8 767.4 826.4 767.4 826.4 0 0 767.4 619.8 590.3 590.3 885.4 885.4 295.1 -324.7 531.3 531.3 531.3 531.3 531.3 795.8 472.2 531.3 767.4 826.4 531.3 958.7 1076.8 -826.4 295.1 531.3] ->> -endobj -63 0 obj -<< -/Filter[/FlateDecode] -/Length 3260 ->> -stream -xÚå[[sã¶~ï¯PӇP“5C\IìN:Óì6tv’NÖoqh‰ör"“.%mÓüúž€(€”d{½ÛöŦ—ƒs¾sÅ"K³lq»Ðÿþ¶øöòëïȂT‰Åå͂eiQ,.d‘ætqùæçäMuEEÞÔ¿×mS-/˜â M‹tùËåß½ÔŸ+÷9¡2ÍåèûzU—w-|)e²z_á‡_'Ü'ð*Ë™~ù'ÓëÈÒLÙÞ+*Œç"±ƒ0ïµ Ìk«öî~SíªÍ¿aRΒênIer½¼€¿Õz]­±™'u,…Ð"•ý0oõДqÛ»­^À0y–Ü/¹Jª÷'’Ü6µ¦Î£*¥@LÂSÎÍWûÕRd‰þSm·š¤‡[‘$Γ`<ý -KÓI²Ežª\›ó¥…îo‚±E*á—í¾Z;TiVØÁcäá©,æNJ0Û»®‘8EòºÜ¯Þã1ä*ٕ›Ê´Æ¸€dYJó¹ñ`cÜ_8Ьïþ"]¥ŠÇæ#ÞXŒ† ƒ:ÇÜÖü9Ȅzšþéùvë“ý—/,c0 4Œ- cãï¿/ƒáQ¦ŠÉ¥©”˹•Q5ÉpÀ¬ÄvŽàˆHά“R|ß|·¿¿$ȓ¶ë* KJ$áô³Lʍù¿«º»Ú žHÖÕfSšöm5 ¡ALyoÔó¿«võªÝ´!%E<퇍ˆ“ÔIšô9L³ÐÂRÊ}hA”ËP"b €«Èø¼ÙˆæE"89 çvIE¢éß웞Ћ”„Æõ~Sváæj…~k9‰â7ŸA–J9M8šŠ"F8XnÛ­58ÃâVmƒÙÁø´Höí~›Z)tC]PRJà?Vx¹WµÀ,°qž Ð~jRûÁJ(°-jã]]6!'0–’~?å«%|€ -êP6(@"›Ž‚Ï¡ñLZÝ´!U)Œ@fAÃcÇGð9Ùäý^†P”J5£|©ŽðMsvҚ~ÊOU?ùmÀ7±R8”w¨ÿ„@ý§ÿúß7ì{Bmê;sšužãA§¹~d'Œx˜®ï¡P&Ö°Ý߇kÈÁžd彶‘ËnW5·­ACÔ`r†gC”£íÙù’ù´|ÁDz7kžD°7é ñ -O=KYý°õÿ"˜ÔÚ3 ¡Sf0i2‰³À¯ŽpIá\žSÁq$ð’;p´$(cæ´ θ$„l,þÃ!œÊóGˆòJâ±txÓèùiëŸ;N ø°Í°`3×1Ñ ôÿîPãt tˆ¯áe ýèü£çIó?:mhé?7S.‰ÌS¡íK0ZM„äÇí¶ê>˜ (ٔ`[ïö»mé ðO󞈛Ö÷»{à‚ª?®›‡Uk)uS"üRôѬþ͗µwWmíÐÛ}hçqP°žÄFä|Ð,ÀŽx¤ÕVχ.hu»Ç•æ F¿®M3È9†¦°…߶Mj†\¸èÀÇËüãèpÞ³WÁ‰7_ÂzM "T]Ýv¶×Æ˨ñ§W£P·¯Ci–a´É#ÔºÒòθßÆ ov‘¬Aæ‚¿Fxlä YO8ŸU.cÚx`&0X{h!ÅÁìÆ?VcN'46óWsÓþÁPBÜy5ª&QÔö£ã›eɏÐr©Ld s"`ا†¡’ M²™(p~ÄW—ä ÁjrúðhSh7ô â,ÍØã-âYUþñ=¾Ù¨ æzL*ÃÉôsÛþìÄmâÒ³Öû¤fïbt÷¦c¼lÖ:G@“r ˆfŸu¶Et¹—)Š†À ¦L­[›LJöŠ -iš¿0*#"ey¶Áw`½¨yëŐ"2À‡¯ZïWQ ë‚1m{FÊç! ±ý(5' -CŒ0ªd1Ê,SΨQpŒ{I¶5;h¾¯ðxõr-Ì1…I.CWÔ."`ð iWšøïŸÃH{æb­™øuQ­œ¸èÀ]È ÌEݬÍ'£±à¢qƒ!GMGúñÀÑG»ˆvTÅS0Äѐ3õÏêpxîBÒ3ΟI¹}¨»ÍS‚ÈdoR^}²ºîڦݵM]šO´Ïÿ#Ô|Tœ/S3é–f2gÜãŠ0ªaWq» ÙÌÖÁÿ‰‚ |È ~²w¶Ó”÷wA%œA~FŒvŽÑ^'†™ò˜ -‚£eŽ›€LEòM(nÓOµ”èùirå2ÂØÛϧ]PJ{3Ô?†ÂÕ D—¬ž Ù£‚¬>R\{‚Ó¢’œ»á¿Šyƹ|3ðQR#ùT’µ Øóè“sÐs™×GCë‘@¹­DäúÅXóñ°ÚìuH!L² ž2¦ñ›)¶CR埚‘.8‹Ço G]ÀËt:èÁŽDpÕXùŽêÓx±ÿ/Hñ¡:Îãꘪ#äVŽÜ´îl҅K—ã~Ô}’üêˆ$KÕWá­­AºÚ×ÖJ‡ºBÿ:È`xEQrÎ-»ëcáu$÷.„+z; òIHø44?3AKþW²î³A^°>†ðöËr³ëZËXåÖ>é˜ :]¹ÛY¶«¯j±HÖöUpœÌƒM½âgeSnÚÛv˜:‚ý \d’fb˜þÎ5€tÙ,ÞyoRۑ›7 Œ>÷ ‘7 ]Xâ½iü7 Œ—ú³Û7»#‘È$ÆØu‚3ívk ò3•´’„dÉMÛé2ySÀ©û*Ó³®‡ü&¦Ú?àëU×WÈÁWW¶ôÞýÂ~¬I -;[B©Z’ã2ý¡u ßV×Æ[ÜÞî«°:3›ªËÄB|š’Ì<] .0üxÝ6K†«eV{[5¿c‡Tɛös<刯Æ>Õõô‚ÃQÍUsR—Н®æ$ʕ:ž[ꌥ–|¨æäj¢š“现G¶aM'×½Y A.¨²!ÚÐ¥Êíì·ÈºT>K”bºöž g…n…«_{¦ÂÒ8@ŸtÔu‹3UmÊ%¢Emò‘Em«ŸMç®ÜÔæhcՌ<Ã|Òi:†©Ç¤U@ßýß³lPѱ*‘9®y؄Ÿ0bosö1ø9÷¥Ëÿ8r±'“Yb >ȞJ6m§Ë*C‚‹'Y`…ÔXàF¾x‚ Ï‰…GbâN“åúߢ×ÔIY­ù|q).ÄøØ7—3]uNa˜P†¢µ¶1ux¯f]…†V÷·/xaµ,ôÝwÕªZ÷ÙXÓ¹”¤.k× Ð"s×>¢ÅÔ|ö&B>[¦ë*¢eºC®þ)ÊtÑ!x#ÊË1}ß´`ê5S}}Èv*,8% cÖK Z1¯›*] w˜u?¯nJ«›zxÎ_Œ‚…Ud‚ÂËËÇj$9m{REË™)žÊ?©†ÁMª{s Kšˆš(iò˜;žë sy¶¨ˆùĽÄYvŸ¬v£~4ãd^Ÿ,¬ˆ]½<ÐEã+0 Xýkl‘hq>‹Ë1=iŒ]”dr‰Ò]F“· É}C»¤<'˜”7m]½*—:9£6GBÒϪþãlMY`:rFS -?É ¤‰VÒ§!©Ìp,ó"¨Y"Œ2ÿÀ4ߏxÆ^€á涶WûfÝàõÞ^«|]våuÝÔUWû¡ïue‚›!¯ë™Gj´ðîR>Xäå µTçÞcxø S=cV˜ˆðHN‡]„Gb̌Dâ6Ø!‰·± ‘7aL2zÓ4„ovÛàfÿörA)Å¥ ™KI܆°ÛøÃ)R¾ -endstream -endobj -64 0 obj -<< -/F1 10 0 R -/F9 41 0 R -/F5 22 0 R -/F3 16 0 R -/F10 52 0 R -/F4 19 0 R -/F11 59 0 R -/F12 62 0 R -/F6 25 0 R ->> -endobj -56 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 64 0 R ->> -endobj -67 0 obj -<< -/Filter[/FlateDecode] -/Length 2185 ->> -stream -xÚÍYK“㶾çW({Yª²‚I$ˆÝò!vbWR®ÊÃs³¼.ŽÄ£Š$d>æ0¿>Ýh@$EJ35Þds"ݍ¯¿~@ÚÄ,Ž7÷ø~óÍÝWß%›D1žlî>mDÌò|³Ër¦øæî/?Eb»K.£om×·CߛGóôT<۔۟ïþ¾ùë!6IÂt:/°ÿ[³ÝIžFv»ã*:†“)j‹s*²mƒ,:–Uå‡û}ßÇÁ)xCS‡³êm*¢‚äÁúڗ¶-ë ÈÐó‡òÞé+»‡¡|ç 7»D2)U[—۝Hã¨ë‡£)zKo ‚ÃS[ÊcÙl¿¸tv±í.UôÃۢƯ÷Æm—šŒi5h²hÀ1ўgéVfIT҆ßPh—öKC‚Ú²7[¹7úk³«Ë¾5ÿýè¿óGùùh9èmÛgðpEgûÞ³ *ºQ̲,ú ÛGOŠXDZ‰‚ŽMK`°j¯£+ZB2×À‡zíGe¢¢¢9€8¡” ºg¤¶³4 ÜKtpï~ëmÁÖ_Kzi,‚§ã™ QÁ1È쇾÷2‘;&(8mU´åŠ“k”'Oµ÷ŠN—œÇI¢—V#çñ%ˆ™qþ ¢+3[ÇX6ò÷×a°4ËTÕÊAD-‹£êm >jž%!ýa0FžäS *}êz¿¸ ‹)ŸZK„°´¥oƒÄ¡ô¼ºjXcÑ=pZ®¥;5>$ó7•íš‰tŽc¢s«RPéIYÙ0Òǐ£ÎWßé1wñT0‘ZÔ÷:Z3Ío‹…_2êâ7G`¸Wx,p°ã¹fBOç-«"D †~kÛ£¡7œÌCè[ô¤àÑ¿Cˋ¦¨ SÄàB¿qŠpø˜¶ø¹7'ã5˜µ„è`¿€½O-&ç“"¥à„Éó×Ij¢xST£Ë=OUcFb’Ô—mm³RäA…žÂ†¯6§M¹º«»Á¯v1e«ÞÏï÷Þþ7~wq!}zšÁ_XUþ6`LJHŽçډ“¥«y -‘fê½ëèoMgëÚQRkJÀ°â~°[ ¸A .¶ðƒ©hö"ZDšÍK,qÈâ=¼0“¼Í}Iä˜t—ö ‚güBçîNFž™‰q|r«”à9”ä=y E¯ÂÒF—8qà‘#r2íÂò‰(ÿ²±ÏØȜI!¥K´[þOR†LÃ|…ˆEümÑRôÀTç'Óñ:¿ò0¸yÇï(pphº“$hÞQ@C¤»¤†Ÿöû¢±5D!É…8´Oi:;rÊ($ÝηH*(·Thì\¤È³i’EM×E{(úâ=0LCJàìeé+¹Ï«hÝPÓÌPt+Qf)†·uO@•|ìè¹*^È8úµÝ50ä:Nè±m]”Ä`ön›ÇѹZÁ^W­àìZÑÔ¹„,ŒÜ{#Že[ºìžGÅŸö—õÉX7«/ÔAϐ²ŒÖ¹B$â4ªÌ½ëÌbª!8õ Â¹ŸøÏû­—öhJ—•aIç;ž>l-ªÕ$J.RµP”)Ju>3Ÿ€ uÙáÏÚtCXì< Õ€ØàX;ņvIaѺ)–c+š‘^xº3ªrpLH¬r°IH–Ñ&Á ø3xÈÖ“EUà„JEo“¶´n?mgDY¤I†ÎsöAAU© "-œ:L xåaWCš§g®RJ–ÈiJX÷„¥¾n·[h‡Ñj|:Ë´¢ÓÔ͹]”þF*ñ2B£Ò}µ•"r%@î´äO)•NDq͒ êßÛ]} 5r²F2,þe!à -Êrk:îüx{ç.ây\9*¡Ë¡€Ð+ۑŽïb¥`šŸO´ÈYäQ)£ÎP¨Î‚R¦ô¬m:SÖ%µç{ª%’ǐ°l,ú@¥ Þ$gq>«®Ÿ”ÇӓR‹4oò±K°¤¸;a âÇ3¢ã dCV²wKkT>:{ë˜)µ‚ šú“ ÍãÄáº>Ãiì[”»æ]B ª®ºF³898¥ÈdÔ¯ Û<*L÷%Ë4ß"¨ºEP9'¨˜?¸dÉ3ÍÒ šÉ9ÍäK)–¾€d&®o»Â‰þ¸Ü›ãÏ$Wù2¨îè¦{„.éSáÈXL)£Q£îïÊÅÎÄ£§ÖB,ûñžûžgºÈ@zsÙÛ>·L͌koIá‰ïžÜj/Ï ™èì(¾I#"«Q­"Øô M¿ú‹O"c\æâýW$lšÄ'J²²Káüyz%J²1 W^bæO¼8aή³‚/3¬² azNèð¦I‚+}<ŠéñõÒ¤+SüÚãd7Ž£ôÕäþšó|ðK9f‚žó—ÐXg¾˜¿§ï—q¬H·dð¹ö™á‰œ¹:'W«Û®Ö¯wõKøøøø{$Éa6ŸDòhVÀ™4I7ãàž,ôÊ1åÑ%t&Xiþ¶àÃ<À¦°CQUsb]ÆmJܯwÞz›Ù‡…ڔţ?_œÆ2¬Iñëøjró[îË_ä¾Û‚o»/¿ÞŸLd¼Â}òeÆ=ç>\C«î³vâ>Êç"2‡æ8û¤íW1þ¿Ì“u¥× %€›ÿßVƒÏð/_àÀé8Ã? Ç"“>Cé Q™}ùNd=“ðϑ¯ñWÔ$úÓÚ¥ä|ÿ¢½ÇúٓÉX=»¸•âóɍY­ü¼2âú;@¹¸4‰ùE1;ÛÇÂÅ/ò;hxrú÷<ó¬ýÃùíÒ -endstream -endobj -68 0 obj -<< -/F1 10 0 R -/F3 16 0 R -/F9 41 0 R -/F5 22 0 R -/F4 19 0 R ->> -endobj -66 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 68 0 R ->> -endobj -71 0 obj -<< -/Filter[/FlateDecode] -/Length 2498 ->> -stream -xÚÝZݏ۸ï_áö¥2ºæIüV‚ëC‘»C‹ š¼uۃÖÖnȒcËéõþúΐ”D™”íìGrèËjÍϙáÌüf†\¤$M óùiñ—ßýÈYFr±øp¿àšp¶XIM]|xóÏäÕºÝoªbÛÞ,W\餀×ÉÝrEUR6å-j]µ¶uSÖøOžÔe×µûÒÍY/©L>–Ø¥’Ú­°nw»Êý›,ÿõáoßý(FJ¨J‰ä‹ÔR±\éäõr•I™lìPhšÆÜÈÛ¥ÝåPYB6Õº´{vů@'L^¬Xª‰ ‹UÆ çfÞ¡ÜV«mÙíßåŠå°B‰_mèeyžÜ˜ß”¥DR·H]–-]ï«`²&)˜4Ü›J =c”³pkJę錨ÜõþÞöJ¯Wu2—Mæ²~î¡5‡½ÙT‡û ŠçP>ˏ·«¬Øvûv·¯Êî–J±ä敕9eŒ8‘ ³ìV•I¹‡y°zûÐT YÝÓX¸ó¿3_JuÊ/ÍIÞKš†²ÊÍçù¥$Ï\ïç¥àIQ?´S œ’¤–ôŒ˜Ž>ûñ6‘)ÉÀ~2ʈ”3 -«èþPC½çDˆ Ç -l- V¦F?„"zè;Š1+{fS?C(/=ê퓙à7*Ô¨¼h¶T©ä{üè$}mŸ¥9jˊr’ZqÒK’çªw]_CòŽèÀy¥£®=Œ»yÙr ÃIKç„2+,ezØ%a© =ÄoBM¥Šy·AMAŸ<ÑÀuŒ>Nýä4ùSÌòg0„õ¼˜¡ãazgÖÃq–ƒ¨,Ný0ª+÷å}²äIÕØïý±;îM›Ì³m€}x«b_ìKÛVvuµ®ºb‹n[%k¯jûEüÛÜBE]»îЫ;UÈ £0A=eIY—ͺèL@YòéX4›Öv5åº< -X‘,W„â³ÅSd«­;¤G×¥mÜTÛöÐíƛªo2t¤> ݱ3`¬»Ï¾:ë®è[[ت©îªº²Ð³³±ÌÞöB$€"*mßííæXÔUÏxžÀra|:–uí~¨<ù˜Q 7<@fW{öÙxö)#±„¿1ÁTSÙ0cÅt -<…šÜ·IDÓ³õxï«ÂBÖD@[¢a°ÁB<Ù xz¤ä$ííΓƒ¾¼+ð00¾þ¢‹R„öÑ]“Ñ• Ì%u=ߟ ‡î"TҞÊC,Š#üœ‘ç_„vw[ˆp=Žj͟û9—Ê/,NîblÏä®hŠzëRâ²j+ܝÑr«F«>%'™šµøœH1áSf‰ÛåØCӗ2Š…ü¸Õ SXGúÖû ø¾¨ï½qÔµ 3Nªúß±qùdT>A¬ò÷ì÷{¢x=Õe)Ñp&LêÙääm¹Ý"sp¨Œ°Y¥MÁú²ÉÄ÷1>ì È概§1`dœq&Àç26ÓÇ­†!eô¨YˆÑ£u\…NaÎ¦=ÂPY±‚7f?œdc´÷ YÙµôB)ö•çèoŒqò(®)Þ:Hƒ…ØìBç#‡Þaiãé°rArku˜ë\F±Ã”gÄ#…•Ü©6==‹‡²‹_]8—¢yhk@é°¦É4Z$&(€¯¹<¦¸@Ÿ½¼åŸ¿)oq̽æÎߘ]μúCörõ‡YMÏ/iz~¥¦ç—4}Âê\©E=CÝlÎ>ŽÕi1ŸÒoÁ‰½öªR 9—X2”BÐÓ>Œ5¥›0¿•ÏSMŽ‰„Ÿw×úZo÷Ö:⬿Ã¹ä±@uòvŠg‚7b,uW6¶±Ý»^¡Bg¡¦ªP1eÍÒ¤)kÛ¼u—A€îv$ALnvÖX¦Ã*ÜgT‡ÖEÁUpšÖ³W2šHæå͈Da4‚@ØG#¿D²ýüê -ócÆ>¤2±pídæ´Ê ®Õ…_bûÇmO+@Ø í¹ù×ñX‘Ͳ,ñ^à$ÁŸ¦\ës.(:×0)à‚‘L{ykˆŒ„5åd¤m“ow×0îO#8DLT…i¿”Fxߙڰ‰³ $Ž^T*¼O¾¢Æ*õ—\PÆk¬ïJ”z6çÊ}ìgþ;$7uøڋ*[XŠ&{Yú¾ŠþøÝÌU¥½!@„e ÐEªˆ´*÷^s¸šB_>¨þBÓn_®ËM_f¸±¶¸»sEwtÐnä±éëN]{}?W þDåQ3Ê£¾r´õt¦ŸÒéS?? ܋iöùbu$Žñ‹ /y-{â3N¤–åŽãNý¿¸›HÌ-„Æ궡¼¨ë?u·͚s|aìš}k.ÕE§úÂo("úð®ì<g|°ëŸ£vMO;ëtØlíÒ+l>Þ°Ÿ¿$2¹›!Y~K½pÇöۆyËÎìþj&Hp.@âÛEûêÃøOÇjz¹„ÙÞLüî¦o½†ï®Â¨;´ô¢rש1ÊóGš†0~÷vï†Ýãñ»d¶!|!8…8^Ì¿Èñ˛?ó<‚#!—,žÒñæ…Æn§†<‘Ð}¼×‚Žo# ȾÐˆQ3ŒÛ±ŸO„7ð ®Jžy!ðŸ«6ÿ’ûs1¾‰]ÊçgÜBFtv7­»eJc-Æ+H”~ƒ•àÅ{ӕ[üãîâc"Hõx ôäÐk2“=Ïۃ<ê‰}òܛ‰{“&;sZÅôLÑk^J\D‹è;q¢d|z›+^úyǵTÏF—²½ÉÔޙ+Ìürô[8H9Ïô»ÿ ÿ› -endstream -endobj -72 0 obj -<< -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F6 25 0 R -/F1 10 0 R -/F9 41 0 R -/F11 59 0 R ->> -endobj -70 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 72 0 R ->> -endobj -75 0 obj -<< -/Filter[/FlateDecode] -/Length 2648 ->> -stream -xÚÍ[Y“Û¸~ϯÐÛRe KÜ`œMU\ÙM%å¤RëyËU‰ö²Š#É:&Ž}A‚xŒ†šÙ—ሸî¯¿n4)JÓÅç…yüiñþîûŸèc”ñÅݧSˆÑÅJ($ÉâîÿH>–Ë%"ُÅá±þ±^Ÿ_Šå¿îþòýO¼m- ¢‹Ô´Ëm!k 3ÄD]øO"dÐ$H]áޖzSHɺðXØYԏã®Úéÿ¤.¸ìTÀ2qÝnt*PªÜ”’ -Cœ÷®æS—ý;\IŠ„Û‡ûwËÂõà Ž¢Í†,—+"eòCÐIÉn»€ÿLZ@x$˜#œ €‡JRdkã¶öŠdI O‚²Ì4úûa·‡“KA¸Êoån«Tò„"aš/~¼3â™yCRØ´Å*ÃHbÓŇ%Oaq+ʲ䰄?E•Û®.×+`¯X=[Ñ -`§sÄܞ”ÛpS¢®ƒacŒoś/™dFBaNk=±Ýêt0“ÝËSù˜Û%®4Ä´»+ºÚÎüùÔÙÿà%âx±Â0)Yëi¾Ýs¦0+'c¹;Hó”0«Ë-"Ê\m®·’øs( 0§hë]¸{#Ƈ°A†gsM÷Áà¼=Z´\1ʓ®¶›ÝcÌ¡‚€=†Íâ¦V !ìfð;+Ê¡¶a…ø4më*=ë¨s£3qà SV êvÙ³lr^Ÿ$ƒK›ˆ‰Áð eÒGB’7aª­õ¢XNâXîõ€3”’i}DN°Y$¶ ÷l›xU[2¶äÁW¯¢Hé) ¾Rs¥›êSö™êê“z)Á¸ þÉÖ&‹HôŒèK!ÂJ/4ʎ¿5½3 ò¤HŸy„ìl«"¯+LORøøðïzèM‘R ñ -ëatÍC¹Î—às<–ùCÈ»8pØÁc͞lÐj¨lâ±^¶Žã„û÷¡PS”:…KÜràµûýù ‰.W±æE³›Š…BxÐò*u¥XŒn„ë8} «ÆE.óp¸EوKÛé÷0_Šˆì=Ë ×y} ܺç”~N}„wªM×x³¿äSümw2*þ_8€2Éïï] øîŸçÓ)?Õ?KýPàÑ>[­g§Ò|ÊOîßÇ%§I^•›Òv¾-*[`úTɦ¨ªº»õîxÒý—zÖ-Hí,­C}˜Å‰Ž¿×øϑxDc~»\qp96Ú } pZ=߂ -š| ú#aw’obä½qOþ -cÚRH³cz""2FZõ53!±™€Þe]™êë.Ó<¨³°Èä2ÄU¯+–⤪wjSϟÏùç -|×oyß(X{Ȫ&¢‰cÁŸÖh|í[c³¬Ï.pR8A‡Ö—ãâˤ‡3¸Z"Mü‰›è‰M\f:JÑñ)¿Æ¶§9’ÆÙp_ü£”ëÐӕÚ` áY->z5I]@lM¥õÖ½ˆÔ´¾°WÓ¾ðk*í”û£×/Úѵ•Ä•$L¢Œ Gxd'°Áƒ×Ç`$QL %fWßÉD‰ð ¼ëÀ%åO avÇuÓ.öU¹¶á ({h~žXI6„Ù„ $øµ!("S”Y7è£Áp‹éT¤VÏA¥Ö:öUǽʓÕ4¥ŒâpÐë[EAôé‹ì>~SÚX“`3%¬÷D3-Ê#’!ó«ÆÍ/4ÿbtü©/Neò!¯ñKp ã€íåCUå^ÃQ²;Gc;3þ ¨mêšÇu~8åÆ@Û¬8„½¼µ6çí—s—?ÇSn_׸Yº^+×{±Þm7yî— ÒÇ=)µìGÐ -„ôÑ̾ˆÔÔü¤SÓ¾ˆà^;zý¢=Ž{4U:¢oâÃŃÙkÉëT/Ö¥p8¸Ó0ˆX£î?ÄTMœcŠ6D=Õw&ùC±=¹Ÿ $S0h‚ç`1ÀWéÔaó`XÑâ¾C>P*®E>J±¶ºÙŸ·†—j-à `¦$†7 ÿÆÁY:Pxj€âh ·žÈÌQÆl0 -Ö0¸áÅËI}Lr–ŸBf=Öû‘;Äw–ÒQÝn@Kˆg ÑL–¥/õ#uV ksêY%˄ò˜ÝTøFwÉI#¨,\܏Q[6lõX><§C™‡›¨ q6€OM4ot^y䰍¤Æ»Æê%iOë%Ž2#WSø&x6 ôŽaü®IÄüm6–Í®D3Ñ -îð´'Þº¿uÞª‰I{zÕW SqޔùIÛüÖu…}Ý6Múªïò -ˆºkcÓxm= 8>"Ô#hä’ÒíÒœz´«~©©36:5틐 y£×/ÚÑ{š¢ˆ e½éŽ µ ?†Œ{zåob«›b Úê‹É:ðî¬;„ꭚ -ƒÎl,£¦‘¶IÄқ˜1Š##ۉ½µ,3¯´§–T;“¨‰”¦-´>ã’6²Pzý°`Ìw¿÷Ö9é´»rä|ÕØùŠ«|n´aü 6ib×˝‹Ió:RqËg©@wrá~É#—ÂX‡ÏLŠ ›ßl\™¡àm5è̅jú¦®p¥,w»÷£ÊHy½_™¿òkÊä»ÈEÀOI…xξ \…‹.’Ÿ‹»cKã}Kë—\¬]×aÉ£’K^WrçϼòwHj.5¸‹‹“¤HÎ~]ëOհקɻ—VʐǽF.ïçu®ä—sniðÎòÞcé”úr°*—œ'}QIÛMËyƒóYƔÇbõ¯HèË¿„±¿CªÛŽYÿnÆ|çR¶™TúАÛ&¼joOEsWµ7÷1:hÛÜÇÄ¢¿ûüp*×»*?<øíS`›Ny]ÉôÕòXß'¨ák œöRoFuJÆ&åâi¹¾a\¦›ê‹U7[—»lÝó6·|µ;†)Û|gÉë¦toö†Ë¾•yU»I+œaoº’op Âò÷ù6¯ÚVÉÚ¤Ãè •ÝûM¢WIM%¼I‹ã±´×è:à@Òä¯ú¢¼¾•W¬›èï[<ª´Š^9vsäO`ΤÎܽMȸuÚt´i1Šg‰öŒ'-³š_Ê(¿„9pŽñË[s õÐ× _ðŠ6òjú2G¦éÄ º_{^óüߨ´nOd ­†ÍéôÇí%"×Èû­¤Û¼Jªsêâ[ ÆÓܹ͔t<¾Ñ4¾!³'ÒΒ´ÙwF¬íây_$¼œ½Pb²²üZöðë‰É±"åŽï}>ir1æÊ>]Äþõ#®]r]÷Ѳkž)½Y!uÖÄgØõ‹°¦îSú5ë!ÍöF·/¼ÑãeA vûeª#ÊP¯×Â!QÚiÙóéi¿F»Á§[YGXÝ@§¼*í ï:òy§ÐÎJƞǥ²è׆KeÉ–„% zÀÎûδ½ÆšÁ1_GI}±O<'ßËbðCÞDLŒ4›w‰4C`=†?—Géõ"+Iõ€"€uUëÙoþ) î8 -endstream -endobj -76 0 obj -<< -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F1 10 0 R -/F9 41 0 R -/F6 25 0 R -/F11 59 0 R ->> -endobj -74 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 76 0 R ->> -endobj -79 0 obj -<< -/Filter[/FlateDecode] -/Length 2700 ->> -stream -xÚÕ[M“㶽çW¨r1U^ÑÄ7¸k§Ê[¶SIùxç–I\”ĝe%Ž)ɉ÷ק(€W£±/#F³ñúu£g‘¥Y¶xX蟿.ÞÞ}õC¾@(ÍÙâîý‚d©”‹—©À‹»ïþ•ü£]²,iôŸ÷éòßw_|§ß"ö-.R†Fo-1Ošj³Ä2ù°Ä"¹Çœ/)ÇI¹\†’º0¿Ûêpz8uUì?ê6œ[¸yhê¢-Õ|_ýÀìLHæ)¡‹Lϲ5]AÒLvïïeš2Ö=-Þ,Wˆód㠁xJq?ÆÒ<¦ö±LIÞ?Å\ø’‘ÛÉ·ÉG¸•o…Iž|é‹j’Oc­Å!5±»bL•B|dd>r–ÊÝJ[̊Pž‚Y!šRª_yl»>¿.MŠºÚ¯T|‘ÊXƺ8 Óg׎mюL' ˜Jª½2¼_•Å•í¡H—+–ñ䟧² ®l+˜“$êžæÉV  …ÌŒ|Ìèÿp¨šÆÛv¿my¬6Mݘ;X]µÚ•`­Ý"ô²U÷¢6?–»]a‘”¼ö-”©­0|6ý¥ò[ Æ!ƒ‘iί7>2>a0ÌCˆäo(œ¥8¿Þ¾)ï·åüÅg)ÇaEÒўÊð¬1üÕ³4£Ïö b‹ÿù‹ÿùI‹÷…“"Š¨ØŽýlˆãõ„ÿë¼&¢y*îù#`¦4ٞô³È$2õO]ë:nšÝc]‹}cîÜ©ßǶQ°fðÒ¼~PcÆG=€êö¡›a_Ö¦u§†5à—wŽ7 -aOÇc¥¡SÃS°§uÁo…ÕB2~ò)­™˜ã<ï= Ñ /¬`]Õ][ýE+®6ÅǪÙ<>ÅJ©fØÿy֓§ùEëéßþÍÿô™5Mê<={s4/åsçKí[œ‚J1~—ßý&4-%“Ë喛Ü/2—¥tñß…^à†`Ð±ÅÎ60®»^¼szâî5=¥¸oôäDIàô4 nO™R1š½k°³¿½[P©–·BR(õ«uü­6´á}q<6ƒP;íC©øXÞáTkKcÀbŠc¹7í¤£BíÁcO À©WÝE±ÝVGË3[I÷)÷‡n* 1›êP˜™…öüšï ¡@ÃÙ`uG`O¨wÊm©ñà¨$x̜ ð•¶Ü;§´Â>ћ¸iAb÷i.ÛåŠf€Aõˆˆ7Ú~ÐïE„PE¹B$Ýý±h›ºô)H¼C¨´ê€ C¨R´ßv—•R•.OR­{ÓZ`=¦éþþPíþlžµþz°£&jz¢.ÀÑ\&ßoTdc5Q>¬Çój¿©´ŠEr,ê]w¥åǬ7sÓËöða‡¢­š™ ,Ì-3½¶å˜V¦Ù¡ƒUjv²;¤Ã`Ù½sÐÆ@a-àQTåÄbؘÑ4×/¾«”[8ßó„œ{9qÎÃè!°%{À!üxDðù(¸|5èµRÛꃝÚ=+|.‘¥‚^¢7³ö¤ÈS9Ù0ö@37ܨÄäÄùäÄÔ"/&÷ížZiR7í~ŠËP·HDÐ4­BöÕàbÈõZ„ÅÈa1&H“4•#Ôúî¤7Ù8°¸ƒ¯oÁÕÅôê.{IùЈGœó`¨O›w˜„øÂDž½—¡˜³ÉÉ! ™\0n2þ¸ í:- -}Jfç¤w ?g­$V{åw«P$£¨Ã…ÈÖ÷u·ä«$aäg -E0š5ðz:Úf)ÊGa® ‡¹3“DŸI3¾à„5w0ÅéR¤9úC×+;f-Øˉh›É|›öN碄2%·æ_õ±íͦPÄ5˜u9«ãÉðh¸,öEÝ<4qB7‡À -±õ@ºì¿kô„1ɨ§iðãgö®Áήt‚|pð—Üå_DPÅ¿È4ÿBJãî› ¢b>'ƒÂói␓Ä+·^FQbpE³˜µÉê˜õƽË:ð&Îçn¸§ùæ'ÜMØÄ%MሦÈõþÆË1=‰|b_ ¹3$Êv¯$ȃ†PùŸŽ?ìvå¶*Ž£HW¥žtVÞ Íċ`&~zM¢•‘ÁA+ɔÛ` \ 2 ž0&õ4 ´²³w vö0ZQp—ðëF‹™:EnA+1zq2ZDò¬úcžîwë™EÖÉÁkx/‹\ çÉ»2äڏ…‹Ù¥p1Fæ‰lûói¼í奣¾³³Š|$5“N;%EXˆ˜E³÷’ßd ›±Êã³Y«÷Õ®%…šQûœ*´l>obٙ젓ÓT\vQ•P%öD]eøTºP'Ú±D†h"c®Šõº*vM ‘.í9Gp—ÑK¹‘ÁGnbyŒ+ޖ -a#YýlC)|KáóéÝqþ%\ab<ñXa„½È’+{£»@ßOû_N¡}FaŸñø>CYL 9½Ëà‚Ä-†y9Š‘òYG×ÿ -€áä¡->VÀ¨ &e#Øà7áÒdYWRfÉ·:¨±|ã•ïŒ 8ÏHÔ¡ix¸¨14Wc©qJóOTøx§ i˜ŒÉ¨â¥0ùIDz:1ëí¥;j ð"F¬5ß6xN_D"¾È#ÅX(¬Ù’b*tEŠOuÕŽªÛ5z˜hÔÓ4ø¤Ø™½k°³‡I1ËòÁ¶Í#@øÐCe΍Á÷i‚Ì& ²ÂB:e:œ3dfÈÃÞ2äáið\ŽUT}SðX]ÈG¡O‰ùÆû«—€{–”E›iÄxET:G Âsóƒ4Á¼ƒ¼Íó3Ô$¹ëa›ÇǓæxþç#ҖsÅ0îSåÃsùƘ•Îê)ýi';ÚÉeú™³G×®3fjq|F*C±ÅÍN{ž¸°ðYÔïÕ°ú$G*Ô¾2ÔaT(/mPÙ$y>tµ“Î!“:8¡Ü=XÊBÇ#ýgøÚäÒAƒT“>OÖsÅQȼáëŽBÐK…3¥O(0¼¤”Hu¥xÉc í´AÜpíÁ²ÚfÂ^‰žûü?ÿmöĵŵóꬷ¡˜ˆÌ¼˜äŽ€jè]\»/í¬úü¹¾Í-J|ßÄOV9ÒîJ ª“ò0Ûɯ Â~•gPkà4«_í_üW©Íi Lióu³†ûMÓ*:–a§z2CçÅÛÐF” 'óµqR~a3Fªô×tú2X 'cåØì̒H¸ :H/ˆ-yèv‹æ¨þhTzÃýZªtrǶôëÕÈCÛ¡Tʦ+ÏU•’“¦«ºÒÇV•½>öÕ«¶¤£l?öÿ¡tØÔ§Cóªëa²Æ¦4Äþ€*yJfÍy¬iTÿ¥5Y7Î)ìf'—Ä!& Õx¨v÷ÐÔÜúÁxnÉÜûi$;ow?Ìûö>VÑØ9WåJ[y'þŸþ‚&>[ -endstream -endobj -80 0 obj -<< -/F9 41 0 R -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F6 25 0 R -/F1 10 0 R ->> -endobj -78 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 80 0 R ->> -endobj -83 0 obj -<< -/Type/Encoding -/Differences[0/x0/x1/x2/x3/x4/x5/x6/x7/x8/x9/xa/xb/xc/xd/xe/xf/x10/x11/x12/x13/x14/x15/x16/x17/x18/x19/x1a/x1b/x1c/x1d/x1e/x1f/x20/x21/x22/x23/x24/x25/x26/x27/x28/x29/x2a/x2b/x2c/x2d/x2e/x2f/x30/x31/x32/x33/x34/x35/x36/x37/x38/x39/x3a/x3b/x3c/x3d/x3e/x3f/x40/x41/x42/x43/x44/x45/x46/x47/x48/x49/x4a/x4b/x4c/x4d/x4e/x4f/x50/x51/x52/x53/x54/x55/x56/x57/x58/x59/x5a/x5b/x5c/x5d/x5e/x5f/x60/x61/x62/x63/x64/x65/x66/x67/x68/x69/x6a/x6b/x6c/x6d/x6e/x6f/x70/x71/x72/x73/x74/x75/x76/x77/x78/x79/x7a/x7b/x7c/x7d/x7e/x7f/x80/x81/x82/x83/x84/x85/x86/x87/x88/x89/x8a/x8b/x8c/x8d/x8e/x8f/x90/x91/x92/x93/x94/x95/x96/x97/x98/x99/x9a/x9b/x9c/x9d/x9e/x9f/xa0/xa1/xa2/xa3/xa4/xa5/xa6/xa7/xa8/xa9/xaa/xab/xac/xad/xae/xaf/xb0/xb1/xb2/xb3/xb4/xb5/xb6/xb7/xb8/xb9/xba/xbb/xbc/xbd/xbe/xbf/xc0/xc1/xc2/xc3/xc4/xc5/xc6/xc7/xc8/xc9/xca/xcb/xcc/xcd/xce/xcf/xd0/xd1/xd2/xd3/xd4/xd5/xd6/xd7/xd8/xd9/xda/xdb/xdc/xdd/xde/xdf/xe0/xe1/xe2/xe3/xe4/xe5/xe6/xe7/xe8/xe9/xea/xeb/xec/xed/xee/xef/xf0/xf1/xf2/xf3/xf4/xf5/xf6/xf7/xf8/xf9/xfa/xfb/xfc/xfd/xfe/xff] ->> -endobj -85 0 obj -<< -/Filter[/FlateDecode] -/Length 2843 ->> -stream -xÚå[KÛ8¾ï¯ÐžFÆÆñM%˜2™Í‹ALú¶½ÅV:l«#ËÙt~ýT‘E[”úݓì^š2ŸÅªb=>²“<Ëóä"1ÅoÉ/g?¾f !Y!’³ ×gÉRêLÑäìק¿ÖÛfßµu¹mKFtÚ´¥ý¨7¶<[è<­š¶Úš•ž§+rèºúó‚Ê´9_؆uUÛ!ëC…EúªlË÷õ®®Ú:[,9£éïnö˶Á±Ÿ‚§å³ÅÎþ•,‰Ê„€‚gœâêuµ[P•võ -‡Q‘šB¥ŸÕfc¾%¬º±¿WÛ­k§¶XÒ¢HÏ© .IZÙ Úúl³+;×ÛÖT­fÕl/7UW}ýZfH׏¯ÉÀ¿>¸öü]E&ÅìÂêxá#=ô.(€f SNþ›p蕃#¡Tã‘Ø0§N6É» 'u ÌöÔòõ±ž -•<ìi*ž“žpõ¾Â¯‡ÅázTŒÛÃôrÐY8Ûj¿wßëڕÕ9jW·•ý½ù¡Ú_¶' 4/2)ÿ/Bóg·NT»µcÚ§Cå,ŒF3dãs-P™ÃóoÑJVµ}[íÁ”ÛÞxŒÑ}ízôrU¢€06_mJª "|/_ ŠdQÁ78*i,Lm̍R`yÚjë¾[˜£Ý»¥ëÝy¼**@yØÕ«º³P©Æ´Ìt]ÛTº©·5RŽßç–büöØÙM×M9âî«m½ÜV]3%*ÏèÍÀŒâÇ$­Ö¶Äý`éL-~®Ãh²9ËmòbçýaµêµÚökvz6 ïJFÉðœáÅ8Ϻ¶ƒ^•;?Žºzn÷ªdÆH¸×jµ2Ë @/ ˆVô‡Ýª.;§pÎVõÞµŸŠŒè׍‡| ¦q–h~Û6—ˆ¥Í¾þj÷'¤Æ„NMÁ˄Éà“cxœgàåÀÅ̃¸wƒJÙ,T -ÖZô’?ì@ˆf šV¶!š’œg„M"pÞsæ‘$˜oIt3¥OBœ«‘UAO,§ážÉxd¬ )MßUôWÂg*Ù_ž>)ºªˆj ú‰Y§T<)[®blaú±ñ¢gßC“Å4¶–#¹Sa[5þ ¼øIàU„|&üºÊMò}'èŠ)šYäêÝáÒÝÖíL,sJ ˜A.†žf9Ún>·Wè\Etʛd;G㻯Jczð@Œkٛ¤ätz­„œ ÁÎ"ýy´…p†{é›»rS/4ÒJö ðé´:ëá0FîÞtÖ´ŸÝ5(n02‰ç&_²|H_Øèz°wçT‘±]̇“¿‹;ŸI “à<>K -g»mǓ,qW2­M±žÓŒo±»½…Ö;‡Ô+Ìå9&àíŲ$ ‰ -,šQŠ— §Ü&b;.}…MT`N:ÌÙ)@ä2ô¡GvIqX—Pw±á¯êeG¨!‘37u>¨¡*óˆaö•Ï«šS»YWE¾üéÖ®êÞ -q/žAA-2&æĹ›‚GP1H1® Ô;ˆEɇ÷ÎS2L"îîÞ.¦¤bæøØOÿü'›¤m˱cdà6{}úQE¯lׁ1«éC…)yœfuÚý.b8 -<8Î?êýaӕýíÖŸ/V¶¨F4côÞ±â¬s¤³±ž¾),÷ÎûK Ž5™y¦'ôGã!ë›埶dGô…¹òôÍÚ1uŒK Ø6aÈ„ÁëÎr|E·MÂÍUô†, æú!°·ch»`):…Y2È),·w¡ž–k´ö3¤ø!'¤ƒ,õÄ̧†"Ӂ¼ƒî¹d˜àƒ¹@ۖøÔнêsOòàÔþпÊC¨~u³ ø+AÔ1ªŠ \¨ª«ˆô”Ôú"ßÓVŒñ×`uW1¬n¼Öx÷Ú a@ ã= ÔØw€Á,$³„ ;~Œmó0üˆAiPšQ”"(M¡2Ånˆ€¾Æð‘ð*äÆH>EØýh¯¡Tï)/‘åöÝÇ÷>.“:§§žÿ€úügž`qxâ~žcR“õŒ"óÁ¶‰WÜ<ÆBFòþxå¢6!”ÇXìÍ៮¼®<0O¯ñôK0ˆíûºkë&‚jj´9žPjOV<ð±D‡GmÌǒç4•11€8Ñg=>x‰¾ëñXTô]Wq‡`À^'Óh†¡ÚwœF‡Š͒”NŒÍò2µ¼EVeŽ–+lha eŸ£Å9¥å–y}>Ÿƒˆ¢À {¿ªý w^Ã_ÎC[ƒ¥Ã·+÷ÿAþ-b ý¿]+ÛkÜqpʂ{Æ ÀÞ‰È „Ú콺s „’Oºí {øox-NS·Ùµ»»>¾_hšNdoNÛ ‚ ñ㜠T˜“¹ŠXÏË°gqšÚd-X½¯ð«ÿráR¨ÓR*‰G7Lr·¿ý »µÏH -endstream -endobj -86 0 obj -<< -/F3 16 0 R -/F1 10 0 R -/F9 41 0 R -/F5 22 0 R -/F10 52 0 R -/F4 19 0 R -/F6 25 0 R -/F12 62 0 R -/F11 59 0 R -/F13 84 0 R ->> -endobj -82 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 86 0 R ->> -endobj -89 0 obj -<< -/Filter[/FlateDecode] -/Length 2675 ->> -stream -xÚÕZYsä¶~ϯ˜<…S^ÂÄI0Ž]åÄq*©”+•Ý·L’âÎP2«fHíŽ7¿>Ý8HpRÒJZ9/Òg£Ï¯X¤(V·+óïO«ß¿ûò{º¢‚p±zw³âÑz•+MJ¶z÷Ý?2NØ:§”‰ìoÇþÔl/ÿmû®YÿóÝ_V|gf󥤒ÁìÊüÃÙ?4ûuÎË2;5·—öÜ¿¯ªÈN—»»uÎʬ?›CCt¶¯íЗzw¼ÜÙOm2ÜìËïå¸ +‘rU˜-þ¾Îuö•#Æ1p"æ‡ü;Z¡$Ué:㩒0á:ÿµ<3§Je;;&`üàÌ Ú¬í©.=α9·Û~ß{¶ÚüМÐF Ss&aö*ú…4+üy¬âãÌk’`BÉnDÄ0´ë=µv©¶[3•›n×7LɵÐUV۾Ú!µ ,üÙ®ÙïûóØìks»r= -–,#:*Â*7àM4_å…53™ss¦Eöµ¥¨‰Vb%ñ+©h™Âõ¸Ù]}¾ëý¡qìðÌɝ$*J¨¶¢fÞ®?›QºÌvõ5ž.æ‡ÎNçætòçãåŒËÛ®]k›Gñ› ømÿ&û ii@0n£·µ8óÁ ݬÉh}+¡‘ï9å îÔÐøW´Á²®wóð·Çÿ e >À -6Ƕ?º8þm0š+xæùIÛ-œÒhiØ›ÓÖqÐ4QXd×8Ò-5`á0¼„ḫtfuPÑ ©`2»é»]íÅRï›7¶)іèh÷ö¿s-ÄJ›†ÒÎìk¶ý®Ù0Yv­ã‰, /+:²*Ðg.‰`H>'…5÷mÝõ‘Fß©Ẅ́§ -üÔώ¾Âº¯ô9%ÖUvÑڒ(Pl× ¬2ý!‘^/È\H‰ÂY‹*Û®e‘Y!5¶c{Ävà¼ééή¹í"Š©äèú'Þ¤š¸UáOÔàš»x…ª89´˜¸£Á7²x.'ŠÏn^‘Â/ìœ%ׂè‰~}×nÛÚh8èÕöÇ&ÚBU„^ɤš¸nÊFOZi¼ŒY틈iR)ώÁ¶ÊêÚ¶¢“H"½SÞaŒNš€WUI!Fþ° ’¾’ځ/ö[Ÿšß&‚óà«Ä^éÙ{¨oÓà’]…1ð¸ˆü¨êrÔ»6&<ЏOeJYÍs¾|‚-°¼c’؃ðêˆ ^¢Gyýhü?Ò1K911ÅæEàÌ èÎx…£#?n}p'FÌë úà ZM> "Z4ªÚ¦ˆ¶ë÷gë¬ÞĄèÓŨK‘B?«ôed®ß¿ŸSÀOW#ð»fUI´çã¯ã¹;}oqJ­&®/ß -0¦ –÷P@­Lƒ/ Ê"tZÅúígøáË3µ>»_#ð«6!hf ÀËÛ¦Á戈¥öÍ!À'¶çšÍFÕJbèÁ];¬Â„ í*fÁ‰`¤°†’ˆO8‰cSçÕÜ!˜vˆN8O6èÐ)t‚Í#̈́£1t ó2_Մ«'!ˆ·˜œÂN€p ` -7oOçÿ…¾¶€%‡xçÃÇ8+¡h“³¨‡Ž¹Qr±bÂém<¼Ç„óɹKO*"ãÕ]Èlló&éÍÝ4ZÿMbo"ÒL+Å ª–¸/ÒÊAˆ¹ê¿]3‘9eÏS§¢¯¦TMÌ!Ä} -¨Âԏ9ŠP1Õ)ZhŒñ¡‘…2næü·*Óå4X”V!³il¡`×Bæx†œ(HVM»MCñ§õ$XT=I©1Í)]ÙÅdLÐtnÀÇj¿²m„”۞ƒj€5…†¦ÀK»öí¡=7Ãa -8êVNƒ'眑Š®c“hzûÕÛ`$s̎Ô}Cb$¬YNFچp¤a]¸»kwsf."(þÈdÜ°Ùñã:Iƶ«$›ÚÃݾÝÖöc,Ç—»Ò™T¸~ŽypÓÏqvÀÀò˜‰`sx">)c™¥ûêgÁ¦qA<ApÜæ:`€óU…N:_³NĚ&z6ö÷ŵA¶w떲I6n²CksÀ"¤·“?ÏüP¶åX<ü˜Jw†zƒñ]°ñ˜²xP¦­«1r¿†b •ÝYñS"¯‚“ãšxH9t)â¥SH1®çVc"¼HÏsפ0J=[x -"ü½;'ƒü°ñÚCǂ“¢üÄ0/0 -‰ÁŸ„¼äÒ}¸$*Vÿ–8:d†és‘l÷Gž¥D9èþò폘Ò,$ÍzDЉ¤Yiñ†•Åâù€Y©³oâ0zȯ7Vbä¼Nq^ÁV³i탧ËYX§ÆÅ$X*¸óDåQ@X~¡ê…Š -z2ÊÕôãk2)†ßE€«>€ùRa¡6Ȭ08R‰¡‘™Àbˆo°È ÖdÚà ɷ]˜'( 9S‚Ÿ¤tr¸·±€êÛ÷ïM.Õâ)L"©AHz\r»ÇsÐg¬MéM|ÞB@U˄Ï -¯O¦B%(6{-ŠÂºòž<™"%,<§Tڜ³Dq~>«„!Ÿåc+MŒ±ì‹˜T=F›Ï^©äs•Êð¨0þž:3«Æuž&p`a’ú|Lzäáx½dæl3a0T/š_âPµ8i9ã…q_£Ù¼˜UˆÇÁØ_†ÀX¿ŸZ…®žQs–þå;¦H¡Š¢üӉÒ& <Á/H;Ù§hgõú>û^íäOòÙËÞH/½ÐÉ9qDtT! -ÝTÔ ó‘ù˜ ¨*d¸ÿvÅ9?H*ŸñĬB¢%^A6>1SOí©r{ù¢nH/{!ý@1ëe¤Ÿ+椏÷Õò?YV¸ Žôq¶ø¨çGWÎòÑHvt¬¼ºw+_Ś=ÄüobÊ8–»þ™I³¨¦"!K…ªv€t þ;‘e 34,.g²¬ -Kh&ųe#à—¶K\¤‚1Ó깞7¨‡VjøÂuLt9áT÷4˜”ñ•vT<¸rp ©‘‚°p¤iˆ/'‚Ý}ð»{Œ{ejª˜ÿá‰þÐûý¾>¶½}É c³•s&LVLŸyÃÆ^óÝLXLíáD²vŽ‰Ú96/ÖÎq@ò¦X,>t Þ©Í> -endobj -88 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 90 0 R ->> -endobj -95 0 obj -<< -/Type/Font -/Subtype/Type1 -/Name/F14 -/FontDescriptor 94 0 R -/BaseFont/SJGZEG+CMEX10 -/FirstChar 33 -/LastChar 196 -/Widths[791.7 583.3 583.3 638.9 638.9 638.9 638.9 805.6 805.6 805.6 805.6 1277.8 -1277.8 811.1 811.1 875 875 666.7 666.7 666.7 666.7 666.7 666.7 888.9 888.9 888.9 -888.9 888.9 888.9 888.9 666.7 875 875 875 875 611.1 611.1 833.3 1111.1 472.2 555.6 -1111.1 1511.1 1111.1 1511.1 1111.1 1511.1 1055.6 944.4 472.2 833.3 833.3 833.3 833.3 -833.3 1444.4 1277.8 555.6 1111.1 1111.1 1111.1 1111.1 1111.1 944.4 1277.8 555.6 1000 -1444.4 555.6 1000 1444.4 472.2 472.2 527.8 527.8 527.8 527.8 666.7 666.7 1000 1000 -1000 1000 1055.6 1055.6 1055.6 777.8 666.7 666.7 450 450 450 450 777.8 777.8 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 458.3 458.3 416.7 416.7 -472.2 472.2 472.2 472.2 583.3 583.3 0 0 472.2 472.2 333.3 555.6 577.8 577.8 597.2 -597.2 736.1 736.1 527.8 527.8 583.3 583.3 583.3 583.3 750 750 750 750 1044.4 1044.4 -791.7 777.8] ->> -endobj -96 0 obj -<< -/Filter[/FlateDecode] -/Length 3190 ->> -stream -xÚÝ[[³Û¶~ï¯PŸBM,†¸pâÎ4M™N'“Ö~«Û }DŸp"‰Ž.nÝ_ß]$AaII>ç$™¾Ø‡¸.v»ßîB‹"/ŠÅýÂý÷íâë×_¼´ Ær«¯ß-D‘³Xi“—|ñú›dßÈZ÷Ï»|ùÏ×Yüùµ›%†YºÌ‹g½:½¿\ñ2kwMµmqÚ/U4Áä[nì|¯záfC¯~Ãu™Ìg"72Œøè{crrÖu>[®dÁ²öphªåJÝ-¹Î~¬ñCeõ¡9«dy[ä¥ -+Àþ aeö‡d#dð0®Ë·»d9ÁsÝ´&¨-L·W–Ì•¹R“Œ²yÙñé_)€‹¼çÑJ¨ìËåŠé²['"8º¡o–Ä6¬gFYÂ·rË«ÒJ”6b±b2—Òõüñí[Tœ`"óZTïñ‹e þWd­·ÛÆ·8£o¬ûñ,%ѹ•c>²bQæ¶ô"Ð -hȍëß% 0¹Õ‹®›VHñ´BÃ|>-§"çgº<⽌4‘Þ˜7é–VÃM@†n+ϧŸOõáØzÖ¡ÎÂ¥8î+¼ }“We^H/ ,B‹RÑp©šÿ6í29g½}(r¹ø÷B0֖Ȝmÿm@oÙb³xã¾Ýúq&çe÷Žƒõd<ÎÇãL.Ëx_ÿ=ì‹ö‹%VqŽf ‰*¬–ãÁÄÈðÙøŽ¾g¾jªTóY$Åkî8¡›pÓ#åŒW¹†¯®¿»¾6V!S†åO;<””Ùát·”Œ!ØõŒ££”"»Ûc{}ð=»cíÇ¿ÉÖµ›°÷3únØÏÍkR³Ç¹Ìu·óßS²BO¾\•Bf¯ê`´D»Yg¤ëÔª2äдiì;9e¹$ÌËÔ÷« ê7öîǔ)Ðx=–a¿(t5º„î »¦ ;-;mØËA3~ŸÎUx¹:çvÎ$•›Ø²ƒªÍrÿmZ§A©S•Åà­RJ#y½@›_‚Š¾§W:žòf’¸ÈvíÑý%'* è²¼2‡DJ₮Ÿ¶*oËP‰‰ Õ J’’ò⣈®»÷ÁÄeî“óÐóbmKÁ`åtQL3Ô»uë?¼¥–ã`¨`‚—CZìvn„XÂô¶Íé̾>ÜÕ!ĉ¢6p1rû¦r 6µù¬Ú¿m0k꣝ FÍÞõ4DʂåZߊ]ƒ¯¬s·9­ÉT¼)tÉõœ ž5ÁâA&X<©£rÑ}Ç=_ ÓÄíͱùЌ€‡Óvinµ¯7UȸžÏÚýºÙÕ©¢6ÎÄtGgKxg&õ=JÜàÓؔNÛ¡úü‘ •¿ -Ïóö^ĬôÏ^Ä}šDŸƒoMy+r¦Ñ·¹}Âv?wé2üÒenC&Ç$™Î;¬<ýñ¢L¢ñõ”ϽXç`n ž¢'QˆÍSH„ÜD(4P#Kt¸ñHא‚§h÷®¡ßO²àˆ#ð¤4¾Îk? ž$f„ã™àIF‘Ð/^MÇ8]L¢'øC¨_ ?Å´9%­¥vœ—úC3«˜bCݕô¯ÖŒý+.O\"À"S~W•Ô&ùàÑJ?€HwD8ðv…‘6‹Q²gï5‰² îR3Ù1x)_És_‚Wh§*ϝ*|˜©‡ø6øÕz€A)IÓù`–‚jÖøb Èí¦ ºZ&N‚õb¬Ð¤êC—éŸÏ=%Pƒ½2 d'’@_ú.$F<€/!ܓ'›CûŒzÿxŽy¦Ì¥ò®wÂî ©Šé¡°tüâöQ¿þÒü¬B ÔÕ×®¡¤Õ*odòi™¼Ú]2ÈûæB¥ã±ù°T"ýY÷¶pô`Ä7vˆ­ëÁñy *6îÙØÏ÷µi‰éU=W›†³®taº•ü©RüN皏š\5y)âŸ*a…ü©’d¢Òš!Ï6û‹# ‹}ïK§ÅtR ±´½ Y Ñý„2Íðñè—)W½ð¶cÃÌǏT‰B)Hœ»Ú!ÈX> žF.#ºŸ3òEsdf>õaÙƏ^ –æڐäiÏÝÕ$ a©?uÝs˜ ³ Ì"ÌÙ£ -C>­0"óÃ죭«NûpaŒF+Ï Æøw¬Œ+1„98†uï@÷?#ÅšÏ -endstream -endobj -97 0 obj -<< -/F9 41 0 R -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F10 52 0 R -/F1 10 0 R -/F6 25 0 R -/F11 59 0 R -/F13 84 0 R -/F12 62 0 R -/F14 95 0 R ->> -endobj -92 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 97 0 R ->> -endobj -100 0 obj -<< -/Filter[/FlateDecode] -/Length 2801 ->> -stream -xÚÕZY“Û¸~ϯPžLUF4qÀºöagSI¥6N|¨Š]³\1š'Uý±Øï+œûú{1ÎZ1ž -ºXÑ<åfVa‡l!S-ÍÂ) žjÛÿ_³}¶XÉTiÓR»t˜!RÂ`vþŽØ^PÂӜ/¨ù#¾]®¨”É]ÐFr\Ï®ó)BV.+’J=Òõú{>N—©T‹¡ÿ?° %Éåt¹"¹ ~QJaÐs“_HƒÇ 8*í9™-´ë¬.‰4g#õwËÈñ(q³C²I†Ó6²Õ”ì©èùqÑ{§ú6¤›¦œ£;?%ré‹<Ø?Q80q¦‘€4ÂRýkSÇóåJRF&Újl:”/ÍRª¯gÒ1µïx–#;%@oöÊtnÏß]¤šŽí›GíÜ;¡6ŽüÛ®ßl}µTɶ°ßKpÜe[ÝQ!צM&›rk»uҕë¦Þ¸±E»/m;yUÖK*“C½®Š}sš`‡¼?ì÷\ÔŶ¹/z§Ê]°ûmµ+†¨“Aœø߂Ãi2”xªÝØ@~oqÔuP;~È¡!2֔“‘¶Á©R.'»»†qwd: ™žg)³âùk¹ÛÁ X!ƒm&aUûªÍÒ\Nf¾¯ŠÀ@˜ò¥žE͇°×ÝG=ÑúÁ85œ‰ƒéë%×ÉACÙuUS—؁H b64U}0ùG°¾N³¾3]®TF“÷‡‡\½©­ÖâºëÍ ŠØS¶¶µÁ?÷uxPÎÐi•3ö'ËzwAmo>ñ:C$ú!ä -E‡k{Ë®êöEm Á²¾YòÓ¡¨!Àïr[îÊ’ù·©"h„bt9ƒI7Á\tÞ+y 1OÙÄ3y˜Ž¡r¾ÌÄ@ ꂥ@Ñ|N´wå$†ÎOáÿؙ‹)K…Oå£û:Xþì)Ò -®ŒY;jϪÀ FâRÆ0Ž‡q µi–@çǏ1ŽgÜ°ò‡`oŽl¸ˆqb‚¡­óZ1ÅS%|/þݒŠ¼>á¶iÑCׅNô,ÏõEª L£ž"îKÛÓ\,¹ä F2¥¬3cJǝv¬Í™ÊÎöÔû҄:• )Û®«($ŸyàËUé‰EâÎsúěre… +e¹/ìukGÌH{E¢Üew—d’ƒ© :ï,A< ’&æÎy>:ŽÐë1¼DÝø€ ÅESÑ»«ÒD—Žœ5cgb˜ÙÌL½¸³kw_4Ïáì 8;þq -ùÕ)dÓԂ¾-·G¶TÁ·4½hh®ëʺð¤ù€*Þ·ÅS…fD |ÛÖ«#4:ò›H^Ãð׋𠸨iÆü0†_¨Æ ÷«áñ< ¯2vA(æwž¡ø¤òœÏÀãúØ¿üÂSƬ„ž´’­8#Éße(ß"$ÎSêÇÌMµkº}ëÜñ“æ]˜éó_Åë1CC¬TÉ¥*f$L.ƒ +ªµ9±±O@Œ‡øŽÉ}žôñݺ®Ð=ºÕ˜+ãÞZrÛâh/vnVcòƒ¨¼ì¬Š¥Ç+A$8« -ÎÚU»j[Z‹m_Œ(×å&`À´*ᘰóã°ÖYk ®!6R#0ôGš†°*áíÞ7 »{‚‚|ƒXoþ‡Æk«Òp]Ä2 - ?6Eëš #D(Y^WO £Ê rß[à×Þ Ó/Ûªég—á́¬ -ŒÃ¥0ÆB$Ð3–Q;ª^;ꦶ?뻊¶ÍIq×ÔÍôén™:EÁ‡¦o½ƒáTÆ1©Ùº £)C>ºÛŽXQâºf×)÷ÎVežè'0ŸMª2Œ¨XO¢U-±0r^Q†3e‘¶(ƒEl=R”PŸMdÌ_ž§%!'%™°À R=+R²SPƒ -YPx»VÂ/¸;Ù…à܀ÿŒii']ªç˜™Óôbg“ÒK/ Ë$5Wa¦*2…¶$´¿„IÃÊG£æds‰$l°Β·Õº¿ùÔ&r€µ åhT†s¡òc`£~EòS¬Ö:ä“rVXïš þ×Ö Lwo‚áå Äò3º)vÂMIîå×@c·n«GÃÀˆB)}ŽF9…ŽàV>šß´d Ø…Ós›«e¸hË©èmk¼g,¹ïS$«Œ&ëÆF¯¶Ùn –°›Œ±Áƒ•`®•‚{. -ˆ_ŸJhOÕû&¼….?É@¤DGÒ¦œàBÛè!< 6Z&!â35-ÛL¯Kùà¯û#Ø›T̬o?Ê §W/É&uʔ}f Ï ò*ÏDòöPÿt(-m–F6ARM( ù`YXÛ–¡.fU™ü³.R" ùèçfq·4åÒV(.ß°­¿|3íKÁÀY¹á£ð°¯ÚÚÖÞÃ`Ûsü†mˆñÛà ;ÈÃó¸BÄ¿°ÜC*WB7½¦˜7Oo0ęg7ÛWº" q&Œ¸³`“gæPσM–æ rš!ꚽÌFxóKߪTë ؔdlJ«ÝØ_Àк&dN+§&¥‘É©ÌÏD¬‚p/NK ÉÒT²ùX,#WNû(&a^,Gâl£DpPØÿ1ŽN‘‰Tå_-«Ð£x:w -ƒþ Ë -Ãu6Êã3^l&o¬>‚¥«‡³‚¥)׳‚•¥ì‹me©ŠÉ“Óqäçèëœ|ì$€P˜«¼@x¬ŽTáÃë´§X\V3˜'æåÀQu=’ \+Qe7öwU¿r^ˆñ®ür;ö&ësdêàŽO}ŠœfØõ|€Yå0MfûêPƒ ÙO0œÐî¦Âø€Èað]R÷Í]YwmíÊ]µÚ•û¶Z7º Qc(æ6㐢á,݆á¦ñ²‰¥ÂÜLfŽL¶ð³xp¡¼v¯yªƒšJþ¦ÄðÆy¨ÊŽ@zۍûó®mpØd@3Ð -CO »¾w#›®+ÛÇ*|îãPI…Ùßg$÷e]¶ÀÓ | ã…Vø$Ë -q(G>¢Ë/ð”yEÿ•»1÷)ö0mHX¢o(§÷ÛX5y°Õ ùAmµ‹1ÁœØÑCîúPY‡ørshÛ2bùøäteP_—<_ùb¸š%“Û¥" `ÓÂÖ"²e,7èió«j÷°­ÖÅÓX%®lÓÚfçjɽݸÊu³sµÜ¾æ¾oúÒ¡»íÊûƒ}¸¶w ïKÀ¶îõY¬rhÁØíRC4#­‘†ÉætÊâCi8RƎ9.¿bíP© œU‹Ã¹œFk‡¶òc› /çÇÅ#X*¼~>éQ((ä¹ÅK¥’÷‘Z œæÌÄß޽꙱-®Šb¸ ˆ=±ñ©`みÀKæ@ÌUI~?rpHëÒÐׁ–`µVâûB˜³Úßüx˜% -endstream -endobj -101 0 obj -<< -/F9 41 0 R -/F3 16 0 R -/F5 22 0 R -/F10 52 0 R -/F12 62 0 R -/F4 19 0 R -/F1 10 0 R -/F6 25 0 R -/F11 59 0 R -/F13 84 0 R ->> -endobj -99 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 101 0 R ->> -endobj -104 0 obj -<< -/Filter[/FlateDecode] -/Length 2843 ->> -stream -xÚåZ[“Û¶~ï¯PójÆBˆ "ž<ÔNÒIÇÓvâíS”v¸v©DnHj›ì¯ï9HKH^_¦µÛ—%…ëÁÁwnw•“<_Ý®ì㏫W_}¯V”U¬®nV<'UµÚ”‘luõíOÙ_»u‘g­ýsCÖ?_ýiõݕÅçY¥$f­Y™én½aReímcpâWßóQ¢XåvtãzÅÜKsÂ}'seÐI S¾÷Ï®—G½ªò½½©›v±5SD0?bËŠÒ  ùJ%qœ†­á<”.Ø¢"J­6ӽءšÏÈÄL¾eƒ*Ø`¯q•Æ ZåÙ®=j÷Ö·w]MÖÁòìGӟCí:Z¼€û{Su³f2–BnhUûPA„xGmw¥ˆ°[VÊÅ^”“’züºØ¡$ebêü°–ï~ëúï¥qeÁ)î@Á\–g,Ï×^‚/#¬:_Ž‚¸^ý ¶¯¤FzaŠÌ¸Ÿí {ól!•»Û/V/I>n½Í–'Š`ûD$ó R†Hx¾Þвï;6Ñj4àíz¡½ŠT¥ïýýrn‰7ézs§%´87öQ”ðD$ý7•àœ2hBážÖš‹Ñ {ԔyfødÙÕº¢™n;}¬±‚s1þå¤Ý—uW_›ÆèÎ ežÕ××àIZ7®>Ú®^ê¼?ã®ôóîAªó*‡Æ~«q™ÖøE…Õy…èò½Â½R~9Õεz½ôÆ_“茷ºoqܽ½ŽûuQd¨zp/ǶººÓSX͉Xýk%`ÛO žžÇ¹!„«Ãêu0’ùîFVˆŒ±!1at áȊíîæÝ_\­4"ÚxAhiOù—(Ü ’(Ëêf‡‘è B+¯²žœÚvwЃ~xÀ†\….ºû»úÁ¸Ž^Í樇ÎìlôcŠµ…û5÷ÆMºi›=î¿q×@%b*¸…¡>h§wsô.´êæ¡&qóuç« ãÄYÑ·>ø>˜¶ÁùŠfœp¥B*ôߜ¼} ŽÜ-’{ãáÙÎj^œ=ò¬[ •éÁìl†uh §Æþv H’z’Aý¸ÞT`‹%nÈ?–am/÷öôxjA˜ð¿<Óú¾}Ê9{dŠ*2Åéhö²¥|²Õ¸àÉ_;è”ÈÈ "ÐÚŘŽCw"òÌjŸæîPéÁñ÷[oð Ä»ÜÆÅ@àâü’b8]*ÆÊè$;ºÃBKr4úàÖë¦oÝ« À &`^ãŽx² Xê~4!%H.Bê½ÀPkv0úe}Ú½ùÍ½Û áiͼÈ+n4hª‰c†Šnx -sÎ>š{më‘[½]Ÿ+F¼gb¬ðüÚ:ˆ"kÚÁ¾•Ù쓠Ùù$ìMFìǑ‘£‚†úλªÆO3 .6t­Í÷í0ø‘7õâ@<à'ÒýîpêÍýNB‘|DAgnôm‰‚ëèÌèoñv™Â،»óHõ µs1ãuŸ²¬iÓ$“m5Áùñd}Ä(&¢xïÊÁ> %¬nŸ âAwõpê¼øA<€_Ûm‡.Ý£&h‚ÊPþžÚ/pK·}óà7_¾×ÿ4ÍÞýz4â·möª›½v§Æ=!à ¢ÇE"åQXÂ9¹‹Ø龯;q]ì(ÃûiÁÒ¡­÷‚—ˆ³ï:¨ïŒœ±WUV»É~q-Nì[àkMÓ}ÔK©úÓXԘ¶ ¤Áˆ¸…SßÌxC(vÌÑ µlêS ™‹¶A »•¥[y±âhª©ë"äÕZ‰9'…w°ìl€…tDBÕÊó’Hé ~š‡`Š[gˆÏÑÕ3¸¢”_€QåY?r œfßõ¦GépíÚGŽ¶KG -)ˆâ±†c†@Æw‘æ‹@`XÕæAŠˆâ`˜\Ü1wù5á÷&Úé´g P²Ùµ>(‘i”euIDŠX¡. ¹ zãbl Ó^AP)C«f‘ Q‹-$¬ÊÞ «çXB=À]°BgTùØAÑ%ÐÄ\ć'XÐn¶›P(¹©ú ӎԁ5‹kæ²·Ü¥œY ³¾O÷›JïýAîƝXT(-Ïfz)¢ìÑÖPþvÔƉxjË8pÎÎR<§˜ÓÕ7ÊXVÉ#£ä”Naoz†¤õgËl'Q_ÄIlJq–~˜ Ä_Èr8lîÍÈ,Içêåõ —TT†*òèaª@·máãcp=Bbfæé¶ $#©Cg:ªóVo¹,Èû~ZDA^3ž¤öG¹N};äc‘ðsâ+K„ÅdûY)ÿÜØ¿¥sqlºÄg˜@½¨ÝUØh/hüy&]’@’5óûDš«‹p‚‘Ó€ÄùüÉõ«‹Ýð‚9¦L¼ooµ>Æpc°LˆZO°U…Տý7ò‚|½Þ’†Ä­*Š/mÞ×ÏÆ…ãm=ÂOƒ9Ää#äs‡1¯k,Ÿ¹ 0{Ï_ü8·ÃIo|~Kžš3Ÿ÷–Ç‚gú gê|%¨ÄÙ²46ÙK’ãr²„ýL+;¶W¸OøìOV8‘m·øõ}@Öõ ?$ųy­W $OT¤²²’ÙšúÐÞF¼ 2tpÛfd µE 1§Ó\f·6¥È¡*2q½±‰ÏµMù1û]þ# D[ñ±Ì=¶‰Ì ‡Ÿƒ5‚¥?8k'éO?Œ¾ÔÑ0ÔS§Llüž A$Ë+˜’•øõãÿ)Çܕ¥É±ræÆ>ƒ„ð)éÔn _Ž¹1˜Ñá3§² â,_ÂoCÈXÛ£»G*J #͉À -™$[ -Ÿdüîßÿ²9 -endstream -endobj -105 0 obj -<< -/F9 41 0 R -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F6 25 0 R -/F10 52 0 R -/F1 10 0 R ->> -endobj -103 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 105 0 R ->> -endobj -108 0 obj -<< -/Filter[/FlateDecode] -/Length 3108 ->> -stream -xÚí[[Ûº~ï¯ðéKd fÄ«¨ž¶@šžiƒ¢m¶@³çZ[Ù•­$§Ùüúΐ”D­(Û{K“´/–DRÔp8—ofèELâxq¹0—?,~wöì¥XPJR¹8{»à1Ñz±Rš$lqöû£s¦’åOg|ö’Æ‹„¤ ŽJ K+J´òÚöËaE˜ZtÝßÛn>tKÂÄ"6¿ ÌM'S{ïHû¹¯–+¦¢¼^®×Q±Ûë¬Îñ)‰ÊܶÖy™}*ª]a›7OªzSì\gÞ5æï÷Ň¥äQVæ»O6+˜ÐŽ:&KdIJ„r«xíÖè1’rÂ\ï?'/›µÆ>wD;?~sE•Š6Â`Îñp´=çK˂ -‡-Vú©¦J¢º7Õ®r,ËÛ6w¢Ærٓ5§„Â(á’%Q J+Y üÅ+‹ò¦hZ3>öKF£uÕ´Ù9o_ Æ0€L7E ¢‰˜*°Žubü¯)õ -`<ÇmŠ$ÛÞ?MßMHÜÍÜf¥#iN2„Ä›ŽàJ`™”1ÚÁÃJûÑ©Îõ”rMbîFa˜h5(M·ìÁ1xóö›û{ziü,kIˆN-XÂÙmñ*a¡mQ$ýü»²â HVÀÑóáSu îíæÜR ›Nîñµìö”…½Ÿ# â1Qù݈Œ^Y‚šürŸ÷‰-e¾Ýº[k Ý8âǂ8Öz’DS‰“¯xn 9̎YÆ2â„sÏl?{™ú$s"à}£Àß쯮–2ŽX;fml¸”ÖØÁµZŠ4º4(º‹]›×²?•U`K$‰;Æü8aLKf8ŸDÓ9áþd{½eh¢´ëCƵ“ˆ¯ÒAóÁA¿˜¬.AÞzå&oR’v¼/³·K¬á‘Öçx>61›¢Ôt0ñS"Ò0èö‹ ¨žr7È&èj@Ð‘¡_g§_×ÅóÀ×}ùzòu‡a\?*ŸÐÑó%È,PV5ÒáhÚïÜM³_c³áHÞ4‹ó€ëӃ_?b³„£Òö„íà_ù&qüä€Ü ÂO×:5£ujVë’A«Á+È¥HDÔÁ @Ž\Ú3àæ‹l¿~w ÷ÀÔºh®Ãs*ۛ°ZBzêއ%O{’—ÛO»KS••»Ã&ý•Š ÝÐkºQÇøÃÉìÄæsس6_±ù,æ$ÿ·ù_²ÍKõÔèφ#V_œlõSzÔêëyÕ¬wMÖæ+°ùдùéQõÑóÚ#û/£Á×Iô¦ÈvSAlPÓ°¤¨£ö[6ßzÞzëN„­ÓF„œŽéyšaò#Yx©gã:0òc7O >Nt!Ä= ˜u¯‡¡ª÷/çA<Í-^Ýsñÿ dHƒa"0àtO•Û^ÓA`îˆ&FÒ(g¤Ññäc(g˜ž~²¹¬ë§Ö ³C^xbƒ¡òv†`6}õð'qT?K%у„ fj‚N ÈCAc4)%I”EE6¡ ‚aý˜ÈWtp˜Ãã¾ñ‰ Oì0Íx›Ý¾ucw¹/OŽafùÐvvd%ûNƒ?o¾mSEâI5@5ôàž{ t¹—K?Y™^å);¤tąj ԗÞÿÅêÂ8—”Ù(ÅäXº ÅU¨Fs$)Pـö¯C†0¦‡Böþ˜Í´€ÑˆÔD̅ì)ÓÀÃ4ÌÃ×òÆoS60,pämˆ Oütµâž@<®pci·!pD-âò¡mè ݇·!˜9ék¸.7u‡0½¡œ˜291ÑCd̘ô!˜<ï­ÛTbxÐãžvXúï‚ÍÕ¶ˆvÙAí§žo“üèVeçí‘ežÆÖÁ¥ô†ƒK[ŠƒNf+Ÿ5μITãD*Ò߅RVª—(ùÜ^Þïñô·½7°®à׃LYhŔ'C ç!Ü3à"áN\˜Â°¡dã(âs9rx‘Ò;ü¹¶ñ²=v®Bä*†å‹¯ÇePú ÞÇz­0 ðb@úB‰ž'ï÷î oe‡vá=/l+! Ífžà3'Îkw¼¸tþœ‚â£"Äk(\ë¨í¨° -9ͱŠd@^'&Yq1±pGౚïuzCX¡!$¬LªVXÙXXaáFtêDSõ¢‰}Ù®?&Ȝ£Õ;Íòí`Fë˜ôè/Þ¿P$5&]€Op•I¼µÇUW:N¢W»ªlëA3/ôÄaefghúôxÓºÖÕöªÌÛüÓ'×àsqo9SÞ8rœ`‰yÆçП`Ãï_6ã#õ'Á*¬!âpú93ÿc“ äÅÔÍLB˜G¯JË0§"0=ï {Ý끯áä;ÎJ?÷„ø\*¢õ6ê!ŠhOmýtcNۂsÚöØí&ßì×ÁRå½ðœü2ë㄰:$ÊtÀ´Ë:ûTtǦKÛÖ -4Ùc ²3˜¿þ€s¯žºtî* hÌ•Oö»b]´ÖïiBbæ/wÙ&“-é2P;ûR:ª¾Ö8ó@ú…œK8 -XC*£Ì•j&¢N€Ç-ã°1%ã@Ì;Ì|* ðÉQ©bâçE¥»HvJ †ØËuÚçÀ8˜OùãÌó4%:|×=÷ßÅ šÃêÂËÎËT¢1•p"`ï(¾¿£€%\X¾½*ªÃù}EM8‰3üð¡Ø¸?ÉåÛîæ) -:3@‚‰¤Ïë3¡#û7¸ÚLš„ÿš«÷mëþ÷jà»mâË ±q”nµ]çQe¾Ê£«Âôµ’°÷\Õùºh²1½Â}Q;²7Åv›oŠ¬uëª®Ê2«‹ÊTÖíl‰f¶ÓWÄúx=?w¼üe÷òn]çmõ+kb ûzŸ1ŽÕ¸ešý"ª.Š¼u!¬ xO­E€¾÷XÉì}“ã?Œ ª£Ô1¶¨mØ)€° -,–‚0äùnm³à¦ÕÝØÙË63¯wǵT€NñÜn½ù™tÒñ‹ÿ\@gA -endstream -endobj -109 0 obj -<< -/F4 19 0 R -/F10 52 0 R -/F5 22 0 R -/F3 16 0 R -/F12 62 0 R -/F1 10 0 R -/F9 41 0 R -/F6 25 0 R ->> -endobj -107 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 109 0 R ->> -endobj -112 0 obj -<< -/Filter[/FlateDecode] -/Length 3079 ->> -stream -xÚíZK¯ÛÆÞ÷W(ޘB-†óä0mã- -/j(%-¯¥H•¤Ü؋þöž3r(Rºò½NA÷’óÐ̙ó>ßp•¥Y¶º[ÙÇ«?¾þú{¶"$-Äêõ»ËR¥V©Òœ®^÷cÒOõšæI߬7\ÉÎÀ“ódK¥XsI ís§±E¢³ÛKà®Ü›U>™qßÝë¦Õ;;.én§Ý€?PŽêx(+Ó;5UER‚šqƓ×k•%eéV•É»óïucRKۋ×`+®PšB%Š I|iI“,éôÝÉ*<“|\ÞÀÇÆÏñúÖu~ì^öډ ^u¥Ú٘q?Cî•np×tf¿ù—nh»-«cÉS!bîÝé·-LãÈt¶®ÌÁôö  Y•‘:f NA)þ6Ó•Ê ËOž9»÷â7֊a§¾$„M<°Õq;VOËævž€]UvÙ•Ž4ÔôÁ³À¨ç•ÿ)ꀷî ÉÀñ©ƒeœúµ‘'%ª³(ð7³£"éʶ¬koHeU=m,e»]Ó¶^waÀÔ{ §7Ïpžô'd4z,S:s¬Á™x[Üy_†kmÍÝ&ö@Î$ÁÕue)j¦È“­_Š‘à:Iâ‡,Ù¸ŸPI埝Þk$JÊd×ê½)mæ›ì¼¦: ~®½kGsêÝîh(sÿŒÌu×T^ï­ÂàKP4¢:˜áÁ8êeã†" ç8[¤Õ õízɒ -¥%ãmWmj<H]Q½;¡ÃW –ê#{;}0çH7¾MœÖŠQk))£ƒRorpwvŸ§”û)of+äi‘žòü§"¥Âþ¼ôK9úXâÛϬ -^X0«íÚ ƒ–}A·iÏ_37Mk¼ß/ŠTÒXŒÇ¶9‚ë‹<ð>/lxeŠ ÓÑV+Tf£Ukޞ¬¸¤ô†AýÖÉ¡š(ÍKeJT ™ærv¨<ÍÂøÆꐕ$®ï´(êtÝù¾c«w¦Ã)îtœ¥TƧƒ ¢ò>ÝT/ŒGµùd@e\W×@(ÿÆCFb2\2%ο‹~†+1™°”å‘rN#4£0Š‘–¤9³+ü½v‘ÎÇbb`éë$Ž7syÓbÈԕ£”U]PVñ`eåה5¿EY騬çùŒJ³|P TÄ\X½nímšu¾ƒÏ£$jPËZQ´®Ñ`ã®6³Š"e!ºýâøÝh8ï§Ã@ú"X0-/TMÃåDuR’;ÈÝN˜O¯°Á›'„”‚8.̵і¶KSŒ1û—ÙàÈU…dc@ÿ¸°-ag’æ±²PrQ“pá %Ÿ0Qª8Õ¤a…ëf°x¨[7?ßVŒJ~ýToæG _§øãla•ª/A0ÆšçÉs|¨$sçsZ$zÎìá -uƒ>ýükéӛë}¸>Ýd$P§)³ØòºŸ¯Myq#³îS§Ë²ŸÇQð” Ç2rVgÁ”CY ÁT]¦,-ŠÆI˜åV0;—ï±Jý÷Ú½`º‡Ï… ©Íý!ÒJšÿfclAç1vÉ‚zíµ¯YNSÅâÄ -s=y5×ãEZ°ÏNõΉæy*Ã, Ú„«;ø eԊ¼t/ÝÉJՊ²V§YTaaû[7àƗ0 -!uH»¯K´×ˆdN6ö@«K´1œS/ؐy‡ñå4ˆÆ¨ÎÞÀ‘àƒD{RÊNŽÍ܁Ñ®¸)¿ù¼ùì¼2•ä¾ó²{Λ•ïËʗÜΘEvcr¦dzÍAf³œ…ÌÂ`D›³°«áe16©â ¤p×Cî%á>@—˜o±¥.ìOh¼ÿ„¦‹:Wyàې¢a#²Xh5K¥GAF_ÿøÚcI~_íy¤UÆàuK&ýr®çPIQ*Me>'—Žzqõ¤Mo/6^^Àè† G›Ñ æƒêŒö2ùæ"¶Ö]yviy–æa´¶.¬ÒΧ‚ÆA&ð,pg`i$/ úƒÙOml‡÷¾a}+<Ã÷ Æ]ØRIsð·˜]ïo«)PÅ'nÓÕ˜ý—.ʟ]fY/]L£x裱+ÛnADrò« áW–õ—²'{‘·¸OÝeµÿæ­ñPl· ÁûIúYhàÙó+.c~`#¤ÍXì]¯) »Q²¿5Ä.À«ãù®‰½3\zIœxùíâ(‘Ë)¬g×=Œp‘˜¼#R>æâ:¢g¿—‘(ºzŽ·*ž*ú(ÀM<€¢rÜæuêÈ̓ѱûÐÀA1çØ&fö ÀÚµliA²Ù]5tðúqN2ù&ÌGàbF¦ÂB™+þÏ<Qï ýŒý#ùôn@Äð˜È§qpšä˜ -r¶F qùçtüBâ«ùGK´ÿÑQ5µ<®ÚY8ù ¿ù™@ÙËgwÈçSpâIÆR†»a6 ß',ùðÊølRÿgñ—)xóø¿l„¢$X…Žþ·àqÑN"~l@E‘ZáR¶̬ êwYxøÕ[¡Ã1~'ð<›SÊQÁ€ëÊE˜Cø¸O"L8ò»œ°P¿Ö}émWÕ_Òù,^A¾¹<~ØMȂcžê™¼yÄ èÿÙz_ZÈuTàê]ÈØÀ£©Õ¿Á‘*ëT$U)ÏW‡“YÊøÐQ­^cçr‰ WBþ'Eìî¢ãÚ-Y(nM;°ë÷d¹ÄG¸“Ç‘'ö—„Sô§àÄÑÕÛcK´ßýæOj~ -endstream -endobj -113 0 obj -<< -/F3 16 0 R -/F9 41 0 R -/F6 25 0 R -/F5 22 0 R -/F4 19 0 R -/F1 10 0 R -/F10 52 0 R -/F11 59 0 R -/F14 95 0 R -/F12 62 0 R ->> -endobj -111 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 113 0 R ->> -endobj -118 0 obj -<< -/Type/Font -/Subtype/Type1 -/Name/F15 -/FontDescriptor 117 0 R -/BaseFont/IQPPWN+CMMI6 -/FirstChar 33 -/LastChar 196 -/Widths[779.9 586.7 750.7 1021.9 639 487.8 811.6 1222.2 1222.2 1222.2 1222.2 379.6 -379.6 638.9 638.9 638.9 638.9 638.9 638.9 638.9 638.9 638.9 638.9 638.9 638.9 379.6 -379.6 963 638.9 963 638.9 658.7 924.1 926.6 883.7 998.3 899.8 775 952.9 999.5 547.7 -681.6 1025.7 846.3 1161.6 967.1 934.1 780 966.5 922.1 756.7 731.1 838.1 729.6 1150.9 -1001.4 726.4 837.7 509.3 509.3 509.3 1222.2 1222.2 518.5 674.9 547.7 559.1 642.5 -589 600.7 607.7 725.7 445.6 511.6 660.9 401.6 1093.7 769.7 612.5 642.5 570.7 579.9 -584.5 476.8 737.3 625 893.2 697.9 633.1 596.1 445.6 479.2 787.2 638.9 379.6 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 742.6 1027.8 934.1 859.3 -907.4 999.5 951.6 736.1 833.3 781.2 0 0 946 804.5 698 652 566.2 523.3 571.8 644 590.3 -466.4 725.7 736.1 750 621.5 571.8 726.7 639 716.5 582.1 689.8 742.1 767.4 819.4 379.6] ->> -endobj -121 0 obj -<< -/Encoding 7 0 R -/Type/Font -/Subtype/Type1 -/Name/F16 -/FontDescriptor 120 0 R -/BaseFont/WLWYLA+CMR6 -/FirstChar 33 -/LastChar 196 -/Widths[351.8 611.1 1000 611.1 1000 935.2 351.8 481.5 481.5 611.1 935.2 351.8 416.7 -351.8 611.1 611.1 611.1 611.1 611.1 611.1 611.1 611.1 611.1 611.1 611.1 351.8 351.8 -351.8 935.2 578.7 578.7 935.2 896.3 850.9 870.4 915.7 818.5 786.1 941.7 896.3 442.6 -624.1 928.7 753.7 1090.7 896.3 935.2 818.5 935.2 883.3 675.9 870.4 896.3 896.3 1220.4 -896.3 896.3 740.7 351.8 611.1 351.8 611.1 351.8 351.8 611.1 675.9 546.3 675.9 546.3 -384.3 611.1 675.9 351.8 384.3 643.5 351.8 1000 675.9 611.1 675.9 643.5 481.5 488 -481.5 675.9 643.5 870.4 643.5 643.5 546.3 611.1 1222.2 611.1 611.1 611.1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 753.7 1000 935.2 831.5 -805.5 896.3 870.4 935.2 870.4 935.2 0 0 870.4 736.1 703.7 703.7 1055.5 1055.5 351.8 -384.3 611.1 611.1 611.1 611.1 611.1 896.3 546.3 611.1 870.4 935.2 611.1 1077.8 1207.4 -935.2 351.8 611.1] ->> -endobj -122 0 obj -<< -/Filter[/FlateDecode] -/Length 2493 ->> -stream -xÚíZ[Û¸~ï¯ÐÛÊHÄïdƒ<´h·Ø"XÙy(Ði e¬LÈRjËÛdúÛ{© 5’e{ƙ̦y™‘ER<—çÊ(%iÝFîߟ¢ß_}ÿ(%VFWï#žc¢D¢Ytõ‡¿ÅoòÍ&[%\‹˜‘’Õ߯þýñÊ­³Ã: -OT„ ÿ’oa™°q½‚?·U+¿ÿAk„&’E©›ýñÕ*¡Jşü,1Ìb”pÑÎb“oÀ³íè[?RÅ íF·Ån_6™ŸÃŽ Q:‚‰ÒMûïd‹„‘TGI?c=ù„"©iw¹Ž§l©æ¹ >A I;Y\¯&BÐÄèn”)=#ª[þúäIôñ{ôÙÙox„$Ì2ä;a€á±]ÉЀޏp’ -˜ Q‹©ò«VLÅJLÆõ,ŒQÝæÕDr4%œŽá£ÆðéDóӔi`A܃Сâ¢zŸ5Má9¥T43I˜vs7Å –tD¾Ÿ° ‰5§ioF–tü}œÁîøÇÌÂt•lAESXdµßôG‰¶¡hyHµ‚­ºñÔº ~ƒÎí®†ÝÕdwªœn?šâÃö¯fÈcâ¤SùiFlŒ}[LgH3Ýî·«„i=oŽÀf[ú З׌<ɌÏš/‰M}Q±é#bǶç‹Û?Cçé=_mQÁˆ÷7õ&_%‚êx]lóý ^W»üvŸWwí‹u~[þq×ä»]ûœÁS½i¬ ÿ%øNqS—u;=ßÉ&o¶ðŽ¬MÓø Š€> ¤sÖ°ãM¹‡¯U@³&®·™XçÛ◕äq÷;+Ëïö·û (ʐ@¯À0‚Ká)2ÄvÝÏ ½Š½†‹N@´YÂCPÖJŒ<½t_§Ž°?Ó þúï¡ÈS"LôŸˆ)IR•¸å&b†Eûeô3j§Ÿ¦ JPasœËv€“źñŽ8ŒwgëCàBŠFÕQïM*} QF*b/å²X;Ië8«n0úW«‘›z×l÷MÒÆ[R£yTØ šDœmòjÅtÜä$HA)®Ð”HRè_(†qRf²vÀø™cîÅÌLø&·áLÿ"œiˆÐ£ÝÛÃî /9¼´5ŠlýˆYKÈK -ÿxƒì¡T¸`1ž“ºªñ‡€  p¹]gþ7?lëÛ"oÀ ȕ01Œ‹®;a¢Ì0ބSêÖy»G…¯÷À¾Ø栘Wm¨Ñ’Ç3ƒa"føb¶©ýϨ^ˆe›Ì}­©}P[ºÙxâ7HDv‡® -¬¤a,=ÎÊ豬Œq†$âʟ ”Æ}3ã½cÏZ;ön.†Uö¤Xz&ƒ:#[õ‚´qUW È SÄ ¤Œ'~ünÅD\³Ëz‹ÃÓÌ-±mÊف7Ÿ ¼éŒ?6ÝÊV$ÙôëkFD&ð1|uì?•c;“v&òÅ\­;åO•.ÐÊ>Kªáþçͼ¥;+¿@¢>™D=wxÒ!©¸]Ê;9ú`º™éÎ°Ã ŀ9A—Úû€ €:-ÌÉfâC*¡ÍþyÜ» e»ç‡®£¬[z3¡¬,Ε™ AÝ~·¿ÁªŠûƒÁ ø€ç.ä\—ƒODcšãÔ¬l§ öc¡!n}›Ñè·Ã°Â/ƒy7às'Lƒ7çKH™áZ„LYp}(Z§K7‹r5X/ìǗá¬Úøôó6ÌfÀËõ㜬ÖA{Ö§›{*Zõ!\:õ‘x"!P@­­G¡x@PPÀ`]zÿ: ։ò^™ž°5Má_-ÀÈN¤ñT›ðØL‚«ÚÑV|Vù2:àñ°ézæ<ž¡ÇÃF0àqƇµI2W.ÁqPÞ»¦ êmܹòàTH‹[ -E šÖ®X½m†ò‚cÊ]«¦±j)eötqòqˆC#Žìq‡óL ãQO;Ҋî´âô›{+5£]¡g‹‰ímÞÄÀQéZ QËs4äç6qrrüǎRöÇð“!5v”m.ÉæaTšePš“! -uù¬x<ÉÊÝã1Påë9 ÿ<ŽMÏÈ[=Ôöœ£å³-Y6<æ„&óÂ6fŠÞGcŠf^Æ`æŗJ/’&‚ÛÎc¼ñŽ'Ä=à -Íâ -k 2UŒ Þ7_éKˆmŸL¸>™f]C¯ïÆ´o³²ì&äØ}­Š»¶éæÖx ¤ =è£ b çC% Ûú»¬ÊÊú¶¥`ÒÅíàqÈðIpˆ ±×Ó 順GÂMv%ÛãpÃ&ŽW©oʅM¶ã3?cˆ8힛\ĝ9ˆ;KR:º~åÛËmóLúënSyb™Q}Ãi‹€€pÆÑ`#j"Á½÷—U·u‰“$!+ö˜›R—uSwS é¡oujç즔yb&ŽCž -æ£`lš@þ4±ÀÈôÎJº‡çõê%¶ e|ÓV‰¹2.Ãlûl‡Aã<®w»|ë{Ùi<èØâô̋ø—bÛ¸Ãä"b×ӏæþL*Û± ~áÝ}üŽ.;ŒÏtªL1ԞEýқƒÑ¥ÁÐRè–"¨[]ö*#jՕžã-E;ð5Í;€ëþvΡëIôHÈ' àøn=˜/ÝÛýð­.³|©Ë<¶…t7SRü«’Ú±ÝÏhËÉ¥ŒòÐ ÆÑy±î^ -^îh³¼oçå×t^>͜m¥ÆŸµÔÄ9E®„16WIsýÕHÚÓ ùá~Ր”7áìQ<»ð9Ú¢Ìø%ùÐ{7à\ùª÷7þ̀ÿú øg:/ ï^´~¬ÆÄ386_ÀÉ<±½ü¿ð1_É¡Y¼«9J„»ðÎ^÷t_×mIî7ÿ¥'à -endstream -endobj -123 0 obj -<< -/F1 10 0 R -/F9 41 0 R -/F5 22 0 R -/F4 19 0 R -/F3 16 0 R -/F6 25 0 R -/F10 52 0 R -/F14 95 0 R -/F11 59 0 R -/F12 62 0 R -/F15 118 0 R -/F16 121 0 R ->> -endobj -115 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 123 0 R ->> -endobj -126 0 obj -<< -/Filter[/FlateDecode] -/Length 2523 ->> -stream -xÚí[ÝsÛ6¿¿‚s/¡&J|“ñäî’ÜôÚétRO_ê¸CK´s鐔›ËÃýí·øI²äXVâ¶/6€Àb?~Ø],£%It™ÿŒþ~úÍ[aŒ2^F4AiÍEŠ$‰N_ÿ¿Îgsš²øÃZ½€§,‹ÛËfÝuyµ¬m*õ_¬Vn0EŒÀh–$q隖E«–E“w¹½Tíúj_•*¯>¹1]?®ê2oŠÙûÓEI4Ç 1f¹žÍ‰ˆ‹ÆôŠ‰(ÂÜôýO7~ó–÷û˜”ˆh¾±´#;(Ia݉fs™ˆøu4c {-Ú®ÖÏ"Î/.T¾ªmǪn;؂ûµ˜Aÿ¶¤â,Õó=ˆ"œ ÉIgDð$.,ë*·m±RóU¬Zä†n¿jsKp[S3'øf¹gW»™ ÌSg„Ë &ZEYšGWÅ¢hÛøo/êÕuÞ© UªÎ’’f±{ 8` I±-…ë贆¬ý¸¦èÔÂHêޜ‚ÖE,EŒ‰øbi|÷íÏo^¿y÷”û}nÿßR=äˆ0½Iýo;·å.ùgžÙñä}†8w½m'ë;3D]߯“AˆÂ÷~¡°ød6ÇBÄÿLC’;g!›Yn“ÎQ&=é3à1!ñsk%ô`fñlÁ®ó|ǎ6|‘wñå|w|=_nO+5²m¬KN͏!±Ó‚偘7VŠ!©ápÎ^2cÁPjµàTÝÌ8ӆÉd/scÏLb0Í«uQi|ê -۹Ȼ¢r½KåÿL«°m0!ó°Ú¾§aW#‡í­¯*5Ù°!^!« ß1˜©ß7±½bÄuâ÷ûCH&d#Ò¸UݨFãááP·mÑÜ(‹ u€ËæGÝ8±Ç–Årý»|¦ôÞÒ¸îàhÚ¼)ܛܞk0“ƒ¯z²o ÂCÞMi'ˆ§8w °y±î”æúlö2 nT" - -G¢Ù>(й áÀØÝ454²×¼p ;'ðLi^fúàB2ª®-`-ß °½lp -<©žõàÞkâm,áS–ŒžnúGGÂx¥´§rxÝ_•ö…þ#sîHÊô”Xroe’2~€§ÌpoŽ¥vä¾<ÝCòt›ä÷A1ºeù;õâSd9ú¾ÂÄ<¼/ºK^øN‘;7&>_`‡µ·³Ùó€­%ÌÎó{·µó?míiÙÚùÓ¶µi´B#“0‘l¨x4'ê(û}µ•?¶[}+ EÍD”Ù„fñ†`6X6‘a§s_öy•Wªhò6ô[ "êi¬FRD2©±/©p%ÏwIFN$#À»¼kºÃ»æ_q¨v0–üáBµ¯Z™îò~Î)r¾ë”2ä~ÎÇö8pÚá;>¾BÈbîíøÀ{<†ü¾€óx´m7®þ¼máC„iá?„¥ÿiiOÈÒΟ¶¥}¥AÚñlð¸AÚ1öØpÝsöeÁ…ªS(‡­H3²¯°µŸT]é*„,›Ü¹-êjQ®} ×({Ù§ò•+e!<Ϋ…»/”îúOlÊZàQ—µlJõ~‹Жð I«¾OdTF? Fבڑ©¾6õ ‘0'´ Ñ)br´ºkèWïK-¨q¥†mßêÍ1vëžX·4ª]—©q¡8õLıë^Õ¥ébšBUvÀ‡µn—±}ÅùuS؞¼´ÿOgiuS3S8Äí/œ¡œ¯x7·ºŒSÙs]›Ò.Ìo—ÏŠkåê“àY -íj¥`3ùjp®Ç(ûZ[wªZU¬\Ã2p» $dtû-¯!Ð!-¨Ñ+\ÖÍÊÕâP’™kÜ~+¿Lé 7w¥Ó¥¢>uö^g(˜0K¦Òx¹v¶$§/NºeÊF’í5HØc£«lšú•E '=‹»¼Ô×파ٯ)o몶O`ÊK¥9/7²s[v»Ü&Xuáx\ku¹1%B«m§nL›ÔuO°¬nçñٙr“7¶’¢,Õ_Ot5ÕQ7KW0c;]õ¦ßè*)=k_.?L¢†5EéQˆ‚—Ïô$U  MMc\L‘àwd!+]«F²¡¾°Öæ卦˕9,r_Üp7®K¹X tåMq6CЇB:O;'@.¶HkqYdhÑـH]Ï`ÃDââ'•Wu j¤×æÜÕ]j׎ŒOùCêؕ™éµn1cY\ONˆ.$qDL݌ÑôN7ƒ"îÿbBë“h6ç’Å?ê:šÐª¥áƒ¼,IfÛã¿Mt÷FœLwž î{‹Vµ]à?ãúÌÞ¬„-a•hÏäKM¡ìȜ†½Ö§­7 ­#z÷$¸Nâ9 RØY€c W{º~»+´ä^Z·ËÌä¾®©‘ðíùe¯t¼ øPÞ ¾ !DjJØÄN¬ŸË ±W ¹Å läizI^ÏxbjË´0·ÚÒÇíՔpN±1TÐ߈÷opüz2ÞOv%ûSu¡wUW!Kâ-c«/ž0‚÷ñòåz Òܞ%¦ýÇÆpÈü¹D[|} Ä,D´QÃ[Õ¶æ8žìTŠŽ@S§B“hçØA @2£\N¡£)õ÷Ÿ@˜n¯f¨ÙÁŠ@:±AÑ¡õc(6¾:I‘=˜‘Ÿ.è èq•à"Ml’=X G҂0 Èv Ðe±0åú#™ïV†ÎˆKn¤Ño†ÈmκŒW•Ôx÷®ÁæÆ)ÿ -…ƒ Ûâ¸KíÌ¥ˆì“ìá\h46熩•®‚gÖUÒcG3ªc/º—¯,cÈDB®œhߝ ERñX/âç8¨ZŽ-ÿþI¨V`äõ'(ÂLÆo‘‰§³2í¨Wt[ê§`K{rŽåN dÄ{$ïlvHǏ¾ п‚ߤYT}ÜþÅî“(äNÌ;DêD“›€ÝëÏ 4á: ¦L’ -šëU±ùJút¾ËD֔Ä6U°îT©< z¶).³^ºœ™¨tðí•É ð4¾nêëFþƒª4víyÛֆ“ •w.‰e{|v‡ƒwì™m’ *(Ë^¬¿,nãBŸLÞ\qœ‡œ–Í'¡”ÓÞ֔E}thöárdú±­mfýÄW*„æá\ˆWÿօ·:i(MæTdÙtNnÿåÿ -ËFU -endstream -endobj -127 0 obj -<< -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F6 25 0 R -/F10 52 0 R -/F1 10 0 R -/F9 41 0 R -/F12 62 0 R ->> -endobj -125 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 127 0 R ->> -endobj -130 0 obj -<< -/Filter[/FlateDecode] -/Length 2282 ->> -stream -xÚí[I“ÛƾçWàf°$´Ñ{w\IU6§œR%ÏͲSà¡ÌeÄő|ÈoÏ{ndƒ ‡R#U.š™^^¿å{K·’œäyò¸Oþ|÷õ·<¡”X™Üýœðœ“dÊ͒»¿þ»u±-ßN&?Þý#á‚Ø$cŠ7ËpðëoeK@#“ÜMÎêÉuErã'ߦÑVA¤ò³¾™dT©ôcD‚’³@c2ɘ6é"R,'ür.äY\ð.Œ¦¯"R°Êª²á¦E;­‰Ña–)}#£Üq˜QM‡M~ˆø`”•ý;RNTs&U½€æÀ½Õõ)„‰¶nÍ/‡’P–4óµ:Ø%ê°ç3:ŸmŒm´ãÉcÇÛ·…T´¶ð¢¥|ž5Å4Ä ]MÊ]£„7˜Ä§¡hÂÌ-]ê§SÊ֑4Q£éZp}EÇNžR6=P¶>âRbl6Nˆ™ÞÖ¥´}–=Y̧} -Cºî é N,ɳŠ'à ?ˆÆ1H:”= ¢ þ2t“/ÉÒ.—îÇIÆeðÈ^S}&¡c-€¼P̼u€<‚™·sOæ¹@j#…àËcÓ´'!WâÖaíCŸŠšã Ãþ4’›h÷ê&þŒx5=nŸö)'ß׿q.ð‰Š˜aÉü͏û? ´d·”Ó“‹^fa æœÖ¹FFò·»$'Â$ÿI”"³x‹’E¢Y½Åý9O¾?l›„åDlÚÎUƒÑ֝”]r”•A8†±(ø† +qø8ayôtJa¶e„‚R1ÀI³al‰Pì@‰'"'C"iÖ?U&`cêJaúùUºÒæ&­3ì¢æºõl$*ÇðH< Ê7ô@±3kp3c„ŸnÐ÷Ú£® !¤ß+äuuö¢[hŸUö)Ú*Oó-šW"ú}ˆ.ý× Œk¬fpå¿ÖÅkÈ|(K7¥Û$Éu •nþ¿=‰ɁÓfÅK¼€(­h»€Fô;–è[2 Ü ‰:×ÑqžFjBà\b¤V YÙ Ô±ºY%(¡¶ Y 5‰I•“ 享qª:óy8å+ÞgP–#^ЎÕ`›ÆÅ|¾Z ÎZÇÕ!A¼CxÃè ’ÞúÛXL +jt?äQqÀbˆ¬øº§;yÏ1™‰Ÿ|{0.· åjY'\¹¼9Ð5Þ›¬b*½_-'L§Ûu±®V¯ë±jùs±ÝVþ¯uµÙͷ府N1MIkè¤ ‹H'¤Ÿ zê<ÞΉéÔMZŽ 8¦E ´õu«–Ùœèε:&þÛOŸå”pÙ¡r¬Êöé7ËèïÙ˜Ë -9&0]ˆm¡^´&ò*ŽTby,07l"^QI{\:ˆø€èîw*?à>,‹û8#>àþÑñNÄ¸Ø՞„ç̵N–uÞѐoNòÍpvÃÑñë•ÕÜ{4úó»²ãÞ -Ý{³-pHº!77ÿªzt½Ú–› -q;÷v“ïwÕrV¹K8 jÏ©<];OW7{6r‰§»¾„í÷tH°ñÂÁX¡zOçÆujü@ðô°L²ý^DëéGèc“Cwé+§ºCúaÙý^ S—yz°0qð¾¬ë 9ö•ð•JDú…ß¼S"ŽÛEÞ»vD’ (×½ UáGb»ý[¼\hÏszý€wÈ°Êä(ò“ý˜ö¹[Þv)¿(o{! ™ÿ{Û'ñ¶ÃXäp"iyChVøïÕĕ<žº55§zÁŸÀv“Þ•ú궥þE=a!›‹Äï°*•¨•eµ­~HžºF±¤P,-°~šVKGB¦s,‘„N×å}9+ë«òdªÍîaW<Ì«bù[鈰.~Á¶ÕòŠ»“PVÐ~ì¿m.4Yß<hü°¦Cê?? ò…‡üè›G o¿y´ªûJÌ]ôžèžëÏ {ΆºçPþòÅtZ‹Uì: µ‘È~Ñrµcö^šÁ+Cõ¤Ë¤„Õ•ÈwóI&”…­ÖåŽ'tžnʇ]Yw„Ëzz³-¦Õ¼ÚܗõŠùWåû‚¤H‹y¹ü­ðTÖþ—¹_7Ûy‹r»®î$ߕ=¸gÛ¨9ë…4?éÛÎ }¬@ôúĽß9¸w[mLj(öqë½ëj³]O„MËí¶ŒßØ ìGz؀hë.V”k/¾z\úFýÞ9Œhß`½é¥< =ñ™D÷¿i‹3&<"ÝM¬H5C Âî$麁íÊÜâèL y-Äï«¢¯¡Úvã}öÍ$ÓáÊn?_j"Rœ”êöÒ2Þ*۝? ït`ÑkWü,lW¼"Ìî ?¹I½ªÁež®æ+Õà.‹*óó~t†¦QMwK¸‹MU$2+³Úâ¨Î±ãÙ±¸iMwQ.·±—Kš7o™Vúµél^-ªm±]‘I&5CÝ-ãe §§ýéÀÁC@{4c_l¸z±„f§má,Ýæé}׏<öêg>Úxë)ÓØeۊà „§š0‘"öV­œZ‹š·ÝÒÿ²Ù9m:U—VËØÁ!ÜSd»£Â³Š–ýŒ_¶w‚Ëž„_ñèNÐ ÈYÅ»/.FÎl®¹í½È‰ÐÒ]€äf¨mÞ_ŠÝý»õï=,Lió9@ˆz:„€rÂ즬%àlz¸ßüˆû€£b왵älÐ5—HLIL Iì`ç~nIÇ«&=>ÞÜ‘ØQ©æøN2ÅÑ!\#ØúÐ÷»ÿØdçØ -endstream -endobj -131 0 obj -<< -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F10 52 0 R -/F12 62 0 R -/F15 118 0 R -/F16 121 0 R -/F9 41 0 R -/F1 10 0 R ->> -endobj -129 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 131 0 R ->> -endobj -134 0 obj -<< -/Filter[/FlateDecode] -/Length 3112 ->> -stream -xÚÕZK“㶾çW¨r1UYÁēຜƒÇvÊñ–ËÉNN™$Ź³¨¢È1Imâ=ä·§IpI3kmœ\$F£_wc“’4ÝÜoìß6_Ý~þm¾¡”ärsûvÃS¢õf§4ÉØæöë¿&?v[™&­ýyK¶»ýãæ›[ûŸ¿R‘4üê/M±Ý1Îsx¨Í¾ø`Ú¦‚–T%wLÉ­P,ÁwÎ`j¦’÷ïMñÞ%MLãÚ: v ­]”jN„ÞpB¥]áßØúù·r&bÇHª6»iDéF„d’ToRÛy—¬¾DJßû¯/¶;ªTòój -ªIÊÇ9¶®[ÌÝÑÙØËT¶Zƒ2¢¨ð‹éË.ÓgÏàþ²¤êÜ[{ߘÕÜ2%¹ˆo>Ø£„$°õÞ(a¹ïýóŠ°Ïr"øfGÂïñUu8€ p8f8ÝônØFh;>ϐeNAV²DåÐnwöRVÔCWà‹XˆÙî2™%ߚ¾·£Óʨ$ŒÍ'Å` -•&¿_‘ÍÑ#cR·h喃‰›õÄXÏóÒõ‚P­y˜>òðûõ·ÊwíÛCåˆmAŽí¸ÈˆÈCUy+€#R¤É¨R( -¶kœd´CÕlìM?DÈRb«Vr‹ªGr¡B™_~Èꐏ{Šºräîñ”ßU`x–ҋ}QéÍYÚxá=¬…W!ƒÆ“ÉÒõ&9áü4©)QãF…3ØQ’¹Õ›µh+ýžOëyp|0ÏaE# Ôó¯ú¢è|ž&ªù4ÍGB…Z/ÀGü.æl3uÚQ0Dq°Rö©-љÿ#@¯ybáKļ¸Xƒ¥œd˜ŽT/B` xʈ@6J‰né°á0§Õ×àMÔ4L)„à'ÄÁ~¡‰³Q_¢ÉÐ1#ÛÊ^ž@û>F :5ýÆ8T¯s€óç$ ”f_Ëʁ»Ú‚¼,)Í¡í°YŒöÂõ•Åà!  ¹îîÎTƒŸP'…›°Œ6•/Ž˜¹E@\:ŸFJFŸŒJ崛Ãܐ1"…åó<’ùŽÌÔގنÈH˜“-Fº†p¤FÒÂÕ}üú …Yjmnã;ô -án·š&UÛUÖ7È}ƒt]{„zïŒ=ì1eUԇÊU¾ d/y茝>{(º¡z ®*e‰i"L×ç`>(Ó{€Ù8Ȏӷ_Ç(l -~.C¿Q‘º,‡!ï\í+w´}u0»C5tÆmeˆŒ`·N“á8€,a8i -7CÕ÷UóÁø}gnßÐ~¼?µq_Y ÿ탧¶ŽqãúvØY2ӐÀÁ4½RÀ¡óÆNg¥©¥ñýíJ_Á¯æ(à3œ±Ê¶6#„4ÌÏ0gm ò泥y(îïM1ø0e#>ËH›šqºTÏqQ„%tŠŠJï[F„=Â1 OV1!•Ú½°öSMDL§ò!^C£Î˜Ž/"_O·:#Û^Q&Iv‰0æ”=K^úx«6‡õ‚à’ÅÊWJ®7 Ž:—ÏÚö9:/”"åã<ß5þ½®<,B„Ɖ_}ÈWAÔ3!;윀;pçûL˜XS˜XéK0pÅ} êYAöÔîW‹¬‚…3Β¡âU«éÞ©À©¥r‘1X‰gE-Ì2œŠp4`iµmy„%e琢z@zuM°0ü*"ÞL]B‰úL$/P"6‡(ßc(‘}Z¸.ÖN¯W¯ü8|™Û¢È(šeŸ&‘Ž%Ô¯ž:éúäò9\í†bV -àhÓbäåù{)‹Ú=Œ'xÄbžï­:ãòÀnš£Är9S…é&Z2s¦g* ã”V÷©ÀX}hè&Ç*_\šXÙGŽøâU,hmp̒0LžT{ÓÏVĦæŒNfÊë¡ï‹7ÆAŸÔ—ó,@=Œ[°ÅÒ^2§ì$ÅA·Å<gÉ Nú\药,äŽ-XÚglŒpÃ0Û!=ˆT"5ø Û­Tò¹¹ì|μÖ6/¤—×€‚‡cç—ö%NÅ0ß{-}²µ‘|ý™ËGÙ]4EóÁ¬ÔL§sVÐß»ªCSEŠËÀÙÔ宧,B¸R¾(çZÇÊ°‰EÃ(Ï @څ…GÙaM+“¡_õB¼bqҟÀ"ÁŸPå -ò¶*‹Y«={š0òù{âI÷ -nVÇÎ.eÙ%-Åý ª¾è®dˆlµû#ìbdðdt~½=œóK;žæ(lÌ=çV‘„°D»xæuuosÃÕ¡*'ðæ3»š9w„Æz©vîÈ*|š¼¶·6Ü ÍÛb°·ŽÆþhg§ZóubÍOfl=Š5¹k…žGï -9˜ÏEœ?æ2›{8QaQél¤n"V| -¦ˆ»ó ¦Û]h¹‘ë°|´çìµúu ñÄH|DôËtúÿ> ² ÖGÀ[üޙ˜KŽ‘‹ )Bè“÷Š¿°¾ qo‹äLgª~_EÄPä6íáAò¥œËÉXF_ӮƲ UËÿÖ-È«TöÏè”>/NúŒbi¬Æ~Ò´Ë/珼ÀòÇJʗ/×…ÏÄ>?èÁ‚¾:V8“¬;R4/8„ñ–¯ÊA¤Ü¶ï¶aaÙÎUYˆDeâcT_ZöÁØÚÞ%ÅT~Ęòm‡5å¡EB3XÄØ'_|ÄIÆHy•B„SÁ²þ6”±ùaxl*$PbÉҖ¢qŒË8(yo0rËa•t¢¶3]kè"€ÁÞ8x²’Y*÷C'l -„ûÈZ’>K`qW¡ÀÍق¿m -K2Ž!Í|zÝnLæ¬$áÕýɌià,#RŸ«¢H>]Êõ)º( Ø9~뵓\^ ˆKPà4—Oºá¯ŒLý¾ŒÓ¹cÔý -I4_ºß…!Ìó¥ -êÚäñ¶NÄ°J õú úHËe {d?qWH E«B -Bb¹ÿƒíYpýǽGÆÁ|,gß×·„æuýû´îW·>X<¾S™BF[̔zúó7Wæ -endstream -endobj -135 0 obj -<< -/F9 41 0 R -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F6 25 0 R -/F10 52 0 R -/F1 10 0 R ->> -endobj -133 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 135 0 R ->> -endobj -138 0 obj -<< -/Filter[/FlateDecode] -/Length 2749 ->> -stream -xÚå[K“ÛƾçW°rXa`ސÊGŽSI©RªxoÙljDBë©ÂƒAÙÚC~{ºgÄ`bÉ]®¼®$3ƒyôóëîÙE'ÉâvaþºøóÕ7?ÐEšÆ_\}Z03ºX K²¸úþ_Ñû|¹bRE»¶Ù·í¾ñ¯㛷úÎÔþ9/ͪÌÛƬ}Ëu´ü÷Õß¿ù÷ ¤™ŒiºHìäTFoá!£›& gҍ³t±JcåGÛÁneœd‹®ûzé͏®Mx,©_ú½]UL¯J²~Õ÷£UELøhÕRWk]ùsÃsÝhüp±"S iÊbÆì'›¼(`“$Q•¯óÝN7Æ¿×[ø•QÞ U+ƒÒÒ;›¼Êu ‹n9ƒÝõ¾øüyf -᧐‡)\«©\+l!mw›¸}r»OSm궅i)´Ý4>Þ_Á҇,&,æžÌÿ1Á’Ùu¾}ÊcÂ|ç͈îð ºOaë#É¢±è–ýçèã,N:©{펱«‘]øä&A€o÷y…älÍ/ý ª··"4¦ŽBßçׄËÊ PìTјe±¥å_®¬reá~•’$΄áGƒBsÿ(”Æ*ó»ýu’ÝA¿…U)ŸT4+1œ#r´—™Pá±¾tý åv@Tv›ÈNj'1W¾÷ËÔ(;ë_FU¾Øþ7ûÜí"/ò2¯ZãÞ6f´'Åc~° £)AÓnÇ×SŸƒiáì`ûÆ;"ÝÜ×K'C+ªÀN‹Ðz|•ÓåXf@ìä=~³pnzT#Y‚eV†æÀu¾ù_NšÖ¤ßü©ÒlO¡É=ôOo‘ÌÉBú0ÐYawǎ -30íÂÞ¼|ÂÞ|u‚'è9°Šcȑr…Ùaš0p”½y5®Io½ó©´£­‡JxgÏ¡­Õ`ÄEÔÚWUp‹.ü ?8€†ÆõVµ¶oMaÐS$Y´®ËÜ©c*ñ<6‚½hn{é=‹÷#°ˆíâð[7y©ã‘SIBwrµÌXäFâ 8žu&©@'²J3FÅY$žD$è¤Y†Ç‚¦#~ZïÓ¡ȔgèÄ@®.èfòÓ®×qwôÑn¨òûëxÛÚ÷4Úí¦<;Šƒk?»ÓõO~þ‰iЫžd}`ÑV {;,€óYÈù;šßW &c!®`l¬{µè0ðEÁnÉ¥PÔ±/A`pÐôà=¶§b(:C»Gf)#zˆ>A”ß’&䁰@œFo©¨ £(͢Ɗ`s”&‹Ï)•a@…ýþ÷\n‹¼­=JHØNb÷¿UuÑ:Ù|=NP˜'Ë&ãƒ˜ãŸãƒù çdÓ;£ñٜ·?؋k"ø’IŽf“]÷Q Ú"Ÿz‚+Ð0ÁøéÐ^s%³ì$Bõô·–õ9‹ó?P‰Å ýÝ+ µýïÓ1x€†@aVÄû˜ ØD§¨JEä?.î"»J'“øŒôÐñÊ®c\w·_c‚ÀãhØøßwz¿Æ@õ'üï‹ûÊTG‰’ -†O]p¼RSJÍzÕ|6;š.l؄ýÿ}¼"qÞaÄfBDM+ž²èb/ éxÕ·Õ8Kš¢ -zåÕ¡óFÝÄõŠü –ÿclH16f·/Ú./ú ëƒü$éÌáÅɇŸ50Ï“Ñóâs~,>÷¤ÿuÊ©,˜hÌÜ»Ô>Ë Ͳ±¡ QtŸ”g"ÇØU=$â/›Ëçˆü˜}›có¸|É@“D²ªJRô[/„ƒÏ¬ÿNJ -ºÏDtg/FY/Ƌ9b¸§çˆ»¼ .cQäÄ< L?‹o{º I¬‚€MÔöcš1Å!·ôóF–zðݦT˜ÅPiÜr×0ÊxËÇ[n§jN²˜“Ë¥ÏW‘¥–DùÓÚ²ΡQq@£Øg‹KÓ‡hU°ŒÊ#`”=Œža>ŒŠ³À(K³è»Jõ­^ù(ˆd‡Pݙҗœò €üÆý6ú¤‚E]Åͽ¯†%¸qzCOΏVÒú!bf"zWWnîŸ÷ùΦFáYühK v?Ÿ¦6˜¶[ëÖ·Úï:¯V].‚¢à…™2ÝæwwÚ'Ió3êˆë¿‚{4Ñíf¦ P‡|¾\¬ÎŠ•ƒH·K~S©pö¦¨‹¢£Ä ·{}[@À{çÂZÏ]Ô@4Ïü±æY|9ðË^›/Ƈ 5½Ï·G’|o1@àÜÍóyÉÁf¶Âë= ÙtNGqtÏÉqÁâ|v<‰ÃMMâ°¾8„ƒ 5¨#âûÆ4yÛj÷²®+W¼ó èö^i‡ÜßR"}~zV&^ww8n>ô¸¸6楠‹Ñ}-Z¶z·Ó··Æ&®Ud‹–LF…)‚uèÖâ7ÖKâ`8±F•à×áŸYk÷¾®]MÌïh¤Ã En[ãø5ßf'…_K¹ÆÍàîçðèúÚî¹ÚÔîžNWgu[þã„ȁ;E¤F€02¤ã@AuNáýÞ Hgo\ô¦iÅؽ8† êÿÉ©5󀐍û(ç‰G%q*Ý<J']ÂxˆD'™øAaº¯ ?7톚˜ÐÍRFoƱ,Oà4.Ó¼®½ [Ñ)…e,ƒA„‡#¶Mvô‘Gº3uý• 4dSÈoÊ'Ô¶.T?—©Úc‚ùÆx¾ôæ›Cठðyï߇áQgôëlL©«îfaw“D`a °Žnz{QS ø€&Ü ²áóÒú oMi­{«'" -NÂ[f[zÏIJ4Ó/òP©>{Á¦+G <±ßQ=øèe…‹§b˜Ë€³cå \‘…·ðN3f|D}Ô;tóØë|ÌìùJÜ¥å_·{Çx1ãå r[˜u^7„ Ddk4„ɍ»q’J‰÷?žÁô±N QçGH#`íü×U^¸m®ëfg"-¤ÑþÑ •¿‹Mzëó쓺O¥ÙÜæSÝT&aXvñ˂Á>ž\p4%eßÀí՚bñc0’øåFBh  #aN:é‘ -®îúÕ]Söˆx¶ïœ†Z¨ÂbáL ÚÚw¹¢mî:k³Õ^|ð¢g\ïäe@«~oˆ< ‹éPñ¤þøS8áK½t®Á³Ú»?¶sn:„ícƒW' -DEÑnï/>ÖM“cJ7¯ð¯ 죩*ÀÒ~p‰†eJeße—sÃÇ&/º¿ èfØ{w=ú²o^…(‹ºõÆýbzÛ=ù –åðÎ#ø³Ú…5¸¨|ÂE êH…ו -<œ -ïôŸppˆì÷ jVT€ÖI·>ÿ²ÆþNÂ*!z<ø,yóGœýÞµþ!U®"-ŽÜ6&o=ÞÌ¢î´Æ“`Q_îN¾É?:Q/:ÂËðz[Ÿ3]ÿaý]k"ÅèúW6€Ûìàrʀ¾ø;ˆ—mš õBû‡ÿ;~Œ» -endstream -endobj -139 0 obj -<< -/F3 16 0 R -/F5 22 0 R -/F10 52 0 R -/F4 19 0 R -/F1 10 0 R -/F9 41 0 R -/F6 25 0 R ->> -endobj -137 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 139 0 R ->> -endobj -142 0 obj -<< -/Filter[/FlateDecode] -/Length 2960 ->> -stream -xÚí[Y“Û¸~ϯPòD•-,qv6UÙéd].W4ûSD&ƒÍAs˜¤¸³™ˆ†°FoR*¨‡–«zÉåp)<µ   -§@‚7‘àOãbmT6N;qkâÚF«ÁÜE'Î`¿¦\‡±½m¾Ãځ^3Ó °´Î#Ö<`6p 8N;áhω0³Íø}‹TPKr6ÛÀX:kÖ³w>R`íKÛ%L!‡ñÅ*"ݍ?q=_4º¨FtQ(¢›³lÏ6сaKÙ¹KÇö0®A9Q •H¡ƒ ªFÕ1e2GFä}ÛƒWÊ»*´C?Ó7¿ ÖÀ¬%‚~B­­!9í/yLÝ~“:®îaUìDÅüü1Ê14<Ù|bö§ôVcÙ³˜dÓ9¾$7íqó}’›ì|ßò$܌c2£#0’äç_cÆÀˆS§Ù@§ŠÙ|op¨GŸ--Ê_Èa x#÷øÅHP.>T b”›ùçõºÞϽzXpÐߒÐe†Åyß eÌé$d1”á(dÁË (®®ªbSÇ~\w täöñ@ÁŒœÐ`üÓ<þù6ÈÌ´ -›5øä(| ôcÆ '±ñýmÀš„‚§á¢˜¾™M£X¬A ‡ƒ§á²ÑǝfC I0T_Ž.½‰!ɃõyÂ÷Oæ¾ÎÞLß|Ì}=ô4Õy|<“÷Å6z’ ì##ð9bŠ´`¿cnèÿVýßfÕäiîfÔOÇÆ3ÏRÐý®ö‘‚ 1íÉ܌] ΉÐc1½•DãTA”†¨žæE× $Âú°@É&wp… ÚÆòÏR÷~I'/X¢àªO -„Ñ)RÚ% bn¡…MÓ"¨»Åw´|=IK³¤£…?cÇ={Ä(‹˜"¦YòàŒ1Ê¥ƒ;Z,#ÔLÒÒ,9¦/^ª¥æëÔ½Ktf®Ø-Df4j»+*ÔÛåúfåîb“ÉÉIêZ6°ÑÜô®Ý£õ£æڝC{B¡e˜¬äcÉÊ$ 0:,Œ$Ô¦aúιxS×{ƒÛ!:,j&ÀŽ*E”÷ª£ì\¿¾†^æ$¦­­>L -yB*ދ҄M1Þ%î¤^ô?­]êqp·)רû;½êòàº%¦tK}AºEHChԓ9+ÄΗÓØɹ%~»‘òþ)·+WßSÙ;8„v píˏ7å+;¾ú¥²Å¡™ôi.yV¬«fý¶¬üª] £~lYﻛáúT½Àr˜‚WúI ~bª±…±]ÄQ†>OË<·¡œ¯¨/ʦ૱Ž¹ÕO¦‰äýl~¯L-œÂñÀók÷9¢=G¨+Ç务XSŽï7­JºìfîHƒûØu1pårŠ%&fÉ vµ=ðÕ¡¾ÿMÛªy[ ­@ø"+6 +Â9 -—²õŸ×Õ&Žµ9GZN4æßӘX‹Ñ.?UI†Q'p„NqDt5²ÐÈÁtñQ§A¯ “¬ª Ú@ŠÃ̶ɲ¦Æäâ˜}AzQaöËC8vóºg΄u3™{@ÑÑàLãøR3AªÃ™n ?Ó ÷woÚÝ¿¹˜ ˆÅóƒR]ûŒc -Å{ü‚cÙ|§§€ Ëjí8ÁТ°Y¡V-‹ÍÛR²›ŽP„Swؼ„Kî[²ïBá}òö%öåö(Ñá}Ž_îÊUu(ü©W…Lœ^é®:z×®“‡>ûh׉?E±íõ €žHMÕoAYãq•Í®wõõ®*ÞnŒÉÂ86è0 <ÚïK§;›vÀت«D(,E Vø©yöϛr¨Ÿã ÃND¯›-Œº!šméÝÄÂþ®Ä«îuUíëÛº×’…ÍHØk'ìsï~‹¯+Àsø‰`ÙuÎìß}Eo‰gÂOÛ]L±«Â÷¡%øÅ­à—dk—è:îîܕw÷^#uŠÆós®U販ºl<ûeµÙ”»}ý‡ *Tëõ®‡ò$,˜®ôÿ:ɞã{ÕÓB8þëDö­Ÿ^᥈çÞ·Pqì[ÜP¹öÖåf¦ £8fԐÁÀ·ë(cíJ¬M«›º)˜T­ÂK*§ 0RxqhיÑؓWtôŽ øð:9LÄp¢1? bÆ*4~ìÝ}‡L[ôs½^—‡òógï)}³y¯‰2ì$ ÆÃLÇx³,s-6B ÂeÓH¹ëº´ˆF׋ Í«¸'&G96CB(?셴dÎ%\º^Ómª½6sŠÉö—d ’%Y…aÒj²(û·Øw›.´H]Ró^gÎHÉáÓ Öèî³d0.:~k–REì98:}•?‹¶Ÿ¡ieuíºíÑ@Ð˜Ç DhìÄIî*†:«Æqžqe˜?Э^¦‚²6gõcŒz÷?½Aºëñþ)ÑTߚî¬&P’j¤×ó¤xåȗëù­}UÃ{4¸!;n„[#ÞÎø»ÿ%Óh¸ìUՆœà&‹•÷¨ÅP¸N ˜î¥µ03mRh™wYŒœxý.Ñi þÑÐÑÎLÛ=L4fÒ®i;Ùi,ù°ÓØgù“Æ(VŒÄ!f ò1!SŽºaCÌdŽžß+G/¾ä<ª<ênÔ {ŽnöÈÂdÒÂþèKG“*S…*–Klë[HÉ •Ø7 o£ªHªÚ% -Â>ѝvئø2ÕOßràþþ)ù_%°§Uÿéüü˜Ê»K\Z¯Ì™zűFöôŠK à'Ôª]q¬V>Y2ðÒ8Sñ¢r©™êî«¿$úù[Vb*V•‡(ë+T.TvY ѤÙV>I]bþç&ó×5üp17´ýÝ!NÆ—¿bôï’+ÛªI ƒˆm߉§Úcñ‡ -ƒŸýê²m,òâkôKºU™Nᘻ¬üíYK½ŸFˆÎ?£#¹¨E»>mê2råü(­>$3ÎU{2ó~Ù{`V¦y…Ht®ÕżTû®éᏔ««c Aƒº5úö» a_Ý -endstream -endobj -143 0 obj -<< -/F1 10 0 R -/F9 41 0 R -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F10 52 0 R -/F6 25 0 R -/F12 62 0 R -/F11 59 0 R -/F13 84 0 R ->> -endobj -141 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 143 0 R ->> -endobj -146 0 obj -<< -/Filter[/FlateDecode] -/Length 2353 ->> -stream -xÚíYsã¶ù½¿‚} -9‰âwӇfÛd’ÝÉd&îSwh™Ñjªc«#ÙÍC{ñ - $˖-Åz±Lâ#Žï¾È$GyžŒóómòõ՗ßÐcTðäêׄæH©d ’$¹úÇÏ鏑iµÈ”ðt>š³_®¾ÿòÞ>Â,É ôÇ×Ù ‘~²P¬…"Qõ–ÕÿÂþ¬@©-Ý·áQá ~íŠt9¶¿ïK€NJ¡œ'ÂþF¼¥8RõRwvç‰D…„ArŒdaÞ{(/’fü: q…8£Ê?‰Þ&uP×Y6 R¦ ¦"y‹²èV‹çØ*!éçÁTª'¶ÕMþ”HÉz”¬¡gÕgúW"FŸ’A>Æd‰8 ‡ç̑hιukÂEp}:æá?Áüaâ! f0+´3Ìnô ¬« 0õeòC°¶E௽…áä‰q@Q¼•:d+uÄyQ‡÷Q§×`†rö5ûŠMöŇèË]ì‹÷åސ: -<qøñ‰C·‡Ľ]O…ªÆŒ„´PN5þOÌLÜ<ÌLÈÈÄEÌðƒŒÄIƒwÑ—6ü1l½ðîɛˆ›‡™ˆÃ˜÷$œ^Ñ¿ (+äOh)Ê%U×Öó¸Õ6&œAG¡¢Ø:9–£ü`Wc§éjÆ<£:m✐…zÙAxÄ&Š#)žÒ ÞÆ¿#µ# -?S=ö}¢$Òá–ùS¦NKe7ÏXî9Ñ©ežÖÜWÁQ”Ÿš‚ëq¼n#¹nq‰>Ýø1¦›Cî…[êã§èøþg½õ­ßv(ßÎ{ôpÞûSÙåmfg¯ -õ•Ž¤°€§t¶Ö/õ$$Â:MhaK ^[~qØ.ÛÅa;³xù$ë&—x9–ÒÝrºW¦QåŸW=m9„0Díý0©V%ò²’Éï ӋÀç^ÜÜÓö†&.LZ²…$n€ZH½õdö!Í R!&;«»íê__%LA/ç€kæ.lÉ仉=øªš/ª©Ã²­¡/L%ž*@Âä³jY®Vsë—³r2Íëú¼›ò*SyÚNËSª8ä¸Ç5i¬?!Ðp{ºÊ -Ö<È(ÑrŠ|’>ƒöLB‡“¶WI¡DS -}6¾š”‘~a>Ù°}Ü ö¢S4kr¦ñ`@ Í-ïÃÎ)ýƛ(cÁS@{âqH uº"˼úßm°Ó¢=#³€O•´‘ç1ÃçQog¤FÂzVº]®‡+ÒaÆ5_-!v$¹V‚~ÉxkWklè›ésÜa¯£ïØÒÇ4À›Çõ¦@Ù@(•þ=#,Ւ¤<™/àÜ!‰´8?˜Dj;…T?¨Ç¥Z9HÜĈÒJÄ6OߔëáûOp¯h(â­ ´Xy£‘*ëÆ5¶Y§î{ßH¶ò>Êۆª›íOzFŒža‰½Æ ›W™—•E’ûYÎ's÷_e1i®s¶é(VM÷ƒ$¾4œ'rI‹Ü^‡¢¹Þù¬áŒ„ò­Ì Ð#sóçWÔã0 úaY÷æýkVZšŒµ0֞PÃu¦QèL3ԙN«»q¹*§­15p‹ƒÞUÓ©›M['¥%_2‘¾û¬œ¬\æ€ -ÈøÄ´–˜Ès›6s ù4¸aì/ËqúaQ «;oi=8q+ê¯Mæ åH¢´Æ®—^#ž]dZÙaÍqæŽ3/·¢`Ú[a­'&ÿ:ëq•¦-²¹¦ -ñˆû÷¥çýØëƒÆÎ\‡NR»®»nօvLíOÀ‡×„`‚Œ#@ÝþÿòÄÎL -endstream -endobj -147 0 obj -<< -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F10 52 0 R -/F11 59 0 R -/F13 84 0 R -/F12 62 0 R -/F15 118 0 R -/F16 121 0 R -/F6 25 0 R -/F1 10 0 R -/F9 41 0 R ->> -endobj -145 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 147 0 R ->> -endobj -150 0 obj -<< -/Filter[/FlateDecode] -/Length 3004 ->> -stream -xÚí[[Û¸~ï¯pŸ"#1W¼“(¶À6éXA‹MŸš¦Ple*¬-O|™NòÐßÞsHJ¢,JÏ%»‹.ddñvîç#y4ËIžÏ®fîÏ_fzûÍ÷|F)±rööãL"øl¡ ÑlööÕ?²ïnæLge½ÚÎœ‹l»+üÃr[ïüs 2[b¿—¾±.×þaWªåvú¼Ëæÿ|ûÃ7ßËnA–+’ÛYî{9_PýÁw]'ʉa¡Ï¿Shbuh•„‰ÐøÞ7òäÈwsOð:p°:–žæMyØUÀœBæN—¶”ä&Ì°ò­4÷ÓB«ÂÆ%&0wº<<ÐYӜ˜œP;5·íæ~=˜{Á #—gD ש%ÈV®³]µ¿ž/Pµ‡Cu3—"+6e:lz¬ŠE”bDŸ&¬UhtÜÌhN¬˜qB¥{ùßÁ„ Fr´6=’sÊ0ç~[o=iå§#Ò̳bh®°AeŸŽ…·ÔÜ ‡0¿†¢ò¯÷Çmxªê…£rA•& ¬ž -"<‡rçe²^W/@L–eKÅ Z4˜=>ÊÌ p‹?À|sêÎ÷XU›-PQìJÿ»±#øÁ“ÞÚbêÞÀ§¼AMyƒì{ÃØHŠJ˜tæ()¢íˆQk4̶݊I½cJ΅¢Yཋ (–}¹©ÞѶ^%Н(ãU¬w³)w{Ô-ˆ°ªý߄a`뒯“Â{´H26rBv,’ÝÐi*?’ sDC)X€€±¾Û_wÛk4èl»¯¾TÛ$,8Í8‘Ÿýù­‹ò6‚àÄ¢t¹ÄÉp–«¢ÞØâœ4<ßÃWÞÌ·@ÊSú ‘YÝ&˜’‘HêÁ"`¼gN®ƒÓqÐé/žC„õŸSô qýŸôK¢Ï‘/ΑßÌ^ÕÃÅ1¦ ‰±M ó…·únÎ …Øl½ÝÍáÏ0ˆ E$ŸTªl…rÊ.¤¤¡÷å-uÇïçÉÐÁ´ñ#³!W€üOX­Ëï=p.öCÕB*bã¶i;増–ûLÖæå!ŠÐNìŽt Yõ}r.Á!Ý{^{»& ьí†ý½†Ì"Œ†`w½®–EãÎh™>€2  Â(˜ÂßÍMU@z’!"âH̀Øt:3µ–{G´’ N²•JÂQ‘fo] Ô)Ÿ3$çäDg@DRc=äAvq9àÒÞº ê<N]ÒGl¯êjˆtTFcq²†ˆaáØP”0Û -|$(´†×{–ÃÔʵþÍYŠÎ€‡ XçÙöúÚ¡-hX¨Û¯Ω«b“°* 3žWÉTΓQ„|$­pȀÓ9ËrdÏ$’ƒ -8K÷Yœó8tŸÎaˆlHü£g -¼‚¢b,¼8 ²¹nºç˜¤ó:U‰ GÁö'œ¿/o†& ™L÷MRõM²±7C&`‘Ðz(֕Çn݆‘Å„¿’dÀ{îêaäÈI+G¦ó¡™Â6ˆR° -ø±À®˜º>›â6喺áòã`Ù¥œUÂÊÛMîS…H&æ\’‰Áçm -|;˜FĦÖÍò>•[ñ½@Ÿ¢2Jª?%€bï<%‚ô棿_æìNRL5z©‡³xt4)EfŸXŒìŒåÃŨ.3Ƨæ_Žð?©&ñ@2ù£[»Hªé -#ŸI£›UÄæ¦AD´Ié€QÍì?3͸!g‚áÙfƵp(:¼XÏ~<…í؆`Ç# !Ðàx˜‡5Hiý¬ÜWûCY)<(XUT UU¥Ðî˜"J.:~™"ºéZî÷þ´òÁÒ-£³«b°Juh((Ö¾ííÜЬÜîÊMh/õO%B­³º8wź9큝Xx”úڃ/ìO ν~VÔsÖýëöð†ÓäÉüÏ郶ºý½",¤³ÒÿIupþv¦n™pÆO«ÀõËâè35þ÷ٷ҇¡;ˆ¬ð¢Ãœáæӝµ™ðH&KÓb"‚Ç"{ã€X^ÆÑC4°We-e_†é¥0A`ÞA¼÷©m¬¸S›ŒRÄÑlrr:ÍàVXĶÎÊèÉFöÆ]££ë÷_Êry5@ØÈFweÔa§T%¤ª_²¦Ô£hŠ=š;%ºbO§š³^DŸV7²¯9æEã¦Ë —¿™îy ¦ÇE fǀ˜ð77sÜ ç^d¼y‘bí€já>ĸ¢Í^Ø+:Võj¸¸vwiLàÙ×KiŸñAþדG| îgÎÊÝÑÐûÔ¹bÿ/YyÁ˞•d.8<hÇv0û>ÚQ¿ªh6ìu*Ø '¿Yï»ùóÄÁgž»}†É¯bRÊqUú§ú×­*~p9 ÿ/IœØ鳪Á•EiÒ15ÓpøÈƾ7`|f£TlÁJ ñ¥PÏS4äzš È4"ƒåÂ]ú“Ñ ¸œ5I ÃK%QÂ4ÚÞ8%í€SJ𨽣åÛTÝ!B•/§H܁#°°È6·àþz`ëevÅþ°í^¹‡þé ‰8uHŒ’\¶sn¢9ÞÏ"«]Oæ(–ZyÌÆtû"Õ´Óïé^Ä= ÞæÆ«7/ÚÕQt(E¼Üî¶ëu±«q-ðHKŽÖr0EdøH-멛±\g-±(×YŠ -Od0hP,Î`þEª§E|÷t/¹®[½yÑ®žÎuÒ_•œæ:É5æ:5žë,æŠx8äºáu튄î{Û~ÿŠ>0”¶<çè º —˜ý–ŠËý>Ôuixã²b¹÷-õ¡ôýSµ€Rt÷=Ãä AÉv…~Ñj˜myw²1´@nF'ÑmVÎ$.1£È8\çà—Ý…H²<‘Ê‹ -ûNöSí­ìþx¨ëŽžîx÷ݓ€í.}]PreGîOƒ$Ì’â1X~.É:–{Uˆù¬:ÌWk;®ŠP\†÷ÄånӔ4¢$nŠuxºv>° ¥ß°5·½:PçE® 4åEØ°*Ýûoˆ| “¾›Þ­°6|"`ÐïðþR`%ñF¾æ "–dä~PG_ªÃÑ]¤b[{Ë û®¸°zVkß%™ø·¾Â4|‚Zv,×ßãÄË]¹_4u·¨ÄHÜËî;™kEàÁÉþšTHÕ SØWüˆç¥÷çÎtæžÓV(‡ ö%Ç=û/ã« }‡kÒ×w8÷õ¬ÖÛÚ+ßY«¡½:dì.#Üs±Ay}¨®ŽÕÁ÷3!£ã0Tbdfu¹^?ó¦v¬—•ÿ òÃÊ};†Õ­™‡/!ú¥¬Š:ÿr~•€áª;„¸M–@é{§h¢T‡Ã4`YæËr]}¤Eá_Ý|Š\y®ÿ±^ãwzC™@:ШžÎí]˧ïSÅ(FªODoǯ–¢oA~?«:'ͽœ‚ìF.Ôðó?¼KÖª×ãžÊº^ÒS'á<(ù„® -ØLwóÇÙÚ`¶ù5?ùº0È ·¨š|l£Æ`eþ¶8ᆉô~÷?­~Åì -endstream -endobj -151 0 obj -<< -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F10 52 0 R -/F1 10 0 R -/F9 41 0 R -/F6 25 0 R -/F11 59 0 R -/F13 84 0 R ->> -endobj -149 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 151 0 R ->> -endobj -154 0 obj -<< -/Filter[/FlateDecode] -/Length 3237 ->> -stream -xÚÍZY¯ÛÆ~ï¯Pýb -½b8ûÐFgA £H㋠h”¼­2 È.Ní‡þöž3 94Gòµã y‘ÈÙç¬ß9‡›,ͲÍicþ¾Þ|~ûÉWlCHš‹ÍíË ×)g›Ô©¢›Û/¾O¾«å«-UIÙõÅÍv'˜Húñþ~»ƒ¶¶©Šs»ýáöoŸ|%æE©›Ì,ð_ÛìAXÊ´ëýÔö’l£Ò\aož’ÍŽ¤Út?_O¦ižo|?œd½{žJ²ÜœçHðàH‰U¬cÙ¹Ã|Óµ¨X:iûêÍL–½ß‚0j¡’o¬2º֖Ì4“xCfa¿Ýj¸cەgCo‹†ú›Ñ÷b‘$ÍÞÍ•_g‚ë·\и dÀ‘m*/2…PPyõN®¸3<[QÉ™ºŸ¢“‰5pe7 î>´†vÄm‚M@I(دªn€IÒ^N‘ŒÛƒEŽeg4Oíù¾.‡òÍ׀Çÿåy–j«g Ã -ζÒQ–jêÆü{µ„¡@æ®õöT‘Ro`~ŒÍ”ÓLc>Öt…ÁŒ½ƒ°Y2ÿÆ^¶ì«~(×äÜî׫ãæ©?-]“ -NÂ'JEü ñ—Šºt¬0Ú=û5¢´¸ñšõ¥6‰KÚä8ó:fg&1ì°½l×EÊ|o–:aW¹eõ$ì/ÊÓ¸¦{ùPÚ]ôˆ¿!íد§ÆU.ÒîÈfŸÈ$‡k€ýBôo,±Ö­7¾õ6cž—çsaYÊ5I|.ퟃZÕZêµD°vfe©b×`YsC,¦³€^¯cësO(o-í‰ëÇcSªÁZy'…#À…zÀ4‚U’ÔÕ¹ÐÂ[óƒÐz¬ŒTœ%Ϗ§±8ÕUѼYc3ÊiªÈeÚÐ4“ƒ Ï"î&dòâQ ¢“”]õj+xRØ{ ã ð6ó%wΉk…êgº=·œ[}üòÐ;ßü²á°U†R/@iÕæ<7p•rµ©7/‚‘ÔuH;R§TM ‘‘°&YŒ´ áH›„»»†y÷Ïo}HA”ÆQFؐ€Cm?t£g04ÿcƒÿ(ûò|_µ¶q¿?´Í¡+‡ö‘m˜•‰{Pÿ .êž_¡ë†Àw¸Aª“æWOq¢Ð¢¨©.Š1pµîÏq‰ ™~0@_•çÒx³ÌÊ0Ž<ÜbD[ǍÏË;«=Ì͉?ÔﱧB5E}.-Ò(í&*Ca™ž…‚ñ¸P-Œ¾±ISIrPœ¾ì¬à5G?f†QÌa@ö`fä†Â¾Ëc;½8ì³8ÉÏcÙæÎ<éK/®~ŠzèZÛÞ´ ²j û N„£ F‚‰§²)»¢®#Ëyï,ß¿øà&†WYç#ý!|}968¨Â7™œ«~슻ªvïåюª7Ns§i4ƒ¾ÏÖ`ÆÛhkƒ©G(ä»Xa׺/º¡êJû‚öÁ=.‰šPƒQu¦‚Ü%úÜá„ÃyUÓ;Éa—ïL p´¢8¹¯ ýJ•¥Ú«Y´ -ü³ÚÚå@ ËÉêÌÚ “ÓÌf^àzµ¹±Bi_ѹá¿U¸ºµopjw.‡ÚlK ùjãv,µ¾…°'|ù _ßøòkÀWEï[ÎÁ\ÃË<Œ3÷/êjº|ÈC.,ÖçXS`a¢ k>F9DÛâ´¹®[k#"ˆy–?L9;BfR'nÏÚý·Þºî.Øhí³˜yºâŠHòÑ⑥ÃöX£o›Ög¦—à cÕ@+îGK½Ñ™WeÍ+ˆû¼j–RºD¯, ?¤?ÝÂ~ùîô£‹+d(áN#÷.ÊSVõT z7Áœ¦í΅Gœ!êUÀ°TÉ g3È:{j~ 1,õr}ZYÍa´‘k¥’'œ¢EìRëÏÿå†Ð04„¡;xy³ ñ£Ós‘Wò¸ŒäjGü´1fÕ{‰§ãSNbabîIqZM°ûÕmŸÌÖpA=á:8L(Óà,#&Ä ©PZQ(0W֗[á\tHúä³NÜ Ùcç<žœÑ(铡T %ÿ % Êä˜íÁk+ðÚÕ݈ nÛÚÖґơ§6@Gk"Ðo禍± Üë‡~LƒV,Z€z=Á½ÊŠˆ·¼Y™æì¡ûû}Lë7=ÂDßÚGuàñ gâ<˜ÈcÚ>í!@À'9ûÞ¦½±7Ìyš-½ÉM™MgY£ý93¶KåAB°²Ã¼Ì-äIϜŸÕŒÄÕ¬‰ƒ«·Âë ôâ/sº©ú~Aø2 DXÐ)}çߣáð\8pö÷#K}Éÿp§_T ×è仕wfÁ-h>¸MěNᩃÏ@ #rÀs_Jûæ󝷜† 8?+\¹ôjiô[÷ *”`loð”ÒÉ:º',0jM„Xù\Ö@ ñØ_›#8d¼«ÝÙ^Kgi®Á¸k°ÿ·Úig»iD L«v«/!¶Ä* lÎî~Ã;lf’ƒ9>"² æˆ@·gëÝ8¨1gd°ëÔ¬óG¹œO „?›IM¿ÒüâU|3L$ËM’€Ì@}(Õ{ȳ¡Àœé=|À"¹NÉn±øÂßÊç²yÔ³ævMñr®Z¯Îâ~{s39O±òÌ’žâ:=Ù“s&ÆÕháéjÓ Î%‘ DѐơÁa9V&œÁaZOæÇœÅé© ¨“1ã“fA 8«s"WÍÆ_"Ñ•) +)æ›^Ž‹¸V5z?)2™ü<CÙ5æMÇôWesò÷Ì­eƒm¦ØöšûzHľÅ뫤«ú± -ûrFP4—o(…Ѷ`³Òcçhçûçd›„8Äy]ptj¸$\$·a&qpЗw.{mòç,c&ˆil¤ai®0 Ûڧʵ|Öu… -¾|[Z8‡ýµïÜ>²kmsD XFS-ß«nÜýš«@…)T»Zצÿ`ÀÀ†ÜðÈK³TèenöB¹·_lù‘+ûWâvŠÁf»§š&÷]y¨ú"¨Z`«a®faÖÞ|rƒä¨æIߞÏ>½ûÄg;]ÖÝl> -$e/a Ye$‘?—xßõ‰Ï³h˜9Gj&¦ÊVIAÐÍýþeÛ å£ÔÖÿ1“à„¢¶ÿ%ÁæˆDaF^ztð<ªo;ÒßDžÔµ/E®| 'Ÿj±l©P\†ñÎW¡"ž‚|DWFXc]Ô¤Š”-ºØ~Ò2lžµ ßÂ4¥hU± Šôa -ôÓÂʸ=ʜèN6¿É‰¿h+ðÊaîý?]#b6ēň·Ähicáú1#±®e­‹+m¹Ô‡)rŎ>Å|‘0æ+µù ·ÿìîÎ×cMÚd‡ÆòXùg+Ûa* Èø*ò]pÓö‡jZ; Ž³=U…`‹ÙЁ¦LÛ.¦úMÛ¹­ËUm{ªÔšâ G›ÝÔyò⾂õ`…$åaYùƖX ` ¶r}.ºƒ-•C_íþ1-$P½yãZ -ûçN¼ªÉžªñˆ™MKãUqIJ ¯NËœ»q¬)ñYwüº€j 4Ә×,yfQ‹&°gðU -ì—'ý}UžLæû›{ÅÇ©œMm نD†ÿãüIÀ öÛìŽÛï{“ÕzS<²«àçñ ŸhÎß h÷̀öß 0‡´EîÜå‹ ~JؼìZ'ÐO°ÖK.È1À¥i–Ï2Ã#š‹Çmw¬·Ç«Þ”€H3PMš#n7‘ƒpÿÓÿ•.© -endstream -endobj -155 0 obj -<< -/F3 16 0 R -/F5 22 0 R -/F10 52 0 R -/F4 19 0 R -/F14 95 0 R -/F12 62 0 R -/F1 10 0 R -/F11 59 0 R -/F13 84 0 R ->> -endobj -153 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 155 0 R ->> -endobj -158 0 obj -<< -/Filter[/FlateDecode] -/Length 2664 ->> -stream -xÚåXKÜƾçWL|ñ´É~‘”‰ „ pöæ±îL\ñ±òÛS&Ù#rVgeÈe†ýîªúªê«ÞÄ"Ž7§ ý}¿ùóÍ7oÔ&IDn67w‹,Ûìl&R¹¹yýcthê­L£üqíÉÕŠíNÅiT» -?²¨su×àg]UÜ»‡þs¹ÛoÏ®oËC!¶;-óèmÁ3ë¦ë[?>ú¾øP6µûz•5¼ -8ÝF}³ýéæo›x³K´Ðš.Ö=”Õp_ô°‹L2¼Oõ¢8ãôÛPçѕüѺ¾<4µr¾_¬„#¥N@ÎSU:ž|.N§²iώ÷½Õ ×u$pCw9¢.t’D7Û,‰\ÓºsÁ^#øù]CÛ]j^7ç²&9°…²kÐA ;´ãîŠÍŸKwt<î×ðÜý´9ô»¥–ú¡-¾"ÝÛèOd0É&µ¨ö¶lP㱍N¨,ÚS3 -N] ƒúç}Ù÷®í¸µ÷V’ÑíÐÔv`ÖÂCŠ®èýân@E,ï7ÛMŸòa í7¨IÐcE§ÀÀéOû-ªhP8<Ô<ö°5**ºÞw€8¢áÁL0àÆ>:¸¶/HØ­¼¸\í`rÔ(ÐØ耀¶ÃV‘]åM ¶¨·Ðø/J¢S;A\gˆ1žS75oCþ„=‡¢kø«óÊËî¥IÍ~ ƵRGEãæqt?°8(d–³:±»h{ï»AïhQ¼SlÀ w` ô•æp€5[meäxÑûÄix!m}:öû@Îä\:ÉÝ®¨Nîðør»3àrÙNêîQ5¸ã¸sýPºî­7÷ ï—ì#<à›7f]R%Â8ûa»K£W‚@!§šbç×¼sõ¢A0Ã¡Þ VL¢?.„ù4N؄XËêSŽ…Þ±?4gHåmY¹¯Ðáµ>(G%&¢ ‰×ån0ÐLjHR)äxèÛåL“£Zώ÷™à Gp8Ó gŽ_&rÓyÔüµî†Uƒáƒ„J22k CW´;f澤¿¡á^ -ËÏNˆàH¶æ…¦¥ˆÍ&Vy_Y…ónš è>¹²°Ñ™Ð -ð*Sa2V &`0EçàFGJô‰ŠþŽ±A0ԇ’B°´1§J Q¥Ó$®EUàÿ[wË!¯; ™¯X¥`î¿9Ý·Þ}¸ ƒ e{T‰òùKÉ0Ú)¥8òbÿ¥(‚ŠÖµåkËÐETÌpԔF?bF*ñÌfŒÌ>)4í±¬Wò p%’ßøtH‚çސ~ÿ†:ÓQ)×6S°÷«yì8–,ˆÞõåÌb`NÝ ÆÊq˜ÿ×D!Lä34Vä£wòº÷<‡­E­Št žèÝ·Üº"`ZH-GúWó|ѹ‹‡ v–ø­ß…Óƒ_ÜÂH$ÄSR÷~(h0œOô%ï4's"± $¾zD]4äš%F˜h!v”粇¸B‰×˜„í¤XÇ ‚üÓlßçíВ±¢#8®$¼Ð ãw `§6mï»öh ªpí -ˆ^;duD× „ÛXÈ1R}ûíZhó’˜œ@"í¼o“Žn õŠs«$gpâàÁñăqD e)$„uÞÝ«;øƒŠ‘î ææ2­u՘ 5„càH—i0™™3DºS‹|ŒæeíM SˤþÏ Izl¸é“ ½ìû8dl¢¹q†¯2#Ðj¦Ã¨Ô ò6•Eo_”gΌ`èb¤¢@ ôìá>ú§àš Æ*šcØÓ±ãÒÓ±gÔZé'\ÓÚG¬rT[s@½bÜA®ËiÎw+Ä  6?J®ì¯‚í—iÎ7óþ¥C$Hð½ oGqŠ1ŒÎ‚'Œe&~_”ر²Üúµ¾~àŠúЌ«‰µáù 07V‹$»+ØŽ=”COÅU¦ájT]¥—6I›@K }Lª}Y3àú®ï/d* ‰Îo1øՄ­eX`´!¬~v »iàu™·ÌqEíù8ÈñF’t£DÂhþ÷b¿ aœ±Üӊ8›Í+¦,Eš .•yv™“¥‰€ t§:7%Ubœ½Ð‰ü E`ø“¾˜B¢JÓe1Î@˜Wù+ÞH ³E¯ºæ&ça‹ä£b¨u¨Ž\ å7̳˜#­=¨h™‰,a÷Á`a)÷aÄ>ÊζŠÃ$(µ(Öb_çÆÐgú?²[ß?e@ÜØϙŸ<°Å¸&üù{Rà¢Ló¤ECdÄðϝ>e÷¾I7ÊЁN”:˜=Æ¥e?@x'(c×2Ε<àº÷å´Ý ø¼Ý`B?ö¥·!~ä8Ôï‰Gj)£±+–VØàR;§"¾QBH²ÞãÈõ²Õ÷ù -ÙÀ‚#ë̎ù̬¤JBTë²YŠŠÿŒ½ ì6ã.#ÜmuMviF~&9£E2%9N(õ‘A¦Àî\"²‚òÇ굒:Q¹0z.©³+%µy¬¤¶•Ô沤¾VŒïÍ{™&kÌEfAéíËÁk—ÀTÑ'.ýrq–R"›¤\©§"/|Ñ2¦ÒMK|´CŠèhü¤½CÓ7¯ÐÛrJØØçÑÇIàc…H&N?ÃûÖÿ£ Kñ3a’Kñõ…‚µZ”åæ’;ªëËxü~¥¾2¹®y¨G™° MWÞÄֈ$¿x_º(Ÿ/Ž1q”!]}ÃPöª~ì¼zU?J^ -hCg2½. œÝ«óu¹;®^0³ùZ£kð( ‰Yy[ºž™eQñ¤tX× Q9ÕËW ™ØY±…÷®[ú‡ºr‰Ê|vb¹4a2¿,%„êÐ $X¦Bq,LD˜*ÍE’€Ó-‘Æ_µU:ß}%di|ð’-$É&7_:WB!ãbåoItP a%þÇ¥^ãY¿ìêöK_à)º{÷¿è€zp_I~„¬OÁÂB¬°_·‹Cuøî‹VÉÖ­¢žÅ(·‹›§óåÖ¯.³Š¹´ÊÇ)Q~!$ÉÇԝýŠN𨾟à ¤Âwr_€|ÂòDاúÀŠl¹H’G̒æÏâK¥M9þñ‹ˆÕ³Ük~‚Fž#ïž#ÀÅ™ âþD¼±H¥œ«ÖeûBÉå‘h£ñQ÷‘t-'ÿ&HÞeû‹–|Zj™écN1nF²ù’u,ôo=Jýa¹EÌúebŸv•«º³ÏI¯iÀÃÒ¡âÅ K%õ üÝïˤ -endstream -endobj -159 0 obj -<< -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F1 10 0 R -/F14 95 0 R -/F9 41 0 R -/F10 52 0 R -/F6 25 0 R ->> -endobj -157 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 159 0 R ->> -endobj -162 0 obj -<< -/Filter[/FlateDecode] -/Length 2507 ->> -stream -xÚí[Ýoã¸ï_aôådôĊßÔ.¶í^‹+Å¡—·¦»ÐÚÚ¬ÙÊÚJ®¸¿¾’²¨ˆ’eGJZܽĊø9ÃùøÍp´JP’¬îVæço«?ßüñ¯t…1JùêæóŠq„Õ* -I²ºyÿ¯H õ¿oþ¾úîÆôämO‘ Lýž·DbèۙO¢„­ÛÙVo†8w­™mdm£Bʵ}ìM‹$è¤y?õæ•íн‘01q­›Þ²Ü£f}»îM bÍè["dzÒN¿8¿ÈúÔ[”¡TÈzÛL)Z~Ï‚gL®?c6‰Ï=c™ÏŸáŸ‹_ם±§Ó+¦Ózœ -„±iþ~S"¢c~÷ï×ú©.à >gµ}Ñ6?kN£l_ÙÆb·Ë·EVg;7(w=³»Ò ʎǢڹò2ßo2;ŸŒŽÕý!{c7ÛMÇX7bÂ3{û!ßí²uÌQÄeÇ6¥+ô“Äz8I·Tý˜ôRRD՚¥Ñݾè3^!,ο]ÇXˆè“ù•Ñæmï((Fªá(é†×úOÛêïOoÞ5ŠãCYg}¥(% IQŠ:fZ•¸Z픓ÏÓÄW¨E 5­ËY©´úñr²N~jݓ½j3­cNÒèýCVÆFªcÊD¤b-üÜôѪUçßöEE!Î^É@Ïà„_Å@¿˜C»Ž¬¤ð“¤ñÀ‚ˆÖ6þxXóD›7øó¹c½U„ƒcž"*¬ur(f‚DÅÞy&°¦=»¿/‹M¶ßVßêW©ˆî×±¶Ö`J¡÷1ßA{Qk…äk¦Ò(3ýX´«Êº²noËâ“Ö:‡ßÛ%ÊÌɺy0¢n‰¹?hPäÞÌÖÍhR™É6Ú×8d[¶yYf71^ÜÌ>/íÃ΃^•íµ©ŽõᡆY¸7‹óO‡<+‹æ ¼C$šDs] šþZ5N3RFïú¬aH±9]–/·{ÚB¢?ô©P(³l ˆŸä¤ ÈY,Ë$ûÐ9ÝÖ¢1‚#)Ÿ“3 ÄS!šðs‰ºˆÛ]¢Ò¢ÏÅ¢´a-Œi¬1•ìg3Q]eä]ÀW*#»^Õ ZƒI°îUw4ò]ÏÑ4ý¸T¥_ D“Õ‘“ºB;Aª2“¿)ãoÊø¿«ŒÏõŒóéâËÐôêàn -†º -n,wZ×ÄÙ:Žb(Ig7~„Ûô×l4^Ê,³÷pˆ™ ’þ?¤n‹¾ÈÊвŀ!à×$º¿ÉÊúPÙ\Ä&;º§£ËNԇ¬®]¶£Øw3.½‘í³²º«N‰ ±ÕÏ+¦×Løi©÷"?^®~òzӀáJz*“t/B=ݞæ…ßS4ä­Þ¼8­¬Á=ÖЄ"¢ü;*ܨ±;Ì:#íKGîLvçÉ@ßò¥@ÖHêÿ$£ÁÔ?Vgrÿ1&Æ<½d–iÀpžó•#7m–ž†s¯;-¹Ö6›þÜÛ÷æü(zš -» ¡àúš¸Ö:= E?e‹7ôÎÚÆ w‰~hüÖ.ûOoÝ.Õ{勤ïαW ³Wn@\)µcìåaö^'€b™¼å­ð½OÇŔ*à)šË/((‘öÎXû ÂÓè±8ÔÆ ™¼=Ç"z€ywÛÃYox„\ûn ~¿ôm!æ|ɌLÉ*¿8æí•s?ͨ<“pù¼|о{óžÏ2^Uâ²TùƒGÖNjÉêDxZØò­ýÍö¸ú’j6ëÝK-yRy¾ Ùº\´¡øh-}þÄáZ:M-Ã2èE_áZ¼ ÃƋØTs³ôa 𤽟T(VÀ4úKqºž… ƒƒuhâž$->¼ -€Ìcé óà;Œ \ÇT¤ˆâù Òb÷SZBeÑ÷¥ Fù±î„°2z\›’-B\nÜmý!»+ª=ÔØÿÛr±}ÈJ¿Ö` ´¥ŠÁŽÚЖJcÅû+4î¬îE §žSvzÚýÐÖ[ݽhW‡¶,IAãoïsàƾøEs!?…¸é`ˆK©©Áõfø©€Š¼^…iÕn™°6m˘˜ÆŽï‹M‘íŒQH¢MÀµJÑ&¡BvŠ5¢'g‰ky‚ì‰|¦ ¦fÒcÀ×c©u -û1÷6`E’‰ˆ¬Ëd߆(¼ébÎ7/@Ï×tñ×Uñ%jž=}˜5z’mçŸBîà$nIÀ™©`Ú/íAÀ;™ð«Ú[½aŒEž*뤪úâª4ÚPúáĬ€šhVÒA5Á^¸óU[ÜÊD„}–3í I7²ìœeËÖ ÅÓßüEÚß'küœ;¶ádM©›Pšçšñ_ŠÇ¬„²ËÚK¬Ù%+Ó+bÇ­<{'Ë8 VŠSø"hâYõê.'seÍÙ\7ë g&Æâi¨db(SãŠûybÒëÐó¤j´|­¡!B#©Òþ>³²}ö¶¦7Õ~Ûàè»-š1€øîmI›!v¨î’Ýß -Ü)k HßÕ¦-[ÍÇM¨†t‰Ý:È·!$U6ñ¥¥¹-è„f‘×M­¨!Pº¯xô°oJFó]ïòúPl2ƒ]yôCX5u;° -‘Ùª“Þ2e©@·^E™ž_EuÑùÄBã™TŸ‚†ªÑ3=ޖñz(¤û¡á;¸µ“ÑçlS”¹}֜?ÖYmy ÿŸx¬  À.3{:=s*ië‰ÆìiL’¤a‰Üb™eWPI~<–L»¼ëu„¯? ï4›¨¾ÿú; -Smªü#ÛÀ”_Ü 45»-†Ï°4ífg§Òßܝái¨÷%IâJ?Aٍ²E2Œ²¹IwrøÔ ¡lÖ^í £l¢=FÙ>§DÙmü®…TÊ´ÚL„¶¢ÞVÈ×6Z&™Þú¯ V`jSëÁBLZû27¯Æ|¦ñ8‰QZ< `Í ÜSJ_vsC=T`.C HT륟 Ä;#éìñ‘çmÀjŠE9Er÷€‰ªþµ)ÃdJ4wö£È`ØƟˆëHåK P?ºëÉp³÷5Ç ç‰ùÎ0¶šÿÇc~xtÿ4¶ôéî´­RxÎépUâöDÌ6Üϱ‚+ÌSKœ{‘ïÌ8S³†ï;»g.ò¦ßAº°|¥É$¾ -¹Ø‡o¢µ¡ûÂ_›­“±sÀÇ Îñ? ªîµK´†µ8Øb¦‘ÑjJí(O±á²q 6xBfBx±áI jE,’ìèY-rÕKu×0mÛo*óv[4oŒáοÚm¡¯bóm¥6ùˆZJ¤£÷wÿ¢Ë3 -endstream -endobj -163 0 obj -<< -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F1 10 0 R -/F9 41 0 R ->> -endobj -161 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 163 0 R ->> -endobj -166 0 obj -<< -/Filter[/FlateDecode] -/Length 2353 ->> -stream -xÚí[[oëÆ~ï¯úR -­6Üû²Aš&)Z¤@ø­n -‰>&@‰Iç×wö"ré%)Z¢l /–¼÷™ýæÛÑ*Fq¼ú¸2_}s÷Õ÷É -c”ðÕÝÊÆH©ÕF($ÉêîÛG?VkG¥ùó€Öÿ¹ûçê»;Ӌv½„Dû½þö˜§UºÏk"¢&Óݾúžy"«Ø4½'BÚzo@ø¢¼|͉²õ†PU9”ÄY]çŸÖœF)ZoXÌ£•uSåé¾Ô­T´Õ3?†3c*¾pn5Uz¨óFÏÌڙÎÓCi‡áÝ0 G2qäÁ2ÄD°¯7&Hœñ!Xâ†*ªØ`†3²p÷ð¦ñ's§ßÓs3W©E@Yô£–vV­7>sûñC¶ß»¯q©¿I-GW ì·:·i°jT‘pD©[©ÄÁZd·–û(‚!ÎGÏ@!åê~ ÏÀý:W"%[áÊxR¸ç÷4°«îd_sSÏ8ÔV†Õ ¼!RF † ±¯’7>h:¼ôéq·2‘Kˆd\(œè³Þ`‰Ø‚6à{n„™6„D ÷¢P"9›sÊ1 uí¼ ‡ 3_¦ƯVšÿ.¬4"™Ô:%+ékMp·­&g<^ÒÈúšÄ{š„G4I¼•&ákU‰-¥JïÜuŽžêD×?@C(1LjX¤ò]]g‡†i2‰Š>Uíòúøñ˜~,K}¡¦r£ã‹£ @-YœY·öë ê:Û?U™÷'‹×R[s¥‡mY¹£x҅ÌéÿòÂ~j4g¦DK}|r3…†s÷ë?YD·-Ûâ¸3P<ÔöØGßïÏÝÌÌļãrr,!ÂÅÉRaÅ h‹ë9Lj­þ·bÐnÒ \__û®€K½žbõ³×’¸ŠÄ¶„`C¶-aLÖki ü– -1ٛÝt³k·ƒC·£?I’–UYi•ƒç¡’Î -ҋg_L4º×ý‡5K@à -•þžéç¼û&@?ÿº&,•†›¡(+{Qû‘¿bÐÛ,–sw{ÝÊfô¤‡–è¨ç3«8­‡Ù ì4&¦@wë(lÈ%wR“êlçèí¢ã·S[eèìçûådqòz4À=Õ¹8¿Û1“ßš°z;I¾‡pþÃEAg u2¨³BU·ê,|ƒD9@ Óð‡²h*ž&δF·€§\Âa¿•…S†÷ɑþòå+ø¾`Lq€ƒOLľ\ýÆ$޽ҝ§×G_¿Ä"Gôòç•íqâ9稔_€JϽO^JÅLT:<Æ×ӗ# S·yéXŽ6ÃÄ OÇ[hÜ9B¸A:â€A%Õ +åÑ®` %ŒÉz-mAHx³»‚nöoîVLoÂӅ†RÔø™’è)O·z“”Fuöñ†aÔÿž^ôw@Þ{½«Æ¼™âS:üƒ­Œ pŸ>=…‘.‘žGÞ ÑNñé,k·´ûûZÏ©¢ìóçÜ­i·Ë›|ãÈ&D/´d”!î$œÕ} C9bmÓ&;hŠ“b=¤MSÚò´®óí±JK=msÓDFåaׁiюlªE´Kۑ5[åYc5G¹`vä=Èb z5ámcMr9Ýz8ÆPæëÓ¾ÙJì§+hn†øÁXËéœÁ¦˜"ªu)‘ÚïLSE}·!ŸÛí3ªˆNREb’*’Ϩ"9JM2Eì ý¡žQ¬=ŠB±QŠB3¨ã‰‰ŽŒLœŒNìÝL†e"³Y&:ÁSS<\q×up3ôr)z÷¼£ ¨bHõ,úÛ£±:kq,bá¥èîÛERúzÅ ÿüíðº7¿Þ¼- Ÿž9\°½O-CÎ¥&ÜYø?™xµ”`°ì¬×0pBœrƒ{“»¼(©èfáHNyÕ,†ºæÖëòôu°x6)Õ䳊qŠa“Pó¤Á%·bz؛¨È»ÉŽ8Ï Þ8Iñv²»€oÅ(’ Ÿ{º=]ëŠF¨8…$_.+öÍyßn…»1Ãvžz\À1M¦û_ñ0ðò¤™ùþKÿ:îV‚¤üͼ¿ó~‡LæyørcôpAÆÿñәžš†ñޙw?ÛãÉé‰^ø&µÜXÂsŽ…7ØadNßÖL(ëX¤wª .çù×c~8eÛõi¥‰¤çʯדŠrt‚U -˜z§»S/ôˆCIкBùIЮ` ¥~Êìµ´!SïÍî -ºÙ‡Süc(–>që2¥ù8q‹5Œð{Ž·°‘,$ŸmH:_I†n 2žÛ—t씎âY2±dZx×¾J_÷ Ûë8½«o´ 9÷ÇC’¢—ó†3:OÉ©õ*³R•ÆèñàçÙ81)(àÒ4î1ʬœýîÿ>ˆ€ -endstream -endobj -167 0 obj -<< -/F9 41 0 R -/F3 16 0 R -/F4 19 0 R -/F5 22 0 R -/F1 10 0 R -/F6 25 0 R ->> -endobj -165 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 167 0 R ->> -endobj -170 0 obj -<< -/Filter[/FlateDecode] -/Length 3210 ->> -stream -xÚå\Iä¶¾çWÔQ¸dq'=ðaœÄƒ˜dú–‰ê.M€Z:µL€ùõ梩â"ªw€\ºU×Ç·|ïñQ³ª¬ªÙËLÿûË짇ï3JAfŸg¨*9Ÿ-(/œ=üé_ŇݜTÅVÿù\Îÿýð×ٟt+d[QVà¶úe½n–m}¨P-¾ÿ™8uQ é¬ÒÕ>AL§3VVøô¾ðšã’îmm^bû’—ðôòW¯_ WÌ/ïø4çG¯¥ê˜uoŸ¼aq)úQçŸæód¬øÑëâ’ã«ÈB‡³w·§}ÓøªŠûíËùn·/gNïËykQ‚îõ‚òSÛ_6ÛÕa×|7_ ŠûÏ»ãáPo–[-) (p‰¤d\b¬ë·+Y“âoÍz]«GZ ’põĊ]û\Ï!+¾¶õz믁 ì- -ÐR® $h)hŠ–,“–^ǬDIáa"³ã Ĺ ¬ÄMDç)0÷~vW%>wp¡_2]ã/—ü=Xêñ^,õë=Xj˜d*j—Ün{K (µ -s—po}>2T%žýw†e­ŠÌB.ÌÖýo.Jf«ÙG§4åÂԓʜ~ûõdØ­g~»õx‰™;®ùmÇU xP(õÁôZ:Œ+&u2¥´ã`$ ŸØ áǶÞøú¡œÈT¿›/¥Å“þϊçîÿÒã J~BÐg çí?Í[gf§ý.ç EñїwH­äøòª,¦!”LPybËgô’œ8º è Σ²ÀíËØ°à´¶¥7®œ5éé,Í«„ª«ínŽÅi…Ã=A(º~QV(¥¯8½ÉžÊ@¤&Y«oŠŒ#-~V‘…Ôt¯/ê%–í(™Ð²¡Ud¡eÓ¼ýeS‹íŒœ.(.’ •˜Nv]áJ§éfsH‹f'M•ŒT›ÿvÛW©iy±Ý·ßÚí¦1ÅRMõŠfiþk|'ÿŸð|”•ˆyªŸž‚ÈNªg¥«b Øs!¥²P–l¤ujK±¦Ã="{$Ò¬ ‘Ëš!þb£b5°p.2‡Ö͓ȏÃèºÞ|§6Ëãæ?GŸX¢§¸s“7üU4»×²•;Dhñ²«¿µJT¤*͌ˆ ¢¥+S%ííûM½Ú¾Ôëf£¤ï ý)]'%r]©7Sd!ÁéD5ˆ0' g -_ó)rЍÍÜ¢±Ï%ޝÝ®_WÒã @'â(´7ZvH4XÖ°IɈ eÀ™v.&”âõq0àÚX Ü„jJû:¬© |ÌìŒÞØÑèÊ„]ԌVÍR¨àAËÚÊJœ¶U`íeÓú -RZgx¡}û(JÊS¹m2¤ïÚýqu€FjÙ"ōý8ˍ?†XÃç1=h‹(Ó ½•ÜÝz¥i•^ böì ¢´?ÊýɈÄÈá’G Ó,ç1‰0o§ˆÆv6$‰íLéÂQ›Åx*0vŌOû¢053`aƒ‘ÊG…%DÀDÿ8¶›e«bƒ†¤kˆÏâˆÀT6rÝ¡Ç;¢ˆ ¤å„ø¹$Þ¯V[I -‰¦ö‡f¿ïž¥ó¡¼˜åéUkþ5>Oû ö\›²g‰þJg…°›-b"Šº\£T8‹¥Í3”H]šÔµS 5 ]õ‚Çèv¡šBuåÖÔ¾yvF?ô£GÌ3ƒ*êå›g>jžmˉæ9µ—XåÓ[Í£r_|à ¹5üuiö㇭ºÚÒ]o^§Ì^Íû9F -aX)^›H‚*@¥£¢Í˱1öe½Ò‘ù¨” ­¤Fj¿¶ùH昫H|YËÆÖkVµ‰´øp)y9WhÀ>ý©FÓõ\·¦_%Ý£²æmӐ˜0ër4—RËCr-_`îʵ)ÔDœš¦  ìè]=¬Åd $™åEJ 1hi4…I ÀA@ï=Ü *èÏ‚ªÀFl#ñ3iÔAJ®X}ž«áH\÷O?¸N*šr0&Š€%´)*Á$•DÆb®!Rcâ,*¥<œSÉ9ò}×y« »]ZëպلBQDÒêÎj<˜¾Ò›éÜvhä6†ßÐօ‰„®?Íò©‡ÜF’ÜFÎL¬´­^jbaŠ´ªÙ·ë¦CòÛ×]±]]k»$œ*) X$õ‚SÇ"ušDŸÁ;5Mo»œÑ»;zÄvq â\ÛE´]¬ŠÛ®Jé6·¥±]%m€ÁóYˆþAa“Âp–Çm´AO gå´¾øl¹ídºˆ#’â^À¦È8vy›Ñ¬ŽCqmt¹Ÿ/EÎÃ&K9à.‡8‡ãI)W‡>ˆ{¹g_”ºöær~]úˆO ˜o Ò ÒRx8-ÝÙþ]D[Ô¸jR§‹‹U»R‘wª}³o÷¥ÞEUlâғj×ÛýaWë”C\Ñ¢~5‡(:¤#+´¦ÁÉͽ›#Œ›c -H×zÕ-Ý@ËvÑ!"ªÈâ0èþør¬_Vm½ùÖٜÀ60hó n*ÏåÙǜí ë™ Žý¼õ܎_q¡Æ””Þ¦PoZü_[UàÌ:pâ†o -‡, ®'Fða•æä+°47Á„zAÝDW¨iÒٜš¦À|Îè]= ø0¡Êû2ÚR%Ú ÊI´Á„+ð¢àkåöMÈ£ô ðu;€Ité„ÉÝë)+߄©óE_á,³ïÉëPš<9½ó¼@˜Ó! Å$#$½r<Ô+©õ1 Ås t‘—­;”m‘ O³;kÔþöùÅÀ•w—Ø„XÅN…]xfggkÎÌ´&f& –3±r¾ ˜ïçÒâJÏ!šJ¨2ª•o”›‘2U8gIYáë±ÝÀ®ÁÄYt–1’”§HJÕûÔf¿ñ)óÕËJ.º‚ ’$8Fú'ÕX`åµEeØÄS¶!¥ˆ·”óPHjïyêðð‚óÓ1¾ŒÏmYoBFÛ Ö“Ž½üç›ä—MàO¬”gJ ý¹]N·äžÖ“Ò¦„=?¼*Y+“Oã˙Ú4ŠQ§w•­`rŠ!‡:[ò>RÙë (jæX•_6úNØ\'<íéAN•§9+vÇíJ¥E@aÎóUٗÚü=î¦sçb”Ãb„×(›F¹A¸ §÷ œ2f³åsæ6°DÃÙÜ;E$ŸcÌöÖ$à ¥Y·[5 b©UëñâùØñâªãÅC³o#þ -©T¢ÒÚù ¤ìû>ˆ*w3&ÌïP=1¨%^Šóôû4fØG!*BD|ÄTʃqEI»½D|hÙ©>Jœ'®É¿x֐cººHÀ͒/&øgþ—N«² »royÅ9uÇz$øy“ñLj†b3+”‰T_x£†Ho Ñ¯`/Ñ{è‘Bœòûà¨Cz°¦1öúBÖRJŠýV'Ï©'ßP`Õeð²$c×mÄè>&æMyçøVc½Ԇp:ϝ~ø$TÝìRø÷@>u坟ãð¦Çf€¯¡¹Š~$M?žC@¥ßq¨³“ šwKâ¾ú,+âwÐt$­éæ!/ -~“OnLRÇç“|sÇò¾3ôÛî÷m@”…{Ù,< r+“zŸkî7ÜļeúŽ®ƒo) ÙÕ îÙ»‚@MÙ'Ô4 kGï -ìè¨+°"š9…ÜmW«z×JsHtZ=CQŒ …¾]á4`\ Ã2 .Š†á¹£j³¢ð(¥»¹;}…dÆöó+Ȍm>Z…—0…Ç^àbxXÕ+õæ!6õ5Ó< òµH?`?Gâûzê%ɚY<ŠF" è¸ºÂ…W—°]ƒ™¼7¢„†)¬îâ'äi£k¦‘gôÆϤ|©ªTÚÉtÃNžìŽUlýB?"S`]„mw}¿G§‡@‹£ztzxÔM‚|xÝ5ÏͲÑ1²Ck꽞ÝÖ×·†2¹W²Mè*ö; -wã 6ø Oäƒ@Üé3\ηzÂWù/?Ì&Š`úœŽÐ·Knõ9û¥Cý^_G›vøD¯;­cÓ#áT…à7£ÍÍæR´ùÿÑû,K1•¿-”¥ˆC°ªÜ½{n~êÉþ [OÿöQ¬·ûݏûӃTšBÅ ”Q•A«á›èæÿ‡ß]µÍz -endstream -endobj -171 0 obj -<< -/F9 41 0 R -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F1 10 0 R -/F11 59 0 R ->> -endobj -169 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 171 0 R ->> -endobj -174 0 obj -<< -/Filter[/FlateDecode] -/Length 2705 ->> -stream -xÚí\Is㸾çW¨r¢jZbƕKϒJ*‡To㑋–h7+é&©NÕ̟‰¤ ÒZ½LæÐ%ÄúÖ=‰QO&öç×ßþ„'#Í'×÷#¥&3¡$“ë~‰þ•®×ÉtF(’ M½þçäÇkÛO7ý0ŽçíŽÿNKӍˆ¨˜2=äôüö'Þôai9‰mëäj:ÃBDw®k¬‘P¾éa -Dû¯ŸÜ×öªÒØýš¬R׀6 E‚ø7Q…°'¿ÀÞÂÂÛuÝö×ûOw½9ÒÛ~7ÓÞ¨qýü¨IoT˜ðÿÖïG£c‘#S¢w÷¢Û]Õv/i`ID½CÚöGUˆŽ’–œg:¸+«q3ªRFÁ0CŒ¹ÙòdULy=$ë4¯Ó½uK¤>šÛÌC2±ÓšCy —/áäèÍÐAFh„ùˆ€sùNÉò!}9ò²Æ8Ï2#’#¦Í/FT;GR‚[I/î;þ§µz!ÇF;bKuèö}±NªŠÇ2ÙuŒ›üwÂLϘï:¬wZ Á'«ÉÏ­†ÄÕ+×ÎJnÿi»¡¯h·TˆÉÎÔ®¢™:ì”1áHӎW– ¼2ïP¥ã1¬ÓsÙc¼@ñžfºë£[C`¨h„Ò0Q„ˆÄˆ²Œù»—?¿$2br¼BÊ' -ّp.ºŽ Ÿ¥ÃÎ?€V(£N;¾fe fÉ0Jð)Ç"ÚxXE%`¤¬Z¦+ç6¶6ÖÍ)9‘-‚9EJ„<g(mÏà*-͘¼ÓÒU|H3»¯hfp"Š‚Kh9"81x´‹ ÇžölG$9ÛñFÂv~ÑEéD#-FÏxjìŒG¶BQz‹øtÚ^MàX ù È©ãÝĽ1B†,„ÀLKƒÓŽë`QñaTÍÇEoRÞ2h}O&‘Â](ÜW°“ ¼X¼…ÅÑ–GR¸5顧>>õ큕hç*u²Y㇀½ˆÒXÉçD€ ÉØÉO Š»n8u8‰é¥HLÆHÌ^›Ä‹‰[«ÚþŒ?㠷ݦÆkÛ¤6 ºÖ;‡nŠÆ¡s8>a˜À&ÃéiĺhXã ;ŒÏ"ƒœÔp#¸z0"À oÍČQ}Ùdù23˜‡aé0ÙãSÌà æ±ôp§GæJ‹l{LQOLÏ]RÙÓ#Ѻ¨ê2)á€Í¨á¬¡öçc܄C‚£GåYŠÇ»s7C«ÇIŽ}ßó“÷Aè&'ˆÂq¦š~Hpo ØÁ¨ÃŒ¶x©‹`ŒA[¦`Þò췬Ȉ_ÄðkVI‡€ò™ÀêíIç‚!$¤ª ¿^hïó=ö~ZPù9½0‚¡·H•DþZcó°+m[î[Icä¥ó#”h¿ e€FM8. ¨'æ­nPꡑWãqèà ª5î¡,}n½|?Q ¬Ø0ó™`q ̈Oâë0‚ PZ;7#Ø~zšaÎ3߄âÛ\œHí}?gR?ÿ£JýüIýü4©×ï†?3Pj¯ë åU•æËâƒs öl´MÙʞ^H{C`‘Ç„J¤uǯœÙ³ÒC®Z»vø ±ÍãüZ¡Íù¥"¹G ¶6j -D…äAó|»b/<¥á+Š‹%6¯)ó iÊíéšžôê gCÆg¸°½•ÀEQMq¬~¦Ê†|©;W=nÊôÜ6íö½Ù´Û·|]ó³ió?mÚ xÿùÛõþGÙ4F$$u@˕ÏHù²Irˆ|×Y½»~ðÑo›îØ `g -y´N²¢LjêׄÃ5ÿAQƒ ÏùoGoOQ†Ð97ásnBÒï^óé5š#qrqª¼%ðK_YŠÆr¤%}式á´áí¡ufœ,£ÿ¯6éOÛ×RóžŽÑ®Ž‰½ÖýÒ2Fނ¾9{}ï6f˜ ³žÝ0uS}ø^W`â,~ãrlä¡Ò[ÐÓpvÕ~·Ž§-à5<*±wÔ_ýÙ¿ ¿`r«M¶¾Ç /Æã™û+x…isŽüIt™¹d@››¾©^ùbµ©†ÞàùA×­Šøés—Ndûa„¯µ4 º-mE?ñª5û¶b7ûÇë S`Ûg ü³«¤ª6ë,Yh:“G?Cy:cŒGIiŽä™ûïíï&÷C§M]oJÿçÒ·+Ó:[+?Ä D,mÃÌ&·ŽcÖÍpÞÍ}ã,JV›:±yrD…„ÇÍÓÍOәrÁ†.jbxô•V6¦î*pWF†CPžV4ƒŠ /8Ôp’‚÷ îëc™}±ãÔÒ~-m¡PB[ºÚÊ!å¤ió°IVY’ÿæÛfy–yøïpc$®à鎒»;ËÞÝs!!Ü3Ój³X¤U•9^¬S•Et—·SÃ5ØâêøšäKÈE,2«‚ŒHeÅ:óÍì¦à{ÙlZ-3WÝÞ¬+nKE–‡ò‰Ÿæݵéoðk^Ðø«ÀÚʔԐM™¸ÒŸp¢âÈþšªb{qh—™¹™'B™§ýA£n1>—°u¥¨y©m׶]ö:y|ìºi¿-‘A›GCv$¯pE™¹¿·¤mPH9bªÍ Åw÷ây‘½!n·rò#¬ü°˜™ª¼pï7¹'0‹Eô»«Ì!‘ÛvMóªpŸÖIšƞ¸OKÇ>(ÛT¸²’ÅmDÐÛꞏí]Âå0Ì:ò;vyšYcœ~¹#;q`»À}çG[–”RâèOh±Xª-|‹›h -¥¯6ßn™|p͒¥«N«tý˜Ù[rÊܽ¸©]ew¥·ŠÁ1Ò~?h3Wiô1+ÿó¹0ú/àoýB½™B†3VѶ ‹³'AÿÛÙÛh™. «Œ0J’o“íí$«ÄµÉS0BI™%®ÙÍÍ¢X?1¸ËVíñ_ûæ¢.­Qô*ÍqO¥{G65–½s’·^ÜØ¥X 6¿Œáaý°ÉPÝxùèSêÞ/ÀËdd®lô®NœÚž¾•“‰Vn¹ù6ôցÄx ƒ8{/)TÛsôòùr¨ŒÈe³uZ—Ù"ùÎ=ðHFª=~ÂÊfÔ¤ F¢±VùewŽ¸ -endstream -endobj -175 0 obj -<< -/F1 10 0 R -/F9 41 0 R -/F5 22 0 R -/F4 19 0 R -/F3 16 0 R -/F6 25 0 R ->> -endobj -173 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 175 0 R ->> -endobj -178 0 obj -<< -/Filter[/FlateDecode] -/Length 3115 ->> -stream -xÚíZݏܶï_±ÍK´¨—¿DÒn -$—¤@‘E|}ê5†n¥\ìJ—•ÖE¾3$%JGj}vÎI ôeW"Å!9œùÍ79ÉóÍÝÆþýyóåõgßÐ ¥ÄÈÍõž­7»BÅ6×_ý3ûû©»ßîxžu}ó¦éÚ^”Ì8Qšlÿuý—Í×ז† 4¨à$gs"ßnež•0R˜ìXÞßoá¿Äџ}#Ã8ɉ›ÜŽ¨\/½ɍï¼É\¯½‚H9ö2Á"ڜpæû_Dƒ%a"̓ƒo¶®w¶]MŸFr+”Èj·×s‹›†½÷õ±ÙëáÔìÝÞmwÓF뤴 F{rßEs’Sß鸿ãÌ1ÿ´?1ävg~XœÑœ›šHµÙi8"–n)R’@©bÇ×ÛS*»-ÛòP»ç}×öC9”'û®³ý–©ìÇ:Þ ,ª0—NT?8Q™<ÑòÅvG‹"»H·xŽÆ®îóˆË ûË'¸õË(µŒ‘W[V¤xà ÂÔÓ±&±&E$XcÏ+'۝ &ûk׃D–ÇÎ<3 ^@!츟ÎM[5 ¬…Ê(´…Ϊ¦?ߝ˻CS¶o|RiïºH–Ež½„†.>V­žªýGNEz¢8*fyºmìbë9:ÔnUý¾> [ER4aÅRøEuҒP=çÁK¤ŽgX>s÷ÈĬ>¹·æ€ÿ*û¶>K×Ø(ŸEKɁÁ‚hù‘+ôŒEþ»ÎWÑHƒ8“T£8,:JÇ÷)cg¼wPs„èÅÒ&©œS  "ýMy,Bç«K¬Ø{íIr“ñw˜|ÉM5$*iö‡˜iêiì RqI>‚­_V€K§~Y‡%r'Zœµ/½ãç+îˆw;©Ê ×ìŠÝξ>½¶/t4¦Ïœù -@Œ}Ä"g#cx¿e¹ï¥àˆóRuîåX‘àí©ssUõáà‡>°r¸ê|nö]Óî› -¬Ð¢h×°Ê>„ŒÐšR˜øíá’dSóÑK¶ú?º¼ë$^Ë'Q“• sǸ$…þŸÑ†'™^ W,ü9ÿ§J:<>÷ñk(Ò>©ÏÅSDBLs¢]öªqiem²]P 7Ž÷‡zð©Ḿ#[5GÌç•6K?å}s"6ÿÞ oÝSGö”D¯û°y9û’ÙŽãüRc°;6$¾šÅâK×0ÿR¡³û†0û—×a3é;žcRúêÇæ\ÙåŽawŠÿ}í+ør*÷ûâ´º±­q?”Ãàû¿°™CÛ³¶>ŒÔîÎ!©ˆ]Cݝêcùܝ߬:‚ð%å<Ù~½ -îs,Œp Ìja·){Ctá£Ü8q‹}”~·ÝéD9¶ž@QÁÏKVBÖí€ -Êãà†)ë#L_*—¨LÎ-ÖAtvšH=@<†5‹CçZ_—‡óP«•øŠJßÄu# -:SÈ¥Z›|M›²º´£zŒKþæ†(:ûnn«a(?qÓWñì…q~à‡™³mH̻ÿØ2fx6Ù¡;͊as›kø8„ Rxx«—¥$Â<<µŽL -*^A ZøœŸ€E°N -¿ò°‰%žgV²`j[àPæîÜCêŸÃ”ÝeÄ9ü;åX@+eóSm}äÚ[Š…Â$“/¨ÔÃÀUe‹¶õ§sÝ[dÇâƈsn\ßTµ+׌„š¶¶E8|½™H˶©O‰¤PF ²%åЌʾk÷M_Z«ir²¶¾>O@›»…ãÃ~ÆGDÍÎ ¨×mùˆ #±Ñò1^‘ç,è…2ÒåüP<pc¾F(KÛl)ëÂ`W[•§ -3}à|̲‚ÐÙx*ÀkLæ¹Æ1Ï'Ý˜ ŠÖuj,‹^{nc¦©rVÖJ(ìõ¾:4o;o‡?ÅRi3öËx¢ìÍt皫q –×™F!¿k¼E¿™9Áºfvd4ŽBjĺÑvì¸f)|`" ¬›/®’Öfž¡A‚NàaÒ|žk‚mAÁÓ< ÉŬ\ŸüõçMÛ7õÑ£öhFºçý¾î{8èÆÍ,suJÁˆ0óãº*Ï.—‡?ÿ¯¹W(nRÜ)rø;Å[¹ƒð­XöO¹>Ô3À9Ý -—ys‰.Ï*#Xb‡……ã+›Š¯|¼H)õêö(€ßäÉú³¡¹CnëæR‰U~çÀ´ ‡"†±ÛŠO^U`p -tµ´ -Gœ;óéq@eåóüprr2ȂƒÖžºûSSÞÕՙo¯¸¬¦XÕþtwm“Ø;8¡ >±ÿS|°£…Ë1×~ð™â`Åç»q?mÒç™,ˆ¡¶K§Bfm9œA³'öÍUy8ŒExp1‹EîÖÕ÷q-³YZwG¥j‘z€Üx¯%ؗ™Ìi¾¾;jG¯.m\àý_(OIՑ³4Oäx/e•ÍÐ;²ùÔôgLô'.VЧ«å.õF Þ(3_\(ðbì_fftÐ;Ò3BÇh‘𥠄qä,ùøGr'%D‰Ê™ë >ÐW¥;ä¶ó×wL±z}G3¢×õ›9bhߌ—'r¼-³ôŸÇútW‚S) ÊÌèÌFt`Ž:÷º/[@ù}7}Û‰áꌚPéFw*çàX@Ü8 ꔕ½V&‚P;O¢÷ Ç×±l‰"¤1â’!b$¡~ŸL ¨w½…ÔRùÀŸž ” &(Áø$tdxSìô·ÄĔå„?"Ñûu±ìà!IêñÃ>í»û{tRð¹²mjiÕ±#eÀ -ò‘UD¾¦ˆ~8Q½:+pÀ"¿¶`¯Ño›ŽÇÓU~Î7)&ßDR™’p]„ûwÉ\ý¨‹?{æ‚cƊÑkàãöÊÊë"×f&]ôçt:ˆ‚ì2Ù™IYUbÂõ$xÓu¿¤“\­»B2Ü´ûË»:÷†©q±~8®³D[ˆ­ûÆî‹ûØg—¼éÜ>Oµwî—&†¯ñòcðBª„ŒåóC¿J`t>Çè'J["D?ÿÿevhŽ1QIø/¿Èø~¶?°m*¡+˜ka亂`— -óoÑߣü –Û骱uǬ„S”pAÙV»£ˆØxzËvrmðÕfùð;ëßýGUí-EoKεÄ:f(C HP†|üá"O´ Z°œ6ƀCƒúÁŽðì‚Y{çĆQ‰¨Æþ/qâE“ÎF>sN«…5 žE~2 ‚½A]ÄÚ¸ÇòöÖ-_õè¨ã6Nú£Ð$]ԏ}ƒÓ<á¡möù뭝-ÞC û¦Äàkƒ{ >îò0¾aŠÃ^"Ŏ -óÜt߆)ßí? -'êÓÝøù̎/ <¥Œ÷Pkpk„ -òù<ÆéPO¹Š“n ó‡ÓMržºh8ݱºJåì¦kˆÞ(ÞÜ‹&ã-Á‘¤°9‹1Á)5^±Ÿ Uˆê1Â̓‘8‚Óùt +¦òאR ×â)N]Z ÿFì(‹ËU€3!ºH™ü¯¤¿ŽÆ*¬ÕH\Qãþ½Û‡>”ý(º‰EanïA<—L‡L³€e1¤nûnLŠ ²@˜\Þl_à-5<+ÐL!Ʀ–_º÷ NÆà&ë,šAØX,µÒƒ®ÄÙMyª1?xœ…²ÜcìŠÎ> ž~y×´µGV“£0ό¬ã/h¾‹FõØ1ÅVù3'`&,å“©¥ø”ËôÍÜbÞbÅéÒáڅqÅ)ƒ¹ -›B¦Þñýݹ6† -endstream -endobj -179 0 obj -<< -/F1 10 0 R -/F9 41 0 R -/F5 22 0 R -/F3 16 0 R -/F4 19 0 R -/F10 52 0 R -/F11 59 0 R -/F13 84 0 R -/F6 25 0 R ->> -endobj -177 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 179 0 R ->> -endobj -182 0 obj -<< -/Filter[/FlateDecode] -/Length 3200 ->> -stream -xÚÅZ[³Û¶~ï¯Pújb!ą‘LÚØî´ãéxl¿ùø‘èŒ%Ræå4ñ¯ï..¼ˆ ŽNâL_$ -€€½ï· nR’¦›ûýúçæï¾É7”mÞ}܈œ¾Ùɜ(¶y÷ü}ò¦l»b»cš%ÿ}nê-SÉÃ6Iє8H“ý–ÉäÿãX»•í¹øbÂsy2»SÙ5fïGî’í‡wÿþþe6Ϙ&šnR{ôOÛUɏð)UrpkiºQD+\KaéfGIîÛù +ŠÐM˜½Û‘R$wLf[!i¨®OçcÙÕÏð§Nê¶5žÉÀìºÙ1%ˆp| »a}_·EÛï÷%ü¯®ÊU¶rM”ð\ F$¡b#çv¾Z0’)6»aå>wÞOEïˆE¥üææLµNKJäRÀòkþŋ¯÷ÍÉt^0¦Z# ©¹<@Æý$ÙîãÉ+¿ý2\6æŽej_¸£«ºrÚâ© Š:meößç¦lË -僶Ì3àþ*é¾>vÎ$ò<)~€3´Lö—(Gº)Nµûiÿ˜ƒÅ´]Ó4{E>ñûîÎqú×¥I犰 ü_Ý´§é¨¶ø/>°[ÄöËÁ¼»¦8íÞÕ¡ö² 9Ñzj¹Gd¤w—œMßuÀNíŽ}u_ ñÇÁœQt_´k¢Û£üœG̉ԚþãNs4"¥W­(՛a>b°‚dÙ5ßÉÐwÄÔw²™ïpë;n·õ_Tàƒ?Dp©$Eråg¿Yþ5#,̦ĊýÅ;ˆ«!–R&‰pÜý ­ECè4MF›»x”Q™ônâP­~tUk‚ujk~¸À,å131ó͒À4¬¡,ä6fþâ短”U‰¾¦” Õh9Sˆq)èd@§>ñkċuð„þ†g¨(öJ cOs˜+ŠÂ̓4Å9¤^éR/à’¶,»Î€äI<¸t³Ö驧Ÿø¶Ý,ú„VÅW£xi*“À 0%å°µý¾„RHñ¨‚åϚ Šë^ô´z^ùL؜ çnû£ƒ%ˆavU^”^n/%ºÕHµôeZñH¦7fÚüJªÍ1¦\Iµ2̦ˆy2€ðP` œUzI—‡Òç€"ÔAF»€(mÑEk‹bQ3!E_ø¥ˆÈ”f|7⾊_¬c‰Ñ(¹Ô.\ Þ]­7"þ-hKü -©€ÚpÄ)žy‘+®=a à•Á-_-v€³DÐÖΐÀ²ÊœÂ÷S¶_F”5#§$Ï1$¦¸‡e¡>aƕYR¸`böæ\`HÁ±ÊéR€0Œ›njƒ½¾`bYš&æè–lâ╠yF»²nÊSá~ •¸Ý«Òóö¾/C¾µô`Ê«dw]á@¸ŠM@†ÔÝþ+†€°©üÈaXT7¦ðcÞ.aã(,ïgø™ý¶8áÔÏƝ‡ v·$ð¾£²ðþ ’{ ÚB=øÅá˜Ö@v6ÉGÇ#]vøþhÜpÐ&Žúo«M,îr™¼S…/»`ÁçÞ<[’‡õ-Ϲ ¨«v?«ý±€³ƒ–J7¥ŒêÆú)-¡¹X”9¹eÃÍy½q2…~k¥/']„ e.)8uú"Ê¿Üæ4½Ž–lx/?<{¯>DŠÎ‘«¼F” È&K€hwÀì©*ã Æ¡²u'â2k~0/ö/~Ì9Ž}lœ…<81 ¡-¬ÇŒxøý¹/ üìm‚†õêQhž¾nl{´«æ¾žækW`:hÜoPîél¬`D0ÁƒA– ±g<¿à5g `&2õ}=U9Öa)V4¸Á[äœËAhí~ ¬.„ä#\óIOcžžÄ#ÜÁ˖gÀãÁŸñfËD‚FwÀ«1ø¶gÖç³)"u–ÙM˜üD¢÷ÿÒ¤Cahb‚á“Š 4°.J/’¯Žˆ4ƒjì!99T*RLÍáÅb+À^CñçübwéBx_¡‰ -ŠsŒñaºárÉ6ãˆGG¾ |C´ú´ †ec±é©#5…;µª›“lûX«j`hÉ®&\Mz1`ªÅá`ãú #•·T# /„ÆÆؐ÷¿‹X%‚½a?ÔVÑhã]@P¾™èªÀl¦}”Öӗ:Î&nT¹RÅÄ aÓÙ»k«â:‰!%±‘7‹LÏh¶[ …>æ!…®il-ÅýÃ=V†QX‡Á¾ó -„*f­?Sjá?‡baI 051$Ƃ!±¨!¥$ªè-YÁ!>˜ @:LŒÁ¼À -Ħ,Γº)ÜCaÓ&ãðEsÂuý1$$œ/—ë.²NÚ¬…s¯ÊÓÉolÄð é„ÔÕ=Y æo̾n>çÒlìTض$ÁBó"ß0C`G=2%yËåO³ì9 ÏåÄ´[ãÎ ¨Æõ‡€²@PX»'ßAjÑñp±Ž5Í ôÊ ŸUÌC[ú™+ m‘ñ»æÐê6DóYXä?#Qñi¼O‹(¨Ö‘/]ïc¤Óùj«yÒˆ¶š‡ÂëE¬c!ÃÆ?,#ÉÔ-§Þ1•F·É7]ºç˜ ï#ÅÑÀíIì(•(ÇO¼ÛjˆR¬È„­¢ ì  çŒdÌ£‰¥ÎÅÐj˜£ô‘Ö«;³O€4ÅP+( ¼¦€‚ph^‡õxVŠÑËfÜ, •´Mª–ÆÞFk¨‡Zy°5uÑùewXžøF ÏmÑ;úT-FMI]œÃÜðmÝà¾S•îrF»ÛiF¨|4ñǒ,/¡hòwD'>‰:*–jAØèµÕ¶©–îÊOӆžvJÀzÂtٚÖÞ³Éè=›co/b§ /(ܬß’rì–é6JÕjO_¾þß\?qqÑi;‘®Ÿ9ô~ù ¨j’‹)X’%âd}º!¶FhVú:Ñ~>º»š؉‚û[—BÙëý©¶×P`!(„vÏð~è2ѳ|¸´ÇÛï\Ûì™Ûr çf•¦½Om*f3ÃMMé–z¡ª¨®×†Ÿ&8>5s-GÁ…þu۟[qŽ)lÇHÎÖ/PÄ<B¬'@ðŸ ï3üΟÓޙ@ 9rb§3lN]f™(h¹ô`åb¯ßüQ9.ÇË¥QŽgÉA<³^"Þ¶ §_ Õå—/…+Ã}«çf=Pœ‹õ@•3Ãï0lÆ»-°s÷غé<1“—6.k·\¬w€ù˜2Ѿ2Á®‡/(Ž†kÑßÁ<ðɕ·ݾŸ›^\×ïm“Ë|¸‘®Ã"£7"Z WaTusÀZê¤ïÌÑXÝâ¯Ï½¶ðZ¥ÉÇÂfR¯Ê—¢g·¢i¥]ÿö†âsíþVR¼¢›¡#¾†ŽÙë6{Ãe4tÊzSÁž‹¦ƒpxÄ7˜.ãm6açy‰QöP~‚Jri ” ™|ZÆ„§sVú.ƒFÂÆÂr'E–¼ýØôP¼V¶¿©Uˆ»fhb.2yªñÕ·GHe³³è«®:Sõ¦ûmÜÔؽp®íQ¸ é!{ºÉ"mÊŬUÐÓ”ÁÆ”º]٘ھNÃl)ז÷}Y} -T Ç÷¯ç¾+­á²h—†j5¾ÏµÄÁþ·Ïü.¥oÑϘÂbÚ¾lvÃõ͐@L«¢I‡*òbEB¤Æc£U}ºfú±,˜Úâ^ßòA4fWr H6lK;{ƒ¼Sx%ÿ§¤@K©ßüÖ(ÖR`L)|ÐÉ*Ê ö­†ë~ -ȸ¼ûÔ«Wì9¡zx‘çO’¾¾&}öU¥Î㸝M^{[1qñ5ðÿ6q±fâ¬ù -ö¿öÓRP"N¯gþÜjéÇ%’¥p>¹]ÝÙ/‘þò?þÔì -endstream -endobj -183 0 obj -<< -/F3 16 0 R -/F5 22 0 R -/F10 52 0 R -/F4 19 0 R -/F11 59 0 R -/F12 62 0 R -/F1 10 0 R -/F9 41 0 R -/F13 84 0 R ->> -endobj -181 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 183 0 R ->> -endobj -186 0 obj -<< -/Filter[/FlateDecode] -/Length 2731 ->> -stream -xÚíZÝoÜ6¿¿bq/Õ¢^Uü”˜ I“-|½ 1p8Ä}PֲͳVòIZ§Í_3$%Q+i×ÞØ×p/»?†äp>~3ä" -£hqµ0?-^ýð–- •Xœ].X&Éb%“0¦‹³×ƒµ.—4ΩK.i-WTñ Oñ_MVk,Éà«2Œ¨õ¯ÑrîÓ6žÓ8&,¤l¸oE2T‰k<%HTºÞæM:š‡ó~¢›8TÒ5êâÒ6“«c³’%Llׁt(Šàî.<2ÉpŸ\ÂRíß'ÆJ1šÛÛ YÒ ¿.ÐÅ-ƒj÷êMGUHZ84ÛX|„¿Ø1#Aº(ï8ieäNW£‚€¦1_1®B¦¬° 3äÂjmڔ {e¡Ý§óMì´rþÆm„vÒrÁCfµèû©•*˜»ëáM]€B%Hr¤ØJЊR -âԖƜ QæçËÐìøÍØ0¾ø¼àÐ->+8{²Øt߉ -c²È¼~ÔÖ+Û/ iÜ~û=î÷³ß~¿yæÍk¿ûy_-8Ô18 -k"fý?çÈ4e•m—.´­<Í>’ «¯¶™­ºÈ*}·,0]y 7›ìB§MºÉ -´”MÛ/Í-­<ÛX²Â‘•ÁÛeB0’Û[_V©eâŠÄ¡¾‰|Wéá¢d`çÙkVyi)Tz]V°ŒMiû8{~âF¦Öúu&‰äPYÆKÅCS*¦”&CñdþP{– P»¥[“ZW #¢+Êb,‚S ù@…éP…y¨öH>GÁwž½À ã Þގm XßÖâ_Ž-{o}>ž†ôÞ"š°#‰pW£¡áçã3IBÉwìñ7/û̓‚’GÛOÌ?eŠv<ä,T?õ‹±§!§Ç™Ú$é‡w.Í'.M~ 'ˇ'+†HA üÕD99@ À<{1u‚2ޑ§û+N_˜¾Ÿ2±Ü'®bJ\ð J|qu4<›Àâ(Úp§Øél H±3ÖP߅˜·utðñcY,YÜ- w•_\÷×åF`¯=Dž¨[ù(B†1Zá$A“~ÐéXYÁ ’¡Tp·'³;x0ô´=òÓÑ`³­êÛ%WAúE£i— S‰&5º‚ùîã<ÍÌÑÃ<"±ˆt¾-<éÐùƒÆa¡Û5n`½øÑZ—Efr½Ñ ~€Â°Ã묨K[¼À:˜WVHåBLkÆOÀ&*T¯¡“gҝX“晝c}í -<ÕMzb?&¨C(“ uð@ÝxÕ#©“ ywԑMzÜÖn‹Æ¶‚…Š<ÀXù'¨F'èÚC¼€½/—€dr ‚Ü2z,\e¸i»eùF7éÑñÍ^£{Ï5ó¹5ßLŽ{y“û¬kÚðNŽìNkÄäQ f$†‡-ŽCù/ÍÏåÀðøÆ.Š~SgHLüӟá$Õ×Eôñ#¸èbzÏ1¼·©Â…/ÿÞêâBO`rí¡yTÃ…Ì?ÇINRtÃ+p)ä Î4½£<%E«Â*Fhø$Ú`–Êè6 -Ÿñ"ë6†ÖÓLf_:³]±ævɓGçqŒ(®£›'{ÚøÐβ®mY43Úg˽öÕ<Ûcñ¥Â›¡în/ᄤֲŽ¯*„wu2©€²¿øí/Ǒ(8VÅ×xI΁I±¬Êly*S¥Ž‰§û®wWõ-¦ 1¥T{×VßÞ -ukƪµ¶Ÿ©M–BéΦô9ñ:uWQIŒjìYAkïƶ„Fîqÿ<•Î"&¢=äuØ>¯CçòFC·³_k†ù6>.‡~œáxÌÕO+ȳ ®“–«ï–ž/ÒîVò´½•ŒÇ·’ö3ýôÉHÎÈs€ãbtiRhꆒ؞Õ¾BÁMód1̟ëÓGŽõùœêõÕ$óJcôn€ôïsPÕVDÊÉ<ÖçšÃWïª\²Gå 23äMý¼÷'­áœás óââ»4o*0»œª`Ýú‘̶ƒÝ½5P¾¸ÀváKÎHp~^ÙQF_ëµ.ÿjÇç¥íP7à*ܧ¿XDýÅÐßÈé/Žòôwøêêv[m¸RøÉëu$ßÙ¼Z+/™pfd{àfgë&• €¶úŠé8ÍNv4;ñ¹£ÙtW³'_Äýݑžƒ«Úò¦óPQDQ[èw§/0úŽƒ&Û´„_‘ ÖÚB¿$ }E$X—‡É*sé±é‹´˜„ÿ*ýàÒãŒ@Œ=%"˜Ã¦üÏGwÏ'n¢’vÝ6J‰MDÔ>µÑ2^¤Ì3›p‰Ö<|”¨7ˆTi•Í¼âD uíŸñ‰(FÀ>~Ÿ‡ \xô\ÅDOb,’×ÓVŒßòy³»Š~vTNbÞQ_9…#«ï³Kˆ«ŠuVOøñľ)¡Öp$¿yî\#³ ]˦—¹¾­ŸunëæÚv~y»jßš¹|Ï°Ã mtYà@ݼ1-eQnôº>™ˆiIÈÛ8îåbED5fê¿¥Íu¶šk³¨ùPšW“k5Ȳ?0°8± åb|7{'sâVj‰{+¥QÄÚ'‘ #ÞEúG:qT£´zø*­š¼}øø>üiââ¨Çg&‹ -Œ|“£ ojûU^ÚÿŸ‹&C¾\™ë{÷ ÞÒÇ°ÿÐyÖn/íÍ>ÛµüáYYݸz¢¤p;±Á^œ AAŒ¹-þå?«BA -endstream -endobj -187 0 obj -<< -/F3 16 0 R -/F5 22 0 R -/F4 19 0 R -/F6 25 0 R -/F10 52 0 R -/F11 59 0 R -/F12 62 0 R -/F1 10 0 R -/F9 41 0 R -/F13 84 0 R ->> -endobj -185 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 187 0 R ->> -endobj -190 0 obj -<< -/Filter[/FlateDecode] -/Length 1248 ->> -stream -xÚ}VËrÛ8¼ïW°öUY0ñ&s“ìø‘²³®µ6©Ú(J‚%”)ÒER~Ä?¿3iÑ1µ'‚C`ˆéîi ŠiGëÈ?ΣéìøLDŒÑTE³»HhjD4Ö 5<šþ ?ÄÏÑÏٗèó ¦FJÒôÝç©«î7åœ+=«˜“sz„ӏÏÒ}NRm¢ØÏ¿ɔdMã–# ‹XLf‹á²zi÷6”hʺœ­­Ü2+¯®³fc·¤Êò¹-Gcž¥³Íˆò2J9‚OR‘›ªqMÝØW3fJÑDÂSR)}ò•-–f ˜ÆRmh;1¡<s˜ÆrªL H½) M“ÏÆXƚL+·ZÛ:DO bœÃoB•'eQ7ÕnÙ¸G‹Ë2qIŠ,©]ý!Æc*;ˆn*W¬m5þ†ÅÛ*ÏÖ~ŠLáÅG¡*.9rÒ+Ÿ¥‰úPr¨X U,u‡È‰Ëÿl»²€ ¥É+Z’Sç.+€8À¶) WbHÁ=¡[IG:Ì5–íª0zrÍG@´WM-a4©0jQ^¨ \Qì¶í!s¯î…Ÿ] àÊ5Î ›p 9.b2Ÿ£¼È¬]Òuˆ—wødß±´²ºG1|‚]$†Ì¼&Að°íº»² -óCZ‰êȊÕۗu•më?;êü¶z\}=¹ ²åܘVÁ’½*~HÂzˆÐ4¥AÁg¸õÊn½Z` )(öb€%£¨î4;I@öz™—øX‡G -8 ü7JØÙú¼BøöÁû@0:ÄBŊ‘kïY „Àÿç\ˆ½Iœd[”Ù·\@ÄàWi³ -÷ˆtñ®õ -ÛMe뺅ðª,VeñæFh3€& UrN©$Â9€¦y3€ë Þ}ýRÊ^ý‚|óç»m;áòòrÀ”¡R´yW®êƒ\¸×ñ”<`Ée»<<”òS+7!©}잞ž(,±Ï4[ÒÝý1Xð¦>®ïÇw¡ÔX%CXAéГ^Ê»g»E:» -}‹§’|§ú…¶/ÿfYa½,S&s2hœJՖܓ`üƒì06€šI°äákY5›ñE™ç Ïv“ÎN¸f4~g'uc«U¶Ý«†jÂt -Á4å¢5r×4ޗ0J¦Cç*x™<4„H óÖvá½0ƒVô!W4^Dk/,89Ë?o[› Š‹»ßL -`6$ÈÍ®Â1@ãá!o‹ä&¥B¿3§ríÿŽ`sÂãXÏG$CD¿Â¹Ø¥€¿©¾dX<ßq°+ï´vÌhhg<îE.ÀÕµô?Xï&ƒ½åá>‚ç@"—o 1ž=øº¶… HæîW ÆÑõqZSz]}t> ï%èë »è+æwMŠÖ -…à‡3 8¦eøì¢A<þ‡. 0O"ÜKà -åGéÌB,ÐéƒLÇ!6%§  ZöÉz5i^… °Õ:cÂÍÅ2È¡`lCåü7¨÷bäIÄÁ_žº•­Âk{ih\±sÍK­Å[û¼Év54|h…$¦J÷Q Njի>-®x \ùWŽ¸ª®WñÖ LˆW%ú´LK*À¨•I s‹âÿF)ða -endstream -endobj -191 0 obj -<< -/F3 16 0 R -/F9 41 0 R ->> -endobj -189 0 obj -<< -/ProcSet[/PDF/Text/ImageC] -/Font 191 0 R ->> -endobj -9 0 obj -<< -/Type/FontDescriptor -/CapHeight 850 -/Ascent 850 -/Descent -200 -/FontBBox[-53 -251 1139 750] -/FontName/NGVWLS+CMBX12 -/ItalicAngle 0 -/StemV 109 -/FontFile 8 0 R -/Flags 4 ->> -endobj -8 0 obj -<< -/Filter[/FlateDecode] -/Length1 716 -/Length2 7315 -/Length3 533 -/Length 7870 ->> -stream -xÚí—UT\ÝÖ¦qw Ná´pBpw € -©B -ÜÝÝÝÝ!w$8|‚:ç;ÿù{ô9}Ó£ïzôÞ7{Îùîw>k®=ö‹™^K—KÚf V€Aá\@nà€¬ºŒ!äæÅbf–uƒàT¿EEiw[/(ô†_à 3@æìí -±µƒØdÙÿ¡H;]!V (@·;ý1±9taV0ܛvtèüã7€Ø ìê¶æÆÂÖ+8Àl bñüJjÿ3míîü¯’ØÕí€í';à¥5 êè °Û`ñhÀþtÿaù?ÆúßPý»¹‚»££Èéöê?ê 'ˆ£÷)`NÎîp°+@f v…þ»ÔüO8˜ã´Q†ƒ!VÒP[G0€÷Ÿ)ˆ›Ä l­[Ùl@Žnà¿ó`¨õ¿#üÛß<Šï Ôt9þkKÿYÕA p=oçÿöý‡üïø?ã?ãq…xLx¹yy„î=½ÿ·nòP+˜5j Ѕƒ Ö WëÿNü'•Œ Ì˗KÀÅ'ü¢aA^¿ÿU¨…¸¸ƒ•å‚¼¼¼ÂB¢g­Ü]]ÁPøߟÁŸÿ+¶ü™ì¶ÂÊÎ!… šsÒpÜX\,3tM¯haõ–žeސ͎]b;¢r±uк^Å}8ъI¿c£“ŒhôWK¸5ûìíMY³AöÚf²Çd÷æMmì!׳3³<çP ¥Îá÷㵿‹˜±ôv†bL´c€™˜›a$mlªvï]à>…KäÜ}\®yª™ ¨ssÒ¬.–ÝÔ»ä÷[ýG^xß ºèFO‘kÙû£Ï1§Iy×>Ž¯Ziê–G=ýTbßz‹!¿[ÏíæÇTã¢îQùnfÅqQ6d¾¡ñröɐHÉ= }PkM›Óy#.vr!w[—ô03ìa˜™}Ig"µ@µ€˜Quøaâá­ç‚ Q6ØGuQûæ.=¢êÞì¶{T«HbЀñÌðå}5Ý~Žn¾P“k·%þ^¯pñ»½Ñ»—æªîØ’x¸j.*ÓÊdÐG&_^©÷6?¯zîJí%[Ž }Wûx™=tf¶-£Î¶VÙȨ¢Ik™V3Ò±Æ -¿Kè½Ýû>Ÿw@?<#uÄ{—€He…a3aaa·vĘvrCÕ¼G}Ç\r¦E.TOê~fí…6[UÄñWU ¦£?æàKŒÅ&rVr+I`àB¡´Ù¦`!êsâŒHŠwþ„œ@ÝǤ¹T§ÛšÅA gZDï…éûâÖp9UâK>óÈìøB3Âlù{À/ñÏÊ0§íM9òBrZo*åR6›Ñ\axJßK•œ4aOÉÇ£«÷»ÈCöî7À’óÇ·ÛȲ.¹óÃåÙÚ ²÷.éèB¾%q9Ú|¹}I+IâouÊ¡è0!æ¹G¾Y,¤YØƒ<ќ.ӚHÖþ¦•ÐJTý¶¿¼Ð&ü£®E$ŒU«sK"Ù³ ×7¦‘S+k¥-†#ÏÎKŽo+ {už”]ÎfÎQÇÍè’a0×¢7¦‰ë/8j%`üm™Ð -³à¥€Aá>Åâ€öÜ}Ñ ,IβYÿ‰ùÒrì¬Ú‚߆(ä?3 ‘2ZzsxÕ×ê¸äÇ¢.r¼ r¹c+p°ËÊôÆÙg T‰¾`–™K»|Eó'©»GTwE°u*»Ó¿ãÔ[ÐxÆH‹ÐS",2jfKÞpZÅ%/cEšK>£•þ°3m›™‚2²ø×yv7²tY•4[å.À»_÷ŇóWÔç#¼yòµ1»QÚƼڣ(À‹<¢U®‰‚]õ€ÂØ#ù¸ŒÃÁ€*‹žפõú‘ ì“Ë͐y1-á³î5v¿.Jч騌8+Žü;´UBy";/=]uˆÕ²1@dಸ@r¢ÍŸæh1¾²ZÙÕ ‰ù°y‚·éêT'pƒ¤¼¿é×ç]jՏËxºN÷ºþð3`œ=\Ùã·«`}áFÌzs`Ó1\?B58^›”sQYËl3õmpõ7[9Œ›w¹ÉnÓh¯eª·Ã*-•«Ò¨¸4¡¡ub+Œ:哽袃ÒGԹڄFäy/¿M ˜•†!'½áïpãú䓻ĝ\[TÊnl„®~[õ£˜ð]¤R…W¨¸Wó¥×€ÇÛ4Lƒ8T ÌàÃÒø¤%k¹Æ"8?þÀ!øsÇ%¤ŒálodZýû/¼Ü¯»Mçè›`‚åy·óèã:K®ç!)Káܱ³ç6…›¨ÕA:Þ·Þ£0êÏo³ËŒMd -¸?+’x†Õ‹8ž.ÌhR¬Myþ6ÿ\Vn,cb²ÿ¨ó]4V}Ì7„joòSºbÄEç4é‹Ñ>%ˆ Êœ‰üí#©·:¾OæQŒ}lÒâ'w~Ʀ—‹æ ¹$¦Œ-wÚäM²/^ò ˆí6d»d‚(l»êäÈ] ©Ì Šþl-kO´Ÿuô.´XŠ}|-u NŠC,ðÔvš”©+°ñïAŽ¤iC:8Q]º^æo½}/ªªÅû#YÄùÕã®fnx´Ç Hºk6O¾J!cb3sù¾²õ'1󸠒Àu•®¡xP¯ò/T•“âÌ8ŠìzÓB§ý¡ÂGç´H;­nT.ÝÃ8b¢;rn/IõÕӔµ9¨yod¨T/*zñ5¿¢Jvð¯"ŠµƒhÊ5}±ùïýÔá.)A/Ýëô–-Ü5qWÍt¡àÝe{P·Ö§¨A ÕnfþÆ|šå,ÎoQêw³ê"Ó­ˆ°esø‹?}…]ÉjÛϡɝ²¬ Ɛވãȅ¹Ï”µtô|b½2y@O÷dVÑ}±h´uÖ«qgíÎÜâî¶×‹YÍ$â¦Í¤Ó jr:~åêwTM7ó“š(\ï+íÅI½x·p?–pãzGž†‚¬ar½È—q§ã¥¨"}/F:\C¿üKÛ÷P[ðD‹¨Š{ú÷•‡¡„“:4^sÞå׌¹·:6\g¼Ý œ[E5 ¾ãª^ÔìøÂ“Ø̋÷H¶'¡²„O—l[æSÞpÊ)ιo¾–F­eDòt5Z!ڃ”Î,2h9Tëi äіø«cTøe ìMOÈ8ÈçùàâpÁUMš‚ÖÈÎ( ··Û¤ϲ/Öë«­ÁÓks=šÆe#5;ǁÎIÂr„¥R~¸’ÆÆËíœ °¿u1âT«ýBü“Èë!x±Ÿƒó¦Iû%Ð W4¿G"¯ þ2l({SlºÛ¦‚0>èQªz”ªVq›…ˆð­°Ó\¸ô±Ï ~çÅiCüL„êý•í_J¼içÏÜV­=vhsCXçÁ€·áÑÝåäë~g5­V–aTøI™êï]F/j™Içðã“Nâ¼3ޕ~¦Z[Û`e“O2ƒÄCÑv~¬¸%°ÆpÕe2fü+=PåóZ ã©IXâCÒÌôåo9vÄJFý[Miû™àª·»4r8Gï#ä"µ‚Šb_ß¾J&ÈB«ö­™$]YU$N8¶ &Žî ;ãI:1Ç+©W–/ÂS§U4r';ÜÒ¿r–²í\¾«Ûoх–Uf–¼uÀ)¶ûÚJ±QÈM‹="vá§£ØNa!Œáä)I>ˆÛïy“žðã‰=¼­¨4úZ±ä>›.ºŸ*®ä{¤ç”Ç\èu_„C³\¹ÍT#ÿÖÙ0âTî8/·è‹ ¹ÁGÌê7ý×"l߄iC¯Q(ƒÓ7}~ò…Þ·e9…Ù]F£;¶¢™ÅŽ•ÏK}…c8$ñ—QÉ]cˆaôè÷—¤·   , ·uæ܌†ê»r‚\¸{¸d›‚àú0 ìâÏ„”µ5^ÍP·ÜΤ’ÄJ¿: i~\~¶“ê‹\SG3#ӂ/Hð4š±¿4´Ö;½Ó ä~wx}}¯=¹D½™´Ù øF¬L1GÅù!413¹Ÿóɓj€¶ Ø7GszCòzy‹ÛÍæ#n¬ßNÚó+dTvõ«D˜³èÕFžãu†Rår,3ª,‡mRóËAEøjÇ·œ4œTa%Ñî¦cök`»jè76!”é…áîák6ëû·”— [DÑ  ô‰¦H£,ÛÉæÒé¦~4R©©F_zÌúùù#j3(ŽÜöÀµ»vœSÏõäÚ¬:}°è‘÷^{n ,wõ•ÃDµß{úG—@&(³u+N¸þökÃ8½ÇKM6ôXÚáQ/EKÝã±âIó.D lËÐ| ¯ùI~{Ž€!s;Ê*¶ˆ¶a)KVt„ì&|z['ßV»fí½zú†r ڔš`£DBǎi¶¬m¦™ÃԁeùÁ­dµŽÛò1ØY¶düÏÁc³¨™ÆԜ¯_ÐìY›²E;¼4“¥ñSØ{± g¨gµ86. œÍXwF¥Å‡g§>±êmÒÇôxCr‘ÆÍ¥žÈÈÂòì 0Cd—‡+†ô?¦ -én… •Y»š`œ8 겯ÍæC—»/uî™E$ãZt$փç)¤Ri÷£²AóZ‚ˆ?á»æŸnÝÞ9τNGû¤äñ4©¬—¥¨ï¿èroÅôf/³¨~:Ni…’- ˆ¯†Ïîð~`ŒyY1 F9t™ÀKªöpýýqüG‰ -Y-öR§Ãþ—ÆӅ{R²É½îrÇó<1†v Ÿ=A9¯×¨¯b¤ò–É1pÜÉãPÎSöU1žös–†­èIû׊¡ã«ä˜—yg‰ -×WbPabì6Vûó<° Fç%Û̋ͬŽˆd±©¬§õD!fE¹ÐÝ¢~Aëù&2µ}I>ÁǽÏÝÄ/ e$ 7•ñðzz·çÚ:…Êh,²Ñ=dc^¥}|K”wfCLæJ‹¯ë1ë4<y€„ñ`q,r’ôEJKHko,{St4¿]7½Þ‰˜½š95Ç8S­ò9’H;¤æa®¹ù»}¤!÷¨vçBFFÛn`°06ñQÓ܏©÷}™ï#Fû=*®‰ì_°ŽNÌé/ô¿<¬ É_ßð³»=y‹KldºR|gÀ àLœÂ{ýÝÎÅ-óWR®žRõ°‚¾E¯ð“š4úŠ!•ë¯Ö¿®T”?RFDw¶¸zuöµò YîÀµ¸ÃÛ¸²Ê•‡ÊK&èrÓß"_̦¾+=§ÍúæÒóºY¿€xâ­ßïBì¹8j|i6ìéZfˤ L8Н¹û}§¶" É#¦÷Úñ®֌5|ò¬TU^³;'&)Jý¤Ú&fzã ¥Lb[d©z<õ™¿¢ÞÑ õ£ß2NvJÿ–ÝFH鲖£Çè~´ûKôÈæG…¿)¬ý¨^Ùá“ÓòD¦õ°Âð0àîN^„ÆpöUrTÅXÙ¾LPÓ ¦~-ûAօ˜ “ òI;èñR7V@¸|ç^P´ãHÕ@Æ Í=4oÛÐt¯ýˆæ/eñgozgTçó½|ž/æbm†ª‰¼KÀB^“8§^räÇÈÉÓHqD˜3Sˆ"ÆA“žG¶üU’õYÓï~!V_…Õ“º°8=)WX¯K¿«3×ä±X]M«ï â-çîS[%ïkú7bCDÀnÆ¥»sQõSÐ]NØ\ÚÃÞ>Q8µ}×¢î›ÓWáJeÃTÊZ¯ÃEGó}ÆÉZ·<]uI2»Ažf8֒ÉÕZ„åü8ô ƒ;Pb„!G-ŠmrÐÙ -rD¥m®$F΀ï˜Æ &ÝxY ‚¿3 á§' ÒPmÊq±T:V±àµÁY‹€o•–ü×øCIaÈíj9p˜™Ÿ* p¼„j‹à¢ê­a³çJ±þnAßà8ô¬·*ØÅÙ.~Ò+œþ±,âùK*?hL¨yY#4²é3Òašúx ۜb‡Ò—º¦ùš¦v@!ýy²i‹YßEh dI$Álº<{aÁ&ÏÞ¾³Å<¨Mzq,R1H]Haӂ´×·=î¿çM˜¿kD~YKÉñójö«_p+QJeág‰>ù‹ˆc‘9½@¸PùÎóþS«FçzH€ím?sé àÏïHM¶ÒR…ÖÞív–Zbíî¾ù!&–¯9æ<^kh(êê EÀx‡<¦ÐÍÓÑÏØÿ -¥b&nOú H<ƞYñŽ ¯ù©…îõo1³ñHw+ ÍiL#÷/ì,n^·WÖ ‡ŒO.™IOâË^¦jð5m0—ž™wß6Êץ㑈u= J5é¡bMÇOæëÈ?¨{Êd¯éÕÿÌwÓ9ê²Q#?‘~\’’nx!¢ç2qeTV¨{!gkà£DÖ·2˜¥ÿ*nGuj7‹‘ãé~Rˆ œÓšq]ZÒ±Jeñ ,þ¹^Ö3혥$ÂBxúYCs¦dV˜ën]gý‘÷[Íõ.ßV*Ńb$ëCI, ÒªyÛ´&åGûÇ_ú ;÷ìP¨@ü!Rvš­OýàìAÿdŸ9µFÚ>jkSÃJ (Í÷Y¿à™U/pnOÉø™þ%nxªP!`I-¡É%{ƒ!ä´h##4®ýYã ¥¨˜Â•]-œóå-¿Y•öF5w°ÇÔJ/Í2èûi·¬1¼¤b{(\5bITîEåzBϳ4Þ[Ò=Öî¨èù|ò›#kìK‡ŸÊ@9xæs|J‰¦²þµ7QŒÞ¨¬ÿ5´Ž•º[£[(­,{8 ï(¬îLŒ[\íHfÒ°_)^Đ(½¸Ý#T¬;%Ö÷¼È÷±¹cËÔÀ!’ô]ŸçfðÁÕ{‘tð‚ŽD‘_ӊy¥œR¾0JÈ Â§)Ó6.½T%Û<@X–ÖjÀ”ËaW‘÷ˆ`2«:ÿ~Xµc1EJô…|€—vx(»ôÕdñpO’rAg±° ”õÁ0&xuÛ½g|΄Ãð³/Ai× - m-"Ë£Ÿ†Û%ïÄÞmjwχ±œ?â9ó’(Õ¸¿ÎÀÑ%* #vîM`c‚wP»@>^¥ú+ý*¼Iàiw½¦ÓéîÉó8ðCì’;|já¨^¢„‘Žò„‰qc¬<¨©æቋ%æœæNNa%NbN&¡ÕY^I±?Aè*ó¥–ALy9òGõX—n0ËïÅ/(¥Ijõ„ÏÃ<Ê¿¯nàJs«Y…åóÆ×bXJ}ÿY¼<7ٟsêãÃw68R(X8‡9Ю<^@Û;šL‰ÚÒÊQÀÝ¿ê2rֶޔjT߈Å_ç›<7íM͗Ùg.FLÍGfŒ¼³x~Røȑ1ïò5‡³ÿ,v4…Í*=<ћSe9Ú2r› ÀÿªɚÍ÷ÝKöEkû4~…ÿ*uh1ÎÃ4X–‚3_µ…4½b¢Þ‰ùæ|%HÖrçiÑüûXNÁ%…üÆz6¯ß¦èÌônûs(ê‘mV“åèFü(îõB?eWÁÊÓ0Ë<÷ÃW»£ˆÆµÇhàð²:Åñ×ÜjS¸Y9 ™^Àp–òÖFÖqG\ÌȞ«qÒ¤ß!áŸCNxùҜÙÃ¥mð›ÈÂT y8=èSNYóžO“—6<ârIh›³¦9{ޅjcúêdS #ódW%—êM3֞p…üsÚ -3eÅa?(ü”Ÿ—eçÍbJ]Ç)Ii¿É#}r¢ª‰x0úêýÏZÍÁ¥)Ǐ¤Šþ²¯hÚÍ>gÚPWô„ò«œ‘Ô®’Þ? 3yö“òÏ$z߉õ_ùÎÈ0’€>™~F›¨‡Z>¼¢ªÂ_Âî ¬œ]¦¤1ezà -‘kùE6»ˆ P½Õó®þTԃ$óõ#’Sáð¢F—o‘ŸáBB¢˜á:sepÊj’>^¦zš&Ý.FB@ym9r‘­ü×U˜p”î¹F5‹Þvä‘ô×X¶Ë¤'1=b‹ºN|F=½ rß#þÏâû1ë­W8…ºYŠFÝ*ÁLEI(K7 ÿø@ÑÉ!®¼¬ªáÜmPý²È~ ƒø™;uƒiè–K¦oþØB ›SZru5VP%¯ýQ…Õ¥\…‡ÓÈ@Û%+5?s­ÖÕäu@s‹â˜-2eÆÜ?-&£¬øYx(ƒM!õʊòþ˜æä­QììCéšEëÂt-ղڔ’SoA20MëãêÕ³˜bIoלp`öJ¯'O\£È«âùä-j€¡uÚê#ÑfžÈÒl[ Ga—S¹KÃí¾91­:«ç  GúuÛW`‰ Üå"ãKežW­7—t„|‰®Lèíw@£¾ï»“–"šÆPå Vاg]BQ‘ù}%5D3kÊ!§ùPçyqô½ó«½Ê _ñ{«Í™ -îùÅÉÌêi ËϜãÙ¶Þ½­~Pˆ ˆ˜š?΂r¸&õþelÅÕà–ÝØ[ºg"8zܸP"øi7рÝw¼Â=°b›ï"¤ÇNƒÈ}3’eyý™6Ç3ǏòñãDµ\û»Ç¨‹ÒB“zN눅”iZêð ÎË9JãûÝ«+ñ½ ߉©ä8ng:¬¹¦Ž¥¢ôI{ssZúËéún¼š&‡´ò2$˜{v à”lÉëì’yë;øò|"Aeu-ÚC­Ôþ«aM=ÛÜl7QùÜNïùÎÃãSø¶ž¢|äÈV|¸æý„½wÕ?µ:êk%—ð?¹4~?ú^ŸuåLwž½V+”,ц°ÊÞSœ§<Üà€¬Ò–9üͳÏõ£kêO­O(xÍ —OiE¨K¤ØÒ쁞Û5óÒè\T¨ÁhÃÈÆ]Ší?° 9YŸYœº§Ïe¹ïqÐMnÀÕaã|á¾Ëý…dG‹'¥K®aÁ>m%VL§Ü‚¶Ý׺ÆÎlï|ºüHhòUS$ –‹4~ñ/–I 3‚ÅTfè”õ„â*/]šiãB5f& é w(eýxÚ‡‡M«ex0]c|*pfLŸñ8µî3Úqg ªxM/„þŠCWi,«ð/—Í2#qj8@'LYK)´RˆzNËX3¾cDÇäJÿð^‘u”#y®ùy£`‹¡¹ûtdðîÍ&½emü‘ŽÍá70&YAârîê8¤%3·-ì憳¿æӏòm¦ì…—ºÑxŽêÓvܚ E9E×1 -Å ÁÊ^ôš}I³¾Ö<H¢tËvu¦›šm]]Շ NðeîU²»^ØèäŒWÌÔî—áG¦í¹1v4#ÕDãÕÇ Éñ‘º¯œ>WM~jC"t{mŠ~“0".çpÿ`_¦3v¢ û‹ëåÍî\\ÌÞD^> €½ ømw»½ù‰Ž4Ë6ÔÛë0a_zæ’ý~}éºÐ„q–÷I9ŸOÿ†¬tzŠ [Y¯ÖÅ­‚ÿÇɜ¬Ï[ÏæU_ Þf‰ŽC_]³‰O‡îï€_K5 DۋH‘=x'•×“7évù¢+Æ-§ÑK‘yÑÁT­™CÜê£~ø&©IÉý¤³a“õÔÕjçñ«!Q*(±è”±ã*¼ÿ—Öÿ7øÂÀÊ r…Ãœ@®XXÿ"™{¯ -endstream -endobj -12 0 obj -<< -/Type/FontDescriptor -/CapHeight 850 -/Ascent 850 -/Descent -200 -/FontBBox[-33 -250 945 749] -/FontName/ABTSXQ+CMR17 -/ItalicAngle 0 -/StemV 53 -/FontFile 11 0 R -/Flags 4 ->> -endobj -11 0 obj -<< -/Filter[/FlateDecode] -/Length1 714 -/Length2 2433 -/Length3 533 -/Length 2973 ->> -stream -xÚí’y<”íDž,3…LHNvÆÌMÆٍ֠Șy0̘‘%ûK)•(ûš”T–W)¥(”Q©0ö´"²g-ËQ÷=ŸÓ{þ9Ÿóßùœçþç¹~×ïþÝßûzU‚.žÊò÷°˜]…,l ° -„¨ªZ°A2‡ÆbZ’9 @¢<×@#ÔœþN¨,ÿ6ÍۇhXh~wa<dÓ(d&`Kæø€Œµ -™XÈ AžN|ßAvHE@ (@¥Q8€'èMcBô¾3Y1½Xö§LåúÿÑ -فk\€Æ§&°FIe1é!ô‚èÙ±ÖN×Xþc¬Cõkø.nGf|ÿ>§¿´É =äßËـ-‹ -²™¿ZÁŸl¶ •ÆeüÚµâé4 -žéMäO‰¸‡ RhŠàE¦‚?tIýbmn?ôðæNGퟟôgӁLcrœBüÿŒýîþQ£þY¯‡M \‘$µf\[¼¹ýrØn&…E¥1½‡Ì¤’ÙÔ?…¿B™›³‚Ãtõõ]´0ÄXŒaø¿úˆLZ´² H$ÖÐà‡Já²Ù “óã/X»ïµmm:  R YÙ2´uGt”´g=fêøۜï>ïp€Ü/K7˜Ë—}Ñ4 ¥¯Gtúós˜éÚøõ³Cbڂ†²Ù‰Š[£¤º9÷ú­×ûdµ¼žÖ¸¾ŸÅÝ8=¤û -v‹$¨W;&Vq­ÔÎ7s_/ùzššÏñ0Õ¨"_õÿ$âA7õ:Iû¯«òãɁ{8 -÷Q›díœ#så"Ì * ¶%¤ gÄèÇ­¿ìÒ%F¶ÝÜç÷áà£lÜè¹ ¹Ù¶M±¦¾3½R¾½nŸNïzz¬Ö^’ýsE¬lÛ`vËä€p}†?w»AÜØ”º·é¥âj¹ Ó¤·$¼(A:>¶íʅáî¤åƒez‡µ ¢¶BEÛY×Ë G·¢ß9X¢ <­SëM¬ñNWsÎÍi>k -rt“-¹ú»ÐÝ yóýúÜéóY“CYž*ªz'SÉg¨¾åÑ¢Þ©ÑG~ØØ£Üí5W´£O£vqò”í”ñûÚ:…^éÊå¦AùnÂ%™9isf:á÷¥s-ˆ ú¸8ÈºÕԑßÏDn-OÓâ]N¸xÕzŸCò öì|Y³ÕýM;»Hi÷b»Du›¢¤–¤NyԈ´/³ b-ÆðÂ'¹àX'-¼âØÛ·Ò7°íB’úmÀeÐ5ᬧ|=ŤÓ!fzÊÇ_û]Öã ~üÉQ­›Åêl"ë«zKWÄ?‰o|S´ƒ!•²ÑÔ§™ð‘­<«g¶?Ø^G—/‰é~#Ð_Sº û±î[߇ô<ƒT›ý¢CÑaQ®+‰2“uŸ§Õ^̉Ti:MÎè®&ªXƒØk^ ՝ٖ½a.^–ÐڇØíçÏ'¾º±G=oÍú¶»ˆZ®Â†EŽÏÇt¿í|7x,5 »9×&g¹)âPƝøR#{‹É‚Gċkî#+ÝÓ!§Œzö©-TM -|–x±£˜šAø ÷t]-»V@G”¢íxáb…ºß‘o¥ÖÕH! ‡ä&Nõ« s²ÇúÈã3ÉÜ«PòØ0±•oÎÎìYäLêxæ؍¦˜77À·›öÄÄ&öó‚ÏÎôí}I´‘D›¢ù²ûN}¹¸‚áqìZøŽ‡wL‡¼‡TXg5Í iÈI-v•åè^¿pvnQoçu^6˚'B¼†­GÇäx¬TQ®¦ß:tp”+YhÐW+ã^vRܚ7?DíU<ÐS|µÈjüøí[›ÅnN¯¶ë·[+I_ȶ’ƒšeˆ¶Æ÷PÍ¿>’W÷–8fYËW>w{)¿çðK» ~¨E9™ÀJ53•ÕAT5  2›Lï@”²®½¨¾û•=Ý»{ȀxÏaê̄9|ªjÓ@k²ÿFøSñ-5}èCAVŠ$w³©@;³uúãÞlZ’ì;ý½î͝/YúmŽ[oš%©ò&­—½GvÑ=%ݺ®my4­o%a ®NÀó΂wñەe$ÃU'Ò-75å¶ï¹†rþØ¡Îä‘}û)áÍ›Ó B’'Då\호$u¬”R¬œ²ìnõ Üdö{ÌEOõ³Y•¿Ù®; Xwô+\HõÝ/ÓNÅR ˆçCnlA˜Î§äiñäÇ=; ªâÔ¥³Ë›7.MS™8`9®]U¬Ò+®ñêCíüÎ|G·æ%kòùò˜åLÃŒ™Rüüj1ßö•[Å®£êb˶±/—Ô׍%o¡Â7%„å={¨‘±TßõÈüSîmÖ-hºiñ›Ô±*Aœ¼yè}jI³'<˜Qtj¹úÒá }’â -ç‹ñáÇõËlFm'yZâ.` ëÉ0Z¼¸£EÚÉÐãÅ"ŠßÄíKÐIYŽ¡M•54Ä=?Y:Ôâ¬!…|þ·c5 C;‰à„"ôKæT}[ uÇ·g ӨѮ€Î^ ÄÊí$iüZïãû¥–õ%B‘ÔN†ÇG1ž$QMçíý$¡ù*•ga_zšP—!Ù“ª:Øç¨aqÕÐÍÄ¾× W|~3C£WNq­æ Y°¿iùe¡aë¼{÷ ç`\¼$ܕ|üv(T‡V”° ÆŸØñU9V$=ضՇ†q&|IãyJµmqIîÒݯ26ïï*S'pûD$«Ä«Ö) {ÚÃ󗜲òäéWTî/~]M¨z¿nPîŒmu ¦G¦õÒÔÖÖòÊÆTn;ǙÁ;ë†Zð>"❑8k 5™‚¼.[Œ§¥45ßɈpíRòŠxs–¹ôúޕ(p\¥çNáѯ¢®Ìú+W·ˆëáì's¸ cCÁ?õß!ðÁt¶ü΢ê§/Mp…ÑÁé¹_oMËa'ïÝaÎMÞ-½ °ƒò6?à¼É²ï™Y0ý´Ge£RCñÀè1éGSùük’u՝zuâ*_‘IJ•|Ú?dä.+[qG8oЯó,MÀ\+öÕè"nEWm•Þà ÿ/+’Ú¢l>sùñ~`¾Æ’iäž<¤=ê"Ü´%ÙÙáù&‘ssÙÉ<-õ!|!t0QÐ8¦ &st²…ŽEIVf¹8²ŒÆ´Rä„ÓŸÀf㩈þf -ûòÍ -Óm¨Ó!¹øC«;Ã¥¿‰Ï^÷ùÍ#j~¦OÂ>¹èáésOb¹žBþ!¬<ÍQXŸ hŒªIïÄsµ›Æ?Í©üîQªB?ìqÝî%ÿEP:m¸fè4¹_¼u½bî ;„t:Òí¤Z„ØôÒÄɁ±.¿A&Wûjp}E)J8®æŠ•¯™m^»Ãß;ê¢àn¹ˆÑèöä¢Ûëü1‚’ šÏ -'–ûmK}¼»Ïf+æùÐN¿%iqoÚWÕ$]i¼…AêàÉߖ,Ü ^Ú£vF“òž‹¢”ÈxºÉ8¶i»+'6Á™ç§ÄôKçµU%7yåˆ{ -Èÿòü?à"€BÉl‹AfûA ¦ÎùÁ -endstream -endobj -15 0 obj -<< -/Type/FontDescriptor -/CapHeight 850 -/Ascent 850 -/Descent -200 -/FontBBox[-34 -251 988 750] -/FontName/WIVPZW+CMR12 -/ItalicAngle 0 -/StemV 65 -/FontFile 14 0 R -/Flags 4 ->> -endobj -14 0 obj -<< -/Filter[/FlateDecode] -/Length1 714 -/Length2 13724 -/Length3 533 -/Length 14282 ->> -stream -xÚí·UP&íÒ®‰»»óâ6î/îîîîîÒ¸Ó¸»7îNãîû[kÍ¿'æßs²cŸMLÕIeæ]÷s=YQY$Š* ¦öÆ@ {;F^€¨¼2 +€…‘Ž‚BÔ häbio'fää°ðð°„]ͬÌN^6n^f88 -€¨½ƒ§“¥¹… €Z”æ_*.€°-ÐÉÒÄÈ oäb´ýÇÄÄÈ bob tñd„mlÊÿºÅ  t:¹MáàXX¦–&.c ¹¥Ó¿˜¤íÌì\ÿI›º:üWÉ èäü€úNÀ?”¦öv6žS “‚ý?«ÿaùßÆú¡úïæ®66 -F¶ÿ²ÿWŸþ—²‘­¥çÿ%°·upu:äíMNvÿ]ªü›<ÐÔÒÕö¿W¥]Œl,M„íÌm€æÿ¤,%,=€¦Š–.&3#gà¿ó@;ÓÿñOßþÀ¤!­®¨­A÷ŸGúŸ¢¢‘¥‹ª§Ãÿ´ý—úß1ËÿÿÓ'K€3#33Ë?ÂÎÿºÒûo‹‰Û™Ø›ZڙT\ŒìLœLÿgâ…±÷ðf`c0°r°x¸¹\̾ÿOš¥£+PZ ÀÁÌÌÌÅÃþ﬉«“ÐÎåßoÁ?ûý¯ØÌòŸî@¸ìLKPzBºGǾ%RŽéeE¸îÒË Ž§¬?c7ð6Œ+Vá¡ÖŠ«ˆoçŠ1é/ÔĂ ~ò| }Oúƒžžx՛X´f“]:û¼5±Ç s迵Á˜z¯€1í:MtÞúÈ[w¦.=·Ã$¸-ïK£~=k¦ÕÚt=ã«M£;AxM–ÄÝe“èr žê¡ìfDMµÑq<ëYÑ}mƒØB¿Ôî…Ôüš¥,4K~L1â?ì—KIýàû£÷×g˜Ž7ͧڡ¬X'â·(&.!Y3”®—(MxrŒõe ŸSÉ@b´6[ÜQ¡ £ %ôé#y _*e_”àV[Ÿj¸„ÇbÕ¤nàóqóÂÓó»Qµ+zR¦k¬ThÐÅé)¹u g´¥AÁ>$`Õör™Dö×|Y ¨4U¯ÍY\ðRÅ/ޮՇn2<ƒ²Ûä„ó“Áaa%5ӊwê‹6_®òlZhkU–äè®î×ÐæèV¥²§bÓâå -ÝÇ%‘‹–ân¥=™ð„¢çVó8ª2öŸbØÌ®ûeµ¿PpÖÆÄWa_výʱBq -«äíH®ªaóZ¯%ÎÓ¹å ß›ÐùZqº`kËõ\”"î̚ü< M±.SvÕ°‹ILŽåºÓ6õêÍîJYømýa%Ôa&…$Ðwo4¡yo@»ßÞ{s ú–úhÙ%ï¦ûMˆØ)u)XªC»'G‡‰^/wèrpr”U^ŽE‚–oTVæ‚k±Ï°õõ»„ˆÌçñòÏÐs:ï;Ñ5GÑË4E›²,+éð¼Ó T¾Iç6ùv¼¦±ë -×IԃQF‚„›ùÁ{…dàërús\Û5»Ž1 À'¾èkÁ©*[À©e”|(·]ÛFž*+¶{d.`&dMm=<@ª7Ät~ë¡LyWiðdÇáIÂ^’³‚¨†ÿJÏ©út8+ x@­Hˆ¶åeô³äò`õ¬ÎRª¶ä ]å¦þº8£Žú!{E ŠãY7Œeä(1˜-oºcJÝ­óyÌ€ï¿Ü!öPX]|9ñ¾Ýv;E‡Ý_·”Lv«¿ÀûdiOÆ+áiXYÇ”ž—±š€P”‹Æ¢{°˜GÒhÛÅT(mueé!ÑÀ{êÝluÝ`f5»Ú¦y8Ê·ÈÞ/1.ÆÒ½~^nz'GZO3-Îyb!-[ ~…Ô_ -Lüð°¿vHÛ°2ÁïÆÖØӛ ’2½£S‡–@V¯öhÆ8ݳéo[ål³j-}.g2( Ÿ¨ÑA¬ -ï²w¹Âb¹ }ŽQÖ+àn5–ð!P<^:^’•*,<ꈕ‘¢* ÕoÅþt.Ì3è;iñZÉ.ª+YÕ¸=ÝëüPÆÊ»õrh²d}ü<ˆÝ 4ïÀ -eîGË_d*q5Ø35Å`z€lFj2}ðó$Çö=¿ur93ù2ì~„åTPç·©û!ù*àþÆåÁ±J%ӛ~ßR‰²;•.Ã¯É ‹Zª–“ãM”Îh¹c±ô&*šz¯ê^k€Ó ØÆõëhòÕ8á‘LÄ?Þ§¿'›»U9:cx²l¶øXe%•­Yü«=²²K&?…üGŸ@¾¦v'cp Özµn9^š‰‰§'r]k0hƒ@# –‘´ÄUtA•$ncµq#J‚9šÿ×ä£Dj¸œ/.ñ¥ôcØ%–,;µäPÍm‡F؅ÅþÚGžÐ{;H—ǐ'¥§4¾ì-‚>cÌfæ±=ýsç2DÓös -zú -Ma‹žƒÇË=›@þ® â°{XY¹xÄÒöVÇ«hÍ·gsO=?–• UËD¿€ü"ååá4Ó ³kØuò•<ܛ(ɐ㯨„ ®•7CæÞ1§HøYuYÌó-”•AÞGïêþ™Ì=™N¹f¸uÄ{•Óê¿à˜Š0cÍ:ŠÄ¢ ùËá¦ÜQaÁV4ڋËøƒ…–¯‰—i÷YРr߈ÐBÖj€ÓÝ¢.ò`Ñd¸ì4÷^d+cÇü„+Íq‚òý¾¦]òœMC#ú˜¿[3e.Áäþò…‚F}·+ޒÙŽt3Æh´öÚ(¿1A$¹ÚÎ -xz œcá[õ,‘£yJ9î×\ aËIʔa·²Rᥝ;:º%Aé®äµó­ E—Ú/FÝiÑ{š‡o1Ÿƒ0µ+>Á5&vZ½˜`³_R¶f%‹üӍ´ Ò-ãa&Ö\S0•¢Uþ¨ÿ ?†X+t/š‚ZÒ³2v‘QÙcõ‚flœVñ‹…á–¡gs<9&Í5]îçþD\Ñë\rªª77ÁؙƒuJ||}5íÈدÈçƎvc`XšxÀŽäyUTi~7‘{SŒғg3I۝W : 2cE¦ÕϺУB¾?âRJMôÅÿ‰Ãt¦¾¸í ×3ÎÀÁLTļÒ_[â©.¸k“Š©×Þòf(uÔ/¿ ëßÐÀ¼Ö†z«:Sí9¤/+Œ[“Dµs°¾cÃçA>w&&kƒÇ§zŒ½Ch0æå¼=w»|‡Õèñ;ÏåeQç»Ibší(&„j‘P;?p®’•¾×Š”ò]±æ8HÊöý·äÊêò—DLeš®—îŒ`)“yFP)xvhÖGjæë©ÖCkB+ÖüßMùԊ#$y›0¤¢?Ói ¾ŸÆ$ º~DØTMCuëkî„q*— :èåø”þ*ÐòÒLÃt²WŸb÷™ -ÌÜþ¶°¹™7ísz˜aaçÑ6Jz<²— ²u€i'þSÒ$f™HN¤V/vuÚ0›nÉ¢¤Éòn¹ŽŽ¸©‹#„aç(³Í‹vAê§ÅpD›÷h­J 8ZìzéÀ²PÕ}¹üQWB¹¶ëdnînw… .`5å,˜¼øZKڎ 4Dµ±po^ÓÑJ“Aa‹ÉkuÁjºâ†yÚ©Ò±0™¤áR‹&–kîNxzmr æPÚá²ä'§¥ŒÚé㐧 ¸¦1,F¡§†x¢Pøaøšû¨Ê¤|éû;kÝ®RÏ×̦Oøï|Î2§àIšˆÄAbúQ§—Pé,|Çß‹–3 ֟ݤ~•gȲ‹­ØÉ#éT1Ñ´.*‚ì{)¾Y”Ôàœ3¯NÌi¸ö%'Ä &g¾ñªBÔiÿZ ê•FôÍØïû•z -Ùˆ¯<ÆÆ;ôÒX’’7#A”>J1€µbp]H2Qcf~yþ‹¾ë»cÚ/¥{Q ^m w™³»BüP_f‰CNÏx‹8oÕҀ¼„ šm}/?ZGȟŒ¡Q"ãpÆ|ï )Q¯A‡ríÁ=#{ÿ—óK>&Å,GL²|Æ]ÈLjìq3ç+#˜{]K/†â)!ãè³oðjXD})î£×Ø ?$³ïl³O -šçãÂ÷µ!3rd†ŠZ/paž†cqxwÚ/YÊTJôå‚$uï(¤]‹ˆ=¹`¸¸˜.ž0ò¨£Öì ÒWsóØ_°ˆ{à9?I hõ´›Š„oX¼ûJ£á™k–Á•²%d+ú,B$ÞöÕü|Åë]N…‚~€™"Æ7ŠþLá”ANR¸Ib-¸ÂIFß­4²¹Ôæ}Lv¸¬Š´ ²CÁ:áòzWŠíKä’HKaxQ‚ «Ûù¢‰Ø)µÞŽ¾'iÅٙ¡±Eët˜Êñäb—Ä;ßÀ¾'¼‘°Í X#¼ -ƨŇça"ãþSžÑÞù6˜Lgj‰ìkiÀ@ä— æ0ô¶¹à%œ&–ãéOYÍú7Æ©möù—€ß§ƒ+ua¨#~ EÃÕu:•jÞyjµYÃK¬‹0aZE ÓvœO+0öÝO߆ЮÁ8&#.OÕ_Òî°ÖEg.tþ­à„p퉹ÀŸy‚¦YL_~ ±5 æWÛLáÇ Œž®p‰÷]Yø†cÄ^Q™‡Wü¡‡Mè¹a¥¦ÑZPsûDúBuµþ<‰^Uà‚É?ãú¹5†¥2 -G4*Eìžrø å'0³R(ö´’Å”=SÊUÝ[A¡z2È0Œ†àx—G9¨úT±mòè)=êœñ‘I£túÈ¿Àýd¬;ŒØlq9õªñÑ 34´ÌŠùØQ„q))J’”¦cï.-€w,Þvø FHv=tBÄk½¥Ö‰Un¡z#þx©ü‰q9wå¢òø‡ÆúÊã1å}é&ɸ_¿áÆö¯MÞΣ?¨ºÛÖó -´ïlœ@ôõžˆáßäç’Rjé‹#û}¨bò>äFö`ê/É>–”ᄲÑð¨Vq -išþvÍJ_Ø gpÝ)){S%IªÅÜ¿*¨£…1\íä­1‚”Ô¹©‘ Îse¨F α¶~øýÞFŽ\&­[Ë)ńNžì¸lz¶º>C´¤Ÿ'$ : m}8¦tè÷^-ýå´²=íkº$ô‘¡Tñš×~ž¬q2s£2>*#ëh ‚2¨Ã™½-•&®3léDÁ Ë­õ¬üóQ*3¿ëük{GQ¯C¼hpߘIôfI^<³Û[YŠxPöì>@åk;ü™a#ÊÑ;RÃïl8̈‡P™,ÐY ³|xبâ~3^qüõQ.k‡†òɶ¬U¤þÍöÝ¢„¨$£9;"ŒÞ¯µ2݀ç€Èðm³iLŽÈA¿÷T{qÅq›ˆå÷ëªLɶÚ'®Fá¨wáË7“]Û:t%F†*™t2BèŽ65ÙÓY-ç}•c§&"†Ø›r¢Þ³jå~­ÙëHŽÌºµ ׃ÔÍrߞj¹+¦P(6¥ †¯ÚŸt=*»?˜’“\µ³ŒÍ¨ßLjAj]¸Þ†ë.ì~Ÿ“ëBhˆ <þ¸æ¤Ã¸f7‘ÝKv;‹Ä} -âLrôs¬ÙDÉì;A†1¬pD°Ýwƒt˜~kZpqÆ¥Äû]RzX6[æKL:êÖTzYR°Ž»2Gg ǘQøtKD&Ao÷ú• ã?(–é¥Y™S>€Æ‘Ú˜ßõQ$[ïçtIÚA´ÞmPÚ¸\ȌÈ~§ÑO:ë…,Æ|Ép¼:ÊTX˜‡t'8b@³a~’Ó¹kÙ÷†ïEWÓ(22í·PB>!›ÂE9<àu7*Uµ_†EááH3-¥ÌIñ»Ìˆ÷§nÿ˕eg¤on1â}û«Šû—E<â,Æ:¡Á«÷»nìO~ƒÂ7‰ È¿Sš‚v?kÄØ_æÐzÅÒÄR{y‚ Óäü:‘½’"D?äàŸ šÉíT˜ØLêÌ -Á÷‰ð»C¤þ¤=JsÞöÚã wœuiI'¯¥IJOX%[d6ÏX½fH:{4% ø3õ¬4Ú/Bœb÷wmÅkt[Š¹žèN™lV:W҃«st °w×6{¹6–ÖFd$lã;Á­lë?Î[pPS™à¾‹±œ€Å`C@Tõ!>‡â:B´V˜\w;åÙí)nï/Z<…÷ë>ó(˜V¸³Ò\æ»0ÜPõ)D6ٜ=°_wh‰\ap)â_ځe``õÚNÌóc/Šæ]ða„e¤Xù"0 )ËÒŀÏý–rMUOAü8@Üáuç–W¾ä•¦Kb‹Qeу<ÕCì~ÔE‹÷i?¹ëÀ·àyXZFGËïƶ!]8ožæ»}q£H@ÖQ,ËuúQ×$] °²Z‚ŒiP¬\ ï%Ü ýh™99ï6ñGe'þ=wN@+5Û%ã´·ðÂ|òӞ€và ĥU»UL)åJ‹Ó×"Op–ëþ·&S ¿æ,<ÄzP³³€ú8ëÄÑ-êõÈóW¿N¥4Ç9©×Õp˜ˆ8ƒ¾¹n²Þ¾°•®—?䱑/Ë6 æÁñTMbä©FµHÀÎÎV‚×Oô­ðÌ·Tx¬@øZæµÍiÍTïQ4jCh¶C1ÏbÑO̱ ½NAžg"·ÇÉÀu))'ð.u`† î#Ëm/g3 ¢Á`$Œ†ãÛÙŝaS ®É~?3%uârm“pè0å”t¿|i±†©B~¡i°ì9¾Ñ˜½2Lv)Ÿt….z: - ™°¦ÎˆR²ò­Nå°£Ü”Ú»¼¬œ™º$ Ľ–ò÷Ñ!xPÓg1d¼]—÷þ7 ?’Ý(¨ˆæҜR–¥…2œÏ -x„²¸å×;…N*¡{¦0•]iF ^uôûR$Ù2¾VëBÑÐÃJ4éUU;¢|¿¯¡…Š¤=º}µ¼2@»Ã,âF.O„üÃP¯Ósxs;†Ã·"ñƒ×e-h<ÜfÈÇ3‡d.Zn„Ñ\ŸNؑ4YTN‚²bŽfûòG?€9ö±æÌ]M¸eƒDh² Ø´¤ÞáõãqÃü–Žüg>€Ü…RÚRéݓˆòNðìµ²ž²ËHŽ +’Lé,Ò®Fl)jïXå‰c­ïَ͵ÏOkgù#½Væ¯MkÖÙÔ$üJ[ú·> ó%6‰ÄÎP×YØ– -þ1ûë¶/å³H$)•ßµÆo¡=½èBõ -åQÿÇÓ;Ž#»%lŠ£*)…¢ÂµÊÜ˹wêo÷sadœì÷g|ú“Gr>ñJ{0°ËK=l³e*êój%Î ãô8ý¡چ ëbšUo°Êþhji“ž?òJ½ýKðcš‰Óâ.¢Yθâr¬B~ÇI@Âo3Á;+!Hþv8_A‹"êîÛÈh™øFƒi½sÒ× Ò, «MŒtZ±šHAvŸŸ«÷–}Bë7žÚKxx哇¤Œd\j+9ׄŒ~ ²{Wc2!G‡X®¡rƒÉ@«ÀNñšuù6Ó܊¯†)°¨ų̂ý¶X 1†-?ã=2á -X¨9ZX¼`рˆ-ó‹O5ÑËuâF¾ŠL‰wmÿ]b¸K¯ám>cÄïkv1 Z\ƒ?¾TuôHQ.´4+}<s½ôùl Þmqy£ -àˆq‘ ˜ÌbÖNµO+ ö3iëÕKÃ° Ž˜î/½Ò -!„LøèDqºÃ¬p NÚÐxW꣹PþГMÜ[)q:ٚ„$eÇóíÝF¹$#æ9èf#_‘i -eV61%õÓ¯çW`žöz2bùӑ gÏÛhÝ¥¨ºmúüÖq*g’댍ò™îËj âTW#ðY9A!„Ø»fâïß!“V>U¿2cƵ¬=7r’õaV‡\:̑ßCÙ8s¯o®}ýîïOÿʈZ[õLèÈA SŽ”ÿ…qk£\O!Ý5Þ«åÈzå²4^Âýؽ|l]ÖUãE¦¢àPv™=l½]ªyäBQæ´.¿‡_FuV 4Ÿ$µíN£™µ3=°­4~L”÷«ÿï,gMåÉM›ßFIs×ó×_·ÄL%Õ½i§2`j„w ˜1$ÇR÷³X"Ûªáó:áµ´¼Jo±ÍÁ›ÎB7¡U7’¿W?ÚÆIãÏoÀ°ùÐóa:÷Ÿ4÷=ÐjÉ/þ'>§Ðƒ~.¶;xVÏæ@ËÖÝq<¹Ü€ -†¶F#ú.NËaû»–®LïnÖOÓ»;­Ã$î*Ý%¬å³æ¬PÄ#ÙÁ0î…ô>å ÍåD¢³Ära`~–â'ÒkqŽ4‰B[+XM×G66šÅìÓç½UµYŠGãVRÑ~䜲šß…¹¯±V¾¡´N0Q ÀzÖn3y0¥z"!þˆ·î0´¥ÕÕNvÜÞ%̧ìÝp¡KŸ¹Ã˜'ðĹ’–8 -õºƒß»·ˆaµ2ñր}zÕCèY ×@+qaV† ÛZ±‡pµ¸×µkÁ»h«2fíd qgiýkJs»­<ïÈúl‡#aøÕÓëÒÊDÈՕ@"Õ¢IdVÅEdöÈô꩙Öö*ŠÖÒ=w/“Pâ>îñ(="dFB@a ÀIE’\÷—ABõe<{W•Ÿôdõ”•> -â&wßp¦ÍÇá2J›ÙZ§6ö¶ÿ/YWëߖ=FRNj¶ì›?  ŒòójëPÔñãºo&õ…¿u„Ì;I¼ n£¤h—rWðÏ¡¸ã¶Ü}“v®Z¼##¾ÙwN´Óè2Y³â9½ÔipwS+–D .¾Üv|TÝÅ`\‘[[n,(šª Ÿz ÁàyZøäô1„0ú È©+Ö¤/Xřs´£øâÆ}¨ù©jûÉçî:òÖ¿Q ÌZSL†rëî@ÀF‰†ýIÊ¿i±3Í'ØópF,ñ/+~Óõd² &’;"QªóoÊêÛ9¢@l>uEÆîŸ]³Gq¡ä™´|=m"Lë÷<ˆª¹f¥^9X)’®¿ ñ(Î?_qIº¡ _]rÄÐL¢+L#\œßCʲSDõì6P7¼ûÑqÐ;²6àΗãT®)°‡t>·¿‹~ƒ–AžcûËïs¶yDr%çoŽ”æH0D7¨[ÙÓÒ°ž7°çmŠaãÖ®{Mh‘I^'Tt¬~ùP¢¨±#|=—#,÷ܶvf”îè†Â¼= žÜ[”HÌ 6‚!¦ ¶ÏFýI -‡Ñ–à >þ¾©<’Q63Эۘ¾T)š¦ÿleMfœ¤T6é+>г–¶íjNµ_Í×د,ÎU\ð +S:ÒmýæÔ¶µ6ÀItï4¯í~› -?v-'Dƒ¨ -Pɱf»»åΠ‘½ÃG3œË‹û€§Æâ…‡ËoŸ[”qË´ ȏÁ›³H:‘=*äZ3júsÎ[0靈*"±' þÏ?ã™6¼Ðu®¤äD„z…Tѯ‹uT#éÓª ˜ °BBíìI;Ë>Þkõ±ÓéJä¥*ر²e€§´Â'OO¥¹„ן¬ Ì´ñú ö¿+¡C@­Øü¥Æ•6-—²c_Dô¢Ê$jd*.|ø“ЏzÎYd´Qw`9P_ÈxßÈeÏcȬËrLU{œ;Âñg¹HÚFû!ÙÖ-½æµ,¡Ž ¹»Èý=PŒÎ‹í5C¹¥WÂdwZm˜§DÔ9\Úõ|”[ò ûy'Œu+óÏ.׉®oùŠ à%9”Öñ´Ø0+h?3tSI¯o“”ÞinÉìVW 7•!tNCÚ~Ó=þàÏZüÓĐäP7·jÓ[þ1L37ÃÊö›4¡ø<Î-dѯ“ù`ývq3agÔ3¬;Â1§'< .‡øõêýdwìôlNÀØ‰5øB Jêãô 6Ëý͚<”OE5‰N!òïP ¶*ôæYœ*Dö;:aýY¿ÐHãŒÂ)rAÚïÙv Açٵ،7c«à”¤y¢ù·²:-óŒ(Æ|z|K"VHè.µ¤]uÞËpŽŠ¿ñâ>JdôSýu]xqwí‹b²1wՏHç ÈTШÊ^¤ó”Äëá£JWö{€Úø…UBñœZOñ6¯Õ͚{·ýpíâðs8DØl-ˆAD€€'Ìü؝©îdçá¤õ°ŒÖܝ¯üƒ¥DCÿ!ÇüÒÿ\ÞΛ3–¹»DÞ&L ¼2ى ò™¼ÈiŸÎ°Ÿòkàe&¼²d›q?’O—¼i®¬tú¥ƒ|á.ÿˆ7 å¹¼eÜzU"˾ž‹Ü ëÕ›Ò#fs‚6VvÚ -ÛL“hy!l÷-ÜÆø°òe¥{ØœdCD=×~âde¿¦ U^•JRPèx3ôLù!¾"¬½œyW±¯˜£¢…CãHß=×PŒmô^‹ |oCíWÕÄãa\oÀ‰ÅÂǁž*ñ ñ$]Áè©ôÖÖ¸ayªMèùfÆrT8ۑîÙ,°>8 Ç\zÜ ½¶`ÐüÐxҟ.MLžäËóË]QY*Ð,~”-òFԍ®×T_W[Òø©S§S )~ ŸÛïô bŠ+µÙ•¥Òਉ ×TÐ= ™î÷Š·ÜBïÝøÁ:%¼!‡b;}¹ž!ã!ÙSòPÜ)üä‡ú‘DÜHá}fmµ¸’2drgÇ4´ÈtîªP*­Ÿ< ,;%?¹ql7 -x_÷½7‡`©DA4Iµû›NÓ¨œ­f<Ìûց'A@ŸUÍ$P(›¨õ›0D(Ìłâ¥[ÁW²Ÿ~†pc>ȑ¦Gbȉfp\Ûò„ie`’§žߕ&…¾û.˜ZÚÛyÅÏbR=ç$_÷/dN͈­å¤¹UO´ÑÔ4ŽËÖþPú… ir29+Êy°Èïr~\µ?º‚ºêhŠWÅ%wQî -¼³%}^³ìf*Û)0U±Ôãߝ8;`¶µÃ¢sÎIøÑ®÷›­.<)ø¼6£µÚo˜¼àn„l€ãʼnžäšÅÏq -™ $Ïo'˜n³&¶j -2º -ëU¿ìãÞ·†@ÅMhק-Ó1KÅTր{á”"ûsšß2Øheœwb ?/¶û\³9p © £âŽ%²TÁzË[AA6ªy]K¬o¿:ëžUXYx&ZÔ+Û3mœà¢5 yÚ?ê[­–Ê&â_x¿sŸÊ&ْxìT½UBÀÖ¸SýHÓC¶ö¥t’ÏDZI×ÍÝÂYD š¡|èí uŸ([¶%x(%i'ì"Q‡I“xLJ¹øñq­ç/ÍG½P‡?ÃJ|› (j–ù¥t³¸ÿÔÈ þü’I]U ¦ËþÒõý.$™i˜VLVYÒƪT\zìüÝì«ÿ­Q3>ǚúر›í|ÅW„¿“Þø¼j ™Òn‚)¥§3#®Vé„|û¦ûBf ä~³Õ 1T"yèNӔ -–8íåú³3Èäºßu›Çr™Cê6îÑĖ;’šé*Ð^ƒí²Æ’¶âzjÃ0YÔH·‹4bˆµ?úäÉQnð‡]ÛQÒý“Á{€=YÏPljòÓëÍ;¦š¬N mT&Ùt˜åÃ÷Àþ¹Éy„C[úò¯¢h¼RDÏ>âþù+£e!Í3—çQÇ_2Í7Ÿx;5þÌeÞ½n¨/W ܟíWAà…nãjT¹Ž#ø¥ r밁쬟Qìö ê™RÚÜ6ëÙA‡¥˜²V|DhJò.]ЭCa….²¥,…4^¯¥à©;%`Jw àßôó_k—U°(ƒ¥Š÷|®ûE?&a7·œ"A6V;Yåhs 'âoM§¾cš—ø]5#÷€×ø‘‰Å5Œ6~!7@d]¾Üƒd³qؾs)²w¡vÑ|YPt~E]xіÞÿ¦dnsÌúG 4s_|ô҆t%VnyËá) (AÚ;³Ùëyƶ&¯T3"@roW¯N['‡¥ NñÉBÅ¹kÑ{˱él V;­2ÂÅø4©N)~‰Î)›ŒžÙ ïCñÄ«•#º:]pt®i2 -pxÛS7a2Õ€ÈÒ×iæÏ®˜Pâõï†B£§ ,ŒäÀŠž­"·ƒ[AªáÎ8½ŠÁ‰’=ÐÄû8}ºItÒ¨MGN<ëb -Á¥”‡¸1×R¿Î¥V¬Ñär;Á¡FÌõB…>KòØ>YØd)åoQ•M?5k¤rH#‡Ùeü ý6ßêQ_¶WhbµÓ8‚.ä׎ø^¾ëÖ•M?\2Š@"m~€ËݾÖ+VpÐÕÿ}¶7¤¯¥Ì'*ÞiÞ|ø{è9V0Dbózd·WÝ -†Èu„å¼hH–æ„áÌw@”ìæ=U6Ô2Ó1Œô -!èxÕÎÎ:Õý9eÌí䳚ÂÊwÜ #ƒ»ý»syÏMcKî}âX%©ÚG»œ1îráåp|Älc–zƒ£ú1>Z}‰Ò÷”/~)˜È#—G‡Â-|Ïs¢º¿dËFQfvæ“V¶5 *˜­:³e˜%Î#19¸,*% -¦vËi;¼>Ÿ8j×6åÏnJÖVÖíwŸw®Ü_> D{µ-§¦ocsöp ±îç®ëÄõeKv8ãØ-Y| -H@q1aÁDñ¹M–ïýgäºmÜßñJs¯šÚ*‘±ûÉÔé YCvNL×gËõ,º.U믈ÐôYWœ+ÃT@ù{ÆÊˊßHé‘`[„ÿtŒ¹ìå ºî$äüÁgtö„‹QÞqYR††s^Òl£ M)è7c^FäÝ"$ôŒzVý¹5bYãtî¡V!ÈA).´Í#T˜`K5ÉÔÀ؈´ôÖ¦ÆHsb°(&M9?pÔ¦¿ö áç׫‘­¼ݍťÎIb6„ñTä-ZËá^§ù©~.›3 ¬!|¦7 -À4ʚªy³°li6eX#«o]‹hÜß×ÙμsÏ[®&RO]™ñ:,Y'`î®÷S6?»^h 2‡ô‡åv‹~ÜEÜÜËn !g:%Ë IÀc(#¼ùÀªæÀª÷æŽ2Ï5  -¶·B×ƎO¼`6K$a£ïFFÙïhö@“ýµ~BÎÈoÆ:Õýp’YX_G±'jc´í/ð#a¼¬Ñ®Ì©Mé\¥”g_Ù$…£Ž…ÃÐ__ÃøãÞëg%{½ ñuQL›ŸCfž³À’¬ƒ|HÐÕiW›e³žJ¹¾Ì%_N´þpâfôVò‹š?¨”‘T¤¼ãÉê^{˶ù-¥Å1F¤_¾'ab銪<îà_"J!•ƒužD7°Ó»¨Óäâ& J€Îåi‰T -ä†j‰~}TRÒ3Ô½E^&í¼åMEm*m¶¬À5øÖȔ®½¥CÄDçôޕҽHQeˆŸ¥]r<àUsr¸†,ÆïRHïGYs3øEÛF®÷øqŠv*þ;e]v -ºU¿ŽÛÀŠ†éWuÀQ¢ÊÑ>3E–‘Û¨¹èÃ3½.9m3Åíď± E·E¤–^/â #ã³ðÛǵkT•í Zl¸ 'WëŒ&¾¬¤ñJ.ó>Pð™.F6àª!†b¹ ÜýavCGëì„Ïôô³cH¤kNñŒ‰óö©tÅõƒMñ5*­ê§i •I÷ö‘άëj$¶¡|q'øQCögE2‰^06<¨­½9 M…ø=$c§è©"¼”œ–ýU2yÓeÚ6ÔË0õŒl×=pZOÅd–6üÝ?4mú¬©+ÑÖ"y_p!r!î$ïJLxП±Øk>ëå a‹”—þ«Óm%C´%atÞÉØ.Œé'©®ìloÓQ’ÙHkšå!P¦.kCßÈå1špL#:ÓÖY’‹#Û´X£ôαMë=×JÊþæ›…麣²P -­¢NƒÀ'¦mpÀ ñ´û 󃳳’ÄÏÐEV×ðÅZ±UDÁµwތ!‘y8¶![TQ™¦Çnûyâ¸B''K­÷¯æ~ˆâ?F~µ€³3Qý ]›c”§RXrÒÀ܏íÆà6P¸ÁÐO>°-7ˆ_~>A%ÚÊg¬ðˆFÓVåõkç4‘ +;×1á$ý¿]=…W9Ý'ž”[¯ðÚã+ƒõ·ß!a kÍK×y#øllƱ2ömðÛ1iˆ,'l[ìѼ{Ö§•Ï¸!„¤DDL7™Æ=¯ïßŽË–>ôŠŒÃJØÿÔØÒ01¯êmx—µGt _\""t0à@ŠÌ1, ÉÛO_ £-Öã^]V»çÃ#‚ŒÈŸ¶ƒ>¥ÅB\Ȑdv¯wW/ÊÒxD©‡øçÇkúÙٚB³•:Ì0öu/rrLö!˜/ûm t{Üï=úçJýDÆ.Ÿ Y¢Á+B’Qšm"‘ 'ŗ`\ -Pz5þŒjáTƵ<·ãÁ֔kaÃ3M„‡+•:qæã‰*;o!½»c‰üO3ÞÛÏ[ŒPùº*Ãû' ݂t‘ÇX*IC¿ÐŸë“‰+[6o<Þ(3ª‰“KÒû Ð¤@É6吶芪oW¢-¨¹QÖfؖܠYaUԚ‰zõ”V4È$•Û¹˜Ê(Q‡Žl!³¯­Ýj1õƒæ‘—@ô&ÝPj/Y|•Ü·dR ¡Rh5 Ç¡¸Uµ!oû ÉÍQï9-³[_UðSÇ¿¤áp°ö÷®Â¥cèxÎ9ªô„:› BZ*¯Šüªß°š"9  p4o†%Põ Ǩ¸LoŽr–¼[Þ\ô|#µ–ÄÞIŸÎ;)í k;P2­"¬Ò$xK«ÅT3ƒžK^f.yáõ¥UÏÆ»~af{8Õ× J˜ªNz©E3$Æî7åVbÇÍÓˆßcñdCóúFDWê?å.ŽQ7ƅ4wJgºn¡lý"Lão)…rÞ§%Î5©âqíQÁýkxð -ŒØE@Õ µDpeiù(¤¶Z{¿³÷ïPj{õw‰y«ç§d>>Ù쏞¨>Í_nð3Vèr®I¤7Ò{°ß·žö…Â^ݽt툽Q’³£Ÿ®äôVB²·Gc~Ænó4 Å*EW:-fjìμ@¶'Y·ËàC…sBß0mV|“µÂ჻›Ç†&&bëJR0Õ4´ˆƒƒ-• -·½eI»»Ž§j"‚ƒ+"zþɝ‚c_ýð€®°¼. ™ÞH!ºÁˆÍó„ 1lY¢‡ÿ!Êfã¬øI8ÌJ¤#kEi·ö€ˆÖ×ÎÓ²Sy?±ÅўÁ©íÿË}i™Ðíº_»`<:7뱚ÇáݵÄ&Í֙-£~´RÜq9î'ò†»8£XúÐ0»¹†S皠Ê_©*KѩߌÌ?×æþC†U -Kx9€³šr\ƒ}3%­¼…ùÿð€ûÿ þ?a`b4rr±·5r²†ƒûų ] -endstream -endobj -18 0 obj -<< -/Type/FontDescriptor -/CapHeight 850 -/Ascent 850 -/Descent -200 -/FontBBox[-29 -960 1116 775] -/FontName/XWWIDL+CMSY10 -/ItalicAngle -14.035 -/StemV 85 -/FontFile 17 0 R -/Flags 68 ->> -endobj -17 0 obj -<< -/Filter[/FlateDecode] -/Length1 1326 -/Length2 4050 -/Length3 533 -/Length 4923 ->> -stream -xÚíTi<”íÛ&kC(²UÜd+ëÌ`ìkÖ¬É.Œ™13Œf#!K$$²„HYC¶(û£’-»"KY!TֈÞiyÏóüß/ïïýöþޙ/÷uœÇ}\Çuœçu‹ -YXIk# n(}ž, –«º¦Vö`9,#Õ%¢àd,NF©`ee0 í‹À -€L"§¢D]‚w‹Æ ÝS?X0@Û EÄ"àxÀNÆ ¼¨"8°" °(r€ hãpÀ¹¯€s(Šè‡Bʀ@`0€Ä"Ȁ -Åƒd˜2»Ø/éëýgÉE$Q}TŸ§ªK$ (w¬ºŠêålë¿qõoq}_Î îõCþgPÿQ‡{aq¿/o_2Š˜("þßT[Ô/s¦($Ö×ëßU#2‡EhãÑ8 –—‘ƒ*ü*`IúX - -i%#0€;GBýÄQxä¿­PãûiDÖÎÖÖ茉äïÖþªZÀ±xòùo ·Oÿ¹ﯩ1±ÀQNFNL%Rÿ>]ø×nzx‰Å£ˆ‚"'á êQW -@ Àâ‘( -€¢P-ËÊà dê+5› À@ýè+X Èzañ¾¤øoÈzSF@"PxjŽ(äßjP*ÝGÆzS ì£ò€,œD¥bIžÔîbö+JTy"ʇ¢|ÝH(òß*T%ŠDBùøRga¦J¡Œ?ußT T>õ|ÿ_³õ,ÿ¦>ÿ…)üƐü_¨<øOÔ ÷O yùýŠáoöå•Y,Þ‹Ç’÷O« È¢p(/j6ûUBÿ¼´$œ´/A탬ܛD&ìCJԓÐ?îµ%Áʐ›QÏMB!~èìäÿâÃñû½PVø &÷”£Ê¸áªE÷¿Å-ý ÿóè`9E*ÿûû°Ÿ5Š} B G£Q¿xÿ9ï::J 4DVV¤Ž¬À` -Aÿ$Zã±>¾(£3Ôåä” ¿æáK$R“üù¡¡Þ¥?×îXêýC¡(((ãöQ,­‹Ô Éu×µæW¶uí=#åéâ•`>³Þ°›çÂf©zzÚ$¥Vï^Mëz+8¢Ð—ªz×Z£6a~²6ÿP•`š_ ‚è`_én4‰8°D“ƒ'G!L™ï¼tX˹f“«-¥ÊR¶½èøé흝‹®8 yËÛÔlëõ‰%ý¬äîí¬´¶oxŸ£\GÓÕ;Ï$C£X:«¼†Y¼J­Ñy=‚ÓQ½+®þ²šgœpúŒf÷™Ígù{Ê6åEãÒÖo“q¥¬~£™ :ÛÚknБùOÏ>±wyJydÜSYžøn¶÷ì-Ð8Îs†Ç[í=3,D4…mm)¼*ƒ¶†´š¯ÜC³j#œôϽ©¹¢ZÃ&™ù½`Ó]±mJÊð—C›ÙøÊ·>¯ÿÜ ·"6ÄÍ"»¦X!¯Æ‰Ð.Pä£×àØüøi©kŸUÏÛf:.~¥qÎë2 h.v¿nþñlˆCVõ§™æ«Ý¡×»ÌÏj}Œ¸uì ԕüÈD—öwsXuôÚÇÏÖr̎Òê8¹öíúÏÜÏls>­I7ÿœ÷,O¶nº`RCœ~ ü[¨M½Lü¥ÃHH¡þe6qD…ÇϤå>â0¥=n†òúJÛÞ-ÝÕÊ -n»¾‚5°°¼Gas9 -÷œý²Ÿ€Aü“…; œçåDÅrõR¸;.lè'ßà7^ç0<ì×S¨ ®Håt ?~ÐSâ­ƒŠÃ‘ØCì\›8ÓbÑ情EEâœO•¿L2M•¼ƒÜÑaBYñ '65­ë&gªûqXÔ4—ÔŽwÅ} Ÿ=·Møtk§æʈÒqýPÖnš-û´nU‰ FŒš†,Bªގ–s¥œOp8ÔFóìÚ¢EÚãz؊‹Í[×w±Ý c +ù¯gŸp9–F gœœ|ÓžSÇÀð ©Ñœ X6ù”Ýçc’„Êm ¦eµ«BߏjØk£¥ ´1º:âÅ+)ü÷w›zïî;pj}q4cÜåáç9£S3ƒi8ºó\ó_{ µ­Ì¡Ÿ@OÙi¹…®Œ¹>¿¦‚¸#ܑ°B2F2Ô£Ù×ÓÇ)KSá%ÂGå¡ÕÙÃ'…tvxΡ“Eê%w­y/ì\ ¿`©ÍèTpÿµ§;ý%‡û‘ÝéL¡rÄO| „? öËÊ@—’b‘Ñ€s’þú¼. uZ¯¼-àÀ͸Š _‹Vÿ6)ßúNÇBÜç>ö#Ë„$…®éÕïâÎCØãT¬1îjÅi‚P T‚@&h į$¼ŠÕ½á·Ü¦{9%Çì°ÏŽ*Í}¡á—GÎíØCsüf[:/kî±'ö’Xé騸 ~ÉÅ÷Õ:grCä5,ÒûÒä c6°OrtÃ:ß]xÀF„>ÌQ|*KõЇïØ®/Aüß^EI_ YL¦”£w¸HLÝZð3ê7Õ •„ú¤ª?žrçŽã&q7¡Ñë–éuß®»s¬/_:ño®8Iïº$xÖHîÍpŒI¼.ø‚¦c¤š\öêiín0„áó¤ø NÏ4aQ?´Ôë% tå†:‘)ːÜûJ–KQ ×i %o°æ¾Ä~–é¬z‚¡3ÃÇzî|‘‚þeè‘Ç•@$ûԃpËõÁüð–áC§a\,cK{\KΙ±˜géxÆ´ÙÆéFh¸sÖASÂbAqu F™£sǙ|ënß$9Y›¶nsäsóåúè5¥¨%ëÉ9mÖ¸%›6ìrLß!çoŒf…—ÔYM ´ùûË}¿^ž´>u´Ûw«2sj¾ù˜mØ*–çYzʷمõQ™çÀæ`(ÿóÔÊÀÏ®‹Q‹ãõÞÕs µtrèâý¬îb³ÎÈA߁©/‡¯ÐÃrá}àÛW÷œ)Τ›è -W†¾1¤NÃpµdÖUtë'Æ«ü;÷³_ã×õªXQÊÓcÜÚKIs+õ„ü¸[7+–Í4¶I‰!Iú7ˆl¤:ï8…Ü°¨ƒlʲ/Úòï#ƒc9dïó_¸(ÕoùýÔÏ܀N:ð†šER˜á]ƖT%‘¹õҔɮ'>–ÿ!½Ð÷f¼S¨es‡ƒM5¿øDCá“)»à£*¢U’¨Ý§Ì6ê᧽ÛfùíœMO…ZŠæþ p0¯|¿{ó`à“,ì†,˜æ+pvç‡_¥q»Õ™5ÿÑ ýì“e¼“ŒŠaZm‡ÊžI ³ùóݖXÊ 4^P™=Èl ‚ž·œ½?¢]ǕI_ÚZ‡)Œ¤©ëìQJ®Ì9e½tÊWÜ9gÌ5Ó«š“ît23¯ -÷í¤¼8eF(+/÷‰7g’ù.—›Ñ®yôÈëæI:“Î+q ¤7„D3JXó¹ÑcE[؛ÑÒ1_läõ±Îæð“nÖùŒÅÀáöÁmWHP2]ÿMûó㢾{'·eÙ¢¢[iqšVEü#Œn¾“·gÐD[̓¤šk²²ñ®¹K -ÖÜ•Ôt(ðñ‹ûê%ó²>E nyÍz{™¬ß;‘’0\fxóH)ÁÍöNM­ˆQ¿êŸ` tvLsÅÃ9¼Öz×J‚VÌÃòËÉe˗tè)¢=Ʊ^&RÁ؄ÅÇÕS¨«ÚWò½¾J|-´œ•bä¹]¸á¤Wϡöv`”®/Œ‘þAƒOV9ãsÎâq!w®Ó³£e°ÃÕÝé‰c+'#o4.ÙFêÒ¶u•ú¢TdÞi×ô<ÀV­›•0(m¹›Ä·HÇéþüÖåð˜WJœ¶´üpªÍ°ñã·ÎDÅ™å4Áû±¸¢‡*\ôÜ|ù2¢øÍ7ʌ‰ð•k#IîÆ寨 •¥VÊè¤Ø¹I…Á|iÙ¬Ýd̽‡´ÆÑqä—²š@­9QÖOXÝx˜w¶Í®î’0 •ê¬®?0 -eÕ· wÀòH²¾¾ËHˆêMS윘~tï%Ÿg§ÙÚã‰)…§¹_Ài—¬Â9äDË<†úz¯><Ý õö±<>róÞ #Â^ÀëRÉåÝQº=è/̓(ñÛFÔÜ{£Rd*–©U$8ý­8ÓTýÙÖ¬HìÈÆu7êaN ³j¥m¾mÄç…`Œ²)¡¨Î®£ãF2{$Nר -GŽë“_ßÈ=†2qŠ‘Jl1ÇóäXôÒ÷,ùՌ÷ù;ûS¬w[ƒ2ç ÍÊ z_0÷=®TØÕl×?°4ï^ZŸìyÇÁXÏäú° -¹‡¦Ø­9PŠš*ÂL 7P™ŠäOƒ÷æ"0™çƒ‹ü=\¦Z‹Û%»¶›²N„ñì”ØÖ§LŒ½'.l¢ÚD[WV`×èŸ/rÕ«¢étxi1bÕ4–Ö’¡x=Èú¾Ñ ±Öi^ñÚ4—³³‰C QôiŽR=¼Ø–¥³¨N?9—žúªiY%!í±`¶ã—º[Y9u×"®?gÔ,|‰‘EjèÙÙ¤`î ÛO= àÚÕćÂ@ÈX¬Ã®[˼øTn)£Ìjk"¼ésûZçUA¥»­—úÝ}Ħ3om—5Ÿ`šŽ1fß­ÒõS2|6hg‰K ýnØþèHUy+½bØód“²9¥Ar¤$£m°<ë®Ô½wBÛ`—ôèbõPU«G³Ö‘««*ôÛŒá¶vʽ­Ú·ÎôÓ}W>t;µOsüË)són…Õ¾©÷þK^¯9>¯z0¹öóóXo쾅} Áï*c{AdÂ$šaŠï_Ë0mªüCÁc´è}áþÝ#XöÇ b£)”€à§×€ g§µ“ñB©;|±CCùœ~yöyú‚|Œtgå? FE =Øb ˆ-à»(âÉgšá4‰±·¯ö]JywÛ9’9{F o‹ßó¥ã -R–ŽW))ŒY˜sì7{F¼ö©„;žiͬ]GVMÜá÷sõ‹lâÇèv]ÍAÏNË»Èc8å•äþ—?Ðÿ üŸ@àPp"™à'z‚@ÿßìO -endstream -endobj -21 0 obj -<< -/Type/FontDescriptor -/CapHeight 850 -/Ascent 850 -/Descent -200 -/FontBBox[-30 -250 1026 750] -/FontName/MVQYVL+CMMI12 -/ItalicAngle -14.04 -/StemV 65 -/FontFile 20 0 R -/Flags 68 ->> -endobj -20 0 obj -<< -/Filter[/FlateDecode] -/Length1 1343 -/Length2 9670 -/Length3 533 -/Length 10524 ->> -stream -xÚí—UX\ݶ¦qBá.A*¸»»»»§ÐÂÝ%4HpwîîîÁ‚[‚;Ášï}vþ³OßôÓwýtÕÍzÇò1çZ«Šâƒ²ƒˆ™½ HÒÞ΅…‘…(¦  à-|»ffPPˆ9Œ]¬ìíč]@¼@N ¬+ÈÊdææåàâåà(€böžNV–.@j1š¿¼¸€"¶ '+Sc; ‚±‹%Èö-‰©1¨fojrñdEÀ` ê_!Î@U3ÈÉ dÆ°°Í¬L]€& +;Ó_²dìÌí\ÿ4›¹:üגÈÉùMúJi€o:ÍìíÀž@39€IÑþ­èMÍÿ±°ÿ®ÿL.é -+Ûþ•þÃúëƶV`ÏyØÛ:¸º€œ€ -öf '»ÿtÕýSœÈÌÊÕö?We\ŒÁV¦"v`…‘™ýŸv+gI+™²•‹©%ÐÜì ú‡dgöŸJÞæ÷L -š*:šòtÿÚÝ®*[Ù¹¨{:€€ÌÜÿÁ,ømJNV@=fFff–7Ç·ï]éÿG5 ;S{3+; +'ÐØÉÉØÀü–Š•ƒèÍ´²3yAo’™íì]ÞB€o£ñšÛ;þÚX.v “1ØÁÒø/û¿L@&Ëß-\@&3ø¿™¸L g+°½Ë+÷[¨­ëæa29[YØþ äx‹sx; öfL<@&S{Û¿9q¾…AÎÎ ,oyÀÆΖ,¬@&‹¿î“·mþ·íM¦ØzK+ñoú«)¹?Ä d’ÿCoq -èM¡â¿‰û­Žêz‹ÓüCožÚÿ¦·cÎô§ž·5“?ôW‹ÆÂü֟Ùßð­†ùßí­µ¿á[Më¿á[›¿á[ðßð­ídy+d÷7|+äð7|Û{§¿áۈþŒœ…õ-Öãoø¶ž÷T^ÿÀÿyúEEí=¼ؘ ¬ÌµÇù6~fßÿî¨agåè -’r0ss±½ ö/«©«“ÈÎåϝ·;ë¿ØÜêíf<@¦€vÏ 2ÑeæM«bddi"'ƒOȄn¹ŒÒv)).½ Tç_µH=¨®Åæ‚)é9‘6Ö78µÔxµÚp»ÚžšxA0Áê"ÏÃ\˲Ï3PŒ‚ÃØsõmÞþØÜ1¤ãÆ)g–ÙßëÄív¿­Q-L`“‡p+ÞÜľ®ˆ]Î ÅTGäyÕBê¹+Ô —?O°í£âFIb«aY×Su,®`¨ÉåxTxÀ`Å£8}ˆdvýúq Ÿ ý)„ùi~:š×Ú¶ví±’ORí`“Š™EªA–˜Æ–î,ÂS„è+ÅÊbýþÂÃ$\Xczz|Vb€Ÿ÷BœbÜoäÒhQ„Ò]øâÒQ£x“ÔrÙ²3¨‹wn†(qL¼Ï'\L“vrX8±Ø¸+1Lu#/^¡íö³àù† ¡UÒXÎ"~6É\A4ÎXú÷×L}¸Ã€.(€TxŸí.llΫx™­ªÌэê7ï&sbrJñ@aÈa1”CÄù_ævûb: ¦;µñ%f˜™¸Ôþà¢r7¿V¥ÝPnÖN&øl£ÛOÕ¶/T”ò8,‰s’)Hí9õ1p&Ö”œ:¼°­Âü[Ý÷µßóç?z|¡å -ª>Á\¾IÇ¶Çä¹O -Љ®²u— f‰3X¡sÒÆö¹ß©Ú•g%ÕYCw>#§Ö³™ˆà·¥óÐ9aº·ž©ô - P§3>m¥­÷µæ^1Ù8C‡IŒŸ:æ³­â6˸ޕw.ÓÂíÕq›NR }.0g}ŽÉó„‚W6ÚàelHw—ws ]mpßAÎ¥îp‡+à½ÿ<իـZbyçn]ŽXÈí‹þ‹Œ½çš.ã#ЯˆU1ôÚ 9 BIS1Ÿ3Gg¨I3ËTÈÛ‹z`\jÅ'To.F‘²À©æQõ»iÙC³pó}«Dûd£šÅ°ëZç{Àú—ñvÒÚ -‚ßgIÓ19š‰Ý¸)[ƒ‡3ïÞBÞï½íóZA_âä†îɎáid„a t‰ -áýúé;Šwüà˘—€‘D—¿N‰æNF 5Ìój$ÃÏç +Z5µ“<½ŠHàJë“.»›Çè¸òµÃ×Cx÷=õȪ4¿%0¶ð.ÜٝëqÃvq ]k©ƒ¾‰ÖÏ·Wr -þü.ì§÷ñÏ"’<™³ü–M¦|Ë{é •2|ÊXº•󤵺ºÅÅ` LTYÓIÕ×Ãi¨Ñº¨ï®ÕÁaðŠG„Ÿëf™ŸðÈõACZ„ìèðY°½»äåÎ!:Ì  hwãQË·¿lS”Ú~ÕNÀÉÝjèDÜL¨…å0³²ëjÐ3&Ê0ò+춖¿g:Ëi1ÆຘrÖ@ܘþ¼"#¶¹®*L0ŒT9@|ô<°–˜éQ­Ñ@7ª ×$g3·%Naٚ±kªópÇbßiÙ8.¦Þ®.å;…PE鄭 -A9WCI¿î*÷(ÒðÚ†/+?3ŠuþÚÝÑæfϨ…\OH…²¸‰_”>cV¨Áæs°çUuº{œˆ;ܼ‡2Ç+(|!ôʌ/4Q¥¼žT¨ß°Ùš‹…†ò",\%¢ŽFKŠÝ;{_7o~5l -õÝò<6®´ã^.ÊãSúÊØ¡ô8©bŒõÅê×õ÷-]>ñÊÁ¶á½…ïc1i 勍–0g¯ïØù—) -'Œ½QN/øñ?–’{4œÛw=½ôõÏm‰áb·~Œ¡É–`± [R³Ð5>ÜÍ \êKòy Ì1£†Ë#dReWð¬e–ò ÙI“7™Âãìâï´{H3ÅÂó»¹'?ÆÇ ¶„p™Y"¥(|¥¨AzWX§ÑuûÍÉaÉrœÃ£)Ü;lI{ÃuƜd€qkNBæî i?#þ~CVu:œg~’5‰ñ·‡§LçÔ'UÝ}ÆøLˬv™ú†#¶*q n<.\ÞVÁ]IE%’£aÒò g rM £7 ¦Þv$-R~rcä»÷Åtcñ4ßß qaOvœ`K¶ú'K§œóyØX°Z‡´Ñɟ¾”m\~ÏXJâC‡‘܅ù7„‹sxŵÏ)”Üp¡D¬àvf\ÙM6'¢fÐ@õ½FcPï+ᣪ²Jÿ*š4‰Íó(C¸Û焤R—>—vϸ‘Íz*ƊL¾Šå®2ÛýžKÜÃ(*Ákâ°¿ˆ<KÎfȘ5% Çé¤RC#‹ûöÒ~â/Á™ »(Iî¿´}:„äW881ôa;ö[ó '¬!¾\Õ Qqž/Á+De$&5uõÏø³¾Pµ­\ -uì³|6×û{¶K8 -£Q8N?͘Wƾ]¢˜, -ª"¯ó÷'7tr5þDàsð F4ôè‡ -ZE¾YbsÃ_žû΃pô¹€}T§¯XÃïÇÖQ€4³>óGªdqú)ÄdaXfd¥ÕþýÝÃþl~7ÜÞ‡˜!DÒæZUÊFɟ+Ø'6²?ÉÌ5ø1Îí#~K -hÃÔ¬}xßí=jßX£m‚ @967ž˜êGÖ±> ~;0¶_º*ÞVj€©r_¼ÃÓ¡1¢<\<&wø¶có9>žýÆʖî‡wÖѝBµâ“½wo¶ó‰©É$À'%dÔl/"ïü™*¨tåc÷dšn¾ã⊸–¹`ÞsÌRÚXxN‚¬ã$Qèø ïqÏIçë/SR$Êu‹Ý§o#ßGÄ 7¾”¸åÕçøYËA¿ãÐ?p“èÆ=²u žîsï (abDü¼Âd¤Pÿëz¦žUZ8yQ—@ÐT·òŽC=Ë4-?삶ƒÍnÏâ8Œ]ä‰Çj#c3{ÙqÀ“‰G«µHt:[М¥ØÞ¢;'­‡pŸÍžðK -ês¸tê ÜïLϒǧ“Ÿ\5G¡°P‚›Ã²Dˆ5‰RS¥¨ÓäœÉ_ * !úB[ôŒÐFd·§îs.³ÛMÏBŒš1DQpŒó`ãòØL:ƒ¨Sמ'ÌÀ@"^궟u³Qñ §ýj¼‚?Pê¼ò`j$ö\¦V”ê¤ڍ‰MEó8 `/tÙʻÈ8À@1܉ˆÃŠž'[¥¯t™§}Ñ_Èý« )4[IñÖê/9Ât0Í ÿøN‹Ì>+RÐ[eD[¢>ÈVO°¼@:ØwÆv\%:Dÿp€årNy -}\Ç6ÓEƒ+emi­Á¡*ÑE-c¾eèÉå4'K¢p¹ueÅ O™c{pB$ -)„x°YÙÔX¡ý=P¦6éAªô¦…L-»b®š$Ðudpö#´`€“ëÊWåÖ:ÈE´Açw alo?t¶é¤HÜñ°—VŽs­ÍÛìÔÇä¤Ïu$Q²?ºpð}âµ=%³ã×¥! ™%Hi•Œ1ûF‰]ŸÈå'z~!õÛ®Øÿîµýîsú bÃoh>Df»ÓÄOÒÏK^¥¹TÐK»˜Éý‰ª…¾ïÉð<êÀ¡E{œÕ(U¿d„¨00µý¿ÜîЏ¶–^A6Ü,KÙÜïƒ µ÷òùò[ÊxT­÷1Æ_ ± ;0qš¡Ðrê ²ðóÉø”,Gz™Ãɬçžè‡{çóž™ÛÖv»›7•Ÿ×Ihs*Õe Šªñ[F‘®PŒÖ³D‹ -n;6Xj·o¸ ý]k¨Ý:Ä޻خm¾×õˆ÷+ß5“¿½|„ÛL¿düd•!¨ÎÞ¦  ý -;F­¥6‰ðŽ‹½ê$_sœ›VTÙó¥%۝f/Ta£!E(é£(²«Níµ5EåÌ–gš˜£ª:ÏäýÃ3·CòBy/ åż¿c/~õ ôy"GôäR½ %@ ´Òçò¯ŸÚÏ6˜x ªÅ¢J–…Û¤3 _ñ‰kr­ã§í.àXTƒð³VðÃ+lûêKîU7àç H¤÷cP /ÜD‚ Üҏˆ9в'g¿ —¼œ¶ðšäQœ˜ÜÏÇ‹ÁþF䇶t`«ÌM1rbaJÕ}“¶` šö„ʏؤ´5à))Èð¦b-*ý\¢Å¬TkەÈi qYÓxd¬g˜7¥~ê[kwŽñ|!z¦C薿ÇkuqM¨7(‘LEˆd¥ðG¡_“ªü¶ä›(óö÷H“¿ÇRÙƒ6ƒm۞¤c¦ »á^¡&\œ"6ÖîÕçԏ­í$&ý:·°šÝïÌ¡ïýï ÂG‹,[8¯~ùÌ4ÿüEÇX‡R&Ók 8ÿÞa¥Þ¼€Ñ·]ìr[2+ tëu°ò0÷ S‡ÄÜ4´'ãÒÑùšrêkGD/±¥!‰äÊ&Ê ü„Ô‡.ÞÚ#¼s>Ü9·e×Dˆ¿À« U&0¡ÖöâzΧ+ègðڈ™uµ>xV Þ±½íŠë†¤¹ki‰Óu@‡ÃÝÀþ1EJÝ¢™ÆN$°‰ïôþ"vu4Gò,ÍPwªŒ3ò"wDÔòj6~}:åÄú…xòù(ékbš¶‰.>وò¡ -¤" œÐ{¡úÊkP »H$´k]ɲڹĬÙMXðç6^D,TÛÁ-™Kr4â×}0r‚éÐršªbÐ+ô=†-»Â×MÖF׆R =¢ÝÓO;[,k¼¢ß^Héбï!$¡øú.iۀ‚'â÷'š'ÒºYŠ÷Ulˆ|ýÕߢ»ò³P︡Çy”q0IwV~ΎÔ8E44†l7WÔãÕ/jnÁ‘À£äW%Å¥ú‘4CBqõêäEË&K ë›€íŸ¾v(´lڏÕÁ%s  ˆ«ØÛïx=FÀã9Ðw+&ò»¾§V!w‚ðôøUrª˜Üª«¦=W }óSG;ܲ³ÌÆ̂‡å~±'µwÙ JE!5Ë@Ïëcd:`l3ÿG….Œ¨¦dá;§ÚU‚ŽJ(_Õ¤£}‚¹ðU¬Ý}¿$¹nÀˆ:õïz±¹#d¬ÑUªoTa®¥P–¥ú3 (¼¢Éʼn~S$o8RF¨`‘öå«3Ó¯ØxӠÊRßGمezÙ=Ô× “|zB˜W_(™eožÄxî“;;³•<ÒG\c*ŠÁÉÀ&À`r^^ R{ÐÝo‰ò}.mÛïYXUÑ¡„=l‘¡G¹T_K­ Õ~†â”Ÿ1%¥†µà“$f¡Ç>\ ÛôeíÍíAü-ñ8ɑbÕ÷ÎùUO¹l-ÚÒ_k¤;/­n#Êsó…Œín˜=X³Zš–†Z”¸öÐ ¼÷P'¹‹Œei#·<ÌĖܸÊ]ò”Ð,æX¸8¼ØH'†ï¬·@AÀ¶¶<­Î:J’„Ty6røÈÄsOÐyæé¼þã›Î.äkXSS -.O1GÞo#ëÂxYŠ¥F^5åºLceÈ]ŽDDŽeÓw˜&öɨ,²Ò¤ì¯®>œÂ›´•¯1áÐî·B¨¿ÔÚ¥ 8g7#‰MӃOúF„‡ç=aÙÄkLÞÖC,#°^O®ÌËj,–}¨ù_¬ƒGÅü({3IßqÇ)u_QeJ‡ŽÁ°Zí†ÿ²‡BIy,<÷°EyØV€BI "¬éwÚçåcäé%,s4ŒêkÆHšìùÕkCÍ.âŒ3%]2Çê#_Ö<íaÈO¡ÇÉaù+m©!ÍÅÊ/ùC¾ ;öú SûÖµC5¦X*AWùô>9Úåé8˜SMCú&j—ƒ²õК}ùñû ¨…‘ñsèd bbè»ý¶YeEp¼æuÖ°x"M~ÙJãfqÂ¥7ÕÚ2|eªb<œñš/÷𰤿1Óè6‹ºÞŽnqhdGÔƒ;)îsÈÜm´Ë¸DƒÑ•}|~ƒýa!2WP%– ò‹)óÁ V6/Å ‹âuØd‡ÚÐé¬Îî|cò×Ò™ð¿EÅvß@’{ÊÈ"l÷@Íd{aý ¦E»S‹´0”ªYÖ¦è—<€.£:ZÆ$Épý’OËpí¤@÷بZ -]BS¼Ñfq¾i÷ó­F­éa´T56\Åùž¹øs¸î‚‰6lÃpä²2ês½³ày̋ç.ݨµ@ ¿=ʚjà˜”E@ÌøÝ¢d££¢DÒ͛2ØüÈmú†ª²’PÖY½Ch&Òz¦rp£‚*H•­5cP¦æ—¢RGzì*®ÂŸ¤ôK¸aùàù;Âen×Ôé~Ö·Ô³ ‹×Ðø­4)^‚ϺɑžmÂ܎~B2E”3Ì!ÃÑ¢;þ‚úmÕÇ1ôß,/þvÆf”ÒV¾}sìQû©A…'­?ˆÒ›/}„ },ý† Ò)>£®x)‹¹Là=6 §‹ƒ -aˆQ˜äcw«æïöÞǦ›3.}åºÙÓM»ËÔ)ÓL>ÌYÞW¸Š3ÖݙæHjêïøùŸO¶°Ñ\)ŒnGvÜ¡[8©'P­u’„ÇÍ10®c‹œiÉä➾¸KƇâ|N~?ãø)™k ×̇ÏXe¤ƒOvN¸ßÉ - @?YÜreÉ]ªØÌO =ÕÖ -Óú€Ò\,Š…â×OdIRÛÉ2:Oß9~5–9-U+Ñ'»c•BZ\ÀØÏNR_~~QëþŒßâ.ét•…ÿ&‘¦z¢è3ÜŒ„ŽžF’¹ŽÍ¹ºúë¼?¾à.âk~.)Møí{Sî-ßÿÔG©}útϲdÞø⑺ÇwT“‘¨IyTpúðËqo²»öpÚ:ցWç–U’jì^¸ÔŽçÓAü+L!ÛsMÌUÀIxÛÂÈ£‡¬ÅG…؝½áxvã+…Õz$€hK{Ã´M1pÌäÞøÚYÕ'¥¼›%hû§É6m¢Ø«ˆ®ƒ?sàHÍoq_ŸËÕ|£â…l Š!Á§/ŽU‚#ù¿!œhP9, 2‡ÂO³‹Î&IÏZ0vV$ŠÙX…—¥îâòƒÞ¡P‰Àoˆ"ÜNxK…2§ÝߟYŠ.•1%Ö|z ƒ•öˆŸtUø©5OEUqÑm=M½‰Ø…u a3áÓjÌžV˜03`üs;ÄLçÄùpud#M;dY:œ£¢’)­b?[Ê<ÐT¿‰A:m¡-®—ð?4ý’§Ü°)î\½‹Yˆî¶8©râÅaðþ¤86¿ q¨h28´‘5ÅÈÿÌýQ׸ðñ÷³:ÊS®׊ËV^'ü}Y^;9¦¯‹,è¯ÛcP/Þîà‘ZùFå†zHL*é"Ûn% -4*ÔMùäs³Vⱃ¸±²Î+øú{™Re©bG¸«Cù;·ô´AXGxN²cƒ¯µMÙh¦4  -a`ªÆËØë׃‹ÇÙ®eŸ¹É¾G×üââbÓ¬s@­[²ó`wôW„ÔhS]%æa¿ÀaS&õ@Á¬êTG˜‡ä¿°ª¤Ìq3¨Fµ…¤NÈû…©o¶$߇|NˆóÊÖü~²,zeCpÐ|bbûÉéE&ÈO4~B'•°p\4 á%NºEZO>í@›Ü>OXäiÐToôGbÞêÊ?&çàåÎ!x¶ÜÓBÞ×F:֝ê½VÓ'cñ°^âŸ)eSû¹;j¶ÈàhâÉY'~Ã(ày,z$kSJv"‰V=SÅr d·í‰æMxWžÝôk°Ü£RÞÕèóïYG6Gy´jp£~©_Ñ»Pí¤Þ稧š~2F((þ=›íAÏüÊÀSÜå)¼Çåï£k$ï=^s¯uƒ!S¯³ƒtnYBÙ-f§rcQÕ^n‹/oÀ̓øÄà7úIMÑpjܘüs©2n{ØöŽL Î—ÒñUh°lmUåˆÐT¹Ä•à·0©uŸÑ ²T<ñ¸ñ3Ž|ƒ¡:Ü¢C €íyôTT¬„KÞl–±çbää=­ú*ÂF\0ppúq¶+ÿÑ­nNJÒVY¡ÖB±‰mƒ“|šs^Jš‰’"ì!F¥kÌðÑÝ=+U]»;Š®$ÇG»øw*Ò|ÁÙéþ²¾ÿ' ˜4îmÂZD^ŒÖ1ĬØõ8Ë®ÀyFÚ.B±põ`gP5ēvڐÿ,ÒvF ú6¹½7žoºFPK‰„};[ÓÝðH›%eÿ1P¬¡T¯õ V³xžXóò-ýŠÓ;ÿ–þ‹}×5€ŠZ¹÷¨£õ®2€ˆ¯÷ƒ‰; ÞÙ6¡ù»mxHWÂ@ÐÅ.sõ€/µÇ}ᔈï,ÝõéÔûӎ=Ïâqw4›ñQh_ ؛ॹ¿Jsù)ÓÞきg'0WØZMäýj_u ì¬J²Ì¹åG«àü*•‰û+g†6ôõ´sÎðÏw(|†$‡†àe8s•A—bO÷”Î2&‘Ó©Õ¾DjN †½+”õ¥ÆË,º ”upQU -—U}n󤍢+ÍñÛdƊ¾ŠS%¹ÏˆQËíî&8AY¶IâšÓ2}íJiÉg›Ò†¯êy»nG.úÓ1ðë8¿"œèwæý 'ù~Rëw ”væÑßõÁþNßìÇÜÃ;]!EýõÔÈÓÃLœ.·<›lh´q‡£#žã¶ÔEË@½åä•íšA ?v“|*?)©^bý Œ<;Ën¹N èƒ,ˆS•e0BŸÙÙJí¼(Þ/¬­ô䦆ƒ"KóŠ€!uúÑ9JüÓÚ,¹Í„Kö™¢2±?ƒ `;m _Ã#gW>[´öh–üF%)Óv3ýˆ{-ÏČv\®[ÿË@cò]ÌÏÊEÿ/•Ú|)ö¨Lžic™¨ê²ÉêHòÅ -I©“S\z±Ï:ÔîÖ)Sª÷s‚Œ¼Z±Õ¨è”"‚ *ÇÄ`-|èªÞ» ½âa‘— 1 ÷SxÈb†Y˜@mÊÀP~n šÉMÙ@;½ýȟ%I¹Õo¼^Wë㙐å¸m£À gõÍ<ùä. ï!þ oML]´—qŽóáçÕ÷¥Å*!…~/]ŠÃÏ:Ívw-y›UlZqrîⷎçºdÇžc‰ßa$}òPóî+SfuV„WaòûéÞÁV ^&t5¯…u+-§›ì}1D µ ˜2 h]Ïbjp¶y,Þ윰ôº« Ü§@,%†è,8é)V%GÀ•Z¢6‹Õ(Ñ4ªJ-‚[?Rû^ÄQ&wj:‘âÔ>•n”¼8o$ë+ p´º}ž~ŽWY˜{+(ùû­Ü˜‡ïz\èéˆ*öã¼ü¹GÀ5:7'ƒÞ¨.SÆîÒ¥-‹_<_2£Ky4NP1“ù;vóW‡-Ð+@MÒ¦<õ…–ˆ„nPÌml',ä½ͦ3‰:öK×åIŒÚyPì$‚÷7iÛL7g²-C8~Âf9¶Õ¤iE°Îä[|Y=Y‹º‘x$ŠÃÔPf{œäÉ3üVlc $îßýŒó}’Ѳš_®$ ~š€¾>5%ÌʌœÇï^ªÜ`?o³©ØÂãÒ(„÷k+êÂç5)<—Eɀf…j®fZyÛþ<±¼Ó©J†ø¸ùxoo¥WzÂ#ØsþZ¾:à ‰¨‡úE›)Wß'ÌÚN¢f¦éÒÀÝ\dÍ÷Ü7’±gk遱÷ù°jÕ©ˆ:v±o]"þu—_ÁÄ×q4ãíïó#ïDÐ6¤€¸R7Ç„ˬ×÷¤þ)gõÙm¶ÔÀ2¼d°‚𪂡Ï@Övpã˜Rœ¿{Á7g0XHà›Èä_2A‘ÍÃäAíÿ,Åwd”oоË1ù!…9?L`«²‹=Æòšvv Üҝɡ¸€#®¿é„L³JUr)Œ©,Ê$yÛr1ÎáT$×$liÖdm@$ç&ôã2-Ù]²t™µ1H“Xðl$²‚¥EŽÔ-’ž7¬æL0xǚàó3~Kî—y>&‘]iP*¹¼ÖèÊ|NKD'Y¥Œ}K¢½"Ta¤ÉÇ/<’\T?'ËNs(D}ôªM%‹µûïæ*éW«È€U/CAbí= -_œzÙ礥GûHÜ°r°hci£¡ç•uó$-4/-\ê¡P:Œsô¥ ¤bè -=„bèúUH`=Ž|‚x³ƒ»›µ%aŸÐp´–cüdº2Àà/F¨Dy‘’`ÔJÜí*K$E}ÞÃÏűø࿉ƒ:lJ{Ó¡+r$ò¹#‰Ÿù´‚=×"A­¾ÉYÆLq;Y[àZþ ¼÷–ø/¯D]´^­#ð»)ÅÃΓ‚…T},wÅß~p ¹å -!3iQÔó4Ên‚¢p__îøœ&õO,³¼ÁýV¨JÂW•øl°n¥^¹ºÝæXùŽ5jkãTп3¿oöèÌ]Âû/ÅؐË^$+-×¹îߍjŒTy>m¤Æ)òÚ\8—¨ôTëºýNzص `GÓa5³JÏIL ï¹çbAÕ> :¢>\9 -»`Zj[F.;Šuº¹>5 ¤„¹îõçýœ:løÀc`‡ñ{ŒÃ.²ŒºPGŸ.+D”ä{{.sù| -W‚œÈ·P4ÐÍÂ|]/ÝÒoïj{9 +pz[4>)aÉKX¿ÿ†;>í]?l–›Ã776 ¥Ç„\l nÁÉ­ôŠ‡ONg°dŠâ?¤†Ë”ÏóÒXDÀTœŒ…n{9´›&´õuOP‹§ˆ³O!à›È]¢ºÎUXÂÌBÒ»’õ£¦+f‘q?µ&]/æÛM´–¾Ã¸Þ/)ÐQ4v0 fŠ™ÑN !ëŸ u„p@mO—ÄÃ'¦%£ÈŸß …hH]ŠŽïâ©”ƒ<›E ÕÖ*´> -endobj -23 0 obj -<< -/Filter[/FlateDecode] -/Length1 841 -/Length2 2106 -/Length3 533 -/Length 2723 ->> -stream -xÚíRgTS A”0È8ôÁÒIh!é QÀ ¨ CòO“—BEš""„¢¥ƒ* RAPŠRP)CQÛÐFêFÝÙ=ëì9{öì¿=ûޟ÷ÝûÝï~÷¾«ªDpѱ$Ó}@;:ÌÖAë¢q€£‹•#è뢪ªÖLÈ†è° ‘ â4k¸€ Ðh…3À ª€#‘í¸ðh>t*@±.È2Ȃ|a øð¶XÒ@&D"Â_ù M L"R: Ù<]Ž5ÁcB¾~l@ÝZãK7Ì¿©K*Øÿ¥„ìY 3$ë"h4@†HlÀô…`„Þ—áð0…`¾…ÉÆ©Ę́ æÕӒé0•'°NAè9ÑÝ@—ÿØÖ¿põ½¸‡Ju"Òòßþ§<‘Qy߶*ÈüžpüfÉ$CÚ÷Y<›H…H–°/PßBË -ɈMò(D* üaò÷­ëúÚXÏÉn·­ín­¿Ä·,ÁlWãïº_è_1úX°&Aé¢PhQðþñåù]7[˜D'C°/ od ™L"HéÁh‚É`  -,ëéÂt¶ `pØ¡‚;c"¾üGŒ‰Àæ—ÐWd¢èíÿŠþ<’•=0XG «c¨/¸oC« -ýgâòç€xÀe€Æ -ä¾DI&„Ù_oG°®?0,A"ܐYŒµ@@…’’öhEÿÄEiœÚd’r€ôÆ0ó°”{|jGcí1M{£L CÓÅþ“2¢ã&}:Xáñ Åñ…d'©òÁY+|§¦L†4ñY™1ê¯×'Ïšûîi¶žíªO³ŸW”SÁÉÎæمmtâkÃ³aÍ -¸ˆ czŸï/±RhÅg)QÝH7<®œ ¶Á,|¿¹{®¤¼w×¥ÌÎ}‹Ë´ƒø­CWÚbêaÛ ù˜ÇÅ\XdªðíAþÔ­ÊW—§EJ_4$ã4¯ŽÏ j—ZŸŠ?k½iõ㻤=ákm±5Rå’7ŒÏO”+ΜrKî»t&,r·üÚƁ§¶vJˆOªs>cÜ&»¬£ #‚ÐFÖµ©{l=ôz=£{õ£øä®ËC56cª -œ‡©²9ÍC‡([Ï1¾wüXÖIÚ>³¡Ý{GFvõLí~»NtÃÔG«Õ©ô„S¨Q½´t-ÂË´ @흷Ú偸ŒmïU×[å¿ïë<ŸþË#÷Â÷F\b+B£'/i>HÖhmihé¼VÎùԖºoehËËñ¦‰Ò »¤‘÷wd4s†Ô¨¾¬Ò͘ñ,찗ƒžü¾Aê‡ÌÇÂïëÅ7‰š8Xœ™Î”Î -êg™[àÌêrý@˜¶áŽœ>z×TvÜVö £ävŠG^éSíл5·^tmzT÷©èÚÎáWLß9.+¥W Lèæš&U]•¼Äí±Þ$zúœÔwʞºü—I\¤„T庥R‡‡×ö­ª¥½ÛHOYIU®ÚÐðãÔqìJ@ã„AùöMÇî­Á旙ƒ†J‰žFíʳ: KŒ>¼•ý’f”…‹óòQXUĤ*f zà™5פf=*Bkkzg=¥«z€ï”ãä éÈ}§®FT‰y«’©'MÞîcR—E~Y¶Ó¯'¤=ñãÂHÃ¾DS¾õæ[¥uåeÃêH1„¤FÛ¾*reƒ&hNÙþ™ØèÏCø`Wµ€íŽ2豸™ÏcÑ=Þ)$øA|ÅbY§é‚˜›*qÔÝkrFïאcœôCïô4:È«Âë«!̀æe§Ö¢L•Ís&Ôí wLs&#<ŸDkTœŸž5Ã8¶w£TInaݼwˆ¦Éæ0à· -¤FQµŸ9Q½ÁìFf.âýi±§‹nôM í³¡`Ûà˜eu A’ü¸iÌy§í*œ]ŽŸ2KŸ_ú°jœˆñ(œë·™‰¿ž‡Í|œ0ì*vM±-"Yêcó¼ÜŸ {ò÷r n[pH¢ðë¬.í±4Œ1Y>vD͕ m‰ÎY¬Ú¦áÁØDžÐbÆâ4…ö…?7-œ_½ÖW(#éô8+‘{Ž¿IÃûy]Q#knîü½r…–9ùÑúë`ÍÆôÒÈù²“öVÜ¢#íQ„ -„hÊ°WþÈóTc0êÉJ.ÓêSÉ£Åd/ÖòņyÕÎø%ÏóÈ­úâ -½:ìÜ­`ïsJM„,^Î/6è†[&d*øè`Qî³·x{ßY±-Ã4¿¦¼&ÿëÐF i[/ø¶G1[yAdé|X»iŠvªaþM«í)²ÙõŽ4³W'¼žpnÏi>mT¥‡êbáÊ0EòƓKý– ¬%³]#¢9nå5 ‚Ò,͇WäÞ¬w¿S´²v˜ö³F”€¹£sÓÚ릥t\J—‡ `hoJorB|}¨“a,÷ªÝ=u»Á¨›ãHýººò"·S[«Xš·X䨸ç=sI&d÷«ÓT -µÉÅÜ£_0ë_È=};û¨!64Á¿)Î5D©½&»¶uÀu›ôg­³(¼Hÿòe¥îÚÃÖvÏQ¿öÎ%^7\ŠÛ)WhÍ{)^<’8*‚NÜr—_i”3;³6r»eEXbîe|þSCÿ·iÙè)‡7wÆ-:4Káúú¨³3Æ+c Õ@&N3múÄ¢ª‹³„_÷ÖgĜJ­á–,÷¥¥F©{›Ç3¯oAJJ.8%_ùýR˜JZ`‰j ’Z°z+3èViÅý®×ÏÉL©7dÍ.†/á‹E¹KYç~ø-ö®BÏhÍýa‘HÂDÇGëùä×°’q|@ړ xpH¡×­7ÿª6*Z8×ý|H\Y‚ß9C)fCæÙ+ù„ži+•ãë=? ÝXï/š'éï¿”}NmD9ª £Ø§öp1+!bxÈêøh_¹_‚„µpùà"_¥˜=pBö6@j»6oö À.ÐÌN=‡ÿ)yüºEê¯G='îD›¥¯Ú>«ªì®tÞ!dÝ»^£»e7ï6ßsW6ª"‚»£;l³žØÎK:!våuz“¢wl¿^{Scuþ–é‚Øg=Èj=ù»ö•áÒJŸ§E·—Ï›6&ÝùªfŸPÞ¨e„~qû\sW¤!ì*háaL Þ㘠V—âӈži%‰²á»Õ]Éè¶üù{çN:NTžTöD۞¾W—)Ä:#±•3ýPÞ``oY$˜û¢V\xùÁ£ÚÁú­-D¦™ -·š/ÿÙþEns:®d:WŒ¶`\¹³ÿ³ÿšV~í‘ýÔòæO9̓ðµœÁ¿›w·JÕ>žá#ªüBú^²‰z¼#50"—¾*»{_y^;µ£y° ¨³Žߚµ‘j£•¡ÛÒ%³W=,¿›m̎Îh  ‘ÿôSÇþ$wŠ%G-Wú|ðd{‡œ„òûò\k†ünɆûiÎ΄SÊICÃMU}QìG-…r4Fç}¤8®ä]G_Ì-u5O[þ% õ_>ˆÿ üO¨ ‘ɦӈÌãÄ_²»– -endstream -endobj -27 0 obj -<< -/Type/FontDescriptor -/CapHeight 850 -/Ascent 850 -/Descent -200 -/FontBBox[-15 -951 1252 782] -/FontName/UQCFNZ+CMSY7 -/ItalicAngle -14.035 -/StemV 93 -/FontFile 26 0 R -/Flags 68 ->> -endobj -26 0 obj -<< -/Filter[/FlateDecode] -/Length1 800 -/Length2 971 -/Length3 533 -/Length 1556 ->> -stream -xÚíRiTW¬ -A£(`µ>Ô *$3à@D!²©‰,"Š"„äF’˜L€ˆ‚»â҈€ˆJdSà˜º£µÚ‚»R°‚@¨zꂊ -n Øêñû§§ÿzúæÏû¾{ß}wî÷8Ö~öîR2z‘mrQ .䔋°8Å4N3Å4t¨³3 -ÜU2€bá»8 .˜‹Å2FMá²(Ø -&ô°øÀ])\"&€PLGA#"ËA )Á!­æà.—ƒ€ž#J•ŠƒR.‹…¢@ŠKhe8Áâõxò%"IÀïkKU1¡8H)_À–ñ90.¥$!W)ŒdñD$sd¼üc[㪿¸—J.‰=ò=9}‹¸\ý'TĨhH!)…џ û¼ ¡W)ú£¾´XŽKÜ ™{t2qÄú\é…'@©NK¢@¤X®„½}HHû[aÒë5 òx‰B&õ ¶ôã=Oò‰Ý[£Ÿj&$ -O‹.‚  ‘ù>îBû]æIHH)NȀ6ˆ)J¬f!Œ”†Dà„&˜À8æq ’fŽ&š$IR¬ž©¢S&žXɄ…+£™±DõÀ}ˆ -xR±LÆäØÓûü=<ȄD{æIÚ;c(ÃÇßÉ!é¯Ä UAߙCÄ å÷v%*Š‚Ýû¶˜ü>֑8“9„ PÂÊÙeŽë‡Ùšô2¼ãlí˜à“«t;LJB­D?§j¦’¢ÌЪª “ìÚóÖe_m݀U箜j$?µyîØò¡GFgǕ::H.Þj»vzÎ*ƒ'zûz­Dh¸çFHǾ óóÝí¦ìlM|Ö´§kÙªð3Þ!2KÝ×`Ïj› *.p ¢íj;ñµ[žtk€¦wÇUhÁ.Ö^W•G5J6èLqíõ¶tx7;`¹àk“ïÊ Øk}v\-´èvã, _]au9ª¼É VÙM”ñšÃévÉå•F%ê”GµKöl‰N» ·®¦S‘<Ƭq½í=㎳®S5GÍ5 *PZš^jýÌú®æf=hkúCn½eñ 㬧»nop .K"Žó -°ÛŠ®Š}k¶oXÌ)í8­%÷1ÿyÞ¹[›A&2Ø܀ßXxfÀ¬TYüÓ֖­f­Ý‹•ßŒðùΚwònƒ0%,tPÔ-lÙaw´(d–¦á„rùÜíZ3x©îõ‘Òmôò]íÒw?¹ûe˜†n›æ±cùìôWN—‡Þ´ò½Õ“epAنþÉÙ^}»yÈ0¿•CÐðMüǹFiÝÜïlX{½àb~á7ìû[rtÔµ!-Óí-uºRvÐ|K«õ»¼S‡6go2WkŒ -?ìë -—{@dNQú[9Äͤ˜nšó-5—+_0ƒ3K®U9kg¿Ìa:èµú¢þUòAYí<ÃLÐÔí–>ýÀ¬Õ—¦Ž[w34µ±ÜªDS*Â~tþÊþ§Ã§ë¾_sÍÇÀ'BavEÓÂrÊ=Ü5fþbc“‚Ýn¯ó6ô—ëcç|±HoÉä±êʺÖƙ5z -j*´7f%îîZQþ¨¢è´É.ç4͇Òáºãñ3÷Ÿp“QE’‡ÏkÙS¦fd*ûw ÒèìÚ¶(ïøq”èN‰iñ -?S]þ“ó9ïù Ó8ãgwv¨ˈ;•MfïҎ?ݛÕJTT¿ŽoL%Ñ_±«ªKZ«óK·?N¾qÌ?•wÔÊb¸gj¼í3¤©ân‹QâàLvÁþᗴ¦Í>—0—¢<^žՐ%©µ¥ ,Íî-œiõÆS8?–ÿ"qV£Z_ëûm}g¤Wý—AGƒ9h£±ÉI“³~'ß iÓÛýr"ÂJÞÛº#3xÓÐQñè“euíI{|Öx±3búΓIøJåÃ)Þ¼‰#ŽAìe{m–ç㟪?O8Ï7WWd[ðöˆï4N§¡1ò/ëÿ„€DÅM*ÄT4‹õÿWC -endstream -endobj -30 0 obj -<< -/Type/FontDescriptor -/CapHeight 850 -/Ascent 850 -/Descent -200 -/FontBBox[-251 -250 1009 969] -/FontName/PKAFIM+CMR10 -/ItalicAngle 0 -/StemV 69 -/FontFile 29 0 R -/Flags 4 ->> -endobj -29 0 obj -<< -/Filter[/FlateDecode] -/Length1 720 -/Length2 8790 -/Length3 533 -/Length 9345 ->> -stream -xÚí’UT]Á¶¦!¸»ÛƝàNp‚m®6°q6.ÁÝÝ-¸Ü!¸;Á݂»—›sNßÛ£Ïí—ýÖ£W­±FÍ9ÿõ×W³Š–ò‹«¸©1XÆâÌÊÁÆ!ªr°8ØØÙ%ii%Á gK;ˆÈ,ààȀÿNþ¾‚<܂<œÈÈ´I;ûoŽ–æÎIƨøâ¶`GK9[€mÿš˜€ljv&–`çol€¸ @õ¿8TÁN`GW°)22ÀÔÒÄ` 6·„ ü•ÄÌÀ÷¯´©‹ý–\ÁŽN¹ ÿ$eüå4µƒØ|˜‚͐?*Ùý]ü—æÿìÃõïæ2.66J ÛØÿ£Wÿ­ ²µ´ùö?v¶ö.Î`GÐÎìùw©ø_l@°©¥‹í¿WåœA6–&âs0€ý_)K'Kw°éKg €ÈÆ üÏ<búï;÷O„_Äeä€Ìÿ:Ö¿€,!ÎêßìÿËöêÆÿ3þÛGKw€ûßþrüþÿ9ûúo‹ICLìL-!æ5gÄähú_‰ÿ%!açîÉÊÉÃøûù{ÏØÙ¼Þÿ«Rbéà–“ð°³³ó pý3kââè†8ÿó&üÝñÆf–û»ƒMýÔT€ § +øìø†t ³/%aþÂ|o6"+1{-©Û^5ô†DW­‘½h_x° o~<¿ûÊ󳤏ÇÎz Ë­tŒ&y\j¢ˆ)Ýcq×Ü,§s¿|GQ2`µNµhöŠ&Ç -ë~ìDÐö¦ÐrÍâTRy©ckV¦Áû²(FÞ7wSRm¢’&A8ÚÓ4!e»:¶Œ·šù¤ä®h}ϟ³,‚Jébí/íåcÜ3cyßÁýaÇlãEÈÀ;"ú£Þå›íºØ´Sü¦r¥¼áÚNs¬%3ãõA/t³˜%}Ü«9Js_•’CŁe6Œs ÿ”ïÏè=V6ÏF ÄÇî(ݶèŸòNlAÛ³{xZñèØ^ÒÖ¾ª–âÜ+ -:eÄóˆû£QŒõiëcºc³ |ÏR­4¿,ÀR–ÊÌÊSTѲ§J.ÈH¼H¼#Lo9†¯IèëكÙßåÝ*{¢Ò² g¯îÅøДµþðüñ”¥Þ9_Pþ©¨–ñ-¥Ó„A²µég|ž6qÚ×FkrèQ£sËф)}ĀÓ}¶•Ùmø%î0*1 ³jp,Ód:6 -S‹*Ó©»t -wÔÆáR˜IvêqÊ¬OÞÄåÝ-ó‡(Ü$7.«…yI²ÿuÝ –¯99›”ID*¾[™©Ç1~o%cÜ1׀ôÖ0Äö°Â -(V‚ã™ïr“þ–¿³ YÙ³ð8ãÇWè;g9ða Œ×!?)6+IúîM¾TQóC«±1¿Y%Ù3¥_í¬ye¯ú5¾Ð61v+ËŠ,x&I}unËÍtLTCS¤Ê¡§¦¼F×6KŽ4€ÆöctIë?Bƒ’ê3Þï¬7.T?OÜ TnjëÍþî2Œºc$¦°¼!xŽ.š@<úˆ Å¨^ԇopìÉ\ø›Ë’óÞ¨8Õ2¦~Æ)ò¹Ú£*¥Hû2T54´ ÇÞî™î‡ú~®——1‚1‰%é¹½þrù³ÈE](Eª„4”nºJ·£Õ‚z?ZΑ íUŠG„Gʂû@îàß$èzT§Æ8IGی5æùøú”¹ñ4⢥§ ªä)R8—ü*5N™÷f€'Ž/X¿­#½ ì“æGæ&óYÒm2ñöF ùy~õÍM+.Þ£ÕÒ$ÍòÂ*šþ¤yZeJ¥•¦ªé7·{akçð+8À î¶C Á§_*¬Å,šÊ¢âÿ+Drr 6î{Д«ƒs}÷ð©eyÎæOŒ¡³ÔSó%÷càÊðhÕë`"ë=e ñ_…fãç¹o âhf ñ±S2„î &•^ 2¬¡Î§N¿‚ÀÉ#Š(ò\Ü×Ëí•“È^µ¿_°Ä͏Qê´ªqE9Yô|ÃF¶èÊGI‰‚ÁIóiµb+gÁšZâß/—-ͶݸyÚΫqïL Åý`¯a•²ã¨uU)ó¬šå­^5ˆ¡®("wåÊú£ SÐ ƒ×éTéÿXqZĕ=ÉlJ Gí”ëƒÎov‘QU–ò”P!%Œø„vF×fq¤Ø+Üs—‰!ì«Ü=0:}_Àyð¨Áà1E¬–å þèÁ¸¼[ՋóAðlÇznÔÁ¢Ë)|ÕS¼?RRD_ҁ•¶˜º ó߯ËU­)%‡ðPŠ‚òSïÒh`–ٝÆà­53<~ÍUøÐA—Ý1{Qv˜IvSã^J¬á9$ÙÃDõzñ -ƒ -Ãæ¿Á!‘ß}¶ý󻦩ØÏS #Fýã‰y…éCëïKOýÒBãNnÛû?ªùJ ¢±:IÎ,ñnæÏ£iP¼Žj•§ªça)íèÖèŸ1@Úâ:åÈE¤ý-ÑÝ!Œf¢‚c+›¡‘û f‘^ÀV¹KKAÿrêË iä^Ä1`¿>%±M\\OQÙe/ ¸Þ,ԚE¸rSQcZD7a‚-Î+Bx±ºEà ë„¦_²tn » 7.& -y…X4UŸcÞ¶22ÂĨåo7 ÷CjàïÖ9¨ù:çø±_.:œ›ëN‘"%MÀÚVô”¹XBÌWKjO‘ðÌçùúƒHiS@þ† Q…1>Ê´¼”‘Ûë±½ àˆlҌÅç־ãý éµQU -ÁÃGÏOÃõÕS„­æ1í±ºI¿÷õ¿rplZÛ)ºœ¦©›õÿ òÅu!ÿXÜå"Ë·òáñÐâmÒ?KI¾ÌócÔi{,S<¡9X4ɑ¡^)6A0žë|d€ÅÂhñ}^¹«ÕžŽ÷yÉë«ÿµ;~hà—CÁú©…Ñ„í9//®£J*ŸÅWv>ŽÎⸯ®b2ç³VðCÚe ˆŠZNø­Á%®^îÈñbû[ac‰s‚²ñÒ0(7ÐIX;“•nq[5c…HÕÿ¼tїS³gÌ°a>rgÚTäÆýÊL2Óßhɼy²0zü1NÒ¦6$‰JþóSŠõ¤X4ƒ‚udf4™­ÿ+#¨\ý–ÓnØË ®fì'Mú—Ù’>µ…øEÏ\Ža±á[A*Ôç¬ßŠôñëÆ^¹Î.&3{©Ir¶U#v¯²Ç¯u9?£ãYçk(À'+0 -ŽD[©æð”p!ÆíOe]éÙ9{ýûŠíÎey!âÜ ˜˚°jué)7“xӔ4·ÆЋQýìMªSœ_åv²ÂòÈëo†j@Ï=+€·Zi™ÑYøQ}õXG¾kškéÒÔ8czÜ<å–ëT`è<®¢Ÿ å—Ìäc¼ñG÷` -܍@Äf6,ÂÄK® °ŸgÓ×ǗNt]©}ŽÎ:§áؤ)…"µƒ"Ÿ£‘m‹þìÊñ_’ÄcЖ~¤wþ=zt÷½“ò<ê}‹¢d}ÎÎç–íd~ÓX[N5­|^½Lfœ5‹‰Å]`ú’)-¸ö…Ï–M J¶ÎÃKªÉŸ€(8’ÕþÇL÷Àkǝ$ -ÃIZa(©V’ÍFP»½eì‚û+‡ûð4™5]—¯¬®¾Ð¬í4…@ ÷oŚç‰ÿËè–ô§àúÎ¥¾9cd¦ü•Ôeö¸£–#Óþø¾ª]=6¥Z– JäÄTÐiÃQtV^î1¸°9q:±¢ý E4kÏ_l:ùþ»RxUӓÑ×ÍZ­’$¤hm_ˆ§"„tîRÓpÊ5>RLm¶ 7´¾>C¥MB0pܔ~I¿›O’=>Å-Ug\^p{,ÎÿédA`뛳iµ‰H„Á] FÅ k aüº†¢í™óí%&å5[Çócn-hŸ;\Ð WùdX V‚¼~ä1âÃuá£û\ͱóNùihñ‡Š‡\vH H5Íğ§RÒOݞ"®å3ÃûXI@Hß7XAëX€Ä¬ º'D&u¤Hˆ¶¦1¶WRjRÉ1{nK<77dÆä=Õ7–9…Œ|VùóÂÑÈø §¯·ž˜‘wD Æò.·÷H óVÜÐ P‰΀C…ÑÙ K²·´ÌÛÚ'—t«_1é†0Iíª°Y&àì2­$Ž8ÉP ½ša—Œx;ž¥S´aä|+^DkãF»ï4 \‘Ç -Pyçä4~>û9âÕ¹Wô"-?úÁ<­"Â`«=Ïtm³×‚V]‘ÒÿêÚ{ôPBˋÊNoš$YjB…7rBÝ•ã ´Þ -ãñ î‘íð˜96Ë©Ś½l9ižYÀv/l  ƈ?€lԐR[‡*ÇA[ŠOöÂ9bhWsûM›©ŒÖí˹o F;H„Hp Óœ û©¾I¤:Á߈C—~Ò@jÉñ5Rì6>渠©#_`8ùØ3,„ܽ´‰*cÜr"R“«ÑL‹“ÑÓ¹M>¿3‚Óm´Žh¦s!Và 0‘h˜Í¨7i -"9˜~ A˜T¿Èu"ï‡âXÖ§,ÞE«©‰ö?ýý|¹óYˆ)’”ÿëaÈùéò“?ÍóÞäNƈa%~O\ÈÓ^E1ÈrÆ{ÏuÌD­rÉkú¦LXö%àA _•ÙqkT<½E"˜%«­ãŽs$ñ6,/=l¤ï.÷¬6ìÓ¡NëR6粬´bKØ=ƒjÎÄ ¦>p…”‚C%wwc‡ó‘ ùl·*£/^lwtið}E²óà`ŸIéó5™Åõøw„û¬GÖZ×8%Ls˜J/Ýä‰!Ê¼ê[×¹Ho}™ @º{Wäãsg]t’äí›Æê`MFÀ™^æ½^2^×, ¯h©Ý^Oã5“KÂÂÊAÕn±ÙGªOU'Ö5þôÝ-!š¥ÃeXLà|Ü<¹ƒp#žN‘—^á£3aøWҊ½îºohºÉ‹w½4cUîL.:³\| -8ì/€¯º„kŸ¹QÓÖ¿ü´î„•^wfwÍHglZCþàk“‰’M£dëe‹÷Τ…¦×Ó0ãÔÚý$ÂÖg:oRŽd™›ÇìâL%ÅÍî„J·{7èOá³ß½(¼¨à†×R‘¹4¼üÕ±r¶õLˆ܀âO¶OðbwÝÏu¿h(‘GT,7ã&®ùWܜê9õۘ¼f7|Àó|¢gsöH x÷¤o’s}u‰%Ç +qM÷Dƒc¿•…ùõq© --F¶œ2+"ÅúNµġ|è'Ò+G>b„Tî}|×Æ(Ì®\Jj ¢‡G¨›íhèâШÍèøvbCõÎ/vS݊Ëð2ä¾åZšÓ&ûc¡¿+Rp!ÕpŒš;Î*•ΤY¯èTš;^]yÀ¹oÅ"Y>i…ŒH,yÆN4äCúI~o@CÚtƒKuAZ»‰Q܁þÇB3¢ºtçó€1”dÿ´öMn:Aeø}Ð;®ï,¥ð½™[=ñç=‡á`—”¦?î2¯bVa;#OC¨êR0·ÅDÈBÂŕ¸÷^AöRÑEôÓ¦C#›hÙKRÖ/˜3Øo¡eøTåéÙÎLoèËv—3\L…†ÕmÃöãóZ°¡¾è«”Þaîí7ZìFeš®<Ôf¨’,ޗç^Mü2Ì+þ·ƒƒàW Ùú±ÞöG‹õ -pæn"áÇ å Âyº’æ˜âN2¼ÎùŒ1W1ÌÂ.–cÀÓ¸7Ì4-Êš˜ŒÞ‚ä©Û‘ºD7`{¿o€ î1KÞ0nÐåšÔ™õªñÎU{} -\d.þ¤Ö>-~msed¶Žl—?$HPd«>³bhՀÊÆ'¡‘è<—qŽ¡ ÕPt¤5²a~î½U <—b0˜R\ô_ùýÅ 1xßpÆÑ)‘I q‰´Àý:mhþT‰ -+ñÚÂC”“gz隵yÌ¡Ír=¿˜’ˆœ_QŸDéFőKÁïjÅÓ6&(«}ф®3u϶4æ×O%vÞÄH/±¯®É‘"£ÿ5À¥(M${RýµÔsíG#çjM»°¦ˆÉ #ڗœu!µaÂlønYϤ„aâtkŸ„Nb=Ձº ƒ¶–€_k)®À®6–4ë+VS3ªmó°RÊõK׍oz *¿ÍJáÛÑý¢ÿuYQ„á/®«™Zގ¦Í˜¾âÄò ™ö…-Y•®<üho4 -L&šdäb5[w§¦Gþ -3Hі÷ÉÜÃO -»M¿7Î.üÓîÏÌ -³ääS}+œ1ôõ~•3ñÝ/¶H“ÞGÇ5‡äÓÐF¿ûàMt0Ñc· ñFÂýžçGªltć/Tqž>Ë¡Na=ÍýXt‚qÜ>ӗ -PÒV"ù³¹ñ£¶,„Æ´Ýõû–1™¤<óò7ýO Îðòã^Á+ì´(ZDôY2¡S³÷(YR-»þ8ɻͭ^b¾—¹@=å}ãOKq I£c¿Åkv šAJºÁºô¨ÛæÍŽ¨]vÞ[ ²QbÄJ‰úd«m´A‡VÐÜ1«Ö‘üB-QØL¯DN2…³ÒЀûÆ #¡(՝]Xöë’v¯-÷Ü.ÍbÈk+š U¶¡T¤ë$¾0ÇÂTB9ùŒ|~aª¼Faä,WX⍃™à”Mm‡È~.›f}‘Ø}âcœÆ(¡j„^ÀE¤.-Ÿ‡åy1¤åÃ]fé¯7Óݸ•7úѧ$Ò y½à1 ­«ÜØeTÜ=âäRüÖ¤®(0RûUM–W•ØAüàK¹`—¨–||µÞÔmb«.œÚ­vó´æ=ÜYÆ們{3+ê—ùƒl:*ù­+EtOÎöò&è}󏰦tÄëíؼba‚{F§ãÞ®ù¿†QWsIuü58ºíΪ¹JpþTÞ$¦¨ ƒ(‚Wkl79T4bÞgæ]Xљˆµðè<͋ȳ›ö¾äšn.OqH[ï³ñ†‹Õ=~ni—( È}ç[²ê_î3h+% D´}’¨ƒ&é“ÅÜôög1 Žê=Ô -›ýšzµ%¦µbuétz,ú\¬Óø­D"ácž˜Rµ;½98u1{½CVV”ˆøò]YØ8bjF'ø z3¾fE»&…â¬?ÏܙâÄy¸<çžLÔdړó˜ÖGÇ•…&:ÆÏø$ßcƒpÄr·+u_Xnez72m ›¹AU½ -©0L·­ö Õ¡ NWz.ÌïxÃ8³™C$‹2}¤£Ê`A όv"»þˀ%Xo¤¡G"¿ÔÙf…Qùûâá&>µÏAŸL5œ`àY \£y)xtË&šüùdb?H}gšApçêÆ ï—Àê_?ù -U:3£“´i_r«Þ^ýdÖʘv÷µF{ê{Z˜'øf=‡ñç¨Y‹§b‘Ÿ*7!`XõEB†ö iSöyI=sóãg¾ïzæp¤­ß±VòÛØaÜøeÑþ7ȇö¯öëÁá^hÅMwô Ó¯<¿ì;Ú?­û§btRՐ„x4—b}’ã(&Þ „oPûtÉKùЕse³xS)£}•u[ÎÖþ„ã/halê hùÙíx­[|:¨KpgC¢T–®@8]BzJÛGÑÙï²½ gñ5› ßWÒ_X׶GÊϐ¨›Ç¶Ó¿ÈSç1¾÷G®ô{Œ-HÕÍOlQS6½˜„Uð×ág9²n,ÏL§€nLbÑ.t›ºß‡åôæ±Ï»ß›ÎètRŸÜ°Øjpùo˜°ç«RÄ–mPÚ§ò…¬hÄÕëÚÒÉ\Y ž -Rcò±¥·¥j$'|B Q0ƒc÷Ô6ý{Øá°Dê ËåÙBô33'¿ƒ}0ßä#ªG&æ„7áREÕ_ÞOŒ£È@¢a[w¢eƒŽ37Nøë4~¿kW׶ñ…Â…³äðÓÙ¢°Xú72ù´_††r YÑkI7J„ z¾„åŒoŽúì!ɾ ÛKþôm¯`%ݓ­³Üñú½¹ôt}—éz©Û`—Ý–þÝ~æ&?`Í¥.÷Qæw•–edLR¢^¥v ™lÐ%˜Š}lŽfô4UF‰~÷v~ž:Ó -…Þ“q;|øý3<IÁšaZ‡IZât@Pl=G²Z9AÜ3fJ‰¯ÅTk7qÙ¦aÉKÃw?Ôbh°…‰©Dzy”î–fëú¡‚ä:ê}2¯ -›Ð¼¡ei»&…ô7ƒ6ÿpó¹¶EØÕ%vðøÁ Ôû\®Ñ±¨ yŸ†Év…W꘳<}Ží;u#P–Òýf¹uhhŠùIežSx-Îz·°4ŸY ŽƒY:åJј;ø}¯USŒŽDˆ&tvÒW~;†J,Ë;+íþØpH>Þg¿Åú(7ӊÚýH¿ÿ‘ÌúЖ‡™âÁqÕßIMq¥±Šq#>¿~²©ósWœt´0‹‰£ÊüœÒI‰z´ÝH؞I[ô·dóA| 4ìU -”²:#͌l3Ú:ý`û’>ÝRÏÀ¼»Â);öÛ½•×bêNȽ¹ñ6òCÿ#¶òÑÍçBte³¶³©ˆ5ôñèREgžÀü̖é·zêDýû[ºr¸Ò;g˜·Pž-ŽÙOTcù˜\"–ð{nÛBe~§PޛɁq\ÆGXÃ’›Ü*òRÑxz,‚a6ŠdU@9‰WYó…ù‹ÞÏ!Þ]ÙêŒäÄÎQÃ^uC­"×;÷{f -]Ϝ›„€¯£›¹Î9p£oR§.%^ªOô^ÊÊ\[“i&ÉÊ¢Ëux0òþ!ÖÙ¹=ÚO…@½ŸÕ'àr²Û“¯C îŠo-0ÒÚÄ^"FšSEÝÓu¹Â{x†¼?фlöð> 0ä´æ÷‚Ë{BÍ  h8qfÿÄÊ°1ӑÊ&®úòkû -â†|‚&|]ÇU~p9a_}ú£elÇK3=¶.j"ßÒYó…¼ëœúLɹWÄ Ü1ÔYk•^m¸Vk4µr ÑJ ,1—’öѐ}t¸ã¸°†ôîOۇöN°éʉV³í/öEÖ%–;D!û%äl‰|îÀô”ƒ½ø“¼¦SõÜ%–ëyÓ¯0·Ëڈ‚£ç:æ3zÈX=„uŨ‚ìI˜"Ďð 2àÀ4TÀš]–gñõ4%¹Ÿ0×À4õ -Á@œšÏ©LŽ¦P5’ð©è4á@XøñØ~U“$.,önž¦ZÕôÓ¢Ë\8PIoS8˜XÙ³»Œ××?ü”Z`­‘ Ü{÷íégÀÞíþÕý‡±“hQáÖe÷Mç¨Ø@¸c 7O š¦‡¿ŽÌd1£Ïo£À!Õ`¼üC²i÷2²L tz{“©oN®ð–ANý(»¿LÛttvo-4Ü(ˆ/(N±õÕ{©Ç‚(b_2ªÌ*½»¨ä½ø¿ã£FÒV‹§ ¼ª¶\Á÷È­%#„^mÈÿê½ÓÁµ)õKì ¸¬^ TMó -54T¸b¹¸+9%•ˆ§îë)x~ºÜáJÍÌðK¹Z²‹™\ó³ÙifFÿ Àš³Vâ'÷³Âˆ*Ô¥O68Ú´þÍËýæý*é£öÈÇÚEqƒ¦Qއ»¯Ë…4Éþù ÿƒÿ' LlÀ Gg;[£52òGì]é -endstream -endobj -40 0 obj -<< -/Type/FontDescriptor -/CapHeight 850 -/Ascent 850 -/Descent -200 -/FontBBox[-36 -251 1103 750] -/FontName/PFLRKF+CMTI12 -/ItalicAngle -14.04 -/StemV 63 -/FontFile 39 0 R -/Flags 68 ->> -endobj -39 0 obj -<< -/Filter[/FlateDecode] -/Length1 723 -/Length2 10984 -/Length3 533 -/Length 11550 ->> -stream -xÚí·UT%íÖ¥™¸»CMÜÝÝÝ6¾qwMÜݝÄÝ]7’¸{" ‰»Kbýó×ß5êTÝôè»qk®ó}bÅ{AE¦¢Î(jîhj!åèàÆÈÊÄÊWԐee°2± RQ‰»XÝ@Ž@7 >+//+@ÔÝ -ÀÊ`cåcáâãdGD¤ˆ;:y»€¬¬Ý4â´ÿrqDí-\@f@€"ÐÍÚÂþŸ3 @ÝÑ dáæ͈ÚÙÔþu‹+@ÍÂÕÂÅÃœ ‘•`2s˜ZX™ÿ%ë`éàþ/ÙÜÝé¿[.®ÿphþá¤üCiîè`ç 0·°DdVrüg5‹Xþcý¨þ3\ÊÝÎN hÿ¯øêëíAvÞÿÃáhïäîfáPt4·pqøO«¶ÅÁ)Z˜ƒÜíÿ³+ë´™‰:XÙYY9˜X8þK¹J¼,ÌU@nfÖK «Å¿u óÿ$ùgzÿæ`V‘RP“—¢ÿoö¿º*@ƒ›†·“€åÚÿ]³þÏúŸ)¹€¼ú,L,,¬ÿÿ9ÿûÊð?V“t0s49XÔ݀æ@óÿ[øß©ÄĽ|Ù¹Œlœ¬VVv7'‹ÿÿjÔt9»[ÈJ8YXXxØxÿ­š¹»¸X8¸ý{7üóÄÿ][‚þ’……—…bN.˜˜þÁä~`™\»kæ ¤tœ—Wâ\K2i‰?ÉfDIƪKOň8O¼ýÀüÞpª´ˆ4*ö£Ñ+wC}9Ve!לYO+- ³5ÿCǓÒGÀȲj‘íñgf^Ô ò;ð -¾—;µ mo¡|Ïã~Úe­É t·€ž‡%úF]™œ-º/´xAqdLìP2[wÈH¯+øšy™2&ßäQŽ’¶^â^ ÓKAâîl$ÞR‹ j˜²% Ñ\hŠ¬fItÖ±¸Çp8sH ¾í “c9à šª¦‡Ôç6Ñ}ý\ݤ ¶t³Ëk()=Jª*åڍmYÈWv}Š3lUø+¾wCnõÓ¸kk6 Y߯­“2 -XO%¿¡þÚ4_Q¾b\*±§ÉÆáê̪j#8¬„ìŠU²“Q³4ò"2NêòU•ú>€UÐ^eh|ô¾‚Ò̽˜fPðð;b,@î<՟ù ÄæÓ©Ui‡*5}$Zý:šëYó ¿?EÈ;£p½¸‘­öÖÌȧ®Õ3 ܙ£7†õÚ tP÷YlA)· ÝáǪ̃Z½eT¿ÀÕ8ìzß ړ\…ék|ÛËö¹´@ö¾¿ä@"š’»¢æïb£½z]ß±ž‘êxO\B¶ðJsE½<;K‰ZÕH¥ÿEÕMhCÌ'°ó-šû¯!º}L“ÐàšÇ"§]çûË™¤ˆ‚Õò¸Çß¾i6cÄPŠ«Õ?¦¯C×ÅË¿!A¼[?ÓƒÖ -o,ñn¦0ýTÉJ,HC-uQ• E’Ød¸…]™··«Zí<|äÝßwôÿÎÐ~šøgÃrÙ¥Ü=Æ'QèQ #—w¹7+~I_\gsZÿ+,“¹.‘umËñÉØ¥*4’üî(Bh¤é¬RÅzDàcçí}‹¹9ɇÃGÜ÷ëZ;CàÅAs\Bgä|Æ" -UãJÅÌåUø­dЌR R‡è÷›¶®N)ÊÒ¥‡ÇúúìÐZ]²i,N’ñ™Ï\]ÿºî¨‚I’uZ#‡Ã-;v%•Á©.Ñá£Ãiì©É­ˆ^a˜¿'öµI8þðš±e—ƒË[¯; -вt]B֘²º6xç…Â$ÕΡ¼»ú­Š!Ì5·xÙ!ä -t…*GUÜÝØLKoàd‚Óp)=Ýû!~‰ý§{Š‘Š¨Èô‡DdI4êLϒsãy"œälle…v=#øóhs\ôUá…÷Ãr0 ŸÇíxgM·HÓÿó“mî8Ë2®Ð¨¹µ7ØÖ^!ù‰»3»›P¢ê·;«Ãos¤†—¢Ôƒ”Ì-ӗ³ä@:°Áp³y¦¤x,Oor‰°ë&I" ÇfùL·ËfÁjeæß½t%WAnŸ$ø<ÆÒ´gΖÇÎ -£¡ØçQˆ®‰©É Å̷ˌ¨0²‡µzÒ1Ñb†® \A$ö53±SfƒR#5MsšUèK†u÷“œ/uñrMϙ ßU{—Ü,Ü>ÇÿÛKY>ÍÕ;ª•9[ªÞÏ w§D›£X¹×PûÐўþ-½UJŽž‰=ËÊ«oùß%×æsb„·R×ek*Òݏ^û:$½T°á“³>Ç(ÞÝPøvHqB̍•«—'^©w -–G‰„Ïðw~'xª_ë¡Þvee)ZTXSâVM -¬§ÙŠJ¢šœ˜FÍ&Cjýɶ”UÁÖlÁ”Áš›²ä¡¯gÙk¢ÒHӞž›#1 - !öo¦Ì}¨ér^™°´”ìÁ©ÃŸV*iO9„ùˆò5ØÇëßú8!°ºjºÅò’Œx„ [O„â -Úü´ÃÆ1íxŒÎQ›žáeìýÌæZ{–#PV¡Vè„ü•ŠÊ\!M^—ž&Uœþ©I«g•²s¥$žë„#‡Ÿ;ŠPӄ&•m€³Ü¬ Œ7?z8¬þêK“ã8 QΦ1ÞIoTÄ\DáC§áwCòµBžBº•Z1{©× -çà^Á $੕pŠ -?2Ñ_Í(°»…M W@ÍØ£ëDðËÀNO®»®Þ݊å{ÑèQJyL®†­<…¹á™­%èPÔæài C™ íp\‹v^Š rxÜ8ÝS*Gîn=!5«v9 -D¬(!쉠neZäUüÚ´ÿ’Ӂ‹d3™£¼ìM”Sv²’ê/i«Š ýË[o•ø˜&ÍOÙ/d+i0͝Ý+@«û£øÔ.âÛÎWKùҁù˜E€z­40jê„x.(%ƒ~3þ}Ȕõ’S±J‘gv ¬4L*Û5D~ÿ³;Ad©žŸítÓ'‰z>i5)³óQK ±Yæúk´’©çF×Uė7[”‘ò…C‡‘oàÛ»•÷ ãt…ï&FÔyõ\‚M´ï£ì¼“%ÃbnMsŸ³PKX13ÕÅ÷WU¿úÎ%P¤,ô¾ •täî«<ÝnÒ0c{ëltH’MVŸ­ÙŠ¶¨bübژI.rbB:} EÌ<§ -Þe}(+-fÝÉÎܯO6®¤ëGëøÁlN@Üú‘ÀT<á«”b0‡ $–k4EJÃ`šî÷¬5#뤬æ>èz÷V:¨+³¥…ðYŠ¿]-æM›pIÁÊ3Ý­j1œDB‚ “ugw¹ø òlo–(ÒBß³Vô×Á‹WCZ˜NM.½W“TÎj‘d š8›®éù -LŸ}b/ßWû¦¯`Ç1ïSÃFøa¶›¾¸Ã(ý¢™¥9*»¿QÕ΃ÎWÚ}NV7í ;´°û %‘¤s@X©›È,ÖKYð›2Ú\†}´Hê“/QWåGq¿>ÅÍBÈüÕoA3Ñ$IÏkôHe>mÂãýâ;“Þzí˜P—Í#ø1ÁlXC|¬<ŠENOêé™H8|÷ƒ¬mFÁyÓ^¨jxHˆç~?ƒÆ*3b®¾RÀ 5Ç\®ÈD‘‹7Ö ÆçKÑøgõ6kdçÈ(BMøfU€àæà-²B÷ÂrëŒ(¼²5Q=eV'ö«3Z» QjŒC–²‘–â1Ê -ù¨ Y^ÔiE[ùVX›ƒÖòxq$7"Á²üë9>«€yè$ÚeÎϸ q}»Èa B÷o’¿Ž,!ñ+{ 8Z×ð×»l9»m™äܬ7 -(öÎÁ¬A ÎéÖäÜýݵ©¬OÌâné̼%™ý·}L7®Vý¥úFÁ -c~¨ñö>–Â2Øä=ú"—µ§†™g`Ìî^ÛK¢ÓäþC³/BoÝ[ú,Ô®Êéš%Ž¯¾¼oï ­å:ßpCh›Ñd6~&òBº~ú4‘)T©²¹ÿÉiú¶=­y‘ÙEö§!ûƒ@PÇSçÛlf“n-#QA x‹Xÿ ,c…0¾Ûû ¨Ä_< -ÕÔNjRo´ ¬Iæ=ÐÐòúâmð—ùܵObêl½ba‰²´hï—•læ¬ü܁ÄNA­G3ì0’|ƒ -9TÄçþʾӓչY¿y$Rèþ©ú¡—±”së®ñ )ÇÆÿ4¡ð¡Îf]6Ë%ŽÆ¼¥žš@í½½ +Äf«; f¯¸gM~²fð¬òP‰ ø*rqX!^\]¯UÄúN$¹A‰Ï™úf·IÔ6ß,=6ªï4/ˆÂÌãð±Î -ß¾r2ŽÍ7û鑣⏯¹[ó”ˆjSö«})©þê9v¬»“ɍB7Ë­±\IM^ž¯ãÔâo XQ¦É¯¦¶™Dœ6:Qý¬¦‚]Ý›<½xZC±;\þ:Ö D‘`Á Íy -#Xž½ü]oӉ¹÷,У‰Ï-ÕØf"ÁõÿY~s:9kÏ ål7O@µÔxû–K°A%gN =eX&ëM]W©š.:¬fÁ•Ñå¯u ¦f榑ÎñÝ*àÃ?'Ã:}i "CòYôZ4%*ü:ˎSÑ IœÃ¦±åÅ¿<|ºGâ×r¿eU'Už?=»á£?ÑîŒðz₿ì%øüÕYþŒ‹Fã5[ñMÊJ’ºHŠå.kz5›föj‘ç³·pÏLü×MN¹¡*éց¾:…Î+Tm¾ÁîßȤÐ)£ ѺL#í€i!~¿<ß _¼º¾QµÍïÆ:—ÓsËL4ÿàý"8¶{Ÿ•œƒ²5æ:CœêmNfÑ=¢â:Ç èՍì -8EŽDOª,‹É.j1»+Æz–;±X4Þ`«Ø³¯ÖÕ°ñAvhÔ}L%¢ÂÓQ”X° ’ÈÍ¢aµ,eŸì©Ô"¿ªcJo†±c5p¡f áÝv‚²ÿM~8œ>Rë¦Ôl¨Â›¸ C²ÄTú{ÙNÙ&ðãRRæíS<ëšêe }Ì·yÊ+6§ê-Ò¸sY »á£p”Vfd&†Ur#öá)?۟;·¾ºD½œ(úÙU»»&3F:èÛdg.EO©cç§^+' Ô48nÕ[ؼѥ™½6Ɯy6i¨¨Æ½š¾ nv¾ÿº¶ ‘1Iðûïó$°Àö×=?O%= -Œ’ÎÚxœÐg)–/ê%6_"á-¹tYcó8E“åZ«ïµ¥äbœ?Ëã˜Ô—Ä@i‡òçÍ}ÁMúp´=åµ@Vg/îLó;혁ˆ|9Æg);»Áõßýóͦ­Ã]0N' ÊԎ5›d‹^Wk‹]Á·Q³l«F¨R QзP÷gՍ>Œùáóïåü(‰^ÒÕGý¬ÐîMÔyèAG[M[^ˆ4™þÌçv3êÑ®^1¬NÍxR}ä\–,ç¤ CæÀX+Ú`ö#ùõ¨¬ÈÚVhuÃ<7ëќæF?3»Õœ˜õº˜Ü g²VØëgù†MX~E*Æˉ^œfÄTUÖ XЂ´H—ãyšg}n0ù,Ç’_3‹7å@î¬ÌÎýÊÂ,°‰‡áÀw/-""ßP·³ÛN׬(qQƘ.æ8ÓVE¹ù>´@&µ2\N̏};\ËQI¬¿I•] ÷q·xá·W0§'ÉÜTDJÎ¥è%QwŸÓ䑝gÝÆT5ʸ‹—^d!G¨|SӁðØî°X¿åe$eíŠ+iùýû§+_&{h¢%7Rï·©¿â¾¾­­¼z8Êp¯OY–í*P±Vêú¼~Ià¶Ås -ýH‹ÃF¿-êÒE2¦'rz¦s̼–ÜF~ô~[™ŽQ]‹XÊqœ0kq}Œ? [š8) -ÎûÔ!d3µ “Øwà‘ߍ@PÑ@¦’h®þ V€²(¶ó/ÇZ?} \ –¢D&WVk퉒\ÅÁ2áz’»j¾Œ3ÇfØ -‘à†ñÖH,gbDx³{àfql¾Š÷è¾f‡FT ÐÚºò`Ã2MX0^Fo%z¹ˆ°øä ü”Mv"¢CÊè:I/ÜGYšï,^0rk)nۄ‚ʧk|èæÎûb…G¥ß]XáK¼¬ÃàlwœÌÈÞÕ]såHÙ§´ŸLŒ"Oy–íÐU¤k¢ßQ4D\ÁŒh·#>™† ÌÚ`UŠZJxkQ‡ˆÝѽÕ'i°®hÔÚ#W쿾°‡&kÓsE2á.EÅÓ<Œs¸Î¨–­+ì’K?QÍpÆ -ýŠ^4iû÷”M“U'ÜOÅ-Ø(þøH>îìV8 󯍐k`fþœøFS/ÂßhÂÔ¦Ob‚e®¼“«ÊBæÚ:ú1BCULáµÐ»Œ¥£˜fÿwÞ}+H–ÿN¡Ë%$À̋èg†´¬€€@¹¡zTL!K ^‹½‹ûݨ­šçŠXb‘gsš”p­$ˆÔd¢WØ -ü( éù="óv¸±€»¦Aˆç‘ü5C®¤IÙÔþ"Mv©“ø'ß¹)tk™‹wgÛ%‰uA¯m[¦š¦ÜH®²gHåxXe98ɪ7šnûeýê4ÐêœO&’Ža`½Êð«ß1ýQ„Î5Mñz± •É¨ÂR…Q…ß= -EG]gˎo!Öè"éÈømyw”C-y[…”¢äa $§aÈ®­1f•ta‰ÐÄGŝÃ$Áí'%ÀDåû^!Í}ʋÜTHyvµP:}gqX^þ£xæÐJàþÜ|LËÄ¡!°Y~ÍûšÈ‡!=ͤìSn^Ö× ¹ÙŸkÓ ¯ÑÖNû+Ùaìœh¥Þ2­ ¦çÁå-Îþ‚¬þ-š›d¤{êv²nÿ$ª Öµm:*l¢åÌ`ã™Ѷ:·“(%äïìe¨ÙR?(²çšÃï ŒwRÒÀ¾o9_º0=ìÖ× DÜ©*6cwïÊ#Ò(o^ÖÀˆ h59]“£¦¾Ô lC+ð„”?:Vä›ö¦¼PÁ?”ÏQ#ÒùõÐE¼®Ê›°‹ù팛´‰ÉCø n‹0¦›ûaé‡Õ@W5¾íÍɺ¿l.Q+z¦áD&­-ғ. -N‘¬)’´·â´›®F,­TiÅdoª|Tz®8›ÍàÑMÑúWô¾×}ƒæ@1( wØ|΃þ³ë”ÆÊöwL»¹Š²}g3ÒœÁfEî›Ìԏ3œK™á¶j¡Î8 IŽÿµ¶zRN+üaVØV¥{€Õ“ë±þË×ýævïxwCV¤d¡›z“ÌÏøÏz̋‚¨tA¡…ÌyS1k6Í°£æ;DXö>£ã±õ •Qѵ?c7ZED"˜ ø@^ãdð.ÙܛR)þrà9›×º-*È K=^Ó¡3ƒS͝ÀòMnÁYÍ*Ia`Â{5£LÔ_;֔ݽ ášFïÆŸvÓu€ÿyAPu–ÊÍLݐÕГz$J@º=`’XƄWoŒX -퇑sþo«UŸ®Ÿ9dª+ˆQlÍ*Î!u›>ž…àjù9å!)ŽáÖÂY(¿íÕ,TmŽ¾)î×3¥VŽÛ=?v³GC3$ eU”‘Ø´KUÀ«š3<,-ôïÚr·ÊUIA[V]èëb¢—/C£ -ԕöÊD/žÜÌÜ Þû¡Mpót?!º`8í2× -}åè‚,él™+ -…è46Ø´»_=IJV„¡’â;{3} ôtÁµ¢wwgG]ha¨GD"6kôr:·ÖÖe1¸Èz©Ö¿¢pJÔ2)]6Š˜*Ì5¤–ˆÕáËJAç´¾-^Wž•a@f‡@t®©><@s–¥¸êVËtjû„â÷ŠØYlæÃÅ@'ˍ6 »àædÓB-Ap¿ˆ„^ÚIUÆ»k½ôCÁé s ´«ÇMøoUN2@ê+³ÁaiGï‰=ï/Õ­¢+à’M:)*¬„~‡.®èV ¼ŽÒ?ÒI½;ß½”pôiŒÂ BÏÉì¯| ½L=€Ÿ®øÛtä[ä;ª#žPóIÝRn†ø ñ2§7—Ý{´¸xO¸‚vâðpjj}6fä×ÂÇÅ¿@™¥—hú3-N¯ÛZX¬É…M0k¹¼¨\mLBBáJ3c«ÜK‘ƒZ™c»Ûe†EÀò÷ †áٌºÖtÑBƒŒiû|ސ:ë—Ëu¹¼oô£§ 69p„C&9áRPÏ ]B¨;Á—è¹UJéF%༳—Ê»Q‡H¢ÇqD.>™Fc¥“ðvŒ¶¿|DBÛt“A7#=¤%ˆ;¡ã…•¨[Ò±|ÉåÌáÝhAFÃ8oòç¯ô:Yô§ÆËnDœª.œdsÏ` Ûá‹G‹Ç‹¬*çfúDBký8ÜB×;Ïhɼ‚²Ýl¥8€öNPçØ®3<¹XÓâwÊÿ -é•ÌÆ£îïÀ´Y†¼z<ØS™Dà‘Æ3•HžÍ}÷«.¢/™{m¢•J.ºP»9y]øºÑˆÙ«î+žŽ¬;bÍù äžt½ٴÙMñy”ó¢Ìjí;¨Ã…Kìz|îû"Û- Ãfõ—~É4˜W]Þaò6È]FœÒÞÒ}ãшؚŽsdÉûg~¥Ö{‰7XÅ©g_…“”ùM:Jk{ö?OÁ’‹8§`f¹Fg,¡ò˜Ñ†O!~ìšNgÄe­ÛxÚF`41¤Ïx2XG/3JŠ<éf¤Ø/e°ÚMˆÜÎt U¯÷ûW'éâ ÌO3BÍ5³™àÇÚ¤åÆj1·'†ÝúàFœqéÊɦ|˜1Ô8©?,úy´IìS ‰{=j¸ 8ªÐÚMpø‰¯u‘`îèåð°Å}¥UâpÙK•$ø,qu$¤oEå$>Ù®ýÔ5­5Ñôµn'–˜?bvéKŸ¹¥qh––3„žÇ/m¬…zãÉ>ë¤ H£¯lÑ̇hTF÷«Ü[` My­ò9Çò³é/–¼B3…hž¸“]| æŒdív÷†ÇÁøýl¥d–9$Kþ*þC†®Ö0c=ó;YÜ$átU(\žU³É9Ȭž#ö–È‚ä®D¬€à¼TKxŸ#ká>ÅyCáR¨:'Úz[¬ÀÉd¾˜3êSMM—"9$ø®ú©½NkYhOôùì®yþbdš£¥Ü“åÍë™oÚã†|„[%‹~Xº3íÙ'Y„x58RZrkvñ ÃÅ*֖?ނñܹm&¾œï‹ž! kë@åc ïžBQ´Ž±D’ýk|ã µƗz¿R¤8ø;$“×äAG;^â¥æf£³VîMNž¨tR=QҖ·P!*Çù”´Y٘³n®5/-ýY™2²ðN¡f'±o]'¯`Ót+yòêi½÷ýlÚ|Đ0AA[ÙÇWÅ¡oïöR½ ¶7ÿdwVêÆí§|.šû·vÄj7ãDA¸š t“†?ê‘øà ‰>¡Ç‘ß~ãÓÊúŸ™ï,ª;¥ÔK]ÞV¼¿íÈ+^DFVô+Î$¢m“­Ñ‘û˪ïL"‡Ô£(V¾w;éW#ðÕÙªQÈð@f;ÆLëûâõ0b¾-Xfs[úàiÁ©³æ… ±œÍ]ç›ß/鐰4•d9ÆL¶“îÞÅ?Ð}<ŽMëƒ(ýÖÚGdP"%8÷i]GULÊ¡dkvžA¶•ù?b¶Ãm³¥9£‰®n“ŽóÊ-ƒ*¾Çq`ƒ–m ‘Ž'ÑäyJ4%jÚDçÓ¼†ñøÕÖ$Ø öï|X¸¹I‘ýÙs7¦Ï+úçœÀtf£æc·XÑ® ƒr/Š±•ß ¦°Ž¡T^’ŽDý€fÖ°Ó²¥Õ=0Ã$¶™Š®3ÿVì.°¦…ké$Ët¶ºåk±……\¿ -G[v;²ÑYK©ËÎ`±dŒÉg‡—{5q£H­W̙þOLD)óYØû¶Î ¿¼ñsgJy¦ÿóæH Aä¶oG¥†- ®(q¨#6ÈáÛtX_Þd ¢öÂlÞ{ìtUx6~Xj=Ås{V™¥ÈµFV·<û¯±ª_^­ _ÕV7(Çu2EäG•¤Ùd(RÖ.®ºŸÀþH"åÕB!(±Â¥å£‰F¾Ÿ(1ñÿ[ëçM}Ïûƒ@¨¦•Æ›5}ýPð[z|ww”Èù~eÕ¾Ïͩؽiž¯¢#`Êu]וÝÅ·†Bÿé&â>&ÖÖ¤EJCûw±qîO0ô—‹K<åV;G L1Ѻ$º¾úŒ«ËÜ< ÓD>O©JMXÝê¶{'繯¯²H:/­ ƒõêPj·ÃVsäðÜè3_s$âš°±Š ƒ£éê(¯I$ð)aÂåȜ„cÀ¼Ë‹ÒintŽãªê+²½HjN‹"{H›z1nOz Òôã‹œäô׊Î$XŒæ˜˜±pý{¼N7·ß82Œmþ‚ÌXœ­ÝAFùw¥°ÕH ò¦ž-¹ ˆ(—×fº›ÝGÒyí¥œJå  -J>‡Æ?ù žø³0ˆËjÙ®U„Šãø9ˆ§ ÝÐÚùËúol1yքJ§›½æ‹WkµöµÞËà%z?F¤N¤¸>®mä¶_éևªö{A¤.§m¯™tÐeçÜ_4]”B_»Qêùƒˆ»`Œˆ=O²¢>Æ}·0QB˜Û_/—?ÿjÍ®±ƒ©=šÊÂؚ ÁòPÙF”yx)^Zï@Í´,æô‘,!>¤ÿL†Ä!òcw]þ˜•[G®zŠ7úfUçïªRX\7åÜBÛ}‹EgÔg·ï‚w‹ò±ýÌ;~#‚ÍÆÒð{ЏQ‰;6=ôᗝ™yé-µò®ît £É ¥Ÿ®²—°”rûÞt´þSkD”¡¬‡1ÿùýÇÈ'(Eœ¸×>¢™kq‚Jo×јÐŸëÈ÷•†mŠQï«Õ„‘R);Sæq‘|­ì-8<™›@qpO.ÃçY=õ9yoªû’ð¨[¶åQ¼ºÁm°™¯Ò=Èâ×û3’™B…‘"ã¥^^¥Z“ð&ö» ÜñN—q–Ç®Nn%Y¿^~â–ÆV .ڐ0Òë7ù}ÌXxÝñŠ» ^̤’6/çüý Æü§/Æ-úE¾q©Iq³0œHôåÌj‡/›ª¹hQTT7z”›ˆ™¹êéQšjªÇ¸‡*% \ä*&ŽX`úÕLڔ?(ûÀv T{E<ÿ¨áÇ2…ˆ¥ÜÅ2ЄQ@q,èžcš¯½Þ‡›GŒ±ãoZn®Á)4r…ub–ìn+l¥í®óÉ ð`pñÖaŒíÄ:øù”óÞ¼0‘èýªøš 9²š»ä-B©õ7T…(ÒÃÜ×w¼uÍ5ab2¤F¯²8®À8·8}ñ”C0“ع>“¸®R@%îTÿ6/tUËr¿0ßÒøˆŒ¨?ÚñˆûßKe¸R֔ ݹÑYÌ0¤¾~1ˆhn†ñòv§ÍòuûÁC»L¨Cï¦SÝÂñžç G -Øêý›ôvœ'ž—£™/ðÎ"ù³S1ï#‘ûM~™ß(™ó"‹q¤·ï;`6 \Š3ŒuÈüÎUWƒ†V(ɤ¾6 mød7u)Š¥¸–¨ZâaÉvIxÌoI¥ô™÷~ 2å]Ëì|.ñr­¼º+BS®Qw›ªÚ€{¶Û‚&: {®'µ òYÄé–è²|öÅ뉳ݬ}8|*̅ɂžª¨ún#ü e|Ô"™°E—Q!›¯ˆ\õ*Z'»üÆMé0°\+]; àœ_ibtèÉò<Í$°•'O?Ýe[`šÐÖVÐ/jÙe”.šÒ̄,|`$"ñgD'äоm-žWÀpÒ·^ˆý <÷ -’Æì3 -„KL KL~& oaK3®Òböø3fxtÂÞ;Ä% { ®õÄ €OjÝ7`ÙԞbèJ»’ã°H0]»´SJƒõÅ$W7sÿ®t ë– œ>ðèmBîSðb"~ðy*û¤±ö~“©þrëöþòeù€TaÏØ-ññ‘Ô Ø­÷ùæmÐQexo^îëƒpãdmàTø˶øF#'—^½(³1”Vzã#è4<‡RcLl~wŠ˜÷È—“XÔvEýÈYÐ59½Uä‰é‡¨•ÖEÛaŸžG·a“©_L鎟‰æDí=áÙò3D)©:”?FH‚&‘/¤‚Ó½ªÛ`ùO\‚º~W•!ÙzÓqÕ' °D²µ±À»”ißnë«Ù‘ŒÒxݘ© ÿ¹Çí®ð˜ 6yϬ¤$òŒÍ½Ôj9Ìv L¶nü\ÁTº%Ói’wÝÂ7ìÙۄR¥Sç¿3P(¢½Xþ¼„®sÑaí{h@! 2feق"ô`)¯M 3—îl?XgÑý„¥‹œ’^‚H&ºìÒ%Zd¸ƒª_, ¡6 -\C¥ûMªíY?é#é5Ïä -Š•<1zκU˅a¦R¡¬dc‡MQ”4ZÀÃ/óôg)½Œ©ÈÇ1¶˜a@‚?‹HG@ÿÔ¿JsJ7?€cXù±Ã¿»LÉMwB±³?÷Vˆt~€ž4öR/Ž¥Åäâò7ÆÃÊÚG o¯S= ¬‹­>Æ&žšÆ™˜¤ÚÚ¶1{úD0yÔNã 9®üsˆ6FÀgú%M(4CFaTù¾Sˆ Bª–Y°î< ½¡,+có®­)z½çÿQW¿9õ%ôÏ ¤Çêâ-)ó„€IåK_œ6óžåÇ3—P㶋ˆ±Ú§ÇéhÕ2²ZÃÆ êó0Ý}œ ‘(ö¥¥»Ð±£§-!Pðy ·^ÆÎýÝ|uä·ä¢Í÷Ú£õš:Æ|QFj‡rk'MIÇÏt(’ -6ag·ª,gɛôïG’6Þ2¾ÓÕÞȘÊ.Ÿ)óþ_O]‹DÈNØ­ï0ɓEyìDq°æˆÌz63”Ê]d6…(äԉ‚ 4Up"ü—§‹‰xÓCœ:oW'ÜÄ.l}ŒL_îb -KíÑTç՞sö]˜@ë·úyý„Tó½J”â`8Á j8Õ4¸ß2kCÄѿʼÎ0ìLP´liœwÈm!aï…ωqÜÝ¿Ü$7‰7j=&¼䅢ÑÁC+¾4¤T9gyÁt ô tŒ°öÒÉҚóx²`¸­w–ŒÑ9‘Bù”ÿJ 3Yø’N77ñ³Ç(%«dœ¦¤¿E°¶°Ì¨Øý©Ä=š f•.·.wlы-S¿×·sËËNÊ¡¿íÇv‡uüc\äÛõÔû›9“‘JÑ÷Ã%ˆ& ökuò<†ÏÎîú$lQúï±Iñ˜[ó>mƒW·ª5)ŽèÛj2q7ÉWð¢Á§øa݄ƒ kRañÆ9vvsÅd*ÜcÔ&oßk8UêØô¥f{͐Fip“s…±ÓL 4Ý@B—ƒâÎäLÉ‰ëVŠ¹Ò-¡#äM¾…\U[ËMVÉ¥”¬õ* ʼ3ã³(*?GÚ¥Ña?ÇÝe6ª½ð;”́Îpš ƒúŸž½¨´ÕÂáW¨Ïcõ¬¼«¨‡­Ùß >ƒà<§Kû£?u©¿C,G5~áS+óߪ´«ú­ãò  }ÿé}EH㍬ËÉÒtt̎îÚÅzџ=¯Ó`ïYÞùR.ý+ÏqánEòʽ%…®‘C|òÞ]@¡ÁÐà ­”Fпv¸° àt›ÍîügaÉJ{ŒèQÞ£qKcœ¶$ï!BtA%Ö]z0øžÙ½‚¦¯w±>™@ÔǤ;²Ú„åÿåøÿü"ÀÌÎèâæht±EDü¿=± -endstream -endobj -51 0 obj -<< -/Type/FontDescriptor -/CapHeight 850 -/Ascent 850 -/Descent -200 -/FontBBox[-24 -250 1110 750] -/FontName/FIVCRW+CMMI8 -/ItalicAngle -14.04 -/StemV 78 -/FontFile 50 0 R -/Flags 68 ->> -endobj -50 0 obj -<< -/Filter[/FlateDecode] -/Length1 929 -/Length2 3545 -/Length3 533 -/Length 4216 ->> -stream -xÚíTyV=³TjÖ¼zeŕÜUéXÃ×w!ޞµ¼~ӗ[\~úÙ¾ÙËçEgd»{ò_º9«gÌʜ5N$oÏ#߂­ñ(>å۟°×tvòe]Ѿ5¾}0‚œ/ß^ºeʀ¸äor{/’Ÿ±©ˆzü‡)Õu+µ¸øÂÓ¨–Êûg« XžÐs´)GN¥,k:+Àñ¨ÁòÎ琉_—}¨^xtº%¦vUðÁE,ÆßæjèqŠ˜u#JÄÌL«1¿¦ k¾sëñê‚LóU7ž;×u\¯%¯ÐvúØÒ?t–YÔºb̙¾ÂÓ´›Žr {ËðI47æl|B͂v×®նwO˜lú|´ËŽõ†¯dQÄܼOcÎÔËæSϊ™‡ç&w„mæ²¢LÉϔnªÅ.óYt+U¾òN}®T -6M°¿Exm…4¾:°õ´qBä.ËJ¡jEåþ1Kw¦‚ÄߞäO~#*Çës*l—§¶^b[•ØæL_@R‡ s2O5TÁN 3¾ÔT¾“¹]PÕè}2æ)×…AÀw~l§Éè®nw‹ç"퐥cŽƒf|Ýjmº˜‚¿€Ôã{`I&FfÂ_Pm »h´áLéðMGue2ûé0ÇX4ÄclNIÒ¶8CøÍQD¬Ð×Ìrr¸`Ã@ö‹Zk¾¤WD5zgo%‡]÷¾¼˜Ù¶þã†D!>@“«,y-ÕÒwàv%¢ÿ½þ4ÿ1%µÙ…Ë×oê¤ 8Ë):¿ºŸ(Ö”myw$ ¹í}eA֋ÛÐ`i•º@’…ó±nª#/‡UȆ1®|?•âƘøA|>±GW•#¨´®7jµà»!À>֘ ¦˜:Ü»9’›Ð«(xçT=ûYÓïB±½o‹M÷ᤝÄsw±Ä²õݔ/ 2ÉzÃŽМ ^֎'1k€õ1úú×JXšOYç,_Ö*vÚÕSüd´E¶eN§â‰ Æ캷‹—ƆfZ°9 òsf ä÷ÌÜÃ:ãD7«Åõ¹Üo7~‡Ã©¢bƒh±\=O—Ä\½‚16 -?ℚLJamž½äNxDγ}«ÿÛHhÞ~+y…ÓÜÈ¡ºÙUÞ8áqzÍ-QBk6k]&݉ñXëki-¶ÕÒ§=žµOœC‰Y\ŸŸBE8ì*ujFñ) èÂÓVHx4náÓFÏJîÖgï§íçivÙ êôé‡% ù~æÇw«ª–ÊàËÔë‚ýÓ}Œ5ê"Âg¦(²[Ÿž4tt}WÔ-³$ú4xxêûÊ°ÎÙ&1¾’õ»—,8#19ËE†£°5FZ/Lȵ¡Èæª&W8³ÙÙ1fWÕ>YÈá§r7´û*ÞºÍÇÞÞ0Õ­Õg5†–ž -ëÞñØæÿæ¡C-Éîš0P~Ÿ¾KèªWͦE¸1sC³ßTD;r[e;>]žéí€Ñ¯Üz½ž¯ŽÕOº"Â>3]àkYáÏJߔ¡A9P|,‡Lõ°6ëmPÕ©1qE»ÜÈ)ÿàÀÚz$@±ñ<»V˜¥(‰ù*›6×CU ’Á&¹®¥%¯tXN§ 3µ/ûŽ]i½—°òõ§QjUœ…Ó흼o,|.+w=JÛ:ûa0xÉg¦¼ytSyô¤Ñ£k7Põ‰;·àVu¦ ÝMNX›¦Ü֔¸IQ|ÅÃÅ|3%ã–ð!"ËrÏP›—:×GÞ9iŽ­­e†qÉ ´¢(E:É.¶éwso—‡«<¤½OëËugRXÄîù¹÷–‰‚…vÊŽmÈX›4.ÒÃ;-03Mk"%®÷½¦ò¿ÂZöAV®¹ÚÚëC'Ä ’;zmY3LýøR.Ë­†N ½âž%¹êoª4škøhß+Ño#í$¹0~ÃRøñ3C—W8mòo.,S¦âeb >ï=9hãÃÈ܀ύ— -?=9n0>C9EýúMáùnshè¥ðܸ5â{ù‰i3Ã>•CÃېó;Ýyo¹áðx«ä± wÚÞ(¯†mºfn„Ð#øCªÉ„þ64‚ß²J63hÙäûȑÄT\LÑ*‚ûô= H«8‘j·~+~âÇSB>—+Dr¯v:¬—»€±2–WÀMøl“Ù¬¨©#ÃÔ#`Ó>×I=GïÈYsW\¥ÅwׄŒ“ {=^rXaïÛe<÷úN³ 4‰›iP:äåO>Y‡}Ã<’?{ê’ַאÙôҐÿ‹tX_ÅÙLqzµ‡ßi1)RBåYË=]¬þÀ(3nZ—V빀”•Ë¡{ÏÝ>ˆÕºý¹È£žë]ù'ù -5Õ6qË/)·f@‹žµÖ^™¿%©Ž(噘’ˆx-¿fº›Ú"ésUº}T¢œç¦]ÝÑ«vÅ~)¤+r&ÂýÈz•ØZ­½'÷Ë7:”› æËÔš$¬îê»}+-«H D[~=1O IO*´ðy{Û+ƒ¡ð“·Ÿ¢Ú-N8¯2PzB…&ëâUR„Þ;”;¯]Wzd\f¢yñ³ž&ÊçœJ£w¢r¬½Šn‹™ïa›”“Ì®<îµ@¾¨ä\‹eE4~pÏVλ”ÇÆ·.—ª,ÙRèý‚;ºñD]ìmŠÛøïb·Ù/yŠKÜÍÔ”5¸ -?)/„œo™WnU€v¼Dk - ”¡{IMÚ¬þ®[_lä‘ò곟/x¿‹4ó‚j‹­¡ê™?nmÙ5Ò_5v¿ÝÇ9^sÚKšÍ*w›ºyõy9£¸xeNt§ƒXŸ#š`”Tb¹GÂ8BÛßú¥ñãS]+VÙH±¬¥ÂÞÓu{©ìƒþðòÌ2w£€‡µv䖒,R?],ƊGˆFs¼1ïÜF0-ŸfE¬bL ™Ï Ì0•¯›ßæÕ6läß d£èÊÞ÷}:MºïC~)1H¸dœ±®÷)úšÿ)6ûd±ù™'Â?žTdCì2Ð$uYâq[éè•÷/üʙstĕ«¤ÄƬªNUŸæۊ£ „-æƎ¦Ó‘˜Î9<6¼P·¿wÃÜ>Ëzˆ ûáýM‹OgŒêìRéLûC¨HL£âà²þìºÿ5°ÒÀ™e[hp‡öÌD¿[óÁÐä·ÅNüûÔÎÂy>ÎRâLFQÖÀuš6ªÞKÒëÖ;½¥°>Þ ÊK¯©•^Tˆ#ÿªñjQü¡Àe‹óý4'B¢3?ü†w_ÜW­ºlŽBñ‹:õðÞÒütö N¶CØ®,ëk#ÑfnpaÈL_0Ó8u#Xzo‡àQ¹+æ¡_‡ê0ߪ–."ˆpÜézq}՟Å!rZpŒ•Ö™nHBÔ§ºðœ±ŸŸ~<$8K©l¤(áBÞ0o›'òšêT ¹®Í#×°ñ9õ>1à}–à³°ï!Þq¥çú¸­êŸe©´“î)¢ïusK-ufzdâ*©!ó'XНzqÓʜæË{Ænç‹cŽ©‹7ÄZ#Ï$&˜Û„'çjÔ¼{þqISa¢QB«É°}.½*'~ìD”Xúœ„ö àˆ/ö÷ÄÍ|ŠçlY;e`Éj˜xô¤6öꚥ/ZC—wèJ³£•„Åckºþg2ޟ™øEC(ßQá#B;<—¿ž—ìæ ¸[œ5{9s‡yG3f恲ªÃË´¡f¦gԙUßøMŒXÒ‡¾&|ÿ’*Öó£[γ«€x…;w›ßz¤Õc¿-ѕQdßuÅqÝ3=õ®ã—8ÇÔc‚_Ý¿Aj<ٕ)ò‡ñµF§²¡ÜÃc§ËZñºÉ.ô៎O¼×«• 9M3Q¦/Â'ô2é=¥ ÿC3[ y£’Ç£¿îӰڔ'BI 7N(#ˆóiºqÜéAŠõ“3Ï"Òê ³”© =H Lu>¨ºË•d¢²Zë÷(zd"U°ï¹U ´©…0úRv²ð—Z("ùwküÃí¹^yóqí F„^åÞËáÒŒyµÛr¯¡Èš -ÝF-^»y&tpâ¯wpïaÑ1v,9©•.ö…søMdMPÓ»FûÔõÊ(lð¬€md¶ÀÿJeªhrâ<«ÔޒõªýÌoúû„©ÔRغk›öé²*-Š;x\Ÿu Ôª{\Ÿd'E°,o|Âà7ç/êˆÈVÌ>Läq§:.MR•~\–¤Ú)ݞѫÿÝNg»ž˜Ñÿq2I?41]^$Ç£Gf.mRíq*'P> -endobj -57 0 obj -<< -/Filter[/FlateDecode] -/Length1 904 -/Length2 1478 -/Length3 533 -/Length 2126 ->> -stream -xÚíR{<”ù–"MT4²Rù‘û\Ì`ŒjÝM†,‘û6fÞáÝÞyÇÜìŒk+Ñ**º¬ˆ³”¨S¡J–ÔJ%É¢”DÊý®(œ‘ÓöÙöüs>ç¿ó9ïûÏû}žçûüž÷ûýééxx™Ú²y!™͈ÖÀÞÍËÏ -Í=={ÄÁ<ԁ)‚¬‘J%[q( RÁҚD²&0=`Ï — -àÐ00°7œWY[.$€YL¸1EaWfÂb"À‹Ç‚!‘Ô [žó-Bà !AÄ6Ã`ˆDÀ†Y"…Â(?Ÿ‰ŽrxÀrf‹Ã?Q@(Ë d9 ,%›‡"RÀ†8¼;Ov$ËòÇú7©¾4w#ˆ;“;o??§¿ÐL.ŒHÿ%àqÃÅ"HÜxlH€~)Ý -dsƒØ°˜û%K1˜e‹†"0%’Íæ”:Áˆí‹Xa€ÃD„ÐGBÙ_F‘Mïc<Éîâím¼°Ø҃ £¢Òp>«?ÖÄϵlHXfQ&”½Ÿ¾‚¾8ÌeñØ0 -H À˜R AfE¢P@À(’H"KŒ7Cy"Y &pxÌüV‰D€ç¨X8/@Væ@B!ÄËvô&|èüµ„fÌezÙɼïvþ &[|¸–Íá„ -ð0ʁQX$ý¤B .„.´þu–vv?þMR'Í×6'=µÏwéL¿æ„ ör[–”<Ô­§Ø›vì@Ûš©°­ùÕC/¢›|¹:ËÔ=·{¿vúíÓÖ.eF‡a_8GòÀJÎj0¤ÜK!»„°®Bç÷$òý’Õ{+ZÞòƒò‚G Þõ´N5kŽöZ|˜Qt¯j86(Ç:çSuõk·œ˜ñµÜW}ÎÓ@S f¯1%LGÞ:Xu=®oè­wrA¹¥k´ýŒoÒ ü«`6cj‡ÓžÃÄu¬ù.Ê.xoŸՙÔÕ6¼ª%•qS½/$_”H»mJ5Whn¸«št°©gÒ´ ¸åURÔbǖRÿSµNèoÝû§ÊoZ¥®c6ÎhRzŒ”§Z4'ÕØÕÒõ 3‹t\Ÿ>«==Ùq(µŽÔ‘/gñl«Ó¹ai¯Ë䨞<ã>7äMÖ/ä}âқ.ú#:·Ÿ}pž4 ¹i>ž<í“r[Nµ°Ør5M|ïfâ–HÒl_8˺>Âî\ùš..µj.>¢ÃQ>¹Â®i™KLˆ{Ög9 }Å¢ ±‘ÌŽÐ÷£œ‹~Úïø\h³§Rò°}ãŒK~Wì‡8ì‡\ÿèåùNÍÔu'4ÎδLga–óù¬ÍɤùÞKèí®n×Ö0­ò€F“Ç&^cO{“o´Ö*1²Ú·¤>±5åÁÍè7f¥ÍÅ°½Á¶b÷•lW¯Z¥e÷8Q}ÝéRd]€n«ºP¨\îtûÐ,Š ÄY>Rê/×5Rä]áNWzY_Û;SöÞ´ÜÑ÷̒¬X!·§ -)Ûّ‚ 8¬ ¯?ï/jh©8û%ô¼üۓõ?“É3©KÍ=±%|Ã×Åú<ðkdškv~ŽüDÊY©¾TqK5mõÚ,%~a1ZPÕ»£aìf{ºh´Œ¯Æ˜ÕéÜû¹{y%¬Fã¥vãñ±+Ôâ¦=S×lCç²³ã·k«ÍÓ©$‡¼ÄÛ\ẩt¢¥µxC{³œá×[å¿?:W…Ó|ÎʹȍЉ&#-Ò#ì«%ŒÂ¨‘Œž°e{·¶ÑUÛ¹gÞŸ ¼óÐÃ8õÙ§þ€Òãà÷Znùۆ¼REîÉuÝÁèÞñé—ú£*¯TºÊHòØʆ¬§ï™ Îm?œ»)RÛU¡•u×v©hàMìd͜èфÊvÇh^ê+cîÜì™YóšÇoK 5~‚¢Ì;B°Ó4»ß+këä9Á‚o'cTפØürÁãä`çl‚á¿|0ÿ7øŸ0`!S âq™‚ÝÌ?Þàh -endstream -endobj -61 0 obj -<< -/Type/FontDescriptor -/CapHeight 850 -/Ascent 850 -/Descent -200 -/FontBBox[-36 -250 1070 750] -/FontName/DLLZPJ+CMR8 -/ItalicAngle 0 -/StemV 76 -/FontFile 60 0 R -/Flags 4 ->> -endobj -60 0 obj -<< -/Filter[/FlateDecode] -/Length1 712 -/Length2 2085 -/Length3 533 -/Length 2619 ->> -stream -xÚí’y<”íÇÑ Þ(YâA¼–w“u”eìɾfmÌ<Ƙ1b*¦Tö-IdiMeM£d/dɚ„JS…z%Žê¼ïùœÞóÏùœÿÎç<Ï?Ïuý~ÏïþÞ×}«(:º@MqÔВJ¡Cµ`Z(ÀÌÎYЂ! **f4C'P)æ:ˆ´ ´Óp<€DZº¨}(m¢˜QC4>ˆ¨™©sé¦dFÀb(€†’7C°àBÅ@:¦$àüí—0À iGA ÑÒp,ñ -þ ɆHô~´qá!HGAZØ& ¶É©lRâ¨À¸=us5p“å?Æú7T?‡[†“Höò·øÍ1ýEŐ $Æ?t*9$œÒ;*¤Q~¶z€?Ðì@!œü³jCǐXS -žˆ-B˜%!Ä9èØ C -¿÷A -îgˆÍ±}G€›:äåxPóûþÐ1 -ݕògê7ó÷ZëŸõæph„HÀC ´6›ï_¾?­eAÁRq -p¡c(8 ÷gã¯Lh45ò8tŸ.Eêl^ „ÐÓADý«ÑB mÌ¡gðƒ -N£ú÷K°¹ß?ê@Âæt@0ÄBróvxýÛ£¹xd¡yHÉ£¶ç©#¤¡øC¶ÎkW_ǜ0I6w–è¸0"º2ã˜|qYMÁ8þV´azó’_ ƒ!Súb—Fà£zïñETYÊt@¢Ú‹ÞôL¾çï}[“¥sÜO@llÇ¢‡4~jS”¾³:ÔÝ8Š+õÒlì¹ý&ñm -;da›¡™ï¿T¹•Òk†ó’ØͨDJD‘cö]wûlucr¬ƒ<«ŠªYÝ0مñ"֔µõ~Ã>ß7'ÚT!¨¬¥!ì«ÞñÕf;¥÷ð+s¶ú3S;ŸLüPfH+Ã>8—Dñ¤,¢EíëÛm¦Ÿ-fu½ó¹Ñ°×=‘wðÞò6:0ÙªÜ*yûE/¹(e ã’{ä«þñù€B]YêýD,I;tÕsëe¡n!ÊíjV2(¶ ‡6L¢îçrnóɽ÷«^Ço+·+x2̍n¶èÛ+U:šuñ•rçÛÂäÆٖmL壨G±=Ã=ú2SöÖ6~í+Î#ÌĔGûcÂ-sƒxâ‚-¢£ä½ßáÛou—èɹQ3kÍù¢2È“ÚKÙ°L—Ó…²‘êîí[ÂœAžªy¨Æ‘²—ÐB[©¿9ùáêd5E8{~*·GuÞy–:6{ð¤HbYÇ°Ÿu×[E½W>[ðLßà˜ËÑù¯L÷§0Ÿ#^²‘Ù5&r¿•Êð*]é`ß|•%8ß6Ÿqž•›sØ ãtc‚€¤sBŒþ݈çو ³ÝW²«[¯í<]YÄ=•µ_ /Ýà®À¯ªVÊãUeo?ïð4Ÿ¢ž—(q1zM|du*ð¥ߝTÊýiŒø"rkŸÜz‘´‡,ŸÙ^[ä´~K> Ò°Ï*ù@[n¶†µ¢al¼ïüΡÏ7#øMÒ¥ú÷°<=s¦Ûê.’ˆ¨ )=ÕØ[õ…)¢ÐÝ*.¥ã>«Ó’ï]ïxÇ­ûFúΚö½ßI -N‚½W~¯Xucdš)Z¶÷´ )Ԓèû…;dÅ\Í1 ¾^5†¶Y{*±CAí/=ö ‚'° -*zèqz´ˆs.Œt—9r‚p=Ñøéó*«jmƒ× Ž(ÝH^Ê)C'ž‰u3Ùé6™5Ï²áAlïQµ#góO:Wà™É_ôж7›Oôñ¶Y ª<ÌZ{Çã|¿¢^”ãp·­p»9ì¥ù‘Í9û€'_¿Šá³¸ë•pݖ¢o -Džé…GZ;×h£Œà"¼FM˜˜}nô™/oÑãÈo/i‚Ç튑O!›tÊ:Å¥yl|~ðLßÕ¦³¾±6'­Ëv‚C«û'S§²Ÿ*ëwQä˜ÝB\z”@Nõ -ƒ Dgêg„NÕT`¶v—ðcÛôÊq¿¼»Å¯SñJR;gçR!–„º¤¨ö ‘!®ýE qï¹ú„Ž%lZ 2Dmnú€‚`×kÛ4íã2(ù aüêú‹«S1»òËâË_X±rž I¯n)A^÷ÂӔ kì&Õ£5Cj.Å)á0.?K¬<+ŽŸ6DÍ -åß=ìlx Œï¥ÈРÂQ -ãÕ7Š:<–o¾â‘YY1ÇBx -*ƒ ÷ß_‹}6¥ôZ¡õÂA0_YíÚþ¥9m}ÎL^yÏ 1Ó·‰gZÒÄ.E²/om.õ]éÆ綛!ýÅuØ%¬zêÒn!‡Èí#3óÆ8y½8¢¦÷Cé›Êl7áíZÂå¡íõÞÌ^åwYš!!÷²×MÇL¸¡Ç¹¿÷¡sЧäOÖ5›ˆÎ6'Û-œºgþG"­qýuœï9‘]gª8û‰pl¸zÏÜÁ…®Ôð¹û®™N“»Ç]Mx´z; Jٕ¥ÊÜm]0S Uïhsj¼‘©D^³‹ZHGÔà!-+÷؂líS¦Š~¥2ÚV¶ÝÑ­ÃÓóˆø€L¥nÝ°WˆVÿàrÒs¥“,<ÿØH‰#®½ûr´nisÃôœšø,ºªåmÔ5ÕA¿\dƒ»MŒÒZ`°É?€Ìi”ÍlÒù –ñiçî«¿N^Õ8n¹¬åìUÉíṏo‹|Œg$hK‡ùbÕKF’ISæ|tº{‚¼&> -endobj -93 0 obj -<< -/Filter[/FlateDecode] -/Length1 921 -/Length2 1989 -/Length3 534 -/Length 2624 ->> -stream -xÚíRi<”{î0T#"Ôä©8a,3“=’}‰IJ†B³<3F3ó0 &Y*ŽÝ¡ì*ÊR"Ž%IÖc+e=´0$[QÂ¢ä:k½_Þßûíý½Ïóå¹ï뺯ÿõ\÷_i§ÃuD-![­6Ìì-ph€Ö@¡àJJfLϦB s<4ÐúúÀ–C0{ ڃ1Ð҃Õ3țˤR<ـ²™Ê -K0¡ƒL*ÏìñlO.!âiÀˆHÙ\ 0¡ÑǕà²@¦/HҀÃÑh€D%²H¡2àš+®ldÐýÒ&q¼ÿ€|A&Kà P^1ªl’  @2\ Žfþc_ÿÆÖ×â– ‹§¯È¯Fõ Ž§SiÜßݛÙ€=D™Œ¯©Îàsö ‰Ê¡Ú°ñ4*фA¡êK‹Ê²¤úƒ$*›è ñ4¸Ú¤¯M’[µ yÄÖÊÕ -ùûZ¿ x*ƒ}”ëý§î -}µFÿU bRýã(AÀhQðþñåöÕi "D¢2(F[À3™x.\pƒ•6€¨ è€þ˚ ˆ-©dˆ _Y© -Ðdqèô՛ÆýÙ+ðh -¬‚&žöO@ïo#$*˛†çþ ê£þšúÓ4ieeëxéTûObþü6]SSÈ?@£¨côu«¥­èêbÿÉtbP}8 9 B¡tuµV»D“ 2Ø«WZ°º?j2U°hô‰ð-î¹}Óg¨aêuqqk4Â'~Q]ʇ֛''9ŝžÔŠÕmkeE»Âö4ܳUµÖ.Ôõ·kLº6¦WÞ§®ÿÝØiÄØü즲~¾©M§ªdã9UÕæ+3Bù•È¾CsßϪ÷£;kS¬ç²Š2üËàuØ8äƒܼÝàlÚh{žæBÓGV½ š|¾GšèSæðýÚý!ŽÆ.Ùâr™‡?яِM…  ïêõÅ*RÖ.¿|¬ «mº³aç;Nmi¥$iȞ¤>Q7ìÞöd3!1ÿR±˜ŒJu ýÄ]Ú ÔyÉÙc7ÿ–h֘;ú8B_Q¢6–ÎzêŸ9ƒË:m8cœCۅ:­©ëÎ÷Aoø$Ñ»]^&°Æã½d |Žñ`8¦ «ž¿<áQbe ãU$ë›cbkvhWC‰‹B8·xQtgÓ§ Gù6‰d¤ÂšébóŽS±ç—›ú]‹¯VOK•O—Ûj]u"àj~θG*Õ ýöÔ@$3èV»Æ¼ùäச…ÖË°Œ÷žÚ¯ü‘~`KÆ`¨|êÌ2¿óâќÁå¼È¡d„ŒŸbBkqMðòéµ¤–¸$ìx“S®'×å\Fc™\é–À©e²ZªyXsjýÉôZìMɑ­Õs¬éjëÂWJŒÛšÊ~ÞԜ½`¡Ž}nù(a€R¡Ø;ó Gèc¦D±ý՘1üúà¤^3Ý£”·RÍqîÍƄÊý j­NÅæu˜Ê€¨Éٙóêñ…ÅUíÊâ7—‹––éîËߓ3 -)ÓDNŽvmÝR¥flÄ*×Å𤗃öç?sõúXkG¹I?‚8Eo«¼è<²Qçé¼ÆÎÎYã!£Ì¥Íóù"¨%7شڛaĕ}~¡ŸÊ Ó|º•ÐAöôâÝR­IÍ4ÈÙÒusØEþæH™Dàùë¢ëÞMKc$ -k»¶d¼¦½•I|‡ª{s(äi·²‘¢yŠ‡¡Ðºò¬Ä¯'¸×½°¤ÍĈ‰D½X›¬q  Ê/Œñôþ)úiHE W‡Ô6§KuiWRg弬0bM’C-mi°°v­ŠôΖ™k·1àɝìÝÇ[:ãÆ`Þþb±_/óxŸ6A;Œ -^ì|gP߂šÞýÊTM€®–fD]F^—˜|5Ô»×fS7j§#Âö¶š×KŸzTÉ|WqêqCÿ𚾠Â‰»6/\iÎ áxøº àðŒˆ2vZŒLlóBžVЀSî ØQ’$œ*²·èŽvžÖÈÑøi͉Ço}c£æ¡–Âä·6"ë²cP^å‹¦¢­ˆØjWuc¡-7Ôð¾Ižè²¶8¶‚Aåz—GáÜÜЯª±üþ%§‡»™0lVøxq‘æÇÞ'Þê^`ãeQ@vŠœWøU[÷CÕQ5»îŠ5[ÉÖΌ"¿×l·? Ó¾~RsâJÖg׸‹Üs’î’¡)±·UXÏý®óƸøË¢çZKܧ¸-oÝmÞ¸GìFô[d°P[ólÙæá4ߓÃYÆ -Kä{¸awbGªªÃ^fžP_äÙÀ »­›×lm4_¿ôŒ¸>j=¨ró˜¯øô çlÕuã(»Qçæ„×,yÑ)Šm„vÉÁφŽ’ÍÈÊ#^22Û`gð[%OM(¾Ô 7eâ‹Ö† 4d"/µ‘>óa6ÌÚ¦¸¹5éù·f~Èqñ¬‡£™@éxç\Ÿ“Û½Z¯€‡½¹Â©JŒò‘ñ›6MiìØCÊu«‰ÎiŒNÜíÔ ‡9™§eÿ¶äÀ›ã”ÿ(3ӚóxV:ý{õ挅 nœ+ð¹¿-_JÌð9VyÀU„x]¬³¸Ï †ÍÜj–Ï—¼»Ž¦ß¥øÎê ;W¹»mûQ‰£3É[h&ˆöâûÛÜpéòÐpâLôx|ŸFލH '´t°ôýî1…¹VÒÚ ~o À5j}P3oõ£èmcU¦ZqÒéˆ{S¼—É>>¦Í–´ÂsfxZsmÕÇÊÞÞù4Ô#8S*¹Êkï·Yðú04¿Ã†Mž»³ÎòÅ`ëÍmAγÈ+Q»ºSXÓÚUPℴn‘ñr¥Ú%ý}¯É¯XRõ„¥8 -ïæ€v˾ªaÉ©¬ì}Q> -endobj -116 0 obj -<< -/Filter[/FlateDecode] -/Length1 786 -/Length2 1526 -/Length3 533 -/Length 2113 ->> -stream -xÚíR{8”i^‡d'js)½Îª5ŒaúŒsŒ4Z¼Í¼x™S¯͐ó1D(‡$ÅV”)[!£ƒ²v“´E±9Ô& ÙÁ×µ××~ÿ|×÷ß^û¾ÿ<÷ïw?÷ï~îçÑÕt÷4´¡³÷ClׇÆ[2ÙÙ/±X”®®-\˜Í²¹À™››Ûy ÀÈÀˆxc"Þ…ÒlÙrÛ͋,`Ę²2È „˜bÈ<Ù4â -Ð`Ã`”Å-! -PˆŽF¡p8€Ó¸À~(f¡0‹®œYþl€°\¦ó8_Z¡"ö,9Ý ˆ}ÒÙ,† Cþ(Œ[<»ùŸý__‹;ð 7¹(¿˜Õ_Ú fþM`39<.„d6BX_S©Ð²72D‡y̯»Î\ÓlX 0ę ±&Ëu8ÄæCtw˜K üAF´T‡Xô¯ˆã[òqöpw§ºm]¾Ûå¦;³¸^`ÿd/aܟXœó_,‹Å‰‰âÿËjÏWÃìY46fFxSDP€ÂŠ¥Œðx À,:Ä ¾Ø1ÍbsÅ[q2€?A-^+K0Á‹µeˆÃÖüë™H$6?\üT ðâF&8€€ÇFü'ϛàAÎvkF06[>‡ ‹»ô–Äq}Áþ°8aâC4T´‰ ö¢9©;Ÿ——wÂmDöÆÉo=ƒVpbåÌã6^ӟ̢jñ9úïí8¢x½ïMåž=}fJõ$Rk×Mcêkçjˆt¼„—Í|+áRïöÖÙI´uë[eQumx”²Y†ÖC0oâU`]Ñ£«v¬—¥ýú]mÊ: fnSSÙ1 }¶ï:ä2®¤‡UIø$WʗϷ¯QIsPöT -ªÖ¯ëîSðt9Í¿dŗVÊ^h¦byY»Ÿ«aÖÎ%`ç:_H¥ƒ˜Uý³—-<_ êcqn’׶klfnHØlÌÒíë®îšy,“|½ xmv½ÒñèÈ0€±H›‡ºå Ž’Ò§¥^ˆ¨ZwÊ6 L‡r¢­—<7¹E¶¥r¦úYÜwf¾‰‰F2z¨¿SëµQŒ«ùTdíÝÓ‰>”;F&îü<•3u4Xm L—ì^—nÙ¤¼ñÓíLL0óBC>7‰iž3¡* ®•¿²OùÅëñڒÞUTzƒÕïRD.þo-‚'0U¹„T][×5€§â›ŸÊ(“é—ñu¹~Ù »•+Há¤cCÖH3î¹:Áñ†«ÞyjÓ™oTòZÎb­¼t\r",TÇF?ø^³tżÚ뢮Ü(<’½Š”ÓºFöfŸ‚½Fz‘¬WÓÕ£gXú•êVöeÓè…ÔKcZ¤þ¬0p`0'æW×÷èy ë”ß'_Õ<Åd½Ôb™2øðpû5QBoùÙ]ۇ#º¯’SLO<‘¡G¥,$+uõ¶5lwÂg¦{àÞ½ýæ\;9Ê¡L“çú Nf¢œü/üC? ŽtÞznèðƒ¬íLñÔYѐ]͉DÓ!…{u:<´ Ú|~:Ôï¶s¡Þ}ßÜ|Þxäsµœl抲DïøúñjQÓ¨wÈ3õrI{€cè7Pò:”k2âìR ÌÔøä~+?³æ©;ªIߖzK¯t‰õÐyRx¼³ƒ¥ìs´{¯<û˜“áÖʖz¤l°x™Ö\:Éhj¬–É߅”Õ³©4–ß:×Ï:Ÿ.>"fp؇c­ŸQ(;Ç6Ô ˜°ðEé½$=žœµ½¡Y‹ºÇÒQsÚú³ ©ð˜Ì¤mĨhú‘¸Í5'sæÉs¯§k'ùP¿9>¿KF-£®Õ¢h¶Ì*f&~›å˜ÂSRÎXù0M1?ëúøÅ\MÛÄÎ+6óYÏÛ(³ÇD Jc°È‹‡åœ¸¦äÜ*h‚¯ÕŸàmïù46ëÐiF©âX¶ªßc|^O˜–fR±Ç0õ]¡Áǃ°\Qpù˜‡ò«ýlò$>ݨ^Ô­³?t–¤,\m~Ì›Qulã|[˜ÃNëDŽ¹²r6…{«ÔötP0+øfè÷‡Ÿxûve±Sfßûɗõ½©R°÷cî2 *õ/p iÛOy%ºµ·¨Ó¿ tOIÀHèNɵþ.§ªî«2‡Û¨êÊÂ7 -g™±—¯W¤ nØ5ÑJÜ룸`_–ŒjElg…tÍÑ£ð] -ùC&fRµ^÷š7ٗ¨„~ŽÏ¶œÜ³¡¶ãfa³ö©º}˜ÝHû€•º³~kw¶ÞÈz0å4…ü\Áˆ‘²\™Tè™s|úö jй"þÁeÌ wð÷ã§`\F¦|YX¦¶6Ôä†û@Ï«k^ôg(›î»%içßJWàô¿C~÷l¥vÖþ|û½ä™ Ó*ëY\ ûî­e²ó4#¶@¯ns¶£›¥¬¦öÿüPÿü-h D¸l&ˆ£PßrO -endstream -endobj -120 0 obj -<< -/Type/FontDescriptor -/CapHeight 850 -/Ascent 850 -/Descent -200 -/FontBBox[-20 -250 1193 750] -/FontName/WLWYLA+CMR6 -/ItalicAngle 0 -/StemV 83 -/FontFile 119 0 R -/Flags 4 ->> -endobj -119 0 obj -<< -/Filter[/FlateDecode] -/Length1 712 -/Length2 1468 -/Length3 533 -/Length 1999 ->> -stream -xÚí’{<”ùÇC¨Ùl4®Yëa—d3îF§ŒÉ`åe0˜y0Ì<3Í%„áTÖÝ*צu©†R¬Êes©»Y…•R ¹Öý’Rq&ö¼N{þÙ×þw^çyþy¾ŸïçùüÞÏ÷ùji¸¸éc) π8úh$à]M4ÓÒ±@‡Ê€’8 @[X ,70DhSŒ‘eƒi83œE â:¸½\f–²¨d8’8A ]B&Ñ7™ -r‘€¥Ñׯ°W ²N€$ †F*™øƒTfðÉ -`fe -—ù©ud±E\€Žˆs/ ¢¤0 Z8@`N Ñi ˆåOcýªÏÃñ\͉Dÿ/Óº$:•þ¯>ƒÎär@àÈ €,ès+üˆæR¨\úç]{‰F%c¡@ >JT6žR\¨r@¢±ÁM„(ŸCˆÆ¶‰`@8Dð<„ElþЏ=â gþžúÁ¼Y£ÿ]‹†Ã¢†D…B‹Œ¢ûÓÓ±ÏβÈ - -Ü8$ˆBbQ~þÈdmÍ‹Ð펾¡‰hÐF€™ *ê?G!êq.h0A¡Pfæ›*™Ëbgs Dßû© Š¦‚a váGª˜¯žbÅo¹¾O“PóË#؝™“WŠÚæ¿ I"ûƒãbC\–ˬý撜ýZGý@üMž£eZý+Ÿûáá»Kž)êtÖGV0¥)úÝðJ/qƒ{³`rµ/±Q`á#¹óù"¥€Ã¼»Ð¬¡Rõ¶¯•w÷ ¥Ä q·ýqùhâXí ¹Ï&Ôá"×÷Õ )¨ Gñ‚+‡ß0„GÑOÅ®]²Ò?Ý[aäqKPY Dª. -&ììöY>86Ù¬ ÃdE–0¯\&ÆWâTÔ¶~S!å}·7.=9d¦Ô’UJn<›yJ6<§:ÀABý@KÃߢ®ì9™Q#–z>§üy|Œ\a`Ÿ°´3-)ÓÍrà _ž~|Št;ã\˜<Û¶=dÉ[±ðÎáZ™;Ú|·ãðc¦AÇ^„uˆá«ª÷ŸwÿÙ1=×ɤr‚e>èÜޔ÷ÝñëS¨!·Ù·•€\(ó“ÅJÌÑìچÔrø.1+Ôòâür~^rô¢øwF±®©ÎSW&qdôÀØôš«ó.ž¯0,5tÜ/Ç(øQô¨°c^ːÕ÷"ü{‡åŸ;ùž}„Çur·‡Ä5~k@f:¨ã¡Òӂ¶ f:¹®xëVÙB}O¤ñ¬•ç³vN_ý÷k`&ü’ƒjl£ÆÅ8¢ÿÃÛy„ËA†ª1¸ÂCfÙ~Ü#Ä|)]e@˜¶ÝW8~yÛ„EŽ§Ý”)”˜qG -d¿ËŒpùò¶÷84ç wqîûòà…Ù¶ÊdãÅ×ïÎD,u½T`°•¤úV%$¨Œ‡ç½ƒRÖýîC¹ŒŸœçSzÐì{˵r«g··G=“L8¹º}J…Ÿön6y´õrQYi¶Þq¤÷íÕ%ë¬bbê×)/Ù”öøA/vRžä^“@iŽ7éH„¶¾“ìWR-c©¸‘‚7 -՚͉¼Ò®M úsB­÷òû:¦áçT¯ ŒÄ¢hYsê ‹’Ͷ§|8=º_Šç“.á\{òÈuŽÚ]vâʒÐ\®¿ïW«3ö6Jâû&»Ê˜]åe…œ¶Ú¤ÐÓÙÒºðêîýxóK͂)¨S8³u—¾ú†{ÝàÃ[BŸâøSC¯ÅÆÁû§åÇ%žÞ,´l)nóx´:ø…[Çlú·ô¹f¯m-&í=½1Ãüu‡ýï_jr…»s^]67j}š#“·çXí@¨’œ ²©©mÔx~à'³¥æºibG6ôà‹à¢fNán¯tTVHlÑÁ¥©+SÄhœZcÕRÕó°DcUÛõôŠ2uI?¥S“ú52¶ÒaѾÆÜ.n¹Sw8¬]z‡ü #ÖÌ|Ä®Bm`úY„iêÞ=y†wy3m2ÒÅh¯á0Ü=(Nsçyÿ“ÎK:EZâ.êìÞ#¬ê_z<å'O¨4¥rT$ðU¡ÚGO½q²†’Vµ1+ -´âŽ˜‡ ¬Âèø -d‘¤{ÿWfE˜Dß ¾Î¡¥_‰_ÉȾmƒ¾Í;[i+¾æáÁ[ݲªÜµÖ÷v•«”½*£wåj”™é‹.ùaÏg<+»ÒN®*Ê5æry¾ÃÏ5çζ- ×ù!ãM‰ÅÝNÃlw½FÐÊ0?Nöš¢{]țy$$ùûëæ·´Ögk¨¼)̀_±êæ*¦ÏÀlˆ*>›ûã¶Ãp>¡sW »"ê­Èí0…¿·1óò|“•EX÷îî"Ⱥ Æü¿‹ ØޙÆn,ÅJ+i‰“ã#Ï;íÛ}'!¸/çÌ>˵)ØJQ_ñšch†ÍLÇzG÷Dí2¥!/¯Ð)àü‚ÄévxÖaîëºvUïœÍ !d×ëkýC§ïJåD$´f¦+.á•Nßí^ǚçùÝV7¹:-ëIZçî=Û'·éÖ#MšÛSn¶n(ÎÆD?Þï9gônÁœÌ_¤¹©£þâûÀÿD™’XÄ -Áþ ç)û -endstream -endobj -192 0 obj -<< -/Filter[/FlateDecode] -/Length 270 ->> -stream -xÚUÌ¿JÄ@ðØn#–V™póçrYR-œŠ¦´º8ÅÊ"¢  .–VÁ'¸g¹*¥¯àÁv—kXvÜÙ`á ü†¯˜Oä9ÏsHyšÂ,åYGÓ)«œÏ+(…àó\gÐ@Y漐ú©àeñÿcuÇ5K–P,9‡B°¤¾€‡ûÇ–,.!óyŠõ DÚ(šì­ÂomœÄ/= D£­ŠIÙ;2þ!÷{ò̐·¹²dc•÷ÉIï ƤZ{_eÚ:rݓíŽì ÙäÎ6^ãÈÁe^«¼N}ò͋ñ†l·ä'}aèÄ~$Mp AûLºŠÄÉÃà»$âFÞ­Žöþ4ýŒšÖìêJãõŽ -endstream -endobj -193 0 obj -<< -/x4e 192 0 R ->> -endobj -84 0 obj -<< -/Type/Font -/Name/F13 -/Subtype/Type3 -/FirstChar 0 -/LastChar 127 -/Widths[826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 -826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 -826.4 826.4 826.4 944.46 944.46 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 -826.4 826.4 826.4 531.26 295.14 236.11 413.2 649.31 767.37 649.31 767.37 826.4 826.4 -826.4 826.4 1062.52 1062.52 1062.52 1062.52 1062.52 1062.52 826.4 826.4 590.29 722.22 -666.66 722.22 722.22 666.66 611.11 777.77 777.77 388.89 500 777.77 666.66 944.44 -722.22 777.77 611.11 777.77 722.22 555.55 666.66 722.22 722.22 1000 722.22 722.22 -666.66 2006.97 2479.2 2006.97 2479.2 0 590.29 678.83 0 0 0 0 767.37 590.29 826.4 -708.34 472.23 708.34 826.4 826.4 826.4 826.4 236.11 413.2 826.4 826.4 826.4 826.4 -826.4 826.4 1062.52 1062.52 826.4 708.34 555.55 576.4 576.4 456.6] -/FontBBox[-247.9 -763.6 2726.9 1118.8] -/FontMatrix[0.001 0 0 0.001 0 0] -/Encoding 83 0 R -/CharProcs 193 0 R ->> -endobj -1 0 obj -<< -/Creator( TeX output 2007.11.02:1122) -/Producer(dvipdfm 0.13.2, Copyright \251 1998, by Mark A. Wicks) -/CreationDate(D:20071102112308+01'00') ->> -endobj -5 0 obj -<< -/Type/Page -/Resources 6 0 R -/Contents[32 0 R 4 0 R 33 0 R 34 0 R] -/Parent 195 0 R ->> -endobj -36 0 obj -<< -/Type/Page -/Resources 37 0 R -/Contents[32 0 R 4 0 R 42 0 R 34 0 R] -/Parent 195 0 R ->> -endobj -195 0 obj -<< -/Type/Pages -/Count 2 -/Kids[5 0 R 36 0 R] -/Parent 194 0 R ->> -endobj -44 0 obj -<< -/Type/Page -/Resources 45 0 R -/Contents[32 0 R 4 0 R 46 0 R 34 0 R] -/Parent 196 0 R ->> -endobj -48 0 obj -<< -/Type/Page -/Resources 49 0 R -/Contents[32 0 R 4 0 R 53 0 R 34 0 R] -/Parent 196 0 R ->> -endobj -196 0 obj -<< -/Type/Pages -/Count 2 -/Kids[44 0 R 48 0 R] -/Parent 194 0 R ->> -endobj -55 0 obj -<< -/Type/Page -/Resources 56 0 R -/Contents[32 0 R 4 0 R 63 0 R 34 0 R] -/Parent 197 0 R ->> -endobj -65 0 obj -<< -/Type/Page -/Resources 66 0 R -/Contents[32 0 R 4 0 R 67 0 R 34 0 R] -/Parent 197 0 R ->> -endobj -197 0 obj -<< -/Type/Pages -/Count 2 -/Kids[55 0 R 65 0 R] -/Parent 194 0 R ->> -endobj -69 0 obj -<< -/Type/Page -/Resources 70 0 R -/Contents[32 0 R 4 0 R 71 0 R 34 0 R] -/Parent 198 0 R ->> -endobj -73 0 obj -<< -/Type/Page -/Resources 74 0 R -/Contents[32 0 R 4 0 R 75 0 R 34 0 R] -/Parent 198 0 R ->> -endobj -198 0 obj -<< -/Type/Pages -/Count 2 -/Kids[69 0 R 73 0 R] -/Parent 194 0 R ->> -endobj -194 0 obj -<< -/Type/Pages -/Count 8 -/Kids[195 0 R 196 0 R 197 0 R 198 0 R] -/Parent 3 0 R ->> -endobj -77 0 obj -<< -/Type/Page -/Resources 78 0 R -/Contents[32 0 R 4 0 R 79 0 R 34 0 R] -/Parent 200 0 R ->> -endobj -81 0 obj -<< -/Type/Page -/Resources 82 0 R -/Contents[32 0 R 4 0 R 85 0 R 34 0 R] -/Parent 200 0 R ->> -endobj -200 0 obj -<< -/Type/Pages -/Count 2 -/Kids[77 0 R 81 0 R] -/Parent 199 0 R ->> -endobj -87 0 obj -<< -/Type/Page -/Resources 88 0 R -/Contents[32 0 R 4 0 R 89 0 R 34 0 R] -/Parent 201 0 R ->> -endobj -91 0 obj -<< -/Type/Page -/Resources 92 0 R -/Contents[32 0 R 4 0 R 96 0 R 34 0 R] -/Parent 201 0 R ->> -endobj -201 0 obj -<< -/Type/Pages -/Count 2 -/Kids[87 0 R 91 0 R] -/Parent 199 0 R ->> -endobj -98 0 obj -<< -/Type/Page -/Resources 99 0 R -/Contents[32 0 R 4 0 R 100 0 R 34 0 R] -/Parent 202 0 R ->> -endobj -102 0 obj -<< -/Type/Page -/Resources 103 0 R -/Contents[32 0 R 4 0 R 104 0 R 34 0 R] -/Parent 202 0 R ->> -endobj -202 0 obj -<< -/Type/Pages -/Count 2 -/Kids[98 0 R 102 0 R] -/Parent 199 0 R ->> -endobj -106 0 obj -<< -/Type/Page -/Resources 107 0 R -/Contents[32 0 R 4 0 R 108 0 R 34 0 R] -/Parent 203 0 R ->> -endobj -110 0 obj -<< -/Type/Page -/Resources 111 0 R -/Contents[32 0 R 4 0 R 112 0 R 34 0 R] -/Parent 203 0 R ->> -endobj -114 0 obj -<< -/Type/Page -/Resources 115 0 R -/Contents[32 0 R 4 0 R 122 0 R 34 0 R] -/Parent 203 0 R ->> -endobj -203 0 obj -<< -/Type/Pages -/Count 3 -/Kids[106 0 R 110 0 R 114 0 R] -/Parent 199 0 R ->> -endobj -199 0 obj -<< -/Type/Pages -/Count 9 -/Kids[200 0 R 201 0 R 202 0 R 203 0 R] -/Parent 3 0 R ->> -endobj -124 0 obj -<< -/Type/Page -/Resources 125 0 R -/Contents[32 0 R 4 0 R 126 0 R 34 0 R] -/Parent 205 0 R ->> -endobj -128 0 obj -<< -/Type/Page -/Resources 129 0 R -/Contents[32 0 R 4 0 R 130 0 R 34 0 R] -/Parent 205 0 R ->> -endobj -205 0 obj -<< -/Type/Pages -/Count 2 -/Kids[124 0 R 128 0 R] -/Parent 204 0 R ->> -endobj -132 0 obj -<< -/Type/Page -/Resources 133 0 R -/Contents[32 0 R 4 0 R 134 0 R 34 0 R] -/Parent 206 0 R ->> -endobj -136 0 obj -<< -/Type/Page -/Resources 137 0 R -/Contents[32 0 R 4 0 R 138 0 R 34 0 R] -/Parent 206 0 R ->> -endobj -206 0 obj -<< -/Type/Pages -/Count 2 -/Kids[132 0 R 136 0 R] -/Parent 204 0 R ->> -endobj -140 0 obj -<< -/Type/Page -/Resources 141 0 R -/Contents[32 0 R 4 0 R 142 0 R 34 0 R] -/Parent 207 0 R ->> -endobj -144 0 obj -<< -/Type/Page -/Resources 145 0 R -/Contents[32 0 R 4 0 R 146 0 R 34 0 R] -/Parent 207 0 R ->> -endobj -207 0 obj -<< -/Type/Pages -/Count 2 -/Kids[140 0 R 144 0 R] -/Parent 204 0 R ->> -endobj -148 0 obj -<< -/Type/Page -/Resources 149 0 R -/Contents[32 0 R 4 0 R 150 0 R 34 0 R] -/Parent 208 0 R ->> -endobj -152 0 obj -<< -/Type/Page -/Resources 153 0 R -/Contents[32 0 R 4 0 R 154 0 R 34 0 R] -/Parent 208 0 R ->> -endobj -208 0 obj -<< -/Type/Pages -/Count 2 -/Kids[148 0 R 152 0 R] -/Parent 204 0 R ->> -endobj -204 0 obj -<< -/Type/Pages -/Count 8 -/Kids[205 0 R 206 0 R 207 0 R 208 0 R] -/Parent 3 0 R ->> -endobj -156 0 obj -<< -/Type/Page -/Resources 157 0 R -/Contents[32 0 R 4 0 R 158 0 R 34 0 R] -/Parent 210 0 R ->> -endobj -160 0 obj -<< -/Type/Page -/Resources 161 0 R -/Contents[32 0 R 4 0 R 162 0 R 34 0 R] -/Parent 210 0 R ->> -endobj -210 0 obj -<< -/Type/Pages -/Count 2 -/Kids[156 0 R 160 0 R] -/Parent 209 0 R ->> -endobj -164 0 obj -<< -/Type/Page -/Resources 165 0 R -/Contents[32 0 R 4 0 R 166 0 R 34 0 R] -/Parent 211 0 R ->> -endobj -168 0 obj -<< -/Type/Page -/Resources 169 0 R -/Contents[32 0 R 4 0 R 170 0 R 34 0 R] -/Parent 211 0 R ->> -endobj -211 0 obj -<< -/Type/Pages -/Count 2 -/Kids[164 0 R 168 0 R] -/Parent 209 0 R ->> -endobj -172 0 obj -<< -/Type/Page -/Resources 173 0 R -/Contents[32 0 R 4 0 R 174 0 R 34 0 R] -/Parent 212 0 R ->> -endobj -176 0 obj -<< -/Type/Page -/Resources 177 0 R -/Contents[32 0 R 4 0 R 178 0 R 34 0 R] -/Parent 212 0 R ->> -endobj -212 0 obj -<< -/Type/Pages -/Count 2 -/Kids[172 0 R 176 0 R] -/Parent 209 0 R ->> -endobj -180 0 obj -<< -/Type/Page -/Resources 181 0 R -/Contents[32 0 R 4 0 R 182 0 R 34 0 R] -/Parent 213 0 R ->> -endobj -184 0 obj -<< -/Type/Page -/Resources 185 0 R -/Contents[32 0 R 4 0 R 186 0 R 34 0 R] -/Parent 213 0 R ->> -endobj -188 0 obj -<< -/Type/Page -/Resources 189 0 R -/Contents[32 0 R 4 0 R 190 0 R 34 0 R] -/Parent 213 0 R ->> -endobj -213 0 obj -<< -/Type/Pages -/Count 3 -/Kids[180 0 R 184 0 R 188 0 R] -/Parent 209 0 R ->> -endobj -209 0 obj -<< -/Type/Pages -/Count 9 -/Kids[210 0 R 211 0 R 212 0 R 213 0 R] -/Parent 3 0 R ->> -endobj -3 0 obj -<< -/Type/Pages -/Count 34 -/Kids[194 0 R 199 0 R 204 0 R 209 0 R] -/MediaBox[0 0 612 792] ->> -endobj -32 0 obj -<< -/Length 1 ->> -stream - -endstream -endobj -34 0 obj -<< -/Length 1 ->> -stream - -endstream -endobj -4 0 obj -<< -/Length 30 ->> -stream -1.00028 0 0 1.00028 72 720 cm -endstream -endobj -214 0 obj -<< ->> -endobj -215 0 obj -null -endobj -216 0 obj -<< ->> -endobj -2 0 obj -<< -/Type/Catalog -/Pages 3 0 R -/Outlines 214 0 R -/Threads 215 0 R -/Names 216 0 R ->> -endobj -xref -0 217 -0000000000 65535 f -0000205846 00000 n -0000211711 00000 n -0000211359 00000 n -0000211564 00000 n -0000206009 00000 n -0000010679 00000 n -0000000009 00000 n -0000118624 00000 n -0000118437 00000 n -0000000908 00000 n -0000126793 00000 n -0000126607 00000 n -0000001853 00000 n -0000130066 00000 n -0000129880 00000 n -0000002847 00000 n -0000144659 00000 n -0000144464 00000 n -0000003764 00000 n -0000149891 00000 n -0000149697 00000 n -0000004698 00000 n -0000160719 00000 n -0000160531 00000 n -0000005651 00000 n -0000163750 00000 n -0000163556 00000 n -0000006530 00000 n -0000165607 00000 n -0000165419 00000 n -0000007522 00000 n -0000211464 00000 n -0000008439 00000 n -0000211514 00000 n -0000010569 00000 n -0000206112 00000 n -0000015432 00000 n -0000010740 00000 n -0000175260 00000 n -0000175066 00000 n -0000011825 00000 n -0000012628 00000 n -0000015366 00000 n -0000206297 00000 n -0000018227 00000 n -0000015494 00000 n -0000018139 00000 n -0000206402 00000 n -0000022524 00000 n -0000187119 00000 n -0000186926 00000 n -0000018289 00000 n -0000019272 00000 n -0000022424 00000 n -0000206588 00000 n -0000028036 00000 n -0000191643 00000 n -0000191449 00000 n -0000022586 00000 n -0000194069 00000 n -0000193883 00000 n -0000023577 00000 n -0000024578 00000 n -0000027912 00000 n -0000206693 00000 n -0000030434 00000 n -0000028098 00000 n -0000030357 00000 n -0000206879 00000 n -0000033168 00000 n -0000030496 00000 n -0000033068 00000 n -0000206984 00000 n -0000036052 00000 n -0000033230 00000 n -0000035952 00000 n -0000207267 00000 n -0000038976 00000 n -0000036114 00000 n -0000038888 00000 n -0000207372 00000 n -0000043152 00000 n -0000039038 00000 n -0000204833 00000 n -0000040099 00000 n -0000043016 00000 n -0000207558 00000 n -0000046075 00000 n -0000043214 00000 n -0000045963 00000 n -0000207663 00000 n -0000050526 00000 n -0000196991 00000 n -0000196802 00000 n -0000046137 00000 n -0000047114 00000 n -0000050378 00000 n -0000207849 00000 n -0000053601 00000 n -0000050588 00000 n -0000053464 00000 n -0000207955 00000 n -0000056683 00000 n -0000053664 00000 n -0000056582 00000 n -0000208145 00000 n -0000060043 00000 n -0000056747 00000 n -0000059930 00000 n -0000208253 00000 n -0000063398 00000 n -0000060107 00000 n -0000063261 00000 n -0000208361 00000 n -0000068170 00000 n -0000199923 00000 n -0000199729 00000 n -0000063462 00000 n -0000202339 00000 n -0000202151 00000 n -0000064436 00000 n -0000065439 00000 n -0000068007 00000 n -0000208657 00000 n -0000070945 00000 n -0000068234 00000 n -0000070832 00000 n -0000208765 00000 n -0000073494 00000 n -0000071009 00000 n -0000073366 00000 n -0000208956 00000 n -0000076846 00000 n -0000073558 00000 n -0000076745 00000 n -0000209064 00000 n -0000079835 00000 n -0000076910 00000 n -0000079734 00000 n -0000209255 00000 n -0000083071 00000 n -0000079899 00000 n -0000082934 00000 n -0000209363 00000 n -0000085726 00000 n -0000083135 00000 n -0000085563 00000 n -0000209554 00000 n -0000088994 00000 n -0000085790 00000 n -0000088869 00000 n -0000209662 00000 n -0000092497 00000 n -0000089058 00000 n -0000092370 00000 n -0000209950 00000 n -0000095413 00000 n -0000092561 00000 n -0000095300 00000 n -0000210058 00000 n -0000098137 00000 n -0000095477 00000 n -0000098059 00000 n -0000210249 00000 n -0000100718 00000 n -0000098201 00000 n -0000100629 00000 n -0000210357 00000 n -0000104157 00000 n -0000100782 00000 n -0000104067 00000 n -0000210548 00000 n -0000107090 00000 n -0000104221 00000 n -0000107001 00000 n -0000210656 00000 n -0000110469 00000 n -0000107154 00000 n -0000110344 00000 n -0000210847 00000 n -0000113934 00000 n -0000110533 00000 n -0000113808 00000 n -0000210955 00000 n -0000116941 00000 n -0000113998 00000 n -0000116804 00000 n -0000211063 00000 n -0000118373 00000 n -0000117005 00000 n -0000118328 00000 n -0000204453 00000 n -0000204797 00000 n -0000207170 00000 n -0000206217 00000 n -0000206507 00000 n -0000206798 00000 n -0000207089 00000 n -0000208560 00000 n -0000207477 00000 n -0000207768 00000 n -0000208063 00000 n -0000208469 00000 n -0000209853 00000 n -0000208873 00000 n -0000209172 00000 n -0000209471 00000 n -0000209770 00000 n -0000211262 00000 n -0000210166 00000 n -0000210465 00000 n -0000210764 00000 n -0000211171 00000 n -0000211643 00000 n -0000211666 00000 n -0000211688 00000 n -trailer -<< -/Size 217 -/Root 2 0 R -/Info 1 0 R ->> -startxref -211809 -%%EOF diff --git a/helm/software/matita/dama/excess.ma b/helm/software/matita/dama/excess.ma deleted file mode 100644 index 9068d297b..000000000 --- a/helm/software/matita/dama/excess.ma +++ /dev/null @@ -1,279 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "higher_order_defs/relations.ma". -include "nat/plus.ma". -include "constructive_higher_order_relations.ma". -include "constructive_connectives.ma". - -record excess_base : Type ≝ { - exc_carr:> Type; - exc_excess: exc_carr → exc_carr → Type; - exc_coreflexive: coreflexive ? exc_excess; - exc_cotransitive: cotransitive ? exc_excess -}. - -interpretation "Excess base excess" 'nleq a b = (cic:/matita/excess/exc_excess.con _ a b). - -(* E(#,≰) → E(#,sym(≰)) *) -lemma make_dual_exc: excess_base → excess_base. -intro E; -apply (mk_excess_base (exc_carr E)); - [ apply (λx,y:E.y≰x);|apply exc_coreflexive; - | unfold cotransitive; simplify; intros (x y z H); - cases (exc_cotransitive E ??z H);[right|left]assumption] -qed. - -record excess_dual : Type ≝ { - exc_dual_base:> excess_base; - exc_dual_dual_ : excess_base; - exc_with: exc_dual_dual_ = make_dual_exc exc_dual_base -}. - -lemma mk_excess_dual_smart: excess_base → excess_dual. -intro; apply mk_excess_dual; [apply e| apply (make_dual_exc e)|reflexivity] -qed. - -definition exc_dual_dual: excess_dual → excess_base. -intro E; apply (make_dual_exc E); -qed. - -coercion cic:/matita/excess/exc_dual_dual.con. - -record apartness : Type ≝ { - ap_carr:> Type; - ap_apart: ap_carr → ap_carr → Type; - ap_coreflexive: coreflexive ? ap_apart; - ap_symmetric: symmetric ? ap_apart; - ap_cotransitive: cotransitive ? ap_apart -}. - -notation "hvbox(a break # b)" non associative with precedence 50 for @{ 'apart $a $b}. -interpretation "apartness" 'apart x y = (cic:/matita/excess/ap_apart.con _ x y). - -definition apartness_of_excess_base: excess_base → apartness. -intros (E); apply (mk_apartness E (λa,b:E. a ≰ b ∨ b ≰ a)); -[1: unfold; cases E; simplify; clear E; intros (x); unfold; - intros (H1); apply (H x); cases H1; assumption; -|2: unfold; intros(x y H); cases H; clear H; [right|left] assumption; -|3: intros (E); unfold; cases E (T f _ cTf); simplify; intros (x y z Axy); - cases Axy (H H); lapply (cTf ? ? z H) as H1; cases H1; clear Axy H1; - [left; left|right; left|right; right|left; right] assumption] -qed. - -record excess_ : Type ≝ { - exc_exc:> excess_dual; - exc_ap_: apartness; - exc_with1: ap_carr exc_ap_ = exc_carr exc_exc -}. - -definition exc_ap: excess_ → apartness. -intro E; apply (mk_apartness E); unfold Type_OF_excess_; -cases (exc_with1 E); simplify; -[apply (ap_apart (exc_ap_ E)); -|apply ap_coreflexive;|apply ap_symmetric;|apply ap_cotransitive] -qed. - -coercion cic:/matita/excess/exc_ap.con. - -interpretation "Excess excess_" 'nleq a b = - (cic:/matita/excess/exc_excess.con (cic:/matita/excess/excess_base_OF_excess_1.con _) a b). - -record excess : Type ≝ { - excess_carr:> excess_; - ap2exc: ∀y,x:excess_carr. y # x → y ≰ x ∨ x ≰ y; - exc2ap: ∀y,x:excess_carr.y ≰ x ∨ x ≰ y → y # x -}. - -interpretation "Excess excess" 'nleq a b = - (cic:/matita/excess/exc_excess.con (cic:/matita/excess/excess_base_OF_excess1.con _) a b). - -interpretation "Excess (dual) excess" 'ngeq a b = - (cic:/matita/excess/exc_excess.con (cic:/matita/excess/excess_base_OF_excess.con _) a b). - -definition strong_ext ≝ λA:apartness.λop:A→A.∀x,y. op x # op y → x # y. - -definition le ≝ λE:excess_base.λa,b:E. ¬ (a ≰ b). - -interpretation "Excess less or equal than" 'leq a b = - (cic:/matita/excess/le.con (cic:/matita/excess/excess_base_OF_excess1.con _) a b). - -interpretation "Excess less or equal than" 'geq a b = - (cic:/matita/excess/le.con (cic:/matita/excess/excess_base_OF_excess.con _) a b). - -lemma le_reflexive: ∀E.reflexive ? (le E). -unfold reflexive; intros 3 (E x H); apply (exc_coreflexive ?? H); -qed. - -lemma le_transitive: ∀E.transitive ? (le E). -unfold transitive; intros 7 (E x y z H1 H2 H3); cases (exc_cotransitive ??? y H3) (H4 H4); -[cases (H1 H4)|cases (H2 H4)] -qed. - -definition eq ≝ λA:apartness.λa,b:A. ¬ (a # b). - -notation "hvbox(a break ≈ b)" non associative with precedence 50 for @{ 'napart $a $b}. -interpretation "Apartness alikeness" 'napart a b = (cic:/matita/excess/eq.con _ a b). -interpretation "Excess alikeness" 'napart a b = (cic:/matita/excess/eq.con (cic:/matita/excess/excess_base_OF_excess1.con _) a b). -interpretation "Excess (dual) alikeness" 'napart a b = (cic:/matita/excess/eq.con (cic:/matita/excess/excess_base_OF_excess.con _) a b). - -lemma eq_reflexive:∀E:apartness. reflexive ? (eq E). -intros (E); unfold; intros (x); apply ap_coreflexive; -qed. - -lemma eq_sym_:∀E:apartness.symmetric ? (eq E). -unfold symmetric; intros 5 (E x y H H1); cases (H (ap_symmetric ??? H1)); -qed. - -lemma eq_sym:∀E:apartness.∀x,y:E.x ≈ y → y ≈ x ≝ eq_sym_. - -(* SETOID REWRITE *) -coercion cic:/matita/excess/eq_sym.con. - -lemma eq_trans_: ∀E:apartness.transitive ? (eq E). -(* bug. intros k deve fare whd quanto basta *) -intros 6 (E x y z Exy Eyz); intro Axy; cases (ap_cotransitive ???y Axy); -[apply Exy|apply Eyz] assumption. -qed. - -lemma eq_trans:∀E:apartness.∀x,z,y:E.x ≈ y → y ≈ z → x ≈ z ≝ - λE,x,y,z.eq_trans_ E x z y. - -notation > "'Eq'≈" non associative with precedence 50 for @{'eqrewrite}. -interpretation "eq_rew" 'eqrewrite = (cic:/matita/excess/eq_trans.con _ _ _). - -alias id "antisymmetric" = "cic:/matita/constructive_higher_order_relations/antisymmetric.con". -lemma le_antisymmetric: - ∀E:excess.antisymmetric ? (le (excess_base_OF_excess1 E)) (eq E). -intros 5 (E x y Lxy Lyx); intro H; -cases (ap2exc ??? H); [apply Lxy;|apply Lyx] assumption; -qed. - -definition lt ≝ λE:excess.λa,b:E. a ≤ b ∧ a # b. - -interpretation "ordered sets less than" 'lt a b = (cic:/matita/excess/lt.con _ a b). - -lemma lt_coreflexive: ∀E.coreflexive ? (lt E). -intros 2 (E x); intro H; cases H (_ ABS); -apply (ap_coreflexive ? x ABS); -qed. - -lemma lt_transitive: ∀E.transitive ? (lt E). -intros (E); unfold; intros (x y z H1 H2); cases H1 (Lxy Axy); cases H2 (Lyz Ayz); -split; [apply (le_transitive ???? Lxy Lyz)] clear H1 H2; -elim (ap2exc ??? Axy) (H1 H1); elim (ap2exc ??? Ayz) (H2 H2); [1:cases (Lxy H1)|3:cases (Lyz H2)] -clear Axy Ayz;lapply (exc_cotransitive (exc_dual_base E)) as c; unfold cotransitive in c; -lapply (exc_coreflexive (exc_dual_base E)) as r; unfold coreflexive in r; -[1: lapply (c ?? y H1) as H3; elim H3 (H4 H4); [cases (Lxy H4)|cases (r ? H4)] -|2: lapply (c ?? x H2) as H3; elim H3 (H4 H4); [apply exc2ap; right; assumption|cases (Lxy H4)]] -qed. - -theorem lt_to_excess: ∀E:excess.∀a,b:E. (a < b) → (b ≰ a). -intros (E a b Lab); elim Lab (LEab Aab); -elim (ap2exc ??? Aab) (H H); [cases (LEab H)] fold normalize (b ≰ a); assumption; (* BUG *) -qed. - -lemma le_rewl: ∀E:excess.∀z,y,x:E. x ≈ y → x ≤ z → y ≤ z. -intros (E z y x Exy Lxz); apply (le_transitive ???? ? Lxz); -intro Xyz; apply Exy; apply exc2ap; right; assumption; -qed. - -lemma le_rewr: ∀E:excess.∀z,y,x:E. x ≈ y → z ≤ x → z ≤ y. -intros (E z y x Exy Lxz); apply (le_transitive ???? Lxz); -intro Xyz; apply Exy; apply exc2ap; left; assumption; -qed. - -notation > "'Le'≪" non associative with precedence 50 for @{'lerewritel}. -interpretation "le_rewl" 'lerewritel = (cic:/matita/excess/le_rewl.con _ _ _). -notation > "'Le'≫" non associative with precedence 50 for @{'lerewriter}. -interpretation "le_rewr" 'lerewriter = (cic:/matita/excess/le_rewr.con _ _ _). - -lemma ap_rewl: ∀A:apartness.∀x,z,y:A. x ≈ y → y # z → x # z. -intros (A x z y Exy Ayz); cases (ap_cotransitive ???x Ayz); [2:assumption] -cases (Exy (ap_symmetric ??? a)); -qed. - -lemma ap_rewr: ∀A:apartness.∀x,z,y:A. x ≈ y → z # y → z # x. -intros (A x z y Exy Azy); apply ap_symmetric; apply (ap_rewl ???? Exy); -apply ap_symmetric; assumption; -qed. - -notation > "'Ap'≪" non associative with precedence 50 for @{'aprewritel}. -interpretation "ap_rewl" 'aprewritel = (cic:/matita/excess/ap_rewl.con _ _ _). -notation > "'Ap'≫" non associative with precedence 50 for @{'aprewriter}. -interpretation "ap_rewr" 'aprewriter = (cic:/matita/excess/ap_rewr.con _ _ _). - -alias symbol "napart" = "Apartness alikeness". -lemma exc_rewl: ∀A:excess.∀x,z,y:A. x ≈ y → y ≰ z → x ≰ z. -intros (A x z y Exy Ayz); elim (exc_cotransitive ???x Ayz); [2:assumption] -cases Exy; apply exc2ap; right; assumption; -qed. - -lemma exc_rewr: ∀A:excess.∀x,z,y:A. x ≈ y → z ≰ y → z ≰ x. -intros (A x z y Exy Azy); elim (exc_cotransitive ???x Azy); [assumption] -elim (Exy); apply exc2ap; left; assumption; -qed. - -notation > "'Ex'≪" non associative with precedence 50 for @{'excessrewritel}. -interpretation "exc_rewl" 'excessrewritel = (cic:/matita/excess/exc_rewl.con _ _ _). -notation > "'Ex'≫" non associative with precedence 50 for @{'excessrewriter}. -interpretation "exc_rewr" 'excessrewriter = (cic:/matita/excess/exc_rewr.con _ _ _). - -lemma lt_rewr: ∀A:excess.∀x,z,y:A. x ≈ y → z < y → z < x. -intros (A x y z E H); split; elim H; -[apply (Le≫ ? (eq_sym ??? E));|apply (Ap≫ ? E)] assumption; -qed. - -lemma lt_rewl: ∀A:excess.∀x,z,y:A. x ≈ y → y < z → x < z. -intros (A x y z E H); split; elim H; -[apply (Le≪ ? (eq_sym ??? E));| apply (Ap≪ ? E);] assumption; -qed. - -notation > "'Lt'≪" non associative with precedence 50 for @{'ltrewritel}. -interpretation "lt_rewl" 'ltrewritel = (cic:/matita/excess/lt_rewl.con _ _ _). -notation > "'Lt'≫" non associative with precedence 50 for @{'ltrewriter}. -interpretation "lt_rewr" 'ltrewriter = (cic:/matita/excess/lt_rewr.con _ _ _). - -lemma lt_le_transitive: ∀A:excess.∀x,y,z:A.x < y → y ≤ z → x < z. -intros (A x y z LT LE); cases LT (LEx APx); split; [apply (le_transitive ???? LEx LE)] -apply exc2ap; cases (ap2exc ??? APx) (EXx EXx); [cases (LEx EXx)] -cases (exc_cotransitive ??? z EXx) (EXz EXz); [cases (LE EXz)] -right; assumption; -qed. - -lemma le_lt_transitive: ∀A:excess.∀x,y,z:A.x ≤ y → y < z → x < z. -intros (A x y z LE LT); cases LT (LEx APx); split; [apply (le_transitive ???? LE LEx)] -elim (ap2exc ??? APx) (EXx EXx); [cases (LEx EXx)] -elim (exc_cotransitive ??? x EXx) (EXz EXz); [apply exc2ap; right; assumption] -cases LE; assumption; -qed. - -lemma le_le_eq: ∀E:excess.∀a,b:E. a ≤ b → b ≤ a → a ≈ b. -intros (E x y L1 L2); intro H; cases (ap2exc ??? H); [apply L1|apply L2] assumption; -qed. - -lemma eq_le_le: ∀E:excess.∀a,b:E. a ≈ b → a ≤ b ∧ b ≤ a. -intros (E x y H); whd in H; -split; intro; apply H; apply exc2ap; [left|right] assumption. -qed. - -lemma ap_le_to_lt: ∀E:excess.∀a,c:E.c # a → c ≤ a → c < a. -intros; split; assumption; -qed. - -definition total_order_property : ∀E:excess. Type ≝ - λE:excess. ∀a,b:E. a ≰ b → b < a. - diff --git a/helm/software/matita/dama/group.ma b/helm/software/matita/dama/group.ma deleted file mode 100644 index 104dcf274..000000000 --- a/helm/software/matita/dama/group.ma +++ /dev/null @@ -1,220 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "excess.ma". - -definition left_neutral ≝ λC:apartness.λop.λe:C. ∀x:C. op e x ≈ x. -definition right_neutral ≝ λC:apartness.λop. λe:C. ∀x:C. op x e ≈ x. -definition left_inverse ≝ λC:apartness.λop.λe:C.λinv:C→C. ∀x:C. op (inv x) x ≈ e. -definition right_inverse ≝ λC:apartness.λop.λe:C.λ inv: C→ C. ∀x:C. op x (inv x) ≈ e. -(* ALLOW DEFINITION WITH SOME METAS *) - -definition distributive_left ≝ - λA:apartness.λf:A→A→A.λg:A→A→A. - ∀x,y,z. f x (g y z) ≈ g (f x y) (f x z). - -definition distributive_right ≝ - λA:apartness.λf:A→A→A.λg:A→A→A. - ∀x,y,z. f (g x y) z ≈ g (f x z) (f y z). - -record abelian_group : Type ≝ - { carr:> apartness; - plus: carr → carr → carr; - zero: carr; - opp: carr → carr; - plus_assoc_: associative ? plus (eq carr); - plus_comm_: commutative ? plus (eq carr); - zero_neutral_: left_neutral ? plus zero; - opp_inverse_: left_inverse ? plus zero opp; - plus_strong_ext: ∀z.strong_ext ? (plus z) -}. - -notation "0" with precedence 89 for @{ 'zero }. - -interpretation "Abelian group zero" 'zero = - (cic:/matita/group/zero.con _). - -interpretation "Abelian group plus" 'plus a b = - (cic:/matita/group/plus.con _ a b). - -interpretation "Abelian group opp" 'uminus a = - (cic:/matita/group/opp.con _ a). - -definition minus ≝ - λG:abelian_group.λa,b:G. a + -b. - -interpretation "Abelian group minus" 'minus a b = - (cic:/matita/group/minus.con _ a b). - -lemma plus_assoc: ∀G:abelian_group.∀x,y,z:G.x+(y+z)≈x+y+z ≝ plus_assoc_. -lemma plus_comm: ∀G:abelian_group.∀x,y:G.x+y≈y+x ≝ plus_comm_. -lemma zero_neutral: ∀G:abelian_group.∀x:G.0+x≈x ≝ zero_neutral_. -lemma opp_inverse: ∀G:abelian_group.∀x:G.-x+x≈0 ≝ opp_inverse_. - -definition ext ≝ λA:apartness.λop:A→A. ∀x,y. x ≈ y → op x ≈ op y. - -lemma strong_ext_to_ext: ∀A:apartness.∀op:A→A. strong_ext ? op → ext ? op. -intros 6 (A op SEop x y Exy); intro Axy; apply Exy; apply SEop; assumption; -qed. - -lemma feq_plusl: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x+y ≈ x+z. -intros (G x y z Eyz); apply (strong_ext_to_ext ?? (plus_strong_ext ? x)); -assumption; -qed. - -coercion cic:/matita/group/feq_plusl.con nocomposites. - -lemma plus_strong_extr: ∀G:abelian_group.∀z:G.strong_ext ? (λx.x + z). -intros 5 (G z x y A); simplify in A; -lapply (plus_comm ? z x) as E1; lapply (plus_comm ? z y) as E2; -lapply (Ap≪ ? E1 A) as A1; lapply (Ap≫ ? E2 A1) as A2; -apply (plus_strong_ext ???? A2); -qed. - -lemma plus_cancl_ap: ∀G:abelian_group.∀x,y,z:G.z+x # z + y → x # y. -intros; apply plus_strong_ext; assumption; -qed. - -lemma plus_cancr_ap: ∀G:abelian_group.∀x,y,z:G.x+z # y+z → x # y. -intros; apply plus_strong_extr; assumption; -qed. - -lemma feq_plusr: ∀G:abelian_group.∀x,y,z:G. y ≈ z → y+x ≈ z+x. -intros (G x y z Eyz); apply (strong_ext_to_ext ?? (plus_strong_extr ? x)); -assumption; -qed. - -coercion cic:/matita/group/feq_plusr.con nocomposites. - -(* generation of coercions to make *_rew[lr] easier *) -lemma feq_plusr_sym_: ∀G:abelian_group.∀x,y,z:G.z ≈ y → y+x ≈ z+x. -compose feq_plusr with eq_sym (H); apply H; assumption; -qed. -coercion cic:/matita/group/feq_plusr_sym_.con nocomposites. -lemma feq_plusl_sym_: ∀G:abelian_group.∀x,y,z:G.z ≈ y → x+y ≈ x+z. -compose feq_plusl with eq_sym (H); apply H; assumption; -qed. -coercion cic:/matita/group/feq_plusl_sym_.con nocomposites. - -lemma fap_plusl: ∀G:abelian_group.∀x,y,z:G. y # z → x+y # x+z. -intros (G x y z Ayz); apply (plus_strong_ext ? (-x)); -apply (Ap≪ ((-x + x) + y)); -[1: apply plus_assoc; -|2: apply (Ap≫ ((-x +x) +z)); - [1: apply plus_assoc; - |2: apply (Ap≪ (0 + y)); - [1: apply (feq_plusr ???? (opp_inverse ??)); - |2: apply (Ap≪ ? (zero_neutral ? y)); - apply (Ap≫ (0 + z) (opp_inverse ??)); - apply (Ap≫ ? (zero_neutral ??)); assumption;]]] -qed. - -lemma fap_plusr: ∀G:abelian_group.∀x,y,z:G. y # z → y+x # z+x. -intros (G x y z Ayz); apply (plus_strong_extr ? (-x)); -apply (Ap≪ (y + (x + -x))); -[1: apply (eq_sym ??? (plus_assoc ????)); -|2: apply (Ap≫ (z + (x + -x))); - [1: apply (eq_sym ??? (plus_assoc ????)); - |2: apply (Ap≪ (y + (-x+x)) (plus_comm ? x (-x))); - apply (Ap≪ (y + 0) (opp_inverse ??)); - apply (Ap≪ (0 + y) (plus_comm ???)); - apply (Ap≪ y (zero_neutral ??)); - apply (Ap≫ (z + (-x+x)) (plus_comm ? x (-x))); - apply (Ap≫ (z + 0) (opp_inverse ??)); - apply (Ap≫ (0 + z) (plus_comm ???)); - apply (Ap≫ z (zero_neutral ??)); - assumption]] -qed. - -lemma applus: ∀E:abelian_group.∀x,a,y,b:E.x + a # y + b → x # y ∨ a # b. -intros; cases (ap_cotransitive ??? (y+a) a1); [left|right] -[apply (plus_cancr_ap ??? a)|apply (plus_cancl_ap ??? y)] -assumption; -qed. - -lemma plus_cancl: ∀G:abelian_group.∀y,z,x:G. x+y ≈ x+z → y ≈ z. -intros 6 (G y z x E Ayz); apply E; apply fap_plusl; assumption; -qed. - -lemma plus_cancr: ∀G:abelian_group.∀y,z,x:G. y+x ≈ z+x → y ≈ z. -intros 6 (G y z x E Ayz); apply E; apply fap_plusr; assumption; -qed. - -theorem eq_opp_plus_plus_opp_opp: - ∀G:abelian_group.∀x,y:G. -(x+y) ≈ -x + -y. -intros (G x y); apply (plus_cancr ??? (x+y)); -apply (Eq≈ 0 (opp_inverse ??)); -apply (Eq≈ (-x + -y + x + y)); [2: apply (eq_sym ??? (plus_assoc ????))] -apply (Eq≈ (-y + -x + x + y)); [2: repeat apply feq_plusr; apply plus_comm] -apply (Eq≈ (-y + (-x + x) + y)); [2: apply feq_plusr; apply plus_assoc;] -apply (Eq≈ (-y + 0 + y)); - [2: apply feq_plusr; apply feq_plusl; apply eq_sym; apply opp_inverse] -apply (Eq≈ (-y + y)); - [2: apply feq_plusr; apply eq_sym; - apply (Eq≈ (0+-y)); [apply plus_comm|apply zero_neutral]] -apply eq_sym; apply opp_inverse. -qed. - -theorem eq_opp_opp_x_x: ∀G:abelian_group.∀x:G.--x ≈ x. -intros (G x); apply (plus_cancl ??? (-x)); -apply (Eq≈ (--x + -x) (plus_comm ???)); -apply (Eq≈ 0 (opp_inverse ??)); -apply eq_sym; apply opp_inverse; -qed. - -theorem eq_zero_opp_zero: ∀G:abelian_group.0 ≈ -0. [assumption] -intro G; apply (plus_cancr ??? 0); -apply (Eq≈ 0); [apply zero_neutral;] -apply eq_sym; apply opp_inverse; -qed. - -lemma feq_oppr: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x ≈ -y → x ≈ -z. -intros (G x y z H1 H2); apply (plus_cancr ??? z); -apply (Eq≈ 0 ? (opp_inverse ??)); -apply (Eq≈ (-y + z) H2); -apply (Eq≈ (-y + y) H1); -apply (Eq≈ 0 (opp_inverse ??)); -apply eq_reflexive; -qed. - -lemma feq_oppl: ∀G:abelian_group.∀x,y,z:G. y ≈ z → -y ≈ x → -z ≈ x. -intros (G x y z H1 H2); apply eq_sym; apply (feq_oppr ??y); -[2:apply eq_sym] assumption; -qed. - -lemma feq_opp: ∀G:abelian_group.∀x,y:G. x ≈ y → -x ≈ -y. -intros (G x y H); apply (feq_oppl ??y ? H); apply eq_reflexive; -qed. - -coercion cic:/matita/group/feq_opp.con nocomposites. - -lemma eq_opp_sym: ∀G:abelian_group.∀x,y:G. y ≈ x → -x ≈ -y. -compose feq_opp with eq_sym (H); apply H; assumption; -qed. - -coercion cic:/matita/group/eq_opp_sym.con nocomposites. - -lemma eq_opp_plusr: ∀G:abelian_group.∀x,y,z:G. x ≈ y → -(x + z) ≈ -(y + z). -compose feq_plusr with feq_opp(H); apply H; assumption; -qed. - -coercion cic:/matita/group/eq_opp_plusr.con nocomposites. - -lemma eq_opp_plusl: ∀G:abelian_group.∀x,y,z:G. x ≈ y → -(z + x) ≈ -(z + y). -compose feq_plusl with feq_opp(H); apply H; assumption; -qed. - -coercion cic:/matita/group/eq_opp_plusl.con nocomposites. diff --git a/helm/software/matita/dama/infsup.ma b/helm/software/matita/dama/infsup.ma deleted file mode 100644 index cc3292fd0..000000000 --- a/helm/software/matita/dama/infsup.ma +++ /dev/null @@ -1,53 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -include "sequence.ma". - -definition upper_bound ≝ λO:excess.λa:sequence O.λu:O.∀n:nat.a n ≤ u. - -definition weak_sup ≝ - λO:excess.λs:sequence O.λx. - upper_bound ? s x ∧ (∀y:O.upper_bound ? s y → x ≤ y). - -definition strong_sup ≝ - λO:excess.λs:sequence O.λx.upper_bound ? s x ∧ (∀y:O.x ≰ y → ∃n.s n ≰ y). - -definition increasing ≝ λO:excess.λa:sequence O.∀n:nat.a n ≤ a (S n). - -notation < "x \nbsp 'is_upper_bound' \nbsp s" non associative with precedence 50 for @{'upper_bound $_ $s $x}. -notation < "x \nbsp 'is_lower_bound' \nbsp s" non associative with precedence 50 for @{'lower_bound $_ $s $x}. -notation < "s \nbsp 'is_increasing'" non associative with precedence 50 for @{'increasing $_ $s}. -notation < "s \nbsp 'is_decreasing'" non associative with precedence 50 for @{'decreasing $_ $s}. -notation < "x \nbsp 'is_strong_sup' \nbsp s" non associative with precedence 50 for @{'strong_sup $_ $s $x}. -notation < "x \nbsp 'is_strong_inf' \nbsp s" non associative with precedence 50 for @{'strong_inf $_ $s $x}. - -notation > "x 'is_upper_bound' s 'in' e" non associative with precedence 50 for @{'upper_bound $e $s $x}. -notation > "x 'is_lower_bound' s 'in' e" non associative with precedence 50 for @{'lower_bound $e $s $x}. -notation > "s 'is_increasing' 'in' e" non associative with precedence 50 for @{'increasing $e $s}. -notation > "s 'is_decreasing' 'in' e" non associative with precedence 50 for @{'decreasing $e $s}. -notation > "x 'is_strong_sup' s 'in' e" non associative with precedence 50 for @{'strong_sup $e $s $x}. -notation > "x 'is_strong_inf' s 'in' e" non associative with precedence 50 for @{'strong_inf $e $s $x}. - -interpretation "Excess upper bound" 'upper_bound e s x = (cic:/matita/infsup/upper_bound.con e s x). -interpretation "Excess lower bound" 'lower_bound e s x = (cic:/matita/infsup/upper_bound.con (cic:/matita/excess/dual_exc.con e) s x). -interpretation "Excess increasing" 'increasing e s = (cic:/matita/infsup/increasing.con e s). -interpretation "Excess decreasing" 'decreasing e s = (cic:/matita/infsup/increasing.con (cic:/matita/excess/dual_exc.con e) s). -interpretation "Excess strong sup" 'strong_sup e s x = (cic:/matita/infsup/strong_sup.con e s x). -interpretation "Excess strong inf" 'strong_inf e s x = (cic:/matita/infsup/strong_sup.con (cic:/matita/excess/dual_exc.con e) s x). - -lemma strong_sup_is_weak: - ∀O:excess.∀s:sequence O.∀x:O.strong_sup ? s x → weak_sup ? s x. -intros (O s x Ssup); elim Ssup (Ubx M); clear Ssup; split; [assumption] -intros 3 (y Uby E); cases (M ? E) (n En); unfold in Uby; cases (Uby ? En); -qed. diff --git a/helm/software/matita/dama/lattice.ma b/helm/software/matita/dama/lattice.ma deleted file mode 100644 index 78046c688..000000000 --- a/helm/software/matita/dama/lattice.ma +++ /dev/null @@ -1,446 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -include "excess.ma". - -record semi_lattice_base : Type ≝ { - sl_carr:> apartness; - sl_op: sl_carr → sl_carr → sl_carr; - sl_op_refl: ∀x.sl_op x x ≈ x; - sl_op_comm: ∀x,y:sl_carr. sl_op x y ≈ sl_op y x; - sl_op_assoc: ∀x,y,z:sl_carr. sl_op x (sl_op y z) ≈ sl_op (sl_op x y) z; - sl_strong_extop: ∀x.strong_ext ? (sl_op x) -}. - -notation "a \cross b" left associative with precedence 50 for @{ 'op $a $b }. -interpretation "semi lattice base operation" 'op a b = (cic:/matita/lattice/sl_op.con _ a b). - -lemma excess_of_semi_lattice_base: semi_lattice_base → excess. -intro l; -apply mk_excess; -[1: apply mk_excess_; - [1: apply mk_excess_dual_smart; - - apply (mk_excess_base (sl_carr l)); - [1: apply (λa,b:sl_carr l.a # (a ✗ b)); - |2: unfold; intros 2 (x H); simplify in H; - lapply (Ap≪ ? (sl_op_refl ??) H) as H1; clear H; - apply (ap_coreflexive ?? H1); - |3: unfold; simplify; intros (x y z H1); - cases (ap_cotransitive ??? ((x ✗ z) ✗ y) H1) (H2 H2);[2: - lapply (Ap≪ ? (sl_op_comm ???) H2) as H21; - lapply (Ap≫ ? (sl_op_comm ???) H21) as H22; clear H21 H2; - lapply (sl_strong_extop ???? H22); clear H22; - left; apply ap_symmetric; assumption;] - cases (ap_cotransitive ??? (x ✗ z) H2) (H3 H3);[left;assumption] - right; lapply (Ap≫ ? (sl_op_assoc ????) H3) as H31; - apply (sl_strong_extop ???? H31);] - - |2: - apply apartness_of_excess_base; - - apply (mk_excess_base (sl_carr l)); - [1: apply (λa,b:sl_carr l.a # (a ✗ b)); - |2: unfold; intros 2 (x H); simplify in H; - lapply (Ap≪ ? (sl_op_refl ??) H) as H1; clear H; - apply (ap_coreflexive ?? H1); - |3: unfold; simplify; intros (x y z H1); - cases (ap_cotransitive ??? ((x ✗ z) ✗ y) H1) (H2 H2);[2: - lapply (Ap≪ ? (sl_op_comm ???) H2) as H21; - lapply (Ap≫ ? (sl_op_comm ???) H21) as H22; clear H21 H2; - lapply (sl_strong_extop ???? H22); clear H22; - left; apply ap_symmetric; assumption;] - cases (ap_cotransitive ??? (x ✗ z) H2) (H3 H3);[left;assumption] - right; lapply (Ap≫ ? (sl_op_assoc ????) H3) as H31; - apply (sl_strong_extop ???? H31);] - - |3: apply refl_eq;] -|2,3: intros (x y H); assumption;] -qed. - -record semi_lattice : Type ≝ { - sl_exc:> excess; - sl_meet: sl_exc → sl_exc → sl_exc; - sl_meet_refl: ∀x.sl_meet x x ≈ x; - sl_meet_comm: ∀x,y. sl_meet x y ≈ sl_meet y x; - sl_meet_assoc: ∀x,y,z. sl_meet x (sl_meet y z) ≈ sl_meet (sl_meet x y) z; - sl_strong_extm: ∀x.strong_ext ? (sl_meet x); - sl_le_to_eqm: ∀x,y.x ≤ y → x ≈ sl_meet x y; - sl_lem: ∀x,y.(sl_meet x y) ≤ y -}. - -interpretation "semi lattice meet" 'and a b = (cic:/matita/lattice/sl_meet.con _ a b). - -lemma sl_feq_ml: ∀ml:semi_lattice.∀a,b,c:ml. a ≈ b → (c ∧ a) ≈ (c ∧ b). -intros (l a b c H); unfold eq in H ⊢ %; unfold Not in H ⊢ %; -intro H1; apply H; clear H; apply (sl_strong_extm ???? H1); -qed. - -lemma sl_feq_mr: ∀ml:semi_lattice.∀a,b,c:ml. a ≈ b → (a ∧ c) ≈ (b ∧ c). -intros (l a b c H); -apply (Eq≈ ? (sl_meet_comm ???)); apply (Eq≈ ?? (sl_meet_comm ???)); -apply sl_feq_ml; assumption; -qed. - - -(* -lemma semi_lattice_of_semi_lattice_base: semi_lattice_base → semi_lattice. -intro slb; apply (mk_semi_lattice (excess_of_semi_lattice_base slb)); -[1: apply (sl_op slb); -|2: intro x; apply (eq_trans (excess_of_semi_lattice_base slb)); [2: - apply (sl_op_refl slb);|1:skip] (sl_op slb x x)); ? (sl_op_refl slb x)); - - unfold excess_of_semi_lattice_base; simplify; - intro H; elim H; - [ - - - lapply (ap_rewl (excess_of_semi_lattice_base slb) x ? (sl_op slb x x) - (eq_sym (excess_of_semi_lattice_base slb) ?? (sl_op_refl slb x)) t); - change in x with (sl_carr slb); - apply (Ap≪ (x ✗ x)); (sl_op_refl slb x)); - -whd in H; elim H; clear H; - [ apply (ap_coreflexive (excess_of_semi_lattice_base slb) (x ✗ x) t); - -prelattice (excess_of_directed l_)); [apply (sl_op l_);] -unfold excess_of_directed; try unfold apart_of_excess; simplify; -unfold excl; simplify; -[intro x; intro H; elim H; clear H; - [apply (sl_op_refl l_ x); - lapply (Ap≫ ? (sl_op_comm ???) t) as H; clear t; - lapply (sl_strong_extop l_ ??? H); apply ap_symmetric; assumption - | lapply (Ap≪ ? (sl_op_refl ?x) t) as H; clear t; - lapply (sl_strong_extop l_ ??? H); apply (sl_op_refl l_ x); - apply ap_symmetric; assumption] -|intros 3 (x y H); cases H (H1 H2); clear H; - [lapply (Ap≪ ? (sl_op_refl ? (sl_op l_ x y)) H1) as H; clear H1; - lapply (sl_strong_extop l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (sl_op_comm ???) H1); apply (ap_coreflexive ?? Hletin); - |lapply (Ap≪ ? (sl_op_refl ? (sl_op l_ y x)) H2) as H; clear H2; - lapply (sl_strong_extop l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (sl_op_comm ???) H1);apply (ap_coreflexive ?? Hletin);] -|intros 4 (x y z H); cases H (H1 H2); clear H; - [lapply (Ap≪ ? (sl_op_refl ? (sl_op l_ x (sl_op l_ y z))) H1) as H; clear H1; - lapply (sl_strong_extop l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (eq_sym ??? (sl_op_assoc ?x y z)) H1) as H; clear H1; - apply (ap_coreflexive ?? H); - |lapply (Ap≪ ? (sl_op_refl ? (sl_op l_ (sl_op l_ x y) z)) H2) as H; clear H2; - lapply (sl_strong_extop l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (sl_op_assoc ?x y z) H1) as H; clear H1; - apply (ap_coreflexive ?? H);] -|intros (x y z H); elim H (H1 H1); clear H; - lapply (Ap≪ ? (sl_op_refl ??) H1) as H; clear H1; - lapply (sl_strong_extop l_ ??? H) as H1; clear H; - lapply (sl_strong_extop l_ ??? H1) as H; clear H1; - cases (ap_cotransitive ??? (sl_op l_ y z) H);[left|right|right|left] try assumption; - [apply ap_symmetric;apply (Ap≪ ? (sl_op_comm ???)); - |apply (Ap≫ ? (sl_op_comm ???)); - |apply ap_symmetric;] assumption; -|intros 4 (x y H H1); apply H; clear H; elim H1 (H H); - lapply (Ap≪ ? (sl_op_refl ??) H) as H1; clear H; - lapply (sl_strong_extop l_ ??? H1) as H; clear H1;[2: apply ap_symmetric] - assumption -|intros 3 (x y H); - cut (sl_op l_ x y ≈ sl_op l_ x (sl_op l_ y y)) as H1;[2: - intro; lapply (sl_strong_extop ???? a); apply (sl_op_refl l_ y); - apply ap_symmetric; assumption;] - lapply (Ap≪ ? (eq_sym ??? H1) H); apply (sl_op_assoc l_ x y y); - assumption; ] -qed. -*) - -(* ED(≰,≱) → EB(≰') → ED(≰',≱') *) -lemma subst_excess_base: excess_dual → excess_base → excess_dual. -intros; apply (mk_excess_dual_smart e1); -qed. - -(* E_(ED(≰,≱),AP(#),c ED = c AP) → ED' → c DE' = c E_ → E_(ED',#,p) *) -lemma subst_dual_excess: ∀e:excess_.∀e1:excess_dual.exc_carr e = exc_carr e1 → excess_. -intros (e e1 p); apply (mk_excess_ e1 e); cases p; reflexivity; -qed. - -(* E(E_,H1,H2) → E_' → H1' → H2' → E(E_',H1',H2') *) -alias symbol "nleq" = "Excess excess_". -lemma subst_excess_: ∀e:excess. ∀e1:excess_. - (∀y,x:e1. y # x → y ≰ x ∨ x ≰ y) → - (∀y,x:e1.y ≰ x ∨ x ≰ y → y # x) → - excess. -intros (e e1 H1 H2); apply (mk_excess e1 H1 H2); -qed. - -definition hole ≝ λT:Type.λx:T.x. - -notation < "\ldots" non associative with precedence 50 for @{'hole}. -interpretation "hole" 'hole = (cic:/matita/lattice/hole.con _ _). - - -axiom FALSE : False. - -(* SL(E,M,H2-5(#),H67(≰)) → E' → c E = c E' → H67'(≰') → SL(E,M,p2-5,H67') *) -lemma subst_excess: - ∀l:semi_lattice. - ∀e:excess. - ∀p:exc_ap l = exc_ap e. - (∀x,y:e.(le (exc_dual_base e)) x y → x ≈ (?(sl_meet l)) x y) → - (∀x,y:e.(le (exc_dual_base e)) ((?(sl_meet l)) x y) y) → - semi_lattice. -[1,2:intro M; - change with ((λx.ap_carr x) e -> (λx.ap_carr x) e -> (λx.ap_carr x) e); - cases p; apply M; -|intros (l e p H1 H2); - apply (mk_semi_lattice e); - [ change with ((λx.ap_carr x) e -> (λx.ap_carr x) e -> (λx.ap_carr x) e); - cases p; simplify; apply (sl_meet l); - |2: change in ⊢ (% → ?) with ((λx.ap_carr x) e); cases p; simplify; apply sl_meet_refl; - |3: change in ⊢ (% → % → ?) with ((λx.ap_carr x) e); cases p; simplify; apply sl_meet_comm; - |4: change in ⊢ (% → % → % → ?) with ((λx.ap_carr x) e); cases p; simplify; apply sl_meet_assoc; - |5: change in ⊢ (% → ?) with ((λx.ap_carr x) e); cases p; simplify; apply sl_strong_extm; - |6: clear H2; apply hole; apply H1; - |7: clear H1; apply hole; apply H2;]] -qed. - -lemma excess_of_excess_base: excess_base → excess. -intro eb; -apply mk_excess; - [apply (mk_excess_ (mk_excess_dual_smart eb)); - [apply (apartness_of_excess_base eb); - |reflexivity] - |2,3: intros; assumption] -qed. - -lemma subst_excess_preserves_aprtness: - ∀l:semi_lattice. - ∀e:excess. - ∀p,H1,H2. - exc_ap l = exc_ap (subst_excess l e p H1 H2). -intros; -unfold subst_excess; -simplify; assumption; -qed. - - -lemma subst_excess__preserves_aprtness: - ∀l:excess. - ∀e:excess_base. - ∀p,H1,H2. - exc_ap l = apartness_OF_excess (subst_excess_ l (subst_dual_excess l (subst_excess_base l e) p) H1 H2). -intros 3; (unfold subst_excess_; unfold subst_dual_excess; unfold subst_excess_base; unfold exc_ap; unfold mk_excess_dual_smart; simplify); -(unfold subst_excess_base in p; unfold mk_excess_dual_smart in p; simplify in p); -intros; cases p; -reflexivity; -qed. - -lemma subst_excess_base_in_excess_: - ∀d:excess_. - ∀eb:excess_base. - ∀p:exc_carr d = exc_carr eb. - excess_. -intros (e_ eb); -apply (subst_dual_excess e_); - [apply (subst_excess_base e_ eb); - |assumption] -qed. - -lemma subst_excess_base_in_excess: - ∀d:excess. - ∀eb:excess_base. - ∀p:exc_carr d = exc_carr eb. - (∀y1,x1:eb. (?(ap_apart d)) y1 x1 → y1 ≰ x1 ∨ x1 ≰ y1) → - (∀y2,x2:eb.y2 ≰ x2 ∨ x2 ≰ y2 → (?(ap_apart d)) y2 x2) → - excess. -[1,3,4:apply Type|2,5:intro f; cases p; apply f] -intros (d eb p H1 H2); -apply (subst_excess_ d); - [apply (subst_excess_base_in_excess_ d eb p); - |apply hole; clear H2; - change in ⊢ (%→%→?) with (exc_carr eb); - change in ⊢ (?→?→?→? (? % ? ?) (? % ? ?)) with eb; intros (y x H3); - apply H1; generalize in match H3; - unfold ap_apart; unfold subst_excess_base_in_excess_; - unfold subst_dual_excess; simplify; - generalize in match x; - generalize in match y; - cases p; simplify; intros; assumption; - |apply hole; clear H1; - change in ⊢ (%→%→?) with (exc_carr eb); - change in ⊢ (?→?→? (? % ? ?) (? % ? ?)→?) with eb; intros (y x H3); - unfold ap_apart; unfold subst_excess_base_in_excess_; - unfold subst_dual_excess; simplify; generalize in match (H2 ?? H3); - generalize in match x; generalize in match y; cases p; - intros; assumption;] -qed. - -lemma tech1: ∀e:excess. - ∀eb:excess_base. - ∀p,H1,H2. - exc_ap e = exc_ap_ (subst_excess_base_in_excess e eb p H1 H2). -intros (e eb p H1 H2); -unfold subst_excess_base_in_excess; -unfold subst_excess_; simplify; -unfold subst_excess_base_in_excess_; -unfold subst_dual_excess; simplify; reflexivity; -qed. - -lemma tech2: - ∀e:excess_.∀eb.∀p. - exc_ap e = exc_ap (mk_excess_ (subst_excess_base e eb) (exc_ap e) p). -intros (e eb p);unfold exc_ap; simplify; cases p; simplify; reflexivity; -qed. - -(* -lemma eq_fap: - ∀a1,b1,a2,b2,a3,b3,a4,b4,a5,b5. - a1=b1 → a2=b2 → a3=b3 → a4=b4 → a5=b5 → mk_apartness a1 a2 a3 a4 a5 = mk_apartness b1 b2 b3 b4 b5. -intros; cases H; cases H1; cases H2; cases H3; cases H4; reflexivity; -qed. -*) - -lemma subst_excess_base_in_excess_preserves_apartness: - ∀e:excess. - ∀eb:excess_base. - ∀H,H1,H2. - apartness_OF_excess e = - apartness_OF_excess (subst_excess_base_in_excess e eb H H1 H2). -intros (e eb p H1 H2); -unfold subst_excess_base_in_excess; -unfold subst_excess_; unfold subst_excess_base_in_excess_; -unfold subst_dual_excess; unfold apartness_OF_excess; -simplify in ⊢ (? ? ? (? %)); -rewrite < (tech2 e eb ); -reflexivity; -qed. - - - -alias symbol "nleq" = "Excess base excess". -lemma subst_excess_base_in_semi_lattice: - ∀sl:semi_lattice. - ∀eb:excess_base. - ∀p:exc_carr sl = exc_carr eb. - (∀y1,x1:eb. (?(ap_apart sl)) y1 x1 → y1 ≰ x1 ∨ x1 ≰ y1) → - (∀y2,x2:eb.y2 ≰ x2 ∨ x2 ≰ y2 → (?(ap_apart sl)) y2 x2) → - (∀x3,y3:eb.(le eb) x3 y3 → (?(eq sl)) x3 ((?(sl_meet sl)) x3 y3)) → - (∀x4,y4:eb.(le eb) ((?(sl_meet sl)) x4 y4) y4) → - semi_lattice. -[2:apply Prop|3,7,9,10:apply Type|4:apply (exc_carr eb)|1,5,6,8,11:intro f; cases p; apply f;] -intros (sl eb H H1 H2 H3 H4); -apply (subst_excess sl); - [apply (subst_excess_base_in_excess sl eb H H1 H2); - |apply subst_excess_base_in_excess_preserves_apartness; - |change in ⊢ (%→%→?) with ((λx.ap_carr x) (subst_excess_base_in_excess (sl_exc sl) eb H H1 H2)); simplify; - intros 3 (x y LE); - generalize in match (H3 ?? LE); - generalize in match H1 as H1;generalize in match H2 as H2; - generalize in match x as x; generalize in match y as y; - cases FALSE; - (* - (reduce in H ⊢ %; cases H; simplify; intros; assumption); - - - cases (subst_excess_base_in_excess_preserves_apartness (sl_exc sl) eb H H1 H2); simplify; - change in x:(%) with (exc_carr eb); - change in y:(%) with (exc_carr eb); - generalize in match OK; generalize in match x as x; generalize in match y as y; - cases H; simplify; (* funge, ma devo fare 2 rewrite in un colpo solo *) - *) - |cases FALSE; - ] -qed. - -record lattice_ : Type ≝ { - latt_mcarr:> semi_lattice; - latt_jcarr_: semi_lattice; - W1:?; W2:?; W3:?; W4:?; W5:?; - latt_with1: latt_jcarr_ = subst_excess_base_in_semi_lattice latt_jcarr_ - (excess_base_OF_semi_lattice latt_mcarr) W1 W2 W3 W4 W5 -}. - -lemma latt_jcarr : lattice_ → semi_lattice. -intro l; apply (subst_excess_base_in_semi_lattice (latt_jcarr_ l) (excess_base_OF_semi_lattice (latt_mcarr l)) (W1 l) (W2 l) (W3 l) (W4 l) (W5 l)); -qed. - -coercion cic:/matita/lattice/latt_jcarr.con. - -interpretation "Lattice meet" 'and a b = - (cic:/matita/lattice/sl_meet.con (cic:/matita/lattice/latt_mcarr.con _) a b). - -interpretation "Lattice join" 'or a b = - (cic:/matita/lattice/sl_meet.con (cic:/matita/lattice/latt_jcarr.con _) a b). - -record lattice : Type ≝ { - latt_carr:> lattice_; - absorbjm: ∀f,g:latt_carr. (f ∨ (f ∧ g)) ≈ f; - absorbmj: ∀f,g:latt_carr. (f ∧ (f ∨ g)) ≈ f -}. - -notation "'meet'" non associative with precedence 50 for @{'meet}. -notation "'meet_refl'" non associative with precedence 50 for @{'meet_refl}. -notation "'meet_comm'" non associative with precedence 50 for @{'meet_comm}. -notation "'meet_assoc'" non associative with precedence 50 for @{'meet_assoc}. -notation "'strong_extm'" non associative with precedence 50 for @{'strong_extm}. -notation "'le_to_eqm'" non associative with precedence 50 for @{'le_to_eqm}. -notation "'lem'" non associative with precedence 50 for @{'lem}. -notation "'join'" non associative with precedence 50 for @{'join}. -notation "'join_refl'" non associative with precedence 50 for @{'join_refl}. -notation "'join_comm'" non associative with precedence 50 for @{'join_comm}. -notation "'join_assoc'" non associative with precedence 50 for @{'join_assoc}. -notation "'strong_extj'" non associative with precedence 50 for @{'strong_extj}. -notation "'le_to_eqj'" non associative with precedence 50 for @{'le_to_eqj}. -notation "'lej'" non associative with precedence 50 for @{'lej}. - -interpretation "Lattice meet" 'meet = (cic:/matita/lattice/sl_meet.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice meet_refl" 'meet_refl = (cic:/matita/lattice/sl_meet_refl.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice meet_comm" 'meet_comm = (cic:/matita/lattice/sl_meet_comm.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice meet_assoc" 'meet_assoc = (cic:/matita/lattice/sl_meet_assoc.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice strong_extm" 'strong_extm = (cic:/matita/lattice/sl_strong_extm.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice le_to_eqm" 'le_to_eqm = (cic:/matita/lattice/sl_le_to_eqm.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice lem" 'lem = (cic:/matita/lattice/sl_lem.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice join" 'join = (cic:/matita/lattice/sl_meet.con (cic:/matita/lattice/latt_jcarr.con _)). -interpretation "Lattice join_refl" 'join_refl = (cic:/matita/lattice/sl_meet_refl.con (cic:/matita/lattice/latt_jcarr.con _)). -interpretation "Lattice join_comm" 'join_comm = (cic:/matita/lattice/sl_meet_comm.con (cic:/matita/lattice/latt_jcarr.con _)). -interpretation "Lattice join_assoc" 'join_assoc = (cic:/matita/lattice/sl_meet_assoc.con (cic:/matita/lattice/latt_jcarr.con _)). -interpretation "Lattice strong_extm" 'strong_extj = (cic:/matita/lattice/sl_strong_extm.con (cic:/matita/lattice/latt_jcarr.con _)). -interpretation "Lattice le_to_eqj" 'le_to_eqj = (cic:/matita/lattice/sl_le_to_eqm.con (cic:/matita/lattice/latt_jcarr.con _)). -interpretation "Lattice lej" 'lej = (cic:/matita/lattice/sl_lem.con (cic:/matita/lattice/latt_jcarr.con _)). - -notation "'feq_jl'" non associative with precedence 50 for @{'feq_jl}. -notation "'feq_jr'" non associative with precedence 50 for @{'feq_jr}. -notation "'feq_ml'" non associative with precedence 50 for @{'feq_ml}. -notation "'feq_mr'" non associative with precedence 50 for @{'feq_mr}. -interpretation "Lattice feq_jl" 'feq_jl = (cic:/matita/lattice/sl_feq_ml.con (cic:/matita/lattice/latt_jcarr.con _)). -interpretation "Lattice feq_jr" 'feq_jr = (cic:/matita/lattice/sl_feq_mr.con (cic:/matita/lattice/latt_jcarr.con _)). -interpretation "Lattice feq_ml" 'feq_ml = (cic:/matita/lattice/sl_feq_ml.con (cic:/matita/lattice/latt_mcarr.con _)). -interpretation "Lattice feq_mr" 'feq_mr = (cic:/matita/lattice/sl_feq_mr.con (cic:/matita/lattice/latt_mcarr.con _)). - - -interpretation "Lattive meet le" 'leq a b = - (cic:/matita/excess/le.con (cic:/matita/lattice/excess_OF_lattice1.con _) a b). - -interpretation "Lattive join le (aka ge)" 'geq a b = - (cic:/matita/excess/le.con (cic:/matita/lattice/excess_OF_lattice.con _) a b). - -(* these coercions help unification, handmaking a bit of conversion - over an open term -*) -lemma le_to_ge: ∀l:lattice.∀a,b:l.a ≤ b → b ≥ a. -intros(l a b H); apply H; -qed. - -lemma ge_to_le: ∀l:lattice.∀a,b:l.b ≥ a → a ≤ b. -intros(l a b H); apply H; -qed. - -coercion cic:/matita/lattice/le_to_ge.con nocomposites. -coercion cic:/matita/lattice/ge_to_le.con nocomposites. \ No newline at end of file diff --git a/helm/software/matita/dama/limit.ma b/helm/software/matita/dama/limit.ma deleted file mode 100644 index 1250511e8..000000000 --- a/helm/software/matita/dama/limit.ma +++ /dev/null @@ -1,67 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -include "infsup.ma". - -definition shift ≝ λT:Type.λs:sequence T.λk:nat.λn.s (n+k). - -(* 3.28 *) -definition limsup ≝ - λE:excess.λxn:sequence E.λx:E.∃alpha:sequence E. - (∀k.(alpha k) is_strong_sup (shift ? xn k) in E) ∧ - x is_strong_inf alpha in E. - -notation < "x \nbsp 'is_limsup' \nbsp s" non associative with precedence 50 for @{'limsup $_ $s $x}. -notation < "x \nbsp 'is_liminf' \nbsp s" non associative with precedence 50 for @{'liminf $_ $s $x}. -notation > "x 'is_limsup' s 'in' e" non associative with precedence 50 for @{'limsup $e $s $x}. -notation > "x 'is_liminf' s 'in' e" non associative with precedence 50 for @{'liminf $e $s $x}. - -interpretation "Excess limsup" 'limsup e s x = (cic:/matita/limit/limsup.con e s x). -interpretation "Excess liminf" 'liminf e s x = (cic:/matita/limit/limsup.con (cic:/matita/excess/dual_exc.con e) s x). - -(* 3.29 *) -definition lim ≝ - λE:excess.λxn:sequence E.λx:E. x is_limsup xn in E ∧ x is_liminf xn in E. - -notation < "x \nbsp 'is_lim' \nbsp s" non associative with precedence 50 for @{'lim $_ $s $x}. -notation > "x 'is_lim' s 'in' e" non associative with precedence 50 for @{'lim $e $s $x}. -interpretation "Excess lim" 'lim e s x = (cic:/matita/limit/lim.con e s x). - -lemma sup_decreasing: - ∀E:excess.∀xn:sequence E. - ∀alpha:sequence E. (∀k.(alpha k) is_strong_sup xn in E) → - alpha is_decreasing in E. -intros (E xn alpha H); unfold strong_sup in H; unfold upper_bound in H; unfold; -intro r; -elim (H r) (H1r H2r); -elim (H (S r)) (H1sr H2sr); clear H H2r H1sr; -intro e; cases (H2sr (alpha r) e) (w Hw); clear e H2sr; -cases (H1r w Hw); -qed. - -include "tend.ma". -include "metric_lattice.ma". - -(* 3.30 *) -lemma lim_tends: - ∀R.∀ml:mlattice R.∀xn:sequence ml.∀x:ml. - x is_lim xn in ml → xn ⇝ x. -intros (R ml xn x Hl); unfold lim in Hl; unfold limsup in Hl; -cases Hl (e1 e2); cases e1 (an Han); cases e2 (bn Hbn); clear Hl e1 e2; -cases Han (SSan SIxan); cases Hbn (SSbn SIxbn); clear Han Hbn; -cases SIxan (LBxan Hxg); cases SIxbn (UPxbn Hxl); clear SIxbn SIxan; -change in UPxbn:(%) with (x is_lower_bound bn in ml); -unfold upper_bound in UPxbn LBxan; change -intros (e He); -(* 2.6 OC *) diff --git a/helm/software/matita/dama/metric_lattice.ma b/helm/software/matita/dama/metric_lattice.ma deleted file mode 100644 index f0242da28..000000000 --- a/helm/software/matita/dama/metric_lattice.ma +++ /dev/null @@ -1,117 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -include "metric_space.ma". -include "lattice.ma". - -record mlattice_ (R : todgroup) : Type ≝ { - ml_mspace_: metric_space R; - ml_lattice:> lattice; - ml_with: ms_carr ? ml_mspace_ = Type_OF_lattice ml_lattice -}. - -lemma ml_mspace: ∀R.mlattice_ R → metric_space R. -intros (R ml); apply (mk_metric_space R (Type_OF_mlattice_ ? ml)); -unfold Type_OF_mlattice_; cases (ml_with ? ml); simplify; -[apply (metric ? (ml_mspace_ ? ml));|apply (mpositive ? (ml_mspace_ ? ml)); -|apply (mreflexive ? (ml_mspace_ ? ml));|apply (msymmetric ? (ml_mspace_ ? ml)); -|apply (mtineq ? (ml_mspace_ ? ml))] -qed. - -coercion cic:/matita/metric_lattice/ml_mspace.con. - -alias symbol "plus" = "Abelian group plus". -alias symbol "leq" = "Excess less or equal than". -record mlattice (R : todgroup) : Type ≝ { - ml_carr :> mlattice_ R; - ml_prop1: ∀a,b:ml_carr. 0 < δ a b → a # b; - ml_prop2: ∀a,b,c:ml_carr. δ (a∨b) (a∨c) + δ (a∧b) (a∧c) ≤ (δ b c) -}. - -interpretation "Metric lattice leq" 'leq a b = - (cic:/matita/excess/le.con (cic:/matita/metric_lattice/excess_OF_mlattice1.con _ _) a b). -interpretation "Metric lattice geq" 'geq a b = - (cic:/matita/excess/le.con (cic:/matita/metric_lattice/excess_OF_mlattice.con _ _) a b). - -lemma eq_to_ndlt0: ∀R.∀ml:mlattice R.∀a,b:ml. a ≈ b → ¬ 0 < δ a b. -intros (R ml a b E); intro H; apply E; apply ml_prop1; -assumption; -qed. - -lemma eq_to_dzero: ∀R.∀ml:mlattice R.∀x,y:ml.x ≈ y → δ x y ≈ 0. -intros (R ml x y H); intro H1; apply H; clear H; -apply ml_prop1; split [apply mpositive] apply ap_symmetric; -assumption; -qed. - -lemma meq_l: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δx y ≈ δz y. -intros (R ml x y z); apply le_le_eq; -[ apply (le_transitive ???? (mtineq ???y z)); - apply (le_rewl ??? (0+δz y) (eq_to_dzero ???? H)); - apply (le_rewl ??? (δz y) (zero_neutral ??)); apply le_reflexive; -| apply (le_transitive ???? (mtineq ???y x)); - apply (le_rewl ??? (0+δx y) (eq_to_dzero ??z x H)); - apply (le_rewl ??? (δx y) (zero_neutral ??)); apply le_reflexive;] -qed. - -(* 3.3 *) -lemma meq_r: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δy x ≈ δy z. -intros; apply (eq_trans ???? (msymmetric ??y x)); -apply (eq_trans ????? (msymmetric ??z y)); apply meq_l; assumption; -qed. - -lemma dap_to_lt: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → 0 < δ x y. -intros; split [apply mpositive] apply ap_symmetric; assumption; -qed. - -lemma dap_to_ap: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → x # y. -intros (R ml x y H); apply ml_prop1; split; [apply mpositive;] -apply ap_symmetric; assumption; -qed. - -(* 3.11 *) -lemma le_mtri: - ∀R.∀ml:mlattice R.∀x,y,z:ml. x ≤ y → y ≤ z → δ x z ≈ δ x y + δ y z. -intros (R ml x y z Lxy Lyz); apply le_le_eq; [apply mtineq] -apply (le_transitive ????? (ml_prop2 ?? (y) ??)); -cut ( δx y+ δy z ≈ δ(y∨x) (y∨z)+ δ(y∧x) (y∧z)); [ - apply (le_rewr ??? (δx y+ δy z)); [assumption] apply le_reflexive] -lapply (le_to_eqm y x Lxy) as Dxm; lapply (le_to_eqm z y Lyz) as Dym; -lapply (le_to_eqj x y Lxy) as Dxj; lapply (le_to_eqj y z Lyz) as Dyj; clear Lxy Lyz; -STOP -apply (Eq≈ (δ(x∧y) y + δy z) (meq_l ????? Dxm)); -apply (Eq≈ (δ(x∧y) (y∧z) + δy z) (meq_r ????? Dym)); -apply (Eq≈ (δ(x∧y) (y∧z) + δ(y∨x) z));[ - apply feq_plusl; apply meq_l; clear Dyj Dxm Dym; assumption] -apply (Eq≈ (δ(x∧y) (y∧z) + δ(y∨x) (z∨y))); [ - apply (feq_plusl ? (δ(x∧y) (y∧z)) ?? (meq_r ??? (y∨x) ? Dyj));] -apply (Eq≈ ? (plus_comm ???)); -apply (Eq≈ (δ(y∨x) (y∨z)+ δ(x∧y) (y∧z)));[ - apply feq_plusr; apply meq_r; apply (join_comm ??);] -apply feq_plusl; -apply (Eq≈ (δ(y∧x) (y∧z)) (meq_l ????? (meet_comm ??))); -apply eq_reflexive; -qed. - - -(* 3.17 conclusione: δ x y ≈ 0 *) -(* 3.20 conclusione: δ x y ≈ 0 *) -(* 3.21 sup forte - strong_sup x ≝ ∀n. s n ≤ x ∧ ∀y x ≰ y → ∃n. s n ≰ y - strong_sup_zoli x ≝ ∀n. s n ≤ x ∧ ∄y. y#x ∧ y ≤ x -*) -(* 3.22 sup debole (più piccolo dei maggioranti) *) -(* 3.23 conclusion: δ x sup(...) ≈ 0 *) -(* 3.25 vero nel reticolo e basta (niente δ) *) -(* 3.36 conclusion: δ x y ≈ 0 *) diff --git a/helm/software/matita/dama/metric_space.ma b/helm/software/matita/dama/metric_space.ma deleted file mode 100644 index 2266fe9e9..000000000 --- a/helm/software/matita/dama/metric_space.ma +++ /dev/null @@ -1,46 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -include "ordered_divisible_group.ma". - -record metric_space (R: todgroup) : Type ≝ { - ms_carr :> Type; - metric: ms_carr → ms_carr → R; - mpositive: ∀a,b:ms_carr. 0 ≤ metric a b; - mreflexive: ∀a. metric a a ≈ 0; - msymmetric: ∀a,b. metric a b ≈ metric b a; - mtineq: ∀a,b,c:ms_carr. metric a b ≤ metric a c + metric c b -}. - -notation < "\nbsp \delta a \nbsp b" non associative with precedence 80 for @{ 'delta2 $a $b}. -interpretation "metric" 'delta2 a b = (cic:/matita/metric_space/metric.con _ _ a b). -notation "\delta" non associative with precedence 80 for @{ 'delta }. -interpretation "metric" 'delta = (cic:/matita/metric_space/metric.con _ _). - -lemma apart_of_metric_space: ∀R.metric_space R → apartness. -intros (R ms); apply (mk_apartness ? (λa,b:ms.0 < δ a b)); unfold; -[1: intros 2 (x H); cases H (H1 H2); clear H; - lapply (Ap≫ ? (eq_sym ??? (mreflexive ??x)) H2); - apply (ap_coreflexive R 0); assumption; -|2: intros (x y H); cases H; split; - [1: apply (Le≫ ? (msymmetric ????)); assumption - |2: apply (Ap≫ ? (msymmetric ????)); assumption] -|3: simplify; intros (x y z H); elim H (LExy Axy); - lapply (mtineq ?? x y z) as H1; elim (ap2exc ??? Axy) (H2 H2); [cases (LExy H2)] - clear LExy; lapply (lt_le_transitive ???? H H1) as LT0; - apply (lt0plus_orlt ????? LT0); apply mpositive;] -qed. - -lemma ap2delta: ∀R.∀m:metric_space R.∀x,y:m.ap_apart (apart_of_metric_space ? m) x y → 0 < δ x y. -intros 2 (R m); cases m 0; simplify; intros; assumption; qed. diff --git a/helm/software/matita/dama/ordered_divisible_group.ma b/helm/software/matita/dama/ordered_divisible_group.ma deleted file mode 100644 index 15dd52cdb..000000000 --- a/helm/software/matita/dama/ordered_divisible_group.ma +++ /dev/null @@ -1,75 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "nat/orders.ma". -include "nat/times.ma". -include "ordered_group.ma". -include "divisible_group.ma". - -record todgroup : Type ≝ { - todg_order:> togroup; - todg_division_: dgroup; - todg_with_: dg_carr todg_division_ = og_abelian_group todg_order -}. - -lemma todg_division: todgroup → dgroup. -intro G; apply (mk_dgroup G); unfold abelian_group_OF_todgroup; -cases (todg_with_ G); exact (dg_prop (todg_division_ G)); -qed. - -coercion cic:/matita/ordered_divisible_group/todg_division.con. - -lemma mul_ge: ∀G:todgroup.∀x:G.∀n.0 ≤ x → 0 ≤ n * x. -intros (G x n); elim n; simplify; [apply le_reflexive] -apply (le_transitive ???? H1); -apply (Le≪ (0+(n1*x)) (zero_neutral ??)); -apply fle_plusr; assumption; -qed. - -lemma lt_ltmul: ∀G:todgroup.∀x,y:G.∀n. x < y → S n * x < S n * y. -intros; elim n; [simplify; apply flt_plusr; assumption] -simplify; apply (ltplus); [assumption] assumption; -qed. - -lemma ltmul_lt: ∀G:todgroup.∀x,y:G.∀n. S n * x < S n * y → x < y. -intros 4; elim n; [apply (plus_cancr_lt ??? 0); assumption] -simplify in l; cases (ltplus_orlt ????? l); [assumption] -apply f; assumption; -qed. - -lemma divide_preserves_lt: ∀G:todgroup.∀e:G.∀n.0 sym_plus; simplify; apply (Lt≪ (0+(y+n*y))); [ - apply eq_sym; apply zero_neutral] - apply flt_plusr; assumption;] -apply (lt_transitive ???? l); rewrite > sym_plus; simplify; -rewrite > (sym_plus n); simplify; repeat apply flt_plusl; -apply (Lt≪ (0+(n1+n)*y)); [apply eq_sym; apply zero_neutral] -apply flt_plusr; assumption; -qed. - diff --git a/helm/software/matita/dama/ordered_group.ma b/helm/software/matita/dama/ordered_group.ma deleted file mode 100644 index 44529cadf..000000000 --- a/helm/software/matita/dama/ordered_group.ma +++ /dev/null @@ -1,328 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "group.ma". - -record pogroup_ : Type ≝ { - og_abelian_group_: abelian_group; - og_excess:> excess; - og_with: carr og_abelian_group_ = exc_ap og_excess -}. - -lemma og_abelian_group: pogroup_ → abelian_group. -intro G; apply (mk_abelian_group G); unfold apartness_OF_pogroup_; -cases (og_with G); simplify; -[apply (plus (og_abelian_group_ G));|apply zero;|apply opp -|apply plus_assoc|apply plus_comm|apply zero_neutral|apply opp_inverse|apply plus_strong_ext] -qed. - -coercion cic:/matita/ordered_group/og_abelian_group.con. - -record pogroup : Type ≝ { - og_carr:> pogroup_; - plus_cancr_exc: ∀f,g,h:og_carr. f+h ≰ g+h → f ≰ g -}. - -lemma fexc_plusr: - ∀G:pogroup.∀x,y,z:G. x ≰ y → x+z ≰ y + z. -intros 5 (G x y z L); apply (plus_cancr_exc ??? (-z)); -apply (Ex≪ (x + (z + -z)) (plus_assoc ????)); -apply (Ex≪ (x + (-z + z)) (plus_comm ??z)); -apply (Ex≪ (x+0) (opp_inverse ??)); -apply (Ex≪ (0+x) (plus_comm ???)); -apply (Ex≪ x (zero_neutral ??)); -apply (Ex≫ (y + (z + -z)) (plus_assoc ????)); -apply (Ex≫ (y + (-z + z)) (plus_comm ??z)); -apply (Ex≫ (y+0) (opp_inverse ??)); -apply (Ex≫ (0+y) (plus_comm ???)); -apply (Ex≫ y (zero_neutral ??) L); -qed. - -coercion cic:/matita/ordered_group/fexc_plusr.con nocomposites. - -lemma plus_cancl_exc: ∀G:pogroup.∀f,g,h:G. h+f ≰ h+g → f ≰ g. -intros 5 (G x y z L); apply (plus_cancr_exc ??? z); -apply (Ex≪ (z+x) (plus_comm ???)); -apply (Ex≫ (z+y) (plus_comm ???) L); -qed. - -lemma fexc_plusl: - ∀G:pogroup.∀x,y,z:G. x ≰ y → z+x ≰ z+y. -intros 5 (G x y z L); apply (plus_cancl_exc ??? (-z)); -apply (Ex≪? (plus_assoc ??z x)); -apply (Ex≫? (plus_assoc ??z y)); -apply (Ex≪ (0+x) (opp_inverse ??)); -apply (Ex≫ (0+y) (opp_inverse ??)); -apply (Ex≪? (zero_neutral ??)); -apply (Ex≫? (zero_neutral ??) L); -qed. - -coercion cic:/matita/ordered_group/fexc_plusl.con nocomposites. - -lemma plus_cancr_le: - ∀G:pogroup.∀x,y,z:G.x+z ≤ y + z → x ≤ y. -intros 5 (G x y z L); -apply (Le≪ (0+x) (zero_neutral ??)); -apply (Le≪ (x+0) (plus_comm ???)); -apply (Le≪ (x+(-z+z)) (opp_inverse ??)); -apply (Le≪ (x+(z+ -z)) (plus_comm ??z)); -apply (Le≪ (x+z+ -z) (plus_assoc ????)); -apply (Le≫ (0+y) (zero_neutral ??)); -apply (Le≫ (y+0) (plus_comm ???)); -apply (Le≫ (y+(-z+z)) (opp_inverse ??)); -apply (Le≫ (y+(z+ -z)) (plus_comm ??z)); -apply (Le≫ (y+z+ -z) (plus_assoc ????)); -intro H; apply L; clear L; apply (plus_cancr_exc ??? (-z) H); -qed. - -lemma fle_plusl: ∀G:pogroup. ∀f,g,h:G. f≤g → h+f≤h+g. -intros (G f g h); -apply (plus_cancr_le ??? (-h)); -apply (Le≪ (f+h+ -h) (plus_comm ? f h)); -apply (Le≪ (f+(h+ -h)) (plus_assoc ????)); -apply (Le≪ (f+(-h+h)) (plus_comm ? h (-h))); -apply (Le≪ (f+0) (opp_inverse ??)); -apply (Le≪ (0+f) (plus_comm ???)); -apply (Le≪ (f) (zero_neutral ??)); -apply (Le≫ (g+h+ -h) (plus_comm ? h ?)); -apply (Le≫ (g+(h+ -h)) (plus_assoc ????)); -apply (Le≫ (g+(-h+h)) (plus_comm ??h)); -apply (Le≫ (g+0) (opp_inverse ??)); -apply (Le≫ (0+g) (plus_comm ???)); -apply (Le≫ (g) (zero_neutral ??) H); -qed. - -lemma fle_plusr: ∀G:pogroup. ∀f,g,h:G. f≤g → f+h≤g+h. -intros (G f g h H); apply (Le≪? (plus_comm ???)); -apply (Le≫? (plus_comm ???)); apply fle_plusl; assumption; -qed. - -lemma plus_cancl_le: - ∀G:pogroup.∀x,y,z:G.z+x ≤ z+y → x ≤ y. -intros 5 (G x y z L); -apply (Le≪ (0+x) (zero_neutral ??)); -apply (Le≪ ((-z+z)+x) (opp_inverse ??)); -apply (Le≪ (-z+(z+x)) (plus_assoc ????)); -apply (Le≫ (0+y) (zero_neutral ??)); -apply (Le≫ ((-z+z)+y) (opp_inverse ??)); -apply (Le≫ (-z+(z+y)) (plus_assoc ????)); -apply (fle_plusl ??? (-z) L); -qed. - -lemma plus_cancl_lt: - ∀G:pogroup.∀x,y,z:G.z+x < z+y → x < y. -intros 5 (G x y z L); elim L (A LE); split; [apply plus_cancl_le; assumption] -apply (plus_cancl_ap ???? LE); -qed. - -lemma plus_cancr_lt: - ∀G:pogroup.∀x,y,z:G.x+z < y+z → x < y. -intros 5 (G x y z L); elim L (A LE); split; [apply plus_cancr_le; assumption] -apply (plus_cancr_ap ???? LE); -qed. - - -lemma exc_opp_x_zero_to_exc_zero_x: - ∀G:pogroup.∀x:G.-x ≰ 0 → 0 ≰ x. -intros (G x H); apply (plus_cancr_exc ??? (-x)); -apply (Ex≫? (plus_comm ???)); -apply (Ex≫? (opp_inverse ??)); -apply (Ex≪? (zero_neutral ??) H); -qed. - -lemma le_zero_x_to_le_opp_x_zero: - ∀G:pogroup.∀x:G.0 ≤ x → -x ≤ 0. -intros (G x Px); apply (plus_cancr_le ??? x); -apply (Le≪ 0 (opp_inverse ??)); -apply (Le≫ x (zero_neutral ??) Px); -qed. - -lemma lt_zero_x_to_lt_opp_x_zero: - ∀G:pogroup.∀x:G.0 < x → -x < 0. -intros (G x Px); apply (plus_cancr_lt ??? x); -apply (Lt≪ 0 (opp_inverse ??)); -apply (Lt≫ x (zero_neutral ??) Px); -qed. - -lemma exc_zero_opp_x_to_exc_x_zero: - ∀G:pogroup.∀x:G. 0 ≰ -x → x ≰ 0. -intros (G x H); apply (plus_cancl_exc ??? (-x)); -apply (Ex≫? (plus_comm ???)); -apply (Ex≪? (opp_inverse ??)); -apply (Ex≫? (zero_neutral ??) H); -qed. - -lemma le_x_zero_to_le_zero_opp_x: - ∀G:pogroup.∀x:G. x ≤ 0 → 0 ≤ -x. -intros (G x Lx0); apply (plus_cancr_le ??? x); -apply (Le≫ 0 (opp_inverse ??)); -apply (Le≪ x (zero_neutral ??)); -assumption; -qed. - -lemma lt_x_zero_to_lt_zero_opp_x: - ∀G:pogroup.∀x:G. x < 0 → 0 < -x. -intros (G x Lx0); apply (plus_cancr_lt ??? x); -apply (Lt≫ 0 (opp_inverse ??)); -apply (Lt≪ x (zero_neutral ??)); -assumption; -qed. - -lemma lt_opp_x_zero_to_lt_zero_x: - ∀G:pogroup.∀x:G. -x < 0 → 0 < x. -intros (G x Lx0); apply (plus_cancr_lt ??? (-x)); -apply (Lt≪ (-x) (zero_neutral ??)); -apply (Lt≫ (-x+x) (plus_comm ???)); -apply (Lt≫ 0 (opp_inverse ??)); -assumption; -qed. - -lemma lt0plus_orlt: - ∀G:pogroup. ∀x,y:G. 0 ≤ x → 0 ≤ y → 0 < x + y → 0 < x ∨ 0 < y. -intros (G x y LEx LEy LT); cases LT (H1 H2); cases (ap_cotransitive ??? y H2); -[right; split; assumption|left;split;[assumption]] -apply (plus_cancr_ap ??? y); apply (Ap≪? (zero_neutral ??)); -assumption; -qed. - -lemma le0plus_le: - ∀G:pogroup.∀a,b,c:G. 0 ≤ b → a + b ≤ c → a ≤ c. -intros (G a b c L H); apply (le_transitive ????? H); -apply (plus_cancl_le ??? (-a)); -apply (Le≪ 0 (opp_inverse ??)); -apply (Le≫ (-a + a + b) (plus_assoc ????)); -apply (Le≫ (0 + b) (opp_inverse ??)); -apply (Le≫ b (zero_neutral ??)); -assumption; -qed. - -lemma le_le0plus: - ∀G:pogroup.∀a,b:G. 0 ≤ a → 0 ≤ b → 0 ≤ a + b. -intros (G a b L1 L2); apply (le_transitive ???? L1); -apply (plus_cancl_le ??? (-a)); -apply (Le≪ 0 (opp_inverse ??)); -apply (Le≫ (-a + a + b) (plus_assoc ????)); -apply (Le≫ (0 + b) (opp_inverse ??)); -apply (Le≫ b (zero_neutral ??)); -assumption; -qed. - -lemma flt_plusl: - ∀G:pogroup.∀x,y,z:G.x < y → z + x < z + y. -intros (G x y z H); cases H; split; [apply fle_plusl; assumption] -apply fap_plusl; assumption; -qed. - -lemma flt_plusr: - ∀G:pogroup.∀x,y,z:G.x < y → x + z < y + z. -intros (G x y z H); cases H; split; [apply fle_plusr; assumption] -apply fap_plusr; assumption; -qed. - - -lemma ltxy_ltyyxx: ∀G:pogroup.∀x,y:G. y < x → y+y < x+x. -intros; apply (lt_transitive ?? (y+x));[2: - apply (Lt≪? (plus_comm ???)); - apply (Lt≫? (plus_comm ???));] -apply flt_plusl;assumption; -qed. - -lemma lew_opp : ∀O:pogroup.∀a,b,c:O.0 ≤ b → a ≤ c → a + -b ≤ c. -intros (O a b c L0 L); -apply (le_transitive ????? L); -apply (plus_cancl_le ??? (-a)); -apply (Le≫ 0 (opp_inverse ??)); -apply (Le≪ (-a+a+-b) (plus_assoc ????)); -apply (Le≪ (0+-b) (opp_inverse ??)); -apply (Le≪ (-b) (zero_neutral ?(-b))); -apply le_zero_x_to_le_opp_x_zero; -assumption; -qed. - -lemma ltw_opp : ∀O:pogroup.∀a,b,c:O.0 < b → a < c → a + -b < c. -intros (O a b c P L); -apply (lt_transitive ????? L); -apply (plus_cancl_lt ??? (-a)); -apply (Lt≫ 0 (opp_inverse ??)); -apply (Lt≪ (-a+a+-b) (plus_assoc ????)); -apply (Lt≪ (0+-b) (opp_inverse ??)); -apply (Lt≪ ? (zero_neutral ??)); -apply lt_zero_x_to_lt_opp_x_zero; -assumption; -qed. - -record togroup : Type ≝ { - tog_carr:> pogroup; - tog_total: ∀x,y:tog_carr.x≰y → y < x -}. - -lemma lexxyy_lexy: ∀G:togroup. ∀x,y:G. x+x ≤ y+y → x ≤ y. -intros (G x y H); intro H1; lapply (tog_total ??? H1) as H2; -lapply (ltxy_ltyyxx ??? H2) as H3; lapply (lt_to_excess ??? H3) as H4; -cases (H H4); -qed. - -lemma eqxxyy_eqxy: ∀G:togroup.∀x,y:G. x + x ≈ y + y → x ≈ y. -intros (G x y H); cases (eq_le_le ??? H); apply le_le_eq; -apply lexxyy_lexy; assumption; -qed. - -lemma applus_orap: ∀G:abelian_group. ∀x,y:G. 0 # x + y → 0 #x ∨ 0#y. -intros; cases (ap_cotransitive ??? y a); [right; assumption] -left; apply (plus_cancr_ap ??? y); apply (Ap≪y (zero_neutral ??)); -assumption; -qed. - -lemma ltplus: ∀G:pogroup.∀a,b,c,d:G. a < b → c < d → a+c < b + d. -intros (G a b c d H1 H2); -lapply (flt_plusr ??? c H1) as H3; -apply (lt_transitive ???? H3); -apply flt_plusl; assumption; -qed. - -lemma excplus_orexc: ∀G:pogroup.∀a,b,c,d:G. a+c ≰ b + d → a ≰ b ∨ c ≰ d. -intros (G a b c d H1 H2); -cases (exc_cotransitive ??? (a + d) H1); [ - right; apply (plus_cancl_exc ??? a); assumption] -left; apply (plus_cancr_exc ??? d); assumption; -qed. - -lemma leplus: ∀G:pogroup.∀a,b,c,d:G. a ≤ b → c ≤ d → a+c ≤ b + d. -intros (G a b c d H1 H2); intro H3; cases (excplus_orexc ????? H3); -[apply H1|apply H2] assumption; -qed. - -lemma leplus_lt_le: ∀G:togroup.∀x,y:G. 0 ≤ x + y → x < 0 → 0 ≤ y. -intros; intro; apply H; lapply (lt_to_excess ??? l); -lapply (tog_total ??? e); -lapply (tog_total ??? Hletin); -lapply (ltplus ????? Hletin2 Hletin1); -apply (Ex≪ (0+0)); [apply eq_sym; apply zero_neutral] -apply lt_to_excess; assumption; -qed. - -lemma ltplus_orlt: ∀G:togroup.∀a,b,c,d:G. a+c < b + d → a < b ∨ c < d. -intros (G a b c d H1 H2); lapply (lt_to_excess ??? H1); -cases (excplus_orexc ????? Hletin); [left|right] apply tog_total; assumption; -qed. - -lemma excplus: ∀G:togroup.∀a,b,c,d:G.a ≰ b → c ≰ d → a + c ≰ b + d. -intros (G a b c d L1 L2); -lapply (fexc_plusr ??? (c) L1) as L3; -elim (exc_cotransitive ??? (b+d) L3); [assumption] -lapply (plus_cancl_exc ???? t); lapply (tog_total ??? Hletin); -cases Hletin1; cases (H L2); -qed. diff --git a/helm/software/matita/dama/premetric_lattice.ma b/helm/software/matita/dama/premetric_lattice.ma deleted file mode 100644 index bfba3710a..000000000 --- a/helm/software/matita/dama/premetric_lattice.ma +++ /dev/null @@ -1,69 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "metric_space.ma". - -record premetric_lattice_ (R : todgroup) : Type ≝ { - pml_carr:> metric_space R; - meet: pml_carr → pml_carr → pml_carr; - join: pml_carr → pml_carr → pml_carr -}. - -interpretation "valued lattice meet" 'and a b = - (cic:/matita/premetric_lattice/meet.con _ _ a b). - -interpretation "valued lattice join" 'or a b = - (cic:/matita/premetric_lattice/join.con _ _ a b). - -record premetric_lattice_props (R : todgroup) (ml : premetric_lattice_ R) : Prop ≝ { - prop1a: ∀a : ml.δ (a ∧ a) a ≈ 0; - prop1b: ∀a : ml.δ (a ∨ a) a ≈ 0; - prop2a: ∀a,b: ml. δ (a ∨ b) (b ∨ a) ≈ 0; - prop2b: ∀a,b: ml. δ (a ∧ b) (b ∧ a) ≈ 0; - prop3a: ∀a,b,c: ml. δ (a ∨ (b ∨ c)) ((a ∨ b) ∨ c) ≈ 0; - prop3b: ∀a,b,c: ml. δ (a ∧ (b ∧ c)) ((a ∧ b) ∧ c) ≈ 0; - prop4a: ∀a,b: ml. δ (a ∨ (a ∧ b)) a ≈ 0; - prop4b: ∀a,b: ml. δ (a ∧ (a ∨ b)) a ≈ 0; - prop5: ∀a,b,c: ml. δ (a ∨ b) (a ∨ c) + δ (a ∧ b) (a ∧ c) ≤ δ b c -}. - -record pmlattice (R : todgroup) : Type ≝ { - carr :> premetric_lattice_ R; - ispremetriclattice:> premetric_lattice_props R carr -}. - -include "lattice.ma". - -lemma lattice_of_pmlattice: ∀R: todgroup. pmlattice R → lattice. -intros (R pml); apply (mk_lattice (apart_of_metric_space ? pml)); -[apply (join ? pml)|apply (meet ? pml) -|3,4,5,6,7,8,9,10: intros (x y z); whd; intro H; whd in H; cases H (LE AP);] -[apply (prop1b ? pml pml x); |apply (prop1a ? pml pml x); -|apply (prop2a ? pml pml x y); |apply (prop2b ? pml pml x y); -|apply (prop3a ? pml pml x y z);|apply (prop3b ? pml pml x y z); -|apply (prop4a ? pml pml x y); |apply (prop4b ? pml pml x y);] -try (apply ap_symmetric; assumption); intros 4 (x y z H); change with (0 < (δ y z)); -[ change in H with (0 < δ (x ∨ y) (x ∨ z)); - apply (lt_le_transitive ???? H); - apply (le0plus_le ???? (mpositive ? pml ??) (prop5 ? pml pml x y z)); -| change in H with (0 < δ (x ∧ y) (x ∧ z)); - apply (lt_le_transitive ???? H); - apply (le0plus_le ???? (mpositive ? pml (x∨y) (x∨z))); - apply (le_rewl ??? ? (plus_comm ???)); - apply (prop5 ? pml pml);] -qed. - -coercion cic:/matita/premetric_lattice/lattice_of_pmlattice.con. \ No newline at end of file diff --git a/helm/software/matita/dama/prevalued_lattice.ma b/helm/software/matita/dama/prevalued_lattice.ma deleted file mode 100644 index 53b2b0a1b..000000000 --- a/helm/software/matita/dama/prevalued_lattice.ma +++ /dev/null @@ -1,243 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "ordered_group.ma". - -record vlattice (R : togroup) : Type ≝ { - wl_carr:> Type; - value: wl_carr → R; - join: wl_carr → wl_carr → wl_carr; - meet: wl_carr → wl_carr → wl_carr; - meet_refl: ∀x. value (meet x x) ≈ value x; - join_refl: ∀x. value (join x x) ≈ value x; - meet_comm: ∀x,y. value (meet x y) ≈ value (meet y x); - join_comm: ∀x,y. value (join x y) ≈ value (join y x); - join_assoc: ∀x,y,z. value (join x (join y z)) ≈ value (join (join x y) z); - meet_assoc: ∀x,y,z. value (meet x (meet y z)) ≈ value (meet (meet x y) z); - meet_wins1: ∀x,y. value (join x (meet x y)) ≈ value x; - meet_wins2: ∀x,y. value (meet x (join x y)) ≈ value x; - modular_mjp: ∀x,y. value (join x y) + value (meet x y) ≈ value x + value y; - join_meet_le: ∀x,y,z. value (join x (meet y z)) ≤ value (join x y); - meet_join_le: ∀x,y,z. value (meet x y) ≤ value (meet x (join y z)) -}. - -interpretation "valued lattice meet" 'and a b = - (cic:/matita/prevalued_lattice/meet.con _ _ a b). - -interpretation "valued lattice join" 'or a b = - (cic:/matita/prevalued_lattice/join.con _ _ a b). - -notation < "\nbsp \mu a" non associative with precedence 80 for @{ 'value2 $a}. -interpretation "lattice value" 'value2 a = (cic:/matita/prevalued_lattice/value.con _ _ a). - -notation "\mu" non associative with precedence 80 for @{ 'value }. -interpretation "lattice value" 'value = (cic:/matita/prevalued_lattice/value.con _ _). - -lemma feq_joinr: ∀R.∀L:vlattice R.∀x,y,z:L. - μ x ≈ μ y → μ (z ∧ x) ≈ μ (z ∧ y) → μ (z ∨ x) ≈ μ (z ∨ y). -intros (R L x y z H H1); -apply (plus_cancr ??? (μ(z∧x))); -apply (Eq≈ (μz + μx) (modular_mjp ????)); -apply (Eq≈ (μz + μy) H); clear H; -apply (Eq≈ (μ(z∨y) + μ(z∧y)) (modular_mjp ??z y)); -apply (plus_cancl ??? (- μ (z ∨ y))); -apply (Eq≈ ? (plus_assoc ????)); -apply (Eq≈ (0+ μ(z∧y)) (opp_inverse ??)); -apply (Eq≈ ? (zero_neutral ??)); -apply (Eq≈ (- μ(z∨y)+ μ(z∨y)+ μ(z∧x)) ? (plus_assoc ????)); -apply (Eq≈ (0+ μ(z∧x)) ? (opp_inverse ??)); -apply (Eq≈ (μ (z ∧ x)) H1 (zero_neutral ??)); -qed. - -lemma modularj: ∀R.∀L:vlattice R.∀y,z:L. μ(y∨z) ≈ μy + μz + -μ (y ∧ z). -intros (R L y z); -lapply (modular_mjp ?? y z) as H1; -apply (plus_cancr ??? (μ(y ∧ z))); -apply (Eq≈ ? H1); clear H1; -apply (Eq≈ ?? (plus_assoc ????)); -apply (Eq≈ (μy+ μz + 0) ? (opp_inverse ??)); -apply (Eq≈ ?? (plus_comm ???)); -apply (Eq≈ (μy + μz) ? (eq_sym ??? (zero_neutral ??))); -apply eq_reflexive. -qed. - -lemma modularm: ∀R.∀L:vlattice R.∀y,z:L. μ(y∧z) ≈ μy + μz + -μ (y ∨ z). -(* CSC: questa è la causa per cui la hint per cercare i duplicati ci sta 1 mese *) -(* exact modularj; *) -intros (R L y z); -lapply (modular_mjp ?? y z) as H1; -apply (plus_cancl ??? (μ(y ∨ z))); -apply (Eq≈ ? H1); clear H1; -apply (Eq≈ ?? (plus_comm ???)); -apply (Eq≈ ?? (plus_assoc ????)); -apply (Eq≈ (μy+ μz + 0) ? (opp_inverse ??)); -apply (Eq≈ ?? (plus_comm ???)); -apply (Eq≈ (μy + μz) ? (eq_sym ??? (zero_neutral ??))); -apply eq_reflexive. -qed. - -lemma modularmj: ∀R.∀L:vlattice R.∀x,y,z:L.μ(x∧(y∨z))≈(μx + μ(y ∨ z) + - μ(x∨(y∨z))). -intros (R L x y z); -lapply (modular_mjp ?? x (y ∨ z)) as H1; -apply (Eq≈ (μ(x∨(y∨z))+ μ(x∧(y∨z)) +-μ(x∨(y∨z))) ? (feq_plusr ???? H1)); clear H1; -apply (Eq≈ ? ? (plus_comm ???)); -apply (Eq≈ (- μ(x∨(y∨z))+ μ(x∨(y∨z))+ μ(x∧(y∨z))) ? (plus_assoc ????)); -apply (Eq≈ (0+μ(x∧(y∨z))) ? (opp_inverse ??)); -apply (Eq≈ (μ(x∧(y∨z))) ? (zero_neutral ??)); -apply eq_reflexive. -qed. - -lemma modularjm: ∀R.∀L:vlattice R.∀x,y,z:L.μ(x∨(y∧z))≈(μx + μ(y ∧ z) + - μ(x∧(y∧z))). -intros (R L x y z); -lapply (modular_mjp ?? x (y ∧ z)) as H1; -apply (Eq≈ (μ(x∧(y∧z))+ μ(x∨(y∧z)) +-μ(x∧(y∧z)))); [2: apply feq_plusr; apply (eq_trans ???? (plus_comm ???)); apply H1] clear H1; -apply (Eq≈ ? ? (plus_comm ???)); -apply (Eq≈ (- μ(x∧(y∧z))+ μ(x∧(y∧z))+ μ(x∨y∧z)) ? (plus_assoc ????)); -apply (Eq≈ (0+ μ(x∨y∧z)) ? (opp_inverse ??)); -apply eq_sym; apply zero_neutral; -qed. - -lemma step1_3_57': ∀R.∀L:vlattice R.∀x,y,z:L. - μ(x ∨ (y ∧ z)) ≈ (μ x) + (μ y) + μ z + -μ (y ∨ z) + -μ (z ∧ (x ∧ y)). -intros (R L x y z); -apply (Eq≈ ? (modularjm ?? x y z)); -apply (Eq≈ ( μx+ (μy+ μz+- μ(y∨z)) +- μ(x∧(y∧z)))); [ - apply feq_plusr; apply feq_plusl; apply (modularm ?? y z);] -apply (Eq≈ (μx+ μy+ μz+- μ(y∨z)+- μ(x∧(y∧z)))); [2: - apply feq_plusl; apply feq_opp; - apply (Eq≈ ? (meet_assoc ?????)); - apply (Eq≈ ? (meet_comm ????)); - apply eq_reflexive;] -apply feq_plusr; apply (Eq≈ ? (plus_assoc ????)); -apply feq_plusr; apply plus_assoc; -qed. - -lemma step1_3_57: ∀R.∀L:vlattice R.∀x,y,z:L. - μ(x ∧ (y ∨ z)) ≈ (μ x) + (μ y) + μ z + -μ (y ∧ z) + -μ (z ∨ (x ∨ y)). -intros (R L x y z); -apply (Eq≈ ? (modularmj ?? x y z)); -apply (Eq≈ ( μx+ (μy+ μz+- μ(y∧z)) +- μ(x∨(y∨z)))); [ - apply feq_plusr; apply feq_plusl; apply (modularj ?? y z);] -apply (Eq≈ (μx+ μy+ μz+- μ(y∧z)+- μ(x∨(y∨z)))); [2: - apply feq_plusl; apply feq_opp; - apply (Eq≈ ? (join_assoc ?????)); - apply (Eq≈ ? (join_comm ????)); - apply eq_reflexive;] -apply feq_plusr; apply (Eq≈ ? (plus_assoc ????)); -apply feq_plusr; apply plus_assoc; -qed. - -(* LEMMA 3.57 *) - -lemma join_meet_le_join: ∀R.∀L:vlattice R.∀x,y,z:L.μ (x ∨ (y ∧ z)) ≤ μ (x ∨ z). -intros (R L x y z); -apply (le_rewl ??? ? (eq_sym ??? (step1_3_57' ?????))); -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ -μ(z∧x∧y))); [ - apply feq_plusl; apply feq_opp; apply (eq_trans ?? ? ?? (eq_sym ??? (meet_assoc ?????))); apply eq_reflexive;] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ (- ( μ(z∧x)+ μy+- μ((z∧x)∨y))))); [ - apply feq_plusl; apply feq_opp; apply eq_sym; apply modularm] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ (- μ(z∧x)+ -μy+-- μ((z∧x)∨y)))); [ - apply feq_plusl; apply (Eq≈ (- (μ(z∧x)+ μy) + -- μ((z∧x)∨y))); [ - apply feq_plusr; apply eq_sym; apply eq_opp_plus_plus_opp_opp;] - apply eq_sym; apply eq_opp_plus_plus_opp_opp;] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μ(z∧x)+- μy+ μ(y∨(z∧x))))); [ - repeat apply feq_plusl; apply eq_sym; apply (Eq≈ (μ((z∧x)∨y)) (eq_opp_opp_x_x ??)); - apply join_comm;] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μ(z∧x)+- μy)+ μ(y∨(z∧x)))); [ - apply eq_sym; apply plus_assoc;] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μy + - μ(z∧x))+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; repeat apply feq_plusl; apply plus_comm;] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+- μy + - μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply eq_sym; apply plus_assoc;] -apply (le_rewl ??? (μx+ μy+ μz+- μy + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (Eq≈ ( μx+ μy+ μz+(- μy+- μ(y∨z))) (eq_sym ??? (plus_assoc ????))); - apply feq_plusl; apply plus_comm;] -apply (le_rewl ??? (μx+ μy+ -μy+ μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (Eq≈ (μx+ μy+( -μy+ μz)) (eq_sym ??? (plus_assoc ????))); - apply feq_plusl; apply plus_comm;] -apply (le_rewl ??? (μx+ 0 + μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply feq_plusl; apply eq_sym; apply (eq_trans ?? ? ? (plus_comm ???)); - apply opp_inverse; apply eq_reflexive;] -apply (le_rewl ??? (μx+ μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_comm ???)); - apply eq_sym; apply zero_neutral;] -apply (le_rewl ??? (μz+ μx + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply plus_comm;] -apply (le_rewl ??? (μz+ μx +- μ(z∧x)+ - μ(y∨z)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (eq_trans ?? ? ? (eq_sym ??? (plus_assoc ????))); apply feq_plusl; - apply plus_comm;] -apply (le_rewl ??? (μ(z∨x)+ - μ(y∨z)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply modularj;] -apply (le_rewl ??? (μ(z∨x)+ (- μ(y∨z)+ μ(y∨(z∧x)))) (plus_assoc ????)); -apply (le_rewr ??? (μ(x∨z) + 0)); [apply (eq_trans ?? ? ? (plus_comm ???)); apply zero_neutral] -apply (le_rewr ??? (μ(x∨z) + (-μ(y∨z) + μ(y∨z)))); [ apply feq_plusl; apply opp_inverse] -apply (le_rewr ??? (μ(z∨x) + (-μ(y∨z) + μ(y∨z)))); [ apply feq_plusr; apply join_comm;] -repeat apply fle_plusl; apply join_meet_le; -qed. - -lemma meet_le_meet_join: ∀R.∀L:vlattice R.∀x,y,z:L.μ (x ∧ z) ≤ μ (x ∧ (y ∨ z)). -intros (R L x y z); -apply (le_rewr ??? ? (eq_sym ??? (step1_3_57 ?????))); -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ -μ(z∨x∨y))); [ - apply feq_plusl; apply feq_opp; apply (eq_trans ?? ? ?? (eq_sym ??? (join_assoc ?????))); apply eq_reflexive;] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ (- ( μ(z∨x)+ μy+- μ((z∨x)∧y))))); [ - apply feq_plusl; apply feq_opp; apply eq_sym; apply modularj] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ (- μ(z∨x)+ -μy+-- μ((z∨x)∧y)))); [ - apply feq_plusl; apply (Eq≈ (- (μ(z∨x)+ μy) + -- μ((z∨x)∧y))); [ - apply feq_plusr; apply eq_sym; apply eq_opp_plus_plus_opp_opp;] - apply eq_sym; apply eq_opp_plus_plus_opp_opp;] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μ(z∨x)+- μy+ μ(y∧(z∨x))))); [ - repeat apply feq_plusl; apply eq_sym; apply (Eq≈ (μ((z∨x)∧y)) (eq_opp_opp_x_x ??)); - apply meet_comm;] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μ(z∨x)+- μy)+ μ(y∧(z∨x)))); [ - apply eq_sym; apply plus_assoc;] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μy + - μ(z∨x))+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; repeat apply feq_plusl; apply plus_comm;] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+- μy + - μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply eq_sym; apply plus_assoc;] -apply (le_rewr ??? (μx+ μy+ μz+- μy + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (Eq≈ ( μx+ μy+ μz+(- μy+- μ(y∧z))) (eq_sym ??? (plus_assoc ????))); - apply feq_plusl; apply plus_comm;] -apply (le_rewr ??? (μx+ μy+ -μy+ μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (Eq≈ ?? (plus_assoc ????)); - apply (Eq≈ (μx+ μy+( -μy+ μz)) (eq_sym ??? (plus_assoc ????))); - apply feq_plusl; apply plus_comm;] -apply (le_rewr ??? (μx+ 0 + μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply feq_plusl; apply eq_sym; apply (eq_trans ?? ? ? (plus_comm ???)); - apply opp_inverse; apply eq_reflexive;] -apply (le_rewr ??? (μx+ μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_comm ???)); - apply eq_sym; apply zero_neutral;] -apply (le_rewr ??? (μz+ μx + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply plus_comm;] -apply (le_rewr ??? (μz+ μx +- μ(z∨x)+ - μ(y∧z)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (eq_trans ?? ? ? (eq_sym ??? (plus_assoc ????))); apply feq_plusl; - apply plus_comm;] -apply (le_rewr ??? (μ(z∧x)+ - μ(y∧z)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply modularm;] -apply (le_rewr ??? (μ(z∧x)+ (- μ(y∧z)+ μ(y∧(z∨x)))) (plus_assoc ????)); -apply (le_rewl ??? (μ(x∧z) + 0)); [apply (eq_trans ?? ? ? (plus_comm ???)); apply zero_neutral] -apply (le_rewl ??? (μ(x∧z) + (-μ(y∧z) + μ(y∧z)))); [ apply feq_plusl; apply opp_inverse] -apply (le_rewl ??? (μ(z∧x) + (-μ(y∧z) + μ(y∧z)))); [ apply feq_plusr; apply meet_comm;] -repeat apply fle_plusl; apply meet_join_le; -qed. diff --git a/helm/software/matita/dama/root b/helm/software/matita/dama/root deleted file mode 100644 index c57405b94..000000000 --- a/helm/software/matita/dama/root +++ /dev/null @@ -1 +0,0 @@ -baseuri=cic:/matita/ diff --git a/helm/software/matita/dama/sandwich.ma b/helm/software/matita/dama/sandwich.ma deleted file mode 100644 index aaea369f5..000000000 --- a/helm/software/matita/dama/sandwich.ma +++ /dev/null @@ -1,81 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "nat/plus.ma". -include "nat/orders.ma". - -lemma ltwl: ∀a,b,c:nat. b + a < c → a < c. -intros 3 (x y z); elim y (H z IH H); [apply H] -apply IH; apply lt_S_to_lt; apply H; -qed. - -lemma ltwr: ∀a,b,c:nat. a + b < c → a < c. -intros 3 (x y z); rewrite > sym_plus; apply ltwl; -qed. - -include "tend.ma". -include "metric_lattice.ma". - -alias symbol "leq" = "ordered sets less or equal than". -alias symbol "and" = "constructive and". -theorem sandwich: -let ugo ≝ excess_OF_lattice1 in - ∀R.∀ml:mlattice R.∀an,bn,xn:sequence ml.∀x:ml. - (∀n. (xn n ≤ an n) ∧ (bn n ≤ xn n)) → - an ⇝ x → bn ⇝ x → xn ⇝ x. -intros (R ml an bn xn x H Ha Hb); -unfold tends0 in Ha Hb ⊢ %; unfold d2s in Ha Hb ⊢ %; intros (e He); -alias num (instance 0) = "natural number". -cases (Ha (e/2) (divide_preserves_lt ??? He)) (n1 H1); clear Ha; -cases (Hb (e/2) (divide_preserves_lt ??? He)) (n2 H2); clear Hb; -apply (ex_introT ?? (n1+n2)); intros (n3 Lt_n1n2_n3); -lapply (ltwr ??? Lt_n1n2_n3) as Lt_n1n3; lapply (ltwl ??? Lt_n1n2_n3) as Lt_n2n3; -cases (H1 ? Lt_n1n3) (c daxe); cases (H2 ? Lt_n2n3) (c dbxe); -cases (H n3) (H7 H8); clear Lt_n1n3 Lt_n2n3 Lt_n1n2_n3 c H1 H2 H n1 n2; -(* the main inequality *) -cut (δ (xn n3) x ≤ δ (bn n3) x + δ (an n3) x + δ (an n3) x) as main_ineq; [2: - apply (le_transitive ???? (mtineq ???? (an n3))); - cut ( δ(an n3) (bn n3)+- δ(xn n3) (bn n3)≈( δ(an n3) (xn n3))) as H11; [2: - lapply (le_mtri ?? ??? H8 H7) as H9; clear H7 H8; - lapply (Eq≈ ? (msymmetric ????) H9) as H10; clear H9; - lapply (feq_plusr ? (- δ(xn n3) (bn n3)) ?? H10) as H9; clear H10; - apply (Eq≈ ? H9); clear H9; - apply (Eq≈ (δ(xn n3) (an n3)+ δ(bn n3) (xn n3)+- δ(xn n3) (bn n3)) (plus_comm ??( δ(xn n3) (an n3)))); - apply (Eq≈ (δ(xn n3) (an n3)+ δ(bn n3) (xn n3)+- δ(bn n3) (xn n3)) (feq_opp ??? (msymmetric ????))); - apply (Eq≈ ( δ(xn n3) (an n3)+ (δ(bn n3) (xn n3)+- δ(bn n3) (xn n3))) (plus_assoc ????)); - apply (Eq≈ (δ(xn n3) (an n3) + (- δ(bn n3) (xn n3) + δ(bn n3) (xn n3))) (plus_comm ??(δ(bn n3) (xn n3)))); - apply (Eq≈ (δ(xn n3) (an n3) + 0) (opp_inverse ??)); - apply (Eq≈ ? (plus_comm ???)); - apply (Eq≈ ? (zero_neutral ??)); - apply (Eq≈ ? (msymmetric ????)); - apply eq_reflexive;] - apply (Le≪ (δ(an n3) (xn n3)+ δ(an n3) x) (msymmetric ??(an n3)(xn n3))); - apply (Le≪ (δ(an n3) (bn n3)+- δ(xn n3) (bn n3)+ δ(an n3) x) H11); - apply (Le≪ (- δ(xn n3) (bn n3)+ δ(an n3) (bn n3)+δ(an n3) x) (plus_comm ??(δ(an n3) (bn n3)))); - apply (Le≪ (- δ(xn n3) (bn n3)+ (δ(an n3) (bn n3)+δ(an n3) x)) (plus_assoc ????)); - apply (Le≪ ((δ(an n3) (bn n3)+δ(an n3) x)+- δ(xn n3) (bn n3)) (plus_comm ???)); - apply lew_opp; [apply mpositive] apply fle_plusr; - apply (Le≫ ? (plus_comm ???)); - apply (Le≫ ( δ(an n3) x+ δx (bn n3)) (msymmetric ????)); - apply mtineq;] -split; [ (* first the trivial case: -e< δ(xn n3) x *) - apply (lt_le_transitive ????? (mpositive ????)); - apply lt_zero_x_to_lt_opp_x_zero; assumption;] -(* the main goal: δ(xn n3) x H2 in H. - assumption. -qed. - -axiom R:Type. -axiom R0:R. -axiom R1:R. -axiom Rplus: L R→L R→L R. -axiom Rmult: L R→L R→L R.(* -axiom Rdiv: L R→L R→L R.*) -axiom Rinv: L R→L R. -axiom Relev: L R→L R→L R. -axiom Rle: L R→L R→Prop. -axiom Rge: L R→L R→Prop. - -interpretation "real plus" 'plus x y = - (cic:/matita/tests/decl/Rplus.con x y). - -interpretation "real leq" 'leq x y = - (cic:/matita/tests/decl/Rle.con x y). - -interpretation "real geq" 'geq x y = - (cic:/matita/tests/decl/Rge.con x y). - -let rec elev (x:L R) (n:nat) on n: L R ≝ - match n with - [O ⇒ match x with [bottom ⇒ bottom ? | j y ⇒ (j ? R1)] - | S n ⇒ Rmult x (elev x n) - ]. - -let rec real_of_nat (n:nat) : L R ≝ - match n with - [ O ⇒ (j ? R0) - | S n ⇒ real_of_nat n + (j ? R1) - ]. - -coercion cic:/matita/tests/decl/real_of_nat.con. - -axiom Rplus_commutative: ∀x,y:R. (j ? x) + (j ? y) ≡ (j ? y) + (j ? x). -axiom R0_neutral: ∀x:R. (j ? x) + (j ? R0) ≡ (j ? x). -axiom Rmult_commutative: ∀x,y:R. Rmult (j ? x) (j ? y) ≡ Rmult (j ? y) (j ? x). -axiom R1_neutral: ∀x:R. Rmult (j ? x) (j ? R1) ≡ (j ? x). - -axiom Rinv_ok: - ∀x:R. ¬((j ? x) ≡ (j ? R0)) → Rmult (Rinv (j ? x)) (j ? x) ≡ (j ? R1). -definition is_defined := - λ T:Type. λ x:L T. ∃y:T. x = (j ? y). -axiom Rinv_ok2: ∀x:L R. ¬(x = bottom ?) → ¬(x ≡ (j ? R0)) → is_defined ? (Rinv x). - -definition Rdiv := - λ x,y:L R. Rmult x (Rinv y). - -(* -lemma pippo: ∀x:R. ¬((j ? x) ≡ (j ? R0)) → Rdiv (j ? R1) (j ? x) ≡ Rinv (j ? x). - intros. - unfold Rdiv. - elim (Rinv_ok2 ? ? H). - rewrite > H1. - rewrite > Rmult_commutative. - apply R1_neutral. -*) - -axiom Rdiv_le: ∀x,y:R. (j ? R1) ≤ (j ? y) → Rdiv (j ? x) (j ? y) ≤ (j ? x). -axiom R2_1: (j ? R1) ≤ S (S O). - - -axiom Rdiv_pos: ∀ x,y:R. - (j ? R0) ≤ (j ? x) → (j ? R1) ≤ (j ? y) → (j ? R0) ≤ Rdiv (j ? x) (j ? y). -axiom Rle_R0_R1: (j ? R0) ≤ (j ? R1). -axiom div: ∀x:R. (j ? x) = Rdiv (j ? x) (S (S O)) → (j ? x) = O. diff --git a/helm/software/matita/dama_didactic/depends b/helm/software/matita/dama_didactic/depends deleted file mode 100644 index f96fe3984..000000000 --- a/helm/software/matita/dama_didactic/depends +++ /dev/null @@ -1,10 +0,0 @@ -sequences.ma reals.ma -reals.ma nat/plus.ma -bottom.ma decl.ma nat/orders.ma nat/times.ma -deriv.ma reals.ma -ex_seq.ma sequences.ma -ex_deriv.ma deriv.ma -decl.ma -nat/orders.ma -nat/plus.ma -nat/times.ma diff --git a/helm/software/matita/dama_didactic/deriv.ma b/helm/software/matita/dama_didactic/deriv.ma deleted file mode 100644 index 5c2e734c0..000000000 --- a/helm/software/matita/dama_didactic/deriv.ma +++ /dev/null @@ -1,114 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "reals.ma". - -axiom F:Type.(*F=funzioni regolari*) -axiom fplus:F→F→F. -axiom fmult:F→F→F. -axiom fcomp:F→F→F. - -axiom De: F→F. (*funzione derivata*) -notation "a '" - non associative with precedence 80 -for @{ 'deriv $a }. -interpretation "function derivative" 'deriv x = - (cic:/matita/didactic/deriv/De.con x). -interpretation "function mult" 'mult x y = - (cic:/matita/didactic/deriv/fmult.con x y). -interpretation "function compositon" 'compose x y = - (cic:/matita/didactic/deriv/fcomp.con x y). - -notation "hvbox(a break + b)" - right associative with precedence 45 -for @{ 'oplus $a $b }. - -interpretation "function plus" 'plus x y = - (cic:/matita/didactic/deriv/fplus.con x y). - -axiom i:R→F. (*mappatura R in F*) -coercion cic:/matita/didactic/deriv/i.con. -axiom i_comm_plus: ∀x,y:R. (i (x+y)) = (i x) + (i y). -axiom i_comm_mult: ∀x,y:R. (i (Rmult x y)) = (i x) · (i y). - -axiom freflex:F. -notation "ρ" - non associative with precedence 100 -for @{ 'rho }. -interpretation "function flip" 'rho = - cic:/matita/didactic/deriv/freflex.con. -axiom reflex_ok: ∀f:F. ρ ∘ f = (i (-R1)) · f. -axiom dereflex: ρ ' = i (-R1). (*Togliere*) - -axiom id:F. (* Funzione identita' *) -axiom fcomp_id_neutral: ∀f:F. f ∘ id = f. -axiom fcomp_id_commutative: ∀f:F. f ∘ id = id ∘ f. -axiom deid: id ' = i R1. -axiom rho_id: ρ ∘ ρ = id. - -lemma rho_disp: ρ = ρ ∘ (ρ ∘ ρ). - we need to prove (ρ = ρ ∘ (ρ ∘ ρ)). - by _ done. -qed. - -lemma id_disp: id = ρ ∘ (id ∘ ρ). - we need to prove (id = ρ ∘ (id ∘ ρ)). - by _ done. -qed. - -let rec felev (f:F) (n:nat) on n: F ≝ - match n with - [ O ⇒ i R1 - | S n ⇒ f · (felev f n) - ]. - -(* Proprietà *) - -axiom fplus_commutative: ∀ f,g:F. f + g = g + f. -axiom fplus_associative: ∀ f,g,h:F. f + (g + h) = (f + g) + h. -axiom fplus_neutral: ∀f:F. (i R0) + f = f. -axiom fmult_commutative: ∀ f,g:F. f · g = g · f. -axiom fmult_associative: ∀ f,g,h:F. f · (g · h) = (f · g) · h. -axiom fmult_neutral: ∀f:F. (i R1) · f = f. -axiom fmult_assorb: ∀f:F. (i R0) · f = (i R0). -axiom fdistr: ∀ f,g,h:F. (f + g) · h = (f · h) + (g · h). -axiom fcomp_associative: ∀ f,g,h:F. f ∘ (g ∘ h) = (f ∘ g) ∘ h. - -axiom fcomp_distr1: ∀ f,g,h:F. (f + g) ∘ h = (f ∘ h) + (g ∘ h). -axiom fcomp_distr2: ∀ f,g,h:F. (f · g) ∘ h = (f ∘ h) · (g ∘ h). - -axiom demult: ∀ f,g:F. (f · g) ' = (f ' · g) + (f · g '). -axiom decomp: ∀ f,g:F. (f ∘ g) ' = (f ' ∘ g) · g '. -axiom deplus: ∀ f,g:F. (f + g) ' = (f ') + (g '). - -axiom cost_assorb: ∀x:R. ∀f:F. (i x) ∘ f = i x. -axiom cost_deriv: ∀x:R. (i x) ' = i R0. - - -definition fpari ≝ λ f:F. f = f ∘ ρ. -definition fdispari ≝ λ f:F. f = ρ ∘ (f ∘ ρ). -axiom cost_pari: ∀ x:R. fpari (i x). - -axiom meno_piu_i: (i (-R1)) · (i (-R1)) = i R1. - -notation "hvbox(a break ^ b)" - right associative with precedence 75 -for @{ 'elev $a $b }. - -interpretation "function power" 'elev x y = - (cic:/matita/didactic/deriv/felev.con x y). - -axiom tech1: ∀n,m. F_OF_nat n + F_OF_nat m = F_OF_nat (n + m). diff --git a/helm/software/matita/dama_didactic/ex_deriv.ma b/helm/software/matita/dama_didactic/ex_deriv.ma deleted file mode 100644 index 6ce9b9f31..000000000 --- a/helm/software/matita/dama_didactic/ex_deriv.ma +++ /dev/null @@ -1,247 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "deriv.ma". - -theorem p_plus_p_p: ∀f:F. ∀g:F. (fpari f ∧ fpari g) → fpari (f + g). - assume f:F. - assume g:F. - suppose (fpari f ∧ fpari g) (h). - by h we have (fpari f) (H) and (fpari g) (K). - we need to prove (fpari (f + g)) - or equivalently ((f + g) = (f + g) ∘ ρ). - conclude - (f + g) - = (f + (g ∘ ρ)) by _. - = ((f ∘ ρ) + (g ∘ ρ)) by _. - = ((f + g) ∘ ρ) by _ - done. -qed. - -theorem p_mult_p_p: ∀f:F. ∀g:F. (fpari f ∧ fpari g) → fpari (f · g). - assume f:F. - assume g:F. - suppose (fpari f ∧ fpari g) (h). - by h we have (fpari f) (H) and (fpari g) (K). - we need to prove (fpari (f · g)) - or equivalently ((f · g) = (f · g) ∘ ρ). - conclude - (f · g) - = (f · (g ∘ ρ)) by _. - = ((f ∘ ρ) · (g ∘ ρ)) by _. - = ((f · g) ∘ ρ) by _ - done. -qed. - -theorem d_plus_d_d: ∀f:F. ∀g:F. (fdispari f ∧ fdispari g) → fdispari (f + g). - assume f:F. - assume g:F. - suppose (fdispari f ∧ fdispari g) (h). - by h we have (fdispari f) (H) and (fdispari g) (K). - we need to prove (fdispari (f + g)) - or equivalently ((f + g) = (ρ ∘ ((f + g) ∘ ρ))). - conclude - (f + g) - = (f + (ρ ∘ (g ∘ ρ))) by _. - = ((ρ ∘ (f ∘ ρ)) + (ρ ∘ (g ∘ ρ))) by _. - = (((-R1) · (f ∘ ρ)) + (ρ ∘ (g ∘ ρ))) by _. - = (((i (-R1)) · (f ∘ ρ)) + ((i (-R1)) · (g ∘ ρ))) by _. - = (((f ∘ ρ) · (i (-R1))) + ((g ∘ ρ) · (i (-R1)))) by _. - = (((f ∘ ρ) + (g ∘ ρ)) · (i (-R1))) by _. - = ((i (-R1)) · ((f + g) ∘ ρ)) by _. - = (ρ ∘ ((f + g) ∘ ρ)) by _ - done. -qed. - -theorem d_mult_d_p: ∀f:F. ∀g:F. (fdispari f ∧ fdispari g) → fpari (f · g). - assume f:F. - assume g:F. - suppose (fdispari f ∧ fdispari g) (h). - by h we have (fdispari f) (h1) and (fdispari g) (h2). - we need to prove (fpari (f · g)) - or equivalently ((f · g) = (f · g) ∘ ρ). - conclude - (f · g) - = (f · (ρ ∘ (g ∘ ρ))) by _. - = ((ρ ∘ (f ∘ ρ)) · (ρ ∘ (g ∘ ρ))) by _. - = (((-R1) · (f ∘ ρ)) · (ρ ∘ (g ∘ ρ))) by _. - = (((-R1) · (f ∘ ρ)) · ((-R1) · (g ∘ ρ))) by _. - = ((-R1) · (f ∘ ρ) · (-R1) · (g ∘ ρ)) by _. - = ((-R1) · ((f ∘ ρ) · (-R1)) · (g ∘ ρ)) by _. - = ((-R1) · (-R1) · (f ∘ ρ) · (g ∘ ρ)) by _. - = (R1 · ((f ∘ ρ) · (g ∘ ρ))) by _. - = (((f ∘ ρ) · (g ∘ ρ))) by _. - = ((f · g) ∘ ρ) by _ - done. -qed. - -theorem p_mult_d_p: ∀f:F. ∀g:F. (fpari f ∧ fdispari g) → fdispari (f · g). - assume f:F. - assume g:F. - suppose (fpari f ∧ fdispari g) (h). - by h we have (fpari f) (h1) and (fdispari g) (h2). - we need to prove (fdispari (f · g)) - or equivalently ((f · g) = ρ ∘ ((f · g) ∘ ρ)). - conclude - (f · g) - = (f · (ρ ∘ (g ∘ ρ))) by _. - = ((f ∘ ρ) · (ρ ∘ (g ∘ ρ))) by _. - = ((f ∘ ρ) · ((-R1) · (g ∘ ρ))) by _. - = ((-R1) · ((f ∘ ρ) · (g ∘ ρ))) by _. - = ((-R1) · ((f · g) ∘ ρ)) by _. - = (ρ ∘ ((f · g) ∘ ρ)) by _ - done. -qed. - -theorem p_plus_c_p: ∀f:F. ∀x:R. fpari f → fpari (f + (i x)). - assume f:F. - assume x:R. - suppose (fpari f) (h). - we need to prove (fpari (f + (i x))) - or equivalently (f + (i x) = (f + (i x)) ∘ ρ). - by _ done. -qed. - -theorem p_mult_c_p: ∀f:F. ∀x:R. fpari f → fpari (f · (i x)). - assume f:F. - assume x:R. - suppose (fpari f) (h). - we need to prove (fpari (f · (i x))) - or equivalently ((f · (i x)) = (f · (i x)) ∘ ρ). - by _ done. -qed. - -theorem d_mult_c_d: ∀f:F. ∀x:R. fdispari f → fdispari (f · (i x)). - assume f:F. - assume x:R. - suppose (fdispari f) (h). - rewrite < fmult_commutative. - by _ done. -qed. - -theorem d_comp_d_d: ∀f,g:F. fdispari f → fdispari g → fdispari (f ∘ g). - assume f:F. - assume g:F. - suppose (fdispari f) (h1). - suppose (fdispari g) (h2). - we need to prove (fdispari (f ∘ g)) - or equivalently (f ∘ g = ρ ∘ ((f ∘ g) ∘ ρ)). - conclude - (f ∘ g) - = (ρ ∘ (f ∘ ρ) ∘ g) by _. - = (ρ ∘ (f ∘ ρ) ∘ ρ ∘ (g ∘ ρ)) by _. - = (ρ ∘ f ∘ (ρ ∘ ρ) ∘ (g ∘ ρ)) by _. - = (ρ ∘ f ∘ id ∘ (g ∘ ρ)) by _. - = (ρ ∘ ((f ∘ g) ∘ ρ)) by _ - done. -qed. - -theorem pari_in_dispari: ∀ f:F. fpari f → fdispari f '. - assume f:F. - suppose (fpari f) (h1). - we need to prove (fdispari f ') - or equivalently (f ' = ρ ∘ (f ' ∘ ρ)). - conclude - (f ') - = ((f ∘ ρ) ') by _. (*h1*) - = ((f ' ∘ ρ) · ρ ') by _. (*demult*) - = ((f ' ∘ ρ) · -R1) by _. (*deinv*) - = ((-R1) · (f ' ∘ ρ)) by _. (*fmult_commutative*) - = (ρ ∘ (f ' ∘ ρ)) (*reflex_ok*) by _ - done. -qed. - -theorem dispari_in_pari: ∀ f:F. fdispari f → fpari f '. - assume f:F. - suppose (fdispari f) (h1). - we need to prove (fpari f ') - or equivalently (f ' = f ' ∘ ρ). - conclude - (f ') - = ((ρ ∘ (f ∘ ρ)) ') by _. - = ((ρ ' ∘ (f ∘ ρ)) · ((f ∘ ρ) ')) by _. - = (((-R1) ∘ (f ∘ ρ)) · ((f ∘ ρ) ')) by _. - = (((-R1) ∘ (f ∘ ρ)) · ((f ' ∘ ρ) · (-R1))) by _. - = ((-R1) · ((f ' ∘ ρ) · (-R1))) by _. - = (((f ' ∘ ρ) · (-R1)) · (-R1)) by _. - = ((f ' ∘ ρ) · ((-R1) · (-R1))) by _. - = ((f ' ∘ ρ) · R1) by _. - = (f ' ∘ ρ) by _ - done. -qed. - -alias symbol "plus" = "natural plus". -alias num (instance 0) = "natural number". -theorem de_prodotto_funzioni: - ∀ n:nat. (id ^ (n + 1)) ' = ((n + 1)) · (id ^ n). - assume n:nat. - we proceed by induction on n to prove - ((id ^ (n + 1)) ' = (i (n + 1)) · (id ^ n)). - case O. - we need to prove ((id ^ (0 + 1)) ' = (i 1) · (id ^ 0)). - conclude - ((id ^ (0 + 1)) ') - = ((id ^ 1) ') by _. - = ((id · (id ^ 0)) ') by _. - = ((id · R1) ') by _. - = (id ') by _. - = (i R1) by _. - = (i R1 · R1) by _. - = (i (R0 + R1) · R1) by _. - = (1 · (id ^ 0)) by _ - done. - case S (n:nat). - by induction hypothesis we know - ((id ^ (n + 1)) ' = ((n + 1)) · (id ^ n)) (H). - we need to prove - ((id ^ ((n + 1)+1)) ' - = (i ((n + 1)+1)) · (id ^ (n+1))). - conclude - ((id ^ ((n + 1) + 1)) ') - = ((id ^ ((n + (S 1)))) ') by _. - = ((id ^ (S (n + 1))) ') by _. - = ((id · (id ^ (n + 1))) ') by _. - = ((id ' · (id ^ (n + 1))) + (id · (id ^ (n + 1)) ')) by _. - alias symbol "plus" (instance 1) = "function plus". - = ((R1 · (id ^ (n + 1))) + (id · (((n + 1)) · (id ^ n)))) by _. - = ((R1 · (id ^ (n + 1))) + (((n + 1) · id · (id ^ n)))) by _. - = ((R1 · (id ^ (n + 1))) + ((n + 1) · (id ^ (1 + n)))) by _. - = ((R1 · (id ^ (n + 1))) + ((n + 1) · (id ^ (n + 1)))) by _. - alias symbol "plus" (instance 2) = "function plus". - = (((R1 + (n + 1))) · (id ^ (n + 1))) by _. - = ((1 + (n + 1)) · (id ^ (n + 1))) by _; - = ((n + 1 + 1) · (id ^ (n + 1))) by _ - done. -qed. - -let rec times (n:nat) (x:R) on n: R ≝ - match n with - [ O ⇒ R0 - | S n ⇒ Rplus x (times n x) - ]. - -axiom invS: nat→R. -axiom invS1: ∀n:nat. Rmult (invS n) (real_of_nat (n + 1)) = R1. -axiom invS2: invS 1 + invS 1 = R1. (*forse*) - -axiom e:F. -axiom deriv_e: e ' = e. -axiom e1: e · (e ∘ ρ) = R1. - -(* -theorem decosh_senh: - (invS 1 · (e + (e ∘ ρ)))' = (invS 1 · (e + (ρ ∘ (e ∘ ρ)))). -*) diff --git a/helm/software/matita/dama_didactic/ex_seq.ma b/helm/software/matita/dama_didactic/ex_seq.ma deleted file mode 100644 index fcefda244..000000000 --- a/helm/software/matita/dama_didactic/ex_seq.ma +++ /dev/null @@ -1,201 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "sequences.ma". - -(* -ESERCIZI SULLE SUCCESSIONI - -Dimostrare che la successione alpha converge a 0 -*) - -definition F ≝ λ x:R.Rdiv x (S (S O)). - -definition alpha ≝ successione F R1. - -axiom cont: continuo F. - -lemma l1: monotone_not_increasing alpha. - we need to prove (monotone_not_increasing alpha) - or equivalently (∀n:nat. alpha (S n) ≤ alpha n). - assume n:nat. - we need to prove (alpha (S n) ≤ alpha n) - or equivalently (Rdiv (alpha n) (S (S O)) ≤ alpha n). - by _ done. -qed. - -lemma l2: inf_bounded alpha. - we need to prove (inf_bounded alpha) - or equivalently (∃m. ∀n:nat. m ≤ alpha n). - (* da trovare il modo giusto *) - cut (∀n:nat.R0 ≤ alpha n).by (ex_intro ? ? R0 Hcut) done. - (* fatto *) - we need to prove (∀n:nat. R0 ≤ alpha n). - assume n:nat. - we proceed by induction on n to prove (R0 ≤ alpha n). - case O. - (* manca il comando - the thesis becomes (R0 ≤ alpha O) - or equivalently (R0 ≤ R1). - by _ done. *) - (* approssimiamo con questo *) - we need to prove (R0 ≤ alpha O) - or equivalently (R0 ≤ R1). - by _ done. - case S (m:nat). - by induction hypothesis we know (R0 ≤ alpha m) (H). - we need to prove (R0 ≤ alpha (S m)) - or equivalently (R0 ≤ Rdiv (alpha m) (S (S O))). - by _ done. -qed. - -axiom xxx': -∀ F: R → R. ∀b:R. continuo F → - ∀ l. tends_to (successione F b) l → - punto_fisso F l. - -theorem dimostrazione: tends_to alpha O. - by _ let l:R such that (tends_to alpha l) (H). -(* unfold alpha in H. - change in match alpha in H with (successione F O). - check(xxx' F cont l H).*) - by (lim_punto_fisso F R1 cont l H) we proved (punto_fisso F l) (H2) - that is equivalent to (l = (Rdiv l (S (S O)))). - by _ we proved (tends_to alpha l = tends_to alpha O) (H4). - rewrite < H4. - by _ done. -qed. - -(******************************************************************************) - -(* Dimostrare che la successione alpha2 diverge *) - -definition F2 ≝ λ x:R. Rmult x x. - -definition alpha2 ≝ successione F2 (S (S O)). - -lemma uno: ∀n. alpha2 n ≥ R1. - we need to prove (∀n. alpha2 n ≥ R1). - assume n:nat. - we proceed by induction on n to prove (alpha2 n ≥ R1). - case O. - alias num (instance 0) = "natural number". - we need to prove (alpha2 0 ≥ R1) - or equivalently ((S (S O)) ≥ R1). - by _ done. - case S (m:nat). - by induction hypothesis we know (alpha2 m ≥ R1) (H). - we need to prove (alpha2 (S m) ≥ R1) - or equivalently (Rmult (alpha2 m) (alpha2 m) ≥ R1).letin xxx := (n ≤ n); - by _ we proved (R1 · R1 ≤ alpha2 m · alpha2 m) (H1). - by _ we proved (R1 · R1 = R1) (H2). - rewrite < H2. - by _ done. -qed. - -lemma mono1: monotone_not_decreasing alpha2. - we need to prove (monotone_not_decreasing alpha2) - or equivalently (∀n:nat. alpha2 n ≤ alpha2 (S n)). - assume n:nat. - we need to prove (alpha2 n ≤ alpha2 (S n)) - or equivalently (alpha2 n ≤ Rmult (alpha2 n) (alpha2 n)). - by _ done. -qed. - -(* -lemma due: ∀n. Relev (alpha2 0) n ≥ R0. - we need to prove (∀n. Relev (alpha2 0) n ≥ R0) - or equivalently (∀n. Relev (S (S O)) n ≥ R0). - by _ done. -qed. - -lemma tre: ∀n. alpha2 (S n) ≥ Relev (alpha2 0) (S n). - we need to prove (∀n. alpha2 (S n) ≥ Relev (alpha2 0) (S n)). - assume n:nat. - we proceed by induction on n to prove (alpha2 (S n) ≥ Relev (alpha2 0) (S n)). - case 0. - we need to prove (alpha2 1 ≥ Relev (alpha2 0) R1) - or equivalently (Rmult R2 R2 ≥ R2). - by _ done. - case S (m:nat). - by induction hypothesis we know (alpha2 (S m) ≥ Relev (alpha2 0) (S m)) (H). - we need to prove (alpha2 (S (S m)) ≥ Relev (alpha2 0) (S (S m))) - or equivalently - (*..TODO..*) - -theorem dim2: tends_to_inf alpha2. -(*..TODO..*) -qed. -*) - -(******************************************************************************) - -(* Dimostrare che la successione alpha3 converge a 0 *) -(* -definition alpha3 ≝ successione F2 (Rdiv (S 0) (S (S 0))). - -lemma quattro: ∀n. alpha3 n ≤ R1. - assume n:nat. - we need to prove (∀n. alpha3 n ≤ R1). - we proceed by induction on n to prove (alpha3 n ≤ R1). - case O. - we need to prove (alpha3 0 ≤ R1). - by _ done. - case S (m:nat). - by induction hypothesis we know (alpha3 m ≤ R1) (H). - we need to prove (alpha3 (S m) ≤ R1) - or equivalently (Rmult (alpha3 m) (alpha3 m) ≤ R1). - by _ done. - qed. - -lemma mono3: monotone_not_increasing alpha3. - we need to prove (monotone_not_increasing alpha3) - or equivalently (∀n:nat. alpha (S n) ≤ alpha n). - assume n:nat. - we need to prove (alpha (S n) ≤ alpha n) - or equivalently (Rmult (alpha3 n) (alpha3 n) ≤ alpha3 n). - by _ done. -qed. - -lemma bound3: inf_bounded alpha3. - we need to prove (inf_bounded alpha3) - or equivalently (∃m. ∀n:nat. m ≤ alpha3 n). - (* da trovare il modo giusto *) - cut (∀n:nat.R0 ≤ alpha3 n).by (ex_intro ? ? R0 Hcut) done. - (* fatto *) - we need to prove (∀n:nat. R0 ≤ alpha3 n). - assume n:nat. - we proceed by induction on n to prove (R0 ≤ alpha3 n). - case O. - (* manca il comando - the thesis becomes (R0 ≤ alpha O) - or equivalently (R0 ≤ R1). - by _ done. *) - (* approssimiamo con questo *) - we need to prove (R0 ≤ alpha3 O) - or equivalently (R0 ≤ Rdiv (S 0) (S (S 0))). - by _ done. - case S (m:nat). - by induction hypothesis we know (R0 ≤ alpha3 m) (H). - we need to prove (R0 ≤ alpha3 (S m)) - or equivalently (R0 ≤ Rmult (alpha3 m) (alpha3 m)). - by _ done. -qed. - -theorem dim3: tends_to alpha3 O. -(*..TODO..*) -qed. -*) \ No newline at end of file diff --git a/helm/software/matita/dama_didactic/reals.ma b/helm/software/matita/dama_didactic/reals.ma deleted file mode 100644 index 7d8a068c8..000000000 --- a/helm/software/matita/dama_didactic/reals.ma +++ /dev/null @@ -1,103 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "nat/plus.ma". - -axiom R:Type. -axiom R0:R. -axiom R1:R. -axiom Rplus: R→R→R. -axiom Ropp:R→R. (*funzione da x → -x*) -axiom Rmult: R→R→R. -axiom Rdiv: R→R→R. -axiom Relev: R→R→R. -axiom Rle: R→R→Prop. -axiom Rge: R→R→Prop. - -interpretation "real plus" 'plus x y = - (cic:/matita/didactic/reals/Rplus.con x y). - -interpretation "real opp" 'uminus x = - (cic:/matita/didactic/reals/Ropp.con x). - -notation "hvbox(a break · b)" - right associative with precedence 55 -for @{ 'mult $a $b }. - -interpretation "real mult" 'mult x y = - (cic:/matita/didactic/reals/Rmult.con x y). - -interpretation "real leq" 'leq x y = - (cic:/matita/didactic/reals/Rle.con x y). - -interpretation "real geq" 'geq x y = - (cic:/matita/didactic/reals/Rge.con x y). - -let rec elev (x:R) (n:nat) on n: R ≝ - match n with - [O ⇒ R1 - | S n ⇒ Rmult x (elev x n) - ]. - -let rec real_of_nat (n:nat) : R ≝ - match n with - [ O ⇒ R0 - | S n ⇒ - match n with - [ O ⇒ R1 - | _ ⇒ real_of_nat n + R1 - ] - ]. - -coercion cic:/matita/didactic/reals/real_of_nat.con. - -axiom Rplus_commutative: ∀x,y:R. x+y = y+x. -axiom R0_neutral: ∀x:R. x+R0=x. -axiom Rdiv_le: ∀x,y:R. R1 ≤ y → Rdiv x y ≤ x. -axiom R2_1: R1 ≤ S (S O). -(* assioma falso! *) -axiom Rmult_Rle: ∀x,y,z,w. x ≤ y → z ≤ w → Rmult x z ≤ Rmult y w. - -axiom Rdiv_pos: ∀ x,y:R. R0 ≤ x → R1 ≤ y → R0 ≤ Rdiv x y. -axiom Rle_R0_R1: R0 ≤ R1. -axiom div: ∀x:R. x = Rdiv x (S (S O)) → x = O. -(* Proprieta' elevamento a potenza NATURALE *) -axiom elev_incr: ∀x:R.∀n:nat. R1 ≤ x → elev x (S n) ≥ elev x n. -axiom elev_decr: ∀x:R.∀n:nat. R0 ≤ x ∧ x ≤ R1 → elev x (S n) ≤ elev x n. -axiom Rle_to_Rge: ∀x,y:R. x ≤ y → y ≥ x. -axiom Rge_to_Rle: ∀x,y:R. x ≥ y → y ≤ x. - -(* Proprieta' elevamento a potenza TRA REALI *) -(* -axiom Relev_ge: ∀x,y:R. - (x ≥ R1 ∧ y ≥ R1) ∨ (x ≤ R1 ∧ y ≤ R1) → Relev x y ≥ x. -axiom Relev_le: ∀x,y:R. - (x ≥ R1 ∧ y ≤ R1) ∨ (x ≤ R1 ∧ y ≥ R1) → Relev x y ≤ x. -*) - -lemma stupido: ∀x:R.R0+x=x. - assume x:R. - conclude (R0+x) = (x+R0) by _. - = x by _ - done. -qed. - -axiom opposto1: ∀x:R. x + -x = R0. -axiom opposto2: ∀x:R. -x = Rmult x (-R1). -axiom meno_piu: Rmult (-R1) (-R1) = R1. -axiom R1_neutral: ∀x:R.Rmult R1 x = x. -(* assioma falso *) -axiom uffa: ∀x,y:R. R1 ≤ x → y ≤ x · y. diff --git a/helm/software/matita/dama_didactic/root b/helm/software/matita/dama_didactic/root deleted file mode 100644 index 2d3086b02..000000000 --- a/helm/software/matita/dama_didactic/root +++ /dev/null @@ -1,2 +0,0 @@ -baseuri=cic:/matita/didactic -include_paths=../tests diff --git a/helm/software/matita/dama_didactic/sequences.ma b/helm/software/matita/dama_didactic/sequences.ma deleted file mode 100644 index 7e558030c..000000000 --- a/helm/software/matita/dama_didactic/sequences.ma +++ /dev/null @@ -1,57 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - - - -include "reals.ma". - -axiom continuo: (R → R) → Prop. -axiom tends_to: (nat → R) → R → Prop. -axiom tends_to_inf: (nat → R) → Prop. - -definition monotone_not_increasing ≝ - λ alpha:nat→R. - ∀n:nat.alpha (S n) ≤ alpha n. - -definition inf_bounded ≝ - λ alpha:nat → R. - ∃ m. ∀ n:nat. m ≤ alpha n. - -axiom converge: ∀ alpha. - monotone_not_increasing alpha → - inf_bounded alpha → - ∃ l. tends_to alpha l. - -definition punto_fisso := - λ F:R→R. λ x. x = F x. - -let rec successione F x (n:nat) on n : R ≝ - match n with - [ O ⇒ x - | S n ⇒ F (successione F x n) - ]. - -axiom lim_punto_fisso: -∀ F: R → R. ∀b:R. continuo F → - let alpha := successione F b in - ∀ l. tends_to alpha l → - punto_fisso F l. - -definition monotone_not_decreasing ≝ - λ alpha:nat→R. - ∀n:nat.alpha n ≤ alpha (S n). - -definition sup_bounded ≝ - λ alpha:nat → R. - ∃ m. ∀ n:nat. alpha n ≤ m.