From: Claudio Sacerdoti Coen Date: Fri, 4 Jul 2008 15:31:22 +0000 (+0000) Subject: More definitions, following Ciraulo's Phd Thesis "Constructive Satisfiability". X-Git-Tag: make_still_working~4955 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=d57b04c45c3dafa7b56a3dc2019c2ab0de730406;p=helm.git More definitions, following Ciraulo's Phd Thesis "Constructive Satisfiability". --- diff --git a/helm/software/matita/library/demo/formal_topology.ma b/helm/software/matita/library/demo/formal_topology.ma index ca544b598..50671aa41 100644 --- a/helm/software/matita/library/demo/formal_topology.ma +++ b/helm/software/matita/library/demo/formal_topology.ma @@ -147,4 +147,70 @@ theorem compatibility: ∀A:axiom_set.∀a:A.∀U,V. a ⋉ V → a ◃ U → U cases (H4 i); clear H4; cases H; clear H; apply (H2 w); clear H2; assumption] -qed. \ No newline at end of file +qed. + +definition singleton ≝ λA:axiom_set.λa:A.mk_powerset ? (λb:A.a=b). + +notation "hvbox({ term 19 a })" with precedence 90 for @{ 'singl $a}. + +interpretation "singleton" 'singl a = (singleton _ a). + +definition leq ≝ λA:axiom_set.λa,b:A. a ◃ {b}. + +interpretation "covered by one" 'leq a b = (leq _ a b). + +theorem leq_refl: ∀A:axiom_set.∀a:A. a ≤ a. + intros; + apply refl; + normalize; + reflexivity. +qed. + +theorem leq_trans: ∀A:axiom_set.∀a,b,c:A. a ≤ b → b ≤ c → a ≤ c. + intros; + unfold in H H1 ⊢ %; + apply (transitivity ???? H); + constructor 1; + intros; + normalize in H2; + rewrite < H2; + assumption. +qed. + +definition uparrow ≝ λA:axiom_set.λa:A.mk_powerset ? (λb:A. a ≤ b). + +notation "↑a" with precedence 80 for @{ 'uparrow $a }. + +interpretation "uparrow" 'uparrow a = (uparrow _ a). + +definition overlaps ≝ λA:Type.λU,V:2 \sup A.∃a:A. a ∈ U ∧ a ∈ V. + +notation "hvbox(a break ≬ b)" non associative with precedence 45 +for @{ 'overlaps $a $b }. + +interpretation "overlaps" 'overlaps U V = (overlaps _ U V). + +definition intersects ≝ λA:Type.λU,V:2 \sup A.mk_powerset ? (λa:A. a ∈ U ∧ a ∈ V). + +notation "hvbox(a break ∩ b)" non associative with precedence 55 +for @{ 'intersects $a $b }. + +interpretation "intersects" 'intersects U V = (intersects _ U V). + +definition downarrow ≝ λA:axiom_set.λU:2 \sup A.mk_powerset ? (λa:A. ↑a ≬ U). + +notation "↓a" with precedence 80 for @{ 'downarrow $a }. + +interpretation "downarrow" 'downarrow a = (downarrow _ a). + +definition fintersects ≝ λA:axiom_set.λU,V:2 \sup A.↓U ∩ ↓V. + +notation "hvbox(U break ↓ V)" non associative with precedence 80 for @{ 'fintersects $U $V }. + +interpretation "fintersects" 'fintersects U V = (fintersects _ U V). + +record convergent_generated_topology : Type ≝ + { AA:> axiom_set; + convergence: ∀a:AA.∀U,V:2 \sup AA. a ◃ U → a ◃ V → a ◃ U ↓ V + }. +