From: Andrea Asperti Date: Thu, 28 Jul 2005 10:21:46 +0000 (+0000) Subject: removed orders_op from library (now in le_arith and lt_arith). X-Git-Tag: V_0_7_2~24 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=d82900f9e0850c9015ca7f5d226831c85fe073a8;p=helm.git removed orders_op from library (now in le_arith and lt_arith). --- diff --git a/helm/matita/library/nat/orders_op.ma b/helm/matita/library/nat/orders_op.ma deleted file mode 100644 index bfb3668c7..000000000 --- a/helm/matita/library/nat/orders_op.ma +++ /dev/null @@ -1,98 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| A.Asperti, C.Sacerdoti Coen, *) -(* ||A|| E.Tassi, S.Zacchiroli *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU Lesser General Public License Version 2.1 *) -(* *) -(**************************************************************************) - -set "baseuri" "cic:/matita/nat/orders_op". - -include "higher_order_defs/functions.ma". -include "nat/times.ma". -include "nat/orders.ma". - -(* plus *) -theorem monotonic_le_plus_r: -\forall n:nat.monotonic nat le (\lambda m.n+m). -simplify.intros.elim n. -simplify.assumption. -simplify.apply le_S_S.assumption. -qed. - -theorem le_plus_r: \forall p,n,m:nat. n \leq m \to p+n \leq p+m -\def monotonic_le_plus_r. - -theorem monotonic_le_plus_l: -\forall m:nat.monotonic nat le (\lambda n.n+m). -simplify.intros. -rewrite < sym_plus.rewrite < sym_plus m. -apply le_plus_r.assumption. -qed. - -theorem le_plus_l: \forall p,n,m:nat. n \leq m \to n+p \leq m+p -\def monotonic_le_plus_l. - -theorem le_plus: \forall n1,n2,m1,m2:nat. n1 \leq n2 \to m1 \leq m2 -\to n1+m1 \leq n2+m2. -intros. -apply trans_le ? (n2+m1). -apply le_plus_l.assumption. -apply le_plus_r.assumption. -qed. - -theorem le_plus_n :\forall n,m:nat. m \leq n+m. -intros.change with O+m \leq n+m. -apply le_plus_l.apply le_O_n. -qed. - -theorem eq_plus_to_le: \forall n,m,p:nat.n=m+p \to m \leq n. -intros.rewrite > H. -rewrite < sym_plus. -apply le_plus_n. -qed. - -(* times *) -theorem monotonic_le_times_r: -\forall n:nat.monotonic nat le (\lambda m.n*m). -simplify.intros.elim n. -simplify.apply le_O_n. -simplify.apply le_plus. -assumption. -assumption. -qed. - -theorem le_times_r: \forall p,n,m:nat. n \leq m \to p*n \leq p*m -\def monotonic_le_times_r. - -theorem monotonic_le_times_l: -\forall m:nat.monotonic nat le (\lambda n.n*m). -simplify.intros. -rewrite < sym_times.rewrite < sym_times m. -apply le_times_r.assumption. -qed. - -theorem le_times_l: \forall p,n,m:nat. n \leq m \to n*p \leq m*p -\def monotonic_le_times_l. - -theorem le_times: \forall n1,n2,m1,m2:nat. n1 \leq n2 \to m1 \leq m2 -\to n1*m1 \leq n2*m2. -intros. -apply trans_le ? (n2*m1). -apply le_times_l.assumption. -apply le_times_r.assumption. -qed. - -theorem le_times_n: \forall n,m:nat.S O \leq n \to m \leq n*m. -intros.elim H.simplify. -elim (plus_n_O ?).apply le_n. -simplify.rewrite < sym_plus.apply le_plus_n. -qed. - -